JP2003213372A - Steel wire for spring and spring - Google Patents

Steel wire for spring and spring

Info

Publication number
JP2003213372A
JP2003213372A JP2002017472A JP2002017472A JP2003213372A JP 2003213372 A JP2003213372 A JP 2003213372A JP 2002017472 A JP2002017472 A JP 2002017472A JP 2002017472 A JP2002017472 A JP 2002017472A JP 2003213372 A JP2003213372 A JP 2003213372A
Authority
JP
Japan
Prior art keywords
spring
steel wire
grain size
mass
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002017472A
Other languages
Japanese (ja)
Inventor
Toru Ishihara
亨 石原
Hiroshi Izumida
寛 泉田
Norito Yamao
憲人 山尾
Teruyuki Murai
照幸 村井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo SEI Steel Wire Corp
Original Assignee
Sumitomo SEI Steel Wire Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo SEI Steel Wire Corp filed Critical Sumitomo SEI Steel Wire Corp
Priority to JP2002017472A priority Critical patent/JP2003213372A/en
Publication of JP2003213372A publication Critical patent/JP2003213372A/en
Pending legal-status Critical Current

Links

Landscapes

  • Springs (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a steel wire for a spring in which the fatigue resistance of the material itself is improved without addition of expensive elements and expensive treatment, to provide a production method therefor and a spring. <P>SOLUTION: The steel wire for a spring contains, by mass, 0.50 to 0.90% C, 1.0 to 3.0% Si, 0.5 to 1.5% Mn and 0.1 to 5.0% Cr, and has a metallic structure mainly consisting of tempered martensite. The old austenite grain size (JIS G 0551) of tempered martensite is #11 to 15, and the maximum grain size is ≤8 μm. By the refining of the grain size, the density of the grain boundaries is increased, so that the strength of the material itself is improved, and its fatigue resistance is improved. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、自動車等に用いら
れる高強度ばねと、その製造に適用されるばね用鋼線に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-strength spring used in automobiles and the like, and a steel wire for a spring applied to its manufacture.

【0002】[0002]

【従来の技術】自動車のエンジンに使用される弁ばね
は、高応力、高回転で用いられており、最も厳しい使用
環境にあるばねの一つである。そして、近年、自動車の
軽量化に伴い、ばね用鋼線として更なる高強度化、長寿
命化、つまり高耐疲労特性が要求されている。一般的に
弁ばね用材料は、弁ばね用クロムバナジウム鋼オイルテ
ンパー線や弁ばね用シリコンクロム鋼オイルテンパー線
が用いられており、これらの高耐疲労化が進んでいる。
2. Description of the Related Art A valve spring used in an automobile engine is used under high stress and high rotation, and is one of the springs in the most severe operating environment. As the weight of automobiles has been reduced in recent years, the spring steel wire is required to have higher strength and longer life, that is, higher fatigue resistance. Generally, chrome vanadium steel oil tempered wire for valve springs and silicon chrome steel oil tempered wire for valve springs are used as materials for valve springs, and their fatigue resistance has been advanced.

【0003】特開昭62-177152号公報(特許第2650225
号)においては、Moなどの元素を添加し、さらに窒化処
理を行うことによって高強度化を図っている。また、特
開平5-320827号公報(特許第2898472号)では、Mo、Nb
などの元素を添加し、介在物の大きさ、組成を制御する
ことによって高強度化を図っている。さらに、特開平02
-247354号公報では旧オーステナイト結晶粒径を、特開
平11-6033号公報では旧オーステナイト結晶粒径と未固
溶炭化物を、特開平9-71843号公報では残留γ量を制限
することによって疲労特性の改善を図っている。
JP-A-62-177152 (Patent No. 2650225)
No.), an element such as Mo is added, and a nitriding treatment is further performed to increase the strength. Further, in Japanese Patent Laid-Open No. 5-320827 (Patent No. 2898472), Mo, Nb
By increasing the size and composition of inclusions by adding such elements as above, the strength is increased. Furthermore, JP-A-02
-247354 in the former austenite crystal grain size, JP 11-6033 JP in the old austenite crystal grain size and undissolved carbide, JP 9-71843 JP by limiting the residual γ amount fatigue characteristics We are trying to improve.

【0004】[0004]

【発明が解決しようとする課題】しかし、上記の技術で
は、近年コスト低減の要望が強い中、高価な処理や添加
元素を加えている点で問題である。伸線を行うためには
組織をパーライト組織にする必要があるが、Mo添加によ
ってパーライト組織に変態させるための冷却速度を、従
来材に比べ緩冷却側に制御しなければならず、工業的に
も適さない。
However, the above-mentioned technique has a problem in that expensive treatments and additional elements are added in spite of strong demand for cost reduction in recent years. In order to carry out wire drawing, it is necessary to make the structure a pearlite structure, but the cooling rate for transforming to a pearlite structure by adding Mo must be controlled to a slow cooling side compared to conventional materials, which is industrially Is also not suitable.

【0005】また、未固溶炭化物、残留γ量、介在物な
どの疲労破壊の起点となり得る部分を制御、低減するこ
とは重要であるが、さらなる耐疲労特性の向上が望まれ
ている。
Further, it is important to control and reduce the portions that may be the starting point of fatigue fracture, such as undissolved carbides, residual γ amount, and inclusions, but further improvement in fatigue resistance is desired.

【0006】従って、本発明の主目的は、高価な元素の
添加および高価な処理を極力行うことなく、材料自身の
耐疲労特性を向上できるばね用鋼線とばねを提供するこ
とにある。
Therefore, a main object of the present invention is to provide a spring steel wire and a spring which can improve the fatigue resistance of the material itself without adding expensive elements and performing expensive treatment as much as possible.

【0007】[0007]

【課題を解決するための手段】本発明の第1の特徴とす
るところは、質量%でC:0.50〜0.90、Si:1.0〜3.0、M
n:0.5〜1.5、Cr:0.1〜5.0を含み、主として金属組織
が焼戻しマルテンサイトからなるばね用鋼線であって、
焼戻しマルテンサイトの旧オーステナイト結晶粒度番号
(JIS G O551)が#11〜#15で、最大の結晶粒径を8
μm以下としたことにある。
A first feature of the present invention is that C: 0.50 to 0.90, Si: 1.0 to 3.0, M in mass%.
n: 0.5 to 1.5, Cr: 0.1 to 5.0, a steel wire for a spring, the metal structure of which is mainly tempered martensite,
The former austenite grain size number (JIS G O551) of tempered martensite is # 11 to # 15, and the maximum grain size is 8
It is to be less than μm.

【0008】ここで、「主として金属組織が焼戻しマル
テンサイトからなる」とは、焼戻しマルテンサイトが90
%以上含まれていることを指す。化学成分として、さら
に質量%でMo:0.05〜0.50、V:0.05〜0.50、W:0.05〜
0.15、Nb:0.05〜0.15、Ti:0.01〜0.20、Ni:0.02〜1.
00、Co:0.02〜1.00、Cu:0.02〜1.00のうち1種以上を
含有してもよい。これらの化学成分の他は、Feと不可避
不純物から構成されるものが好適である。
Here, the phrase "mainly composed of tempered martensite as the metal structure" means that tempered martensite is 90
Percentage of more than% is included. Further as a chemical component, in mass% Mo: 0.05 to 0.50, V: 0.05 to 0.50, W: 0.05 to
0.15, Nb: 0.05 to 0.15, Ti: 0.01 to 0.20, Ni: 0.02 to 1.
One or more of 00, Co: 0.02 to 1.00 and Cu: 0.02 to 1.00 may be contained. Other than these chemical components, those composed of Fe and inevitable impurities are preferable.

【0009】材料自身の耐疲労特性を向上させるために
は、結晶粒径を微細化することによって可能である。と
いうのも、結晶の粒界は粒内に比べて強度が強いため、
微細化によって結晶粒界の密度を増加すれば強度向上を
図れるからである。
In order to improve the fatigue resistance of the material itself, it is possible to reduce the crystal grain size. Because the grain boundaries of crystals are stronger than those inside the grains,
This is because the strength can be improved by increasing the density of crystal grain boundaries due to the miniaturization.

【0010】つまり、結晶粒度を粗大化すると靭性が劣
化し、十分な靭性を得るためには#11以上にすることが
必要である。また、微細化するためには焼入時の加熱温
度を低くする、もしくは短時間で加熱する必要があり、
この場合未固溶炭化物が生じ、靭性を低下させるため#
15以下に特定した。
That is, if the grain size is made coarse, the toughness deteriorates, and it is necessary to make it # 11 or more in order to obtain sufficient toughness. In addition, in order to miniaturize, it is necessary to lower the heating temperature during quenching, or to heat in a short time,
In this case, undissolved carbides are generated and the toughness is reduced.
Specified below 15.

【0011】粒度番号に加えてさらに最大結晶粒径を8
μm以下と特定した理由は、大きな結晶が一つでも存在
すると、その大きな結晶粒に応力が集中して疲労破壊の
起点となるためである。粒度番号が#11〜#15というの
は、結晶粒径にして6.2μm〜1.6μmであるが、これは平
均粒径であり、最大粒径を規定するものではないため、
本発明では最大粒径についても規定している。
In addition to the grain size number, the maximum grain size is 8
The reason why it is specified to be μm or less is that if there is even one large crystal, stress concentrates on the large crystal grain and becomes a starting point of fatigue fracture. The grain size numbers # 11 to # 15 mean that the grain size is 6.2 μm to 1.6 μm, but this is the average grain size and does not specify the maximum grain size.
The present invention also defines the maximum particle size.

【0012】このような結晶粒度の微細化は、焼入時の
加熱温度を800〜1100℃、加熱時間を1〜10sの条件で作
製することができる。加熱時間は焼入時の加熱温度に保
持する時間のことである。局所的に大きな結晶が存在し
ない組織を得るためには、加熱温度を低くして短時間で
均一に加熱することによって作製することができる。ま
た、本発ばね用鋼線は、高価な窒化処理を行わなくても
耐疲労特性を向上できるが、窒化処理などの表面硬化法
を施せば、さらに耐疲労特性は向上すると考えられる。
Such a refinement of the crystal grain size can be made under the conditions that the heating temperature during quenching is 800 to 1100 ° C. and the heating time is 1 to 10 s. The heating time is the time to maintain the heating temperature during quenching. In order to obtain a structure in which no large crystals locally exist, it can be produced by lowering the heating temperature and heating uniformly for a short time. Further, the fatigue-resistant property of the spring-formed spring steel wire can be improved without performing expensive nitriding treatment, but it is considered that the fatigue resistance property is further improved by performing a surface hardening method such as nitriding treatment.

【0013】本発明の第2の特徴とするところは、上記
結晶粒度や最大結晶粒径の特定と共に、マルテンサイト
中におけるブロックの厚みの最大値を600nm以下に特定
したことにある。
A second feature of the present invention is that the maximum grain size of the block in martensite is specified to be 600 nm or less, in addition to the grain size and the maximum grain size specified above.

【0014】本発明の第3の特徴とするところは、さら
に降伏比を0.97以上、引張強さを1800〜2300N/mm2、線
表面の硬度をHmV600以上の何れか1つ以上を特定したこ
とである。
The third feature of the present invention is that the yield ratio is 0.97 or more, the tensile strength is 1800 to 2300 N / mm 2 , and the wire surface hardness is HmV 600 or more. Is.

【0015】次に、本発明における構成要件の限定理由
を説明する。
Next, the reasons for limiting the constituents of the present invention will be described.

【0016】<C:0.50〜0.90質量%>Cは鋼の強度を高
めるのに必須の元素であるが、0.50%未満では十分な強
度を得ることができず、0.90%を超えると結晶粒界にセ
メンタイトが析出し靭性が低下する。
<C: 0.50 to 0.90 mass%> C is an essential element for increasing the strength of steel, but if it is less than 0.50%, sufficient strength cannot be obtained, and if it exceeds 0.90%, the grain boundary is increased. Cementite precipitates in the and the toughness decreases.

【0017】<Si:1.0〜3.0質量%>Siはフェライト中
に固溶することによって、フェライトの強度を向上さ
せ、耐へたり性を向上させるのに有効な元素である。1.
0%未満では十分な耐へたり性を得ることができず、逆
に3.0%を超える場合は固溶しきれずに靭性を低下さ
せ、ばね加工性を低下させる。
<Si: 1.0 to 3.0% by Mass> Si is an element effective in improving the strength of the ferrite and the sag resistance by forming a solid solution in the ferrite. 1.
If it is less than 0%, sufficient sag resistance cannot be obtained. On the contrary, if it exceeds 3.0%, the solid solution is not completely dissolved and the toughness is lowered, and the spring workability is lowered.

【0018】<Mn:0.5〜1.5質量%>Mnは鋼の焼入れ性
を向上させるのに有効な元素であり、0.5%未満ではそ
の効果が少なく、逆に1.5%を超えると靭性を低下させ
る。
<Mn: 0.5 to 1.5% by mass> Mn is an element effective in improving the hardenability of steel. If it is less than 0.5%, its effect is small, and if it exceeds 1.5%, toughness is lowered.

【0019】<Cr:0.1〜5.0質量%>CrはMn同様、鋼の
焼入れ性を向上させるとともに焼戻し時の軟化抵抗を高
め、高強度化するのに効果的な元素である。0.1%未満
ではその効果が少なく、逆に5.0%を超えると焼入れ性
の過度の増大となって靭性を低下させる。
<Cr: 0.1 to 5.0 mass%> Like Mn, Cr is an element effective for improving the hardenability of steel and enhancing the softening resistance at the time of tempering to enhance the strength. If it is less than 0.1%, its effect is small, and if it exceeds 5.0%, the hardenability is excessively increased and the toughness is lowered.

【0020】<Mo:0.05〜0.50質量%>Moは焼戻し時に
炭化物を形成し、軟化抵抗を増大させる元素である。0.
05%未満ではその効果が少なく、0.50%を超えると伸線
加工性を低下させる。
<Mo: 0.05 to 0.50 mass%> Mo is an element that forms carbides during tempering and increases the softening resistance. 0.
If it is less than 05%, its effect is small, and if it exceeds 0.50%, the wire drawability is deteriorated.

【0021】<V:0.05〜0.50、W:0.05〜0.15、Nb:0.
05〜0.15質量%>W、Nb、Vも焼戻し時に鋼中に炭化物を
形成し、軟化抵抗を増大させる効果がある。但しいずれ
も0.05%未満では、その効果を発揮し得ない。逆に、V
では0.50%超、W、Nbでは0.15%超でいずれも焼入れ加
熱時に炭化物を多く形成し、靭性を低下させる。
<V: 0.05 to 0.50, W: 0.05 to 0.15, Nb: 0.
05-0.15 mass%> W, Nb, and V also have the effect of forming carbides in the steel during tempering and increasing the softening resistance. However, in all cases, if it is less than 0.05%, the effect cannot be exhibited. Conversely, V
Over 0.50%, and for W and Nb over 0.15%, both form a large amount of carbide during quenching and heating, reducing toughness.

【0022】<Ti:0.01〜0.20質量%>Tiも焼戻し時に
鋼中に炭化物を形成し、軟化抵抗を増大させる効果があ
る。但しTiは高融点非金属介在物であるTiOを生成す
る。故に精錬時の条件設定などが重要である。軟化抵抗
向上効果が期待できる量として0.01%以上、炭化物、介
在物の過度の増加による靭性劣化を考慮して0.20%以下
とした。
<Ti: 0.01 to 0.20% by mass> Ti also has the effect of forming carbides in the steel during tempering and increasing the softening resistance. However, Ti produces TiO which is a refractory nonmetallic inclusion. Therefore, it is important to set the conditions for refining. The amount that can be expected to improve the softening resistance is 0.01% or more, and is 0.20% or less in consideration of deterioration of toughness due to excessive increase of carbides and inclusions.

【0023】<Ni:0.02〜1.00、Co:0.02〜1.00、Cu:
0.02〜1.00質量%>Ni、Co、Cuはオーステナイト生成元
素であり、Ni、Co、Cu添加によってMs点を大きく低下さ
せ、残留オーステナイトを生じ易くする材料である。残
留オーステナイトの増加は、鋼線の硬度を低下させる作
用を持つが、逆にSiによる固溶強化やMo、W、Nb、V、Ti
といった炭化物析出元素で強化された鋼線に靭性を持た
せる効果を持つ。また、Niは塩水腐食環境において、Cl
元素の侵入を阻止する役割も持つ。靭性向上効果を持つ
最低限度として0.02%、硬度低下を招かない上限として
1.00%とした。
<Ni: 0.02 to 1.00, Co: 0.02 to 1.00, Cu:
0.02 to 1.00% by mass> Ni, Co, and Cu are austenite-forming elements, and are materials that greatly reduce the Ms point by adding Ni, Co, and Cu and easily generate retained austenite. Increasing the retained austenite has the effect of reducing the hardness of the steel wire, but conversely solid solution strengthening with Si and Mo, W, Nb, V, Ti
Has the effect of imparting toughness to the steel wire reinforced by carbide precipitation elements such as. In addition, Ni is Cl in a corrosive environment.
It also has the role of blocking the entry of elements. 0.02% as the minimum limit that has the effect of improving toughness, and as the upper limit that does not cause hardness decrease
It was 1.00%.

【0024】<マルテンサイト中のブロックの厚みの最
大値:600nm以下>焼戻しマルテンサイトの旧オーステ
ナイト粒度番号は、マルテンサイト組織の有効な評価方
法ではある。ただし、焼戻しマルテンサイトの組織は旧
オーステナイト、パケット、ブロック、ラスで構成され
ており、厳密的には同一の結晶方位を持つラスで構成さ
れたブロックの厚みが強度や靭性に大きく影響する。そ
こで、十分な靭性を得るためには、ブロックの最大厚み
を600nm以下と特定した。
<Maximum thickness of block in martensite: 600 nm or less> The former austenite grain size number of tempered martensite is an effective evaluation method of martensite structure. However, the structure of tempered martensite is composed of prior austenite, packets, blocks, and laths, and strictly speaking, the thickness of blocks composed of laths having the same crystal orientation greatly affects strength and toughness. Therefore, in order to obtain sufficient toughness, the maximum block thickness was specified to be 600 nm or less.

【0025】<降伏比:0.97以上>材料自身の耐疲労特
性をさらに向上させるためには、粒内を強化することが
必要である。一般的に高強度材の疲労破壊は、すべり帯
の集中によって亀裂が発生し破壊が起こる。そこで、す
べり帯の発生を低減するためには高弾性限である必要が
あり、降伏比を0.97以上と特定した。
<Yield ratio: 0.97 or more> In order to further improve the fatigue resistance of the material itself, it is necessary to strengthen the inside of the grains. In general, the fatigue fracture of high strength material is caused by the occurrence of cracks due to the concentration of slip bands. Therefore, it is necessary to have a high elastic limit in order to reduce the occurrence of slip bands, and the yield ratio was specified as 0.97 or higher.

【0026】<引張強さ:1800〜2300N/mm2>引張強さ
が1800N/mm2未満であると、ばねとして十分な強度を得
ることができず、耐へたり性も低下する。一方で2300N/
mm2を超えると靭性が低下し、ばねの加工性を低下させ
る。
<Tensile Strength: 1800 to 2300 N / mm 2 > When the tensile strength is less than 1800 N / mm 2 , sufficient strength as a spring cannot be obtained and sag resistance is also deteriorated. On the other hand, 2300N /
If it exceeds mm 2 , toughness is lowered and the workability of the spring is lowered.

【0027】<線表面の硬度:HmV600以上>本発明鋼線
の表面を硬化させると更に耐疲労性の向上が期待でき
る。硬化させる手法として、窒化処理、浸炭処理などが
あるが、これらの表面処理は母材の機械的特性の影響を
受けやすい。即ち、本発明鋼線を用いて作製したばね
を、これら従来の表面硬化法と組み合わせることで著し
い疲労限の向上が期待できる。本発明では疲労限向上の
期待できる表面硬度の下限としてHmV600とした。
<Hardness of wire surface: HmV 600 or more> When the surface of the steel wire of the present invention is hardened, further improvement in fatigue resistance can be expected. Nitriding treatment, carburizing treatment, and the like are available as hardening methods, but these surface treatments are easily affected by the mechanical properties of the base material. That is, it is possible to expect a remarkable improvement in the fatigue limit by combining a spring manufactured using the steel wire of the present invention with these conventional surface hardening methods. In the present invention, HmV600 is set as the lower limit of the surface hardness that can be expected to improve the fatigue limit.

【0028】[0028]

【発明の実施の形態】以下、本発明の実施の形態を説明
する。 (実施例1)表1に示す化学成分を有する供試鋼を溶解、
圧延、熱処理(パテンティング)し、伸線によって線径
8.0mmから3.5mmの線材とした。この線材を表2、3に示す
加熱温度、加熱時間で焼入れしてから焼戻しして試料を
作製し、その後に旧オーステナイト結晶粒度番号、最大
結晶粒径、最大ブロック厚みの測定および引張試験に基
づく降伏比の算出を行った。供試鋼は表1に記載の元素
の他、残部はFeと不可避不純物からなる。パテンティン
グ条件は、保持温度600℃、保持時間40秒とした。焼戻
し条件は、加熱温度480℃、保持時間1秒とした。結晶粒
度番号はJISG O551に基づいて求めた。最大結晶粒径、
最大ブロック厚みは試料を顕微鏡で拡大して求めた。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below. (Example 1) Melting a sample steel having the chemical composition shown in Table 1,
Wire diameter by rolling, heat treatment (patenting), and wire drawing
The wire rod is from 8.0 mm to 3.5 mm. This wire is heated at the heating temperature and heating time shown in Tables 3 and 3 and then tempered to prepare a sample, and then based on the former austenite grain size number, maximum grain size, maximum block thickness measurement and tensile test. The yield ratio was calculated. In addition to the elements listed in Table 1, the test steel consists of Fe and the unavoidable impurities in the balance. The patenting conditions were a holding temperature of 600 ° C. and a holding time of 40 seconds. The tempering conditions were a heating temperature of 480 ° C. and a holding time of 1 second. The grain size number was determined based on JIS G O551. Maximum grain size,
The maximum block thickness was obtained by enlarging the sample with a microscope.

【0029】また、作製した試料を表4に示すばね諸元
でばねに加工し、ショットピーニングを施した後、ばね
疲労試験機で疲労試験を行い、振幅回数1×107回で未折
損である振幅応力を測定した。疲労試験における平均応
力は700MPaである。これらの試験結果を表2、表3に示
す。
Further, the samples prepared by processing a spring in the spring specifications shown in Table 4, was subjected to shot peening, performed fatigue test by a spring fatigue tester, in a non-breakage amplitude number 1 × 10 7 times A certain amplitude stress was measured. The average stress in the fatigue test is 700 MPa. The test results are shown in Tables 2 and 3.

【0030】[0030]

【表1】 [Table 1]

【0031】[0031]

【表2】 [Table 2]

【0032】[0032]

【表3】 [Table 3]

【0033】[0033]

【表4】 [Table 4]

【0034】以上のように、それぞれA1とa1、B1とb1、
C1とc1を比較した結果から、本発明鋼は振幅応力が大き
く約60MPaも上昇していることがわかる。また、B1とC1
の結果から、MoやNi添加によって振幅応力の向上は認め
られないことが分かる。
As described above, A1 and a1, B1 and b1, respectively.
From the result of comparison between C1 and c1, it can be seen that the steel of the present invention has large amplitude stress and increases by about 60 MPa. Also, B1 and C1
From the results, it can be seen that the addition of Mo or Ni does not improve the amplitude stress.

【0035】b3、B1、B6、B7の結果から結晶粒度番号が
大きくなると振幅応力が高くなっていることが分かる。
b2、B1、B8の結果から最大結晶粒径が小さくなると振幅
応力が高くなっていることが分かる。B1、B2、B9の結果
からブロックの最大厚みが薄くなると振幅応力が高くな
っていることが分かる。B1、B3、B10の結果から降伏比
が大きくなると振幅応力が高くなっていることが分か
る。
From the results of b3, B1, B6 and B7, it can be seen that the larger the grain size number, the higher the amplitude stress.
From the results of b2, B1 and B8, it can be seen that the amplitude stress increases as the maximum grain size decreases. From the results of B1, B2, and B9, it can be seen that the amplitude stress increases as the maximum thickness of the block decreases. From the results of B1, B3, and B10, it can be seen that the amplitude stress increases as the yield ratio increases.

【0036】さらに、引張強さが1800MPa、2250MPaであ
るばね用鋼線についても、同様な結果を得た。
Similar results were obtained for spring steel wires having tensile strengths of 1800 MPa and 2250 MPa.

【0037】(実施例2)前記表3における発明鋼B1と
比較鋼b1のばねについて、窒化処理等によって表面硬度
を高め、実施例1と同様にばね疲労試験を実施した。窒
化処理条件と表面硬度および疲労試験結果を表5に示
す。
Example 2 With respect to the springs of the invention steel B1 and the comparative steel b1 in Table 3 above, the surface hardness was increased by nitriding treatment and the like, and a spring fatigue test was conducted in the same manner as in Example 1. Table 5 shows the nitriding conditions, surface hardness, and fatigue test results.

【0038】[0038]

【表5】 [Table 5]

【0039】以上のように、本発明鋼では比較鋼に比べ
て表面硬度が高くなると著しく振幅応力が向上している
ことが分かる。
As described above, in the steel of the present invention, the amplitude stress is remarkably improved as the surface hardness becomes higher than that of the comparative steel.

【0040】[0040]

【発明の効果】以上説明したように、本発明によれば特
別な処理を施すこと無しに、耐疲労特性の向上を得るこ
とができる。これによって、ばねの細径化が可能にな
り、自動車エンジンの小型軽量化が可能になる。
As described above, according to the present invention, the fatigue resistance can be improved without any special treatment. As a result, the diameter of the spring can be reduced, and the automobile engine can be reduced in size and weight.

【0041】また、細径化による原料費低減および表面
硬化法の省略による加工費低減など工業的にも有効であ
る。
Further, it is industrially effective to reduce the raw material cost by reducing the diameter and reduce the processing cost by omitting the surface hardening method.

【0042】さらに、従来の表面硬化法を組み合わせる
ことによって、さらなる耐疲労特性の向上を得ることが
できる。
Further, by combining conventional surface hardening methods, further improvement in fatigue resistance can be obtained.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山尾 憲人 兵庫県伊丹市昆陽北一丁目1番1号 住友 電気工業株式会社伊丹製作所内 (72)発明者 村井 照幸 兵庫県伊丹市昆陽北一丁目1番1号 住友 電気工業株式会社伊丹製作所内 Fターム(参考) 3J059 AB11 BA01 BA31 BC02 EA09 GA08    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Kento Yamao             Sumitomo, 1-1 1-1 Koyokita, Itami City, Hyogo Prefecture             Electric Industry Co., Ltd. Itami Works (72) Inventor Teruyuki Murai             Sumitomo, 1-1 1-1 Koyokita, Itami City, Hyogo Prefecture             Electric Industry Co., Ltd. Itami Works F-term (reference) 3J059 AB11 BA01 BA31 BC02 EA09                       GA08

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 化学成分が質量%で、C:0.50〜0.90、S
i:1.0〜3.0、Mn:0.5〜1.5、Cr:0.1〜5.0を含み、主
として金属組織が焼戻しマルテンサイトからなるばね用
鋼線であって、 焼戻しマルテンサイトの旧オーステナイト結晶粒度番号
(JIS G O551)が#11〜#15で、その最大結晶粒径が
8μm以下であることを特徴とするばね用鋼線。
1. The chemical composition in% by mass, C: 0.50 to 0.90, S
i: 1.0 to 3.0, Mn: 0.5 to 1.5, Cr: 0.1 to 5.0, which is a steel wire for spring mainly composed of tempered martensite. The former austenite grain size number (JIS G O551 ) Is # 11 to # 15, and the maximum grain size is
Steel wire for springs characterized by having a diameter of 8 μm or less.
【請求項2】 さらに質量%でMo:0.05〜0.50、V:0.0
5〜0.50、W:0.05〜0.15、Nb:0.05〜0.15、Ti:0.01〜
0.20、Ni:0.02〜1.00、Co:0.02〜1.00、Cu:0.02〜1.
00のうち1種以上を含有することを特徴とする請求項1
に記載のばね用鋼線。
2. Further, in mass%, Mo: 0.05 to 0.50, V: 0.0
5 to 0.50, W: 0.05 to 0.15, Nb: 0.05 to 0.15, Ti: 0.01 to
0.20, Ni: 0.02-1.00, Co: 0.02-1.00, Cu: 0.02-1.
2. One or more of 00 are contained, The claim 1 characterized by the above-mentioned.
The steel wire for spring according to.
【請求項3】 マルテンサイト中におけるブロックの厚
みの最大値が600nm以下であることを特徴とする請求項1
または2に記載のばね用鋼線。
3. The maximum thickness of the block in martensite is 600 nm or less.
Alternatively, the steel wire for spring according to item 2.
【請求項4】 降伏比が0.97以上であることを特徴とす
る請求項1または2に記載のばね用鋼線。
4. The steel wire for spring according to claim 1, which has a yield ratio of 0.97 or more.
【請求項5】 引張強さが1800〜2300N/mm2であること
を特徴とする請求項1〜4のいずれかに記載のばね用鋼
線。
5. The steel wire for spring according to claim 1, wherein the tensile strength is 1800 to 2300 N / mm 2 .
【請求項6】 請求項1〜5のいずれかに記載のばね用鋼
線を用いて作製したことを特徴とするばね。
6. A spring manufactured by using the steel wire for spring according to claim 1. Description:
【請求項7】 表面の硬度がHmV600以上であることを特
徴とする請求項6に記載のばね。
7. The spring according to claim 6, wherein the hardness of the surface is HmV600 or more.
JP2002017472A 2002-01-25 2002-01-25 Steel wire for spring and spring Pending JP2003213372A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002017472A JP2003213372A (en) 2002-01-25 2002-01-25 Steel wire for spring and spring

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002017472A JP2003213372A (en) 2002-01-25 2002-01-25 Steel wire for spring and spring

Publications (1)

Publication Number Publication Date
JP2003213372A true JP2003213372A (en) 2003-07-30

Family

ID=27653154

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002017472A Pending JP2003213372A (en) 2002-01-25 2002-01-25 Steel wire for spring and spring

Country Status (1)

Country Link
JP (1) JP2003213372A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004055226A1 (en) * 2002-12-13 2004-07-01 Sumitomo (Sei) Steel Wire Corp. Steel wire for spring
WO2005106059A1 (en) * 2004-04-28 2005-11-10 Jfe Steel Corporation Parts for machine construction and method for production thereof
EP1731625A1 (en) * 2004-02-04 2006-12-13 Sumitomo (Sei) Steel Wire Corp. Steel wire for spring
WO2007018048A1 (en) * 2005-08-05 2007-02-15 Sumitomo Electric Industries, Ltd. Oil-tempered wire and process for producing the same
WO2007083808A1 (en) * 2006-01-23 2007-07-26 Kabushiki Kaisha Kobe Seiko Sho High-strength spring steel excellent in brittle fracture resistance and method for producing same
KR100883716B1 (en) * 2004-07-16 2009-02-12 제이에프이 스틸 가부시키가이샤 Composition for Machine Structure, Method of Producing the Same and Material for Induction Hardening
US20090205753A1 (en) * 2006-03-31 2009-08-20 Masayuki Hashimura High strength spring-use heat treated steel
JP2010163689A (en) * 2005-08-05 2010-07-29 Sumitomo Electric Ind Ltd Oil-tempered wire, method for manufacturing the same, and spring
JP2010196592A (en) * 2009-02-25 2010-09-09 Kubota Corp Mechanical governor for engine
WO2015005311A1 (en) * 2013-07-09 2015-01-15 日本発條株式会社 Coil spring, and method for manufacturing same
CN106834959A (en) * 2016-12-28 2017-06-13 内蒙古包钢钢联股份有限公司 High hardness wear-resisting ball material steel and its production method
KR101797381B1 (en) 2016-08-02 2017-11-14 주식회사 포스코 Steel wire having excellent corrosion resistance for spring and method for manufacturing thereof
KR20180043826A (en) * 2015-09-04 2018-04-30 신닛테츠스미킨 카부시키카이샤 Spring wire and spring
CN108220805A (en) * 2016-12-12 2018-06-29 株式会社Posco The excellent steel wire for high strength spring of anticorrosion stress-resistant and its manufacturing method
US10131973B2 (en) * 2004-11-30 2018-11-20 Nippon Steel & Sumitomo Metal Corporation High strength spring steel and steel wire

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004055226A1 (en) * 2002-12-13 2004-07-01 Sumitomo (Sei) Steel Wire Corp. Steel wire for spring
EP1731625A4 (en) * 2004-02-04 2012-03-28 Sumitomo Sei Steel Wire Corp Steel wire for spring
EP1731625A1 (en) * 2004-02-04 2006-12-13 Sumitomo (Sei) Steel Wire Corp. Steel wire for spring
WO2005106059A1 (en) * 2004-04-28 2005-11-10 Jfe Steel Corporation Parts for machine construction and method for production thereof
KR100845633B1 (en) * 2004-04-28 2008-07-10 제이에프이 스틸 가부시키가이샤 Component for machine structural use and method for making the same
KR100883716B1 (en) * 2004-07-16 2009-02-12 제이에프이 스틸 가부시키가이샤 Composition for Machine Structure, Method of Producing the Same and Material for Induction Hardening
US10131973B2 (en) * 2004-11-30 2018-11-20 Nippon Steel & Sumitomo Metal Corporation High strength spring steel and steel wire
WO2007018048A1 (en) * 2005-08-05 2007-02-15 Sumitomo Electric Industries, Ltd. Oil-tempered wire and process for producing the same
JP2007063584A (en) * 2005-08-05 2007-03-15 Sumitomo Electric Ind Ltd Oil tempered wire and manufacturing method therefor
JP2010163689A (en) * 2005-08-05 2010-07-29 Sumitomo Electric Ind Ltd Oil-tempered wire, method for manufacturing the same, and spring
CN101365820B (en) * 2006-01-23 2013-03-27 株式会社神户制钢所 High-strength spring steel excellent in brittle fracture resistance and method for producing same
KR101029431B1 (en) 2006-01-23 2011-04-14 가부시키가이샤 고베 세이코쇼 High-strength spring steel excellent in brittle fracture resistance and method for producing same
US8038934B2 (en) 2006-01-23 2011-10-18 Kobe Steel, Ltd. High-strength spring steel excellent in brittle fracture resistance and method for producing same
WO2007083808A1 (en) * 2006-01-23 2007-07-26 Kabushiki Kaisha Kobe Seiko Sho High-strength spring steel excellent in brittle fracture resistance and method for producing same
US20090205753A1 (en) * 2006-03-31 2009-08-20 Masayuki Hashimura High strength spring-use heat treated steel
JP2010196592A (en) * 2009-02-25 2010-09-09 Kubota Corp Mechanical governor for engine
EP3020841A4 (en) * 2013-07-09 2017-03-29 NHK Spring Co., Ltd. Coil spring, and method for manufacturing same
CN105358726A (en) * 2013-07-09 2016-02-24 日本发条株式会社 Coil spring, and method for manufacturing same
EP3020841A1 (en) * 2013-07-09 2016-05-18 NHK Spring Co., Ltd. Coil spring, and method for manufacturing same
JP2015017288A (en) * 2013-07-09 2015-01-29 日本発條株式会社 Coil spring and production method thereof
KR101789944B1 (en) 2013-07-09 2017-10-25 닛폰 하츠죠 가부시키가이샤 Coil spring, and method for manufacturing same
WO2015005311A1 (en) * 2013-07-09 2015-01-15 日本発條株式会社 Coil spring, and method for manufacturing same
KR20180043826A (en) * 2015-09-04 2018-04-30 신닛테츠스미킨 카부시키카이샤 Spring wire and spring
KR102122280B1 (en) 2015-09-04 2020-06-15 닛폰세이테츠 가부시키가이샤 Steel wire and spring for spring
US10844920B2 (en) 2015-09-04 2020-11-24 Nippon Steel Corporation Spring steel wire and spring
KR101797381B1 (en) 2016-08-02 2017-11-14 주식회사 포스코 Steel wire having excellent corrosion resistance for spring and method for manufacturing thereof
CN108220805A (en) * 2016-12-12 2018-06-29 株式会社Posco The excellent steel wire for high strength spring of anticorrosion stress-resistant and its manufacturing method
CN108220805B (en) * 2016-12-12 2020-04-21 株式会社Posco Steel wire for high-strength spring having excellent stress corrosion resistance and method for producing same
CN106834959A (en) * 2016-12-28 2017-06-13 内蒙古包钢钢联股份有限公司 High hardness wear-resisting ball material steel and its production method

Similar Documents

Publication Publication Date Title
JP6447799B1 (en) Rolled wire rod for spring steel
US7763123B2 (en) Spring produced by a process comprising coiling a hard drawn steel wire excellent in fatigue strength and resistance to setting
JP4476863B2 (en) Steel wire for cold forming springs with excellent corrosion resistance
JP2003105485A (en) High strength spring steel having excellent hydrogen fatigue cracking resistance, and production method therefor
JP2008202124A (en) Steel wire for high-strength spring, high-strength spring and method for manufacturing them
JPH0971843A (en) High toughness oil tempered wire for spring and its production
JP2007063584A (en) Oil tempered wire and manufacturing method therefor
JP2003213372A (en) Steel wire for spring and spring
JP4116762B2 (en) High strength spring steel excellent in hydrogen fatigue resistance and method for producing the same
JP4097151B2 (en) High strength spring steel wire and high strength spring with excellent workability
JP4994932B2 (en) Oil tempered wire and method for producing oil tempered wire
JPH11246941A (en) High strength valve spring and its manufacture
JP2004027334A (en) Steel for induction tempering and method of producing the same
JP4344126B2 (en) Induction tempered steel with excellent torsional properties
JP2004300481A (en) Steel wire for spring having excellent settling resistance and crack resistance
JP2004190116A (en) Steel wire for spring
JP4062612B2 (en) Steel wire for hard springs and hard springs with excellent fatigue strength and sag resistance
JP3975110B2 (en) Steel wire, manufacturing method thereof and spring
JP3211627B2 (en) Steel for nitriding and method for producing the same
JP4975261B2 (en) Manufacturing method of high strength steel with excellent delayed fracture resistance
KR101776491B1 (en) High strength spring steel having excellent corrosion resistance
JP3398552B2 (en) High-strength austenitic stainless steel sheet for flapper valve with excellent fatigue properties and method for producing the same
JP2003096544A (en) Wire for high strength high carbon steel wire, and production method therefor
JPH11246943A (en) High strength valve spring and its manufacture
JP3857970B2 (en) Cu precipitation hardening type high strength steel material and method for producing the same