JP2001073092A - 9-12% Cr HEAT RESISTING STEEL EXCELLENT IN HIGH TEMPERATURE STRENGTH AND TOUGHNESS, AND ITS MANUFACTURE - Google Patents

9-12% Cr HEAT RESISTING STEEL EXCELLENT IN HIGH TEMPERATURE STRENGTH AND TOUGHNESS, AND ITS MANUFACTURE

Info

Publication number
JP2001073092A
JP2001073092A JP25186399A JP25186399A JP2001073092A JP 2001073092 A JP2001073092 A JP 2001073092A JP 25186399 A JP25186399 A JP 25186399A JP 25186399 A JP25186399 A JP 25186399A JP 2001073092 A JP2001073092 A JP 2001073092A
Authority
JP
Japan
Prior art keywords
temperature
toughness
forging
temperature strength
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25186399A
Other languages
Japanese (ja)
Inventor
Fumihiko Tamura
史彦 田村
Tomohiro Tsuchiyama
友博 土山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP25186399A priority Critical patent/JP2001073092A/en
Publication of JP2001073092A publication Critical patent/JP2001073092A/en
Pending legal-status Critical Current

Links

Landscapes

  • Turbine Rotor Nozzle Sealing (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain excellent high temperature strength and toughness by providing a composition consisting of, C, V, Si, Nb, Mn, N, Ni, B, Cr, either or both of Mo and W, and the balance Fe with inevitable impurities. SOLUTION: The steel is a 9-12% Cr heat resisting steel excellent in high temperature strength and toughness and having a chemical composition consisting of, by weight, 0.01-0.16%; C, 0.10-0.30% V, <=0.10%; Si, 0.02-0.10% Nb, <=0.20% Mn, 0.01-0.07% N, 1.6-2.8% Ni, <0.001% B, 9.0-12.0% Cr, either or both of 0.5-1.7% Mo and 0.1-2.0% W, and the balance Fe with inevitable impurities. A material having the chemical composition is prepared, and this material is subjected to forging under the conditions of 1,050-1,500 deg.C heating temperature at final forging, 700-900 deg.C material-surface temperature at the completion of forging, and >=20% draft, to quenching heat treatment at 1,030-1,090 deg.C quenching temperature, and then to tempering heat treatment at 500-650 deg.C tempering temperature, by which the steel having crystal grains finer than those of grain size number No.3.0 can be obtained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は高温強度および靱
性に優れた9〜12%Cr系耐熱鋼、及びその製造方法
に係り、特にガスタービンを構成する重要部品であるガ
スタービンディスクおよび/又はコンプレッサディスク
材に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a 9-12% Cr heat-resistant steel excellent in high-temperature strength and toughness, and a method for producing the same, and in particular, a gas turbine disk and / or a compressor, which are important parts constituting a gas turbine. Disc material.

【0002】[0002]

【従来の技術】発電効率を向上させるために、ガスター
ビンにおいてはガス燃焼温度の高温化が指向されてお
り、それに伴いガスタービンディスクやコンプレッサデ
ィスクにおいてもメタル温度が高温化してきている。デ
ィスク材としては従来低合金のCrMoV鋼や3.5N
iCrMoV鋼などが使用されてきた。しかし、メタル
温度が440℃を超える高温域では使用できず、より高
温強度、靱性に優れた鋼が必要である。また、Ni基合
金では、充分な高温強度を有しているが熱間加工性、切
削性が著しく劣り製造コストが非常に高い。一方、12
%Cr系鋼は、特公平6−50041が知られている。
しかしこの材料は、高温強度は充分であるが、靱性が不
足している。これは靱性、高温強度に寄与する元素の最
適化が図られていないためである。
2. Description of the Related Art In order to improve power generation efficiency, the gas combustion temperature of gas turbines has been increased, and accordingly, the metal temperature of gas turbine disks and compressor disks has also increased. Conventional low alloy CrMoV steel and 3.5N
iCrMoV steel and the like have been used. However, it cannot be used in a high temperature region where the metal temperature exceeds 440 ° C., and steel having higher strength and higher toughness is required. Ni-based alloys have sufficient high-temperature strength, but are extremely inferior in hot workability and machinability, and their production costs are extremely high. On the other hand, 12
As for the% Cr-based steel, Japanese Patent Publication No. 6-50041 is known.
However, this material has sufficient high-temperature strength, but lacks toughness. This is because elements that contribute to toughness and high-temperature strength have not been optimized.

【0003】[0003]

【発明が解決しようとする課題】一般に従来の材料で
は、高温強度化を図ると、靱性が低下する傾向があっ
た。そこで高靱性化を図るためにはNiを増加させるこ
とが最も効果的であるが、高温強度は低下する傾向があ
る。一方、高温強度向上のためには、Niを下げ、Bを
上げる必要がある。本発明はこのような技術背景のもと
で、NiおよびBの最適化を図ることで、高温強度およ
び靱性に優れた9〜12%Cr系耐熱鋼及びその製造方
法を提供することを目的とする。
Generally, in conventional materials, when the strength at high temperatures is increased, the toughness tends to decrease. In order to increase the toughness, it is most effective to increase Ni, but the high-temperature strength tends to decrease. On the other hand, in order to improve the high-temperature strength, it is necessary to lower Ni and increase B. An object of the present invention is to provide a 9 to 12% Cr heat-resistant steel excellent in high-temperature strength and toughness by optimizing Ni and B under such a technical background, and a method for producing the same. I do.

【0004】また、この発明は、メタル温度が440℃
を超えるガスタービン用のガスタービンディスクまたは
/及びコンプレッサディスク材を提供することを目的と
する。
Further, according to the present invention, the metal temperature is 440 ° C.
It is an object to provide a gas turbine disk or / and compressor disk material for a gas turbine that exceeds 100%.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するた
め、この発明に係る高温強度および靱性に優れた9〜1
2%Cr系耐熱鋼は、重量%で C:0.10〜0.16 V:0.10〜0.30 Si:≦0.10 Nb:0.02〜0.10 Mn:≦0.20 N:0.01〜0.07 Ni:1.6〜2.8 B<0.0010 Cr:9.0〜12.0 Mo:0.5〜1.7もしくはW:0.1〜2.0の1種又は2種および残部 がFeおよび不可避的不純物で構成する化学組成を備え
たものである(請求項1)。
In order to achieve the above-mentioned object, the present invention relates to 9-1 to 9-1 having excellent high-temperature strength and toughness.
2% Cr-based heat-resistant steel is expressed in terms of% by weight: C: 0.10 to 0.16 V: 0.10 to 0.30 Si: ≤ 0.10 Nb: 0.02 to 0.10 Mn: ≤ 0.20 N: 0.01 to 0.07 Ni: 1.6 to 2.8 B <0.0010 Cr: 9.0 to 12.0 Mo: 0.5 to 1.7 or W: 0.1 to 2. One or two kinds of 0 and the balance have a chemical composition composed of Fe and inevitable impurities (Claim 1).

【0006】この発明の別の態様に係る高温強度および
靱性に優れた9〜12%Cr系耐熱鋼は、Ni≦600
0×Bであることを特徴とする(請求項2)。更にこの
発明の別の態様に係る高温強度および靱性に優れた9〜
12%Cr系耐熱鋼は最終鍛造時の加工率が20%以上
で、結晶粒度(ASTM No.)が3.0より細粒で
あることを特徴とする(請求項3)。上記のそれぞれ発
明の態様で構成された高温強度および靱性に優れた9〜
12%Cr系耐熱鋼は、ガスタービン用のガスタービン
ディスクおよび/又はコンプレッサディスク材として好
適に使用される(請求項4)。
A 9-12% Cr heat-resistant steel excellent in high-temperature strength and toughness according to another aspect of the present invention has a Ni ≦ 600.
0 × B (claim 2). Further, according to another aspect of the present invention, 9 to
The 12% Cr heat-resistant steel is characterized in that the working ratio at the time of final forging is 20% or more and the grain size (ASTM No.) is finer than 3.0 (Claim 3). 9 to 9 having excellent high-temperature strength and toughness constituted by the above embodiments of the present invention.
The 12% Cr heat-resistant steel is suitably used as a gas turbine disk and / or compressor disk material for a gas turbine (claim 4).

【0007】次に、この発明に係る高温強度および靱性
に優れた9〜12%Cr系耐熱鋼の製造方法は、化学組
成が重量%で、 C:0.10〜0.16 V:0.10〜0.30 Si:≦0.10 Nb:0.02〜0.10 Mn:≦0.20 N:0.01〜0.07 Ni:1.6〜2.8 B<0.0010 Cr:9.0〜12.0 Mo:0.5〜1.7もしくはW:0.1〜2.0の1種又は2種および残部 がFeおよび不可避的不純物からなる材料、若しくは、
上記材料において、更にNi≦6000×Bなる条件の
もとで材料を調整し、その材料を用いて最終鍛造加熱温
度が1050〜1150℃、鍛造終了時の材料表面温度
が700〜900℃、加工率20%以上で鍛造し、10
30〜1090℃の焼入温度で焼入熱処理し、その後5
00〜650℃の焼戻し温度で1回以上の焼戻熱処理を
施すことにより、結晶粒度(ASTM No.)3.0
より細粒を有するようにしたことを特徴とする(請求項
5)。
Next, according to the method for producing a 9-12% Cr heat-resistant steel excellent in high-temperature strength and toughness according to the present invention, the chemical composition is expressed in terms of% by weight, and C: 0.10 to 0.16. 10-0.30 Si: ≦ 0.10 Nb: 0.02-0.10 Mn: ≦ 0.20 N: 0.01-0.07 Ni: 1.6-2.8 B <0.0010 Cr : 9.0 to 12.0 Mo: 0.5 to 1.7 or W: 0.1 to 2.0 One or two kinds and a material whose balance is composed of Fe and unavoidable impurities, or
In the above-mentioned material, the material is further adjusted under the condition of Ni ≦ 6000 × B, and the final forging heating temperature is 1050 to 1150 ° C., the material surface temperature at the end of forging is 700 to 900 ° C. Forging at a rate of 20% or more, 10
Quenching heat treatment at a quenching temperature of 30 to 1090 ° C.
By performing one or more tempering heat treatments at a tempering temperature of 00 to 650 ° C., the grain size (ASTM No.) is 3.0.
It is characterized by having finer grains (claim 5).

【0008】以下、この発明に係る高温強度および靱性
に優れた9〜12%Cr系耐熱鋼における各元素の組成
範囲の限定理由を説明する。
The reasons for limiting the composition range of each element in the 9 to 12% Cr heat-resistant steel excellent in high-temperature strength and toughness according to the present invention will be described below.

【0009】[0009]

【作用】C:0.10〜0.16 Cは0.10未満
では所望の引張り強さ、耐力などの強度が得られないの
でその下限を0.10%にした。また、0.16%を超
えると靱性が低下し、高温使用中に炭化物の凝集、粗大
化が著しくなり高温強度が低下するため、その上限を
0.16%にした。 Si:≦0.10 Siは溶鋼の脱酸元素として添加
されるが、最近の製鋼技術の進歩により、カーボン脱酸
を行う場合には≦0.10%でも良い。また、0.10
%を超えると、400〜500℃で長時間使用により脆
化する。
C: 0.10 to 0.16 If C is less than 0.10, desired strength such as tensile strength and proof stress cannot be obtained, so the lower limit was made 0.10%. On the other hand, if it exceeds 0.16%, the toughness is reduced, and during use at a high temperature, the carbides are remarkably agglomerated and coarsened to lower the high-temperature strength. Si: ≦ 0.10 Si is added as a deoxidizing element for molten steel, but may be ≦ 0.10% when carbon deoxidation is performed due to recent advances in steelmaking technology. Also, 0.10
%, It becomes embrittled by long-term use at 400 to 500 ° C.

【0010】Mn:≦0.20 Mnは従来より脱
酸、脱硫材として必要な元素である。一方焼戻し脆化を
助長したり、高温強度を低下させる元素である。しかし
最近の製鋼技術の進歩により脱酸、脱硫材としての機能
は不要になりつつあり、ガスタービン材として使用され
る条件下においてはできるだけ低い方が望ましく、
0.2%を超えると高温強度が悪化するので上限を0.
20%とした。 Ni:1.6〜2.8 Niは焼入性を増大させ靱性
を向上させる元素であるが一方で過度に添加すると高温
強度を低下させる元素である。1.6%未満では靱性が
充分でなく、また2.8%を超えると高温強度が著しく
低下する。またNiはNi>6000×Bであると靱性
は優れるが、高温強度がやや劣化するので望ましくはN
i≦6000×Bとする。
Mn: ≦ 0.20 Mn is an element conventionally required as a deoxidizing and desulfurizing material. On the other hand, it is an element that promotes tempering embrittlement and lowers high-temperature strength. However, due to recent advances in steelmaking technology, the function as a deoxidizing and desulfurizing material is becoming unnecessary, and it is desirable that it be as low as possible under the conditions used as a gas turbine material.
If it exceeds 0.2%, the high-temperature strength deteriorates.
20%. Ni: 1.6 to 2.8 Ni is an element that increases hardenability and improves toughness, but is an element that, when added excessively, lowers high-temperature strength. If it is less than 1.6%, the toughness is not sufficient, and if it exceeds 2.8%, the high temperature strength is significantly reduced. Ni is superior in toughness when Ni> 6000 × B, but the high-temperature strength is slightly deteriorated.
Let i ≦ 6000 × B.

【0011】Cr:9.0〜12.0 Crは高温酸
化を抑制したり焼入性を増大させることにより、靱性お
よび強度を向上させる元素である。9%未満では、耐酸
化性、焼入性が不十分であり、12%を超えるとデルタ
フェライト相が析出しやすくなり靱性を低下させる。 V:0.10〜0.30 Vは鋼中のCおよびNと結
びついてMX型の炭窒化物を形成し、著しく高温強度を
高める元素である。しかし、0.10%未満では炭窒化
物の析出が充分でなく、上記効果が小さく、一方0.3
0%を超えるとデルタフェライト相が析出し靱性を低下
させる。
Cr: 9.0-12.0 Cr is an element that improves toughness and strength by suppressing high-temperature oxidation and increasing hardenability. If it is less than 9%, the oxidation resistance and hardenability are insufficient, and if it exceeds 12%, a delta ferrite phase tends to precipitate and the toughness is reduced. V: 0.10 to 0.30 V is an element that combines with C and N in steel to form an MX-type carbonitride and significantly enhances high-temperature strength. However, if it is less than 0.10%, the precipitation of carbonitride is not sufficient, and the above effect is small.
If it exceeds 0%, a delta ferrite phase precipitates and lowers toughness.

【0012】Nb:0.02〜0.10 Nbは鋼中
のCおよびNと結びついてMX型の炭窒化物を形成して
高温強度を高める元素である。しかし0.02%未満で
は上記析出量が少なく、また0.10%を超えると粗大
なNb含有炭窒化物が析出し靱性や高温強度の低下を招
く。 N:0.01〜0.07 NはCと共に強度を向上さ
せる有効な元素である。しかし0.01%未満では上記
効果が小さく、0.07%を超えると鋼塊の製造が困難
となり、熱間加工性が悪化する。
Nb: 0.02 to 0.10 Nb is an element that forms an MX-type carbonitride by combining with C and N in steel to increase the high-temperature strength. However, if it is less than 0.02%, the above-mentioned amount of precipitation is small, and if it exceeds 0.10%, coarse Nb-containing carbonitride precipitates, and the toughness and high-temperature strength are reduced. N: 0.01 to 0.07 N is an effective element that improves the strength together with C. However, if it is less than 0.01%, the above effect is small, and if it exceeds 0.07%, production of a steel ingot becomes difficult, and hot workability deteriorates.

【0013】B:<0.0010 Bは微量の添加で
鋼の焼入性を向上させ高温強度を向上させる元素であ
る。しかし0.001%以上だと靱性、熱間加工性を著
しく低下させるため、その含有量を0.0010%未満
とする。 Mo:0.5〜1.7 Moは高温強度を著しく向上
させる元素であり、耐熱鋼において不可欠な元素である
のでWと選択的にまたはWとともに用いられる。しかし
その含有量は0.5%未満では高温強度は不十分であ
り、1.7%を超えると高温で長時間使用中に有害な金
属間化合物Fe2 Moなどの不安定な析出物が生成しや
すくなり、高温強度および靱性が低下する。
B: <0.0010 B is an element that, when added in a small amount, improves the hardenability of steel and improves the high-temperature strength. However, if the content is 0.001% or more, the toughness and hot workability are significantly reduced, so the content is made less than 0.0010%. Mo: 0.5 to 1.7 Mo is an element that remarkably improves the high-temperature strength and is an element indispensable in heat-resistant steel, and is therefore used selectively or together with W. However, if the content is less than 0.5%, the high-temperature strength is insufficient, and if it exceeds 1.7%, unstable precipitates such as harmful intermetallic compounds Fe 2 Mo are formed during long-time use at high temperatures. And high-temperature strength and toughness decrease.

【0014】W:0.1〜2.0 Wは高温強度を著
しく向上させる元素であり、耐熱鋼において不可欠な元
素であるのでMoと選択的にまたはMoとともに用いら
れる。しかし0.1%未満の場合は上記効果が小さく、
2.0%を超えるとデルタフェライト相やラーベス相を
生成させ高温強度を劣化させる。次にこの発明に係る製
造方法における最終鍛造加熱温度、鍛造終了時の材料表
面温度、加工率更にその後焼入、焼き戻しの熱処理等に
ついて説明する。一般に靱性の向上および超音波探傷検
査の際の超音波透過度の観点から結晶粒は微細であるこ
とが要求される。本発明鋼のようなマルテンサイト系耐
熱鋼の結晶粒微細化のためには、焼入前にパーライト変
態などの焼鈍が施されるが、本発明鋼では、高Niのた
めパーライト変態し難い。このため焼入などのオーステ
ナイト化後の結晶粒を細粒化するためには、最終鍛造行
程後の結晶粒を細粒化する以外にない。これは、特に高
温強度を高めるために、高い焼入温度を採用する場合、
焼入において結晶粒は大きく成長し易いため必要不可欠
となる。一方最終鍛造後の結晶粒は加工温度が低いほ
ど、歪み速度が大きいほど微細化すること(つまり、動
的再結晶粒径が小さくなること)が一般に知られている
(「鋼の熱間加工の金属学」P68鉄鋼基礎共同研究会
高温変形部会編)。加工温度、歪み速度は、その鋼の鍛
造性と成分により最適な温度、歪み速度が存在する。歪
み速度を大きくするためには、単位時間当たりの加工率
を上げることであり、本発明鋼の場合は、最終鍛造加熱
温度が1050〜1150℃かつ鍛造終了時の鍛造材表
面温度700〜900℃とし、最終鍛造圧下量(加工
率)を20%以上とすることが、結晶粒微細化に最も効
果的であることを見出した。
W: 0.1 to 2.0 W is an element which remarkably improves the high-temperature strength and is an indispensable element in heat-resistant steel. Therefore, W is used selectively or together with Mo. However, if it is less than 0.1%, the above effect is small,
If it exceeds 2.0%, a delta ferrite phase or a Laves phase is formed, and the high-temperature strength is deteriorated. Next, the final forging heating temperature, the material surface temperature at the end of forging, the working ratio, and the subsequent quenching and tempering heat treatments in the manufacturing method according to the present invention will be described. Generally, crystal grains are required to be fine from the viewpoint of improvement in toughness and ultrasonic transmittance at the time of ultrasonic inspection. In order to refine the crystal grains of a martensitic heat-resistant steel such as the steel of the present invention, annealing such as pearlite transformation is performed before quenching. However, in the steel of the present invention, pearlite transformation is difficult due to high Ni. For this reason, there is no other way to refine the crystal grains after austenitization such as quenching, except to refine the crystal grains after the final forging step. This is especially true when employing high quenching temperatures to increase high temperature strength.
In quenching, crystal grains are indispensable because they grow large and easily. On the other hand, it is generally known that the crystal grain after final forging becomes finer as the working temperature is lower and the strain rate is higher (that is, the dynamic recrystallization grain size is smaller) (“Hot working of steel”). Metallurgy ”edited by High Temperature Deformation Working Group, P68 As for the processing temperature and the strain rate, there are optimum temperatures and strain rates depending on the forgeability and composition of the steel. In order to increase the strain rate, it is necessary to increase the working rate per unit time. In the case of the steel of the present invention, the final forging heating temperature is 1050 to 1150 ° C and the forging material surface temperature at the end of forging is 700 to 900 ° C. It has been found that setting the final forging reduction (working rate) to 20% or more is the most effective for the refinement of crystal grains.

【0015】加熱温度1050℃以下かつ鍛造終了時の
鍛造材表面温度が700℃以下だと、熱間変形抵抗が大
きく鍛錬困難で割れを生じ易くなり、特に鍛造材表面温
度の場合は、700℃以下では再結晶しにくいため結晶
粒度が不均一となる。また鍛造加熱温度が1150℃を
超えるとこの時点でNb含有炭窒化物が完全に固溶して
しまい、これら炭窒化物の鍛造中の析出量も少ないた
め、結晶粒界のピン止め効果が発揮されず、鍛造後の結
晶粒は粗大化する。また、鍛造終了時の鍛造材表面温度
が900℃以上だと、結晶粒は粗大化しやすくなる。
If the heating temperature is 1050 ° C. or less and the forging material surface temperature at the end of the forging is 700 ° C. or less, the hot deformation resistance is large and forging is difficult and cracks easily occur. In the following, since recrystallization is difficult, the crystal grain size becomes non-uniform. When the forging heating temperature exceeds 1150 ° C., the Nb-containing carbonitride completely dissolves at this point, and the precipitation amount of these carbonitrides during forging is small. However, the crystal grains after forging are coarsened. Further, if the forged material surface temperature at the end of forging is 900 ° C. or higher, the crystal grains are likely to become coarse.

【0016】従い最終鍛造時の加熱温度を1050〜1
150℃、鍛造終了時の鍛造材表面温度を700〜90
0℃とする。その際、加工率が20%未満では結晶粒微
細化効果が低いため、20%以上とする。本発明鋼は、
鍛造後に、焼入、焼戻しが施される。その際、本発明鋼
においては、鍛造時に結晶粒の細粒化を図っても、焼入
温度が1090℃を超えると、結晶粒が成長し粗大化し
易くなり、靱性が低下する。一方1030℃より低いと
Nb含有炭窒化物の固溶が不十分なため充分な高温強度
が得られないため焼入温度を1030〜1090℃とす
る。焼戻し処理は、所望の強度に調整するため一回以上
行うことが必要である。しかし、焼戻し温度は500℃
未満では充分な焼戻し効果が得られず、650℃を超え
ると所望の強度が得られないため、焼戻し温度を500
〜650℃とする。
Accordingly, the heating temperature at the time of final forging is set to 1050 to 1
150 ° C., forging material surface temperature at the end of forging 700 to 90
0 ° C. At this time, if the processing rate is less than 20%, the effect of refining the crystal grains is low, so the content is set to 20% or more. The steel of the present invention
After forging, quenching and tempering are performed. At this time, in the steel of the present invention, even if the crystal grains are refined during forging, if the quenching temperature exceeds 1090 ° C., the crystal grains are likely to grow and become coarse and toughness is reduced. On the other hand, if the temperature is lower than 1030 ° C., the solid solution of the Nb-containing carbonitride is insufficient, so that sufficient high-temperature strength cannot be obtained. The tempering process needs to be performed one or more times in order to adjust to a desired strength. However, tempering temperature is 500 ℃
If it is less than 650 ° C., a sufficient tempering effect cannot be obtained, and if it exceeds 650 ° C., a desired strength cannot be obtained.
~ 650 ° C.

【0017】上述のように、本発明鋼に特有の最終鍛造
加熱温度、最終鍛造時の材料表面温度および最終加工率
を選択し、焼入を上述の温度範囲で行えば、最終の結晶
粒は結晶粒度(ASTM No.)が3.0より細粒が
得られる。
As described above, the final forging heating temperature, the material surface temperature at the time of final forging, and the final working ratio specific to the steel of the present invention are selected, and quenching is performed in the above-mentioned temperature range. Fine grains having a crystal grain size (ASTM No.) of more than 3.0 are obtained.

【0018】[0018]

【発明の実施の形態】以下、この発明に係る高温強度お
よび靱性に優れた9〜12%Cr系耐熱鋼、およびその
製造方法の具体的な実施形態を説明する。表1は、本発
明鋼1〜9と比較鋼10〜13を示したものである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Specific embodiments of a 9 to 12% Cr heat-resistant steel excellent in high-temperature strength and toughness according to the present invention and a method for producing the same will be described below. Table 1 shows inventive steels 1 to 9 and comparative steels 10 to 13.

【0019】[0019]

【表1】 [Table 1]

【0020】表2は、表1の機械的性質の試験結果を示
す。
Table 2 shows the test results of the mechanical properties of Table 1.

【0021】[0021]

【表2】 [Table 2]

【0022】表1に示す組成の本発明鋼No.1〜N
o.9と比較鋼No.10〜No.13を真空溶解炉で
溶解し、90kg鋼塊を溶製し、最終鍛造加熱温度11
00℃に加熱後、最終材料表面温度800℃、最終鍛造
加工率20%にて鍛造終了した。これら鍛造材から試験
片素材を切り出し、高強度ディスク素材の熱処理のシミ
ュレートとして、焼入温度1050℃に保持後シミュレ
ーション熱処理炉で冷却の後550℃で1回目の焼戻し
を行い、さらに650℃で2回目の焼戻しを施して引張
り強度を80〜90kgf/mm2 として供試材とし
た。これら供試材の引張試験結果、FATTおよび50
0℃−105hにおけるクリープ破断強度(MPa)を
表2中に示す。
The steel of the present invention having the composition shown in Table 1 1 to N
o. 9 and Comparative Steel No. 10-No. 13 was melted in a vacuum melting furnace to produce a 90 kg steel ingot, and the final forging heating temperature was 11
After heating to 00 ° C., forging was completed at a final material surface temperature of 800 ° C. and a final forging rate of 20%. As a simulation of heat treatment of the high strength disk material, a test piece material was cut out from these forged materials, held at a quenching temperature of 1050 ° C., cooled in a simulation heat treatment furnace, then first tempered at 550 ° C., and further at 650 ° C. The material was subjected to a second tempering to have a tensile strength of 80 to 90 kgf / mm 2 to obtain a test material. Tensile test results of these test materials, FATT and 50
Creep rupture strength at 0 ° C. -10 5 h the (MPa) shown in Table 2.

【0023】本発明鋼は比較鋼と比較し、クリープ破断
時間は長く、FATTも低い。No.8,9は請求項1
を満たし、請求項2を満たしていないが、No.1〜7
よりクリープ強度がやや劣る。No.10はBが高すぎ
るため、クリープ強度は優れるが、FATTが悪化して
いる。No.11はNiが高すぎるためFATTは優れ
るが、クリープ強度が劣る。No.12はMnが高すぎ
るためFATTは優れるが、クリープが悪化する。N
o.13はNiが低すぎるためクリープは優れるがFA
TTが悪化する。
The steel of the present invention has a longer creep rupture time and a lower FATT than the comparative steel. No. 8 and 9 are claims 1
Is satisfied, and No. 2 is not satisfied. 1-7
Slightly lower creep strength. No. In No. 10, since B was too high, the creep strength was excellent, but the FATT deteriorated. No. No. 11 has excellent FATT because Ni is too high, but has poor creep strength. No. In No. 12, although Mn is too high, FATT is excellent, but creep deteriorates. N
o. No. 13 is excellent in creep because Ni is too low, but FA
TT worsens.

【0024】また、図1は表1に示す組成の本発明鋼と
比較鋼を真空溶解炉で溶解し、90kg鋼塊を溶製し、
最終鍛造温度と最終加工率を変化させ、最終鍛造時の材
料表面温度800℃で鍛造し、これら鍛造材から試験片
素材を切り出し、高強度ディスク素材の熱処理のシミュ
レートとして、焼入温度1050℃に保持後シミュレー
ション熱処理炉で冷却の後550℃で1回目の焼戻しを
行い、さらに650℃で2回目の焼戻しを施し結晶粒度
(ASTM No.)を測定した結果を示す。これよ
り、比較鋼に比べ本発明鋼では、鍛造加熱温度を105
0〜1150℃、加工率を20%以上とすれば、結晶粒
度3.0より細粒が得られることがわかる。
FIG. 1 shows that the steel of the present invention and the comparative steel having the compositions shown in Table 1 were melted in a vacuum melting furnace, and a 90 kg steel ingot was melted.
The final forging temperature and the final processing rate were changed, forging was performed at a material surface temperature of 800 ° C. at the time of the final forging, and a test piece material was cut out of these forged materials. After cooling in a simulation heat treatment furnace, the first tempering was performed at 550 ° C., and the second tempering was further performed at 650 ° C. to measure the crystal grain size (ASTM No.). Thus, the forging heating temperature of the steel of the present invention was set to 105 compared with the comparative steel.
It can be seen that if the temperature is 0 to 1150 ° C. and the processing rate is 20% or more, fine grains with a crystal grain size of 3.0 can be obtained.

【0025】[0025]

【発明の効果】以上説明したように、この発明によれ
ば、高温強度および靱性に優れた9〜12%Cr系耐熱
鋼を提供でき、特にガスタービンを構成する重要部品で
あるガスタービンディスク又は/およびコンプレッサデ
ィスク材に使用して有益な効果が得られる。
As described above, according to the present invention, it is possible to provide a 9 to 12% Cr heat-resistant steel excellent in high-temperature strength and toughness, and in particular, a gas turbine disk or a gas turbine which is an important component constituting a gas turbine. And / or used for compressor disc material to obtain beneficial effects.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 図1は本発明鋼の結晶粒度に及ぼす鍛造加熱
温度と加工率の影響を示したものである。
FIG. 1 shows the effect of the forging heating temperature and the working ratio on the grain size of the steel of the present invention.

【図2】 図2は比較鋼の結晶粒度に及ぼす鍛造加熱温
度と加工率の影響を示したものである。
FIG. 2 shows the effect of forging heating temperature and working ratio on the grain size of comparative steel.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 3G002 AA02 AA11 AA13 AB00 4K032 AA02 AA05 AA12 AA13 AA16 AA19 AA20 AA21 AA22 AA24 AA31 AA36 AA37 CA02 CB01 CF01 CF02  ──────────────────────────────────────────────────の Continued on the front page F term (reference) 3G002 AA02 AA11 AA13 AB00 4K032 AA02 AA05 AA12 AA13 AA16 AA19 AA20 AA21 AA22 AA24 AA31 AA36 AA37 CA02 CB01 CF01 CF02

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 化学組成が重量%で、 C:0.10〜0.16 V:0.10〜0.30 Si:≦0.10 Nb:0.02〜0.10 Mn:≦0.20 N:0.01〜0.07 Ni:1.6〜2.8 B<0.0010 Cr:9.0〜12.0 Mo:0.5〜1.7もしくはW:0.1〜2.0の1種又は2種および残部 がFeおよび不可避的不純物からなる高温強度および靱
性に優れた9〜12%Cr系耐熱鋼。
C. 0.10 to 0.16 V: 0.10 to 0.30 Si: ≦ 0.10 Nb: 0.02 to 0.10 Mn: ≦ 0. 20 N: 0.01 to 0.07 Ni: 1.6 to 2.8 B <0.0010 Cr: 9.0 to 12.0 Mo: 0.5 to 1.7 or W: 0.1 to 2 And 9 to 12% Cr-based heat-resistant steel excellent in high-temperature strength and toughness, which is composed of one or two kinds and the balance of Fe and unavoidable impurities.
【請求項2】 Ni≦6000×Bであることを特徴と
する請求項1記載の高温強度および靱性に優れた9〜1
2%Cr系耐熱鋼。
2. The composition according to claim 1, wherein Ni ≦ 6000 × B.
2% Cr heat resistant steel.
【請求項3】 結晶粒度(ASTM No.)が3.0
より細粒であることを特徴とする請求項1及び2に記載
の高温強度および靱性に優れた9〜12%Cr系耐熱
鋼。
3. The grain size (ASTM No.) is 3.0.
The 9 to 12% Cr heat-resistant steel excellent in high-temperature strength and toughness according to claim 1 or 2, characterized by being finer grains.
【請求項4】 請求項1〜3までのいずれか1項に記載
の高温強度および靱性に優れた9〜12%Cr系耐熱鋼
を用いて構成したことを特徴とするガスタービン用のガ
スタービンディスクおよび/又はコンプレッサディスク
材。
4. A gas turbine for a gas turbine, comprising the 9 to 12% Cr heat-resistant steel excellent in high-temperature strength and toughness according to any one of claims 1 to 3. Disc and / or compressor disc material.
【請求項5】 請求項1又は2のいずれか1項に記載の
化学組成の条件で材料を調整し、その材料を用いて最終
鍛造加熱温度が1050〜1150℃、鍛造終了時の材
料表面温度が700〜900℃、加工率20%以上で鍛
造し、その後1030〜1090℃の焼入温度で焼入熱
処理し、その後、500〜650℃の焼戻し温度で1回
以上の焼戻熱処理を施すことにより、結晶粒度(AST
M No.)3.0より細粒である高温強度および靱性
に優れた9〜12%Cr系耐熱鋼の製造方法。
5. A material is adjusted under the condition of the chemical composition according to claim 1 or 2, and a final forging heating temperature using the material is 1050 to 1150 ° C., and a material surface temperature at the end of forging. Forging at 700 to 900 ° C and a working ratio of 20% or more, then performing quenching heat treatment at a quenching temperature of 1030 to 1090 ° C, and then performing one or more tempering heat treatments at a tempering temperature of 500 to 650 ° C. The grain size (AST
M No. ) A method for producing a 9 to 12% Cr heat-resistant steel excellent in high-temperature strength and toughness, which is finer than 3.0.
JP25186399A 1999-09-06 1999-09-06 9-12% Cr HEAT RESISTING STEEL EXCELLENT IN HIGH TEMPERATURE STRENGTH AND TOUGHNESS, AND ITS MANUFACTURE Pending JP2001073092A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25186399A JP2001073092A (en) 1999-09-06 1999-09-06 9-12% Cr HEAT RESISTING STEEL EXCELLENT IN HIGH TEMPERATURE STRENGTH AND TOUGHNESS, AND ITS MANUFACTURE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25186399A JP2001073092A (en) 1999-09-06 1999-09-06 9-12% Cr HEAT RESISTING STEEL EXCELLENT IN HIGH TEMPERATURE STRENGTH AND TOUGHNESS, AND ITS MANUFACTURE

Publications (1)

Publication Number Publication Date
JP2001073092A true JP2001073092A (en) 2001-03-21

Family

ID=17229056

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25186399A Pending JP2001073092A (en) 1999-09-06 1999-09-06 9-12% Cr HEAT RESISTING STEEL EXCELLENT IN HIGH TEMPERATURE STRENGTH AND TOUGHNESS, AND ITS MANUFACTURE

Country Status (1)

Country Link
JP (1) JP2001073092A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030090975A (en) * 2002-05-24 2003-12-01 현대자동차주식회사 Method for improving fatigue limit of exhaust valve for vehicle
CN103290192A (en) * 2013-06-27 2013-09-11 洛阳中创重型机械有限公司 Thermal treatment process of spliced-welding type large tube plate forging of pressure container
CN103305672A (en) * 2013-06-27 2013-09-18 洛阳中创重型机械有限公司 Heat treatment process for ultra-large type tube plate forge piece of pressure container
CN103614528A (en) * 2013-12-12 2014-03-05 攀枝花钢城集团瑞矿工业有限公司 Forging method of producing steel balls with phi 150-180mm by adopting round steel with phi 110mm
CN104294159A (en) * 2014-08-25 2015-01-21 张家港市品杰模具材料有限公司 Novel plastic die steel, preparation and heat treatment technology thereof
CN104372155A (en) * 2014-10-11 2015-02-25 马钢(集团)控股有限公司 Heat treatment process of high-speed train axle containing niobium
CN110643791A (en) * 2019-11-08 2020-01-03 哈尔滨汽轮机厂有限责任公司 Heat treatment method for improving endurance strength of 2Cr12NiMo1W1V heat-resistant steel
CN112853049A (en) * 2019-11-27 2021-05-28 中国科学院金属研究所 High-performance shaft sleeve material and heat treatment method thereof
CN114277221A (en) * 2021-12-17 2022-04-05 无锡派克新材料科技股份有限公司 Method for improving flaw detection quality of X22CrMoV12-1 disk of gas turbine

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030090975A (en) * 2002-05-24 2003-12-01 현대자동차주식회사 Method for improving fatigue limit of exhaust valve for vehicle
CN103290192A (en) * 2013-06-27 2013-09-11 洛阳中创重型机械有限公司 Thermal treatment process of spliced-welding type large tube plate forging of pressure container
CN103305672A (en) * 2013-06-27 2013-09-18 洛阳中创重型机械有限公司 Heat treatment process for ultra-large type tube plate forge piece of pressure container
CN103305672B (en) * 2013-06-27 2015-01-28 洛阳中创重型机械有限公司 Heat treatment process for ultra-large type tube plate forge piece of pressure container
CN103290192B (en) * 2013-06-27 2015-05-06 洛阳中创重型机械有限公司 Thermal treatment process of spliced-welding type large tube plate forging of pressure container
CN103614528A (en) * 2013-12-12 2014-03-05 攀枝花钢城集团瑞矿工业有限公司 Forging method of producing steel balls with phi 150-180mm by adopting round steel with phi 110mm
CN104294159A (en) * 2014-08-25 2015-01-21 张家港市品杰模具材料有限公司 Novel plastic die steel, preparation and heat treatment technology thereof
CN104372155A (en) * 2014-10-11 2015-02-25 马钢(集团)控股有限公司 Heat treatment process of high-speed train axle containing niobium
CN110643791A (en) * 2019-11-08 2020-01-03 哈尔滨汽轮机厂有限责任公司 Heat treatment method for improving endurance strength of 2Cr12NiMo1W1V heat-resistant steel
CN112853049A (en) * 2019-11-27 2021-05-28 中国科学院金属研究所 High-performance shaft sleeve material and heat treatment method thereof
CN112853049B (en) * 2019-11-27 2023-03-31 中国科学院金属研究所 High-performance shaft sleeve material and heat treatment method thereof
CN114277221A (en) * 2021-12-17 2022-04-05 无锡派克新材料科技股份有限公司 Method for improving flaw detection quality of X22CrMoV12-1 disk of gas turbine

Similar Documents

Publication Publication Date Title
JP5423806B2 (en) High toughness wear resistant steel and method for producing the same
JP5296554B2 (en) Method for producing an internal combustion engine valve and the valve obtained by this method
KR20190046729A (en) Low alloy steel for geothermal power generation turbine rotor, and low alloy material for geothermal power generation turbine rotor and method for manufacturing the same
JPH0734202A (en) Steam turbine rotor
JPH08176671A (en) Production of high-and low-pressure integral type turbine rotor
JP5974623B2 (en) Age-hardening bainite non-tempered steel
JP2001073092A (en) 9-12% Cr HEAT RESISTING STEEL EXCELLENT IN HIGH TEMPERATURE STRENGTH AND TOUGHNESS, AND ITS MANUFACTURE
JP3483493B2 (en) Cast steel for pressure vessel and method of manufacturing pressure vessel using the same
JP2011042812A (en) Method for manufacturing forged steel article superior in toughness
JPH08333657A (en) Heat resistant cast steel and its production
JP2004204263A (en) Steel material for case hardening superior in cold workability and coarse-particle-preventing property in carburization, and manufacturing method therefor
CN106566953A (en) Corrosion-resisting alloy forge piece and production method thereof
JP2016138320A (en) NiCrMo STEEL AND MANUFACTURING METHOD OF NiCrMo STEEL
JPH04147948A (en) Rotary shaft for high temperature steam turbine
JP4212132B2 (en) Ferritic heat resistant steel having martensitic structure and method for producing the same
JP3328967B2 (en) Manufacturing method of martensitic stainless steel seamless steel pipe excellent in toughness and stress corrosion cracking resistance
JP2001192731A (en) Method for producing high strength shaft parts
JPH05113106A (en) High purity heat resistant steel and manufacture of high and low pressure integrated type turbine rotor made of high purity heat resistant steel
JP3250263B2 (en) Manufacturing method of martensitic stainless steel seamless steel pipe excellent in toughness and stress corrosion cracking resistance
JP2004018897A (en) High-chromium alloy steel and turbine rotor using this
CN113881904B (en) Chromium alloy for engine valve seat ring and preparation method thereof
JP2004124188A (en) HIGH Cr HEAT-RESISTANT STEEL AND METHOD FOR MANUFACTURING THE SAME
JP3546127B2 (en) High-strength heat-resistant steel and turbine rotor for high-low pressure integrated rotor
JPH0931600A (en) Steam turbine rotor material for high temperature use
JPH11106866A (en) Case hardening steel excellent in preventability of coarse grain and its production