JP2011042812A - Method for manufacturing forged steel article superior in toughness - Google Patents

Method for manufacturing forged steel article superior in toughness Download PDF

Info

Publication number
JP2011042812A
JP2011042812A JP2009189687A JP2009189687A JP2011042812A JP 2011042812 A JP2011042812 A JP 2011042812A JP 2009189687 A JP2009189687 A JP 2009189687A JP 2009189687 A JP2009189687 A JP 2009189687A JP 2011042812 A JP2011042812 A JP 2011042812A
Authority
JP
Japan
Prior art keywords
steel
toughness
forged steel
strength
forged
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009189687A
Other languages
Japanese (ja)
Inventor
Keita Kono
恵太 河野
Yoshihiro Okamura
義弘 岡村
Koichi Uchino
耕一 内野
Yasushi Wakeshima
泰 分島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Casting and Forging Corp
Original Assignee
Japan Casting and Forging Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Casting and Forging Corp filed Critical Japan Casting and Forging Corp
Priority to JP2009189687A priority Critical patent/JP2011042812A/en
Publication of JP2011042812A publication Critical patent/JP2011042812A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Turbine Rotor Nozzle Sealing (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a forged steel article which has higher toughness and lower temper embrittlement sensitivity than those of an NiCrMoV-containing steel that are used in a steam turbine rotor material, a gas turbine disk material and the like. <P>SOLUTION: A forged steel member comprises, by mass%, 0.25-0.35% C, 0.01-0.20% Si, 0.01-0.50% Mn, 4.10-4.70% Ni, 1.6-2.0% Cr, 0.30-0.50% Mo, 0.07-0.15% V and the balance Fe with unavoidable impurities. The method for manufacturing the forged steel article includes quenching the above forged steel member at 800-1,000&deg;C, and tempering the quenched member at 500-700&deg;C. <P>COPYRIGHT: (C)2011,JPO&amp;INPIT

Description

本発明は、熱処理後に高強度と高靱性を有しかつ長時間の使用においても焼戻脆化を生じない鋼質で、蒸気タービンロータ材、ガスタービンディスク材、高温圧力容器用材等に使用されるNiCrMoV含有鍛鋼品の製造法に関するものである。   The present invention is a steel material that has high strength and toughness after heat treatment and does not cause temper embrittlement even after long-term use, and is used for steam turbine rotor materials, gas turbine disk materials, high-temperature pressure vessel materials, etc. The present invention relates to a method for producing a NiCrMoV-containing forged steel product.

発電プラント事業では、省エネルギー問題などの観点から熱効率を高効率化するために、蒸気タービンの蒸気温度あるいはガスタービンのガス化温度を上昇させる手段や発電プラントの大容量化などが求められている。それらプラントに用いられる大型タービン用部材は、一般に高温用部材と低温用部材に大別され、高温用部材には高温強度に優れたCrMoV鋼、高Cr耐熱鋼、Ni基合金などが使用され、低温用のタービンロータ材やガスタービンディスク材には、強度・靱性に優れたASTM−A469/470に規定されているNiCrMoV鍛造鋼(3.25〜4.00%Ni−1.25〜2.00%Cr−0.25〜0.60%Mo−0.05〜0.15%V鋼)などが一般に使用されている。   In the power plant business, in order to increase the thermal efficiency from the viewpoint of energy saving problems, means for increasing the steam temperature of the steam turbine or the gasification temperature of the gas turbine, and increasing the capacity of the power plant are required. The members for large turbines used in these plants are generally divided into high-temperature members and low-temperature members, and CrMoV steel, high Cr heat-resisting steel, Ni-based alloy, etc. excellent in high-temperature strength are used for the high-temperature members, For low temperature turbine rotor materials and gas turbine disk materials, NiCrMoV forged steel (3.25 to 4.00% Ni-1.25 to 2.2.5) specified in ASTM-A469 / 470 having excellent strength and toughness. 00% Cr-0.25 to 0.60% Mo-0.05 to 0.15% V steel) is generally used.

また、この種の鋼質を改善したNiCrMoV鋼も多く開発されている。例えば、特許文献1には、質量%でC:0.10〜0.35%、Si:0.35%以下、Mn:1.0%以下、Ni:0.3〜2.5%、Cr:1.5〜3.5%、Mo:0.3〜1.5%、V:0.05〜0.30、W:0.1〜2.0%を含み、さらに必要によってはNb、N、Bの少量を1種または2種以上を含むFe基合金のタービンロータ形状体を1000〜1150℃に加熱して焼鈍した後、900〜970℃に加熱して焼入れ、さらに600〜700℃に加熱して焼戻した、強度と靱性に優れたタービンロータの製造法が開示されている(特許文献1の特許請求の範囲を参照)。   Many NiCrMoV steels with improved steel quality have been developed. For example, in Patent Document 1, C: 0.10 to 0.35% by mass, Si: 0.35% or less, Mn: 1.0% or less, Ni: 0.3 to 2.5%, Cr : 1.5 to 3.5%, Mo: 0.3 to 1.5%, V: 0.05 to 0.30, W: 0.1 to 2.0%, Nb, if necessary A turbine rotor shaped body of an Fe-based alloy containing a small amount of N or B is heated to 1000 to 1150 ° C. and then annealed to 900 to 970 ° C., and further 600 to 700 ° C. A method of manufacturing a turbine rotor excellent in strength and toughness that has been tempered by heating is disclosed (see claims of Patent Document 1).

さらに、特許文献2には、質量%でC:0.15〜0.35%、Si:0.15%以下、Mn:1.2%以下、Ni:0.5〜2.0%、Cr:2.0〜2.5%、Mo:0.5〜1.5%、W:0.5〜1.0%、V:0.2〜0.45%を含有し、さらにNb、Ta、Nの少量を1種または2種以上含有し、残部がFeおよび不可避的不純物からなる、タービンロータ材やディスク材に使用される高温強度に優れた高靱性低合金鋼が開示されている(特許文献2の特許請求の範囲を参照)。   Further, in Patent Document 2, C: 0.15 to 0.35% by mass, Si: 0.15% or less, Mn: 1.2% or less, Ni: 0.5 to 2.0%, Cr : 2.0 to 2.5%, Mo: 0.5 to 1.5%, W: 0.5 to 1.0%, V: 0.2 to 0.45%, Nb, Ta , A high toughness low-alloy steel excellent in high-temperature strength used for turbine rotor materials and disk materials, which contains one or two or more small amounts of N, the balance being Fe and inevitable impurities is disclosed ( (See the claims of Patent Document 2).

また、非特許文献1の「低圧タービンロータ用3.5%NiCrMoV鋼の長時間恒温焼戻脆化におよぼす不純物元素およびSi、Mn量の影響」と題する論文においては、P,Sbなどの不純物元素やSi,Mnは、鋼質を脆化するため低減するのが効果的である旨が開示されている。
あるいは、非特許文献2の「NiCrMoV鋼の強度・衝撃特性に及ぼす化学組成と焼戻し熱処理の影響」と題する論文においては、従来のロータ材鋼組成を供試材にしてNi量の増加によって強度が増し、Sなどの不純物量の極低下に衝撃破面遷移温度(50%FATT)が低温側に移行する改善が認められる旨の記載がある。
In the paper entitled “Effects of Impurity Elements and Si and Mn Content on Long-Time Isothermal Embrittlement of 3.5% NiCrMoV Steel for Low-Pressure Turbine Rotors” in Non-Patent Document 1, impurities such as P and Sb It is disclosed that elements, Si, and Mn are effective to reduce in order to embrittle the steel.
Alternatively, in a paper entitled “Effects of chemical composition and tempering heat treatment on strength and impact properties of NiCrMoV steel” in Non-Patent Document 2, the strength is increased by increasing the amount of Ni using a conventional rotor steel composition as a test material. There is a description that an improvement in the transition of the impact fracture surface transition temperature (50% FATT) to the low temperature side is observed due to the extremely low amount of impurities such as S.

タービンロータ用鍛造材としては上記文献以外にも、NiMoVの少量を含有する低合金鋼にCrを8〜13質量%含有させた強靭性のタービンロータ材(特許文献3を参照)や、Niを含有しない低合金系で強靭性に優れたタービンロータ材(特許文献4,5を参照)が開示されている。   In addition to the above documents, the forging material for turbine rotors is a tough turbine rotor material (see Patent Document 3) containing 8 to 13% by mass of Cr in a low alloy steel containing a small amount of NiMoV, or Ni. There is disclosed a turbine rotor material (see Patent Documents 4 and 5) that is a low alloy system that does not contain and has excellent toughness.

特開平1−230723号公報JP-A-1-230723 特開平6−256893号公報JP-A-6-256893 特開平7−118811号公報JP-A-7-118811 特開平8−260091号公報JP-A-8-260091 特開平9−105305号公報JP-A-9-105305

鉄と鋼 Vol.79(1993)No.4 80〜86頁Iron and steel Vol. 79 (1993) No. 4 Pages 80-86 鉄と鋼 Vol.89(2003)No.6 83〜88頁Iron and steel Vol. 89 (2003) No. 6 pages 83-88

低温用のタービンロータやガスタービンディスクは構造的に大型部材であり、部材の表層から中心まで均一で優れた強度・靱性が求められる。このため、これらの低温用大型部材には、低合金鋼の中でも焼入れ性が優れている3.5NiCrMoV鋼の鍛鋼製品が使用されている。さらに、この種の鍛鋼品は380〜500℃の範囲で衝撃抵抗が減少する焼戻脆化感受性が高いために、脆化を助長するP,Sb,Snなどの不純物元素低減化の他に、焼戻脆化を助長するSi,Mn量を低減化する製鋼技術も確立されている。
しかしながら、焼戻脆化感受性の抑制のためにMnを低減する場合、Mnによる焼入れ効果が減少し、大型鍛鋼品の強度および靱性が低下する問題があった。
すなわち、本発明は、上記課題を解決するものであり、蒸気タービンロータ材やガスタービンディスク材などで使用されるNiCrMoV含有鋼の強靭性を確保しつつも焼戻脆化感受性を低めた鍛鋼品を提供することを目的とする。
Low-temperature turbine rotors and gas turbine disks are structurally large-sized members, and uniform and excellent strength and toughness are required from the surface layer to the center of the members. For this reason, a forged steel product of 3.5NiCrMoV steel, which has excellent hardenability among low alloy steels, is used for these large members for low temperature. Furthermore, since this type of forged steel is highly susceptible to temper embrittlement in which impact resistance decreases in the range of 380 to 500 ° C., in addition to reducing impurity elements such as P, Sb, and Sn that promote embrittlement, Steelmaking techniques for reducing the amount of Si and Mn that promote temper embrittlement have also been established.
However, when reducing Mn for suppressing temper embrittlement susceptibility, there is a problem that the quenching effect by Mn is reduced and the strength and toughness of the large forged steel product are lowered.
That is, the present invention solves the above-mentioned problem, and forged steel products having reduced temper embrittlement susceptibility while ensuring the toughness of NiCrMoV-containing steels used in steam turbine rotor materials and gas turbine disk materials. The purpose is to provide.

本発明者らは、焼戻脆化感受性が低く強靭性に優れた鍛鋼品を製造することを目的に、現在の製鋼技術を考慮しつつ、NiCrMoV鍛鋼部材の成分組成とその含有量、さらには鍛造後の熱処理条件などから種々検討した。そして、4.3%前後のNiを含有するNiCrMoV鋼を鋳造し鍛造した部材を高温度から冷却した場合に、ベイナイト変態領域が低速度側に移行し、またベイナイト変態開始・終了点が低温度側に移行するため、他の鋼種、例えば3.5NiCrMoV鋼や5NiCrMoV鋼よりも緻密なベイナイト組織を生成して強靭性を改善することを知見した。
また、本発明者らは、SiおよびMnの含有量を低減し、さらに必要によってはP,Sn,Sbなど不純物元素の含有量との関係を一定量以下に管理制御することによって、380〜500℃の範囲の長時間使用において衝撃抵抗が減少する焼戻脆化感受性が低められる事も知見した。
In order to produce a forged steel product having low temper embrittlement susceptibility and excellent toughness, the present inventors consider the current steelmaking technology, and the composition and content of NiCrMoV forged steel members, Various investigations were made from the heat treatment conditions after forging. And when the member which cast and forged NiCrMoV steel containing about 4.3% of Ni is cooled from a high temperature, the bainite transformation region shifts to a low speed side, and the bainite transformation start / end points are at a low temperature. In order to shift to the side, it has been found that a toughness is improved by generating a bainite structure denser than other steel types such as 3.5NiCrMoV steel and 5NiCrMoV steel.
In addition, the inventors reduced the contents of Si and Mn and, if necessary, managed and controlled the relationship with the contents of impurity elements such as P, Sn, and Sb to a certain amount or less. It was also found that the temper embrittlement susceptibility, which decreases the impact resistance, is reduced in long-term use in the range of ° C.

本発明は上記知見に基づいて構成したものであり、その要旨は以下の通りである。
(1)質量%で、C:0.25〜0.35%、Si:0.01〜0.20%、Mn:0.01〜0.50%、Ni:4.10〜4.70%、Cr:1.6〜2.0%、Mo:0.30〜0.50%、V:0.07〜0.15%を含有し、残部がFeおよび不可避的不純物からなる鍛鋼部材を、800〜1000℃で焼入れし、500〜700℃で焼戻しすることを特徴とする鍛鋼品の製造法。
This invention is comprised based on the said knowledge, The summary is as follows.
(1) By mass%, C: 0.25 to 0.35%, Si: 0.01 to 0.20%, Mn: 0.01 to 0.50%, Ni: 4.10 to 4.70% Cr, 1.6 to 2.0%, Mo: 0.30 to 0.50%, V: 0.07 to 0.15%, the balance being a forged steel member made of Fe and inevitable impurities, A method for producing a forged steel product comprising quenching at 800 to 1000 ° C and tempering at 500 to 700 ° C.

(2)質量%で、C:0.25〜0.35%、Si:0.01〜0.20%、Mn:0.01〜0.50%、Ni:4.10〜4.70%、Cr:1.6〜2.0%、Mo:0.30〜0.50%、V:0.07〜0.15%を含有し、不可避的不純物であるP,SnおよびSbが、P:0.01%以下、Sn:0.005%以下、Sb:0.003%以下で、Si,Mn,P,Sn,およびSbの含有量については、(Si+Mn)(P+Sn+Sb)×10≦10の関係を満たす、残部がFeおよびその他の不可避的不純物からなる鍛鋼部材を、800〜1000℃で焼入れし、500〜700℃で焼戻しすることを特徴とする鍛鋼品の製造法。 (2) By mass%, C: 0.25 to 0.35%, Si: 0.01 to 0.20%, Mn: 0.01 to 0.50%, Ni: 4.10 to 4.70% , Cr: 1.6 to 2.0%, Mo: 0.30 to 0.50%, V: 0.07 to 0.15%, P, Sn and Sb which are unavoidable impurities are P : 0.01% or less, Sn: 0.005% or less, Sb: 0.003% or less, and the contents of Si, Mn, P, Sn, and Sb are (Si + Mn) (P + Sn + Sb) × 10 4 ≦ A method for producing a wrought steel product, characterized by quenching a forged steel member satisfying the relationship of 10 consisting of Fe and other unavoidable impurities at 800 to 1000 ° C and tempering at 500 to 700 ° C.

上記の様な成分組成と熱処理で製造された本発明に係るNiCrMoV鍛鋼品は、焼戻温度によっては引張強さで1000MPa以上の高強度を示し、また50%FATTも−100℃以下の優れた靱性を示す。この数値は従来の3.5NiCrMoV鍛鋼品よりも高く、優れた強靭性を示すものである。   The NiCrMoV forged steel product according to the present invention produced by the above-described component composition and heat treatment exhibits high strength of 1000 MPa or more in tensile strength depending on the tempering temperature, and 50% FATT is also excellent at −100 ° C. or less. Showing toughness. This numerical value is higher than that of a conventional 3.5NiCrMoV forged steel product and exhibits excellent toughness.

衝撃試験片破面の延性破壊部で囲まれた劈開面の単位であるティアリッジ間隔と50%FATTの関係をプロットしたグラフである。It is the graph which plotted the relationship between tear ridge space | interval which is a unit of the cleavage surface surrounded by the ductile fracture part of the impact test piece fracture surface, and 50% FATT.

以下、本発明に係る鍛鋼品の製造法について詳細に説明する。
鍛鋼部材となる合金原料を電気炉や真空誘導溶解炉などの溶解炉あるいはさらに真空カーボン脱酸法あるいはエレクトロスラグ再溶解法などを経て目標の成分組成に精錬した溶鋼から、自由鍛造用や型鍛造用など鍛造加工に適する形状の鋼塊を作り、この鋼塊を熱間鍛造加工し、所定形状の鍛造部材に成形する。このときの本発明の鍛鋼部材の成分組成は、本発明の試験結果と検討結果に基づいて本発明が目的の鍛鋼品が製造される範囲から限定したもので、各成分の限定理由について次に説明する。なお、各成分の含有量は質量%表示である。
Hereinafter, the method for producing a forged steel product according to the present invention will be described in detail.
Forging steel forging and die forging from molten steel, which is refined to the target component composition through melting furnaces such as electric furnaces and vacuum induction melting furnaces, or vacuum carbon deoxidation method or electroslag remelting method. A steel ingot having a shape suitable for forging, such as for use, is made, the steel ingot is hot forged, and formed into a forged member having a predetermined shape. The component composition of the forged steel member of the present invention is limited from the range in which the target forged steel product is manufactured based on the test results and the examination results of the present invention. explain. In addition, content of each component is a mass% display.

Cの0.25%以上は、熱処理時の焼入れ性を確保し、またCrなどの他の成分と結合して複炭化物を作り強度を高める有効な成分として含有させるものである。しかしながら0.35%を超える多量なCの含有は、Crの複炭化物を多量に生成し強度が高くなりすぎるために靱性が低下するという問題がある。従って、Cの含有量を0.25〜0.35%に限定した。   0.25% or more of C is contained as an effective component that ensures hardenability during heat treatment and combines with other components such as Cr to form double carbides and increase strength. However, the inclusion of a large amount of C exceeding 0.35% has a problem that the toughness is lowered because a large amount of Cr double carbide is generated and the strength becomes too high. Therefore, the C content is limited to 0.25 to 0.35%.

Siは、0.01%以上の含有で脱酸効果があり、また溶鋼の流動性を高めると共に鋼の強度を高める効果があるが、0.20%を超える多量な含有量では、鋼中に過度に残存した場合、鋼の清浄度を害し強度と靱性を低下させる。従って、本発明においてSiは、鍛鋼品の靱性を高める最適な範囲として0.01〜0.20%の含有量に限定する。   Si has a deoxidizing effect when it is contained in an amount of 0.01% or more, and also has an effect of increasing the fluidity of the molten steel and the strength of the steel. However, if the content exceeds 0.20%, When it remains excessively, it impairs the cleanliness of steel and lowers strength and toughness. Accordingly, in the present invention, Si is limited to a content of 0.01 to 0.20% as an optimum range for increasing the toughness of the forged steel product.

Mnは、0.01%以上の含有で溶鋼の脱酸効果と焼入性を高めて鍛鋼品の強度と靱性を向上する効果があるが、0.50%を超える多量な含有量では焼入れ性が過度に向上し、逆に靱性を低下する問題を来たす。従って、Mnは0.01〜0.50%の含有量に限定する。   Mn has an effect of improving the deoxidation effect and hardenability of molten steel by containing 0.01% or more and improving the strength and toughness of the forged steel product, but hardenability with a large content exceeding 0.50%. However, there is a problem of excessively improving and decreasing toughness. Therefore, Mn is limited to a content of 0.01 to 0.50%.

Niは鍛鋼部材の焼入性を向上し、鍛鋼品の優れた値の強度と靱性を付与する有効な成分であり、4.10〜4.70%好ましくは4.20〜4.60とすることが望ましい。これにより、焼入れ時の冷却速度が小さい大型鍛鋼品においても焼入れ後に主として下部ベイナイト組織を呈し、焼戻し後に優れた強度と靱性を得ることができる。また、Ni含有量が4.70%以下では、焼戻し脆化による長時間使用による靱性の低下は起こらない。しかし、Ni含有量が4.10%未満の少ない含有量では焼入れ性の向上が十分でなく、上部ベイナイトを主体とする組織を呈するために強度と靱性の向上に有効でない。また、4.70%を超える過剰な含有量では、過大な焼入れ性の向上によってマルテンサイト組織を主体とする組織を呈し、強度は高いが靱性を損なうという問題がある。従って、Niの含有量は、大型鍛鋼品において優れた強度と靱性が確保され、焼戻し脆化が起こらない4.10〜4.70%に限定した。   Ni is an effective component that improves the hardenability of the forged steel member and imparts excellent values of strength and toughness of the forged steel product, and is 4.10 to 4.70%, preferably 4.20 to 4.60. It is desirable. Thereby, even in a large forged steel product having a low cooling rate during quenching, a lower bainite structure is mainly exhibited after quenching, and excellent strength and toughness can be obtained after tempering. Further, when the Ni content is 4.70% or less, the toughness does not deteriorate due to long-term use due to temper embrittlement. However, when the Ni content is less than 4.10%, the hardenability is not sufficiently improved, and a structure mainly composed of upper bainite is exhibited, so that it is not effective in improving strength and toughness. Further, if the excessive content exceeds 4.70%, there is a problem that a structure mainly composed of a martensite structure is exhibited due to excessive improvement in hardenability, and the toughness is impaired although the strength is high. Therefore, the Ni content is limited to 4.10 to 4.70%, which ensures excellent strength and toughness in large forged steel products and does not cause temper embrittlement.

Crは耐酸化性を付与すると共に、焼入れ性を増大させて強度を向上させる有効な成分である。しかし、Cr含有量が1.6%未満の少ない含有量ではこれらの有効な効果が得られず、また2.0%を超える過剰な含有量では強度が高くなりすぎて靱性を損なう問題がある。従って、Crの含有量は1.6〜2.0%に限定した。   Cr is an effective component that imparts oxidation resistance and increases hardenability to improve strength. However, if the Cr content is less than 1.6%, these effective effects cannot be obtained, and if it exceeds 2.0%, the strength becomes too high and the toughness is impaired. . Therefore, the Cr content is limited to 1.6 to 2.0%.

Moは0.30%以上の含有で、Crと同様に焼入れ性を増大し、また焼戻し処理時の軟化抵抗を大きくして、強度を増加する有効な成分である。しかしながら、0.50%を超える過剰な含有量のMoは、焼入れ性を過大にし、焼入れ・焼戻し後の組織はマルテンサイト主体となるため、十分な靱性が得られない問題がある。従って、Moは強度および靱性のバランスを考慮して0.30〜0.50%に規定した。   Mo contains 0.30% or more and is an effective component that increases hardenability like Cr and increases softening resistance during tempering to increase strength. However, an excessive content of Mo exceeding 0.50% has an excessive hardenability, and the structure after quenching and tempering is mainly martensite, so that there is a problem that sufficient toughness cannot be obtained. Therefore, Mo is specified to be 0.30 to 0.50% in consideration of the balance between strength and toughness.

Vは、焼戻し処理をした際にマトリックスに微細なV炭窒化物を析出して強度を高める有効な成分として0.07%以上の含有量が必要である。その反対にVが0.15%を超える過剰な含有量は、高い強度が保持できず靱性も低下する傾向がある。従って、Vの含有量は、鍛鋼品の強度と靱性のバランスを考慮して0.07〜0.15%に限定した。   V is required to have a content of 0.07% or more as an effective component for precipitating fine V carbonitrides in the matrix when tempering to increase the strength. On the other hand, if the V content exceeds 0.15%, high strength cannot be maintained and the toughness tends to decrease. Therefore, the V content is limited to 0.07 to 0.15% in consideration of the balance between strength and toughness of the forged steel product.

上記の様な成分組成を含有し残部がFeおよび不可避的不純物からなる鍛鋼部材は、本発明が目的とする焼戻脆化感受性が低く強靭性に優れた鍛鋼品を製造することができる。   A forged steel member containing the above component composition and the balance being Fe and inevitable impurities can produce a forged steel product having low temper embrittlement sensitivity and excellent toughness, which is the object of the present invention.

不可避的不純物として含有されるP,Sn,Sbは、焼戻脆化感受性を増大させる元素であり、極力低減することが望ましい。これら不可避的不純物の許容含有量は、現在の精錬技術または原材料に付随して不可避的に混入する量を考慮して、Pは0.01%以下、Snは0.005%以下、Sbは0.003%以下に限定する。   P, Sn, and Sb contained as unavoidable impurities are elements that increase the susceptibility to temper embrittlement, and are desirably reduced as much as possible. The allowable content of these unavoidable impurities is 0.01% or less, Sn is 0.005% or less, and Sb is 0 in consideration of the amount inevitably mixed with the current refining technology or raw materials. Limited to 0.003% or less.

本発明者らは鋼の強度を高める有効な成分として含有させたSiおよびMnと不可避的不純物として含有されるPとSnとSbが相俟って焼戻脆化感受性を高め靱性を著しく低下する問題を抑制するために、強度増加成分であるSiおよびMnの含有量と不可避的不純物であるP,SnおよびSbの含有量が焼戻脆性に及ぼす相関関係について調査し整理した。その結果、焼戻脆化助長成分であるSiとMnの含有量(単位は質量%)の和と不可避的不純物であるP,Sn,Sbの含有量(単位は質量%)の和の積に、さらに10を掛け合わせた値が10以下を満たせば、焼戻脆化感受性が抑制されることを知見した。すなわち、Si,Mn,P,Sn,およびSbの含有量について、(Si+Mn)(P+Sn+Sb)×10≦10の関係を満たすように鍛鋼部材の成分を製鋼時に調整する事によって焼戻脆化感受性が抑制されることを知見した。 The present inventors, combined with Si and Mn contained as effective components for increasing the strength of steel, and P, Sn and Sb contained as inevitable impurities, increase susceptibility to temper embrittlement and significantly reduce toughness. In order to suppress the problem, the correlation between the contents of Si and Mn as strength increasing components and the contents of P, Sn and Sb as inevitable impurities on temper brittleness was investigated and arranged. As a result, it is the product of the sum of the contents of Si and Mn (unit: mass%), which is the temper embrittlement promoting component, and the sum of the contents of P, Sn, Sb (unit: mass%), which are unavoidable impurities. Furthermore, it was found that if the value obtained by multiplying 10 4 satisfies 10 or less, the temper embrittlement susceptibility is suppressed. That is, the contents of Si, Mn, P, Sn, and Sb are susceptible to temper embrittlement by adjusting the components of the forged steel member at the time of steel making so as to satisfy the relationship of (Si + Mn) (P + Sn + Sb) × 10 4 ≦ 10. Was found to be suppressed.

上記関係を満たすようにSi,Mn,P,Sn,およびSbの含有量を調整することで焼戻脆化感受性が抑制される理由は、P,Sn,Sbなどの不純物元素は粒界偏析によって粒界脆化を起こし、また、Si,Mnは上記不純物元素の粒界脆化を加速させる働きがあることによるものと考えられる。   The reason why the temper embrittlement susceptibility is suppressed by adjusting the contents of Si, Mn, P, Sn, and Sb so as to satisfy the above relationship is that impurity elements such as P, Sn, and Sb are caused by grain boundary segregation. It is considered that grain boundary embrittlement occurs, and Si and Mn have a function of accelerating the grain boundary embrittlement of the impurity elements.

そして、これらの知見によって、必須成分であるC,Si,Mn,Ni,Cr,MoおよびV、ならびに不可避的不純物であるP,SnおよびSbについて上記のような成分組成を含有し、Si,Mn,P,Sn,およびSbの含有量については(Si+Mn)(P+Sn+Sb)×10≦10の関係を満たす、残部がFeおよびその他の不可避的不純物からなる鍛鋼部材は、本発明が目的とする焼戻脆化感受性をより低く抑制し、なおかつ強靭性に優れた鍛鋼品を製造することができる。なお、その他の不可避的不純物とは、P,SnおよびSbを除くその他の不可避的不純物をいう。 And by these knowledge, C, Si, Mn, Ni, Cr, Mo and V which are essential components, and P, Sn and Sb which are unavoidable impurities contain the above component composition, and Si, Mn , P, Sn, and Sb, the forged steel member satisfying the relationship of (Si + Mn) (P + Sn + Sb) × 10 4 ≦ 10, the balance being Fe and other inevitable impurities, It is possible to produce a forged steel product that suppresses the back embrittlement sensitivity to a lower level and is excellent in toughness. Other inevitable impurities refer to other inevitable impurities excluding P, Sn and Sb.

上記の様な成分組成に調整され鍛造加工で製品形状に成型された鍛鋼部材は、強靭性などの鍛鋼品に要求される性質を改善するため、加熱温度と冷却操作で操作する各種の熱処理が施される。
先ずは鍛造工程において高温度の熱と過酷な鍛造圧によって粗大化した鋼組織を改善し、またCr,Mo,Vなどの金属炭化物や金属間複炭化物などの析出物を単一な固溶体に溶体化処理するために、鍛鋼部材を800〜1000℃に加熱し、続いて鍛鋼部材の中心部の平均冷却速度が1℃/分以上の速度でベイナイト変態完了温度まで冷却する焼入れ処理を施した後、500〜700℃で焼戻し処理を施す。
Forged steel members adjusted to the above composition and formed into product shape by forging process, various heat treatments operated by heating temperature and cooling operation are performed to improve the properties required for forged steel products such as toughness. Applied.
First, the steel structure that has been coarsened by high-temperature heat and severe forging pressure in the forging process is improved, and precipitates such as metal carbides such as Cr, Mo, and V, and intermetallic double carbides are dissolved into a single solid solution. After the forged steel member is heated to 800 to 1000 ° C. to perform the conversion treatment, and subsequently subjected to a quenching treatment in which the average cooling rate at the center of the forged steel member is cooled to the bainite transformation completion temperature at a rate of 1 ° C./min or more. And tempering at 500 to 700 ° C.

焼入れ処理を終えた本発明の鍛鋼焼入れ部材は、主として下部ベイナイト組織を呈しており、焼戻し後の強度は高く、従来のNiCrMoV鍛鋼焼入れ部材に比べて靱性も高く、焼戻脆化感受性も従来鋼と同等の鋼質が得られる。この鋼質はこの焼入れ温度に本発明における鍛鋼部材の成分組成が絡んで得られる作用効果であって、800℃未満の低い焼入れ温度ではオーステナイト化が十分でなく、焼入れ後に下部ベイナイト主体の組織を得ることが難しく、また1000℃を超える過剰な焼入れ温度では結晶粒が粗大化し、焼入れ性が過大となり、焼入れ・焼戻し後の組織はマルテンサイト主体となるために十分な靱性が得られない。   The forged steel quenched member of the present invention that has been subjected to the quenching treatment mainly exhibits a lower bainite structure, has high strength after tempering, has higher toughness than conventional NiCrMoV forged steel quenched members, and has a temper embrittlement susceptibility as well. The steel quality equivalent to is obtained. This steel quality is an effect obtained by involving the composition of the forged steel member in the present invention at this quenching temperature. At a quenching temperature lower than 800 ° C., austenitization is not sufficient, and after quenching, the structure mainly composed of lower bainite is obtained. It is difficult to obtain, and at an excessive quenching temperature exceeding 1000 ° C., the crystal grains become coarse, the hardenability becomes excessive, and the structure after quenching and tempering is mainly martensite, so that sufficient toughness cannot be obtained.

本発明においては、焼入れ処理された鍛鋼焼入れ部材の靱性を改善し、また焼戻脆化感受性を低め要求される材質の鍛鋼品に供するために、500〜700℃に加熱した後過激な熱歪を残さない程度の速さで冷却する焼戻し処理を施す。焼戻し処理は、焼入れ処理を施して低下した靱性や高められた焼戻脆化感受性を要求される強度に配慮しつつ改質するものであって、焼入れ処理で溶体化された金属炭化物などの析出硬化を利用して材質改善するものである。焼戻し処理におけるこの様な作用効果は、500℃未満の低い温度では金属炭化物などの析出が十分でなく、700℃を超える過剰な温度では焼入れ処理効果を消失する問題がある。   In the present invention, in order to improve the toughness of the quenched steel-forged member subjected to the quenching treatment and reduce the susceptibility to temper embrittlement, the steel sheet is subjected to extreme thermal strain after being heated to 500 to 700 ° C. A tempering process is performed to cool at a speed that does not leave any residual. The tempering process is a modification that takes into account the strength required for reduced toughness and increased temper embrittlement susceptibility due to the quenching process, and precipitates metal carbides and the like that have been solutionized by the quenching process. The material is improved by using curing. Such an effect in the tempering process has a problem that the precipitation of metal carbides is not sufficient at a low temperature of less than 500 ° C., and the quenching effect is lost at an excessive temperature exceeding 700 ° C.

また本発明においては、鋳造した際の鋳造組織を微細化したり、あるいは熱間鍛造時の高温度や急冷などで生じた内部歪を除去して標準状態のものにする焼準処理を、必要によっては、熱間鍛造前の鋼塊、または焼入れ処理前の鍛鋼部材に施してもよい。   Further, in the present invention, a normalizing process to make the cast structure at the time of casting finer or to remove the internal distortion caused by high temperature or rapid cooling at the time of hot forging to obtain a standard state, if necessary. May be applied to a steel ingot before hot forging or a forged steel member before quenching.

上記の様な成分組成で製造された例えば蒸気タービンロータ材やガスタービンディスク材、高温圧力容器材などの鍛鋼品は、強度が高く、靱性も優れ、焼戻脆化感受性が低いため、高温域から低温域まで広い用途分野で長期間使用できる。   Forged steel products such as steam turbine rotor materials, gas turbine disc materials, and high-temperature pressure vessel materials manufactured with the above-described composition have high strength, excellent toughness, and low temper embrittlement sensitivity. Can be used for a long time in a wide range of applications from low to low temperatures.

次に本発明の実施例について説明する。
塩基性電気炉にて溶解し、精錬後、造塊した鋼塊は、1000℃以上で熱間鍛造してガスタービンディスクを想定した鍛造材を製造した。表1は、その時の鍛造材の成分組成、(Si+Mn)(P+Sn+Sb)×10の演算値(以下、J*値と称する。)、熱処理条件、機械的性質および焼戻脆化感受性の評価結果を掲載したものである。供試番号の6〜8、10〜11、13〜16、18〜19、22〜23、26〜27、29〜30は本発明の実施例を示し、その他の供試番号は本発明から逸脱する成分組成または熱処理温度を比較例に挙げたものである。
Next, examples of the present invention will be described.
The steel ingot that was melted in a basic electric furnace and refined and then ingot was hot forged at 1000 ° C. or higher to produce a forged material assuming a gas turbine disk. Table 1 shows the composition of the forged material at that time, the calculated value of (Si + Mn) (P + Sn + Sb) × 10 4 (hereinafter referred to as J * value), heat treatment conditions, mechanical properties, and temper embrittlement susceptibility evaluation results. Is published. Test numbers 6-8, 10-11, 13-16, 18-19, 22-23, 26-27, 29-30 show examples of the present invention, and other test numbers depart from the present invention. The component composition or heat treatment temperature to be used is listed as a comparative example.

Figure 2011042812
Figure 2011042812

表1の0.2%耐力、引張強さおよび50%FATTの結果から明らかな様に、本発明鋼(No.4〜5、8〜10、12〜13、15〜18、20〜21、24〜25、28〜29、31〜33)は、下部ベイナイト主体の鋼組織を呈して強度と靱性が高い。特に本発明鋼の50%FATT(℃)は、上部ベイナイト組織主体の鋼組織を呈する比較鋼(No.1〜3、6、19、23、27)およびマルテンサイト組織主体の鋼組織を呈する比較鋼(No.14、22、26、30、34)に比べ相当に低く、優れた低温靱性を示す。
また、本発明鋼は、焼戻温度が低く高強度・低靱性を示す比較鋼(No.7)や焼戻温度が高く低強度・高靱性を示す比較鋼(No.11)と比較し、強度と靱性のバランスに優れている。すなわち本発明鋼は焼戻処理後においても強度・靭性共に優れた鋼質を実証するものである。
As is clear from the results of 0.2% proof stress, tensile strength and 50% FATT in Table 1, the steels of the present invention (No. 4-5, 8-10, 12-13, 15-18, 20-21, 24-25, 28-29, 31-33) exhibit a steel structure mainly composed of lower bainite and have high strength and toughness. In particular, 50% FATT (° C.) of the steel of the present invention is a comparative steel (No. 1-3, 6, 19, 23, 27) exhibiting a steel structure mainly composed of an upper bainite structure and a comparison exhibiting a steel structure mainly composed of a martensite structure. It is considerably lower than steel (No. 14, 22, 26, 30, 34) and exhibits excellent low temperature toughness.
In addition, the steel of the present invention is compared with a comparative steel (No. 7) having a low tempering temperature and exhibiting high strength and low toughness, and a comparative steel (No. 11) having a high tempering temperature and exhibiting low strength and high toughness. Excellent balance between strength and toughness. That is, the steel of the present invention demonstrates a steel quality that is excellent in both strength and toughness even after tempering.

ここで、図1は、衝撃試験片破面の延性破壊部で囲まれた劈開面の単位であるティアリッジ間隔と50%FATTの関係をプロットしたグラフである。本発明鋼(No.10、12、16、18、20、21、24、25、33)のティアリッジ間隔は8μm以下を示し、比較鋼(No.1、2、26、30)よりも小さくなることを確認することができる。そして、これにより高靭性を達成していることを確認することができる。上記のように本発明においては成分組成と熱処理条件とを最適化することによって下部ベイナイトを主体とする鋼組織を獲得するところ、当該グラフについても、このような組織を呈することによって衝撃試験時のティアリッジ間隔(破面単位)を小さくし、これにより高靭性が得られることを実証するものである。   Here, FIG. 1 is a graph plotting the relationship between the tear ridge interval, which is a unit of the cleavage plane surrounded by the ductile fracture portion of the impact test piece fracture surface, and 50% FATT. The steel ridge spacing of the present invention steel (No. 10, 12, 16, 18, 20, 21, 24, 25, 33) is 8 μm or less, which is smaller than the comparative steel (No. 1, 2, 26, 30). Can be confirmed. And it can confirm that this has achieved high toughness. As described above, in the present invention, a steel structure mainly composed of lower bainite is obtained by optimizing the component composition and heat treatment conditions, and the graph also exhibits such a structure during the impact test. This demonstrates that the tear ridge spacing (fracture surface unit) is reduced, thereby providing high toughness.

更に表1の本発明鋼のうちJ*値が10以下の供試番号8、18、20、21、32は、脆化度ΔFATT(400℃で3000時間時効処理後の50%FATT(℃)−焼戻処理後の50%FATT(℃))がゼロとなるが、これは、本発明鋼においてJ*値を10以下に調整することによって経時劣化を起こす事なく、焼戻脆化温度域においても長時間の利用が可能である事を実証するものである。
上記の実験結果から明らかな様に、本発明で製造された鍛鋼品は、焼戻脆化温度域での長時間使用においても脆化することなく、焼戻脆化感受性が低く強靭性が維持されることが確認された。
Furthermore, among the steels of the present invention shown in Table 1, the test numbers 8, 18, 20, 21, and 32 having a J * value of 10 or less are the degree of embrittlement ΔFATT (50% FATT (° C.) after aging at 400 ° C. for 3000 hours) -50% FATT (° C) after tempering treatment is zero, but this is because the temper embrittlement temperature range does not cause deterioration over time by adjusting the J * value to 10 or less in the steel of the present invention. This proves that it can be used for a long time.
As is clear from the above experimental results, the forged steel product produced by the present invention has low temper embrittlement susceptibility and maintains toughness without embrittlement even when used for a long time in the temper embrittlement temperature range. It was confirmed that

上記で述べた様に本発明の鍛鋼成分で製造された鍛鋼品は、強靭性に優れしかも焼戻脆化感受性が低いため、各種のタービン用の部材として、また高温圧力容器材など広い用途分野で長期間にわたって使用できるため、安価なコスト部材として今後益々使用される可能性が高い。
As described above, the forged steel product produced with the forged steel component of the present invention is excellent in toughness and low in temper embrittlement sensitivity, so it can be used as a member for various turbines and in a wide range of applications such as high-temperature pressure vessel materials. Since it can be used for a long time, it is likely to be used more and more as an inexpensive cost member in the future.

Claims (2)

質量%で、
C :0.25〜0.35%、
Si:0.01〜0.20%、
Mn:0.01〜0.50%、
Ni:4.10〜4.70%、
Cr:1.6〜2.0%、
Mo:0.30〜0.50%、
V :0.07〜0.15%を含有し、
残部がFeおよび不可避的不純物からなる鍛鋼部材を、800〜1000℃で焼入れし、500〜700℃で焼戻しすることを特徴とする鍛鋼品の製造法。
% By mass
C: 0.25 to 0.35%,
Si: 0.01-0.20%,
Mn: 0.01 to 0.50%,
Ni: 4.10 to 4.70%,
Cr: 1.6-2.0%,
Mo: 0.30 to 0.50%,
V: 0.07 to 0.15% is contained,
A method for producing a forged steel product comprising quenching a forged steel member, the balance of which is Fe and inevitable impurities, at 800 to 1000 ° C and tempering at 500 to 700 ° C.
質量%で、
C :0.25〜0.35%、
Si:0.01〜0.20%、
Mn:0.01〜0.50%、
Ni:4.10〜4.70%、
Cr:1.6〜2.0%、
Mo:0.30〜0.50%、
V :0.07〜0.15%を含有し、
不可避的不純物であるP,SnおよびSbが、
P :0.01%以下、
Sn:0.005%以下、
Sb:0.003%以下で、
Si,Mn,P,Sn,およびSbの含有量については、
(Si+Mn)(P+Sn+Sb)×10≦10の関係を満たす、
残部がFeおよびその他の不可避的不純物からなる鍛鋼部材を、800〜1000℃で焼入れし、500〜700℃で焼戻しすることを特徴とする鍛鋼品の製造法。
% By mass
C: 0.25 to 0.35%,
Si: 0.01-0.20%,
Mn: 0.01 to 0.50%,
Ni: 4.10 to 4.70%,
Cr: 1.6-2.0%,
Mo: 0.30 to 0.50%,
V: 0.07 to 0.15% is contained,
The inevitable impurities P, Sn and Sb are
P: 0.01% or less,
Sn: 0.005% or less,
Sb: 0.003% or less,
For the contents of Si, Mn, P, Sn, and Sb,
(Si + Mn) (P + Sn + Sb) × 10 4 ≦ 10 is satisfied,
A method for producing a wrought steel product comprising quenching a forged steel member, the balance of which is Fe and other inevitable impurities, at 800 to 1000 ° C and tempering at 500 to 700 ° C.
JP2009189687A 2009-08-19 2009-08-19 Method for manufacturing forged steel article superior in toughness Pending JP2011042812A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009189687A JP2011042812A (en) 2009-08-19 2009-08-19 Method for manufacturing forged steel article superior in toughness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009189687A JP2011042812A (en) 2009-08-19 2009-08-19 Method for manufacturing forged steel article superior in toughness

Publications (1)

Publication Number Publication Date
JP2011042812A true JP2011042812A (en) 2011-03-03

Family

ID=43830442

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009189687A Pending JP2011042812A (en) 2009-08-19 2009-08-19 Method for manufacturing forged steel article superior in toughness

Country Status (1)

Country Link
JP (1) JP2011042812A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2492680A1 (en) 2011-02-28 2012-08-29 Tanita Corporation Method of purifying 8-isoprostane
US20130323075A1 (en) * 2012-06-04 2013-12-05 General Electric Company Nickel-chromium-molybdenum-vanadium alloy and turbine component
CN111705269A (en) * 2020-07-09 2020-09-25 河南中原特钢装备制造有限公司 Low-silicon steel 27NiCrMoV15-6 and smelting continuous casting production process thereof
CN114774630A (en) * 2022-04-21 2022-07-22 河南中原特钢装备制造有限公司 Low-cost low-alloy ultrahigh-strength steel and manufacturing method thereof
CN115874029A (en) * 2022-12-22 2023-03-31 河南中原特钢装备制造有限公司 Grain refinement method for high-alloy Cr-Ni-Mo-V steel hollow part
CN115927967A (en) * 2022-12-22 2023-04-07 美利林科技(攀枝花)有限公司 High-toughness steel forging for ball mill and preparation process thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0219446A (en) * 1988-07-05 1990-01-23 Toshiba Corp Turbine rotor
JP2000161006A (en) * 1998-11-25 2000-06-13 Hitachi Ltd Steam turbine blade, steam turbine using it, steam turbine power generating plant, and high strength martensite steel

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0219446A (en) * 1988-07-05 1990-01-23 Toshiba Corp Turbine rotor
JP2000161006A (en) * 1998-11-25 2000-06-13 Hitachi Ltd Steam turbine blade, steam turbine using it, steam turbine power generating plant, and high strength martensite steel

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2492680A1 (en) 2011-02-28 2012-08-29 Tanita Corporation Method of purifying 8-isoprostane
US20130323075A1 (en) * 2012-06-04 2013-12-05 General Electric Company Nickel-chromium-molybdenum-vanadium alloy and turbine component
CN103451571A (en) * 2012-06-04 2013-12-18 通用电气公司 Nickel-chromium-molybdenum-vanadium alloy and turbine component
CN111705269A (en) * 2020-07-09 2020-09-25 河南中原特钢装备制造有限公司 Low-silicon steel 27NiCrMoV15-6 and smelting continuous casting production process thereof
CN114774630A (en) * 2022-04-21 2022-07-22 河南中原特钢装备制造有限公司 Low-cost low-alloy ultrahigh-strength steel and manufacturing method thereof
CN114774630B (en) * 2022-04-21 2024-05-03 河南中原特钢装备制造有限公司 Low-cost low-alloy ultrahigh-strength steel and manufacturing method thereof
CN115874029A (en) * 2022-12-22 2023-03-31 河南中原特钢装备制造有限公司 Grain refinement method for high-alloy Cr-Ni-Mo-V steel hollow part
CN115927967A (en) * 2022-12-22 2023-04-07 美利林科技(攀枝花)有限公司 High-toughness steel forging for ball mill and preparation process thereof

Similar Documents

Publication Publication Date Title
JP5574953B2 (en) Heat-resistant steel for forging, method for producing heat-resistant steel for forging, forged parts, and method for producing forged parts
KR102037086B1 (en) Low alloy steel for geothermal power generation turbine rotor, and low alloy material for geothermal power generation turbine rotor and method for manufacturing the same
WO2011037210A1 (en) High-strength high-toughness cast steel material and manufacturing method therefor
JP5659758B2 (en) TMCP-Temper type high-strength steel sheet with excellent drop weight characteristics after PWHT that combines excellent productivity and weldability
JP2011042812A (en) Method for manufacturing forged steel article superior in toughness
CN104451086B (en) The manufacture method of steamturbine rotor
JP5869739B1 (en) Turbine rotor material for geothermal power generation and method for manufacturing the same
JPH08333657A (en) Heat resistant cast steel and its production
JP2002167652A (en) Thin sheet material excellent in high strength-high fatigue resisting characteristic
JP2010138465A (en) Heat resistant steel having excellent creep strength, and method for producing the same
JP2002285290A (en) High strength and highly fatigue resistant steel for structural purpose and production method therefor
CN113774270A (en) High-strength high-toughness precipitation hardening stainless steel bar and preparation method thereof
JP2001073092A (en) 9-12% Cr HEAT RESISTING STEEL EXCELLENT IN HIGH TEMPERATURE STRENGTH AND TOUGHNESS, AND ITS MANUFACTURE
JP2002161342A (en) Structural steel superior in strength, fatigue resistance and corrosion resistance
JP2016065265A (en) Heat resistant steel for steam turbine rotor blade and steam turbine rotor blade
KR101098485B1 (en) Material for generator rotor shaft and generator
JP4177136B2 (en) Method for producing B-containing high Cr heat resistant steel
JP5981357B2 (en) Heat resistant steel and steam turbine components
JPH05311345A (en) Ferritic heat resistant steel excellent in high temperature strength and toughness
JP2022553970A (en) Chromium steel sheet excellent in high-temperature oxidation resistance and high-temperature strength, and method for producing the same
JP5996403B2 (en) Heat resistant steel and method for producing the same
CN111101080A (en) High-temperature-resistant die steel and manufacturing method thereof
JP2004018897A (en) High-chromium alloy steel and turbine rotor using this
JPH1036944A (en) Martensitic heat resistant steel
JPH01230723A (en) Manufacture of turbine rotor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110801

A977 Report on retrieval

Effective date: 20130607

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20130619

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130808

RD03 Notification of appointment of power of attorney

Effective date: 20130808

Free format text: JAPANESE INTERMEDIATE CODE: A7423

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131105