JP2003105485A - High strength spring steel having excellent hydrogen fatigue cracking resistance, and production method therefor - Google Patents

High strength spring steel having excellent hydrogen fatigue cracking resistance, and production method therefor

Info

Publication number
JP2003105485A
JP2003105485A JP2001292877A JP2001292877A JP2003105485A JP 2003105485 A JP2003105485 A JP 2003105485A JP 2001292877 A JP2001292877 A JP 2001292877A JP 2001292877 A JP2001292877 A JP 2001292877A JP 2003105485 A JP2003105485 A JP 2003105485A
Authority
JP
Japan
Prior art keywords
spring steel
hydrogen
steel
strength spring
hydrogen fatigue
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2001292877A
Other languages
Japanese (ja)
Inventor
Masaharu Oka
正春 岡
Keizo Tarui
敬三 樽井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2001292877A priority Critical patent/JP2003105485A/en
Publication of JP2003105485A publication Critical patent/JP2003105485A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PROBLEM TO BE SOLVED: To produce a high strength spring steel which has a high tensile strength of >=1,800 MPa, and excellent hydrogen fatigue cracking resistance, and to provide a production method therefor. SOLUTION: The high strength spring steel has a composition containing, by mass, 0.4 to 0.9% C, 0.5 to 3.0% Si, 0.1 to 2.0% Mn, <=0.02% P and <=0.02% S, and if required, further containing one or more metals selected from Mo, V, Cr, Ni, Cu, W, Al, Ti, Nb, B, N, Ca, Mg, Zr and rare earth metals, and the balance Fe with inevitable impurities, has a layered structure consisting of martensite and ferrite, and has a tensile strength of 1,800 to 2,400 MPa. Steel having the above composition is heated to a two phase region, is thereafter cooled at >=20 deg.C/sec, and is subsequently tempered at a temperature of an AC1 transformation point or lower, or the steel is heated to a two phase region, is thereafter cooled at >=20 deg.C/sec, and, plastic strain of >=0.003 is applied thereto, and the steel is subsequently tempered at the AC1 transformation point or lower.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、自動車等のエンジ
ンの弁ばねや懸架ばね、スタビライザー、トーションバ
ー等に用いられる1800〜2400MPaの引張強度を
有し、かつ耐水素疲労特性に優れた高強度ばね用鋼、及
びその製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention has a high strength which has a tensile strength of 1800 to 2400 MPa used for valve springs, suspension springs, stabilizers, torsion bars, etc. of engines of automobiles and the like, and which is excellent in hydrogen fatigue resistance. The present invention relates to spring steel and a method for manufacturing the steel.

【0002】[0002]

【従来の技術】ばねを製造するにあたっては、例えばJI
S G 3560、3561及び4801等に規定されているばね用鋼を
用いて熱間圧延した線材を、所定の線径まで引き抜き加
工し、オイルテンパー処理後にばね加工する方法(冷間
成形)、あるいは引き抜き加工後に加熱してばね加工
し、焼入れ焼戻しを行う方法(熱間成形)、等を採用す
るのが一般的である。近年、環境問題への対応のため炭
酸ガス排出低減や燃費低減を目的に自動車の軽量化が望
まれている。その一環として、焼入れ焼戻し後の引張強
度を1800MPa以上に高めたばねが要望されている。
しかしながら、一般にばねを高強度化すると、切欠き感
受性が高まり環境の悪影響を受けやすくなる。特に腐食
環境下では表面に腐食ピットが形成されるとこれが応力
集中源となり、さらに腐食反応の進行に伴って発生する
水素により脆化するため、疲労特性が劣化し早期折損を
招くという問題があった。水素による脆化を防止する方
法としては、結晶粒を微細化させる方法や、微細析出物
を生成させる方法が考えられているが、いずれの方法も
本発明者らの試験では大幅な耐水素疲労特性の改善には
至っていない。
2. Description of the Related Art In manufacturing a spring, for example, JI
A method in which a wire rod hot-rolled using spring steel specified in SG 3560, 3561 and 4801 etc. is drawn to a specified wire diameter and then spring processed after oil tempering (cold forming) or drawing It is general to employ a method of heating and springing after processing and then performing quenching and tempering (hot forming). In recent years, weight reduction of automobiles has been desired for the purpose of reducing carbon dioxide emission and fuel consumption in order to cope with environmental problems. As part of this, there is a demand for a spring having a tensile strength after quenching and tempering increased to 1800 MPa or more.
However, generally, when the strength of the spring is increased, the notch sensitivity is increased and the environment is likely to be adversely affected. Especially in a corrosive environment, when a corrosion pit is formed on the surface, it becomes a stress concentration source and becomes brittle due to hydrogen generated as the corrosion reaction progresses, so there is a problem that fatigue characteristics deteriorate and early breakage occurs. It was As a method of preventing embrittlement due to hydrogen, a method of refining crystal grains or a method of forming fine precipitates has been considered, but both methods show significant hydrogen fatigue resistance in the tests of the inventors. The characteristics have not been improved.

【0003】以上のように、従来の技術では、1800
MPa以上の引張強度を有し、かつ耐水素疲労特性に優れ
た高強度ばねを製造することは困難であった。
As described above, in the conventional technique, 1800
It was difficult to manufacture a high-strength spring having a tensile strength of MPa or more and excellent hydrogen fatigue resistance.

【0004】[0004]

【発明が解決しようとする課題】本発明は、上記したよ
うな問題点を解決しようとするものであって、1800
〜2400MPaの引張強度を有し、かつ耐水素疲労特性
に優れた高強度ばね用鋼、及びその製造方法を提供する
ことを目的とする。
DISCLOSURE OF THE INVENTION The present invention is intended to solve the above-mentioned problems, and is to provide 1800
An object of the present invention is to provide a high-strength spring steel having a tensile strength of ˜2400 MPa and excellent hydrogen fatigue resistance, and a manufacturing method thereof.

【0005】[0005]

【課題を解決するための手段】本発明者らは、まず焼入
れ・焼戻し処理によって製造した種々の強度レベルのば
ね用鋼を用いて、水素疲労挙動を詳細に解析した。その
結果、疲労限界以下の応力で、疲労寿命が鋼材中の水素
によって低下することを明らかにした。また、疲労寿命
の低下は、外部環境から鋼材中に侵入し、鋼材中を室温
で拡散しうる拡散性水素に起因して発生していることを
明らかにした。拡散性水素は、鋼材を100℃/hou
rの速度で加熱した際に得られる温度−鋼材からの水素
放出速度の曲線において、約100℃の温度にピークを
有する曲線として測定できる(図1)。従って、環境か
ら侵入した水素を鋼材中の何らかの部分に捕捉すること
によって拡散しないようにすれば、水素を無害化するこ
とが可能になり、疲労寿命低下が抑制される。そこで、
耐水素疲労特性について、水素疲労が発生しない「疲労
限界拡散性水素量」を求めることにより評価した。この
方法は、電解水素チャージにより種々のレベルの拡散性
水素量を含有させた後、回転曲げ疲労試験中に試料から
大気中に水素が抜けることを防止するためにCdめっき
を施し、その後、大気中で所定の荷重を負荷し、疲労破
壊が発生しなくなる拡散性水素量を評価するものであ
る。図2に拡散性水素量と疲労寿命の関係について解析
した一例を示す。試料中に含まれる拡散性水素量が少な
くなるほど疲労寿命が長くなり、拡散性水素量がある値
以下では疲労破壊が発生しなくなる。この水素量を「疲
労限界拡散性水素量」と定義する。(Mo、V)2C等によ
ってトラップされている水素は疲労特性に悪影響を与え
にくいので、このようなトラップサイトを含んだ鋼材は
「拡散性水素量」が高くても水素による疲労強度の低下
が起こりにくくなる。従って、疲労限界拡散性水素量が
高くなる。実環境で鋼中に侵入する拡散性水素量は環境
が厳しいほど多くなるので、疲労限界拡散性水素量が高
い鋼材ほどより厳しい環境(拡散性水素量が多い環境)
でも水素による疲労強度の低下が起こらない。従って、
疲労限界拡散性水素量が高いほど鋼材の耐水素疲労特性
は良好であり、疲労限界拡散性水素量は鋼材の成分、熱
処理などの製造条件によって決まる鋼材固有の値であ
る。
[Means for Solving the Problems] The present inventors first analyzed hydrogen fatigue behavior in detail using spring steels of various strength levels produced by quenching and tempering. As a result, it was clarified that the fatigue life was shortened by hydrogen in the steel under stress below the fatigue limit. In addition, it was clarified that the decrease in fatigue life was caused by diffusible hydrogen that could penetrate into the steel from the external environment and diffuse in the steel at room temperature. Diffusible hydrogen is used for steel materials at 100 ° C / hou
In the curve of temperature-hydrogen release rate from steel obtained when heating at a rate of r, it can be measured as a curve having a peak at a temperature of about 100 ° C (Fig. 1). Therefore, if hydrogen that has entered from the environment is trapped in some part of the steel material so that it does not diffuse, it becomes possible to render the hydrogen harmless and suppress the fatigue life reduction. Therefore,
The hydrogen fatigue resistance was evaluated by determining the "fatigue limit diffusible hydrogen content" at which hydrogen fatigue does not occur. In this method, various amounts of diffusible hydrogen are contained by electrolytic hydrogen charging, and then Cd plating is performed to prevent hydrogen from being released from the sample into the atmosphere during a rotating bending fatigue test, and then the atmosphere is subjected to Cd plating. Among them, the amount of diffusible hydrogen at which a predetermined load is applied and fatigue fracture does not occur is evaluated. FIG. 2 shows an example of analysis of the relationship between the amount of diffusible hydrogen and fatigue life. As the amount of diffusible hydrogen contained in the sample decreases, the fatigue life becomes longer, and fatigue fracture does not occur if the amount of diffusible hydrogen is below a certain value. This amount of hydrogen is defined as "amount of fatigue limit diffusible hydrogen". Since hydrogen trapped by (Mo, V) 2 C, etc. is unlikely to adversely affect the fatigue properties, steel materials containing such trap sites have a low fatigue strength due to hydrogen even if the "diffusible hydrogen content" is high. Is less likely to occur. Therefore, the fatigue limit diffusible hydrogen content becomes high. Since the amount of diffusible hydrogen that penetrates into steel in a real environment increases as the environment becomes more severe, a steel material with a higher fatigue limit diffusible hydrogen content has a more severe environment (environment with more diffusible hydrogen content).
However, hydrogen does not reduce fatigue strength. Therefore,
The higher the fatigue limit diffusible hydrogen content, the better the hydrogen fatigue resistance of the steel material, and the fatigue limit diffusible hydrogen content is a value peculiar to the steel material which is determined by the steel material components, manufacturing conditions such as heat treatment.

【0006】本発明者らは、成分の異なる種々の素材に
対して上記の疲労限界拡散性水素量を求める手法により
耐水素疲労特性について研究を重ねた結果、焼戻しマル
テンサイトとフェライトの層状組織を形成させれば疲労
限界拡散性水素量を大幅に高めることができることを見
出した。また、焼戻しマルテンサイトとフェライトの層
状組織において炭窒化物を析出させることにより疲労限
界拡散性水素量をさらに高めることができることを見出
した。さらに研究を進めた結果、鋼材の成分及び熱処理
などの製造条件を適切に制御することにより、上記した
ような組織を形成し、1800〜2400MPaの引張強
度を有しかつ耐水素疲労特性に優れた鋼が得られること
を知見した。
The present inventors have conducted extensive research on hydrogen fatigue resistance characteristics of various materials having different components by the above-mentioned method for determining the fatigue limit diffusible hydrogen content. As a result, the layered structure of tempered martensite and ferrite is obtained. It was found that the fatigue limit diffusible hydrogen content can be significantly increased by forming it. It was also found that the fatigue limit diffusible hydrogen content can be further increased by precipitating carbonitrides in the layered structure of tempered martensite and ferrite. As a result of further research, by appropriately controlling the composition of the steel material and the manufacturing conditions such as heat treatment, the above-described structure was formed, the tensile strength was 1800 to 2400 MPa, and the hydrogen fatigue resistance was excellent. We have found that steel can be obtained.

【0007】本発明はこのような知見に基づいて構成し
たものであり、その要旨は、 (1)質量%で、C:0.4〜0.9%,Si:0.5
〜3.0%,Mn:0.1〜2.0%,P:0.02%
以下,S:0.02%以下を含有し、残部がFe及び不
可避的不純物からなり、鋼の組織が焼戻しマルテンサイ
トとフェライトの層状組織からなり、かつ引張強度が1
800〜2400MPaであることを特徴とする耐水素疲
労破壊特性に優れた高強度ばね用鋼。
The present invention is constructed on the basis of such knowledge, and the gist thereof is (1)% by mass, C: 0.4 to 0.9%, Si: 0.5
~ 3.0%, Mn: 0.1-2.0%, P: 0.02%
Hereafter, S: 0.02% or less is contained, the balance is Fe and unavoidable impurities, the steel structure is tempered martensite and ferrite layered structure, and the tensile strength is 1
High-strength spring steel with excellent hydrogen fatigue resistance, which is 800-2400 MPa.

【0008】(2)前記(1)記載の成分を含有し、さ
らに質量%で、Mo:0.4〜3.0%,V:0.02
〜1.0%の1種または2種を含有することを特徴とす
る耐水素疲労破壊特性に優れた高強度ばね用鋼。
(2) It contains the component described in (1) above, and further, in mass%, Mo: 0.4 to 3.0%, V: 0.02.
A high-strength spring steel excellent in hydrogen fatigue fracture resistance, characterized by containing 1 to 2% of 1.0% to 1.0%.

【0009】(3)前記(1)又は(2)記載の成分を
含有し、さらに質量%で、Cr:0.05〜3.0%,
Ni:0.05〜5.0%,Cu:0.05〜2.0
%,W:0.05〜3.0%の1種または2種以上を含
有することを特徴とする耐水素疲労破壊特性に優れた高
強度ばね用鋼。
(3) The composition according to (1) or (2) above is contained, and further, in mass%, Cr: 0.05 to 3.0%,
Ni: 0.05 to 5.0%, Cu: 0.05 to 2.0
%, W: 0.05 to 3.0% of 1 type or 2 types or more, The high strength spring steel excellent in hydrogen fatigue fracture resistance characterized by the above-mentioned.

【0010】(4)前記(1)〜(3)記載の成分を含
有し、さらに質量%で、Al:0.005〜0.1%,
Ti:0.005〜0.3%,Nb:0.005〜0.
3%,B:0.0003〜0.05%,N:0.001
〜0.05%,の1種または2種以上を含有することを
特徴とする耐水素疲労破壊特性に優れた高強度ばね用
鋼。
(4) The composition contains the components described in (1) to (3) above, and further, in mass%, Al: 0.005 to 0.1%,
Ti: 0.005 to 0.3%, Nb: 0.005 to 0.
3%, B: 0.0003 to 0.05%, N: 0.001
~ 0.05%, 1 type or 2 or more types of containing, The high strength steel for springs excellent in hydrogen fatigue fracture resistance.

【0011】(5)前記(1)〜(4)のいずれか1項
に記載の成分を含有し、さらに質量%で、Ca:0.0
01〜0.01%,Mg:0.0005〜0.01%,
Zr:0.001〜0.05%,REM:0.001〜
0.05%,の1種または2種以上を含有することを特
徴とする耐水素疲労破壊特性に優れた高強度ばね用鋼。
(5) The composition according to any one of (1) to (4) above is contained, and further, in mass%, Ca: 0.0.
01-0.01%, Mg: 0.0005-0.01%,
Zr: 0.001-0.05%, REM: 0.001-
A high-strength spring steel excellent in hydrogen fatigue fracture resistance, which is characterized by containing one or more of 0.05%.

【0012】(6)疲労限界拡散性水素量が0.2pp
m以上であることを特徴とする前記(1)〜(5)のい
ずれか1項に記載の耐水素疲労破壊特性に優れた高強度
ばね用鋼。
(6) Fatigue limit diffusible hydrogen content is 0.2 pp
The high-strength spring steel excellent in hydrogen fatigue fracture resistance according to any one of (1) to (5) above, characterized in that it is m or more.

【0013】(7) 残留オーステナイト、パーライ
ト、ベイナイトの1種又は2種を面積率で10%以下含
有することを特徴とする前記(1)〜(6)の何れか1
項に記載の耐水素疲労破壊特性に優れた高強度ばね用
鋼。
(7) Any one of the above (1) to (6), characterized by containing one or two of retained austenite, pearlite and bainite in an area ratio of 10% or less.
A high-strength spring steel excellent in hydrogen fatigue resistance.

【0014】(8)前記(1)〜(7)のいずれか1項
に記載のばね用鋼を製造する方法であって、前記(1)
〜(5)のいずれか1項に記載の成分からなる鋼をAC1
変態点〜AC3変態点に加熱後、加熱温度からマルテンサ
イト変態開始温度以下まで20〜300℃/秒で冷却
し、その後200℃〜AC1変態点で焼戻すことを特徴と
する耐水素疲労破壊特性に優れた高強度ばね用鋼の製造
方法。
(8) A method for manufacturing the spring steel according to any one of (1) to (7) above, which comprises:
~ (5) A C1 steel containing components according to any one of
After heating to transformation point to A C3 transformation point, cooling from the heating temperature at 20 to 300 ° C. / sec to below the martensite transformation start temperature, resistance to hydrogen fatigue, characterized in that subsequently tempered at 200 ° C. to A C1 transformation point A method for producing high strength spring steel excellent in fracture characteristics.

【0015】(9)前記(1)〜(7)のいずれか1項
に記載のばね用鋼を製造する方法であって、前記(1)
〜(5)のいずれか1項に記載の成分からなる鋼をAC1
変態点〜AC3変態点に加熱後、加熱温度からマルテンサ
イト変態開始温度以下まで20〜300℃/秒で冷却
し、その後、0.003〜0.1の塑性歪を付与し、引
き続き200℃〜AC1変態点で焼戻すことを特徴とする
耐水素疲労破壊特性に優れた高強度ばね用鋼の製造方
法。
(9) A method for manufacturing the spring steel according to any one of (1) to (7), which comprises:
~ (5) A C1 steel containing components according to any one of
After heating to transformation point to A C3 transformation point, the heating temperature to below the martensite transformation start temperature was cooled at 20 to 300 ° C. / sec, then applying a plastic strain of 0.003 to 0.1, subsequently 200 ° C. ~ A method for producing a high-strength spring steel excellent in hydrogen fatigue fracture resistance, characterized by tempering at a C1 transformation point.

【0016】(10)前記(1)〜(7)のいずれか1
項に記載のばね用鋼を製造する方法であって、前記
(1)〜(5)のいずれか1項に記載の成分からなる鋼
をAC1変態点〜AC3変態点に加熱後、加熱温度からマル
テンサイト変態開始温度以下まで20〜300℃/秒で
冷却し、その後200℃〜AC1変態点に加熱し0.00
3〜0.1の塑性歪を付与することを特徴とする耐水素
疲労破壊特性に優れた高強度ばね用鋼の製造方法。
(10) Any one of (1) to (7) above
A method for producing a spring steel according to item 1, wherein the steel comprising the component according to any one of (1) to (5) is heated to an A C1 transformation point to an A C3 transformation point and then heated. temperature martensitic transformation start temperature was cooled at 20 to 300 ° C. / sec to below from then heated to 200 ° C. to a C1 transformation point 0.00
A method for producing a high-strength spring steel having excellent hydrogen fatigue fracture resistance, which is characterized by imparting a plastic strain of 3 to 0.1.

【0017】[0017]

【発明の実施の形態】以下に、本発明における各要件の
意義及び限定理由について具体的に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION The significance of each requirement and the reason for limitation in the present invention will be specifically described below.

【0018】まず組織形態の限定理由について述べる。
本発明者らは、成分と熱処理条件を変化させて同一強度
レベルで組織の異なる種々の鋼材を作製し、疲労限界拡
散性水素量を測定した。疲労限界拡散性水素量と組織の
関係について解析した一例を図3に示す。従来の焼入れ
焼戻し方法による焼戻しマルテンサイトの単一組織では
疲労限界拡散性水素量は低いが、焼戻しマルテンサイト
とフェライトの層状組織にすることによって疲労限界拡
散性水素量が大幅に増大し耐水素疲労破壊特性が向上す
ることがわかる。高強度でかつ耐水素疲労破壊特性を大
幅に向上させるためには焼戻しマルテンサイトとフェラ
イトの層状組織において、焼戻しマルテンサイト間の平
均間隔は10μm以下が望ましく、より望ましい条件は
5μm以下である。平均間隔は切断法によって測定する
ことができる。また、層状組織の焼戻しマルテンサイト
中に面積率で残留オーステナイト、ベイナイト、パーラ
イトの1種又は2種以上が面積率で10%以下存在して
いても耐水素疲労特性に対して何ら差し支えがない。ま
た、焼戻しマルテンサイトの層状組織において、フェラ
イト分率は10〜70%の範囲が望ましい条件である。
これは、フェライト分率が10%未満では耐水素疲労破
壊特性の向上効果が小さく、一方、70%を越えると1
800MPa以上の高強度にすることが困難になるためで
ある。
First, the reasons for limiting the organizational form will be described.
The present inventors produced various steel materials having the same strength level but different structures by changing the components and heat treatment conditions, and measured the fatigue limit diffusible hydrogen content. An example of the analysis of the relationship between the fatigue limit diffusible hydrogen content and the structure is shown in FIG. The fatigue limit diffusible hydrogen content is low in the single structure of tempered martensite by the conventional quenching and tempering method, but the fatigue limit diffusible hydrogen content is greatly increased by making the layered structure of tempered martensite and ferrite, and the hydrogen fatigue resistance It can be seen that the fracture characteristics are improved. In order to have high strength and to significantly improve hydrogen fatigue fracture resistance, in the layered structure of tempered martensite and ferrite, the average distance between tempered martensites is preferably 10 μm or less, and more preferably 5 μm or less. The average interval can be measured by the cutting method. Further, even if one or more of retained austenite, bainite, and pearlite are present in the tempered martensite having a layered structure in an area ratio of 10% or less, there is no problem with respect to hydrogen fatigue resistance. Further, in the layered structure of tempered martensite, the ferrite content is preferably in the range of 10 to 70%.
This is because if the ferrite fraction is less than 10%, the effect of improving the hydrogen fatigue fracture resistance is small, while if it exceeds 70%, it is 1
This is because it becomes difficult to achieve a high strength of 800 MPa or more.

【0019】一方、引張強度が2400MPaを超えると
焼戻しマルテンサイトとフェライトの層状組織であって
も十分な耐水素疲労破壊特性が得られないので引張強度
は2400MPa以下とする。
On the other hand, when the tensile strength exceeds 2400 MPa, sufficient hydrogen fatigue fracture resistance cannot be obtained even with a layered structure of tempered martensite and ferrite, so the tensile strength is set to 2400 MPa or less.

【0020】尚、本発明において、焼戻しマルテンサイ
ト、フェライト、残留オーステナイト、ベイナイト、パ
ーライトの各組織の面積率は鋼棒のC断面t/4部又は
ばねのC断面t/4部を光学顕微鏡または走査型電子顕
微鏡により200〜1000倍で10視野観察した場合
の平均値と定義する。
In the present invention, the area ratio of each structure of tempered martensite, ferrite, retained austenite, bainite, and pearlite is the C-section t / 4 part of the steel rod or the C-section t / 4 part of the spring, which is measured by an optical microscope or It is defined as the average value when 10 fields of view are observed with a scanning electron microscope at 200 to 1000 times.

【0021】限界拡散性水素量については0.2ppm
未満であると、耐水素破壊特性が十分ではなく実際に使
用される代表的な環境で水素疲労破壊を生じる場合があ
るため、0.2ppm以上とする。
The limit diffusible hydrogen content is 0.2 ppm
If it is less than 0.2 ppm, the hydrogen fracture resistance may not be sufficient and hydrogen fatigue fracture may occur in a typical environment in which it is actually used.

【0022】次に、本発明における高強度ばね用鋼の成
分限定理由について説明する。
Next, the reasons for limiting the components of the high strength spring steel according to the present invention will be described.

【0023】C:Cは鋼の強度を増加させる元素として
添加されるものである。0.4%未満ではばね鋼に必要
な強度の確保が困難であり、0.9%を超える過剰の添
加は靭性を著しく劣化させる。従って、C含有量は0.
4〜0.9%とした。 Si:Siは脱酸剤として、また鋼の強度を増加させる
元素として添加される。0.5%未満では強度を向上さ
せる効果を有効に発揮させることができず、3.0%を
超える過剰の添加は粗大な酸化物を形成して延性や靭性
を劣化させる。従って、Si含有量は0.5〜3.0%
とした。 Mn:Mnは焼入れ性を高めるために有効な元素である
が、一方で粒界を脆化させ耐水素疲労破壊特性を劣化さ
せる有害な元素である。0.1%未満では焼入れ性を高
める効果が発現されず、2.0%を超える過剰の添加は
耐水素破壊疲労特性を劣化させる。従って、Mn含有量
は0.1〜2.0%とした。より良好な耐水素疲労破壊
特性を得るためには、Mn含有量を0.5%以下とする
ことが望ましい。
C: C is added as an element that increases the strength of steel. If it is less than 0.4%, it is difficult to secure the strength required for the spring steel, and if it is added in excess of 0.9%, the toughness is significantly deteriorated. Therefore, the C content is 0.
It was set to 4 to 0.9%. Si: Si is added as a deoxidizer and as an element that increases the strength of steel. If it is less than 0.5%, the effect of improving the strength cannot be effectively exhibited, and if it is added in excess of 3.0%, a coarse oxide is formed to deteriorate ductility and toughness. Therefore, the Si content is 0.5 to 3.0%
And Mn: Mn is an element effective for improving the hardenability, but is a harmful element that embrittles the grain boundaries and deteriorates the hydrogen fatigue fracture resistance. If it is less than 0.1%, the effect of enhancing the hardenability is not exhibited, and if it is added in excess of 2.0%, the hydrogen fracture fatigue resistance is deteriorated. Therefore, the Mn content is set to 0.1 to 2.0%. In order to obtain better hydrogen fatigue fracture resistance, the Mn content is preferably 0.5% or less.

【0024】P:Pは粒界に偏析して粒界強度を低下さ
せ、靱性を劣化させる不純物元素であり、可及的低レベ
ルが望ましいが、現状精錬技術の到達可能レベルとコス
トを考慮して、上限を0.02%とした。 S:Sは熱間加工性及び靭性を劣化させる不純物元素で
あり、可及的低レベルが望ましいが、現状精錬技術の到
達可能レベルとコストを考慮して、上限を0.02%と
した。 以上が本発明の基本成分であり、通常は上記以外はFe
及び不可避的不純物からなるが、所望の強度レベルやそ
の他の必要特性に応じて、Mo、V、Cr、Ni、C
u、W、Al、Ti、Nb、B、N、Ca、Mg、Z
r、REMの1種または2種以上を添加しても良い。
P: P is an impurity element that segregates at the grain boundaries to lower the grain boundary strength and deteriorates the toughness. It is desirable that the level is as low as possible, but in consideration of the attainable level and cost of the present refining technology. The upper limit was 0.02%. S: S is an impurity element that deteriorates hot workability and toughness, and it is desirable that the level be as low as possible. However, the upper limit was set to 0.02% in consideration of the attainable level and cost of the current refining technology. The above are the basic components of the present invention.
And unavoidable impurities, depending on the desired strength level and other required properties, Mo, V, Cr, Ni, C
u, W, Al, Ti, Nb, B, N, Ca, Mg, Z
One or two or more of r and REM may be added.

【0025】Mo:MoはV、Cとともに(Mo、V)
2Cを形成し拡散性水素をトラップすることにより耐水
素疲労破壊特性を向上させる元素であるが、0.4%未
満ではその効果が発現されず、3.0%を超える過剰の
添加は靭性を低下させるため、Mo含有量は0.3〜
3.0%とした。 V:VはMo、Cとともに(Mo、V)2Cを形成し拡
散性水素をトラップすることにより耐水素疲労破壊特性
を向上させる元素であるが、0.02%未満ではその効
果が発現されず、1.0%を超える過剰の添加は靭性を
低下させるため、V含有量は0.02〜1.0%とし
た。 Cr、Ni、Cu、W:Cr、Ni、Cu、Wはいずれ
も耐食性及び強度を向上させる有効な元素である。この
効果はそれぞれ0.05%未満では発現されず、Crは
3%、Niは5%、Cuは2%、Wは3%を超える過剰
添加は靭性を劣化させる。従って、Crの含有量を0.
05〜3.0%、Niの含有量を0.05〜5.0%、
Cuの含有量を0.05〜2.0%、Wの含有量を0.
05〜3.0%とした。 Al:Alは脱酸剤として、またAlNを形成し結晶粒
粗大化を抑制する効果があるが、0.005%未満では
その効果が発現されず、0.1%を超えて過剰添加する
と靭性が劣化するため、Alの含有量を0.005〜
0.1%とした。
Mo: Mo together with V and C (Mo, V)
It is an element that improves hydrogen fatigue fracture resistance by forming 2 C and trapping diffusible hydrogen, but if it is less than 0.4%, its effect is not exhibited. To lower the Mo content, the Mo content is 0.3 to
It was set to 3.0%. V: V is an element that forms (Mo, V) 2 C together with Mo and C, and improves hydrogen fatigue fracture resistance by trapping diffusible hydrogen, but if it is less than 0.02%, its effect is exhibited. However, since the excessive addition of more than 1.0% lowers the toughness, the V content was set to 0.02 to 1.0%. Cr, Ni, Cu, W: Cr, Ni, Cu and W are all effective elements for improving corrosion resistance and strength. This effect is not exhibited when the content is less than 0.05%. Cr is 3%, Ni is 5%, Cu is 2%, and W is excessively added in excess of 3% to deteriorate toughness. Therefore, the Cr content should be 0.
05-3.0%, Ni content 0.05-5.0%,
The Cu content is 0.05 to 2.0%, and the W content is 0.
It was set to 05 to 3.0%. Al: Al acts as a deoxidizer and has the effect of forming AlN and suppressing crystal grain coarsening, but if it is less than 0.005%, that effect is not exhibited, and if added in excess of 0.1%, toughness is exhibited. Is deteriorated, the Al content is 0.005
It was set to 0.1%.

【0026】Ti:TiはTiNを形成し結晶粒粗大化
を抑制する効果があるが、0.005%未満ではその効
果が発現されず、0.3%を超えて過剰添加すると靭性
が劣化するため、Tiの含有量を0.005〜0.3%
とした。 Nb:Nbは微細な炭窒化物を形成し結晶粒粗大化を抑
制する効果があるが、0.005%未満ではその効果が
発現されず、0.3%を超えて過剰添加すると靭性が劣
化するため、Nbの含有量を0.005〜0.3%とし
た。
Ti: Ti has the effect of forming TiN and suppressing crystal grain coarsening, but if it is less than 0.005%, that effect is not exhibited, and if it is added in excess of 0.3%, toughness deteriorates. Therefore, the content of Ti is 0.005-0.3%
And Nb: Nb has the effect of forming fine carbonitrides and suppressing crystal grain coarsening, but if it is less than 0.005%, that effect is not exhibited, and if added in excess of 0.3%, toughness deteriorates. Therefore, the content of Nb is set to 0.005 to 0.3%.

【0027】B:Bは自ら粒界に偏析することにより粒
界結合力を向上させるとともにP、S及びCuの粒界偏
析を抑制し、粒界強度を高め、遅れ破壊特性や靭性を向
上させるのに有効な元素であり、また焼入れ性を高める
のに有効な元素でも有る。これらの効果は0.0003
%未満では発現されず、0.05%を超えて過剰添加す
ると粒界に粗大な析出物が生成し熱間加工性や靭性が劣
化するため、Bの含有量を0.0003〜0.05%と
した。 N:Nは窒化物を形成し結晶粒粗大化を抑制する効果が
あるが、0.001%未満ではその効果が発現されず、
0.05%を超えて添加すると靭性が劣化するため、N
含有量を0.001〜0.05%とした。
B: B segregates itself at the grain boundaries to improve the grain boundary bonding force, suppresses the grain boundary segregation of P, S and Cu, enhances the grain boundary strength, and improves delayed fracture characteristics and toughness. It is also an effective element for improving the hardenability. These effects are 0.0003
If it is less than 0.05%, if it is excessively added in excess of 0.05%, coarse precipitates are formed in the grain boundaries and the hot workability and toughness are deteriorated. Therefore, the content of B is 0.0003 to 0.05. %. N: N has an effect of forming a nitride and suppressing crystal grain coarsening, but if it is less than 0.001%, the effect is not exhibited,
If added over 0.05%, the toughness deteriorates, so N
The content was set to 0.001 to 0.05%.

【0028】Ca、Mg、Zr、REM:Ca、Mg、
Zr、REMはいずれもSによる熱間加工性や靭性の劣
化を抑制する有効な元素である。この効果はCaは0.
001%未満、Mgは0.0005%未満、Zrは0.
001%未満、REMは0.001%未満では発現され
ず、Caは0.01%、Mgは0.01%、Zrは0.
05%、REMは0.05%を超える過剰添加は靭性を
劣化させる。従って、Caの含有量を0.001〜0.
01%、Mgの含有量を0.0005〜0.01%、Z
rの含有量を0.001〜0.05%、REMの含有量
を0.001〜0.05%とした。
Ca, Mg, Zr, REM: Ca, Mg,
Both Zr and REM are effective elements that suppress the deterioration of hot workability and toughness due to S. This effect is 0.
Less than 001%, Mg less than 0.0005%, Zr less than 0.005%.
If it is less than 001%, REM is less than 0.001%, Ca is not 0.01%, Mg is 0.01%, and Zr is less than 0.001.
Excess addition of more than 0.05% and REM of 0.05% deteriorates toughness. Therefore, the Ca content is 0.001 to 0.
01%, Mg content 0.0005-0.01%, Z
The content of r was 0.001 to 0.05%, and the content of REM was 0.001 to 0.05%.

【0029】次に製造条件の限定理由について述べる。Next, the reasons for limiting the manufacturing conditions will be described.

【0030】本発明の高強度ばね鋼の製造方法は、上記
成分からなる鋼を二相域に加熱し、引き続き焼戻し処理
するものである。
The method for producing a high-strength spring steel according to the present invention comprises heating the steel composed of the above-mentioned components to a two-phase region and subsequently performing a tempering treatment.

【0031】まず、加熱条件について述べる。加熱温度
がAC1変態点未満あるいはAC3変態点を超えると、最終
的に焼戻しマルテンサイトとフェライトの層状組織が得
られないため、加熱温度はAC1変態点〜AC3変態点の温
度範囲に限定した。なお、(AC1変態点+10)〜(A
C3変態点−10)℃の温度範囲がより望ましい条件であ
る。また、焼戻しマルテンサイトとフェライトの層状組
織の微細化を図る上で、加熱前の鋼は、マルテンサイ
ト、焼戻しマルテンサイト、ベイナイトあるいはパーラ
イトを主体とした組織に調整しておくことが望ましく、
この際のフェライト分率は10%未満であることが望ま
しい条件である。なお、加熱前の組織を制御する手段と
しては熱間圧延後の冷却速度の調整、あるいは通常の焼
入れ焼戻し、オーステナイト化処理後の冷却速度の調整
などがあり、いずれの方法でもかまわない。
First, heating conditions will be described. When the heating temperature exceeds C1 less than transformation point or A C3 transformation point A, since the final tempered martensite and ferrite lamellar structure is not obtained, the heating temperature is a temperature range of A C1 transformation point to A C3 transformation point Limited In addition, (A C1 transformation point +10) ~ (A
A temperature range of C3 transformation point-10) ° C is a more desirable condition. Further, in order to refine the layered structure of tempered martensite and ferrite, the steel before heating is preferably adjusted to a structure mainly composed of martensite, tempered martensite, bainite or pearlite,
At this time, it is desirable that the ferrite fraction is less than 10%. As a means for controlling the structure before heating, there are adjustments of the cooling rate after hot rolling, ordinary quenching and tempering, adjustments of the cooling rate after austenitizing treatment, and any method is acceptable.

【0032】二相域に加熱後、加熱温度から冷却を開始
するが、冷却速度が20℃/秒未満であると、冷却中に
多量のフェライト、パーライト、ベイナイトが生成し強
度が低下する可能性が高くなるため、冷却速度の下限を
20℃/秒に限定した。冷却中に生成しやすいフェライ
ト、パーライト、ベイナイトをできるだけ防止する観点
でより望ましい冷却速度は50℃/秒以上である。一
方、冷却速度が300℃/秒を超えると焼割れが発生し
やすくなるので冷却速度を300℃/秒以下とする。な
お、マルテンサイトを生成させるため冷却の終了温度は
マルテンサイト変態開始温度(MS点)以下である。
After heating to the two-phase region, cooling is started from the heating temperature. If the cooling rate is less than 20 ° C./sec, a large amount of ferrite, pearlite, and bainite may be generated during cooling, and the strength may decrease. Therefore, the lower limit of the cooling rate was limited to 20 ° C./sec. A more desirable cooling rate is 50 ° C./second or more from the viewpoint of preventing as much as possible ferrite, pearlite, and bainite that are generated during cooling. On the other hand, if the cooling rate exceeds 300 ° C./second, quench cracking tends to occur, so the cooling rate is set to 300 ° C./second or less. Incidentally, the end temperature of the cooling for producing a martensite is less martensite transformation start temperature (M S point).

【0033】次に焼戻し処理条件について述べる。二相
域熱処理後の鋼はマルテンサイトとフェライトの二相組
織である。マルテンサイト中の過剰な転位や残留応力を
回復により消滅させ、過飽和炭素原子を炭化物として析
出させることによって、靭性、延性を高めるために焼戻
しを行う。特に、V、Mo、Nb、Tiを含む鋼では、
焼戻し処理によってこれらの合金元素の炭窒化物が生成
し、耐水素疲労特性が向上する。この焼戻し処理におい
て加熱温度がAC1変態点を超えると逆変態が生じて最終
的に焼戻しマルテンサイトとフェライトの層状組織が得
られないため、加熱温度はAC1変態点以下に制限した。
一方、加熱温度が200℃未満であれば前記の効果が得
られないので、加熱温度は200℃以上とする。なお、
耐水素疲労破壊特性向上の点で、焼戻し時の加熱速度は
5℃/秒以上が望ましく、焼戻し後の冷却速度は20℃
/秒以上が望ましい。
Next, the tempering treatment conditions will be described. The steel after the dual phase heat treatment has a dual phase structure of martensite and ferrite. Excessive dislocations and residual stress in martensite are eliminated by recovery, and supersaturated carbon atoms are precipitated as carbides, whereby tempering is performed to improve toughness and ductility. In particular, in steel containing V, Mo, Nb, and Ti,
The tempering treatment produces carbonitrides of these alloying elements, and improves hydrogen fatigue resistance. In this tempering treatment, if the heating temperature exceeds the A C1 transformation point, reverse transformation occurs and finally a layered structure of tempered martensite and ferrite cannot be obtained, so the heating temperature was limited to the A C1 transformation point or lower.
On the other hand, if the heating temperature is lower than 200 ° C., the above effect cannot be obtained, so the heating temperature is set to 200 ° C. or higher. In addition,
From the viewpoint of improving hydrogen fatigue resistance, it is desirable that the heating rate during tempering be 5 ° C / sec or more, and the cooling rate after tempering be 20 ° C.
/ Sec or more is desirable.

【0034】本発明では、二相域熱処理後に0.003
以上の塑性歪を付与しその後に焼き戻すか、焼戻しの際
に0.003以上の塑性歪を付与してもよい。この目的
は、降伏強度の増加と耐へたり性を向上させるためであ
る。塑性歪が0.003未満ではこれらの効果が小さい
ため、塑性歪の下限を0.003とした。一方、塑性歪
が0.1を超えると靭性が劣化するため塑性歪の上限は
0.1とする。なお、塑性歪を付与する手段は、引張り
歪、矯直加工による歪など、いかなる方法でもよい。
In the present invention, 0.003 after the two-phase region heat treatment
The above plastic strain may be applied and then tempered, or a plastic strain of 0.003 or more may be applied during tempering. The purpose is to increase the yield strength and improve the sag resistance. If the plastic strain is less than 0.003, these effects are small, so the lower limit of the plastic strain is set to 0.003. On the other hand, if the plastic strain exceeds 0.1, the toughness deteriorates, so the upper limit of the plastic strain is 0.1. The means for imparting plastic strain may be any method such as tensile strain and strain due to straightening.

【0035】本発明ではAC1変態点〜AC3変態点の温度
範囲に加熱する前、加熱・冷却後あるいは焼戻し処理後
に線径調整、異形加工などの目的で軽度の伸線加工ある
いは塑性加工を行っても耐水素疲労破壊特性の劣化はな
く、何ら制限を受けるものではない。
In the present invention, before the heating in the temperature range of A C1 transformation point to A C3 transformation point, after heating / cooling or after tempering treatment, light wire drawing or plastic working is performed for the purpose of adjusting wire diameter, deforming, etc. Even if it is carried out, there is no deterioration of hydrogen fatigue resistance, and there is no restriction.

【0036】[0036]

【実施例】以下、実施例により本発明の効果をさらに具
体的に説明する。
EXAMPLES The effects of the present invention will be described more specifically below with reference to examples.

【0037】第1表に示す組成を有する鋼を第1表に示
す条件で二相域加熱処理した後、第1表に示す温度で焼
戻しを行った。第1表に示すように一部の鋼については
焼戻し前または焼戻し中に塑性歪を加えた。熱処理後の
各鋼片の組織及び引張強度を第1表に合わせて示す。本
発明例(No.1〜5)ではいずれも1800〜240
0MPaの引張強度が得られている。これらの鋼片の耐
水素疲労破壊特性について前述した疲労限界拡散性水素
量で評価した。なお、疲労試験を行う際の負荷応力は大
気中疲労限の90%の条件で実施した。
Steels having the compositions shown in Table 1 were heat-treated in the two-phase region under the conditions shown in Table 1, and then tempered at the temperatures shown in Table 1. As shown in Table 1, some steels were subjected to plastic strain before or during tempering. The structure and tensile strength of each steel piece after heat treatment are shown in Table 1 together. In the present invention examples (No. 1 to 5), all are 1800 to 240
A tensile strength of 0 MPa is obtained. The hydrogen fatigue fatigue resistance of these steel pieces was evaluated by the fatigue limit diffusible hydrogen content described above. The load stress at the time of performing the fatigue test was 90% of the fatigue limit in the atmosphere.

【0038】[0038]

【表1】 [Table 1]

【0039】[0039]

【表2】 [Table 2]

【0040】第1表より、本発明例(No.1〜5)で
はいずれも疲労限界拡散性水素量が0.2ppm以上で
あり、耐水素疲労破壊特性が優れている。特に、Mo、
Vを含有するもの(No.2、3)はいずれも疲労限界
拡散性水素量が0.8ppm以上であり、耐水素疲労破
壊特性が格段に優れている。また、塑性歪を加えたもの
(No.4、5)は高い降伏応力が得られている。一
方、二相域熱処理の加熱温度がAC3変態点を超えている
比較例(No.6)では焼戻しマルテンサイト単相組織
となっているために疲労限界拡散性水素量が0.1pp
m以下と低く、耐水素疲労破壊特性に劣ることがわか
る。また、二相域熱処理の加熱温度がAC1変態点未満で
ある比較例(No.7)ではセメンタイトが球状化した
高温焼戻しマルテンサイト単相組織となっているために
疲労限界拡散性水素量が0.1ppm以下と低く、耐水
素疲労破壊特性に劣ることがわかる。また、二相域熱処
理後の冷却速度が20℃/秒未満である比較例(No.
8)では冷却途中に面積率で20%のフェライトと20
%のパーライトが生成したために疲労限界拡散性水素量
が0.1ppm以下と低く、耐水素疲労破壊特性に劣る
ことがわかる。また、鋼成分のうち1種又は2種以上が
本発明の範囲から逸脱している比較例(No.9、1
0)では引張強度が1800MPa未満となっており、高
強度ばね鋼として必要な引張強度が得られていないこと
がわかる。以上より、鋼成分を本発明で示した範囲に特
定し、本発明で示した二相域加熱処理条件及び焼戻し条
件で製造することにより、焼戻しマルテンサイトとフェ
ライトの層状組織からなり、1800〜2400MPa以
上の引張強度を有しかつ耐水素疲労特性に優れた鋼が得
られることが明らかである。
From Table 1, in the present invention examples (Nos. 1 to 5), the fatigue limit diffusible hydrogen content is 0.2 ppm or more, and the hydrogen fatigue fracture resistance is excellent. In particular, Mo,
Those containing V (Nos. 2 and 3) all have a fatigue limit diffusible hydrogen content of 0.8 ppm or more, and are markedly excellent in hydrogen fatigue fracture resistance. In addition, a high yield stress was obtained for those to which plastic strain was added (Nos. 4 and 5). On the other hand, in the comparative example (No. 6) in which the heating temperature of the two-phase heat treatment exceeds the A C3 transformation point, the fatigue limit diffusible hydrogen content is 0.1 pp because of the tempered martensite single phase structure.
It is as low as m or less, and it is understood that the hydrogen fatigue resistance is inferior. Further, in the comparative example (No. 7) in which the heating temperature of the two-phase heat treatment is less than the A C1 transformation point, the fatigue limit diffusible hydrogen content was high because the cementite had a high temperature tempered martensite single phase structure. It is as low as 0.1 ppm or less, which means that the hydrogen fatigue resistance is inferior. Further, a comparative example (No. 4) in which the cooling rate after the two-phase region heat treatment is less than 20 ° C./sec.
In 8), ferrite and 20% in area ratio were used during cooling.
%, The fatigue limit diffusible hydrogen content was as low as 0.1 ppm or less, and the hydrogen fatigue fracture resistance was inferior. In addition, one or more of the steel components deviate from the scope of the present invention (No. 9, 1)
In 0), the tensile strength is less than 1800 MPa, which means that the tensile strength required for high strength spring steel is not obtained. From the above, by specifying the steel composition in the range shown in the present invention, and by manufacturing under the two-phase region heat treatment conditions and the tempering conditions shown in the present invention, the tempered martensite and the ferrite layered structure are formed, and 1800 to 2400 MPa It is clear that a steel having the above tensile strength and excellent hydrogen fatigue resistance can be obtained.

【0041】[0041]

【発明の効果】以上のように本発明によれば、1800
〜2400MPaの引張強度を有し、かつ耐水素疲労特
性に優れた高強度ばね用鋼及びその製造方法を得ること
ができる。
As described above, according to the present invention, 1800
It is possible to obtain a high-strength spring steel having a tensile strength of ˜2400 MPa and excellent hydrogen fatigue resistance and a method for producing the same.

【図面の簡単な説明】[Brief description of drawings]

【図1】昇温分析による水素放出曲線と、拡散性水素量
を示す図である。
FIG. 1 is a diagram showing a hydrogen release curve by a temperature rise analysis and a diffusible hydrogen amount.

【図2】拡散性水素量と疲労寿命の関係の一例を示す図
である。
FIG. 2 is a diagram showing an example of the relationship between the amount of diffusible hydrogen and fatigue life.

【図3】疲労限界拡散性水素量と組織の関係を示す図で
ある。
FIG. 3 is a diagram showing a relationship between a fatigue limit diffusible hydrogen content and a structure.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C22C 38/58 C22C 38/58 Fターム(参考) 4K032 AA01 AA02 AA05 AA06 AA08 AA11 AA12 AA14 AA15 AA16 AA19 AA20 AA21 AA22 AA23 AA24 AA27 AA29 AA31 AA32 AA35 AA36 AA37 AA39 AA40 CA00 CA01 CD03 CF01 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) C22C 38/58 C22C 38/58 F term (reference) 4K032 AA01 AA02 AA05 AA06 AA08 AA11 AA12 AA14 AA15 AA16 AA19 AA20 AA21 AA22 AA23 AA24 AA27 AA29 AA31 AA32 AA35 AA36 AA37 AA39 AA40 CA00 CA01 CD03 CF01

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 質量%で、 C :0.4〜0.9%,Si:0.5〜3.0%,M
n:0.1〜2.0%,P :0.02%以下,S :
0.02%以下,を含有し,残部がFe及び不可避的不
純物からなり,鋼の組織が焼戻しマルテンサイトとフェ
ライトの層状組織からなり,かつ引張強度が1800〜
2400MPaであることを特徴とする耐水素疲労破壊特
性に優れた高強度ばね用鋼。
1. In mass%, C: 0.4 to 0.9%, Si: 0.5 to 3.0%, M
n: 0.1 to 2.0%, P: 0.02% or less, S:
0.02% or less, the balance consisting of Fe and unavoidable impurities, the steel structure consisting of tempered martensite and ferrite layered structure, and the tensile strength of 1800 to
High strength spring steel with excellent hydrogen fatigue resistance, characterized by 2400 MPa.
【請求項2】 さらに質量%で、 Mo:0.4〜3.0%,V :0.02〜1.0%,
の1種または2種を含有することを特徴とする請求項1
記載の耐水素疲労破壊特性に優れた高強度ばね用鋼。
2. Further, in mass%, Mo: 0.4 to 3.0%, V: 0.02 to 1.0%,
1 or 2 types of are contained.
High-strength spring steel with excellent hydrogen fatigue resistance.
【請求項3】 さらに質量%で、 Cr:0.05〜3.0%,Ni:0.05〜5.0
%,Cu:0.05〜2.0%,W :0.05〜3.
0%の1種または2種以上を含有することを特徴とする
請求項1又は2記載の耐水素疲労破壊特性に優れた高強
度ばね用鋼。
3. Further, in mass%, Cr: 0.05-3.0%, Ni: 0.05-5.0
%, Cu: 0.05 to 2.0%, W: 0.05 to 3.
The high-strength spring steel excellent in hydrogen fatigue fracture resistance according to claim 1 or 2, containing 0% of one kind or two or more kinds.
【請求項4】 さらに質量%で、 Al:0.005〜0.1%,Ti:0.005〜0.
3%,Nb:0.005〜0.3%,B :0.000
3〜0.05%,N :0.001〜0.05%,の1
種または2種以上を含有することを特徴とする請求項1
〜3の何れか1項に記載の耐水素疲労破壊特性に優れた
高強度ばね用鋼。
4. Further, in mass%, Al: 0.005 to 0.1%, Ti: 0.005 to 0.
3%, Nb: 0.005 to 0.3%, B: 0.000
3 to 0.05%, N: 0.001 to 0.05%, 1
1. The composition according to claim 1, which contains one or more kinds.
High-strength spring steel excellent in hydrogen fatigue fracture resistance according to any one of 3 to 3.
【請求項5】 さらに質量%で、 Ca:0.001〜0.01%,Mg:0.0005〜
0.01%,Zr:0.001〜0.05%,REM:
0.001〜0.05%,の1種または2種以上を含有
することを特徴とする請求項1〜4の何れか1項に記載
の耐水素疲労破壊特性に優れた高強度ばね用鋼。
5. Further, in mass%, Ca: 0.001-0.01%, Mg: 0.0005-
0.01%, Zr: 0.001 to 0.05%, REM:
High strength spring steel excellent in hydrogen fatigue fracture resistance according to any one of claims 1 to 4, containing 0.001 to 0.05% of one or more kinds. .
【請求項6】 疲労限界拡散性水素量が0.2ppm以
上であることを特徴とする請求項1〜5のいずれか1項
に記載の耐水素疲労破壊特性に優れた高強度ばね用鋼。
6. A high strength spring steel excellent in hydrogen fatigue fracture resistance according to claim 1, wherein the fatigue limit diffusible hydrogen content is 0.2 ppm or more.
【請求項7】 残留オーステナイト、パーライト、ベイ
ナイトの1種又は2種以上を面積率で10%以下含有す
ることを特徴とする請求項1〜6の何れか1項に記載の
耐水素疲労破壊特性に優れた高強度ばね用鋼。
7. The hydrogen fatigue fracture resistance property according to any one of claims 1 to 6, which contains one or more of retained austenite, pearlite and bainite in an area ratio of 10% or less. High strength steel for springs.
【請求項8】 請求項1〜7のいずれか1項に記載のば
ね用鋼を製造する方法であって、請求項1〜5の何れか
1項に記載の成分からなる鋼をAC1変態点〜AC3変態点
に加熱後、加熱温度からマルテンサイト変態開始温度以
下まで20〜300℃/秒で冷却し、その後200℃〜
C1変態点で焼戻すことを特徴とする耐水素疲労破壊特
性に優れた高強度ばね用鋼の製造方法。
8. A method for producing the spring steel according to any one of claims 1 to 7, wherein the steel comprising the components according to any one of claims 1 to 5 is transformed into A C1. after heating to the point to a C3 transformation point, cooled at 20 to 300 ° C. / sec from the heating temperature to below the martensite transformation start temperature, then 200 ° C. ~
A method for producing a high-strength spring steel excellent in hydrogen fatigue fracture resistance, characterized by tempering at an A C1 transformation point.
【請求項9】 請求項1〜7のいずれか1項に記載のば
ね用鋼を製造する方法であって、請求項1〜5の何れか
1項に記載の成分からなる鋼をAC1変態点〜AC3変態点
に加熱後、加熱温度からマルテンサイト変態開始温度以
下まで20〜300℃/秒で冷却し、その後、0.00
3〜0.1の塑性歪を付与し、引き続き200℃〜AC1
変態点で焼戻すことを特徴とする耐水素疲労破壊特性に
優れた高強度ばね用鋼の製造方法。
9. A method for producing the spring steel according to any one of claims 1 to 7, wherein the steel composed of the components according to any one of claims 1 to 5 is transformed into A C1. after heating to the point to a C3 transformation point, cooling martensite transformation start temperature to below 20 to 300 ° C. / sec from the heating temperature, then 0.00
Grant plastic strain of 3 to 0.1, continued to 200 ℃ ~A C1
A method for producing a high-strength spring steel having excellent hydrogen fatigue resistance, which is characterized by tempering at a transformation point.
【請求項10】 請求項1〜7のいずれか1項に記載の
ばね用鋼を製造する方法であって、請求項1〜5の何れ
か1項に記載の成分からなる鋼をAC1変態点〜AC3変態
点に加熱後、加熱温度からマルテンサイト変態開始温度
以下まで20〜300℃/秒で冷却し、その後200℃
〜AC1変態点以下に加熱し0.003〜0.1の塑性歪
を付与することを特徴とする耐水素疲労破壊特性に優れ
た高強度ばね用鋼の製造方法。
10. A method for producing the spring steel according to any one of claims 1 to 7, wherein the steel comprising the components according to any one of claims 1 to 5 is transformed into A C1. after heating to the point to a C3 transformation point, cooled at 20 to 300 ° C. / sec from the heating temperature to below the martensite transformation start temperature, then 200 ° C.
Method of producing a high strength spring steel superior in resistance to hydrogen fatigue fracture properties, characterized in that heating below to A C1 transformation point to impart plastic strain of 0.003 to 0.1.
JP2001292877A 2001-09-26 2001-09-26 High strength spring steel having excellent hydrogen fatigue cracking resistance, and production method therefor Withdrawn JP2003105485A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001292877A JP2003105485A (en) 2001-09-26 2001-09-26 High strength spring steel having excellent hydrogen fatigue cracking resistance, and production method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001292877A JP2003105485A (en) 2001-09-26 2001-09-26 High strength spring steel having excellent hydrogen fatigue cracking resistance, and production method therefor

Publications (1)

Publication Number Publication Date
JP2003105485A true JP2003105485A (en) 2003-04-09

Family

ID=19114761

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001292877A Withdrawn JP2003105485A (en) 2001-09-26 2001-09-26 High strength spring steel having excellent hydrogen fatigue cracking resistance, and production method therefor

Country Status (1)

Country Link
JP (1) JP2003105485A (en)

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1686195A1 (en) * 2005-01-28 2006-08-02 Kabushiki Kaisha Kobe Seiko Sho High strength spring steel having excellent hydrogen embrittlement resistance
WO2007083808A1 (en) * 2006-01-23 2007-07-26 Kabushiki Kaisha Kobe Seiko Sho High-strength spring steel excellent in brittle fracture resistance and method for producing same
CN100410410C (en) * 2005-01-28 2008-08-13 株式会社神户制钢所 High strength spring steel having excellent hydrogen embrittlement resistance
JP2008266782A (en) * 2007-03-23 2008-11-06 Aichi Steel Works Ltd Steel for spring excellent in hydrogen embrittlement resistance and corrosion fatigue strength and high strength spring part using the same
JP2008280612A (en) * 2007-04-12 2008-11-20 Nippon Steel Corp High-strength steel sheet having excellent internal fatigue damage resistance, and method for producing the same
CN100455691C (en) * 2005-12-02 2009-01-28 株式会社神户制钢所 High strength spring steel wire with excellent coiling properties and hydrogen embrittlement resistance
JP4362319B2 (en) * 2003-06-02 2009-11-11 新日本製鐵株式会社 High strength steel plate with excellent delayed fracture resistance and method for producing the same
WO2010011447A3 (en) * 2008-07-24 2010-03-18 Crs Holdings, Inc. High strength, high toughness steel alloy
KR100957913B1 (en) 2007-12-27 2010-05-13 주식회사 포스코 Steel for manufacturing spring having low decarburization ratio and manufacturing method of the same
US7887924B2 (en) 2006-01-20 2011-02-15 Kobe Steel, Ltd. High-strength steel with excellent unsusceptibility to hydrogen embrittlement
WO2011129452A1 (en) * 2010-04-16 2011-10-20 Jfeスチール株式会社 High-strength hot-dip galvanized steel sheet with excellent formability and impact resistance, and process for producing same
EP2465963A1 (en) 2004-11-30 2012-06-20 Nippon Steel Corporation High strength spring steel and steel wire
WO2012153831A1 (en) * 2011-05-12 2012-11-15 日本発條株式会社 Steel for automotive suspension spring component, automotive suspension spring component, and manufacturing method for same
CN102994887A (en) * 2012-11-22 2013-03-27 宁波得利时泵业有限公司 Preparation method of rotor material of cam rotor pump
CN104532160A (en) * 2014-12-26 2015-04-22 芜湖金龙模具锻造有限责任公司 Alloy steel material for pumps
CN105112800A (en) * 2015-09-01 2015-12-02 广西南宁智翠科技咨询有限公司 Oxidation-resisting tensile spring wire
CN105220056A (en) * 2015-09-09 2016-01-06 滁州迪蒙德模具制造有限公司 A kind of manufacture method of mould for plastics
US20160002757A1 (en) * 2012-04-27 2016-01-07 Crs Holdings, Inc. High Strength, High Toughness Steel Alloy
CN105483555A (en) * 2015-12-11 2016-04-13 贵州大学 Spring steel as well as preparation method thereof and thermal treatment method thereof
CN105779881A (en) * 2016-05-04 2016-07-20 唐山钢铁集团有限责任公司 Production method of high-carbon spring steel strip
CN106048152A (en) * 2016-07-24 2016-10-26 钢铁研究总院 Thermal treatment method for improving low-temperature impact toughness of rods
US9518313B2 (en) 2008-07-24 2016-12-13 Crs Holdings, Inc. High strength, high toughness steel alloy
CN106978571A (en) * 2017-04-01 2017-07-25 东风汽车悬架弹簧有限公司 The third generation spring for automobile band steel and preparation method of a kind of microalloying
JP2017190519A (en) * 2016-04-15 2017-10-19 現代自動車株式会社Hyundai Motor Company High strength spring steel having excellent corrosion resistance
CN109881100A (en) * 2019-03-19 2019-06-14 马鞍山钢铁股份有限公司 A kind of anti-corrosion spring steel and its production method of tensile strength >=2000MPa
CN111286680A (en) * 2018-12-10 2020-06-16 芬可乐父子公司 Low phosphorus, zirconium microalloyed crack resistant steel alloy composition and articles made therefrom
US10689736B2 (en) 2015-12-07 2020-06-23 Hyundai Motor Company Ultra-high-strength spring steel for valve spring
US10718039B2 (en) 2016-04-15 2020-07-21 Hyundai Motor Company High strength spring steel having excellent corrosion resistance
CN113136525A (en) * 2021-03-06 2021-07-20 浙江荣鑫带钢有限公司 Fatigue-resistant spring steel
CN114107841A (en) * 2022-01-27 2022-03-01 北京科技大学 High-strength corrosion-resistant spring steel and preparation method thereof
CN114410896A (en) * 2022-01-27 2022-04-29 北京科技大学 Ultrahigh-strength medium-carbon spring steel, heat treatment process and high-speed train bogie spring
JP2022538992A (en) * 2020-01-22 2022-09-07 ポスコ Wire rod for graphitization heat treatment, graphite steel, and method for producing the same
CN115125450A (en) * 2022-06-29 2022-09-30 浙江伊思灵双第弹簧有限公司 Microalloyed spring and manufacturing process thereof

Cited By (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4362319B2 (en) * 2003-06-02 2009-11-11 新日本製鐵株式会社 High strength steel plate with excellent delayed fracture resistance and method for producing the same
EP2465963A1 (en) 2004-11-30 2012-06-20 Nippon Steel Corporation High strength spring steel and steel wire
US10131973B2 (en) 2004-11-30 2018-11-20 Nippon Steel & Sumitomo Metal Corporation High strength spring steel and steel wire
CN100410410C (en) * 2005-01-28 2008-08-13 株式会社神户制钢所 High strength spring steel having excellent hydrogen embrittlement resistance
US7438770B2 (en) 2005-01-28 2008-10-21 Kobe Steel, Ltd. High strength spring steel having excellent hydrogen embrittlement resistance
EP1686195A1 (en) * 2005-01-28 2006-08-02 Kabushiki Kaisha Kobe Seiko Sho High strength spring steel having excellent hydrogen embrittlement resistance
CN100455691C (en) * 2005-12-02 2009-01-28 株式会社神户制钢所 High strength spring steel wire with excellent coiling properties and hydrogen embrittlement resistance
US7887924B2 (en) 2006-01-20 2011-02-15 Kobe Steel, Ltd. High-strength steel with excellent unsusceptibility to hydrogen embrittlement
EP1985721A4 (en) * 2006-01-23 2010-03-24 Kobe Steel Ltd High-strength spring steel excellent in brittle fracture resistance and method for producing same
CN101365820B (en) * 2006-01-23 2013-03-27 株式会社神户制钢所 High-strength spring steel excellent in brittle fracture resistance and method for producing same
US8038934B2 (en) 2006-01-23 2011-10-18 Kobe Steel, Ltd. High-strength spring steel excellent in brittle fracture resistance and method for producing same
EP1985721A1 (en) * 2006-01-23 2008-10-29 Kabushiki Kaisha Kobe Seiko Sho High-strength spring steel excellent in brittle fracture resistance and method for producing same
WO2007083808A1 (en) * 2006-01-23 2007-07-26 Kabushiki Kaisha Kobe Seiko Sho High-strength spring steel excellent in brittle fracture resistance and method for producing same
JP2008266782A (en) * 2007-03-23 2008-11-06 Aichi Steel Works Ltd Steel for spring excellent in hydrogen embrittlement resistance and corrosion fatigue strength and high strength spring part using the same
JP2008280612A (en) * 2007-04-12 2008-11-20 Nippon Steel Corp High-strength steel sheet having excellent internal fatigue damage resistance, and method for producing the same
KR100957913B1 (en) 2007-12-27 2010-05-13 주식회사 포스코 Steel for manufacturing spring having low decarburization ratio and manufacturing method of the same
WO2010011447A3 (en) * 2008-07-24 2010-03-18 Crs Holdings, Inc. High strength, high toughness steel alloy
JP2011529137A (en) * 2008-07-24 2011-12-01 シーアールエス ホールディングス,インコーポレイテッド High strength and high toughness steel alloy
US9518313B2 (en) 2008-07-24 2016-12-13 Crs Holdings, Inc. High strength, high toughness steel alloy
RU2482212C2 (en) * 2008-07-24 2013-05-20 Си-Ар-Эс Холдингс, Инк. High-strength steel alloy with high impact resilience
US9982318B2 (en) 2010-04-16 2018-05-29 Jfe Steel Corporation High-strength galvanized steel sheet having excellent formability and crashworthiness and method of manufacturing the same
WO2011129452A1 (en) * 2010-04-16 2011-10-20 Jfeスチール株式会社 High-strength hot-dip galvanized steel sheet with excellent formability and impact resistance, and process for producing same
JP2011225915A (en) * 2010-04-16 2011-11-10 Jfe Steel Corp High-strength hot dip galvanized steel sheet with excellent formability and impact resistance, and method of manufacturing the same
US9617630B2 (en) 2010-04-16 2017-04-11 Jfe Steel Corporation High-strength galvanized steel sheet having excellent formability and crashworthiness and method for manufacturing the same
WO2012153831A1 (en) * 2011-05-12 2012-11-15 日本発條株式会社 Steel for automotive suspension spring component, automotive suspension spring component, and manufacturing method for same
JP2012237040A (en) * 2011-05-12 2012-12-06 Jfe Bars & Shapes Corp Steel for automotive suspension spring component, automotive suspension spring component, and method for manufacturing the same
US20160002757A1 (en) * 2012-04-27 2016-01-07 Crs Holdings, Inc. High Strength, High Toughness Steel Alloy
US9957594B2 (en) * 2012-04-27 2018-05-01 Crs Holdings, Inc. High strength, high toughness steel alloy
CN102994887A (en) * 2012-11-22 2013-03-27 宁波得利时泵业有限公司 Preparation method of rotor material of cam rotor pump
CN104532160A (en) * 2014-12-26 2015-04-22 芜湖金龙模具锻造有限责任公司 Alloy steel material for pumps
CN105112800A (en) * 2015-09-01 2015-12-02 广西南宁智翠科技咨询有限公司 Oxidation-resisting tensile spring wire
CN105220056A (en) * 2015-09-09 2016-01-06 滁州迪蒙德模具制造有限公司 A kind of manufacture method of mould for plastics
US10689736B2 (en) 2015-12-07 2020-06-23 Hyundai Motor Company Ultra-high-strength spring steel for valve spring
CN105483555A (en) * 2015-12-11 2016-04-13 贵州大学 Spring steel as well as preparation method thereof and thermal treatment method thereof
US10718039B2 (en) 2016-04-15 2020-07-21 Hyundai Motor Company High strength spring steel having excellent corrosion resistance
JP2017190519A (en) * 2016-04-15 2017-10-19 現代自動車株式会社Hyundai Motor Company High strength spring steel having excellent corrosion resistance
CN105779881A (en) * 2016-05-04 2016-07-20 唐山钢铁集团有限责任公司 Production method of high-carbon spring steel strip
CN106048152A (en) * 2016-07-24 2016-10-26 钢铁研究总院 Thermal treatment method for improving low-temperature impact toughness of rods
CN106978571A (en) * 2017-04-01 2017-07-25 东风汽车悬架弹簧有限公司 The third generation spring for automobile band steel and preparation method of a kind of microalloying
CN106978571B (en) * 2017-04-01 2021-04-27 东风汽车底盘系统有限公司 Microalloyed spring flat steel for third-generation automobile and preparation method
CN111286680A (en) * 2018-12-10 2020-06-16 芬可乐父子公司 Low phosphorus, zirconium microalloyed crack resistant steel alloy composition and articles made therefrom
CN109881100A (en) * 2019-03-19 2019-06-14 马鞍山钢铁股份有限公司 A kind of anti-corrosion spring steel and its production method of tensile strength >=2000MPa
JP2022538992A (en) * 2020-01-22 2022-09-07 ポスコ Wire rod for graphitization heat treatment, graphite steel, and method for producing the same
JP7445686B2 (en) 2020-01-22 2024-03-07 ポスコ カンパニー リミテッド Wire rod for graphitization heat treatment, graphite steel and manufacturing method thereof
CN113136525A (en) * 2021-03-06 2021-07-20 浙江荣鑫带钢有限公司 Fatigue-resistant spring steel
CN114107841A (en) * 2022-01-27 2022-03-01 北京科技大学 High-strength corrosion-resistant spring steel and preparation method thereof
CN114107841B (en) * 2022-01-27 2022-04-12 北京科技大学 High-strength corrosion-resistant spring steel and preparation method thereof
CN114410896A (en) * 2022-01-27 2022-04-29 北京科技大学 Ultrahigh-strength medium-carbon spring steel, heat treatment process and high-speed train bogie spring
CN114410896B (en) * 2022-01-27 2022-10-21 北京科技大学 Ultrahigh-strength medium-carbon spring steel, heat treatment process and high-speed train bogie spring
CN115125450A (en) * 2022-06-29 2022-09-30 浙江伊思灵双第弹簧有限公司 Microalloyed spring and manufacturing process thereof

Similar Documents

Publication Publication Date Title
JP2003105485A (en) High strength spring steel having excellent hydrogen fatigue cracking resistance, and production method therefor
CN111164230B (en) Wire rod and steel wire for spring having excellent corrosion and fatigue resistance, and method for producing same
JP4476863B2 (en) Steel wire for cold forming springs with excellent corrosion resistance
JP3233188B2 (en) Oil-tempered wire for high toughness spring and method of manufacturing the same
JP4116762B2 (en) High strength spring steel excellent in hydrogen fatigue resistance and method for producing the same
JP2001348618A (en) Method for producing high strength bolt excellent in delayed fracture resistance and relaxation resistant characteristic
JP4362318B2 (en) High strength steel plate with excellent delayed fracture resistance and method for producing the same
JP4464524B2 (en) Spring steel excellent in hydrogen fatigue resistance and method for producing the same
JP2003129190A (en) Martensitic stainless steel and manufacturing method therefor
JP2002146479A (en) Wire rod for wire drawing having excellent twisting characteristic and its production method
CN108315637B (en) High carbon hot-rolled steel sheet and method for producing same
JP5543814B2 (en) Steel plate for heat treatment and method for producing steel member
KR20140033235A (en) Spring steel and spring
JP3494799B2 (en) High strength bolt excellent in delayed fracture characteristics and method of manufacturing the same
JP4362319B2 (en) High strength steel plate with excellent delayed fracture resistance and method for producing the same
JP2003213372A (en) Steel wire for spring and spring
JPH11246941A (en) High strength valve spring and its manufacture
JPH09263875A (en) High strength steel for machine structural use, excellent in delayed fracture characteristic, and its production
JP2002047532A (en) High tensile strength steel sheet excellent in weldability and its production method
JP2003253391A (en) Spring steel for cold forming
JP2002180201A (en) Steel for hard-drawn wire having excellent fatigue strength and ductility, and hard-drawn wire
JP4062612B2 (en) Steel wire for hard springs and hard springs with excellent fatigue strength and sag resistance
JP2000273580A (en) Steel for cold heading excellent in cold workability and production therefor
JP3211627B2 (en) Steel for nitriding and method for producing the same
JP2002327235A (en) Steel for machine structure superior in hydrogen fatigue fracture resistance, and manufacturing method therefor

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20081202