JP3211627B2 - Steel for nitriding and method for producing the same - Google Patents

Steel for nitriding and method for producing the same

Info

Publication number
JP3211627B2
JP3211627B2 JP14902795A JP14902795A JP3211627B2 JP 3211627 B2 JP3211627 B2 JP 3211627B2 JP 14902795 A JP14902795 A JP 14902795A JP 14902795 A JP14902795 A JP 14902795A JP 3211627 B2 JP3211627 B2 JP 3211627B2
Authority
JP
Japan
Prior art keywords
steel
nitriding
fatigue limit
less
bending
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP14902795A
Other languages
Japanese (ja)
Other versions
JPH093601A (en
Inventor
真人 栗田
治則 垣見
徹 加藤
光男 宇野
宏二 渡里
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP14902795A priority Critical patent/JP3211627B2/en
Publication of JPH093601A publication Critical patent/JPH093601A/en
Application granted granted Critical
Publication of JP3211627B2 publication Critical patent/JP3211627B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、調質処理を行わずに窒
化処理を施しても、高い疲労限度および優れた曲げ矯正
性をもつ窒化用鋼に関する。本発明鋼は、例えば窒化処
理を施す自動車用クランクシャフト用素材として好適で
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a nitriding steel having a high fatigue limit and excellent bending straightness even when a nitriding treatment is performed without a tempering treatment. The steel of the present invention is suitable, for example, as a material for an automotive crankshaft to be subjected to nitriding treatment.

【0002】[0002]

【従来の技術】従来、クランク軸、コネクティングロッ
ドもしくはナックル等の自動車用部品は、機械構造用炭
素鋼などの鋼片を所望の形状に熱間鍛造し、その後、疲
労限度向上を目的に調質処理(焼準処理または焼入れ焼
戻し処理)を行う製造法が採用されていた。
2. Description of the Related Art Conventionally, automotive parts such as a crankshaft, a connecting rod or a knuckle are hot forged from a steel slab such as carbon steel for a machine structure into a desired shape, and thereafter are subjected to tempering to improve the fatigue limit. A manufacturing method of performing a treatment (normalizing treatment or quenching and tempering treatment) has been adopted.

【0003】図1は、従来の調質鋼および後述する本発
明鋼に適用する製品製造法を比較した図面である。ここ
で(a)は従来鋼の、また(b)は本発明鋼の製品まで
の工程を示すものである。いずれの場合も、耐焼付き
性、耐かじり性、またはさらに高い疲労限度を必要とす
る場合には、窒化処理が施される。
FIG. 1 is a drawing comparing a conventional tempered steel and a product manufacturing method applied to the steel of the present invention described later. Here, (a) shows the process up to the product of the conventional steel, and (b) shows the process up to the product of the steel of the present invention. In each case, a nitriding treatment is applied if seizure resistance, galling resistance, or a higher fatigue limit is required.

【0004】近年、図1(b)に示すように、コスト削
減のために調質処理を省略して鍛造ままで製品化に供す
る、いわゆる非調質鋼の採用が多くの自動車部品に対し
て検討されている。しかしながら、調質処理を省略する
ことによって劣化する性能があり、このために非調質化
できない部品がある。
In recent years, as shown in FIG. 1 (b), the use of so-called non-heat treated steel, which is provided for commercialization as it is forged by omitting the tempering treatment for cost reduction, has been applied to many automobile parts. Are being considered. However, there is a performance that is deteriorated by omitting the tempering process, and therefore, there are parts that cannot be non-tempered.

【0005】まず第一に、鍛造後に調質処理を行わずに
窒化処理を施した部品(以後、非調質窒化鋼と呼ぶ)の
疲労限度は、同一組成の鋼を鍛造後に調質処理を行って
窒化処理を施した部品(以後、調質窒化鋼と呼ぶ)のそ
れよりも低い。第二に、窒化処理後の曲げ矯正時に大き
なき裂を生じる。窒化処理によって生じた変形は、逆方
向の曲げ変形によって矯正するが、その曲げにより非調
質窒化鋼に発生するき裂は、調質窒化鋼のそれよりも大
きい。一般に、このようなき裂は大きいほど、その部品
が自動車に組み込まれて使用されたとき、部品の疲労限
度を低下させる(以後、窒化後曲げ矯正の際発生するき
裂が実用上問題ない長さ (0.10mm以下) の場合、
曲げ矯正性が良いという)。非調質窒化鋼はそのき裂長
さが0.10mmを大きく超えるのが普通なので、窒化
処理後ひずみが大きい場合に曲げ矯正を行うクランクシ
ャフトなどには使用できない。
First, the fatigue limit of a part that has been subjected to nitriding without tempering after forging (hereinafter referred to as non-heat-treated nitrided steel) is determined by subjecting a steel of the same composition to forging after tempering. It is lower than that of a part that has been subjected to a nitriding treatment (hereinafter referred to as tempered nitrided steel). Secondly, large cracks are generated when straightening after nitriding. The deformation caused by the nitriding treatment is corrected by the bending deformation in the opposite direction, but the crack generated in the non-heat-treated nitrided steel by the bending is larger than that of the heat-treated nitrided steel. In general, the larger the crack, the lower the fatigue limit of the part when the part is used in an automobile. (0.10mm or less)
Bending straightening is good). Since non-heat-treated nitrided steel usually has a crack length greatly exceeding 0.10 mm, it cannot be used for a crankshaft or the like that performs bending straightening when strain after nitriding is large.

【0006】非調質鋼は、1100℃以上に加熱後10
00℃以上で鍛造を終了し放冷したままなので、その組
織は巨大な旧オ−ステナイト粒界に沿った薄いネット状
フェライトとその残りの部分のパ−ライトから構成され
る。それに較べて調質鋼の組織は、微細なオ−ステナイ
トから変態した、(a)微細なフェライトとパ−ライト
の混合組織(焼準の場合)または(b)きわめて微細な
ラスと炭化物からなるマルテンサイトまたはベイナイト
(焼入れ焼戻しの場合)、のいずれかである。
[0006] Non-heat treated steel is heated to 1100 °
Since the forging is completed at a temperature of 00 ° C. or more and the steel is left to be cooled, its structure is composed of a thin net-like ferrite along a huge old austenite grain boundary and the remaining pearlite. The structure of the tempered steel, on the other hand, consists of (a) a mixed structure of fine ferrite and pearlite (in case of normalization) transformed from fine austenite or (b) a very fine lath and carbide. Either martensite or bainite (in the case of quenching and tempering).

【0007】また、非調質鋼のフェライト体積率は、焼
準した鋼のそれに比較して小さい。これは、非調質鋼の
オ−ステナイト粒径が大きい分だけ焼入れ性が大きく、
それだけフェライト変態が抑制されることを反映するも
のである。
[0007] The ferrite volume fraction of the non-heat treated steel is smaller than that of the normalized steel. This is because the hardenability is large because the austenite grain size of the non-heat treated steel is large,
This reflects that the ferrite transformation is suppressed.

【0008】これまで非調質窒化鋼の疲労限度および曲
げ矯正性を同時に改善する試みはなされたことはある
が、それを達成した例はない。析出硬化元素を高濃度に
添加することによって、鍛造ままで、調質処理も窒化処
理も施さずに高い疲労限度を得る発明がなされたことは
ある。特開昭64−684245号公報および特開平4
−19391号公報などがそのような発明である。これ
らはいずれも強力な析出硬化元素であるバナジウム
(V)を高濃度に含有した鋼であり、高価である。ま
た、耐焼付き性などが問題になる場合は、これらの高V
鋼に窒化処理を施さなければならないが、このとき窒化
処理後の高V鋼の曲げ矯正性はきわめて劣るものとな
る。
Attempts have been made to simultaneously improve the fatigue limit and the bending straightness of non-heat-treated nitrided steel, but none has been achieved. There has been an invention in which a high concentration of a precipitation hardening element is added to obtain a high fatigue limit without forging treatment or nitriding treatment as it is forged. JP-A-64-684245 and JP-A-Hei.
Japanese Patent Publication No. -19391 discloses such an invention. These are steels containing a high concentration of vanadium (V), which is a strong precipitation hardening element, and are expensive. If the seizure resistance becomes a problem, these high V
The steel must be subjected to a nitriding treatment. At this time, the bending straightness of the high-V steel after the nitriding treatment is extremely poor.

【0009】[0009]

【発明が解決しようとする課題】本発明の目的は、調質
処理を行わなくても、窒化処理後、疲労限度が高く、
かつ曲げ矯正時に発生するき裂が実際上問題とならな
い程度にまで小さくなる鋼を提供することにある。具体
的には、焼準処理を行ったS48C以上の性能、疲労
限度38kgf/mm2 以上、および曲げ矯正による
き裂の長さ0.10mm以下、を同時に達成することに
ある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a high fatigue limit after a nitriding treatment without performing a tempering treatment.
Another object of the present invention is to provide a steel in which a crack generated during straightening is reduced to a level that does not actually cause a problem. Specifically, it is to simultaneously achieve the performance of S48C or more subjected to normalizing treatment, the fatigue limit of 38 kgf / mm 2 or more, and the crack length of 0.10 mm or less by bending straightening.

【0010】[0010]

【課題を解決するための手段】一般に、窒化処理によっ
て形成される窒化層は、最表面の化合物層とその下の拡
散層からなる。非調質窒化鋼で疲労破壊が発生する起点
は、拡散層と母材の境界部であり、また曲げ矯正で問題
となるき裂は拡散層でのき裂である。いずれも拡散層の
性質が前記の性能を決めることを示している。そこで、
以下の説明で表面というとき、化合物層を除いた拡散層
の表面側を示す。
In general, a nitrided layer formed by a nitriding treatment comprises a compound layer on the outermost surface and a diffusion layer thereunder. The starting point where fatigue fracture occurs in the non-heat-treated nitrided steel is at the boundary between the diffusion layer and the base material, and the crack that is a problem in straightening is a crack in the diffusion layer. Both show that the properties of the diffusion layer determine the performance. Therefore,
In the following description, the surface indicates the surface side of the diffusion layer excluding the compound layer.

【0011】(1)非調質窒化鋼の疲労限度が低い原因
は以下による。
(1) The reason why the fatigue limit of the non-heat treated nitrided steel is low is as follows.

【0012】拡散層と母材部の境界付近には、非調質
窒化鋼では引張応力が残留する。疲労限度の改善のため
には、この引張残留応力を減少させるか、あるいは望ま
しくは圧縮残留応力とすることが必要である。非調質窒
化鋼では析出硬化元素を含まない鋼であっても、硬さは
表面で著しく高くなり、内部に向かって急勾配で低下す
る。このために、表面には高い圧縮残留応力が発生する
ものの、境界付近ではそれと均衡する引張残留応力が生
ずると推測される。非調質窒化鋼の表面のみ硬さが著し
く高いということは、非調質窒化鋼では外部から入った
窒素が内部に入りにくく表面にとどまっていることを意
味する。境界部の高い引張残留応力を低減するには、内
部にまで窒素原子を拡散させることによって、硬さ勾配
をなだらかにして、硬さを奥まで分布させることが必要
である。
In the vicinity of the boundary between the diffusion layer and the base material, tensile stress remains in the non-heat-treated nitrided steel. In order to improve the fatigue limit, it is necessary to reduce the tensile residual stress or desirably to the compressive residual stress. In a non-heat-treated nitrided steel, even if the steel does not contain a precipitation hardening element, the hardness is significantly increased on the surface and decreases steeply toward the inside. For this reason, although a high compressive residual stress is generated on the surface, it is presumed that a tensile residual stress balanced with the compressive residual stress is generated near the boundary. The fact that the hardness of only the surface of the non-heat-treated nitrided steel is extremely high means that in the non-heat-treated nitrided steel, nitrogen entering from the outside hardly enters the inside and stays on the surface. In order to reduce the high tensile residual stress at the boundary, it is necessary to diffuse the nitrogen atoms into the inside to make the hardness gradient gentle and to distribute the hardness deeply.

【0013】窒素の拡散速度はフェライト中では大き
く、パ−ライト中では層状セメンタイトに拡散を阻害さ
れるために著しく小さい。非調質鋼ではフェライトが旧
オ−ステナイト粒界に薄く集中しているために、窒素の
内部への拡散はそのフェライトを通ってしかできない。
これに対して、焼準処理を行った組織では微細なフェラ
イトが粒界に限らず組織全体に分布しているので、組織
全体にわたって拡散経路が存在する。このために、調質
鋼では窒化処理を施すと表面から内部にまで緩やかな硬
度分布ができると推定される。
The diffusion rate of nitrogen is high in ferrite and extremely low in pearlite because diffusion is inhibited by layered cementite. In non-heat treated steels, nitrogen can only diffuse through the ferrite due to the thin concentration of ferrite at the former austenite grain boundaries.
On the other hand, in the microstructure subjected to the normalizing treatment, fine ferrite is distributed not only in the grain boundaries but also in the entire microstructure, and thus a diffusion path exists throughout the microstructure. For this reason, it is presumed that a mild hardness distribution can be formed from the surface to the inside of the tempered steel when the nitriding treatment is performed.

【0014】非調質鋼の組織が粗いこと自体も、疲労
限度を低下させる要因として挙げられる。
[0014] The coarse structure of the non-heat treated steel itself is also a factor that lowers the fatigue limit.

【0015】(2)曲げ矯正によるき裂の発生およびそ
の大きさは次のものに支配される。
(2) The occurrence and size of cracks caused by bending are governed by the following.

【0016】鋼の表面硬さが高いほど曲げ矯正の際、
割れを生じやすく、き裂長さを大きくする。しかし、き
裂長さは表面硬さだけでは一義的に決まらない。
[0016] The higher the surface hardness of the steel, the more the
Cracks easily occur, increasing the crack length. However, the crack length cannot be uniquely determined only by the surface hardness.

【0017】き裂は、パ−ライト粒を一単位として進
展する。したがって、パ−ライト粒が小さいほど小さく
なる傾向がある。
The crack propagates with the pearlite grains as one unit. Therefore, the smaller the pearlite particles, the smaller the tendency.

【0018】以上の事実および推測をまとめると、
(a)非調質鋼の組織自体が本課題の達成を困難にして
いる、(b)窒化処理後の表面硬さを上昇させる元素の
使用は好ましくない、ことに集約される。
Summarizing the above facts and conjectures,
(A) The structure itself of the non-heat treated steel itself makes it difficult to achieve the object, and (b) the use of elements that increase the surface hardness after nitriding is undesirable.

【0019】そこで、具体的に組織等を改善する方法を
確認するために、本発明者らは以下に述べる実験を行っ
た。0.38%Cを有する中炭素鋼を基本組成として、
各種元素の含有量を変えた28鋼種について、窒化処理
後の疲労限度および曲げ試験を行った。表1はそれらの
試験を行った28種類の鋼の一覧表である。表1の最上
欄の鋼X1が基本組成である。それに対して鋼X2以下
の鋼はC、Si、Mn、P、Cr等の影響を知るための
組成の鋼である。これら実験室溶製による鋼を1250
℃に加熱し、熱間にてφ30mmの丸棒に鍛造し、調質
処理を行うことなく小野式回転曲げ疲労試験片および3
点曲げ(φ20mm丸棒)試験片に加工し、ガス軟窒化
処理(N2 :NH3 =1:1の雰囲気中で570℃に3
時間保持した後に油冷)を施した。なお、比較のために
自動車部品用鋼材として用いられるS48C鋼を鍛造し
た後、焼準処理(860℃に再加熱し15分間保持後に
空冷)を行い、同じ窒化処理を施した後に、同じ試験を
行った。
Therefore, in order to specifically confirm a method for improving a tissue or the like, the present inventors conducted an experiment described below. Medium carbon steel with 0.38% C as the basic composition,
Fatigue limits and nitriding tests after nitriding were performed on 28 steel grades with different contents of various elements. Table 1 is a list of 28 types of steels subjected to those tests. Steel X1 in the uppermost column of Table 1 is the basic composition. On the other hand, steels of steel X2 or less are steels having compositions for knowing the influence of C, Si, Mn, P, Cr and the like. 1250 of these laboratory melted steels
C., hot forging into a round bar of φ30 mm, and Ono-type rotating bending fatigue test piece and 3
It is processed into a point bending (φ20 mm round bar) test piece and subjected to a gas soft nitriding treatment (570 ° C. in an atmosphere of N 2 : NH 3 = 1: 1).
After holding for a time, oil cooling was performed. For comparison, after forging S48C steel used as a steel material for automobile parts, normalization treatment (reheating to 860 ° C., holding for 15 minutes, and air cooling) was performed, and after performing the same nitriding treatment, the same test was performed. went.

【0020】[0020]

【表1】 [Table 1]

【0021】疲労試験は室温大気中にて繰り返し速度5
0Hzで実施し、破断繰り返し数が107 となる応力振
幅を疲労限度と定義した。一方、曲げ矯正性は3点曲げ
試験により評価した。室温大気中にてひずみ最大となる
部位でひずみ速度約100μ/secにて荷重を負荷
し、ひずみ量が1.5%に達した時点で除荷した後、試
験片断面を切り出し、き裂長さを測定した。
The fatigue test was performed at a repetition rate of 5 in a room temperature atmosphere.
The test was performed at 0 Hz, and the stress amplitude at which the number of repetition of fracture was 10 7 was defined as the fatigue limit. On the other hand, bending straightness was evaluated by a three-point bending test. A load was applied at a strain rate of about 100 μ / sec at the site where the strain was maximum in the room temperature atmosphere, and after the strain amount reached 1.5%, the specimen was unloaded. Was measured.

【0022】図2は、疲労限度および3点曲げによるき
裂長さに及ぼすC、Si、MnおよびPの影響を示した
図面である。本図の中に、前記の焼準材の疲労限度(3
8kgf/mm2 )および曲げによるき裂長さ(0.1
0mm)を目安として示す。
FIG. 2 is a drawing showing the influence of C, Si, Mn and P on the fatigue limit and the crack length due to three-point bending. In this figure, the fatigue limit (3
8 kgf / mm 2 ) and the crack length due to bending (0.1
0 mm) is shown as a guide.

【0023】図3は、同じく疲労限度およびき裂長さに
及ぼすAl、Cr、N、TiおよびVの影響を表した図
面である。
FIG. 3 is a drawing showing the effects of Al, Cr, N, Ti and V on the fatigue limit and the crack length.

【0024】これらの結果および組織の観察からつぎの
ような改善の糸口を得ることができた。
From these results and the observation of the structure, the following clues for improvement could be obtained.

【0025】微量Tiによる鍛造加熱時のオ−ステナ
イト粒成長の抑制 CおよびMn含有量低減によるフェライトの粒内粒界
にわたる均一分布 Al、Ti含有量の抑制による疲労限度の向上(固溶
窒素量の確保による) V、Cr、Alなどの制限による窒化後の表面硬さ抑
制 表面硬さに影響の小さいP添加による疲労強度の向上 ここに、本発明は、これらの結果を基にして、以下に述
べる組成の鋼およびその鋼に窒化処理を施してできる製
品の製造法を要旨とする。
Suppression of austenite grain growth during forging heating by trace amount of Ti Uniform distribution of ferrite over intragranular grain boundaries by reduction of C and Mn contents Improvement of fatigue limit by suppression of Al and Ti contents (solid nitrogen content) Suppression of surface hardness after nitriding by restriction of V, Cr, Al, etc. Improvement of fatigue strength by addition of P which has little effect on surface hardness Here, the present invention will be described based on these results. And a method for producing a product obtained by subjecting the steel to a nitriding treatment.

【0026】(1)重量%で、C:0.30〜0.40
%、Si:0.05〜0.40%、Mn:0.20〜
0.60%、P:0.08%以下、S:0.02〜0.
10%、Cr:0.10%以下、solAl:0.0
05%以下、Ti:0.005〜0.013%、Ca:
0.0003〜0.0030%、Pb:0.20%以下
およびN:0.010〜0.030%を含有し残部がF
eおよび不可避不純物元素からなり、不純物としての
V、Nbがいずれも0.010%未満であることを特徴
とする窒化用鋼。
(1) By weight%, C: 0.30 to 0.40
%, Si: 0.05-0.40%, Mn: 0.20-0
0.60%, P: 0.08% or less, S: 0.02-0.
10%, Cr: 0.10% or less, sol . Al: 0.0
0.05% or less, Ti: 0.005 to 0.013%, Ca:
0.0003-0.0030%, Pb: 0.20% or less and N: 0.010-0.030%, the balance being F
Ri Do from e and inevitable impurity elements, as impurities
V, Nb is nitriding steel characterized by der Rukoto less than 0.010% none.

【0027】(2)請求項1に記載の組成を有する鋼を
熱間で鍛造加工を行った後に、調質処理を行うことなく
窒化処理を施して窒化層を鋼の表面に形成することを特
徴とする窒化用鋼の製造方法。
(2) After the steel having the composition according to claim 1 is hot forged, a nitriding treatment is performed without performing a tempering treatment to form a nitrided layer on the surface of the steel. A method for producing a nitriding steel.

【0028】[0028]

【作用】本発明の各構成元素の作用および各元素の濃度
を限定した理由は次の通りである。
The effects of the constituent elements of the present invention and the reasons for limiting the concentration of each element are as follows.

【0029】C:0.30〜0.40% Cは引張り強度を確保するのに有効な元素であり、その
ためには0.30%以上の含有量が必要である。しかし
0.40%を超えて過大な濃度とすると、粒内からフェ
ライトが発生しにくくなり、非調質鋼の組織を調質鋼の
それに近づけることができなくなるので0.40%以下
とする。
C: 0.30 to 0.40% C is an element effective for securing the tensile strength. For that purpose, the content of 0.30% or more is necessary. However, if the concentration is more than 0.40% and the concentration is excessive, ferrite is less likely to be generated from within the grains, and the structure of the non-heat treated steel cannot be close to that of the heat treated steel.

【0030】Si:0.05〜0.40% Siは溶製時の脱酸元素として必須であり、0.05%
以上は必要である。しかし、0.40%を超える過剰な
含有量は鍛造時に表面脱炭を促進し、疲労限度低下の原
因となるので、0.05〜0.40%とする。
Si: 0.05 to 0.40% Si is indispensable as a deoxidizing element at the time of melting, and 0.05%
The above is necessary. However, an excessive content exceeding 0.40% promotes surface decarburization during forging and causes a reduction in fatigue limit, so the content is set to 0.05 to 0.40%.

【0031】Mn:0.20〜0.60% Mnは、低く抑えることにより、粒内からフェライトを
発生させ、非調質鋼の組織を焼準のそれに近づけること
ができる。そのため、上限を0.60%としなければな
らない。しかし、精錬時の脱酸のため、また硫黄(S)
に起因する高温延性低下を防止するために0.20%以
上の含有量は必要である。そこでMn含有量は0.20
〜0.60%とする。
Mn: 0.20 to 0.60% By suppressing Mn to a low level, ferrite is generated from within the grains, and the structure of the non-heat-treated steel can be made closer to that of a normal steel. Therefore, the upper limit must be set to 0.60%. However, due to deoxidation during refining, sulfur (S)
In order to prevent a decrease in ductility at high temperature caused by the above, a content of 0.20% or more is necessary. Therefore, the Mn content is 0.20
0.60.60%.

【0032】P:0.08%以下 Pは意図的に添加しなくてもよい。しかし、非調質窒化
鋼の曲げによるき裂長さを大きくせずに疲労限度を改善
するする効果があるため、添加する場合は0.02〜
0.08%の含有量とすることが望ましい。0.02%
以上とするのはこれ以上にしないと顕著な効果が得られ
ないからであり、0.08%以下とするのは、これを超
えると靭性が著しく劣化するためである。
P: 0.08% or less P may not be intentionally added. However, since it has the effect of improving the fatigue limit without increasing the crack length due to bending of the non-heat treated nitrided steel, the addition of 0.02 to
Desirably, the content is 0.08%. 0.02%
The reason for the above is that a remarkable effect cannot be obtained unless it is more than this, and the reason for being 0.08% or less is that if it exceeds this, the toughness is significantly deteriorated.

【0033】S:0.02〜0.10% Sは被削性を向上するので0.02〜0.10%とす
る。0.02%以上とするのはそれ以上含有しないと被
削性が十分でないからであり、0.10%以下とするの
はそれを超えると連続鋳造スラブに欠陥を生じるからで
ある。
S: 0.02 to 0.10% Since S improves the machinability, S is set to 0.02 to 0.10%. The reason why the content is made 0.02% or more is that the machinability is not sufficient if the content is not further contained, and the content is made not more than 0.10% because the continuous cast slab causes a defect.

【0034】Cr:0.10%以下 Crは含有しないことが望ましい。含有すると窒化処理
により窒化物を生成し硬さを高めることにより曲げ矯正
性を劣化させる。しかし、その含有量を0.10%以下
に低下するには精錬コストが大幅に増大するので、0.
10%までの含有量は許容することとする。
Cr: 0.10% or less It is desirable not to contain Cr. When it is contained, a nitride is generated by the nitriding treatment to increase the hardness, thereby deteriorating the bending straightness. However, reducing the content to 0.10% or less greatly increases the refining cost.
Content up to 10% is acceptable.

【0035】Al:0.005%以下 Alは脱酸剤として有効な元素である。しかし、通常レ
ベルの含有量であっても、固溶窒素量をAlNとして
固定し固溶窒素量低下により疲労限度が低下すること、
窒化処理により表面を硬化して曲げ矯正性を劣化す
る、の2点から極力下げることが望ましい。脱酸の機能
を持たせた上で最小量を止めるものとして、sol
lとしてのAlは0を含み0.005%以下に制限す
る。
Al: 0.005% or less Al is an element effective as a deoxidizing agent. However, even if the content is at a normal level, the amount of dissolved nitrogen is fixed as AlN, and the lowering of the amount of dissolved nitrogen lowers the fatigue limit.
It is desirable to lower as much as possible from the two points of hardening the surface by nitriding treatment and deteriorating the bending straightness. As a means to stop the minimum amount after having a function of deoxidation, sol . A
Al as 1 includes 0 and is limited to 0.005% or less.

【0036】Ti:0.005〜0.013% 微量のTiは鍛造前加熱時のオ−ステナイト粒成長の抑
制により、フェライトパ−ライト組織を微細化する。そ
の結果、非調質鋼の組織を焼準のそれに近づけることが
でき、曲げ矯正時に発生するき裂を小さくすることがで
きる。そのためには0.005%以上は必要であるが
0.013%を超えると鋼中の固溶Nを減少させ疲労限
度を低下させる。そこで0.005〜0.013%とす
る。
Ti: 0.005 to 0.013% A very small amount of Ti refines the ferrite pearlite structure by suppressing austenite grain growth during heating before forging. As a result, the structure of the non-heat-treated steel can be made close to that of the normal steel, and the crack generated at the time of straightening can be reduced. For that purpose, 0.005% or more is necessary. However, if it exceeds 0.013%, solid solution N in steel is reduced, and the fatigue limit is lowered. Therefore, the content is made 0.005 to 0.013%.

【0037】Ca:0.0003〜0.0030% Caは被削性の向上に効果があるので、0.0003%
以上は必要である。しかし、0.0030%を超えると
大型介在物の混入が避けられないので、0.0003〜
0.0030%とする。
Ca: 0.0003% to 0.0030% Since Ca is effective in improving machinability, 0.0003% to 0.0030%
The above is necessary. However, if the content exceeds 0.0030%, the inclusion of large inclusions cannot be avoided.
0.0030%.

【0038】Pb:0.20%以下 Pbは被削性の向上にきわめて有効であるが、過剰に含
有すると介在物が多くなり疲労限度が著しく低下する。
そこで、被削性が重要でない場合には意図的に添加しな
くてもよい。被削性が要求される場合に限り、0.03
〜0.20%の範囲に含有することが好ましい。0.0
3%以上含有しないと大きな被削性の向上は得られない
からであり、0.20%を超えると疲労限度が著しく低
下するからである。
Pb: 0.20% or less Pb is extremely effective in improving machinability, but if it is contained excessively, inclusions increase and the fatigue limit is significantly reduced.
Then, when machinability is not important, it is not necessary to add intentionally. 0.03 only when machinability is required
It is preferable to contain it in the range of up to 0.20%. 0.0
If the content is not more than 3%, a large improvement in machinability cannot be obtained, and if it exceeds 0.20%, the fatigue limit is significantly reduced.

【0039】N:0.010〜0.030% Nは疲労限度向上に有効な元素である。この効果を得る
ためには0.010%以上は必要である。しかしながら
0.030%を超えて含有してもその効果は飽和するこ
とから、0.010〜0.030%とする。
N: 0.010-0.030% N is an element effective for improving the fatigue limit. To obtain this effect, 0.010% or more is required. However, the effect is saturated even if the content exceeds 0.030%, so that the content is set to 0.010 to 0.030%.

【0040】不純物としてのVおよびNb:Vは不可避
不純物として混入する以上に添加しない。不可避不純物
としても0.010%未満としなければならない。0.
010%以上含有すると、窒化処理後表面硬さが上昇し
て、曲げ矯正性が劣化するからである。Nbも同様の作
用を及ぼすので、添加しない。不可避不純物としても、
0.010%未満としなければならない。
V and Nb: V as impurities are not added beyond mixing as unavoidable impurities. Inevitable impurities must be less than 0.010%. 0.
If the content is 010% or more, the surface hardness after the nitriding treatment increases, and the bending straightening property is deteriorated. Since Nb also exerts a similar effect, it is not added. Even as inevitable impurities,
Must be less than 0.010%.

【0041】つぎに本発明鋼に窒化処理を施す製品の製
造方法について述べる。
Next, a method for producing a product in which the steel of the present invention is subjected to nitriding treatment will be described.

【0042】本発明鋼を加熱し、鍛造加工を行い目的の
形状とする。その鍛造加工には特に制限はなく、通常行
われている方法でよい。図1に示したように鍛造加工後
に、必要に応じて切削等の機械加工を行ってもよい。目
的とする形状に整えた後に、焼準または焼入れ焼戻しな
どの調質処理を行うことなく窒化処理を施す。窒化処理
として、例えばガス軟窒化、イオン窒化もしくはタフト
ライド処理等すべての窒化方法が使用できる。窒素原子
の拡散経路を確保した組織、固溶窒素や燐による強化も
しくは析出硬化元素の制限などは、窒化処理の方法によ
って変わることなくいずれにも有効だからである。
The steel of the present invention is heated and forged to obtain a desired shape. There is no particular limitation on the forging process, and a commonly used method may be used. As shown in FIG. 1, after forging, machining such as cutting may be performed as necessary. After adjusting to a desired shape, a nitriding treatment is performed without performing a tempering treatment such as normalizing or quenching and tempering. As the nitriding treatment, any nitriding method such as gas nitrocarburizing, ion nitriding or tuftride treatment can be used. This is because the structure in which the diffusion path of the nitrogen atoms is secured, the strengthening by solid-solution nitrogen or phosphorus, or the limitation of the precipitation hardening element are effective regardless of the method of the nitriding treatment.

【0043】[0043]

【実施例】表2は、本発明鋼8種類および比較鋼15種
類の化学組成を示す一覧表である。これらの鋼を50k
g大気中溶解炉で溶製した後に、1250℃まで加熱
し、900℃以上の範囲でφ30mm丸棒に熱間鍛造し
放冷した。その丸棒から疲労試験用として小野式回転曲
げ疲労試験片(φ20mm)を、また曲げ試験用とし
て、φ20mm×400mmの丸棒を採取し、ガス軟窒
化を施した。ガス軟窒化は、ガス比N2 :NH3 =1:
1の雰囲気中に試験片を570℃に加熱し3時間保持し
た後、150℃の油中に油冷した。窒化した各試験体を
そのまま各試験に供した。疲労試験は室温大気中にて繰
り返し速度50Hzで実施し、破断繰り返し数が107
となる応力振幅を疲労限度と定義した。一方、曲げ矯正
性はφ20mm×400mm丸棒試験体の3点曲げ試験
により評価した。室温大気中でひずみ最大となる部位で
のひずみ速度約100μ/secにて荷重を負荷し、ひ
ずみ量が1.5%に達した時点で除荷し、試験片断面を
切り出し、拡散層中のき裂長さを測定した。被削性につ
いても全ての鋼に対して工具寿命の試験を行った。
EXAMPLES Table 2 is a table showing the chemical compositions of eight kinds of steels of the present invention and fifteen kinds of comparative steels. 50k of these steels
g After being melted in a melting furnace in the atmosphere, it was heated to 1250 ° C., hot forged into a φ30 mm round bar in a range of 900 ° C. or more, and allowed to cool. An Ono-type rotary bending fatigue test piece (φ20 mm) for a fatigue test and a φ20 mm × 400 mm round rod for a bending test were collected from the round bar, and subjected to gas soft nitriding. Gas nitrocarburizing has a gas ratio of N 2 : NH 3 = 1:
The test piece was heated to 570 ° C in the atmosphere of No. 1 and held for 3 hours, and then cooled in oil at 150 ° C. Each nitrided specimen was used for each test as it was. Fatigue tests were performed at a repetition rate 50Hz at room temperature in the atmosphere, breaking the repetition number is 107
Was defined as the fatigue limit. On the other hand, the bending straightness was evaluated by a three-point bending test of a φ20 mm × 400 mm round bar specimen. A load is applied at a strain rate of about 100 μ / sec at a site where the strain is maximum in a room-temperature atmosphere, and when the strain amount reaches 1.5%, the load is unloaded. The crack length was measured. As for machinability, all steels were tested for tool life.

【0044】[0044]

【表2】 [Table 2]

【0045】表3は、これら疲労、3点曲げおよび被削
性の各試験結果である。同表に明かなように、本発明鋼
は、疲労限度および曲げによるき裂長さの両方において
目標値(S48Cを素材とする窒化調質鍛造品の疲労限
度38kgf/mm2 および曲げによるき裂長さ0.1
0mm)を達成している。それに対して比較鋼は目標値
の疲労限度と曲げによるき裂長さを同時に達成するもの
は存在しない。表3の被削性の結果は、S48C鋼にP
bを0.05%添加した鋼に調質処理を行ったものを基
準とした。それと同等以上の工具寿命となったものを良
好として、○印を付してある。本発明鋼のうちPbを添
加したものは、疲労限度と曲げ矯正性を同時に満たした
うえで良好な被削性をもつことがわかる。
Table 3 shows the results of these tests on fatigue, three-point bending and machinability. As is clear from the table, the steel of the present invention has a target value in both the fatigue limit and the crack length due to bending (the fatigue limit of a nitrided tempered forging made from S48C of 38 kgf / mm 2 and the crack length due to bending). 0.1
0 mm). On the other hand, none of the comparative steels achieve the target fatigue limit and the crack length due to bending simultaneously. The machinability results in Table 3 show that P
Based on a temper-treated steel to which 0.05% b was added. A tool having a tool life equal to or longer than that is regarded as good and is marked with a circle. It can be seen that the steel of the present invention to which Pb is added has good machinability while simultaneously satisfying the fatigue limit and bending straightness.

【0046】[0046]

【表3】 [Table 3]

【0047】[0047]

【発明の効果】本発明鋼は調質処理を行わずに窒化処理
を施しても、組織改善効果のために調質鋼と同等以上の
優れた疲労限度および曲げ矯正性を確保できる。窒化処
理を施す自動車用クランクシャフトなどに本発明鋼を使
用することにより、調質処理を省略することができ、大
きなコスト省略が可能である。
The steel of the present invention, even when subjected to a nitriding treatment without a tempering treatment, can secure an excellent fatigue limit and bend straightening property equal to or higher than that of the tempered steel for a structure improving effect. By using the steel of the present invention for an automotive crankshaft or the like to be subjected to nitriding treatment, the tempering treatment can be omitted, and a large cost can be saved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は、従来鋼(調質鋼)および本発明鋼(非
調質鋼)に適用する製品製造法を比較した図面である。
(a)は従来鋼(調質鋼)の、また(b)は本発明鋼
(非調質鋼)の製品までの工程を示す。
FIG. 1 is a drawing comparing product manufacturing methods applied to conventional steel (heat-treated steel) and the present invention steel (non-heat-treated steel).
(A) shows the process up to the product of the conventional steel (tempered steel) and (b) shows the process up to the product of the steel of the present invention (non-heat treated steel).

【図2】図2は、疲労限度および3点曲げによるき裂長
さに及ぼすC、Si、MnおよびPの影響を示す図面で
ある。
FIG. 2 is a drawing showing the influence of C, Si, Mn and P on the fatigue limit and the crack length due to three-point bending.

【図3】図3は、疲労限度および3点曲げによるき裂長
さに及ぼすAl、 Cr、N、TiおよびVの影響を表
す図面である。
FIG. 3 is a drawing showing the effects of Al, Cr, N, Ti and V on fatigue limit and crack length due to three-point bending.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 宇野 光男 福岡県北九州市小倉北区許斐町1番地住 友金属工業株式会社小倉製鉄所内 (72)発明者 渡里 宏二 大阪府大阪市中央区北浜4丁目5番33号 住友金属工業株式会社内 (56)参考文献 特開 平7−90363(JP,A) 特開 平7−90364(JP,A) 特開 平1−177338(JP,A) 特開 昭63−216950(JP,A) 特開 昭63−137147(JP,A) (58)調査した分野(Int.Cl.7,DB名) C22C 38/00 - 38/60 C23C 8/28 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Mitsuo Uno 1st Konomi-cho, Kokurakita-ku, Kitakyushu-shi, Fukuoka Prefecture Sumitomo Metal Industries Co., Ltd. Kokura Works (72) Inventor Koji Watari 4-chome Kitahama, Chuo-ku, Osaka-shi, Osaka No. 5-33 Sumitomo Metal Industries, Ltd. (56) References JP-A-7-90363 (JP, A) JP-A-7-90364 (JP, A) JP-A-1-177338 (JP, A) 63-216950 (JP, A) JP-A-63-137147 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) C22C 38/00-38/60 C23C 8/28

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】重量%で、C:0.30〜0.40%、S
i:0.05〜0.40%、Mn:0.20〜0.60
%、P:0.08%以下、S:0.02〜0.10%、
Cr:0.10%以下、solAl:0.005%以
下、Ti:0.005〜0.013%、Ca:0.00
03〜0.0030%、Pb:0.20%以下および
N:0.010〜0.030%を含有し残部がFeおよ
び不可避不純物元素からなり、不純物としてのV、Nb
がいずれも0.010%未満であることを特徴とする窒
化用鋼。
(1) C: 0.30 to 0.40% by weight, S
i: 0.05 to 0.40%, Mn: 0.20 to 0.60
%, P: 0.08% or less, S: 0.02 to 0.10%,
Cr: 0.10% or less, sol . Al: 0.005% or less, Ti: 0.005 to 0.013%, Ca: 0.00
03~0.0030%, Pb: 0.20% or less and N: the balance containing from 0.010 to 0.030% is Ri Do Fe and unavoidable impurity elements, V as impurities, Nb
There Both nitriding steel characterized by der Rukoto less than 0.010%.
【請求項2】請求項1に記載の組成を有する鋼を熱間で
鍛造加工を行った後に、調質処理を行うことなく窒化処
理を施して窒化層を鋼の表面に形成することを特徴とす
る窒化用鋼の製造方法。
2. A steel having the composition according to claim 1 is subjected to hot forging, and then subjected to nitriding without heat treatment to form a nitrided layer on the surface of the steel. A method for producing a steel for nitriding.
JP14902795A 1995-06-15 1995-06-15 Steel for nitriding and method for producing the same Expired - Lifetime JP3211627B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14902795A JP3211627B2 (en) 1995-06-15 1995-06-15 Steel for nitriding and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14902795A JP3211627B2 (en) 1995-06-15 1995-06-15 Steel for nitriding and method for producing the same

Publications (2)

Publication Number Publication Date
JPH093601A JPH093601A (en) 1997-01-07
JP3211627B2 true JP3211627B2 (en) 2001-09-25

Family

ID=15466076

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14902795A Expired - Lifetime JP3211627B2 (en) 1995-06-15 1995-06-15 Steel for nitriding and method for producing the same

Country Status (1)

Country Link
JP (1) JP3211627B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3671688B2 (en) * 1998-08-28 2005-07-13 株式会社神戸製鋼所 Non-heat treated steel for hot forging for fracture split type connecting rods with excellent fracture splitting
JP3527154B2 (en) 1999-11-05 2004-05-17 株式会社住友金属小倉 Non-heat treated nitrocarburized steel parts
JP4556334B2 (en) * 2001-02-01 2010-10-06 大同特殊鋼株式会社 Non-tempered steel hot forged parts for soft nitriding
JP4500708B2 (en) * 2005-02-25 2010-07-14 住友金属工業株式会社 Non-tempered steel nitrocarburized parts
JP5137082B2 (en) * 2008-12-19 2013-02-06 新日鐵住金株式会社 Steel for machine structure and manufacturing method thereof

Also Published As

Publication number Publication date
JPH093601A (en) 1997-01-07

Similar Documents

Publication Publication Date Title
US7763123B2 (en) Spring produced by a process comprising coiling a hard drawn steel wire excellent in fatigue strength and resistance to setting
US5286312A (en) High-strength spring steel
JP3562192B2 (en) Component for induction hardening and method of manufacturing the same
JPH11335777A (en) Case hardening steel excellent in cold workability and low carburizing strain characteristics, and its production
JP3485805B2 (en) Hot forged non-heat treated steel having high fatigue limit ratio and method for producing the same
CN109790602B (en) Steel
JP3246210B2 (en) High strength and high toughness hot-dip coated steel wire and method for producing the same
JP4403624B2 (en) Non-tempered steel for nitrocarburizing, non-tempered tempered crankshaft and manufacturing method thereof
JP3606024B2 (en) Induction-hardened parts and manufacturing method thereof
JP4448047B2 (en) A steel for skin hardening that has excellent grain coarsening resistance and cold workability, and can omit softening annealing.
JP3915284B2 (en) Non-tempered nitriding forged parts and manufacturing method thereof
JPH09263875A (en) High strength steel for machine structural use, excellent in delayed fracture characteristic, and its production
JP4010023B2 (en) Soft nitrided non-tempered crankshaft and manufacturing method thereof
JP2991064B2 (en) Non-tempered nitrided forged steel and non-tempered nitrided forged products
JP3211627B2 (en) Steel for nitriding and method for producing the same
JP3550886B2 (en) Manufacturing method of gear steel for induction hardening excellent in machinability and fatigue strength
JP3267164B2 (en) Method for producing steel for nitriding and nitrided steel products
JP4488228B2 (en) Induction hardening steel
JP3900690B2 (en) Age-hardening high-strength bainitic steel and method for producing the same
JP2000008141A (en) Non-heat treated soft-nitrided steel forged parts and production thereof
JP4450217B2 (en) Non-tempered steel for soft nitriding
JP3458604B2 (en) Manufacturing method of induction hardened parts
JP3644217B2 (en) Induction-hardened parts and manufacturing method thereof
JPH07238343A (en) Free cutting carburizing steel and heat treatment therefor before machining
JP3471576B2 (en) Surface high hardness, high corrosion resistance, high toughness martensitic stainless steel

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070719

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080719

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080719

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090719

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090719

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100719

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110719

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110719

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120719

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120719

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130719

Year of fee payment: 12

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130719

Year of fee payment: 12

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130719

Year of fee payment: 12

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130719

Year of fee payment: 12

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term