JP3328967B2 - Manufacturing method of martensitic stainless steel seamless steel pipe excellent in toughness and stress corrosion cracking resistance - Google Patents

Manufacturing method of martensitic stainless steel seamless steel pipe excellent in toughness and stress corrosion cracking resistance

Info

Publication number
JP3328967B2
JP3328967B2 JP25497592A JP25497592A JP3328967B2 JP 3328967 B2 JP3328967 B2 JP 3328967B2 JP 25497592 A JP25497592 A JP 25497592A JP 25497592 A JP25497592 A JP 25497592A JP 3328967 B2 JP3328967 B2 JP 3328967B2
Authority
JP
Japan
Prior art keywords
temperature
transformation point
stainless steel
toughness
martensitic stainless
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP25497592A
Other languages
Japanese (ja)
Other versions
JPH06100935A (en
Inventor
哲 川上
均 朝日
卓也 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP25497592A priority Critical patent/JP3328967B2/en
Publication of JPH06100935A publication Critical patent/JPH06100935A/en
Application granted granted Critical
Publication of JP3328967B2 publication Critical patent/JP3328967B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Articles (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は耐CO2 腐食特性に優
れ、耐硫化物応力割れ性を有する高靭性マルテンサイト
系ステンレス鋼継目無鋼管の製造法に関するものであ
る。
The present invention relates to a high resistance to CO 2 corrosion properties, the present invention relates to the preparation of high tenacity martensitic stainless steel seamless pipe having a resistance to sulfide stress cracking.

【0002】[0002]

【従来の技術】近年、CO2 を多量に含むガスを生産す
るガス井の開発や2次回収のためのCO2 インジェクシ
ョンが広く行われるようになっている。このような環境
では鋼管の腐食が激しいため耐CO2 腐食特性に優れた
マルテンサイト系ステンレス鋼管が多く使用されてい
る。特に、耐食性および熱間加工性に優れたマルテンサ
イト系ステンレス鋼として、特公昭59−15977号
公報が挙げられる。しかしながら、このマルテンサイト
系ステンレス鋼は耐食性を向上させるためにCならびに
Nの含有量を著しく低下させており、鋼塊加熱時にオー
ステナイト基地に熱間加工性を悪化させるδフェライト
相が形成されるという欠点をもつ。したがって、シーム
レス圧延のように苛酷な加工条件下では割れや疵を発生
し、歩留低下によるコストアップが避けられず、このよ
うな成分系で高耐食性を有する継目無鋼管の製造はこれ
まで非常に困難であった。
2. Description of the Related Art In recent years, development of gas wells for producing gas containing a large amount of CO 2 and CO 2 injection for secondary recovery have been widely performed. In such an environment, the corrosion of the steel pipe is severe, so that a martensitic stainless steel pipe having excellent resistance to CO 2 corrosion is often used. In particular, Japanese Patent Publication No. 59-15977 is a martensitic stainless steel excellent in corrosion resistance and hot workability. However, in this martensitic stainless steel, the contents of C and N are remarkably reduced in order to improve the corrosion resistance, and a δ ferrite phase which deteriorates hot workability is formed in an austenite matrix when the ingot is heated. Has disadvantages. Therefore, cracks and flaws are generated under severe processing conditions such as seamless rolling, and increase in cost due to reduced yield is unavoidable. Production of seamless steel pipes with such components and having high corrosion resistance has been extremely difficult. Was difficult.

【0003】また、このようなマルテンサイト系ステン
レス鋼の製造においては、特公昭63−60808号公
報では「低Cマルテンサイト系ステンレス鋼を900〜
1000℃の温度域に加熱保持した後徐冷するあるいは
さらに350℃以下の温度域に加熱保持して徐冷する熱
処理方法」、また特公平1−25810号公報第6欄に
「一般に採用される熱処理は通常の焼準・焼きもどし処
理であり、溶製した鋼種を鍛練、圧延後950℃以上で
焼準し、続いて700℃以上Ac1 以下の温度で焼きも
どす」と記載されているように、圧延後加熱温度からの
冷却を水冷のような急速冷却すると割れが発生しやすい
ため、空冷のごとき徐冷を施して製造されている。しか
しながら、このような方法で熱処理を行ったマルテンサ
イト系ステンレス鋼は残留応力や割れのない優れた製品
として得られるが、一方、靭性と耐応力腐食割れ性は十
分でないという問題があった。
In the production of such a martensitic stainless steel, Japanese Patent Publication No. Sho 63-60808 discloses that "low C martensitic stainless steel is 900 to
"A heat treatment method in which the temperature is kept at a temperature in the range of 1000 ° C. and then gradually cooled, or the temperature is kept in a temperature range of 350 ° C. or lower and the temperature is gradually cooled”, and column 6 of JP-B-1-25810 “Generally adopted. The heat treatment is a normal normalizing / tempering process. The forged steel is tempered at 950 ° C. or higher after forging and rolling, and then tempered at a temperature of 700 ° C. or higher and Ac 1 or lower. ” In addition, since rapid cooling such as water cooling after cooling from the heating temperature after rolling tends to cause cracks, it is manufactured by performing slow cooling such as air cooling. However, a martensitic stainless steel heat-treated by such a method can be obtained as an excellent product without residual stress or cracking, but has a problem on the other hand that the toughness and stress corrosion cracking resistance are not sufficient.

【0004】[0004]

【発明が解決しようとする課題】本発明は、このような
現状にかんがみ、靭性および耐応力腐食割れ性に優れた
マルテンサイト系ステンレス鋼継目無鋼管の製造法を提
供することを目的とする。
SUMMARY OF THE INVENTION In view of such circumstances, an object of the present invention is to provide a method of manufacturing a martensitic stainless steel seamless steel pipe having excellent toughness and stress corrosion cracking resistance.

【0005】[0005]

【課題を解決するための手段】本発明者らは多くの実験
結果から耐CO2 腐食性はCを低減化し必要量のCrお
びCuを添加しておけば維持されること、耐硫化物応
力割れ性は割れ抵抗性を示す組織制御を行うことで向上
することを知見した。また、熱間加工性は、P,Sなど
を低減化して介在物の形成を抑えることと、C,Nの添
加量を制御してさらにNiを添加することにより、変形
抵抗の異なる異相の相分率および形状を制御するような
冶金的操作を行うことで維持されることを知見した。
Means for Solving the Problems The present inventors have resistance CO 2 corrosion results many experiments is maintained if the addition of Cr Contact <br/> by beauty C u of the required amount to reduce the C It has been found that the sulfide stress cracking resistance can be improved by controlling the structure showing crack resistance. In addition, the hot workability is reduced by reducing P, S, etc. to suppress the formation of inclusions, and by controlling the addition amount of C, N and further adding Ni, different phases having different deformation resistances are obtained. It has been found that it is maintained by performing metallurgical operations such as controlling the fraction and shape.

【0006】特に、本発明者らはCならびにNの効果に
着目し次のような知見を得た。図1に、ベース成分を
1.5%Ni−12.5%Cr鋼としてCおよびN含有
量を変えた場合の耐CO2 腐食特性ならびに熱間加工時
の絞り値を示す。図において、C.R.(腐食速度)は
40atm のCO2 と平衡した180℃の人工海水中にお
ける年間の腐食速度であり、C.R.<0.1mm/yであ
れば十分な耐食性を有すると評価できる。また、R.
A.は1250℃に加熱した試料を900℃で歪速度3
sec-1の条件にて単軸引張変形したときの絞り率であ
り、70%以上となれば熱間変形能は良好であると言え
る。なお、CO2 腐食試験には熱間加工後、焼入れ・焼
きもどし処理を行い、降伏強度が720MPa 程度を示す
ものを用いた。図より、耐CO2 腐食特性を満足するた
めにはC<0.05%にする必要があり、また、十分な
熱間加工性を有するためには、C+0.8N>0.06
にする必要があるということが読みとれる(各元素記号
の含有量の単位は重量%)。
In particular, the present inventors have focused on the effects of C and N and have obtained the following findings. FIG. 1 shows the CO 2 corrosion resistance and the reduction in hot working when the base component is 1.5% Ni-12.5% Cr steel and the C and N contents are changed. In FIG. R. (Corrosion rate) is the annual corrosion rate in 180 ° C. artificial seawater equilibrated with 40 atm of CO 2 , and C.I. R. If it is <0.1 mm / y, it can be evaluated that it has sufficient corrosion resistance. In addition, R.
A. Is a sample heated to 1250 ° C. and a strain rate of 3 at 900 ° C.
It is the drawing ratio when uniaxial tensile deformation is performed under the condition of sec −1 , and when it is 70% or more, it can be said that the hot deformability is good. In the CO 2 corrosion test, quenching and tempering treatment was performed after hot working, and a material having a yield strength of about 720 MPa was used. From the figure, it is necessary to make C <0.05% in order to satisfy the CO 2 corrosion resistance, and to have sufficient hot workability, C + 0.8N> 0.06.
(It is understood that the unit of the content of each element symbol is% by weight.)

【0007】また、焼準時に徐冷もしくは空冷すると旧
オーステナイト粒界に沿って粗大で板状の薄いCr炭化
物が析出し、その周囲にCr欠乏層を形成してその部分
のCr含有量が実質的に低下し、選択的に腐食されるた
めに鋼の応力腐食割れ性が低下する。さらにこの粗大な
板状の薄い炭化物が割れの起点となるために鋼の靭性が
劣化する。この粗大な炭化物が析出する温度を調査した
ところ750〜550℃であることが判明した。したが
って、上記のマルテンサイト系ステンレス鋼の靭性と応
力腐食割れ性を改善するためには、このような粗大なC
r炭化物の生成を抑制する方法として急速冷却を採用す
る必要がある。
Further, when gradually or air-cooled during normalizing, coarse and plate-like thin Cr carbides precipitate along the old austenite grain boundaries, and a Cr-deficient layer is formed around the carbides to substantially reduce the Cr content in the portion. And the steel is selectively corroded, so that the stress corrosion cracking of steel is reduced. Further, since the coarse plate-like thin carbide serves as a starting point of cracking, the toughness of the steel deteriorates. When the temperature at which this coarse carbide was deposited was investigated, it was found to be 750-550 ° C. Therefore, in order to improve the toughness and stress corrosion cracking resistance of the above martensitic stainless steel, such coarse C
It is necessary to employ rapid cooling as a method for suppressing the formation of r carbides.

【0008】本発明は以上に述べた知見を組み合わせて
構成したものである。すなわち、本発明の要旨は下記の
通りである。C ≦0.05%、 Si≦0.50%、M
n≦1.0%、 P ≦0.03%、S≦0.01%、
Cr:11〜17%、Ni:1.5〜5%、 Cu:1
%超〜4%、Al≦0.05%、 N :0.02〜0.
1%を含み、かつC+0.8N>0.06%(成分の%
は重量)を満足し、残部が実質的にFeおよび不可避的
不純物からなる鋼を熱間加工し室温まで自然放冷した
後、Ac3 変態点+10℃〜Ac3 変態点+200℃の
温度に加熱し、この加熱温度〜750℃の冷却開始温度
から550〜350℃の冷却停止温度までを℃/sec以
上で冷却せしめ、その後、室温まで空冷以上で2℃/sec
以下の速度で冷却し、続いて、Ac1 変態点以下の温度
にて焼きもどし処理するか、C ≦0.05%、 Si≦
0.50%、Mn≦1.0%、 P ≦0.03%、S≦
0.01%、 Cr:11〜17%、Ni:1.5〜5
%、 Cu:1%超〜4%、Al≦0.05%、 N :
0.02〜0.1%を含み、かつC+0.8N>0.0
6%(成分の%は重量)を満足し、さらに、必要に応じ
てMo:0.5〜2%を含み(成分の%は重量)、残部
が実質的にFeおよび不可避的不純物からなる鋼を熱間
加工し室温まで自然放冷した後、Ac3 変態点+10℃
〜Ac3 変態点+200℃の温度に加熱し、この加熱温
度〜750℃の冷却開始温度から550〜350℃の冷
却停止温度までを℃/sec以上で冷却せしめ、その後、
室温まで空冷以上で2℃/sec以下の速度で冷却し、さら
に、Ac1 変態点〜Ac3 変態点の温度に加熱して室温
まで空冷以上の速度で冷却し、続いて、Ac1 変態点以
下の温度にて焼きもどし処理する耐食性に優れたマルテ
ンサイト系ステンレス鋼継目無鋼管の製造法である。
The present invention is constructed by combining the above-mentioned findings. That is, the gist of the present invention is as follows. C ≦ 0.05%, Si ≦ 0.50%, M
n ≦ 1.0%, P ≦ 0.03%, S ≦ 0.01%,
Cr: 11 to 17%, Ni: 1.5 to 5%, Cu: 1
% To 4%, Al ≦ 0.05%, N: 0.02 to 0.
1% and C + 0.8N> 0.06% (% of component
Is satisfied by weight), the remainder is substantially hot-worked from steel and substantially inevitable impurities, and naturally cooled to room temperature, and then heated to a temperature of Ac3 transformation point + 10 ° C to Ac3 transformation point + 200 ° C, from the cooling starting temperature of the heating temperature to 750 ° C. to a cooling stop temperature of five hundred fifty to three hundred and fifty ° C. allowed to cool at 5 ° C. / sec or more, then, 2 ° C. or more air-cooled to room temperature / sec
Cooled at a rate, followed by either processed tempering at Ac1 transformation point temperature, C ≦ 0.05%, Si ≦
0.50%, Mn ≦ 1.0%, P ≦ 0.03%, S ≦
0.01%, Cr: 11-17%, Ni: 1.5-5
%, Cu: more than 1% to 4%, Al ≦ 0.05%, N:
0.02-0.1%, and C + 0.8N> 0.0
A steel that satisfies 6% (% by weight of component) and further contains Mo: 0.5 to 2% as required (% by weight of component), and the balance substantially consists of Fe and unavoidable impurities Is hot-worked and allowed to cool to room temperature, then the Ac3 transformation point + 10 ° C
AAc3 transformation point + 200 ° C, and the temperature from the heating start temperature of 750 ° C to the cooling stop temperature of 550-350 ° C is cooled at 5 ° C / sec or more.
It is cooled to room temperature by air cooling or more at a rate of 2 ° C./sec or less , further heated to the temperature of the Ac1 transformation point to Ac3 transformation point, cooled to room temperature by the air cooling rate or more, and then cooled to the Ac1 transformation point or less. This is a method for producing a martensitic stainless steel seamless steel pipe with excellent corrosion resistance, which is tempered.

【0009】以下に本発明について詳細に説明する。ま
ず、鋼成分の限定理由について述べる。CはCr炭化物
などを形成し耐食性を劣化させる元素であるが、典型的
なオーステナイト形成元素であり、熱間加工温度域であ
る900〜1250℃でδフェライト相の発生を抑制す
る効果があるために含有させる。ただし、0.05%を
超える量を含有するとCr炭化物などの炭化物が多量に
析出してCr欠乏層を形成するために耐CO2 腐食特性
が低下し、また、粒界に炭化物が析出しやすくなるため
に耐硫化物応力割れ性が著しく低下する。したがってC
含有量は0.05%以下とした。
Hereinafter, the present invention will be described in detail. First, the reasons for limiting the steel components will be described. C is an element that forms a Cr carbide or the like and deteriorates corrosion resistance, but is a typical austenite-forming element and has an effect of suppressing the generation of a δ ferrite phase at a hot working temperature range of 900 to 1250 ° C. To be contained. However, if the content exceeds 0.05%, a large amount of carbides such as Cr carbides precipitate to form a Cr-deficient layer, so that the CO 2 corrosion resistance decreases, and carbides are likely to precipitate at grain boundaries. Therefore, the sulfide stress cracking resistance is significantly reduced. Therefore C
The content was 0.05% or less.

【0010】Siは製鋼上脱酸材として添加され含有さ
れたもので、鋼の中に0.50%を超えて含有されると
靭性および耐硫化物応力割れ性を低下するために、0.
50%以下とした。Mnは介在物を形成し腐食環境下で
割れ抵抗性を損なう元素であるが、オーステナイト単相
化するために有用な成分であるために含有させる。ただ
し、1.0%を超えて添加すると多量の介在物を形成す
るために、腐食環境下での割れ抵抗性と靭性が低下す
る。したがって、Mnの含有量は1.0%以下とした。
[0010] Si is added and contained as a deoxidizing material on steel making. If contained in steel in an amount exceeding 0.50%, toughness and sulfide stress cracking resistance are reduced.
50% or less. Mn is an element that forms inclusions and impairs crack resistance in a corrosive environment, but is included because it is a useful component for forming a single phase of austenite. However, if added in excess of 1.0%, a large amount of inclusions are formed, so that crack resistance and toughness in a corrosive environment are reduced. Therefore, the content of Mn is set to 1.0% or less.

【0011】Pは粒界に偏析して粒界強度を弱め、熱間
加工性および耐硫化物応力割れ性を低下させるので0.
03%以下とした。Sは硫化物として介在物を形成し熱
間加工性を低下させるため、その上限を0.01%とし
た。
P segregates at the grain boundaries to weaken the strength of the grain boundaries and reduces hot workability and sulfide stress cracking resistance.
03% or less. Since S forms inclusions as sulfides and lowers hot workability, the upper limit is set to 0.01%.

【0012】Crは本発明の目的とする耐CO2 腐食性
を付与し、ステンレス鋼としての腐食性を有するために
は、11%以上の含有が必要である。しかし、17%を
超えて添加するとフェライト相が生成しやすくなるため
に、その限定範囲を11〜17%とした。
[0012] Cr must be contained in an amount of 11% or more in order to impart the CO 2 corrosion resistance aimed at by the present invention and to have the corrosion properties as stainless steel. However, if added in excess of 17%, a ferrite phase is likely to be formed, so the range was set to 11 to 17%.

【0013】NiはCr含有鋼においては耐食性を向上
させる効果がある。しかも、強力なオーステナイト形成
元素であり、高温加熱時にδフェライト相の形成を抑制
するうえ、その形状を細く短くし熱間加工時にδフェラ
イト相内部に形成されるクラックの成長を抑える効果が
あることから、熱間加工性を向上させる効果も有する。
ただし、N:0.02%の場合にNi:1.5%以下の
含有量ではそれらの効果を示さず、また、5%を超えて
添加するとAc1 点が非常に低くなり調質が困難になる
ことと、残留オーステナイト相が形成されて強度・靭性
を損なうために、その限定範囲を1.5〜5%とした。
Ni has the effect of improving the corrosion resistance of Cr-containing steel. In addition, it is a powerful austenite-forming element and has the effect of suppressing the formation of the δ-ferrite phase during high-temperature heating, and has the effect of suppressing the growth of cracks formed inside the δ-ferrite phase during hot working in addition to making the shape thinner and shorter. Therefore, it also has the effect of improving hot workability.
However, when N: 0.02%, Ni: 1.5% or less does not show these effects, and when added over 5%, the Ac 1 point becomes extremely low, and refining is difficult. And the remaining austenite phase is formed to impair the strength and toughness.

【0014】Cuは耐CO2 腐食特性を向上させる効
果がある。また、オーステナイト安定化元素であり、A
1 変態点を低下させないという利点も有する。ただ
し、含有量が1%以下では耐食性向上効果が十分でない
こと、4%を超える添加量では高温割れに敏感となり熱
間加工性が低下することから、その含有量を1%超〜4
%の範囲に限定した。また、Cu単独の添加では上記効
果が小さいことから、必ずNiと複合させて含有させる
こととした。
Cu has the effect of improving the CO2 corrosion resistance. Also, it is an austenite stabilizing element,
It also has the advantage of not lowering the c 1 transformation point. However, if the content is 1% or less, the effect of improving corrosion resistance is not sufficient, and if the content exceeds 4%, it is susceptible to hot cracking and the hot workability deteriorates, so that the content is more than 1 % to 4 %.
%. In addition, since the effect described above is small when Cu alone is added, it is always necessary to include Cu in combination with Ni.

【0015】AlはSiと同様に脱酸剤として添加され
含有されたもので、0.05%を超えて含有させるとA
lNが多数形成されて著しく靭性が低下する。したがっ
て、含有量の上限を0.05%とした。
Al is added and contained as a deoxidizing agent in the same manner as Si. If more than 0.05% is contained, A
Many 1N are formed, and the toughness is significantly reduced. Therefore, the upper limit of the content is set to 0.05%.

【0016】Nは耐食性に対し無害であるうえに、Cと
同様に典型的なオーステナイト形成元素であり、熱間加
工温度域である900〜1250℃でフェライト相の形
成を抑える効果がある。その効果は、前述のように1.
5%Ni−12.5%Cr鋼をベース成分とする場合に
は、C+0.8N<0.06(C,Nは重量%)を満た
す含有量の範囲において有効である。したがって、C<
0.05%の場合に熱間加工温度域にてフェライト相を
発生させず、良好な熱間加工性を得るためにはNを0.
02%以上添加する必要がある。また、通常の溶製工程
においては0.1%超えて含有させるのは困難であるた
めにその含有量の範囲を0.02〜0.1%とした。
N is not harmful to corrosion resistance and is a typical austenite-forming element like C, and has an effect of suppressing the formation of a ferrite phase at a hot working temperature range of 900 to 1250 ° C. The effect is 1.
When 5% Ni-12.5% Cr steel is used as a base component, it is effective in the range of the content satisfying C + 0.8N <0.06 (C and N are weight%). Therefore, C <
In the case of 0.05%, a ferrite phase is not generated in the hot working temperature range, and N is set to 0.1 to obtain good hot workability.
It is necessary to add 02% or more. In addition, it is difficult to make the content exceed 0.1% in the usual melting process, so the content range is set to 0.02 to 0.1%.

【0017】Moは耐孔食性を向上させるのに有効な元
素であり、必要に応じてこれを添加する。ただし、0.
5%未満の添加ではその効果が小さい。また、強力なフ
ェライト安定化元素であり、2%を超えて添加するとδ
相を生成しやすくなることから、その限定範囲を0.5
〜2%とした。
Mo is an element effective for improving the pitting corrosion resistance, and is added as necessary. However, 0.
The effect is small when the addition is less than 5%. In addition, it is a strong ferrite stabilizing element.
Since the phase is easily formed, the limited range is 0.5
22%.

【0018】次に熱処理条件の限定理由について述べ
る。オーステナイト化加熱温度は、Cr含有ステレンス
鋼のγループ内において、炭化物が完全に固溶せず結晶
粒の粗大化が生じない温度を上限とし、また、オーステ
ナイト相が安定となる最低の温度を下限とした。すなわ
ち、熱間加工して冷却された鋼管を、Ac3 変態点+2
00℃以上の温度に加熱すると炭化物が完全に固溶する
ために、冷却時にCr炭化物などが粒界に多量に析出し
耐食性が著しく低下し、さらに結晶粒の粗大化が生じる
ために、靭性が低下する。また、Ac3 変態点+10℃
以下の低い温度に加熱した場合には、オーステナイト相
が安定化せず、安定した強度を得ることが困難である。
したがって、加熱処理温度はAc3 変態点+10℃〜A
3 変態点+200℃とした。
Next, the reasons for limiting the heat treatment conditions will be described. The upper limit of the austenitizing heating temperature is the temperature at which carbides are not completely dissolved in the γ loop of the Cr-containing stainless steel and the crystal grains do not become coarse, and the lowest temperature at which the austenite phase becomes stable is the lower limit. And That is, the steel pipe cooled by hot working is converted to the Ac 3 transformation point +2.
When heated to a temperature of 00 ° C. or more, the carbide completely dissolves in solution, so that during cooling, a large amount of Cr carbide precipitates at the grain boundaries, significantly reduces corrosion resistance, and further causes coarsening of crystal grains. descend. In addition, Ac 3 transformation point + 10 ° C
When heated to the following low temperature, the austenite phase is not stabilized, and it is difficult to obtain stable strength.
Therefore, the heat treatment temperature is the Ac 3 transformation point + 10 ° C. to A
c 3 transformation point + 200 ° C.

【0019】このように加熱されたマルテンサイト系ス
テンレス鋼を、その冷却過程においてその加熱温度〜7
50℃の冷却開始温度から550〜350℃の冷却停止
温度までを2℃/sec以上の速度で冷却する。この制御冷
却条件の設定理由が、板状のCr系炭化物が析出する領
域である750〜550℃の温度範囲を短時間で通過さ
せ炭化物の析出を抑制するためである。ただし、350
℃以下まで急冷すると割れが生じやすいので、急冷は3
50℃以上で停止しなければならない。一方、550〜
750℃では炭化物の核形成・成長が速く、2℃/secよ
り遅い冷却速度では板状の炭化物が結晶粒界に析出す
る。
The martensitic stainless steel thus heated is heated to a heating temperature of 7 to 7 during the cooling process.
The cooling is performed at a rate of 2 ° C./sec or more from a cooling start temperature of 50 ° C. to a cooling stop temperature of 550 to 350 ° C. The reason for setting the controlled cooling conditions is to suppress the precipitation of carbides by passing through a temperature range of 750 to 550 ° C., which is a region where plate-shaped Cr-based carbides are precipitated, in a short time. However, 350
Rapid quenching to 3 ℃ or less is likely to cause cracking.
Must stop above 50 ° C. On the other hand, 550
At 750 ° C., nucleation and growth of carbides are fast, and at a cooling rate lower than 2 ° C./sec, plate-like carbides precipitate at crystal grain boundaries.

【0020】前記550〜350℃の温度まで冷却され
た鋼は、さらに空冷以上の速度で冷却することによりマ
ルテンサイト変態が生じて、マルテンサイト単相組織と
なる。このマルテンサイト組織中の残留応力を回復によ
り消滅させ、過飽和炭素原子を炭化物として析出させる
ことによって、靭性・延性を高め、所望の強度を得るた
めに焼きもどし処理を施す。このとき、Ac1 変態点以
上の温度に加熱すると逆変態が生じて靭性が著しく低下
するために、焼きもどし処理はAc1 変態点以下の温度
にて行う。
The steel cooled to a temperature of 550 to 350 ° C. is further cooled at a speed higher than air cooling to cause a martensitic transformation and a martensite single phase structure. The residual stress in the martensite structure is eliminated by recovery, and the supersaturated carbon atoms are precipitated as carbides, thereby increasing the toughness and ductility and performing a tempering treatment to obtain a desired strength. At this time, if heating is performed at a temperature equal to or higher than the Ac 1 transformation point, reverse transformation occurs and the toughness is significantly reduced. Therefore, the tempering treatment is performed at a temperature equal to or lower than the Ac 1 transformation point.

【0021】また、オーステナイト化処理後の焼きもど
し処理を行う前に、必要に応じてAc1 変態点〜Ac3
変態点の温度範囲に加熱することによる2相域加熱処理
を行う。これは、鋼を1回の焼きもどし処理では得られ
ない低い強度に調質することを目的としており、この処
理を用いて低い強度に調質することにより、鋼に十分な
耐硫化物応力割れ性を付与することが可能となる。
Before the tempering treatment after the austenitizing treatment, the Ac 1 transformation point to Ac 3
A two-phase region heating process is performed by heating to a temperature range of the transformation point. The purpose of this is to temper the steel to a low strength that cannot be obtained by a single tempering process, and by using this process to temper the steel to a low strength, the steel has sufficient sulfide stress cracking resistance. Property can be imparted.

【0022】以上のような本発明法により製造された鋼
管は、靭性および耐CO2 腐食特性・耐硫化物応力割れ
性に優れている。
The steel pipe manufactured by the method of the present invention as described above is excellent in toughness, CO 2 corrosion resistance and sulfide stress cracking resistance.

【0023】[0023]

【実施例】まず、表1に示される化学成分の鋼を通常の
溶製工程にて鋳造した後、熱間圧延により鋼管を製造
し、加熱処理と焼きもどし処理を施したものを用いて、
強度、靭性、耐CO2 腐食性、耐硫化物応力割れ性を調
査した。そのときの熱処理温度と強度などの材質につい
ては表2に示す。耐CO2 腐食性は40気圧のCO2
平衡した150℃の人工海水中での腐食速度で評価し
た。腐食速度が0.1mm/y以下であれば耐食性を有する
と見なせる。耐硫化物応力割れ性は丸棒引張試験片を2
5℃の5%NaCl溶液中に1気圧の99%CO2 +1
%H2 Sガスを飽和した腐食環境中で単軸引張応力を加
え、720時間で破壊が生じない最大初期応力と降伏応
力の比(Rs値)を求めた。Rs≧0.8であれば優れ
た特性であるといえる。
EXAMPLES First, steel having the chemical composition shown in Table 1 was cast in a normal melting process, and then a steel tube was manufactured by hot rolling, and then subjected to heat treatment and tempering treatment.
The strength, toughness, resistance to CO 2 corrosion, and resistance to sulfide stress cracking were investigated. Table 2 shows materials such as heat treatment temperature and strength at that time. The CO 2 corrosion resistance was evaluated by the corrosion rate in artificial seawater at 150 ° C. equilibrated with 40 atm of CO 2 . If the corrosion rate is 0.1 mm / y or less, it can be regarded as having corrosion resistance. Sulfide stress cracking resistance was measured using two round bar tensile test pieces.
One atmosphere of 99% CO 2 +1 in a 5% NaCl solution at 5 ° C.
A uniaxial tensile stress was applied in a corrosive environment saturated with% H 2 S gas, and the ratio (Rs value) between the maximum initial stress and the yield stress at which no fracture occurred in 720 hours was determined. If Rs ≧ 0.8, it can be said that the characteristics are excellent.

【0024】表2の結果により、本発明法により製造さ
れた鋼管は良好な耐CO2 腐食性、耐硫化物応力腐食割
れ性ならびに高靭性を示すのに対し、本発明の範囲から
外れた比較法ではいずれかの特性が劣っていることが明
らかである。
According to the results shown in Table 2, the steel pipe manufactured by the method of the present invention shows good resistance to CO 2 corrosion, resistance to sulfide stress corrosion cracking, and high toughness, whereas the steel pipe produced by the method of the present invention is out of the scope of the present invention. It is clear that the method is inferior in either property.

【0025】[0025]

【表1】 [Table 1]

【0026】[0026]

【表2】 [Table 2]

【0027】[0027]

【発明の効果】以上のように、本発明は、成分を特定
し、処理条件を規制して製造することにより、耐CO2
腐食性、耐硫化物応力腐食割れ性に優れ、かつ高靭性を
有するマルテンサイトステンレス鋼継目無鋼管を得るこ
とができる。
As described above, according to the present invention, the components are specified and the processing conditions are regulated to produce CO 2 -resistant products.
A seamless martensitic stainless steel pipe having excellent corrosion resistance and sulfide stress corrosion cracking resistance and high toughness can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】耐CO2 腐食特性(腐食速度)および熱間加工
時の絞り性に及ぼすCおよびN含有量の関係を示す図で
ある。
FIG. 1 is a diagram showing the relationship between the C and N contents on the CO 2 corrosion resistance (corrosion rate) and the drawability during hot working.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平2−217444(JP,A) 特開 平6−88130(JP,A) (58)調査した分野(Int.Cl.7,DB名) C21D 8/00 - 8/10 C21D 9/08 C22C 38/00 - 38/60 ────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-2-217444 (JP, A) JP-A-6-88130 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) C21D 8/00-8/10 C21D 9/08 C22C 38/00-38/60

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】重量%で、C≦0.05%、Si≦0.5
0%、Mn≦1.0%、P≦0.03%、S≦0.01
%、Cr:11〜17%、Cu:1%超〜4%、Ni:
1.5〜5%、Al≦0.05%、N :0.02〜
0.1%であり、かつ、C+0.8N>0.06%を満
足する成分を含み、 残部が実質的にFeおよび不可避的不純物からなる鋼を
熱間加工し室温まで自然放冷した後、Ac変態点+1
0℃〜Ac変態点+200℃の温度に加熱し、この加
熱温度〜750℃の冷却開始温度から550〜350℃
の冷却停止温度までを℃/sec以上で冷却せしめ、その
後、室温まで空冷以上で2℃/sec以下の速度で冷却し、
続いて、Ac変態点以下の温度で焼きもどし処理する
ことを特徴とする靭性および耐応力腐食割れ性に優れた
マルテンサイト系ステンレス鋼継目無鋼管の製造法。
(1) In terms of% by weight, C ≦ 0.05%, Si ≦ 0.5
0%, Mn ≦ 1.0%, P ≦ 0.03%, S ≦ 0.01
%, Cr: 11 to 17%, Cu: more than 1% to 4%, Ni:
1.5-5%, Al ≦ 0.05%, N: 0.02-
0.1% and a steel containing a component satisfying C + 0.8N> 0.06%, and the balance substantially consisting of Fe and unavoidable impurities is hot-worked and naturally cooled to room temperature. Ac 3 transformation point +1
It is heated to a temperature of 0 ° C. to Ac 3 transformation point + 200 ° C., and from this heating temperature to a cooling start temperature of 750 ° C. to 550 to 350 ° C.
Cool down to 5 ° C / sec or more until the cooling stop temperature of, then cool to room temperature with air cooling or more at a rate of 2 ° C / sec or less ,
Subsequently, a method for producing a martensitic stainless steel seamless steel pipe excellent in toughness and stress corrosion cracking resistance, characterized by tempering at a temperature not higher than the Ac 1 transformation point.
【請求項2】重量%で、C≦0.05%、Si≦0.5
0%、Mn≦1.0%、P≦0.03%、S≦0.01
%、Cr:11〜17%、Cu:1%超〜4%、Ni:
1.5〜5%、Al≦0.05%、N :0.02〜
0.1%で、かつ、C+0.8N>0.06%を満足す
る成分を含み、 残部が実質的にFeおよび不可避的不純物からなる鋼を
熱間加工し室温まで自然放冷した後、Ac変態点+1
0℃〜Ac変態点+200℃の温度に加熱し、この加
熱温度〜750℃の冷却開始温度から550〜350℃
の冷却停止温度までを℃/sec以上で冷却せしめ、その
後、室温まで空冷以上で2℃/sec以下の速度で冷却し、
さらに、Ac変態点〜Ac変態点の温度に加熱して
室温まで空冷以上の速度で冷却し、続いて、Ac変態
点以下の温度で焼きもどし処理することを特徴とする靭
性および耐応力腐食割れ性に優れたマルテンサイト系ス
テンレス鋼継目無鋼管の製造法。
(2) C ≦ 0.05%, Si ≦ 0.5% by weight
0%, Mn ≦ 1.0%, P ≦ 0.03%, S ≦ 0.01
%, Cr: 11 to 17%, Cu: more than 1% to 4%, Ni:
1.5-5%, Al ≦ 0.05%, N: 0.02-
0.1% and a component containing C + 0.8N> 0.06%, with the balance being substantially composed of Fe and unavoidable impurities, hot-worked and naturally cooled to room temperature, then Ac 3 transformation points +1
It is heated to a temperature of 0 ° C. to Ac 3 transformation point + 200 ° C., and from this heating temperature to a cooling start temperature of 750 ° C. to 550 to 350 ° C.
Cool down to 5 ° C / sec or more until the cooling stop temperature of, then cool to room temperature with air cooling or more at a rate of 2 ° C / sec or less ,
Further, it is heated to a temperature of the Ac 1 transformation point to the Ac 3 transformation point, cooled to room temperature at a speed of air cooling or higher, and subsequently tempered at a temperature of the Ac 1 transformation point or less. Manufacturing method of martensitic stainless steel seamless steel pipe with excellent stress corrosion cracking.
【請求項3】重量%で、さらに、Mo:0.5〜2%を
含むことを特徴とする請求項2記載の靭性および耐応力
腐食割れ性に優れたマルテンサイト系ステンレス鋼継目
無鋼管の製造法。
3. A seamless martensitic stainless steel pipe having excellent toughness and stress corrosion cracking resistance according to claim 2, further comprising Mo: 0.5 to 2% by weight. Manufacturing method.
JP25497592A 1992-09-24 1992-09-24 Manufacturing method of martensitic stainless steel seamless steel pipe excellent in toughness and stress corrosion cracking resistance Expired - Fee Related JP3328967B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25497592A JP3328967B2 (en) 1992-09-24 1992-09-24 Manufacturing method of martensitic stainless steel seamless steel pipe excellent in toughness and stress corrosion cracking resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25497592A JP3328967B2 (en) 1992-09-24 1992-09-24 Manufacturing method of martensitic stainless steel seamless steel pipe excellent in toughness and stress corrosion cracking resistance

Publications (2)

Publication Number Publication Date
JPH06100935A JPH06100935A (en) 1994-04-12
JP3328967B2 true JP3328967B2 (en) 2002-09-30

Family

ID=17272472

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25497592A Expired - Fee Related JP3328967B2 (en) 1992-09-24 1992-09-24 Manufacturing method of martensitic stainless steel seamless steel pipe excellent in toughness and stress corrosion cracking resistance

Country Status (1)

Country Link
JP (1) JP3328967B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996003532A1 (en) * 1994-07-21 1996-02-08 Nippon Steel Corporation Martensitic stainless steel having excellent hot workability and sulfide stress cracking resistance
JP3444008B2 (en) * 1995-03-10 2003-09-08 住友金属工業株式会社 Martensitic stainless steel with excellent carbon dioxide corrosion resistance and sulfide stress corrosion cracking resistance
EP0738784B1 (en) * 1995-04-21 2000-07-12 Kawasaki Steel Corporation High chromium martensitic steel pipe having excellent pitting resistance and method of manufacturing
JP4144283B2 (en) 2001-10-18 2008-09-03 住友金属工業株式会社 Martensitic stainless steel
JP4765283B2 (en) * 2004-08-31 2011-09-07 Jfeスチール株式会社 Method for producing martensitic stainless steel pipe circumferential welded joint
KR100613082B1 (en) * 2004-12-01 2006-08-16 두산중공업 주식회사 Manufacturing method for products desired erosion resistance using 17-Cr stainless steel
JP5145793B2 (en) * 2007-06-29 2013-02-20 Jfeスチール株式会社 Martensitic stainless steel seamless pipe for oil well pipe and method for producing the same
JP4952708B2 (en) * 2008-12-19 2012-06-13 住友金属工業株式会社 Martensitic stainless steel and method for producing the same

Also Published As

Publication number Publication date
JPH06100935A (en) 1994-04-12

Similar Documents

Publication Publication Date Title
US6793744B1 (en) Martenstic stainless steel having high mechanical strength and corrosion
JP3328967B2 (en) Manufacturing method of martensitic stainless steel seamless steel pipe excellent in toughness and stress corrosion cracking resistance
CN113166901B (en) Chromium-molybdenum steel plate with excellent creep strength and preparation method thereof
JPH09249940A (en) High strength steel excellent insulfide stress cracking resistance and its production
JP3768091B2 (en) High strength and high corrosion resistance martensitic stainless steel and manufacturing method thereof
JP3814836B2 (en) Manufacturing method of martensitic stainless steel seamless steel pipe with excellent corrosion resistance
JP2672437B2 (en) Manufacturing method of martensitic stainless steel seamless steel pipe with excellent corrosion resistance
JPH1192881A (en) Ferritic heat resistant steel having lath martensitic structure and its production
JP2000160300A (en) 655 Nmm-2 CLASS LOW-C HIGH-Cr ALLOY OIL WELL PIPE WITH HIGH CORROSION RESISTANCE, AND ITS MANUFACTURE
JP3250263B2 (en) Manufacturing method of martensitic stainless steel seamless steel pipe excellent in toughness and stress corrosion cracking resistance
JPH07179943A (en) Production of high toughness martensitic strainless steel pipe excellent in corrosion resistance
GB2368849A (en) Martensitic stainless steel
JP2665009B2 (en) High strength martensitic stainless steel and method for producing the same
JP3417016B2 (en) Manufacturing method of high toughness martensitic stainless steel seamless steel pipe with excellent hot workability and corrosion resistance
JP3201081B2 (en) Stainless steel for oil well and production method thereof
JP2672429B2 (en) Manufacturing method of martensitic stainless steel seamless steel pipe with excellent corrosion resistance
JPH07188840A (en) High strength steel excellent in hydrogen embrittlement resistance and its production
JP2672430B2 (en) Manufacturing method of martensitic stainless steel seamless steel pipe with excellent corrosion resistance
JP2580407B2 (en) Manufacturing method of martensitic stainless steel seamless steel pipe with excellent corrosion resistance
JPH0860238A (en) Production of martensitic stainless steel excellent in hot workability and sulfide stress cracking resistance
JP3620099B2 (en) Method for producing Cr-Mo steel excellent in strength and toughness
JPH06264189A (en) High strength and high toughness stainless steel excellent in low temperature impact characteristic and its production
JPH07110970B2 (en) Method for producing acicular ferritic stainless steel with excellent resistance to stress corrosion cracking
JP7260838B2 (en) Steel wire for spring, spring and method for producing them
JPH0867950A (en) Martensitic stainless steel excellent in strength and toughness and its production

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070719

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080719

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080719

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090719

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090719

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100719

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110719

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees