JP4097151B2 - High strength spring steel wire and high strength spring with excellent workability - Google Patents

High strength spring steel wire and high strength spring with excellent workability Download PDF

Info

Publication number
JP4097151B2
JP4097151B2 JP2004084333A JP2004084333A JP4097151B2 JP 4097151 B2 JP4097151 B2 JP 4097151B2 JP 2004084333 A JP2004084333 A JP 2004084333A JP 2004084333 A JP2004084333 A JP 2004084333A JP 4097151 B2 JP4097151 B2 JP 4097151B2
Authority
JP
Japan
Prior art keywords
spring
less
strength
steel wire
residual stress
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004084333A
Other languages
Japanese (ja)
Other versions
JP2004315968A (en
Inventor
澄恵 須田
信彦 茨木
典利 高村
直樹 寺門
悟 天道
忠義 藤原
鉄男 神保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NHK Spring Co Ltd
Kobe Steel Ltd
Kobelco Wire Co Ltd
Original Assignee
NHK Spring Co Ltd
Kobe Steel Ltd
Shinko Wire Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NHK Spring Co Ltd, Kobe Steel Ltd, Shinko Wire Co Ltd filed Critical NHK Spring Co Ltd
Priority to JP2004084333A priority Critical patent/JP4097151B2/en
Publication of JP2004315968A publication Critical patent/JP2004315968A/en
Application granted granted Critical
Publication of JP4097151B2 publication Critical patent/JP4097151B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Springs (AREA)

Description

本発明は、疲労特性及び耐へたり性に優れるだけでなく、冷間加工性(コイリング性)にも優れた高強度ばね用鋼線及び高強度ばねに関するものである。   The present invention relates to a high-strength spring steel wire and a high-strength spring that are excellent not only in fatigue characteristics and sag resistance but also in cold workability (coiling property).

自動車エンジンの弁ばね、サスペンションの懸架ばね、クラッチばね、ブレーキばねなどは、近年の自動車の軽量化や高出力に伴い、高応力に適した設計が求められている。   Automotive engine valve springs, suspension suspension springs, clutch springs, brake springs, and the like have been required to be designed for high stress in accordance with the recent reduction in weight and output of automobiles.

例えば、ばねの耐へたり性が低いと、高応力負荷中に、ばねのへたり量が大きくなって、設計通りにエンジンの回転数が上がらず応答性が悪くなるため、耐へたり性に優れたばねが求められる。   For example, if the spring sag resistance is low, the amount of spring sag increases during high stress loading, and the engine speed does not increase as designed, resulting in poor responsiveness. An excellent spring is required.

ばねの耐へたり性を改善するためには、ばね素材を高強度化すればよいことが知られている。またばね素材を高強度化すれば疲労限の点からは、疲労特性の向上が期待される。例えば化学成分の調整と、油焼入れ・焼戻し後(オイルテンパー処理後)の引張強度を上昇させることにより、疲労強度、耐へたり性を改善する方法が知られている。またSiなどの合金元素を多量に添加して、耐へたり性を改善する方法も知られている(特許文献1,2参照)。   In order to improve the sag resistance of the spring, it is known that the strength of the spring material may be increased. In addition, if the spring material is strengthened, the fatigue characteristics are expected to be improved from the viewpoint of the fatigue limit. For example, a method for improving fatigue strength and sag resistance by adjusting chemical components and increasing tensile strength after oil quenching / tempering (after oil temper treatment) is known. Also known is a method for improving sag resistance by adding a large amount of an alloy element such as Si (see Patent Documents 1 and 2).

しかし、引張強度を上昇させて疲労特性及び耐へたり性を向上させる方法では、ばねのコイリング時に折損が起こるという問題が発生する。また合金成分を多量に添加して耐へたり性を改善する方法では、表面疵や内部欠陥に対する感受性が高くなり、ばねの組み付け時や使用時にこれらの欠陥を起点として折損が起こり易くなる。   However, the method of increasing the fatigue strength and sag resistance by increasing the tensile strength causes a problem that breakage occurs during coiling of the spring. In addition, the method for improving sag resistance by adding a large amount of alloy components increases the sensitivity to surface defects and internal defects, and breakage is likely to occur starting from these defects when the spring is assembled or used.

従ってばねの耐へたり性と疲労特性の両方を向上させながら、さらに冷間加工性をも向上させるのは困難である。
特許第2898472号公報(請求項1,段落0015) 特開2000−169937号公報(請求項1,段落0018,段落0028)
Therefore, it is difficult to further improve the cold workability while improving both the sag resistance and fatigue characteristics of the spring.
Japanese Patent No. 2898472 (Claim 1, paragraph 0015) JP 2000-169937 A (Claim 1, paragraph 0018, paragraph 0028)

本発明は上記事情に鑑みたものであり、耐へたり性と疲労特性の両方に優れ、しかも加工性(冷間加工性)にも優れた高強度ばね用鋼線及び高強度ばねを提供する。   The present invention has been made in view of the above circumstances, and provides a high-strength spring steel wire and a high-strength spring that are excellent in both sag resistance and fatigue characteristics, and also excellent in workability (cold workability). .

本発明者らは、前記課題を解決するために鋭意研究を重ねた結果、合金元素を多量添加して疲労強度及び耐へたり性を向上させた上で、耐力比(σ0.2/σB)を0.85以下に小さくすると、優れたコイリング性(冷間加工性)を得られることを見出した。しかも、結晶粒を小さくすれば、さらなる疲労寿命の向上及び耐へたり性の向上が達成され、さらにはCrを多量添加しても欠陥感受性を低下させることなく耐へたり性を向上できることを見出し、本発明を完成した。 As a result of intensive studies to solve the above problems, the present inventors have added a large amount of alloy elements to improve fatigue strength and sag resistance, and then the proof stress ratio (σ 0.2 / σ B ). It has been found that when coiling is reduced to 0.85 or less, excellent coiling properties (cold workability) can be obtained. In addition, it has been found that if the crystal grains are made smaller, further improvement in fatigue life and improvement in sag resistance can be achieved, and even if a large amount of Cr is added, sag resistance can be improved without reducing defect sensitivity. The present invention has been completed.

すなわち本発明に係る加工性に優れた高強度ばね用鋼線は、C:0.53〜0.68%(質量%の意、以下同じ)、Si:1.2〜2.5%、Mn:0.2〜1.5%(例えば0.5〜1.5%)、Cr:1.4〜2.5%、及びAl:0.05%以下(0%を含まない)を含有しており、さらにNi:0.4%以下(0%を含まない)、V:0.4%以下(0%を含まない)、Mo:0.05〜0.5%、及びNb:0.05〜0.5%から選択される少なくとも1種を含み、残部はFe及び不可避的不純物である。しかも本発明のばね用鋼線は、焼戻しマルテンサイト組織を有しており、旧オーステナイト粒の結晶粒度番号が11.0以上であり、0.2%耐力(σ0.2)と引張強さ(σB)の比(σ0.2/σB)が0.85以下でもある。 That is, the steel wire for a high-strength spring excellent in workability according to the present invention has C: 0.53-0.68% (meaning mass%, the same shall apply hereinafter), Si: 1.2-2.5%, Mn : 0.2 to 1.5% (for example, 0.5 to 1.5%), Cr: 1.4 to 2.5%, and Al: 0.05% or less (not including 0%) Ni: 0.4% or less (not including 0%), V: 0.4% or less (not including 0%), Mo: 0.05 to 0.5%, and Nb: 0. It contains at least one selected from 05 to 0.5%, and the balance is Fe and inevitable impurities. Moreover, the spring steel wire of the present invention has a tempered martensite structure, the prior austenite grain size number is 11.0 or more, 0.2% proof stress (σ 0.2 ) and tensile strength (σ B ) ratio (σ 0.2 / σ B ) is 0.85 or less.

前記ばね用鋼線は、温度400℃×20分の焼鈍をした際に、0.2%耐力(σ0.2)が300MPa以上上昇するものであるのが好ましい。 The steel wire for spring preferably has a 0.2% proof stress (σ 0.2 ) of 300 MPa or more when annealed at a temperature of 400 ° C. for 20 minutes.

また本発明のばねは、上記高強度ばね用鋼線からなるものであり、芯部の硬さはHv550〜700程度、前記表面の圧縮残留応力が引張に転ずる深さは0.05mm以上0.5mm以下程度であるのが望ましい。また本発明のばねは表面硬化処理(窒化処理など)の有無は問わないが、表面硬化処理がされていない場合は、ばねの表面の圧縮残留応力が−400MPa以下であるのが望ましい。表面硬化処理がされている場合(すなわちばね表面に窒化処理層が形成されている場合)は、ばねの表面の圧縮残留応力が−800MPa以下であるのが望ましく、またばねの表面硬さはHv750〜1150程度であるのが好ましい。硬化層(芯部硬さよりもHv15以上硬くなっている層)の深さは、例えば0.02mm以上である。   The spring of the present invention is made of the steel wire for high-strength spring described above, the core has a hardness of about Hv 550 to 700, and the depth at which the compressive residual stress of the surface turns to tension is 0.05 mm or more and 0.00. It is desirable that it is about 5 mm or less. The spring of the present invention may be subjected to surface hardening treatment (nitriding treatment or the like), but when the surface hardening treatment is not performed, it is desirable that the compressive residual stress on the spring surface is −400 MPa or less. When the surface is hardened (that is, when a nitriding layer is formed on the spring surface), it is desirable that the compressive residual stress of the spring surface is −800 MPa or less, and the spring surface hardness is Hv750. It is preferably about ˜1150. The depth of the hardened layer (the layer that is Hv15 or more harder than the core hardness) is, for example, 0.02 mm or more.

本発明のよれば、合金成分が適切に調整されているため高強度となっており、またCrを有効利用しており、さらには結晶粒度及び耐力比も適切に調整されているため、疲労寿命、耐へたり性、及び冷間加工性のいずれにも優れているばね用鋼線及びばねを得ることができる。   According to the present invention, since the alloy components are appropriately adjusted, the strength is high, Cr is effectively used, and further, the crystal grain size and the proof stress ratio are also appropriately adjusted. Thus, it is possible to obtain a spring steel wire and a spring excellent in both sag resistance and cold workability.

本発明の鋼線及びばねは、C、Si、Mn、Cr、Alを含有し、さらにNi、V、Mo、及びNbから選択される少なくとも1種を含み、残部はFe及び不可避的不純物である。以下、各成分の量及びその限定理由を説明する。   The steel wire and spring of the present invention contain C, Si, Mn, Cr, and Al, and further contain at least one selected from Ni, V, Mo, and Nb, and the balance is Fe and inevitable impurities . Hereinafter, the amount of each component and the reason for limitation will be described.

C:0.53〜0.68%(質量%の意、以下同じ)
Cは高応力が負荷されるばね鋼として十分な高強度を確保し、疲労寿命、耐へたり性などを向上させるために不可欠な元素であるため、下限を0.53%とした。しかし、多すぎると靭延性が極端に悪くなり、表面疵や内部欠陥を原因としてばね加工中や使用中の割れが発生しやすくなるため、上限を0.68%とした。好ましいC量は、0.58%以上、0.65%以下である。
C: 0.53-0.68% (meaning mass%, the same shall apply hereinafter)
C is an element indispensable for securing sufficient high strength as a spring steel loaded with high stress and improving fatigue life, sag resistance, etc., so the lower limit was made 0.53%. However, if the amount is too large, the toughness becomes extremely poor, and cracking during spring processing or in use tends to occur due to surface defects or internal defects, so the upper limit was made 0.68%. A preferable amount of C is 0.58% or more and 0.65% or less.

Si:1.2〜2.5%
Siは製鋼時の脱酸剤として必要な元素であり、また、軟化抵抗性を高め、耐へたり性を向上させるのに有用な元素であるため、下限を1.2%とした。しかし、多すぎると靭・延性が悪くなるだけでなく、疵が増加したり、熱処理の際に表面の脱炭が進行し易くなったり、また粒界酸化層が深くなり易く疲労寿命を短くし易くなるため、上限を2.5%とした。好ましいSi量は、1.3%以上、2.4%以下である。
Si: 1.2-2.5%
Si is an element necessary as a deoxidizer during steelmaking, and is an element useful for enhancing softening resistance and improving sag resistance. Therefore, the lower limit was set to 1.2%. However, too much not only deteriorates toughness and ductility, but also increases flaws, facilitates decarburization of the surface during heat treatment, and deepens the grain boundary oxide layer, shortening the fatigue life. In order to facilitate, the upper limit is set to 2.5%. A preferable Si amount is 1.3% or more and 2.4% or less.

Mn:0.2〜1.5%
Mnも製鋼時の脱酸に有効な元素であり、また、焼入性を高めて強度向上に寄与し、疲労寿命向上、耐へたり性向上などにも寄与する元素であるため、下限を0.2%とした。好ましいMn量は、0.3%以上、特に0.4%以上(例えば、0.5%以上)である。しかし本発明の鋼線(及びばね)は、鋼を熱間圧延した後、必要に応じてパテンティング処理し、次いで伸線、オイルテンパー、コイリングなどすることによって得られるものであり、Mnが多すぎると熱間圧延時やパテンティング処理時にベイナイト等の過冷組織が生成し易くなり、伸線性が低下し易くなるため、上限を1.5%とした。好ましいMn量は、1.0%以下である。
Mn: 0.2 to 1.5%
Mn is an element that is effective for deoxidation during steelmaking, and also contributes to improving strength by improving hardenability, and also contributing to improvement in fatigue life and sag resistance. .2%. A preferable amount of Mn is 0.3% or more, particularly 0.4% or more (for example, 0.5% or more). However, the steel wire (and spring) of the present invention is obtained by hot rolling the steel and then patenting as necessary, followed by wire drawing, oil tempering, coiling, etc. If the amount is too high, a supercooled structure such as bainite is likely to be generated during hot rolling or patenting, and the drawability is likely to be lowered. Therefore, the upper limit is set to 1.5%. A preferable amount of Mn is 1.0% or less.

Cr:1.4〜2.5%
Crは耐へたり性の向上作用及び欠陥感受性低下作用を有しており、本発明にとって極めて重要な元素である。なおCrは粒界酸化層を厚くして疲労寿命を低下させる作用も有しているものの、この点はオイルテンパー時の雰囲気を制御して(具体的には、積極的に水蒸気を約3〜80体積%程度混入させ、表面に緻密な酸化被膜を形成することによって)粒界酸化層を薄くすることが可能であるため、本発明ではかかる不具合は解消できる。従ってCrは多い程望ましく、1.4%以上、好ましくは1.45%以上、さらに好ましくは1.5%以上である。なおCrが過剰になると、伸線の際のパテンティング時間が長くなりすぎ、また靭性や延性も低下するため、2.5%以下、好ましくは2.0%以下とする。
Cr: 1.4-2.5%
Cr has an effect of improving sag resistance and an effect of reducing defect sensitivity, and is an extremely important element for the present invention. Although Cr has the effect of reducing the fatigue life by thickening the grain boundary oxide layer, this point is controlled by controlling the atmosphere during oil tempering (specifically, about 3 to Since the grain boundary oxide layer can be thinned (by mixing about 80% by volume and forming a dense oxide film on the surface), the present invention can eliminate such a problem. Accordingly, the larger the amount of Cr, the more desirable, 1.4% or more, preferably 1.45% or more, more preferably 1.5% or more. If Cr is excessive, the patenting time at the time of wire drawing becomes too long, and the toughness and ductility are also lowered. Therefore, the content is made 2.5% or less, preferably 2.0% or less.

なお本発明の鋼線及びばねでは、粒界酸化層の深さは、通常、10μm以下程度である。   In the steel wire and spring of the present invention, the depth of the grain boundary oxide layer is usually about 10 μm or less.

Al:0.05%以下(0%を含まない)
Alはオーステナイト化時に結晶粒を微細化する作用があり、靭・延性を向上させる効果がある。しかし、過剰に添加するとAl23系の粗大な非金属系介在物が多くなり、疲労特性を悪化させるため、上限を0.05%、好ましくは0.04%とした。
Al: 0.05% or less (excluding 0%)
Al has the effect of refining crystal grains during austenitization, and has the effect of improving toughness and ductility. However, if added excessively, the Al 2 O 3 -based coarse non-metallic inclusions increase and the fatigue characteristics are deteriorated, so the upper limit was made 0.05%, preferably 0.04%.

Ni:0.4%以下(0%を含まない)
Niは焼入性を高め、低温脆化を防止するのに有用な元素である。しかし、多すぎると熱間圧延時においてベイナイトあるいはマルテンサイト組織が生成し、靭性、延性が低下するため、上限を0.4%、好ましくは0.3%とした。好ましいNi量は、0.1%以上である。
Ni: 0.4% or less (excluding 0%)
Ni is an element useful for enhancing hardenability and preventing low temperature embrittlement. However, if it is too much, a bainite or martensite structure is formed during hot rolling, and the toughness and ductility are lowered. Therefore, the upper limit is set to 0.4%, preferably 0.3%. A preferable amount of Ni is 0.1% or more.

V:0.4%以下(0%を含まない)
Vはオイルテンパー処理(焼入れ焼戻し)等の熱処理時に結晶粒を微細化する作用があり、靭・延性を向上させる効果がある。また、焼入れ・焼戻し処理およびコイリング後の歪取り焼鈍時に2次析出硬化を起こして高強度化にも寄与する。しかし、過剰に添加すると圧延時やパテンティング時にマルテンサイトやベイナイト組織が生成し、加工性が悪くなるため、上限を0.4%、好ましくは0.3%とした。好ましいV量は0.1%以上である。
V: 0.4% or less (excluding 0%)
V has the effect of refining crystal grains during heat treatment such as oil tempering (quenching and tempering), and has the effect of improving toughness and ductility. In addition, secondary precipitation hardening occurs during quenching / tempering treatment and strain relief annealing after coiling, thereby contributing to high strength. However, if added excessively, martensite and bainite structures are formed during rolling and patenting, and the workability deteriorates, so the upper limit was made 0.4%, preferably 0.3%. A preferable amount of V is 0.1% or more.

Mo:0.05〜0.5%
Moは、軟化抵抗を向上させるとともに、析出硬化を発揮し、低温焼鈍後の耐力を上昇させるのに有用な元素である。Moは、例えば、0.05%以上、好ましくは0.10%以上とする。しかし、過剰に添加すると、オイルテンパー処理するまでの段階でマルテンサイトやベイナイト組織が生成し、加工性が悪くなるため、上限を0.5%、好ましくは0.3%、さらに好ましくは0.2%とした。
Mo: 0.05-0.5%
Mo is an element useful for improving the softening resistance, exhibiting precipitation hardening, and increasing the yield strength after low-temperature annealing. For example, Mo is 0.05% or more, preferably 0.10% or more. However, if added excessively, martensite and bainite structure are formed at the stage until the oil temper treatment, and the workability deteriorates. Therefore, the upper limit is 0.5%, preferably 0.3%, more preferably 0.8. 2%.

Nb:0.05〜0.5%
Nbはピン止め効果を有するNb炭窒化物を形成するため、オイルテンパー処理(焼入れ焼戻し)等の熱処理時に結晶粒を微細化する作用があり、靭・延性を向上させることができる。かかる効果を有効に発揮するため、0.05%以上、好ましくは0.10%以上とした。しかし、過剰に添加するとNb炭窒化物の凝集がおこり、かえって結晶粒が粗大化し易くなるため、上限を0.5%、好ましくは0.3%とした。
Nb: 0.05 to 0.5%
Since Nb forms Nb carbonitride having a pinning effect, Nb has the effect of refining crystal grains during heat treatment such as oil tempering (quenching and tempering), and can improve toughness and ductility. In order to exhibit such an effect effectively, it is 0.05% or more, preferably 0.10% or more. However, if excessively added, Nb carbonitride aggregates and the crystal grains tend to become coarser, so the upper limit was made 0.5%, preferably 0.3%.

なお本発明のばね用鋼線の組織は、通常、焼戻しマルテンサイトと残留オーステナイト(常温まで冷却後、残っているオーステナイト)などから構成される複合組織である。焼戻しマルテンサイトは、例えば、90面積%以上であり、残留オーステナイトは、例えば、約5〜10面積%程度である。   The structure of the spring steel wire of the present invention is usually a composite structure composed of tempered martensite and retained austenite (remaining austenite after cooling to room temperature). The tempered martensite is, for example, 90 area% or more, and the retained austenite is, for example, about 5 to 10 area%.

また本発明の鋼線およびばねは、通常、旧オーステナイト粒の結晶粒度番号が11.0以上(好ましくは13以上)である。結晶粒度番号が大きい(すなわち結晶粒が小さい)ほど、疲労寿命の向上及び耐へたり性の向上に有効である。なお結晶粒度番号は、結晶粒微細化元素(Cr、Al、V、Nb)の添加量を調整することによって、またオイルテンパー処理における焼入れ時の加熱速度を速くすることによって大きくできる。   The steel wire and spring of the present invention usually have a prior-austenite grain size number of 11.0 or more (preferably 13 or more). The larger the grain size number (that is, the smaller the grain size) is, the more effective for improving the fatigue life and sag resistance. The crystal grain size number can be increased by adjusting the amount of crystal grain refining elements (Cr, Al, V, Nb) added and by increasing the heating rate during quenching in the oil temper treatment.

さらに本発明の鋼線(オイルテンパー線)及びばねは、0.2%耐力(σ0.2)と引張強さ(σB)の比(耐力比;σ0.2/σB)が0.85以下(好ましくは0.80以下)である。オイルテンパー後の耐力比が小さいほどコイリング時の折損を防止でき、冷間加工性を高めることができる。耐力比は、例えば、オイルテンパー処理における焼戻し後の冷却速度を速く(例えば水冷)することによって小さくできる。 Furthermore, the steel wire (oil tempered wire) and spring of the present invention have a ratio of 0.2% proof stress (σ 0.2 ) to tensile strength (σ B ) (proof strength ratio; σ 0.2 / σ B ) of 0.85 or less ( Preferably it is 0.80 or less. The smaller the yield ratio after the oil temper, the more the breakage during coiling can be prevented, and the cold workability can be improved. The yield strength ratio can be reduced, for example, by increasing the cooling rate after tempering in the oil temper treatment (for example, water cooling).

上述したような本発明の鋼線及びばねは、合金成分が適切に調整されているため高強度となっており、さらには結晶粒度及び耐力比も適切に調整されているため、疲労寿命、耐へたり性、及び冷間加工性のいずれにも優れている。なお上記鋼線及びばねの芯部のビッカース硬さは、合金成分の調整の他、熱処理などによっても適宜調整できるが、例えば、Hv550以上(好ましくはHv570以上、さらに好ましくはHv600以上)である。また前記ビッカース硬さは、例えば、Hv700以下程度であってもよく、Hv650以下程度であってもよい。なお表面の硬さは、表面硬化処理技術(窒化処理など)の利用などによってもさらに高めることができる。例えば窒化処理した(従って表面に窒化処理層が形成されている)ばねの表面硬さは、Hv750以上(好ましくはHv800以上)、Hv1150以下(例えばHv1100以下)程度である。   The steel wires and springs of the present invention as described above have high strength because the alloy components are appropriately adjusted, and furthermore, the crystal grain size and the proof stress ratio are also appropriately adjusted. It is excellent in both sagability and cold workability. The Vickers hardness of the steel wire and the core of the spring can be adjusted as appropriate by heat treatment or the like in addition to the adjustment of the alloy components, and is, for example, Hv550 or higher (preferably Hv570 or higher, more preferably Hv600 or higher). The Vickers hardness may be, for example, about Hv 700 or less, or about Hv 650 or less. The surface hardness can be further increased by using a surface hardening treatment technique (such as nitriding treatment). For example, the surface hardness of a spring subjected to nitriding treatment (therefore, a nitriding treatment layer is formed on the surface) is about Hv 750 or more (preferably Hv 800 or more) and Hv 1150 or less (for example, Hv 1100 or less).

前記ばね用鋼線(オイルテンパー線)は、温度400℃×20分の焼鈍をした際に、0.2%耐力(σ0.2)が300MPa以上(好ましくは350MPa以上)上昇するものであるのが望ましい。0.2%耐力の上昇量(Δσ0.2)が大きいほど、耐へたり性をさらに改善できる。なおΔσ0.2も、前記耐力比と同様、オイルテンパー処理(焼入れ焼戻し)後の冷却速度を速く(例えば水冷)することによって大きくできる。 The spring steel wire (oil tempered wire) has a 0.2% yield strength (σ 0.2 ) of 300 MPa or higher (preferably 350 MPa or higher) when annealed at a temperature of 400 ° C. for 20 minutes. desirable. The greater the 0.2% yield strength increase (Δσ 0.2 ), the more the sag resistance can be improved. Δσ 0.2 can be increased by increasing the cooling rate (for example, water cooling) after the oil temper treatment (quenching and tempering), similarly to the yield strength ratio.

また本発明のばねは、ばねの表面の圧縮残留応力が高められているのが望ましい。残留応力が圧縮側にあるほど、疲労寿命を高めることができる。望ましい圧縮残留応力はばねが窒化処理されているか否かによって異なるが、窒化処理されていない場合は、例えば、−400MPa以下(好ましくは−500MPa以下、さらに好ましくは−600MPa以下)である。なお残留応力は負の値であるときに圧縮であることを意味し(また正の値であるときに引張であることを意味し)、絶対値が大きいほど残留応力が大きいことを意味する。また窒化処理されている場合(すなわちばね表面に窒化処理層が形成されている場合)には、例えば、−800MPa以下(好ましくは−1000MPa以下、さらに好ましくは−1200MPa以下)程度である。ばねの表面の圧縮残留応力は、例えば、ショットピーニングの回数を多くすることによって(例えば2回以上することによって)高めることができる。   In the spring of the present invention, it is desirable that the compressive residual stress on the surface of the spring is increased. The fatigue life can be increased as the residual stress is on the compression side. Desirable compressive residual stress varies depending on whether or not the spring is nitrided, but when the spring is not nitrided, for example, it is −400 MPa or less (preferably −500 MPa or less, more preferably −600 MPa or less). When the residual stress is a negative value, it means compression (and when it is a positive value, it means tensile), and the larger the absolute value, the larger the residual stress. When nitriding is performed (that is, when a nitriding layer is formed on the spring surface), for example, it is about −800 MPa or less (preferably −1000 MPa or less, more preferably −1200 MPa or less). The compressive residual stress on the surface of the spring can be increased, for example, by increasing the number of shot peening (for example, by increasing the number of times twice or more).

さらに本発明のばねは、表面の圧縮残留応力が引張に転ずる深さ(クロッシングポイント)が深いほど望ましい。クロッシングポイントが深いほど、圧縮側の残留応力部分を増やすことができ、疲労寿命を向上できる。クロッシングポイント(深さ)は、例えば、0.05mm以上(好ましくは0.10mm以上、さらに好ましくは0.15mm以上)、0.5mm以下(好ましくは0.4mm以下、さらに好ましくは0.35mm以下)程度である。なおクロッシングポイントは、例えば、ショットピーニングの回数を多くすることによって(例えば2回以上)、またショットピーニング時のショット粒の平均粒径を大きくする(例えば、1段目のショットピーニング時のショット粒の平均粒径を0.7〜1.2mm程度にする)ことによって深くできる。   Further, in the spring of the present invention, it is desirable that the depth (crossing point) at which the compressive residual stress on the surface turns into tension is deeper. The deeper the crossing point, the more the residual stress portion on the compression side can be increased and the fatigue life can be improved. The crossing point (depth) is, for example, 0.05 mm or more (preferably 0.10 mm or more, more preferably 0.15 mm or more), 0.5 mm or less (preferably 0.4 mm or less, more preferably 0.35 mm or less). ) The crossing point is, for example, by increasing the number of shot peening (for example, two times or more), and increasing the average grain size of shot grains during shot peening (for example, shot grains during first stage shot peening) The average particle diameter of the glass can be increased by 0.7 to 1.2 mm.

また本発明のばねは、表面硬化処理(窒化処理など)されている場合、硬化層(芯部硬さよりもHvが15以上硬くなっている層)の深さは、深い程望ましい。硬化層が深いほど疲労亀裂の発生を抑制し、疲労特性を向上させることができる。硬化層深さは、例えば、0.02mm以上(好ましくは0.03mm以上、さらに好ましくは0.04mm以上)、0.15mm以下(好ましくは0.13mm以下、さらに好ましくは0.10mm以下)である。なお硬化層は、窒化時間を長くする、あるいは窒化温度を高めることによって深くできる。   Further, when the spring of the present invention is subjected to surface hardening treatment (nitriding treatment or the like), it is desirable that the depth of the hardened layer (layer in which Hv is 15 or more harder than the core hardness) is as deep as possible. As the hardened layer is deeper, the occurrence of fatigue cracks can be suppressed and the fatigue characteristics can be improved. The depth of the hardened layer is, for example, 0.02 mm or more (preferably 0.03 mm or more, more preferably 0.04 mm or more), 0.15 mm or less (preferably 0.13 mm or less, more preferably 0.10 mm or less). is there. The hardened layer can be deepened by increasing the nitriding time or increasing the nitriding temperature.

本発明の鋼線及びばねは、疲労特性、耐へたり性、及び加工性に優れているため、これら特性が求められる用途、例えば、自動車エンジンの弁ばね、サスペンションの懸架ばね、クラッチばね、ブレーキばねなどのような機械の復元機構に使用するばねなどに特に有用である。   Since the steel wire and spring of the present invention are excellent in fatigue characteristics, sag resistance, and workability, applications that require these characteristics, such as valve springs for automobile engines, suspension springs for suspensions, clutch springs, brakes, etc. This is particularly useful for a spring used for a restoring mechanism of a machine such as a spring.

以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited by the following examples, but may be appropriately modified within a range that can meet the purpose described above and below. Of course, it is possible to implement them, and they are all included in the technical scope of the present invention.

実験例1
表1に示す化学成分の鋼A〜R(残部はFe及び不可避的不純物)を溶製し、熱間圧延することにより直径8.0mmの線材を作製した。ついで、軟化焼鈍、表面皮削り、鉛パテンティング処理(加熱温度:950℃、鉛炉温度:620℃)後、直径4.0mmまで伸線した。その後、オイルテンパー処理(焼入れ時加熱速度:250℃/秒、加熱温度:960℃、焼入油温度:70℃、焼戻温度:450℃、焼戻し後の冷却速度:300℃/秒、炉雰囲気:10体積%H2O+90体積%N2)を行い、オイルテンパー線(鋼線)を作製した。
Experimental example 1
Steels A to R having chemical components shown in Table 1 (the balance being Fe and inevitable impurities) were melted and hot-rolled to prepare a wire having a diameter of 8.0 mm. Next, after softening annealing, surface cutting, and lead patenting treatment (heating temperature: 950 ° C., lead furnace temperature: 620 ° C.), the wire was drawn to a diameter of 4.0 mm. Thereafter, oil tempering treatment (heating rate during quenching: 250 ° C./second, heating temperature: 960 ° C., quenching oil temperature: 70 ° C., tempering temperature: 450 ° C., cooling rate after tempering: 300 ° C./second, furnace atmosphere : 10 vol% H 2 O + 90 vol% N 2 ) to produce an oil tempered wire (steel wire).

なお鋼種E2ではオイルテンパー処理における焼戻し後の冷却を空冷とした。また鋼種H2では、オイルテンパー処理における焼入れ時の加熱速度を20℃/秒とした。   In steel type E2, cooling after tempering in the oil temper treatment was air cooling. For steel type H2, the heating rate during quenching in the oil temper treatment was 20 ° C./second.

得られたオイルテンパー線(粒界酸化層深さ:10μm以下)の特性を以下のようにして評価した。   The characteristics of the obtained oil tempered wire (grain boundary oxide layer depth: 10 μm or less) were evaluated as follows.

(1)引張強さ(σB)、0.2%耐力(σ0.2)、結晶粒度番号
上記オイルテンパー線について引張試験を行い、引張強さ(σB)及び0.2%耐力(σ0.2)を測定し、耐力比(σ0.2/σB)を算出した。また旧オーステナイト粒の結晶粒度番号をJ1S G0551に準拠して測定した。
(1) Tensile strength (σ B ), 0.2% yield strength (σ 0.2 ), grain size number Tensile test was conducted on the above oil tempered wire, tensile strength (σ B ) and 0.2% yield strength (σ 0.2 ) And the yield strength ratio (σ 0.2 / σ B ) was calculated. The crystal grain size number of the prior austenite grains was measured according to J1S G0551.

(2)歪み取り焼鈍後の0.2%耐力の変化量(Δσ0.2
上記オイルテンパー線を低温焼鈍(400℃×20分)した後、該低温焼鈍後の0.2%耐力(σ0.2)を測定し、低温焼鈍後の0.2%耐力(σ0.2)から低温焼鈍前の0.2%耐力(σ0.2)を差し引くことによって変化量(Δσ0.2)を求めた。
(2) Change in 0.2% yield strength after strain relief annealing (Δσ 0.2 )
After low-temperature annealing (400 ° C. × 20 minutes) of the oil tempered wire, 0.2% proof stress (σ 0.2 ) after low-temperature annealing is measured, and 0.2% proof stress (σ 0.2 ) after low-temperature annealing is used to measure the low temperature. The amount of change (Δσ 0.2 ) was determined by subtracting 0.2% proof stress (σ 0.2 ) before annealing.

(3)加工性
上記オイルテンパー線の巻付試験をJIS G 3560に準拠して行った(巻数:10回)。
(3) Workability The winding test of the oil tempered wire was performed according to JIS G 3560 (number of windings: 10 times).

(4)疲労寿命、残留せん断歪み
上記オイルテンパー線を冷間コイリング成形(コイルの平均径:24.0mm、巻数:6.0、有効巻数:3.5)し、歪み取り焼鈍(400℃×20分)、座研磨、窒化処理(窒化条件:80体積%NH3+20体積%N2、430℃×3時間)、ショットピーニング[回数:3回、ショット粒の平均粒径(1段目):1.0mm、ショット粒の平均粒径(1〜3段目の平均):0.5mm]、低温焼鈍(230℃×20分)、冷間セッチングを行い、ばねとした。
(4) Fatigue life, residual shear strain Cold coiling (coil average diameter: 24.0 mm, number of turns: 6.0, number of effective turns: 3.5) of the above oil tempered wire, and strain relief annealing (400 ° C x 20 minutes), seat polishing, nitriding treatment (nitriding conditions: 80% by volume NH 3 + 20% by volume N 2 , 430 ° C. × 3 hours), shot peening [number of times: 3 times, average grain size of shot grains (first stage) : 1.0 mm, average particle diameter of shot grains (average of first to third stages): 0.5 mm], low-temperature annealing (230 ° C. × 20 minutes), cold setting was performed to obtain a spring.

得られた各ばねに760±650MPaの負荷応力下、温間(120℃)で疲労試験を行い、ばねが破断するまでの繰り返し数を測定した(疲労寿命)。なおばねが破断しない場合、繰り返し数1×107回で試験を中止した。 Each obtained spring was subjected to a fatigue test under a load stress of 760 ± 650 MPa at a warm temperature (120 ° C.), and the number of repetition until the spring broke was measured (fatigue life). When the spring did not break, the test was stopped at a repetition number of 1 × 10 7 times.

また上記各ばねを1372MPaの応力下で48時間に亘って継続してばねを締め付けた後(温度:120℃)、応力を除去し、試験前後のへたり量を測定し、残留せん断歪みを算出した。   Also, after each spring was tightened for 48 hours under a stress of 1372 MPa (temperature: 120 ° C.), the stress was removed, the amount of sag before and after the test was measured, and the residual shear strain was calculated. did.

(5)硬さ、残留応力
上記オイルテンパー線を「(4)疲労寿命、残留せん断歪み」と同様にしてばねとした。このばねの表面のビッカース硬さ(Hv)は、該表面を研磨したサンプル上でビッカース硬さ(300gf)を測定し、垂直方向に換算する方法(コード法)によって測定した。また前記ばねを切断し、JIS Z 2244に準拠して、断面のビッカース硬さ(Hv)を測定することにより、硬化層深さ及び芯部のビッカース硬さ(Hv)及び硬化層(芯部の硬さよりHv15以上高い層)の深さを求めた。さらにX線回折法によって残留応力を測定することにより、ばねの表面の圧縮残留応力と、表面側の圧縮残留応力が引張残留応力へと転じる点(深さ;クロッシングポイント)を求めた。
(5) Hardness and residual stress The oil tempered wire was used as a spring in the same manner as "(4) Fatigue life and residual shear strain". The Vickers hardness (Hv) of the surface of the spring was measured by a method (cord method) in which the Vickers hardness (300 gf) was measured on a sample whose surface was polished and converted to the vertical direction. Moreover, the said spring is cut | disconnected and the Vickers hardness (Hv) of a cross section is measured according to JISZ2244, Vickers hardness (Hv) of a hardened layer, and a hardened layer (core part of a core part). The depth of the layer having a higher Hv15 or more than the hardness was determined. Furthermore, the residual stress was measured by the X-ray diffraction method, and the point (depth; crossing point) at which the compressive residual stress on the surface of the spring and the compressive residual stress on the surface side turned into the tensile residual stress were obtained.

結果を表2に示す。   The results are shown in Table 2.

Figure 0004097151
Figure 0004097151

Figure 0004097151
Figure 0004097151

表1及び表2より明らかなように、No.18ではC量が不足しているために所定の強度が達成されず、疲労寿命及び耐へたり性が不十分である。No.20ではAlが過剰なため酸化物系介在物が粗大となって破壊の起点となるため、疲労寿命が短い。またNo.14〜17及び19でも、Cr量が不足しているために、疲労寿命が不十分である。   As apparent from Tables 1 and 2, No. In No. 18, since the amount of C is insufficient, the predetermined strength is not achieved, and the fatigue life and sag resistance are insufficient. No. In No. 20, since the Al content is excessive, the oxide inclusions become coarse and become the starting point of fracture, so the fatigue life is short. No. Also in 14-17 and 19, since the amount of Cr is insufficient, the fatigue life is insufficient.

これらに対して、No.1〜5、7〜9、及び11〜13では、種々の化学成分が適切に調整されており、しかもCrが所定量添加されており、さらには結晶粒度及び耐力比も適切に制御されているため、疲労寿命、耐へたり性、及び加工性のいずれにも優れている。   On the other hand, no. In 1-5, 7-9, and 11-13, various chemical components are appropriately adjusted, and a predetermined amount of Cr is added. Further, the crystal grain size and the proof stress ratio are also appropriately controlled. Therefore, it is excellent in all of fatigue life, sag resistance, and workability.

なおNo.6から明らかなように、耐力比(σ0.2/σB)及び0.2%耐力の変化量(Δσ0.2)の条件が不適切であると、加工性が悪くなる。また前記No.14〜17に比べれば改善されているものの、耐へたり性が不十分となる。 No. As can be seen from FIG. 6, if the conditions of the yield strength ratio (σ 0.2 / σ B ) and the 0.2% yield strength change amount (Δσ 0.2 ) are inappropriate, the workability deteriorates. In addition, the No. Although improved compared to 14-17, the sag resistance becomes insufficient.

またNo.10から明らかなように、結晶粒が大きくなると(粒度番号が小さくなると)、No.14〜17に比べれば改善されているものの、疲労寿命及び耐へたり性が不十分となる。   No. As is clear from FIG. 10, when the crystal grain becomes larger (when the grain size number becomes smaller), Although improved compared to 14-17, fatigue life and sag resistance are insufficient.

Claims (6)

焼戻しマルテンサイト組織を有するばね用鋼線であって、該ばね用鋼線は、
C :0.53〜0.68%(質量%の意、以下同じ)、
Si:1.2〜2.5%、
Mn:0.2〜1.5%、
Cr:1.4〜2.5%、及び
Al:0.05%以下(0%を含まない)を含有し、
さらにNi:0.4%以下(0%を含まない)、V:0.4%以下(0%を含まない)、Mo:0.05〜0.5%、及びNb:0.05〜0.5%から選択される少なくとも1種を含み、
残部はFe及び不可避的不純物であり、
旧オーステナイト粒の結晶粒度番号が11.0以上であり、
0.2%耐力(σ0.2)と引張強さ(σB)の比(σ0.2/σB)が0.85以下であることを特徴とする加工性に優れた高強度ばね用鋼線。
A spring steel wire having a tempered martensite structure, the spring steel wire comprising:
C: 0.53-0.68% (meaning mass%, the same shall apply hereinafter)
Si: 1.2 to 2.5%,
Mn: 0.2 to 1.5%
Cr: 1.4-2.5%, and Al: 0.05% or less (not including 0%),
Furthermore, Ni: 0.4% or less (not including 0%), V: 0.4% or less (not including 0%), Mo: 0.05 to 0.5%, and Nb: 0.05 to 0 Including at least one selected from 5%,
The balance is Fe and inevitable impurities,
The crystal grain size number of the prior austenite grains is 11.0 or more,
0.2% proof stress (sigma 0.2) and tensile strength (sigma B) ratio (σ 0.2 / σ B) is a high strength spring steel wire with excellent workability, characterized in that it is 0.85 or less.
Mnが0.5〜1.5%である請求項1に記載の高強度ばね用鋼線。   The steel wire for high-strength springs according to claim 1, wherein Mn is 0.5 to 1.5%. 前記ばね用鋼線は、温度400℃×20分の焼鈍をした際に、0.2%耐力(σ0.2)が300MPa以上上昇するものである請求項1又は2に記載の高強度ばね用鋼線。 3. The high strength spring steel according to claim 1, wherein the spring steel wire has a 0.2% yield strength (σ 0.2 ) of 300 MPa or more when annealed at a temperature of 400 ° C. × 20 minutes. line. 請求項1〜3のいずれかに記載の高強度ばね用鋼線からなる高強度ばね。   A high-strength spring comprising the steel wire for a high-strength spring according to any one of claims 1 to 3. 前記ばねは、
芯部の硬さがHv550〜700であり、
ばねの表面の圧縮残留応力が−400MPa以下であり、かつ
前記表面の圧縮残留応力が引張に転ずる深さが0.05mm以上0.5mm以下であることを特徴とする請求項4に記載の高強度ばね。
The spring is
The hardness of the core is Hv550-700,
The high compressive residual stress of the surface of the spring is -400 MPa or less, and the depth at which the compressive residual stress of the surface turns into tension is 0.05 mm or more and 0.5 mm or less. Strength spring.
前記ばねは表面に窒化処理層が形成されており、
表面の硬さがHv750〜1150であり、
芯部の硬さがHv550〜700であり、
芯部硬さよりもHv15以上硬くなっている硬化層の深さが0.02mm以上0.15mm以下であり、
ばねの表面の圧縮残留応力が−800MPa以下であり、かつ
前記表面の圧縮残留応力が引張に転ずる深さが0.05mm以上0.5mm以下であることを特徴とする請求項4に記載の高強度ばね。
The spring has a nitriding layer formed on the surface,
The surface hardness is Hv750-1150,
The hardness of the core is Hv550-700,
The depth of the hardened layer that is Hv15 or higher than the core hardness is 0.02 mm or more and 0.15 mm or less,
The high compressive residual stress according to claim 4, wherein the compressive residual stress on the surface of the spring is −800 MPa or less, and the depth at which the compressive residual stress on the surface turns into tension is 0.05 mm or more and 0.5 mm or less. Strength spring.
JP2004084333A 2003-03-28 2004-03-23 High strength spring steel wire and high strength spring with excellent workability Expired - Lifetime JP4097151B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004084333A JP4097151B2 (en) 2003-03-28 2004-03-23 High strength spring steel wire and high strength spring with excellent workability

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003092600 2003-03-28
JP2004084333A JP4097151B2 (en) 2003-03-28 2004-03-23 High strength spring steel wire and high strength spring with excellent workability

Publications (2)

Publication Number Publication Date
JP2004315968A JP2004315968A (en) 2004-11-11
JP4097151B2 true JP4097151B2 (en) 2008-06-11

Family

ID=33478557

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004084333A Expired - Lifetime JP4097151B2 (en) 2003-03-28 2004-03-23 High strength spring steel wire and high strength spring with excellent workability

Country Status (1)

Country Link
JP (1) JP4097151B2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101287851B (en) * 2005-08-05 2012-09-05 住友电气工业株式会社 Oil-tempered wire and process for producing the same
JP2007063584A (en) * 2005-08-05 2007-03-15 Sumitomo Electric Ind Ltd Oil tempered wire and manufacturing method therefor
JP4027956B2 (en) * 2006-01-23 2007-12-26 株式会社神戸製鋼所 High strength spring steel having excellent brittle fracture resistance and method for producing the same
KR100985357B1 (en) * 2007-06-19 2010-10-04 주식회사 포스코 High strength and toughness spring having excellent fatigue life, steel wire rod and steel wire for the same and producing method of said steel wire and spring
JP5541418B2 (en) 2011-08-18 2014-07-09 新日鐵住金株式会社 Spring steel and spring
WO2014141831A1 (en) * 2013-03-12 2014-09-18 本田技研工業株式会社 Steel wire for spring and method for manufacturing same
JP6410612B2 (en) * 2015-01-08 2018-10-24 日産自動車株式会社 Nitriding member and friction transmission using the same
JP2017179423A (en) * 2016-03-29 2017-10-05 株式会社神戸製鋼所 Steel wire with excellent fatigue characteristics, and method for producing the same
JP7165522B2 (en) * 2018-07-10 2022-11-04 日本発條株式会社 Compression coil spring and its manufacturing method
JP7287403B2 (en) 2020-06-15 2023-06-06 住友電気工業株式会社 steel wire for spring
WO2021255848A1 (en) * 2020-06-17 2021-12-23 住友電気工業株式会社 Steel wire for spring
KR102492641B1 (en) * 2020-12-17 2023-01-30 주식회사 포스코 Wire rod and steel wire for spring, spring with improved fatigue resistance and nitriding properties, and the method for manufacturing the same
CN117355625A (en) 2021-08-05 2024-01-05 住友电气工业株式会社 Steel wire for spring

Also Published As

Publication number Publication date
JP2004315968A (en) 2004-11-11

Similar Documents

Publication Publication Date Title
KR100711370B1 (en) Steel wire for high strength spring excellent in workability and high strength spring
EP2017358B1 (en) Steel wire material for spring and its producing method
US7763123B2 (en) Spring produced by a process comprising coiling a hard drawn steel wire excellent in fatigue strength and resistance to setting
KR101603485B1 (en) Spring steel and spring
JP4097151B2 (en) High strength spring steel wire and high strength spring with excellent workability
US7615186B2 (en) Spring steel excellent in sag resistance and fatigue property
WO2016158562A1 (en) Heat-treated steel wire having excellent fatigue-resistance characteristics
JP4133515B2 (en) Spring steel wire with excellent sag and crack resistance
JP5941439B2 (en) Coil spring and manufacturing method thereof
WO2015152063A1 (en) High-strength steel material having excellent fatigue characteristics
JP4062612B2 (en) Steel wire for hard springs and hard springs with excellent fatigue strength and sag resistance
JP4041330B2 (en) Steel wire for hard springs and hard springs with excellent fatigue strength
JP2004315967A (en) Steel for spring having excellent settling resistance and fatigue property
JP4330306B2 (en) Hard spring with excellent fatigue strength
JP2007031747A (en) Steel wire rod for spring, and method for judging its fatigue resistance

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040816

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060913

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080304

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080306

R150 Certificate of patent or registration of utility model

Ref document number: 4097151

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110321

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110321

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110321

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120321

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130321

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130321

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140321

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250