GB2193836A - Vent liner and cover construction for galvanic cells - Google Patents

Vent liner and cover construction for galvanic cells Download PDF

Info

Publication number
GB2193836A
GB2193836A GB08716860A GB8716860A GB2193836A GB 2193836 A GB2193836 A GB 2193836A GB 08716860 A GB08716860 A GB 08716860A GB 8716860 A GB8716860 A GB 8716860A GB 2193836 A GB2193836 A GB 2193836A
Authority
GB
United Kingdom
Prior art keywords
cell
cover
sealing well
vent liner
liner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
GB08716860A
Other versions
GB8716860D0 (en
GB2193836B (en
Inventor
Alan Douglas Ayers
John Andrew Wesner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Edgewell Personal Care Brands LLC
Original Assignee
Eveready Battery Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eveready Battery Co Inc filed Critical Eveready Battery Co Inc
Publication of GB8716860D0 publication Critical patent/GB8716860D0/en
Publication of GB2193836A publication Critical patent/GB2193836A/en
Application granted granted Critical
Publication of GB2193836B publication Critical patent/GB2193836B/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/342Non-re-sealable arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/147Lids or covers
    • H01M50/166Lids or covers characterised by the methods of assembling casings with lids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/107Primary casings; Jackets or wrappings characterised by their shape or physical structure having curved cross-section, e.g. round or elliptic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/147Lids or covers
    • H01M50/166Lids or covers characterised by the methods of assembling casings with lids
    • H01M50/171Lids or covers characterised by the methods of assembling casings with lids using adhesives or sealing agents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/183Sealing members
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/183Sealing members
    • H01M50/186Sealing members characterised by the disposition of the sealing members
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2200/00Safety devices for primary or secondary batteries
    • H01M2200/20Pressure-sensitive devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Gas Exhaust Devices For Batteries (AREA)
  • Primary Cells (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Description

GB2193836A 1
SPECIFICATION
Vent liner and cover construction for galvanic cells This invention relates to a safe, non-resealable vent closure for galvanic cells, such as nonaque- 5 ous liquid oxyhalide cells, and more particularly to an improved vent liner and cell cover for such cells.
Reliable, long service life cells or batteries have been developed for portable electrically powered devices, such as tape recorders, playback machines. radio transmitters and receivers.
Electrochemical cell systems for such devices provide a long service life by utilizing highly 10 reactive anode materials, such as lithium or sodium, often in conjunction with high energy density nonaqueous liquid cathode materials and suitable salts, which are often referred to as cathode-electrolytes.
Galvanic cells typically are sealed to prevent loss of electrolyte by leakage. This is especially important in the case of nonaqueous liquid cathode cells, which typically employ highly reactive 15 oxyhalide or halide cathode-electrolytes. Any escape of such liquids, or their reaction products, could cause damage to the device employing the cell, or to the surface of a compartment or shelf where the cell is stored.
On the other hand, certain operating conditions can cause the internal pressure of such liquid cathode cells to increase markedly. This pressure can be caused by external sources, such as 20 fire, or internal sources, such as heat generated during charging. In certain situations, the anode can melt.and react directly with the liquid cathode in a vigourous, energy-releasing reaction. In the case of other galvanic cells, such as alkaline-zinc cells or carbon- zinc cells, such cells may generate large quantities of gas under certain conditions of use. Thus, if any of the foregoing cells were permanently sealed, the build-up of internal pressure within the cell could cause the 25 cell container to leak, bulge or even rupture, which can cause property and/or bodily damage.
It is therefore necessary to provide a vent for galvanic cells that is designed to remain sealed during normal operating conditions which the cell may encounter, but which will open when the pressure within the cell substantially increases. In the case of liquid cathode cells employing, for example, a lithium anode, the vent must open before the lithium melts and reacts directly with 30 the liquid cathode. Upon venting, most of the liquid cathode material is removed and is thus unavailable for reaction with the anode.
One type of vent assembly previously used for lithium-oxyhalide cells comprises a vent liner of a material such as polytetrafluoroethylene inserted into an orifice in a cell cover, with a seal member, such as a glass ball, forced into the orifice of the liner to seal the cell. Upon build-up 35 of a predetermined pressure within the cell, the seal member will be at least partially expelled from the liner orifice, thereby forming a permanent vent to the atmosphere. In manufacturing such a vent assembly, an orifice typically is formed by punching a hole in the cell cover.
Thereafter, the liner is inserted in the cell cover orifice. Preferably, the liner is flanged on its upper edge so that it will be accurately positioned upon insertion into the cell cover orifice. After 40 insertion, the flange abuts the upper surface of the cover, and a portion of the liner may extend beyond the bottom surface of the cover into the cell interior. Since the punching operation leaves a rough edge at the intersection of the walls of the orifice and the top of the cover, which could detrimentally score the liner, the liner is not forced or press-fitted into the cell cover orifice to provide a tight fit. 45 Punching out the hole in the cell cover to create an orifice into which the vent liner is inserted results in the orifice being outwardly tapered toward the bottom of the cell cover. As a result, a crevasse will exist between the cell cover and the vent liner. This crevasse will fill with cathode electrolyte fluid when the cell is filled. In consequence, an undesirable electrochemical cell system is created between the lithium in the cell, and oxygen or water vapour, or both, present 50 in the atmosphere directly outside the cell cover. The lithium is oxidized according to:
Li, Li+ + e The lithium ions will diffuse out of the cell through the electrolyte contained in the crevasse and 55 at the vent liner/cover interface, whereupon atmospheric water and oxygen are reduced accord ing to:
1 / 2 0 2 + H 2 0 + 2Li+ + 2e- 2LiOH 60 2LiOH + CO 2 Li 2 co 3 + /2 H 2 2 GB2193836A 2 One or more of these products, which are formed on the exterior of the cell cover, can be extremely corrosive, and, in combination with the driving potential of the undesirable electroche mical cell system, could cause leakage of the cell to accelerate with time and could also cause short-circuiting of the cell.
In order to obviate this problem, the present invention employs a novel cell construction 5 comprising a cell container which has a vent liner containment section that includes a sealing well having a bottom disposed toward the interior of the cell, an orifice in the sealing well and a support ledge at the bottom of the sealing well.
Thus, the present invention consists in an electrochemical cell, having a cell housing that contains the active components of the cell and comprising: 10 (a) a vent liner containment section formed in a part of the cell housing that comprises a sealing well having a bottom disposed toward the interior of the cell and a support ledge at the bottom of the sealing well, said support ledge defining an orifice in said sealing well; (b) a vent liner, having a vent liner orifice, disposed within the sealing well so that an end of the vent liner abuts the,support ledge, the orifice in the sealing well and the vent liner orifice 15 providing a path from the interior of the cell to the atmosphere, and (c) a seal member force-fitted within the vent.
liner, the vent liner and the seal member being such that the seal member will be at least partially expelled from the vent liner orifice at a predetermined internal gas pressure within the cell. 20 During manufacture, the support ledge provides a positive stop against which the vent liner cannot be further inserted, thereby eliminating the need for a flange at the top of the vent liner.
In addition, if the sealing well has a relatively smooth wall, as is produced by forming the sealing well from a smooth sheet of material by metal forming methods, then creation of intimate contact between the vent liner and the sealing well results in the elimination of the 25 crevasse between the cell cover and the vent liner, thereby effectively eliminating the path for diffusion of lithium ions to the outside of the cell. A sealant can be disposed at the interface of the sealing well and the vent liner to fill any surface imperfections at these interfacial surfaces.
Certain other novel structural features and manufacturing techniques can be advantageously employed in connection with this invention, as is explained more fully below. 30 The invention is further illustrated with reference to the accompanying drawings, in which:
Figure 1 is a vertical cross-sectional view of an electrochemical cell made in accordance with the present invention; Figure 2 is a horizontal cross-sectional view taken along line 2-2 of Figure 1; Figure 3 is an enlarged vertical-cross sectional view of the cell cover and the cell container of 35 the electrochemical cell shown in Figure 1, which shows in detail the cell cover and the vent liner of the cell; Figures 4A, 4B and 4D respectively are top, side and perspective views of a type of anode spring collector usable in a cell made in accordance with the present invention; Figure 4C is a perspective view of the material stock used to form the spring collector shown in Figures 4A, 40 4B and 4D; and Figures 5A-5F are side views of the cell cover during stages of its manufacture.
Referring in detail to Figure 1, there is shown a cross-sectional view of a cylindrical cell. The cell depicted is a nonaqueous electrochemical cell comprising an anode, a cathode collector and a liquid cathode-electrolyte. It will, however, be understood that the invention is equally applicable to cells of other shapes and configurations and of other contents, and the following description applies, mutatis mutandis, to such other cells.
The cathode-electrolyte comprises a solution of an ionically conductive solute dissolved in an active cathode depolarizer. The cathode depolarizer can be a liquid oxyhalide of an element of Group V or Group VI of the Periodic Table, such as sulphuryl chloride, thionyl chloride, phosphorus oxychloride, thionyl bromide, chromyl chloride, vanadyl tribromide or selenium oxychloride.
Also usable as a cathode depolarizer is a halide of an element of Group IV to Group VI of the Periodic Table, such as sulphur monochloride, sulphur monobromide, selenium tetrafluoride, sele nium monobromide, thiophosphoryl chloride, thiophosphoryl bromide, vanadium pentafluoride, lead tetrachloride, titanium tetrachloride, tin bromide trichloride, tin dibromide dichloride or tin 55 tribromide chloride The solute for use in the cathode-electrolyte can be a simple or double salt which will produce an ionically conductive solution. Preferred solutes for nonaqueous systems are complexes of inorganic or organic Lewis acids and inorganic ionizable salts. Typical Lewis acids suitable for use in conjunction with liquid oxyhalide cathode depolarizers include aluminium fluoride, aluminium bromide, aluminiurn chloride, antimony pentachloride, zirconium tetrachloride, 60 phosphorous pentachloride, boron fluoride, boron chloride and boron bromide. Ionizable salts useful in combination with the Lewis acids include lithium fluoride, lithium chloride, lithium bromide, lithium sulphide, sodium fluoride, sodium chloride, sodium bromide, potassium fluoride, potassium chloride and potassium bromide.
If desired, and specifically for the halides, a cosolvent can be added to the cathode-electrolyte 65 3 GB2193836A 3 to alter the dielectric constant, viscosity or solvent properties of the solution to achieve better conductivity. Some examples of suitable cosolvents include nitrobenzene, tetrahydrofuran, 1,3 dioxolane, 3-methyl-2-oxazolidone, propylene carbonate, y-butyrolactone, sulpholane, ethylene glycol sulphite, dimethyl sulphite, benzoyl chloride, dimethoxyethane, dimethylisoxazole, diethyl carbonate and sulphur dioxide. 5 The cell housing of Figure 1 comprises a cylindrical cell container 2 having an open end that is closed by a cell cover 40. A cathode collector shell 4 is in contact with the inner upstanding circumference of the cell container 2, thereby adapting the container 2 for use as the cathodic or positive terminal for the cell. Exposed within and in contact with the inner circumference of cathode collector 4 is a separator liner 6 with a bottom separator or disc 10. If desired, the 10 cathode collector material could be extruded within the container 2, rolled with the container material or composed of one or more segments to form a cylindrical tube thereafter placed in the container.
A two-member anode 12 shown in Figures 1 and 2 comprises a first halfcylindrical annular member 14 having flat end faces 16 and 18 (Figure 2) and a second half- cylindrical annular 15 member 20 having flat end faces 22 and 24 (Figure 2). When the flat end faces of each half cylindrical member are arranged in an opposing fashion, as shown in Figures 1 and 2, an axial cavity 26 is defined between the cylindrical half annular members 14 and 20.
Cathode collector shell 4 has to be electronically conductive so as to permit external electrical contact to be made with the active cathode material and also to provide extended area reaction 20 sites for the cathodic electrochemical processes of the cell. Materials suitable for use for cathode collector shell 4 are carbon materials and metals such as nickel, with acetylene black being preferred. In addition, cathode collector shell 4, if made of a particulate material, should be capable of being moulded directly within container 2 or capable of being moulded into variously sized discrete bodies that can be handled without cracking or breaking. If cathode collector shell 25 4 is fabricated from a carbonaceous material, a suitable binder, with or without stabilizers, can be added to the cathode collector materials. Suitable binders for this purpose include vinyl polymers, polyethylene, polypropylene, polyacrylics and polystyrene. For example, polytetrafluoro ethylene would be the preferred binder for cathode collector shell 4 if the cell shown in Figure 1 were used with a liquid oxyhalide cathode. The binder, if required, should, in most instances, be 30 added in an amount between about 5% and about 30% by weight of the moulded cathode collector shell 4, since an amount less than 5% would not normally provide sufficient strength to the moulded body, while an amount larger than 30% would wetproof the surface of the carbon and/or reduce the available surface of the carbon, thereby reducing the activation site areas available for the cathodic electrochemical process of the cell. More preferably, the binder should 35 be between 10% and 25% by weight of the cathode collector shell 4. It is important that the materials selected for cathode collector shell 4 be chemically stable in the cell in which they are to be used, but this is a matter well known to those skilled in the art.
Anode 12 is a consumable metal and can be an alkali metal, an alkaline earth metal, or an alloy of one or more alkali metals or alkaline earth metals with each other and/or with other 40 metals ("alloy" as used herein includes mixtures, solid solutions such as lithium-magnesium, and intermetallic compounds such as lithium monoaluminide). The preferred materials for anode 12 are the alkali metals, particularly lithium, sodium and potassium. For the cell shown in Figure 1, it is particularly preferred to make anode 12 of lithium, in conjunction with a liquid cathode of sulphuryl chloride, thionyl chloride, or a mixture thereof. 45 If desired, arcuate type backing sheets 15 and 17 can be disposed against the inner surface wall of the anode bodies 14 and 20, respectively, to provide uniform current distribution over the anode. This will result in a substantially uniform consumption or utilization of the anode, while also providing a substantially uniform spring pressure over the inner wall purface of anode 12. 60 Referring to Figures 1 and 3, cylindrical cover 40 comprises a circular cover orifice 60, vent liner containment section 70, annular cap section 80 and circumferential cover flange 90. Vent liner containment section 70 comprises circumferential support ledge 72, cylindrical sealing well 74 and rounded containment section shoulder 76. Circumferential support ledge 72, which is integrally joined to sealing well 74 at the bottom of sealing well 74, is inwardly directed 55 throughout its circumference toward the geometric axis of sealing well 74, thereby defining cover orifice 60. Rounded containment section shoulder 76 is located at the intersection of the top of sealing well 74 and cover ledge 77, the latter being the horizontal surface spanning the area between shoulder 76 and cap section 80. Rounded containment section shoulder 76 provides a smooth transition at the intersection without sharp edges. The cover is tightly sealed 60 by conventional closing methods to container 2 with insulating gasket 52 therebetween.
It is preferred that cover 40 be formed by drawing a section of sheet metal, preferably a sheet of stainless steel. The cover orifice 60 can be formed in cover 40 by conventional punching or drilling. The specific steps taken to fabricate cover 40 are discussed in greater detail below. 65 4 GB2193836A 4 Cylindrical vent liner 29, which has a vent liner orifice 25 connecting its two circular ends, is positioned in cover 40 so that one of its ends abuts support ledge 72 and its cylindrical surface is in contact with the inner surface of sealing well 74. While it is preferred for support ledge 72 to be continuous about the circumference of sealing well 74 so as to minimize the potential for an undesired electrochemical cell system arising between the inside of the cell and atmospheric 5 constituents, support ledge 72 can also comprise one or more inwardly projecting tabs or segments sufficient to provide a ledge against which vent liner 29 can abut.
Because the metal forming procedures that can be used to fabricate cover 40 leave the inner surface of sealing well 74 relatively smooth, intimate contact between vent liner 29 and sealing well 74, which is produced as described below, will substantially prevent the transport of any 10 lithium ions from inside the cell to the outside of the cell cover. In this way, the undesired electrochemical cell system previously developed at the interface between the vent liner and the cover no longer arises, and corrosion of the cell via such a mechanism is prevented.
Vent liner 29 can be formed from (1) a sheet material moulded to shape during the process of 01 force-fitting a sea] member into the orifice of vent liner 29; or (2) a tube fabricated to a suitable 15 length, the latter being preferred. The material from which vent liner 29 is made can be resilient or non-resilient, but must be both resistant to attack by the electrolyte and not react with a seal member force-fitted therein so as to alter substantially the pressure at which the force-fitted seal member is ejected from the vent liner 29. It is presently preferred that vent liner 29 be a moulded vent liner of Tefzel (trade mark), available from E. 1. Du Pont de Nemours & Co., 20 Wilmington, Delaware, U.S.A., although other materials are suitable, such as polyethylene, polyt etrafluoroethylene, perfluoroalkoxy polymers, fluorinated ethylene- propylene polymers, glasses, etc.
As stated above, a seal member is forced-fitted into vent liner orifice 25 to seal the cell. This seal member preferably has a smooth spherical configuration, as exemplified by ball 56 in 25 Figures 1 and 3. Ball 56 can be made of a resilient or non-resilient material such as metal, glass, ceramic or plastics, and is made of a material or coated with a material that is chemically resistant to the cell's components, particularly the cell's liquid components. If ball 56 is resilient, - it can be made from polytetrafluoroethylene, fluorinated ethylene- propylene copolymer, perfluoro- alkoxy polymer, ethylene-tetrafluoroethylene copolymer or other selected fluoropolymers. When 30 ball 56 is to be coated with a chemically inert material, it can then be made of any material.
It is preferred that the outer periphery of cover 40 be bent through an obtuse angle, preferably through one approaching or equal to 180, to provide cover flange 90, as shown in Figures 1 and 3. Such a construction, also called a "roll-back" construction, provides a tight seal between cover 40 and cell container 2, since flange 90, upon assembly, is compressed against gasket 35 52, which causes flange 90 to "follow" gasket 52 if any dimensional changes to the cell occur from thermal expansion and/or contraction.
An electrically conductive spring strip 28, whose legs 32 and 34 are biased against the two screen-backed anode members 14 and 20, is electrically connected to cell cover 40 so as to make cover 40 the anodic or negative terminal of the cell. The ends of spring lags 32 and 34 40 can be electrically connected to cover 40 by welding the ends to cover 40. Alternatively, the geometric configuration of cell cover 40 when made in accordance with this invention allows use of a novel connection system. Referring to Figures 4A through 4D, there is shown a unitary spring collector assembly 420, comprising spring strip 28 and an annular fastening disc 401.
Disc 401 is made of a resilient material, such as stainless steel. The spring legs 32 and 34 of 45 spring strip 28 are joined, as by welding, in region 402. Disc 401 contains a castellated fastening hole 403, having four downwardly bent, radially and inwardly directed tabs 406 spaced at equal intervals about the circumference of hole 403 so as to define four radially directed slits 404. The diameter of hole 403 is smaller than the outside diameter of the cylindrical exterior surface of sealing well 74 that is disposed inside the cell. Thus, when disc 50 401 is forced axially onto the exterior surface of sealing well 74, the tabs in disc 401 will be forced to deflect slightly open. The deformed interference fit created by the spring tabs 406 of disc 401 thereafter firmly secures disc 401 to cover 40 in a tight compressive manner, thereby ensuring electrical connection of cover 40 with spring strip 28.
Collector assembly 420 is formed from a single piece of material, that is shown in Figure 4C, 55 with disc 401 being integrally joined to first forming member 465 and second forming member 466. Members 465 and 466 are appropriately bent and joined i n region 402 to form the spring legs 32 and 34 of spring strip 28.
To fabricate the cell illustrated in Figures 1 through 3, cell cover 40 is drawn so as to have the shape shown in Figures 1 and 3. The fabrication sequence is illustrated by Figures 5A-5F. 60 Specifically, a stainless steel strip, e.g., of 0.012 inch (0.030 cm) thick 304L stainless steel, having a smooth surface finish is subjected to a blanking operation, which cuts out a flat disc of a size sufficient so that cover 40 can be drawn from it. The disc is then drawn into a cup shape, as shown in Figure 5A, and cover flange 90 is partially formed by reverse bending the periphery of the partially formed cover, as shown in Figure 5B. 65 GB2193836A 5 Vent liner containment section 60 and annular cap section 80 are next formed in the partially formed cover by a drawing operation. To prevent cracking during drawing, it is preferred that this drawing operation be performed in a number of steps, each successively drawing cover 40 closer to its final form. Subsequent to the step that yields the cover shape shown in Figure 5B, nine steps are used to draw cover 40 to its final form. Specifically, after forming the cover 5 shape shown in Figure 513, the cover is drawn to form a bowl section 503, as shown in Figure 5C, from which vent liner containment section 70 will be formed. Five successive drawing steps are next performed to successively narrow the bowl section 503 and to yield the cover shape shown in Figure 5D. The next drawing step starts to form annular cap section 80 and yields the cover shape shown in Figure 5E. Two further drawing steps yield the final configuration of cover 10 80, as shown in Figure 5F. Cover orifice 60 is then formed in a punching operation. Alternatively the containment section 70 may be formed first in the drawing operations.
The foregoing drawing operations will affect somewhat the smooth surface finish of the steel.
However, the finish will remain sufficiently smooth such that subsequent insertion of vent liner 29 into sealing well 74 can be performed in a way that yields intimate contact between them, 15 as is discussed below.
Cylindrical vent liner 29 preferably has an outside diameter slightly larger than the inside diameter of cylindrical sealing well 74 so that vent liner 29 can be press-fitted into sealing well 74 to yield an interference fit. In a present embodiment, a vent liner 29 having an outside diameter of 0.135 inch (0.343 cm) is press-fitted into a sealing well 74 having an inside 20 diameter of 0.125 inch (0.318 cm).
Vent liner 29 is inserted into sealing well 74 until the bottom of vent liner 29 abuts support ledge 72. In this way, support ledge 72 provides a positive stop against which vent liner 29 cannot be further inserted, thereby eliminating the need for any flange at the top of the vent liner. In addition, the interference fit causes the outer surface of vent liner 29 to be strongly 25 forced against the inner surface of sealing well 74, which causes intimate contact between those two surfaces, thereby effectively preventing the transport of lithium ions from the inside to the outside of the cell via the interface between vent liner 29 and sealing well 74. Since contain ment section shoulder 76 is rounded, insertion of liner 29 is made easier, and the potential for scoring the liner during insertion is minimized. It is preferred that the length of vent liner 29 be 30 such that, when inserted in sealing well 74, the upper circular end of vent liner 29 is flush with coverledge 77.
It is also preferred for oxyhalide cells that sealing well 74 be coated with a sealant prior to insertion of liner 29. Such a sealant more completely ensures the sealing of liner 29 to sealing well 74 in the event of possible imperfections on the surface of liner 29 or sealing well 74. The 35 sealant can be a halocarbon wax, which is a saturated low-molecular weight polymer of chloro trifluoroethylene, or a fluoroelastomer. Alternatively, since Tefzel (trade mark) is heat bondable, vent liner 29, when made of this material, can be sufficiently heated prior to or after insertion into sealing well 74 and press bonded therein.
After insertion of vent liner 29 into sealing well 74, disc 401 of the spring collector assembly 40 420 is pressed onto the cylindrical outside of sealing well 74 and cover 40 is inserted into its proper location inside annular gasket 52, which is located at the open end of cell container 2. It is preferred that gasket 52 be made of Tefzel (trade mark) and coated with a sealant of the same type preferably used to coat sealing well 74. At the time cover 40 is inserted into annular gasket 52, container 2 has already been supplied with a cathode collector shell 4, a separator 45 liner 6 and bottom separator 10, a two-member anode 12, and backing sheets 15 and 17. As cover 40 is positioned with respect to gasket 52, the legs 32, 34 of the spring strip 28 are squeezed together and forced into the axial opening between the two screen-backed anode members 14 and 20, as shown in Figures 1 and 2. The inserted spring strip 28 resiliently biases the two anode members 14 and 20 via backing screens 15 and 17 so as to provide 50 substantially uniform and continuous pressure contact over the inner wall of the anode members.
After inserting cover 40 inside gasket 52, the cell is closed and sealed using conventional closing techniques, -so that cell container 2 and cell cover 40 make up a seated cell housing. A fill head assembly is next pressed against the top of vent liner 29. If the upper circular end of vent liner 29 is flush with cover ledge 77, as is preferred, then the fill head also presses against 55 cover ledge 77. The cell is then filled with cathode-electrolyte.
Ater the container has been filled with cathode-electrolyte, seal member 56 is disposed over vent liner orifice 25 in liner 29, and a ram member is used to force seal member 56 into orifice until further insertion is resisted because of the presence of support ledge 72. In the prior construction, if the seal member were inserted too deeply in the vent liner, higher than desired 60 vent pressures resulted, giving rise to the potential for cell disassembly under conditions of abuse. On the other hand, if the seal member were not inserted to a sufficient depth in the vent liner, then venting could occur during conditions of normal use, thereby causing unnecessary damage to the device using the cell. In the present invention, the placement of seal member 56 is less critical, and support ledge 72 provides a positive stop against which seal member 56 can 65 6 GB2193836A 6 be pressed, thereby providing easily reproducible vent pressures.
After removal of the ram, a layer of sealant 62 is disposed over seal member 56, vent liner 29 and extended onto cover ledge 77 to produce a'fully sealed cell. Suitable sealing materials include halocarbon wax, asphalt, or any other material that is resistant to moisture, has reason able adhesion to metal and is applied easily. Preferably, the sealant material should be applied in 5 liquid form and then allowed to solidify.The cell is then finished, as by encasing it in a steel jacket and covering cap section 80 with a finishing cover (not shown).
A cell employing the present invention can be made smaller than can a cell using the prior construction. In the prior construction, the vent liner required a flange on its upper edge to prevent the vent liner from dropping into the interior of the cell. The seal member needed to 10 clear this flange before venting could occur; in consequence, the height between the finishing cover and the upper surface of the cover had to be sufficient to accommodate both the diameter of the seal member and the thickness of the flange. In the present invention, however, since the upper circular end of vent liner 29 can be made flush with cover ledge 77, the height between the finishing cover and cover ledge 77 need only accommodate the diameter of seal member 15 56.
It is to be understood that the improved vent liner and cover construction of this invention could be used in connection with other cells such as, for example, Leclanche dry cells, zinc chloride cells, lithium-Mn02 Cells, lithium-iron sulphide cells, alkaline- Mn02 cells, nickel-cadmium cells, and lead-acid cells. 20

Claims (18)

1. An electrochemical cell, having a cell housing that contains the active components of the cell and comprising:
(a) a vent liner containment section formed in a part of the cell housing that comprises a 25 sealing well having a bottom disposed toward the interior of the cell and a support ledge at the bottom of the sealing well, said support ledge defining an orifice in said sealing well; (b) a vent liner, having a vent liner orifice, disposed within the sealing well so that an end of the vent liner abuts the support ledge, the orifice in the sealing well and the vent liner orifice providing a path from the interior of the cell to the atmosphere; and 30 (c) a seal member force-fitted within the vent liner, the vent liner and the seal member being such that the seal member will be at least partially expelled from the vent liner orifice at a predetermined internal gas pressure within the cell.
2. An electrochemical cell according to Claim 1, wherein the upper portion of the sealing well is so contoured as to define a contoured vent liner containment section shoulder that assists 35 insertion of the vent liner into the sealing well.
3. An electrochemical cell according to Claim 1 or Claim 2, wherein there is an interference fit between the vent liner and the sealing well.
4. An electrochemical cell according to any one of the preceding Claims, wherein the cell housing comprises a cell cover closing an opening in a cell container, the vent liner containment 40 section is formed in a part of the cell cover, and the cell cover is formed from a smooth sheet of material by a metal forming process to provide a smooth-walled sealing well.
5. An electrochemical cell according to Claim 4, wherein the outer periphery of the cell cover is bent through an obtuse angle to provide a flange at the periphery of the cell cover, and a gasket is disposed and compressed between the flange of the cell cover and the cell container, 45 thereby providing a substantially fluid-tight seal.
6. An electrochemical cell according to any one of the preceding Claims, wherein the sealing well is approximately cylindrical and the support ledge is continuous about the circumference of the sealing well.
7. An electrochemical cell according to Claim 4, wherein the sealing well has a cylindrical 50 exterior surface disposed inside the cell and the cell further comprises:
(i) a fastening member made of a resilient sheet of material that includes a fastening hole whose circumference is interrupted by a plurality of radially inwardly directed tabs, the fastening member being axially forced onto the cylindrical exterior surface of the sealing well; and (ii) means fixed to the fastening member for electrically connecting one of the active compo- 55 nents of the cell to the fastening member.
8. An electrochemical cell according to Claim 7, wherein at least one of the active compo- nents of the cell is solid and the means for electrically connecting one of the active components of the cell to the fastening member is a spring strip fixed to the fastening member and biased so as to be in electrical contact with a solid active component of the cell. 60
9. An electrochemical cell according to any one of Claims 1 to 5, wherein the sealing well is approximately cylindrical and the support ledge comprises at least two radially inwardly directed tabs.
10. An electrochemical cell, having a cell housing that contains the active components of the cell and comprising: 65 7 GB2193836A 7 (a) a cylindrical well formed in a part of the cell housing and having a cylindrical exterior surface disposed inside the cell; (b) a fastening member made of a resilient sheet of material that includes a fastening hole whose circumference is interrupted by a plurality of radially inwardly directed tabs, the fastening member being axially forced onto the cylindrical exterior surface of the well; and 5 (c) means fixed to the fastening member for electrically connecting one of the active components of the cell to the fastening member.
11. An electrochemical cell according to Claim 10, wherein at least one of the active compo- nents of the cell is solid and the means for electrically connecting one of the active components of the cell to the fastening member is an electrically conductive spring strip fixed to the 10 fastening member and biased so as to be in electrical contact with a solid active component of the cell.
12. An electrochemical cell according to Claim 1, substantially as hereinbefore described with reference to and as shown in the accompanying drawings.
13. A method of manufacturing an electrochemical cell according to any one of the preceding 15 Claims, which method comprises, (a) placing the active components in the cell; (b) forming a cell cover by drawing a sheet of metal so as to define: said sealing well in a part of the cell cover; a support ledge at the bottom of the sealing well; and a rounded shoulder at the intersection of the top of the sealing well and the cell cover; 20 (c) forming a cover orifice at the bottom of the sealing well; (d) inserting into the sealing well a vent liner having a vent liner orifice; (e) fastening the cell cover to the cell contianer; and (f) sealing the cell by force-fitting a seal member into the vent liner orifice.
14. A method according to Claim 13, wherein the inserting step comprises press-fitting the 25 vent liner into the sealing well so as to form a seal between the sealing well and the vent liner.
15. A method according to Claim 13 or Claim 14, wherein the vent liner is made of a heat bondable material and the vent liner is heat sealed to the cell cover.
16. A method according to Claim 13, wherein the inserting step comprises inserting a vent liner whose length is such that when inserted in the sealing well the top of the vent liner is flush 30 with the cell cover, and wherein the step of placing the active components into the cell container comprises:
(i) placing a first active component into the cell container prior to fastenting the cell cover to the cell container; (ii) after the cell cover is fastened to the cell container, pressing a fill head assembly against 35 the top of the vent liner and the top of the cell cover that is proximate to the vent liner; and (iii) injecting from the fill head assembly a fluid comprising a second active component into the cell.
17. A method according to any one of Claims 13 to 16, wherein the seal member is force- fitted into the vent liner orifice until further insertion is resisted because of the presence of the 40 support ledge at the bottom of the sealing well.
18. A method according to Claim 13, substantially as hereinbefore described with reference to the accompanying drawings.
Published 1988 at The Patent Office, State House, 66/71 High Holborn, London WC1R 4TP. Further copies may be obtained from The Patent Office, Sales Branch, St Mary Cray, Orpington, Kent BR5 3RD. Printed by Burgess & Son (Abingdon) Ltd. Con. 1/87.
GB8716860A 1986-07-18 1987-07-17 Vent liner and cover construction for galvanic cells Expired - Fee Related GB2193836B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US88661986A 1986-07-18 1986-07-18

Publications (3)

Publication Number Publication Date
GB8716860D0 GB8716860D0 (en) 1987-08-26
GB2193836A true GB2193836A (en) 1988-02-17
GB2193836B GB2193836B (en) 1990-08-15

Family

ID=25389394

Family Applications (2)

Application Number Title Priority Date Filing Date
GB8716860A Expired - Fee Related GB2193836B (en) 1986-07-18 1987-07-17 Vent liner and cover construction for galvanic cells
GB8804260A Expired - Lifetime GB2201541B (en) 1986-07-18 1988-02-24 Vent liner and cover construction for galvanic cells

Family Applications After (1)

Application Number Title Priority Date Filing Date
GB8804260A Expired - Lifetime GB2201541B (en) 1986-07-18 1988-02-24 Vent liner and cover construction for galvanic cells

Country Status (6)

Country Link
JP (1) JP2582374B2 (en)
KR (1) KR950011246B1 (en)
DE (1) DE3718205C2 (en)
ES (1) ES2005881A6 (en)
FR (1) FR2601819B1 (en)
GB (2) GB2193836B (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2625372A1 (en) * 1987-12-24 1989-06-30 Accumulateurs Fixes Alkaline electrochemical generator equipped with a spring
EP0422966B1 (en) * 1989-10-13 1995-05-10 Eveready Battery Company, Inc. Electrochemical cell having a safety vent closure
US7923137B2 (en) * 2003-10-09 2011-04-12 Eveready Battery Company, Inc. Nonaqueous cell with improved thermoplastic sealing member
DE602004008113T3 (en) 2004-10-25 2019-03-07 Nestec S.A. Beverage preparation system
DE602006001573D1 (en) 2006-03-31 2008-08-07 Nestec Sa Capsule with liquid-sealed outer seal
JP4890395B2 (en) * 2007-09-13 2012-03-07 株式会社エイチアンドエフ Blank separation apparatus and blank separation adsorption transfer method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1045855A (en) * 1962-07-03 1966-10-19 Yardney International Corp Improvements in or relating to venting valves for electric storage cells or batteries
GB1082865A (en) * 1964-08-06 1967-09-13 Gen Electric Improvements in resealable vent for a sealed casing
EP0100487A1 (en) * 1982-07-30 1984-02-15 Union Carbide Corporation Electrochemical cell having a safety vent closure and method for its assembly

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1029935B (en) * 1955-06-30 1958-05-14 Dominitwerke G M B H Overpressure protection for electrolytic capacitors
US4296186A (en) * 1975-08-22 1981-10-20 Wolf Franz J Two part pressure relief valve
US4592970A (en) * 1984-09-27 1986-06-03 Union Carbide Corporation Electrochemical cell having a safety vent closure
DE8534913U1 (en) * 1985-12-12 1986-02-06 Kessel, Bernhard, 8071 Lenting Closing member for a container subjected to internal pressure

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1045855A (en) * 1962-07-03 1966-10-19 Yardney International Corp Improvements in or relating to venting valves for electric storage cells or batteries
GB1082865A (en) * 1964-08-06 1967-09-13 Gen Electric Improvements in resealable vent for a sealed casing
EP0100487A1 (en) * 1982-07-30 1984-02-15 Union Carbide Corporation Electrochemical cell having a safety vent closure and method for its assembly

Also Published As

Publication number Publication date
GB8716860D0 (en) 1987-08-26
JP2582374B2 (en) 1997-02-19
KR950011246B1 (en) 1995-09-29
FR2601819B1 (en) 1995-06-02
GB8804260D0 (en) 1988-03-23
GB2193836B (en) 1990-08-15
DE3718205A1 (en) 1988-01-28
GB2201541A (en) 1988-09-01
JPS6332852A (en) 1988-02-12
ES2005881A6 (en) 1989-04-01
DE3718205C2 (en) 1996-11-21
KR890001216A (en) 1989-03-18
GB2201541B (en) 1990-08-15
FR2601819A1 (en) 1988-01-22

Similar Documents

Publication Publication Date Title
US4931368A (en) Vent liner and cover construction for galvanic cells
US7824790B2 (en) Housing for a sealed electrochemical battery cell
US4329405A (en) Electrochemical cell having a safety vent closure
US5418084A (en) Electrochemical cell having a safety vent closure
US5015542A (en) Electrochemical cell having a safety vent closure
US4483908A (en) Intumescent material-coated galvanic cells
EP0100487B1 (en) Electrochemical cell having a safety vent closure and method for its assembly
US4664989A (en) Liquid cathode cell system employing a coiled electrode assembly
US4592970A (en) Electrochemical cell having a safety vent closure
US4437231A (en) Method of making an electrochemical cell having a safety vent closure
EP0049081B1 (en) Electrochemical cell and method for assembling same
GB2193836A (en) Vent liner and cover construction for galvanic cells
US4672010A (en) Terminal pin-collector plate assembly for hermetically sealed cells
US6270918B1 (en) Low profile ventable seal for an electrochemical cell
EP0067278B1 (en) Externally coated hermetic seals for use with electrochemical cells
US4532705A (en) Method of making an electrochemical cell having a resealable vent closure
US5114808A (en) Cell cover with internal compression ring of high yield strength material
US5041345A (en) Secondary seal for vented electrochemical cells
EP0068837A1 (en) Electrochemical cell
US4454208A (en) Pressure contact tab/cover construction for electrochemical cells
EP0422966B1 (en) Electrochemical cell having a safety vent closure
GB2200792A (en) A sealant for electrochemical cells
GB2088622A (en) Dry cell batteries
GB2201031A (en) Electrochemical cell seals

Legal Events

Date Code Title Description
PCNP Patent ceased through non-payment of renewal fee

Effective date: 19980717