JPH05113106A - High purity heat resistant steel and manufacture of high and low pressure integrated type turbine rotor made of high purity heat resistant steel - Google Patents

High purity heat resistant steel and manufacture of high and low pressure integrated type turbine rotor made of high purity heat resistant steel

Info

Publication number
JPH05113106A
JPH05113106A JP29781091A JP29781091A JPH05113106A JP H05113106 A JPH05113106 A JP H05113106A JP 29781091 A JP29781091 A JP 29781091A JP 29781091 A JP29781091 A JP 29781091A JP H05113106 A JPH05113106 A JP H05113106A
Authority
JP
Japan
Prior art keywords
turbine rotor
resistant steel
low pressure
less
purity heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29781091A
Other languages
Japanese (ja)
Inventor
Tsukasa Azuma
司 東
Yasuhiko Tanaka
泰彦 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Steel Works Ltd
Original Assignee
Japan Steel Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Steel Works Ltd filed Critical Japan Steel Works Ltd
Priority to JP29781091A priority Critical patent/JPH05113106A/en
Publication of JPH05113106A publication Critical patent/JPH05113106A/en
Pending legal-status Critical Current

Links

Landscapes

  • Turbine Rotor Nozzle Sealing (AREA)
  • Forging (AREA)

Abstract

PURPOSE:To provide both of high temperature creep strength and tenacity by forging-forming a steel ingot, which consists of a high purity heat resistant steel, into a turbine rotor body of a desired shape, heating the turbine rotor body for quenching, and tempering the quenched turbine rotor body once or more times. CONSTITUTION:High purity heat resistant steel contains C: 0.05-0.2weight%, Ni: 0.5-1.5weight%, Cr: 8-12weight%, Mo: 0.5-2weight%, V: 0.1-0.5weight%, and N: 0.01-0.08weight%, and the remained consists of Fe and unavoidable impurity. Allowable content among the unavoidable impurity is Si: less than 0.1weght%, Mn: less than 0.1weight%, P: less than 0.01weight%, and S: less than 0.005weight%. A lump of steel which consists of high purity heat resistant steel is heated up to 980-1,120 deg.C to be hardened and tempered at 550-700 deg.C more than once to produce a high and low pressure integrated type turbine rotor. It is thus possible to provide the high and low pressure integrated type turbine rotor with excellent high temperature creep strength and excellent tenacity.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、優れた高温クリープ
強さと靱性とを備えており、高圧部と低圧部とを一体化
した蒸気タービンのロータ軸等に用いられる高純度耐熱
鋼およびこの高純度耐熱鋼を用いた高低圧一体型タービ
ンロータの製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention has excellent high temperature creep strength and toughness and is used for a rotor shaft of a steam turbine in which a high pressure part and a low pressure part are integrated, and a high purity heat resistant steel. The present invention relates to a method of manufacturing a high-low pressure integrated turbine rotor using high-purity heat-resistant steel.

【0002】[0002]

【従来の技術】一般に、靱性と高温クリープ強さとは、
相反する特性であり、同時に両者を両立させることは難
しいことが知られている。しかしながら、例えば、高低
圧一体型のロータ軸などの耐熱材料では、両特性を兼ね
備えている必要がある。従来、高低圧一体型のロータに
は、CrMoV系耐熱鋼が用いられてきた。また、近年、
CrMoV鋼の改良材が適用されつつある(例えば、特公
昭54−19370号)。そして、いずれの材料も、そ
の製造過程では、全体を均一に加熱して焼入れしてい
る。
2. Description of the Related Art Generally, toughness and high temperature creep strength are
It is known that they have contradictory properties and it is difficult to satisfy both at the same time. However, for example, a heat resistant material such as a high and low pressure integrated rotor shaft needs to have both properties. Conventionally, CrMoV heat-resisting steel has been used for high- and low-pressure integrated rotors. In recent years,
An improved material of CrMoV steel is being applied (for example, Japanese Patent Publication No. 54-19370). Then, in the manufacturing process, all the materials are uniformly heated and quenched.

【0003】[0003]

【発明が解決しようとする課題】しかし、いずれの材料
でも充分な高温クリープ強さを得ようとした場合、高靱
性を要求される低圧部の軸芯においては、破面遷移温度
を0℃以下にすることは達成できていない。そして、ま
た、12Cr 系耐熱鋼は、高温クリープ強さには優れて
いるものの、靱性が不足しているため、高圧ロータある
いは中圧ロータ用材料としてのみ使用されてきた。した
がって12Cr 系耐熱鋼では、例えば高低圧一体型ロー
タ用材料として用いた場合、高圧部に必要とされる高温
クリープ強さには優れているものの、低圧部において充
分な靱性が得られない。本発明は、12Cr 系耐熱鋼に
おいて、優れた高温クリープ強さを維持すると同時に、
優れた靱性をも兼ね備えた12Cr 系耐熱鋼を提供し、
さらに、優れた高温クリープ強さと優れた靱性とを兼ね
備えた高低圧一体型タービンロータの製造方法を提供す
ることを目的とする。
However, when it is attempted to obtain sufficient high temperature creep strength with any of the materials, the fracture surface transition temperature is 0 ° C. or less in the shaft core of the low pressure part which requires high toughness. Has not been achieved. Further, although the 12Cr heat resistant steel is excellent in high temperature creep strength, but lacks in toughness, it has been used only as a material for a high pressure rotor or a medium pressure rotor. Therefore, when the 12Cr heat resistant steel is used, for example, as a material for a high / low pressure integral type rotor, the high temperature creep strength required in the high pressure portion is excellent, but sufficient toughness is not obtained in the low pressure portion. The present invention maintains excellent high temperature creep strength in 12Cr heat resistant steel,
Providing 12Cr heat resistant steel that also has excellent toughness,
Further, it is an object of the present invention to provide a method for manufacturing a high / low pressure integrated turbine rotor having both excellent high temperature creep strength and excellent toughness.

【0004】[0004]

【課題を解決するための手段】本願発明は、12Cr 系
耐熱鋼において、高温クリープ強さを低下させることな
く靱性を大幅に改善するために、従来の12Cr 系耐熱
鋼よりも、Ni 含有量を増加させ、Si 、Mn 、および
その他の不可避的不純物の含有量を低減させた、新規の
耐熱鋼である。その具体的な構成は、重量%で、C:
0.05〜0.2%、Ni :0.5〜1.5%、Cr :
8〜12%、Mo :0.5〜2%、V:0.1〜0.5
%、N:0.01〜0.08%を含有し、残部がFe お
よび不可避的不純物からなり、該不可避的不純物のう
ち、重量%でSi :0.1%以下、Mn :0.1%以
下、P:0.01%以下、S:0.005%以下を許容
含有量とする高純度耐熱鋼である。そして、第2の発明
は、前記組成に、重量%でNb :0.01〜0.15
%、Ta :0.01〜0.15%、B:0.005%〜
0.03%の一種又は二種以上を含有することを特徴と
する。
According to the present invention, in order to significantly improve the toughness of a 12Cr-based heat-resistant steel without lowering the high temperature creep strength, the Ni content is set higher than that of the conventional 12Cr-based heat-resistant steel. It is a new heat-resisting steel with increased content and reduced content of Si, Mn, and other unavoidable impurities. Its specific composition is C:
0.05-0.2%, Ni: 0.5-1.5%, Cr:
8-12%, Mo: 0.5-2%, V: 0.1-0.5
%, N: 0.01 to 0.08%, the balance consisting of Fe and unavoidable impurities. Of these unavoidable impurities, Si: 0.1% or less and Mn: 0.1% by weight. Hereinafter, P: 0.01% or less and S: 0.005% or less are high-purity heat-resistant steels with allowable contents. And 2nd invention is Nb: 0.01-0.15 by weight% in the said composition.
%, Ta: 0.01 to 0.15%, B: 0.005% to
It is characterized by containing 0.03% of one kind or two or more kinds.

【0005】さらに、第3の発明である、高純度耐熱鋼
からなる高低圧一体型タービンロータの製造方法は、原
材料を溶解、精錬、造塊する工程と、前記造塊により得
られた請求項1または2記載の組成を有する高純度耐熱
鋼からなる鋼塊より所望形状のタービンローター素体に
鍛造成形する工程と、前記タービンロータ素体につい
て、980〜1120℃に加熱して焼入れする工程と、
前記焼入れされたタービンロータ素体に550℃〜70
0℃の焼戻しを1回以上施す工程とを具備することを特
徴とする。
Furthermore, a third aspect of the present invention, which is a method for producing a high-low pressure integrated turbine rotor made of high-purity heat-resistant steel, comprises the steps of melting, refining, and agglomerating raw materials; A step of forging a turbine rotor body of a desired shape from a steel ingot made of high-purity heat-resistant steel having the composition described in 1 or 2, and a step of heating the turbine rotor body to 980 to 1120 ° C. and quenching it. ,
550 ° C. to 70 ° C. on the quenched turbine rotor body
And a step of performing tempering at 0 ° C. once or more.

【0006】第4の発明の高純度耐熱鋼からなる高低圧
一体型タービンロータの製造方法は、タービンロータ素
体について、蒸気タービンの稼働環境における高圧部お
よび中圧部に相当する部分を980〜1150℃、低圧
部に相当する部分を950〜1120℃で、かつ、低圧
部と高圧部との温度差が30〜80℃となるようにそれ
ぞれ加熱して焼入れする工程を有することを特徴とす
る。
According to a fourth aspect of the present invention, there is provided a method for manufacturing a high-low pressure integrated turbine rotor made of high-purity heat-resistant steel, wherein the turbine rotor body has portions 980 to 980 corresponding to a high pressure portion and an intermediate pressure portion in an operating environment of a steam turbine. 1150 ° C., a portion corresponding to the low pressure portion is heated to 950 to 1120 ° C. and a temperature difference between the low pressure portion and the high pressure portion is 30 to 80 ° C. ..

【0007】[0007]

【作用】次に、本発明鋼で含有する各元素の作用と、そ
の限定理由について説明する。 C:0.05〜0.2% Cは、マルテンサイト変態を促進させるとともに、合金
中のFe 、Cr、Mo、V、Nb などと結合して炭化物を
形成し、室温引張強さおよび高温クリープ強さを向上さ
せる。しかし、C含有量が0.05%未満では充分な室
温引張強さ、高温クリープ強さが得られず、また、0.
2%を超えて含有させると、低温靱性が劣化し、さら
に、炭化物の粗大化が起こりやすくなり高温クリープ強
さも劣化するので、その含有量を0.05〜0.2%に
限定した。
Next, the action of each element contained in the steel of the present invention,
The reason for the limitation will be described. C: 0.05 to 0.2% C promotes martensitic transformation, and at the same time alloys
Carbides by combining with Fe, Cr, Mo, V, Nb, etc.
Form and improve room temperature tensile strength and high temperature creep strength
Let However, if the C content is less than 0.05%, a sufficient amount of
Warm tensile strength and high temperature creep strength were not obtained, and 0.
If the content exceeds 2%, the low temperature toughness deteriorates, and
In addition, coarsening of carbides easily occurs and high temperature creep strength increases.
Since it also deteriorates, its content should be 0.05-0.2%.
Limited

【0008】Ni :0.5〜1.5% Ni は本発明鋼において、靱性を向上させるが、高温ク
リープ強さを低下させる作用を有している。しかし、そ
の含有量が0.5%未満では靱性の向上が認められず、
また1.5%を超えて含有させると従来材と同等の高温
クリープ強さを維持することが難しくなるので、その含
有量を0.5%〜1.5%に限定した。
Ni: 0.5 to 1.5% Ni improves the toughness of the steel of the present invention, but has the effect of lowering the high temperature creep strength. However, if the content is less than 0.5%, no improvement in toughness is observed,
Further, if the content exceeds 1.5%, it becomes difficult to maintain the high temperature creep strength equivalent to that of the conventional material, so the content is limited to 0.5% to 1.5%.

【0009】Cr :8〜12% Cr は、本発明鋼の主要構成成分であり、耐酸化性およ
び高温耐食性を高め、さらに、合金中に固溶して、合金
の強度を向上させるが、その含有量が8%未満では、充
分な耐酸化性や強度を得ることができず、12%を超え
て含有させると有害なデルタフェライトを生成し、低温
における延性、靱性および高温におけるクリープ強さを
低下させるので、その含有量を8〜12%に限定した。Mo :0.5〜2% Mo は、合金中に固溶し、低温および高温における強度
を高めるとともに、微細炭化物を形成し、高温クリープ
強さを向上させる。また、焼戻し脆化の抑制にも寄与す
る元素である。その含有量が0.5%未満ではその作用
効果が少なく、2%を超えて含有させると逆にクリープ
強さが低下するので、その含有量を0.5〜2%に限定
した。
Cr: 8-12% Cr is a main constituent component of the steel of the present invention, which enhances the oxidation resistance and the high temperature corrosion resistance, and further forms a solid solution in the alloy to improve the strength of the alloy. When the content is less than 8%, sufficient oxidation resistance and strength cannot be obtained, and when the content exceeds 12%, harmful delta ferrite is formed, and ductility at low temperature, toughness, and creep strength at high temperature are reduced. Therefore, the content is limited to 8 to 12%. Mo: 0.5 to 2% Mo forms a solid solution in the alloy, enhances the strength at low temperature and high temperature, forms fine carbides, and improves high temperature creep strength. It is also an element that contributes to the suppression of temper embrittlement. If its content is less than 0.5%, its action and effect are small, and if it exceeds 2%, the creep strength decreases conversely, so its content was limited to 0.5-2%.

【0010】V:0.1〜0.5% Vは、微細炭化物、炭窒化物を形成、高温クリープ強さ
を向上させるが、その含有量が0.1%未満ではその作
用効果が不十分であり、下限を0.1%とした。また、
0.5%を超えて含有させるとデルタフェライトを生成
し、高温クリープ強さが低下するのでその上限を0.5
%とした。N:0.01〜0.08% Nは、Nb 、Vなどと結合して窒化物を形成し、高温ク
リープ強さを向上させるが、その含有量が0.01%未
満では充分な強度、および高温クリープ強さを得ること
ができず、0.08%を超えて含有させると、鋼塊の製
造が困難となり、かつ熱間加工性が悪くなるので、その
含有量を0.01〜0.08%に限定した。
V: 0.1 to 0.5% V forms fine carbides and carbonitrides and improves high temperature creep strength, but if its content is less than 0.1%, its action and effect are insufficient. And the lower limit was made 0.1%. Also,
If the content exceeds 0.5%, delta ferrite is formed and the high temperature creep strength decreases, so the upper limit is 0.5.
%. N: 0.01 to 0.08% N combines with Nb, V, etc. to form a nitride and improves high temperature creep strength, but if its content is less than 0.01%, sufficient strength, And high temperature creep strength cannot be obtained, and if the content exceeds 0.08%, it becomes difficult to manufacture a steel ingot and the hot workability deteriorates, so the content is set to 0.01 to 0. It was limited to 0.08%.

【0011】Nb :0.01〜0.15% Nb は、微細炭化物、炭窒化物を形成し、高温クリープ
強さを向上させるとともに、結晶粒の微細化を促進し、
低温靱性を向上させるのに必要な元素であり、所望によ
り添加される。その作用効果を得るためには、少なくと
も0.01%含有させる必要がある。しかし、0.15
%を超えて含有させると、粗大な炭化物および炭窒化物
が析出し、靱性を低下させるため、その上限を0.15
%とした。Ta :0.01〜0.15% Ta はNb と同様の作用を有し、高温クリープ強さを向
上させるとともに、低温靱性の向上に寄与するので、所
望により添加する。その含有量が0.01%未満では、
上記作用効果が不十分であり、0.15%を超えて含有
させると、粗大な炭化物および炭窒化物が析出し、靱性
を低下させるため、その含有量を0.01〜0.15%
に限定した。なお、Nb と複合添加する場合には、Nb
+Ta の含有量を0.15%以下とするのが望ましい。
Nb: 0.01 to 0.15% Nb forms fine carbides and carbonitrides, improves high-temperature creep strength, and promotes grain refinement.
It is an element necessary for improving the low temperature toughness and is added if desired. In order to obtain the effect, it is necessary to contain at least 0.01%. But 0.15
%, Coarse carbides and carbonitrides precipitate and the toughness decreases, so the upper limit is 0.15.
%. Ta: 0.01 to 0.15% Ta has the same action as Nb and improves the high temperature creep strength and contributes to the improvement of the low temperature toughness, so it is added if desired. If the content is less than 0.01%,
The above-described effects are insufficient, and if the content exceeds 0.15%, coarse carbides and carbonitrides precipitate and the toughness decreases, so the content is 0.01 to 0.15%.
Limited to. When Nb is added in combination, Nb
It is desirable that the content of + Ta is 0.15% or less.

【0012】B:0.005%〜0.03% Bは微量添加で、焼入れ性が増大し、靱性を向上させる
とともに粒界の炭化物の析出凝集を抑え、高温クリープ
強さの向上に寄与するので、所望により添加される。そ
の含有量は0.005%未満では上記効果が不十分であ
り、0.03%を超えると高温クリープ延性が著しく低
下するため、その含有量を0.005〜0.03%に限
定した。
B: 0.005% to 0.03% B is added in a small amount to increase hardenability, improve toughness, suppress precipitation and agglomeration of carbides at grain boundaries, and contribute to improvement in high temperature creep strength. Therefore, it is added if desired. If the content is less than 0.005%, the above effect is insufficient, and if it exceeds 0.03%, the high temperature creep ductility is remarkably reduced, so the content was limited to 0.005 to 0.03%.

【0013】不可避的不純物(Si :0.1%以下、M
n :0.1%以下、P:0.01%以下、S:0.00
5%以下) Si は、脱酸材として通常使用されるが、Si 含有量が
高いと、鋼塊内部の偏析が増加し、また、焼戻し脆化感
受性が極めて大となり切欠靱性が損なわれるため、極力
低減することが望ましい。現在、真空カーボン脱酸法な
どの適用により、Si 含有量を低減させているが、その
許容含有量を工業的に可能な精錬技術の限界を考慮して
0.1%以下に制限した。Mn は、溶解時の脱酸、脱硫
剤として一般的に使用されている。しかし、MnはSと
結合して、非金属介在物を形成し、靱性を低下させ、ま
た、Si と同様に焼戻し脆化感受性を増大させる作用が
ある。現在、炉外精錬などの精錬技術によりS量の低減
が容易となり、Mn を合金成分として添加する必要がな
くなってきている。本発明では、Mn を不可避的不純物
とし、その許容含有量を精錬技術の限界を考慮して0.
1%以下に制限した。
Inevitable impurities (Si: 0.1% or less, M
n: 0.1% or less, P: 0.01% or less, S: 0.00
5% or less) Si is usually used as a deoxidizing material, but if the Si content is high, segregation inside the steel ingot increases, and the temper embrittlement susceptibility becomes extremely large, and the notch toughness is impaired. It is desirable to reduce it as much as possible. At present, the Si content is reduced by applying a vacuum carbon deoxidation method or the like, but the allowable content is limited to 0.1% or less in consideration of the limits of industrially possible refining technology. Mn is generally used as a deoxidizing and desulfurizing agent during dissolution. However, Mn combines with S to form non-metallic inclusions, lowers toughness, and has the effect of increasing temper embrittlement susceptibility like Si. Currently, refining techniques such as out-of-furnace refining make it easy to reduce the amount of S, and it is no longer necessary to add Mn as an alloy component. In the present invention, Mn is an unavoidable impurity, and its allowable content is 0.
It was limited to 1% or less.

【0014】Pは、焼戻し脆化感受性を増大させる元素
であり、経年劣化を減少させ、信頼性を向上させるため
には、極力減少させることが望ましく、その許容含有量
を精錬技術の限界を考慮して0.01%以下とした。な
お、さらに、0.005%以下とするのが望ましい。S
は、大型鋼塊においてV偏析および逆V偏析の生成傾向
を助長し、またMn、Nb 、V、Fe などと硫化物を形
成し、靱性を劣化させるので、とりべ精錬などにより極
力低減することが望ましく、その許容含有量を現状の精
錬技術の限界を考慮して0.005%以下とした。
P is an element that increases temper embrittlement susceptibility, and it is desirable to reduce P as much as possible in order to reduce aging deterioration and improve reliability. The allowable content of P is taken into consideration in the limit of refining technology. To 0.01% or less. Furthermore, it is desirable that the content be 0.005% or less. S
Promotes the tendency of V segregation and reverse V segregation in large steel ingots, and also forms sulfides with Mn, Nb, V, Fe, etc., which deteriorates toughness, so it should be reduced as much as possible by ladle refining. However, the allowable content is set to 0.005% or less in consideration of the limits of the current refining technology.

【0015】また、その他の不可避的不純物として、A
s 、Sn 、Sb が挙げられる。これらの不純物は、Pと
同様に焼戻し脆化感受性を増大させる元素であり、極力
低減することが望ましい。しかし、これらの不純物元素
は、原材料に付随して不可避的に混入するものであり、
精錬によって除去することは困難である。したがって、
原材料の厳選によるところが大きく、焼戻し脆化感受性
低減の見地からAs :0.008%以下、Sn :0.0
1%以下、Sb :0.005%以下とすることが望まし
い。
As other unavoidable impurities, A
Examples include s, Sn and Sb. Similar to P, these impurities are elements that increase temper embrittlement susceptibility, and it is desirable to reduce them as much as possible. However, these impurity elements are inevitably mixed with the raw materials,
It is difficult to remove by refining. Therefore,
This is largely due to careful selection of raw materials. From the standpoint of reducing temper embrittlement susceptibility, As: 0.008% or less, Sn: 0.0
It is desirable that the content be 1% or less and Sb: 0.005% or less.

【0016】上記鋼種を用いて、本願発明の製造方法に
よりタービンロータを製造すれば、鋼塊は、焼入れ時の
加熱により組織はオ−ステナイト化され、焼入れでマル
テンサイト変態して十分な強度が得られ、さらに、焼戻
しによって靱性が向上する。上記焼入れ時の加熱温度
を、高、中圧部と、低圧部とで異ならせることにより、
高、中圧部では、高温クリープ強さの向上効果が大き
く、低圧部では靱性の向上効果が大きくなり、使用環境
に適した機械的特性が得られる。
When a turbine rotor is manufactured by the manufacturing method of the present invention using the above steel types, the structure of the steel ingot is austenitized by the heating at the time of quenching, and the martensite transformation by quenching causes sufficient strength. Further, the toughness is improved by tempering. The heating temperature at the time of quenching is different between the high and medium pressure parts and the low pressure part,
In the high and medium pressure parts, the effect of improving the high temperature creep strength is large, and in the low pressure part, the effect of improving the toughness is large, and the mechanical properties suitable for the operating environment are obtained.

【0017】次ぎに、上記焼入れ時の加熱温度を限定し
た理由を述べる。焼入れ加熱温度 (均一に加熱する場合)加熱温度 :980〜1120℃ 高低圧一体型タービンロータを製造する際の熱処理にお
いて、全体を均一に加熱する場合に、焼入れ時のオース
テナイト化温度は、980℃未満では、十分な高温クリ
ープ強さが得られず、また1120℃を超えると、低温
靱性が低下することから上記範囲とする。
Next, the reason for limiting the heating temperature during the quenching will be described. Quenching heating temperature (when heating uniformly) Heating temperature : 980 to 1120 ° C. In heat treatment when manufacturing a high-low pressure integrated turbine rotor, when heating the whole uniformly, the austenitizing temperature during quenching is 980 ° C. If it is less than 1, the sufficient high temperature creep strength cannot be obtained, and if it exceeds 1120 ° C., the low temperature toughness decreases, so the above range is set.

【0018】(高中圧部と低圧部の加熱温度に差を設け
る場合)加熱温度 :高中圧部 980〜1150℃、低圧部 95
0〜1120℃、高中圧部温度−低圧部温度 30〜8
0℃ 高中圧部と、低圧部の加熱温度に差異を設ける場合に、
高中圧部のオーステナイト化温度は、980℃未満で
は、十分な高温クリープ強さが得られず、また1150
℃を超えると、高温での切欠弱化が認められるためこの
範囲とする。そして、低圧部のオーステナイト化温度
は、950℃未満では、フェライト相が生成しやすく、
低温の強度が十分に得られず、また、1120℃を超え
ると、オーステナイト結晶粒が粗大化してしまうため、
低温靱性が低下することから、この範囲とする。
(When providing a difference in heating temperature between the high-middle pressure portion and the low-pressure portion) Heating temperature : high-middle pressure portion 980 to 1150 ° C., low-pressure portion 95
0 to 1120 ° C, high intermediate pressure part temperature-low pressure part temperature 30 to 8
0 ℃ In case of providing a difference in heating temperature between high and medium pressure parts and low pressure part,
If the austenitizing temperature of the high-medium pressure portion is less than 980 ° C, sufficient high temperature creep strength cannot be obtained, and 1150
When the temperature exceeds ℃, notch weakening at high temperature is recognized, so the range is set to this range. When the austenitizing temperature of the low pressure part is less than 950 ° C, a ferrite phase is easily generated,
If the strength at low temperature is not sufficiently obtained, and if it exceeds 1120 ° C., the austenite crystal grains become coarse,
Since the low temperature toughness decreases, it is set to this range.

【0019】なお、高中圧部のオーステナイト化温度
は、低圧部のオーステナイト化温度よりも、30〜80
℃高い温度範囲で選ばれるが、その作用効果を得るため
には30℃以上の温度差を付ける必要がある。また、そ
の温度差が80℃を超えると製造が難しいため、その温
度範囲を30〜80℃に限定した。焼戻し温度:550〜700℃ 焼戻し温度については、550℃未満では十分な焼戻し
効果が得られず、従って良好な靱性が得られない。ま
た、700℃を超えた焼戻し温度では、所望の強度が得
られないため、焼戻し温度を550〜700℃と限定し
た。
The austenitizing temperature of the high and medium pressure parts is 30 to 80 higher than the austenitizing temperature of the low pressure part.
Although it is selected in a temperature range higher by ° C, it is necessary to make a temperature difference of 30 ° C or more in order to obtain the effect. Further, if the temperature difference exceeds 80 ° C., the production is difficult, so the temperature range is limited to 30 to 80 ° C. Tempering temperature: 550 to 700 ° C. If the tempering temperature is lower than 550 ° C., a sufficient tempering effect cannot be obtained, and therefore good toughness cannot be obtained. Further, at a tempering temperature exceeding 700 ° C, the desired strength cannot be obtained, so the tempering temperature was limited to 550 to 700 ° C.

【0020】[0020]

【実施例】【Example】

(実施例1)真空誘導加熱炉を用いて、表1に示す組成
を有する発明鋼と比較鋼の50kg鋼塊を溶製し、つい
で、1150℃に加熱後、ロータ軸材形状に鍛造した。
これらの鍛造材から、試験片素材を切り出し、実際のロ
ータ軸材の軸芯相当の熱履歴をシミュレーションした熱
処理を行った。すなわち1025℃で10時間保持後、
定速度で徐冷却して焼入れした後、600℃で1回目の
焼戻しを施し、さらに、650℃で2回目の焼戻しを施
し、供試材とした。供試鋼No.1〜8は、本発明鋼で
あり、供試鋼No.9〜12は、比較鋼である。そのう
ち、供試鋼NO.9は、従来材の12Cr 鋼成分であ
る。これらの供試材の材料試験結果を表2に示す。材料
試験結果より明らかなように、発明鋼は、高温クリープ
強さ、靱性ともに優れていた。これに対し、比較鋼は高
温クリープ強さと靱性の両方を満足することはできなか
った。
(Example 1) Using a vacuum induction heating furnace, 50 kg of ingots of the invention steel and the comparative steel having the compositions shown in Table 1 were melted, and then heated to 1150 ° C and forged into a rotor shaft material shape.
From these forged materials, test piece materials were cut out and subjected to heat treatment by simulating a thermal history corresponding to the actual shaft core of the rotor shaft material. That is, after holding at 1025 ° C. for 10 hours,
After gradually cooling at a constant rate and quenching, the first tempering was performed at 600 ° C., and the second tempering was further performed at 650 ° C. to obtain a test material. Specimen No. Nos. 1 to 8 are the steels of the present invention, and the test steel Nos. 9 to 12 are comparative steels. Among them, the sample steel No. 9 is a conventional 12Cr steel component. Table 2 shows the material test results of these test materials. As is clear from the material test results, the invention steel was excellent in both high temperature creep strength and toughness. In contrast, the comparative steel could not satisfy both the high temperature creep strength and the toughness.

【0021】[0021]

【表1】 [Table 1]

【0022】[0022]

【表2】 [Table 2]

【0023】(実施例2)実施例1で示した発明鋼およ
び比較鋼を、実施例1と同様にして、溶製後、鍛造によ
り高低圧一体型のロータ軸材素体を得た。この素体のう
ち、使用時に高圧部、中圧部になる部分を1060℃に
加熱し、低圧部になる部分を1010℃に加熱して、焼
入れを行った。次いで、600℃で1回目の焼戻しを施
し、さらに、650℃で2回目の焼戻しを施して、供試
材を得た。この供試材を、高、中圧部と、低圧部とにつ
いてそれぞれ機械的特性を評価する試験を行い、その結
果を表3に示した。表3の結果から明らかなように、
高、中圧部は、優れた高温クリープ強さと、靱性を有し
ており、低圧部は、さらに優れた靱性が得られた。
Example 2 The invention steel and comparative steel shown in Example 1 were melted and forged in the same manner as in Example 1 to obtain a high-low pressure integral type rotor shaft material body. During use, the parts to be the high-pressure part and the intermediate-pressure part during use were heated to 1060 ° C., and the parts to be the low-pressure part were heated to 1010 ° C. for quenching. Then, the first tempering was performed at 600 ° C., and further the second tempering was performed at 650 ° C. to obtain a test material. This test material was subjected to a test for evaluating the mechanical properties of each of the high and medium pressure parts and the low pressure part, and the results are shown in Table 3. As is clear from the results in Table 3,
The high and medium pressure parts had excellent high temperature creep strength and toughness, and the low pressure part obtained more excellent toughness.

【0024】[0024]

【表3】 [Table 3]

【0025】[0025]

【発明の効果】以上説明したように、本発明の高純度耐
熱鋼によれば、高温クリープ強さに優れ、さらに、靱性
の著しく良好な高純度耐熱鋼として、かかる特性が要求
される、高圧部と低圧部を一体化したタービンロータ軸
材などの耐熱材料として適用が可能である。また、焼戻
し脆化感受性に影響を及ぼす不純物元素含有量を低減さ
せることによって、より一層の信頼性が得られる。な
お、従来鋼よりも、優れた高温クリープ強さが得られる
ことから、本鋼種が高低圧一体型のロータ軸材のみなら
ず、比較的靱性を要求されない中圧、高圧、超高圧用の
ロータ軸材料などに適用の範囲が広がる効果もある。さ
らに、上記鋼種を用いて高低圧一体型タービンロータを
製造すれば、高温クリープ強さおよび靱性に優れたロー
タを得ることができる。そして、焼入れ温度を高、中圧
部と、低圧部とで異ならしめることにより、部位に応じ
て、適した機械的特性(高温クリープ強さ、靱性)が得
られる効果がある。
As described above, according to the high-purity heat-resistant steel of the present invention, such characteristics are required as a high-purity heat-resistant steel excellent in high-temperature creep strength and having extremely good toughness. It can be applied as a heat-resistant material such as a turbine rotor shaft material that integrates the low pressure part and the low pressure part. Further, further reliability can be obtained by reducing the content of the impurity element that affects the susceptibility to temper embrittlement. In addition, since this steel provides superior high-temperature creep strength than conventional steel, this steel type is not only for rotor shaft materials of high and low pressure integrated type, but also for medium-pressure, high-pressure, and ultra-high-pressure rotors that do not require relatively high toughness. It also has the effect of expanding the range of applications for shaft materials. Furthermore, if a high-low pressure integrated turbine rotor is manufactured using the above steel types, a rotor having excellent high temperature creep strength and toughness can be obtained. Then, by making the quenching temperature different between the high and medium pressure parts and the low pressure part, there is an effect that suitable mechanical properties (high temperature creep strength, toughness) can be obtained depending on the part.

【手続補正書】[Procedure amendment]

【提出日】平成3年12月11日[Submission date] December 11, 1991

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】発明の名称[Name of item to be amended] Title of invention

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【発明の名称】 高純度耐熱鋼、高純度耐熱鋼からなる
高低圧一体型タービンロータおよび高純度耐熱鋼からな
る高低圧一体型タービンロータの製造方法
Title: High-purity heat-resistant steel, high-low pressure integrated turbine rotor made of high-purity heat-resistant steel, and method of manufacturing high-low pressure integrated turbine rotor made of high-purity heat-resistant steel

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】特許請求の範囲[Name of item to be amended] Claims

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【請求項】 原材料を溶解、精錬、造塊する工程と、
前記造塊により得られた請求項1または2記載の組成を
有する高純度耐熱鋼からなる鋼塊より所望形状のタービ
ンローター素体に鍛造成形する工程と、前記タービンロ
ータ素体について、980〜1120℃に加熱して焼入
れする工程と、前記焼入れされたタービンロータ素体に
550℃〜700℃の焼戻しを1回以上施す工程とを具
備することを特徴とする高純度耐熱鋼からなる高低圧一
体型タービンロータの製造方法
4. dissolving raw materials, refining, comprising the steps of ingot making,
980 to 1120 for a step of forging a turbine rotor body of a desired shape from a steel ingot made of high-purity heat-resistant steel having the composition according to claim 1 or 2 obtained by the ingot casting, and the turbine rotor body. A high-pressure low-pressure one made of high-purity heat-resistant steel, characterized by comprising: a step of heating and quenching at 0 ° C .; and a step of subjecting the quenched turbine rotor body to tempering at 550 ° C. to 700 ° C. one or more times. Method for manufacturing body turbine rotor

【請求項】 タービンロータ素体について、蒸気ター
ビンの稼働環境における高圧部および中圧部に相当する
部分を980〜1150℃、低圧部に相当する部分を9
50〜1120℃で、かつ、低圧部と高圧部との温度差
が30〜80℃となるようにそれぞれ加熱して焼入れす
る工程を有することを特徴とする請求項記載の高純度
耐熱鋼からなる高低圧一体型タービンロータの製造方法
5. In a turbine rotor body, a portion corresponding to a high pressure portion and an intermediate pressure portion in an operating environment of a steam turbine is 980 to 1150 ° C., and a portion corresponding to a low pressure portion is 9 parts.
The high-purity heat-resistant steel according to claim 4, which has a step of heating and quenching at 50 to 1120 ° C and a temperature difference between the low pressure portion and the high pressure portion of 30 to 80 ° C, respectively. Method for manufacturing high and low pressure integrated turbine rotor

【手続補正3】[Procedure 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0001[Correction target item name] 0001

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0001】[0001]

【産業上の利用分野】この発明は、優れた高温クリープ
強さと靱性とを備えており、高圧部と低圧部とを一体化
した蒸気タービンのロータ軸等に用いられる高純度耐熱
鋼およびこの高純度耐熱鋼を用いた高低圧一体型タービ
ンロータならびにこの高低圧一体型タービンロータの製
造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention has excellent high temperature creep strength and toughness and is used for a rotor shaft of a steam turbine in which a high pressure part and a low pressure part are integrated, and a high purity heat resistant steel. The present invention relates to a high-low pressure integrated turbine rotor using high-purity heat-resistant steel and a method for manufacturing the high-low pressure integrated turbine rotor .

【手続補正4】[Procedure amendment 4]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0003[Name of item to be corrected] 0003

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0003】[0003]

【発明が解決しようとする課題】しかし、いずれの材料
でも充分な高温クリープ強さを得ようとした場合、高靱
性を要求される低圧部の軸芯においては、破面遷移温度
を0℃以下にすることは達成できていない。そして、ま
た、12Cr 系耐熱鋼は、高温クリープ強さには優れて
いるものの、靱性が不足しているため、高圧ロータある
いは中圧ロータ用材料としてのみ使用されてきた。した
がって12Cr 系耐熱鋼では、例えば高低圧一体型ロー
タ用材料として用いた場合、高圧部に必要とされる高温
クリープ強さには優れているものの、低圧部において充
分な靱性が得られない。本発明は、12Cr 系耐熱鋼に
おいて、優れた高温クリープ強さを維持すると同時に、
優れた靱性をも兼ね備えた12Cr 系耐熱鋼を提供し、
さらに、優れた高温クリープ強さと優れた靱性とを兼ね
備えた高低圧一体型タービンロータとその製造方法を提
供することを目的とする。
However, when it is attempted to obtain sufficient high temperature creep strength with any of the materials, the fracture surface transition temperature is 0 ° C. or less in the shaft core of the low pressure part which requires high toughness. Has not been achieved. Further, although the 12Cr heat resistant steel is excellent in high temperature creep strength, but lacks in toughness, it has been used only as a material for a high pressure rotor or a medium pressure rotor. Therefore, when the 12Cr heat resistant steel is used, for example, as a material for a high / low pressure integral type rotor, the high temperature creep strength required in the high pressure portion is excellent, but sufficient toughness is not obtained in the low pressure portion. The present invention maintains excellent high temperature creep strength in 12Cr heat resistant steel,
Providing 12Cr heat resistant steel that also has excellent toughness,
Furthermore, it is an object to provide a high-low pressure integrated type turbine rotor having both excellent and excellent high-temperature creep strength toughness and a method of manufacturing the same.

【手続補正5】[Procedure Amendment 5]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0005[Correction target item name] 0005

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0005】第2の発明の高低圧一体型タービンロータ
は、本発明の高純度耐熱鋼により構成されていることを
特徴とする。さらに、第の発明である、高純度耐熱鋼
からなる高低圧一体型タービンロータの製造方法は、原
材料を溶解、精錬、造塊する工程と、前記造塊により得
られた請求項1または2記載の組成を有する高純度耐熱
鋼からなる鋼塊より所望形状のタービンローター素体に
鍛造成形する工程と、前記タービンロータ素体につい
て、980〜1120℃に加熱して焼入れする工程と、
前記焼入れされたタービンロータ素体に550℃〜70
0℃の焼戻しを1回以上施す工程とを具備することを特
徴とする。
High and low pressure integrated turbine rotor of the second invention
Is composed of the high-purity heat-resistant steel of the present invention.
Characterize. Furthermore, the method for producing a high-low pressure integrated turbine rotor made of high-purity heat-resistant steel according to a fourth aspect of the invention is a step of melting, refining, and ingot raw materials, and claim 1 or 2 obtained by the ingot A step of forging a turbine rotor body of a desired shape from a steel ingot made of high-purity heat-resistant steel having the composition described above, and a step of heating the turbine rotor body to 980 to 1120 ° C. and hardening it.
550 ° C. to 70 ° C. on the quenched turbine rotor body
And a step of performing tempering at 0 ° C. once or more.

【手続補正6】[Procedure correction 6]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0006[Correction target item name] 0006

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0006】第の発明の高純度耐熱鋼からなる高低圧
一体型タービンロータの製造方法は、タービンロータ素
体について、蒸気タービンの稼働環境における高圧部お
よび中圧部に相当する部分を980〜1150℃、低圧
部に相当する部分を950〜1120℃で、かつ、低圧
部と高圧部との温度差が30〜80℃となるようにそれ
ぞれ加熱して焼入れする工程を有することを特徴とす
る。
According to a fifth aspect of the present invention, there is provided a method of manufacturing a high-low pressure integrated turbine rotor made of high-purity heat-resistant steel, wherein the turbine rotor body has portions 980 to 980 corresponding to a high-pressure portion and an intermediate-pressure portion in an operating environment of a steam turbine. 1150 ° C., a portion corresponding to the low pressure portion is heated to 950 to 1120 ° C. and a temperature difference between the low pressure portion and the high pressure portion is 30 to 80 ° C. ..

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 // B21K 3/04 6921−4E ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Office reference number FI technical display location // B21K 3/04 6921-4E

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 重量%で、C:0.05〜0.2%、N
i :0.5〜1.5%、Cr :8〜12%、Mo :0.
5〜2%、V:0.1〜0.5%、N:0.01〜0.
08%を含有し、残部がFe および不可避的不純物から
なり、該不可避的不純物のうち、重量%でSi :0.1
%以下、Mn :0.1%以下、P:0.01%以下、
S:0.005%以下を許容含有量とする高純度耐熱鋼
1. By weight%, C: 0.05-0.2%, N
i: 0.5 to 1.5%, Cr: 8 to 12%, Mo: 0.
5-2%, V: 0.1-0.5%, N: 0.01-0.
The content of Fe is 0.08% and the balance is Fe and unavoidable impurities. Of these unavoidable impurities, Si: 0.1% by weight.
% Or less, Mn: 0.1% or less, P: 0.01% or less,
S: High-purity heat-resistant steel with an allowable content of 0.005% or less
【請求項2】 請求項1記載の組成に、さらに重量%で
Nb :0.01〜0.15%、Ta :0.01〜0.1
5%、B:0.005%〜0.03%の一種又は二種以
上を含有する高純度耐熱鋼
2. The composition according to claim 1, further comprising Nb: 0.01 to 0.15% and Ta: 0.01 to 0.1% by weight.
High purity heat resistant steel containing 5%, B: 0.005% to 0.03% of one kind or two or more kinds.
【請求項3】 原材料を溶解、精錬、造塊する工程と、
前記造塊により得られた請求項1または2記載の組成を
有する高純度耐熱鋼からなる鋼塊より所望形状のタービ
ンローター素体に鍛造成形する工程と、前記タービンロ
ータ素体について、980〜1120℃に加熱して焼入
れする工程と、前記焼入れされたタービンロータ素体に
550℃〜700℃の焼戻しを1回以上施す工程とを具
備することを特徴とする高純度耐熱鋼からなる高低圧一
体型タービンロータの製造方法
3. A step of melting, refining and agglomerating raw materials,
980 to 1120 for a step of forging a turbine rotor body of a desired shape from a steel ingot made of high-purity heat-resistant steel having the composition according to claim 1 or 2 obtained by the ingot casting, and the turbine rotor body. A high-pressure low-pressure one made of high-purity heat-resistant steel, characterized by comprising: a step of heating and quenching at 0 ° C .; and a step of subjecting the quenched turbine rotor body to tempering at 550 ° C. to 700 ° C. one or more times. Method for manufacturing body turbine rotor
【請求項4】 タービンロータ素体について、蒸気ター
ビンの稼働環境における高圧部および中圧部に相当する
部分を980〜1150℃、低圧部に相当する部分を9
50〜1120℃で、かつ、低圧部と高圧部との温度差
が30〜80℃となるようにそれぞれ加熱して焼入れす
る工程を有することを特徴とする請求項3記載の高純度
耐熱鋼からなる高低圧一体型タービンロータの製造方法
4. In the turbine rotor body, a portion corresponding to a high pressure portion and an intermediate pressure portion in an operating environment of a steam turbine is 980 to 1150 ° C., and a portion corresponding to a low pressure portion is 9 parts.
The high-purity heat-resistant steel according to claim 3, further comprising a step of heating and quenching at a temperature of 50 to 1120 ° C and a temperature difference between the low pressure portion and the high pressure portion of 30 to 80 ° C. Method for manufacturing high and low pressure integrated turbine rotor
JP29781091A 1991-08-23 1991-10-19 High purity heat resistant steel and manufacture of high and low pressure integrated type turbine rotor made of high purity heat resistant steel Pending JPH05113106A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29781091A JPH05113106A (en) 1991-08-23 1991-10-19 High purity heat resistant steel and manufacture of high and low pressure integrated type turbine rotor made of high purity heat resistant steel

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP3-235605 1991-08-23
JP23560591 1991-08-23
JP29781091A JPH05113106A (en) 1991-08-23 1991-10-19 High purity heat resistant steel and manufacture of high and low pressure integrated type turbine rotor made of high purity heat resistant steel

Publications (1)

Publication Number Publication Date
JPH05113106A true JPH05113106A (en) 1993-05-07

Family

ID=26532226

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29781091A Pending JPH05113106A (en) 1991-08-23 1991-10-19 High purity heat resistant steel and manufacture of high and low pressure integrated type turbine rotor made of high purity heat resistant steel

Country Status (1)

Country Link
JP (1) JPH05113106A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0959747A (en) * 1995-08-25 1997-03-04 Hitachi Ltd High strength heat resistant cast steel, steam turbine casing, steam turbine electric power plant, and steam turbine
WO1997030272A1 (en) * 1996-02-16 1997-08-21 Hitachi, Ltd. Steam turbine power generating plant and steam turbine
US6174132B1 (en) 1994-02-22 2001-01-16 Hitachi, Ltd. Steam-turbine power plant and steam turbine
US6305078B1 (en) 1996-02-16 2001-10-23 Hitachi, Ltd. Method of making a turbine blade
US6358004B1 (en) 1996-02-16 2002-03-19 Hitachi, Ltd. Steam turbine power-generation plant and steam turbine
JP2007315291A (en) * 2006-05-25 2007-12-06 Toshiba Corp Steam turbine and steam turbine plant
CN108486313A (en) * 2018-03-27 2018-09-04 南阳飞龙汽车零部件有限公司 A kind of smelting technology promoting heat resisting steel intergranular degree of purity

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56102559A (en) * 1980-01-17 1981-08-17 Toshiba Corp Integrated high and low pressure rotor for steam turbine and its manufacture
JPS6267113A (en) * 1985-09-20 1987-03-26 Nippon Chiyuutankou Kk Production of heat resisting steel having excellent creep rupture resistance characteristic
JPS63153246A (en) * 1986-12-16 1988-06-25 Kawasaki Steel Corp Turbine rotor material for high temperature and high pressure
JPH02145751A (en) * 1988-11-25 1990-06-05 Toshiba Corp Cr alloy steel

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56102559A (en) * 1980-01-17 1981-08-17 Toshiba Corp Integrated high and low pressure rotor for steam turbine and its manufacture
JPS6267113A (en) * 1985-09-20 1987-03-26 Nippon Chiyuutankou Kk Production of heat resisting steel having excellent creep rupture resistance characteristic
JPS63153246A (en) * 1986-12-16 1988-06-25 Kawasaki Steel Corp Turbine rotor material for high temperature and high pressure
JPH02145751A (en) * 1988-11-25 1990-06-05 Toshiba Corp Cr alloy steel

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6174132B1 (en) 1994-02-22 2001-01-16 Hitachi, Ltd. Steam-turbine power plant and steam turbine
JPH0959747A (en) * 1995-08-25 1997-03-04 Hitachi Ltd High strength heat resistant cast steel, steam turbine casing, steam turbine electric power plant, and steam turbine
WO1997030272A1 (en) * 1996-02-16 1997-08-21 Hitachi, Ltd. Steam turbine power generating plant and steam turbine
US6129514A (en) * 1996-02-16 2000-10-10 Hitachi, Ltd. Steam turbine power-generation plant and steam turbine
US6305078B1 (en) 1996-02-16 2001-10-23 Hitachi, Ltd. Method of making a turbine blade
US6358004B1 (en) 1996-02-16 2002-03-19 Hitachi, Ltd. Steam turbine power-generation plant and steam turbine
JP2007315291A (en) * 2006-05-25 2007-12-06 Toshiba Corp Steam turbine and steam turbine plant
JP4745129B2 (en) * 2006-05-25 2011-08-10 株式会社東芝 Steam turbine and steam turbine plant
CN108486313A (en) * 2018-03-27 2018-09-04 南阳飞龙汽车零部件有限公司 A kind of smelting technology promoting heat resisting steel intergranular degree of purity

Similar Documents

Publication Publication Date Title
KR0175075B1 (en) Potor for steam turbine and manufacturing method thereof
EP0806490A1 (en) Heat resisting steel and steam turbine rotor shaft
JP3358951B2 (en) High strength, high toughness heat-resistant cast steel
JPH08176671A (en) Production of high-and low-pressure integral type turbine rotor
CN110997960B (en) Gas turbine disk material and heat treatment method therefor
JP3483493B2 (en) Cast steel for pressure vessel and method of manufacturing pressure vessel using the same
JPH05113106A (en) High purity heat resistant steel and manufacture of high and low pressure integrated type turbine rotor made of high purity heat resistant steel
JP2002167652A (en) Thin sheet material excellent in high strength-high fatigue resisting characteristic
JP3422658B2 (en) Heat resistant steel
JP2001073092A (en) 9-12% Cr HEAT RESISTING STEEL EXCELLENT IN HIGH TEMPERATURE STRENGTH AND TOUGHNESS, AND ITS MANUFACTURE
JPH11209851A (en) Gas turbine disk material
JP3819848B2 (en) Heat resistant steel and manufacturing method thereof
JP3504835B2 (en) Low alloy heat resistant cast steel and cast steel parts for steam turbines
JP3546127B2 (en) High-strength heat-resistant steel and turbine rotor for high-low pressure integrated rotor
JPH0472039A (en) High purity heat resistant steel
JP2000273582A (en) Cast steel for pressure vessel and production of pressure vessel using the same
JPH0931600A (en) Steam turbine rotor material for high temperature use
JPH1036944A (en) Martensitic heat resistant steel
JP5996403B2 (en) Heat resistant steel and method for producing the same
JPH01230723A (en) Manufacture of turbine rotor
JPH11217655A (en) High strength heat resistant steel and its production
JP2004018897A (en) High-chromium alloy steel and turbine rotor using this
JPS60245772A (en) Low alloy steel for rotor of integrated high and low pressure type steam turbine
JP2001049398A (en) High toughness heat resistant steel, and manufacture of turbine rotor
JP2001172737A (en) Low alloy heat resistant steel, producing method therefor and turbine rotor