EP2718556B1 - Method for controlling rail pressure - Google Patents

Method for controlling rail pressure Download PDF

Info

Publication number
EP2718556B1
EP2718556B1 EP12726024.8A EP12726024A EP2718556B1 EP 2718556 B1 EP2718556 B1 EP 2718556B1 EP 12726024 A EP12726024 A EP 12726024A EP 2718556 B1 EP2718556 B1 EP 2718556B1
Authority
EP
European Patent Office
Prior art keywords
rail pressure
pcr
rail
calculated
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP12726024.8A
Other languages
German (de)
French (fr)
Other versions
EP2718556A2 (en
Inventor
Armin Doelker
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rolls Royce Solutions GmbH
Original Assignee
MTU Friedrichshafen GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MTU Friedrichshafen GmbH filed Critical MTU Friedrichshafen GmbH
Publication of EP2718556A2 publication Critical patent/EP2718556A2/en
Application granted granted Critical
Publication of EP2718556B1 publication Critical patent/EP2718556B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/3809Common rail control systems
    • F02D41/3836Controlling the fuel pressure
    • F02D41/3845Controlling the fuel pressure by controlling the flow into the common rail, e.g. the amount of fuel pumped
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1413Controller structures or design
    • F02D2041/1432Controller structures or design the system including a filter, e.g. a low pass or high pass filter
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/26Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using computer, e.g. microprocessor
    • F02D41/28Interface circuits
    • F02D2041/286Interface circuits comprising means for signal processing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/3809Common rail control systems
    • F02D2041/3881Common rail control systems with multiple common rails, e.g. one rail per cylinder bank, or a high pressure rail and a low pressure rail
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/06Fuel or fuel supply system parameters
    • F02D2200/0602Fuel pressure

Definitions

  • the invention relates to a method for regulating the rail pressure of an internal combustion engine in V-arrangement with unequal ignition sequence according to the preamble of claim 1.
  • Internal combustion engines in V arrangement have on the A and the B side a rail for intermediate storage of the fuel. Connected to the rail are the injectors, via which the fuel is injected into the combustion chambers.
  • a single high-pressure pump delivers the fuel in parallel pressure in both rails. There is therefore the same rail pressure in both rails.
  • a second design of the common rail system differs in that a first high pressure pump in a first rail and a second high-pressure pump in a second rail promote. Both types are for example from the DE 43 35 171 C1 known.
  • a rail pressure control loop comprises a pressure regulator, the suction throttle with high pressure pump and the rail as a controlled system and a software filter in the feedback branch.
  • the pressure level in the rail corresponds to the controlled variable.
  • the measured raw values of the rail pressure are converted via the filter into an actual rail pressure and compared with a desired rail pressure.
  • the resulting deviation is then converted via the pressure regulator into a control signal for the suction throttle.
  • the control signal corresponds to a volume flow with the unit liters / minute, which is electrically designed as a PWM signal (pulse width modulated).
  • a corresponding rail pressure control loop is from the DE 10 2006 049 266 B3 known.
  • From the DE 10 2007 034 317 A1 is an internal combustion engine in V-arrangement with unequal firing order and a separate A-side and an independent B-side common rail system known.
  • An unequal firing order is given when, for example, the cylinder A1, ie the first cylinder on the A side, is ignited and, following the cylinder A2, that is the second cylinder on the A side, ignited.
  • the unequal ignition sequence in turn causes pressure fluctuations in the rail.
  • the A-side rail pressure in an A-side rail pressure control loop is controlled with a PI controller and the B-side rail pressure in a B-side rail pressure control loop with a P-control. Due to the missing B-side I-component of the controller, this solution is critical in terms of a permanent control deviation.
  • the invention is therefore based on the object to design an improved rail pressure control in an internal combustion engine in V-arrangement with an unequal firing order.
  • the invention solves this problem by a method for rail pressure control with the features of claim 1.
  • the embodiments are shown in the subclaims.
  • the actual rail pressure is calculated via an average filter from the measured rail pressure by averaging the rail pressure below a limit speed over a constant time and averaged over the limit speed of the rail pressure over a cycle of the internal combustion engine.
  • working cycle are meant two revolutions of the crankshaft.
  • the rail pressure In a speed range below the stationary speed range, for example, from zero revolutions to a limit speed of 1000 revolutions per minute, the rail pressure, however, is averaged over a constant time. This measure causes the signal of the actual rail pressure is not delayed too much below the limit speed, which in turn allows only a satisfactory control of the rail pressure. An advantage is therefore a stabilization of the rail pressure control loop below the limit speed.
  • the mean value filter is combined with a low-pass filter, as a result of which high-frequency rail pressure oscillations, which are not periodic in the working cycle, are damped.
  • the method can be used both in an internal combustion engine in V-arrangement with unequal firing order and with a separate A-side and an independent B-side common rail system as well as in an internal combustion engine in V arrangement with unequal firing order, in which a single high-pressure pump Promotes the fuel at the same time in the A-side and the B-side rail.
  • the FIG. 1 shows a system diagram of an electronically controlled internal combustion engine 1 with a common rail system on the A side and a common rail system on the B side.
  • the common rail system on the A side comprises as mechanical components a low-pressure pump 3A for conveying fuel from a tank 2, a suction throttle 4A for influencing the volume flow, a high-pressure pump 5A, a rail 6A and injectors 7A for Injecting fuel into the combustion chambers of the internal combustion engine 1.
  • the common rail system on the B side comprises the same mechanical components, which are indicated by the suffix B at the reference numerals.
  • the internal combustion engine 1 is controlled via an electronic engine control unit 10 (ECU).
  • ECU electronic engine control unit 10
  • A-side rail pressure pCR (A) is detected via an A-side rail pressure sensor 9A.
  • the B-side rail pressure pCR (B) is detected via a B-side rail pressure sensor 9B.
  • the size ON is representative of the other input signals, for example for an engine speed or for a performance request of the operator.
  • the illustrated outputs of the electronic engine control unit 10 are a PWM signal SD (A) for driving the A-side intake throttle 4A, a power-determining signal ve (A) for driving the A-side injectors 7A, for example injection start / end injection, a PWM Signal SD (B) for driving the B-side suction throttle 4B, a power-determining signal ve (B) for driving the B-side injectors 7B and a size OFF.
  • the latter is representative of the other control signals for controlling the internal combustion engine 1, for example, a control signal for controlling an EGR valve.
  • the illustrated common rail system can also be designed as a common rail system with individual memories.
  • a single memory 8A and in the injector 7B are integrated as additional buffer volumes for the fuel.
  • the individual storage pressures pE (A) and pE (B) are then further inputs of the electronic engine control unit 10.
  • Characteristic feature of the illustrated embodiment is the independent control of the A-side rail pressure pCR (A) and the independent control of the B-side rail pressure pCR (B).
  • FIG. 2 shows a block diagram of the A-side rail pressure control loop, which is indicated in the figure by the addition A at the reference numerals. Both control circuits are identical. In the following, the A-side rail pressure control loop 11A will be described, the description of which applies mutatis mutandis to the B-side rail pressure control loop.
  • the reference variable is identical for both rail pressure control circuits, here: a common target rail pressure pCR (SL).
  • the target rail pressure is calculated as a function of a desired torque or as a function of the desired injection quantity and the engine speed.
  • the input variables of the rail pressure control loop 11A are the target rail pressure pCR (SL), a basic frequency fPWM for the PWM signal, a quantity E1, the engine speed nMOT, a time constant T1 and a time constant T2.
  • the input quantity E1 comprises the battery voltage and the resistance of the suction throttle including the supply line, which are included in the calculation of the drive signal SD (A) for the suction throttle 4A.
  • the output of the A-side rail pressure control loop are the raw values of the rail pressure pCR (A).
  • the raw values of the rail pressure pCR (A) are measured by the A-side rail pressure sensor 9A. Its output signal pMESS is then filtered via a hardware filter 16A with PT1 behavior and a corner frequency of 20 Hz.
  • the output values pHW are digitized by an A / D converter 17A.
  • the output values pAD of the A / D converter 17A are then further processed via two information paths.
  • a first information path includes a mean value filter 18A and an optional low pass filter 19A.
  • the first information path corresponds to a slow filtering, via which the actual rail pressure pIST (A) is determined.
  • the mean value filter 18A has, as further input variables, the engine speed nMOT and the limit speed nLi. Via the mean value filter 18A it is determined whether the averaging of the rail pressure takes place either via a working cycle, ie two revolutions of the crankshaft, or over a constant time. The switching between the two methods of averaging takes place at the limit speed nLi.
  • the output pMW of the average filter 18A is then further processed by the low-pass filter 19A, as shown.
  • This has a time constant T1 as input.
  • T1 16 ms is used for the time constant, which corresponds to a frequency of 10 Hz.
  • a second information path includes a fast filter 20A with PT1 behavior.
  • the fast filter 20A in this case has a smaller time constant and thus a lower phase delay than the average value filter 18A and the optional low-pass filter 19A.
  • the output value pDYN (A) of the fast filter 20A is used, inter alia, to perform a rapid energization of the suction throttle, whereby a higher dynamics is achieved in a load shedding.
  • the actual rail pressure pIST (A) is compared with the target rail pressure pCR (SL). This results in the control deviation ep (A), from which a pressure regulator 12A with at least PID behavior calculates a setpoint volume flow VSL as a manipulated variable.
  • the nominal volume flow VSL has the physical unit liters / minute.
  • the desired volume flow is limited (not shown) and the desired volume flow VSL via a pump characteristic 13A assigned a target electric current iSL.
  • the target current iSL is converted in a calculation 14A into a PWM signal SD (A).
  • the PWM signal SD (A) is the duty cycle and the frequency fPWM corresponds to the fundamental frequency of the PWM signal SD (A).
  • the fluctuations of the operating voltage and the ohmic resistance of the suction throttle including the electrical leads are taken into account.
  • the PWM signal SD (A) then the solenoid of the A-side suction throttle is applied.
  • the path of the magnetic core is changed, whereby the flow rate of the high-pressure pump is influenced freely.
  • the high-pressure pump 5A, the suction throttle 4A and the rail 6A correspond to an A-side controlled system 15A.
  • the A-side control loop 11A is closed.
  • the FIG. 3 shows a characteristic curve 21.
  • an averaging time dT is calculated as a function of the engine speed nMOT.
  • the averaging time dT thus corresponds to the time over which the rail pressure values from the mean value filter ( Fig. 2 : 18A) are averaged.
  • the characteristic curve 21 is composed of an abscissa-parallel straight line 22 and a hyperbola 23.
  • a constant averaging time dT 120 ms is determined via the straight line 22. This area is in the FIG. 3 hatched shown.
  • a working cycle corresponds to two revolutions of the crankshaft of the internal combustion engine, ie 720 ° crankshaft angle.
  • FIG. 4 consists of the subfigures 4A to 4C, which show different state variables. Over time t are shown: the engine speed nMOT in FIG. 4A , the averaging time dT in FIG. 4B and the average rail pressure pMW in FIG. 4C ,
  • the target speed nSL is shown as a dot-dash line and the limit speed nLi as a dashed line in the FIG. 4A located.
  • the target speed of nSL 1500 1 / min is reached.
  • the engine speed nMOT is steady at the target speed nSL at time t4.
  • the FIG. 4B shows the averaging time dT, over which the rail pressure values, for example the A-side rail pressure pCR (A), are averaged.
  • the rail pressure values for example the A-side rail pressure pCR (A)
  • the engine speed nMOT is smaller than the limit speed nLi.
  • a constant averaging time dT 120 ms is calculated.
  • the averaging over a constant time has a stabilizing effect on the rail pressure control since the signal of the actual rail pressure is not delayed too much.
  • the engine speed nMOT is greater than the limit speed nLi.
  • the averaging time dT is calculated as a function of the engine speed nMOT via the hyperbola of the FIG. 3 , As a result, the averaging time dT decreases as the engine speed nMOT increases. Since the rail pressure is now averaged over a cycle of the internal combustion engine, the working cycle periodic fluctuations of the rail pressure are filtered out.
  • the procedure is shown in a program flowchart as a subroutine.
  • S1 it is checked whether the engine speed nMOT is greater than or equal to the limit speed nLi.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Fuel-Injection Apparatus (AREA)

Description

Die Erfindung betrifft ein Verfahren zur Raildruckregelung einer Brennkraftmaschine in V-Anordnung mit ungleicher Zündfolge nach dem Oberbegriff von Anspruch 1.The invention relates to a method for regulating the rail pressure of an internal combustion engine in V-arrangement with unequal ignition sequence according to the preamble of claim 1.

Brennkraftmaschinen in V-Anordnung haben auf der A- und der B-Seite ein Rail zur Zwischenspeicherung des Kraftstoffs. Am Rail angeschlossen sind die Injektoren, über welche der Kraftstoff in die Brennräume eingespritzt wird. In einer ersten Bauform des Common-Railsystems fördert eine einzelne Hochdruckpumpe den Kraftstoff unter Druckerhöhung parallel in beide Rails. Es herrscht daher der gleiche Raildruck in beiden Rails. Eine zweite Bauform des Common-Railsystems unterscheidet sich dadurch, dass eine erste Hochdruckpumpe in ein erstes Rail und eine zweite Hochdruckpumpe in ein zweites Rail fördern. Beide Bauformen sind beispielsweise aus der DE 43 35 171 C1 bekannt.Internal combustion engines in V arrangement have on the A and the B side a rail for intermediate storage of the fuel. Connected to the rail are the injectors, via which the fuel is injected into the combustion chambers. In a first design of the common rail system, a single high-pressure pump delivers the fuel in parallel pressure in both rails. There is therefore the same rail pressure in both rails. A second design of the common rail system differs in that a first high pressure pump in a first rail and a second high-pressure pump in a second rail promote. Both types are for example from the DE 43 35 171 C1 known.

Da die Güte der Verbrennung entscheidend vom Druckniveau im Rail abhängt, wird dieses geregelt. Typischerweise umfasst ein Raildruck-Regelkreis einen Druckregler, die Saugdrossel mit Hochdruckpumpe und das Rail als Regelstrecke sowie ein Softwarefilter im Rückkopplungszweig. In diesem Raildruck-Regelkreis entspricht das Druckniveau im Rail der Regelgröße. Die gemessenen Rohwerte des Raildrucks werden über das Filter in einen Ist-Raildruck gewandelt und mit einem Soll-Raildruck verglichen. Die sich hieraus ergebende Regelabweichung wird dann über den Druckregler in ein Stellsignal für die Saugdrossel gewandelt. Das Stellsignal entspricht einem Volumenstrom mit der Einheit Liter/Minute, welches elektrisch als PWM-Signal (pulsweitenmoduliert) ausgeführt ist. Ein entsprechender Raildruck-Regelkreis ist aus der DE 10 2006 049 266 B3 bekannt.Since the quality of the combustion depends crucially on the pressure level in the rail, this is regulated. Typically, a rail pressure control loop comprises a pressure regulator, the suction throttle with high pressure pump and the rail as a controlled system and a software filter in the feedback branch. In this rail pressure control loop, the pressure level in the rail corresponds to the controlled variable. The measured raw values of the rail pressure are converted via the filter into an actual rail pressure and compared with a desired rail pressure. The resulting deviation is then converted via the pressure regulator into a control signal for the suction throttle. The control signal corresponds to a volume flow with the unit liters / minute, which is electrically designed as a PWM signal (pulse width modulated). A corresponding rail pressure control loop is from the DE 10 2006 049 266 B3 known.

Aus der DE 10 2007 034 317 A1 ist eine Brennkraftmaschine in V-Anordnung mit ungleicher Zündfolge und einem eigenständigen A-seitigen sowie einem eigenständigen B-seitigen Common-Railsystem bekannt. Eine ungleiche Zündfolge ist dann gegeben, wenn beispielsweise der Zylinder A1, also der erste Zylinder auf der A-Seite, gezündet wird und im Anschluss der Zylinder A2, also der zweite Zylinder auf der A-Seite, gezündet wird. Die ungleiche Zündfolge wiederum verursacht Druckschwankungen im Rail. Zur Lösung dieser Problematik schlägt die DE 10 2007 034 317 A1 in einer ersten Lösung eine Ausgleichsleitung zwischen den beiden Rails vor. Bei einer zweiten Lösung wird der A-seitige Raildruck in einem A-seitigen Raildruck-Regelkreis mit einem PI-Regler und der B-seitige Raildruck in einem B-seitigen Raildruck-Regelkreis mit einem P-Regel geregelt. Aufgrund des fehlenden B-seitigen I-Anteils beim Regler ist diese Lösung hinsichtlich einer bleibenden Regelabweichung kritisch.From the DE 10 2007 034 317 A1 is an internal combustion engine in V-arrangement with unequal firing order and a separate A-side and an independent B-side common rail system known. An unequal firing order is given when, for example, the cylinder A1, ie the first cylinder on the A side, is ignited and, following the cylinder A2, that is the second cylinder on the A side, ignited. The unequal ignition sequence in turn causes pressure fluctuations in the rail. To solve this problem proposes the DE 10 2007 034 317 A1 in a first solution before a compensation line between the two rails. In a second solution, the A-side rail pressure in an A-side rail pressure control loop is controlled with a PI controller and the B-side rail pressure in a B-side rail pressure control loop with a P-control. Due to the missing B-side I-component of the controller, this solution is critical in terms of a permanent control deviation.

Der Erfindung liegt daher die Aufgabe zu Grunde, eine verbesserte Raildruckregelung bei einer Brennkraftmaschine in V-Anordnung mit einer ungleichen Zündfolge zu entwerfen.The invention is therefore based on the object to design an improved rail pressure control in an internal combustion engine in V-arrangement with an unequal firing order.

Die Erfindung löst diese Aufgabe durch ein Verfahren zur Raildruckregelung mit den Merkmalen von Anspruch 1. Die Ausgestaltungen sind in den Unteransprüchen dargestellt.The invention solves this problem by a method for rail pressure control with the features of claim 1. The embodiments are shown in the subclaims.

Nach der Erfindung wird der Ist-Raildruck über ein Mittelwertfilter aus dem gemessenen Raildruck berechnet, indem unterhalb einer Grenzdrehzahl der Raildruck über eine konstante Zeit gemittelt wird und oberhalb der Grenzdrehzahl der Raildruck über ein Arbeitsspiel der Brennkraftmaschine gemittelt wird. Unter Arbeitsspiel sind zwei Umdrehungen der Kurbelwelle zu verstehen. Besonders bewährt hat sich diese Lösung bei einer Brennkraftmaschinen-Generatoranwendung, bei der die Motordrehzahl während des Motorbetriebs verschiedene Drehzahlbereiche durchläuft. Im stationären Drehzahlbereich, zum Beispiel bei einer konstanten Motordrehzahl von 1500 Umdrehung pro Minute zur Erzeugung einer 50 Hz Netzfrequenz, werden die arbeitsspielperiodischen Raildruckschwingungen dadurch heraus gefiltert, dass der Raildruck über ein Arbeitsspiel der Brennkraftmaschine gemittelt wird. In einem Drehzahlbereich unterhalb des stationären Drehzahlbereiches, zum Beispiel von Null Umdrehungen bis zu einer Grenzdrehzahl von 1000 Umdrehungen pro Minute, wird der Raildruck hingegen über eine konstante Zeit gemittelt. Durch diese Maßnahme wird bewirkt, dass das Signal des Ist-Raildrucks unterhalb der Grenzdrehzahl nicht zu stark verzögert wird, was wiederum erst eine zufriedenstellende Regelung des Raildrucks ermöglicht. Von Vorteil ist daher eine Stabilisierung des Raildruck-Regelkreises unterhalb der Grenzdrehzahl.According to the invention, the actual rail pressure is calculated via an average filter from the measured rail pressure by averaging the rail pressure below a limit speed over a constant time and averaged over the limit speed of the rail pressure over a cycle of the internal combustion engine. By working cycle are meant two revolutions of the crankshaft. This solution has proven particularly useful in an internal combustion engine generator application in which the engine speed passes through different engine speed ranges during engine operation. In the stationary speed range, for example at a constant engine speed of 1500 rpm for generating a 50 Hz power frequency, the working cycle periodic rail pressure oscillations are filtered out by averaging the rail pressure over a working cycle of the internal combustion engine. In a speed range below the stationary speed range, for example, from zero revolutions to a limit speed of 1000 revolutions per minute, the rail pressure, however, is averaged over a constant time. This measure causes the signal of the actual rail pressure is not delayed too much below the limit speed, which in turn allows only a satisfactory control of the rail pressure. An advantage is therefore a stabilization of the rail pressure control loop below the limit speed.

Bei einer Brennkraftmaschinen-Generatoranwendung ist damit also sichergestellt, dass im stationär fahrbaren Betriebsbereich eine Mittelung des Raildrucks über ein Arbeitsspiel zuverlässig erfolgt, da die Raildruckschwingungen arbeitsspielperiodisch sind. Im Drehzahlbereich unterhalb der Grenzdrehzahl hingegen ist eine exakte Mittelung über ein Arbeitsspiel und damit auch eine exakte Herausfilterung der arbeitsspielperiodischen Raildruckschwingungen nicht erforderlich, da der Bereich unterhalb der Grenzdrehzahl nur dynamisch durchfahren wird und sich deshalb Raildruckschwingungen hier erst gar nicht nachhaltig entwickeln können.In an internal combustion engine generator application, this ensures that an averaging of the rail pressure via a working cycle reliably takes place in the stationarily operable operating range, since the rail pressure oscillations are working cycle-periodic. In the speed range below the limit speed, however, an exact averaging over a working cycle and thus an exact filtering out the working cycle periodic rail pressure vibrations is not required because the area below the limit speed is only dynamically traversed and therefore rail pressure oscillations can develop here not sustainable.

In einer Ausgestaltung ist das Mittelwertfilter mit einem Tiefpassfilter kombiniert, wodurch hochfrequente Raildruckschwingungen, welche nicht arbeitsspielperiodisch sind, bedämpft werden.In one embodiment, the mean value filter is combined with a low-pass filter, as a result of which high-frequency rail pressure oscillations, which are not periodic in the working cycle, are damped.

Angewendet werden kann das Verfahren sowohl bei einer Brennkraftmaschine in V-Anordnung mit ungleicher Zündfolge und mit einem eigenständigen A-seitigen sowie einem eigenständigen B-seitigen Common-Railsystem als auch bei einer Brennkraftmaschine in V-Anordnung mit ungleicher Zündfolge, bei der eine einzige Hochdruckpumpe den Kraftstoff gleichzeitig in das A-seitige und das B-seitige Rail fördert.The method can be used both in an internal combustion engine in V-arrangement with unequal firing order and with a separate A-side and an independent B-side common rail system as well as in an internal combustion engine in V arrangement with unequal firing order, in which a single high-pressure pump Promotes the fuel at the same time in the A-side and the B-side rail.

In den Figuren ist ein bevorzugtes Ausführungsbeispiel dargestellt. Es zeigen:

Figur 1
ein Systemschaubild,
Figur 2
ein Blockschaltbild des Raildruck-Regelkreises,
Figur 3
eine Kennlinie,
Figur 4
ein Zeitdiagramm und
Figur 5
einen Programm-Ablaufplan.
In the figures, a preferred embodiment is shown. Show it:
FIG. 1
a system diagram,
FIG. 2
a block diagram of the rail pressure control loop,
FIG. 3
a characteristic
FIG. 4
a time chart and
FIG. 5
a program schedule.

Die Figur 1 zeigt ein Systemschaubild einer elektronisch gesteuerten Brennkraftmaschine 1 mit einem Common-Railsystem auf der A-Seite und einem Common-Railsystem auf der B-Seite. Das Common-Railsystem auf der A-Seite umfasst als mechanische Komponenten eine Niederdruckpumpe 3A zur Förderung von Kraftstoff aus einem Tank 2, eine Saugdrossel 4A zur Beeinflussung des Volumenstroms, eine Hochdruckpumpe 5A, ein Rail 6A und Injektoren 7A zum Einspritzen von Kraftstoff in die Brennräume der Brennkraftmaschine 1. Das Common-Railsystem auf der B-Seite umfasst dieselben mechanischen Komponenten, welche durch den Zusatz B bei den Bezugszeichen gekennzeichnet sind.The FIG. 1 shows a system diagram of an electronically controlled internal combustion engine 1 with a common rail system on the A side and a common rail system on the B side. The common rail system on the A side comprises as mechanical components a low-pressure pump 3A for conveying fuel from a tank 2, a suction throttle 4A for influencing the volume flow, a high-pressure pump 5A, a rail 6A and injectors 7A for Injecting fuel into the combustion chambers of the internal combustion engine 1. The common rail system on the B side comprises the same mechanical components, which are indicated by the suffix B at the reference numerals.

Gesteuert wird die Brennkraftmaschine 1 über ein elektronisches Motorsteuergerät 10 (ECU). In der Figur 1 sind als Eingangsgrößen des elektronischen Motorsteuergeräts 10 exemplarisch ein A-seitiger Raildruck pCR(A), ein B-seitiger Raildruck pCR(B) und eine Größe EIN dargestellt. Der A-seitige Raildruck pCR(A) wird über einen A-seitigen Raildrucksensor 9A erfasst. Der B-seitige Raildruck pCR(B) wird über einen B-seitigen Raildrucksensor 9B erfasst. Die Größe EIN steht stellvertretend für die weiteren Eingangssignale, beispielsweise für eine Motordrehzahl oder für einen Leistungswunsch des Bedieners. Die dargestellten Ausgangsgrößen des elektronischen Motorsteuergeräts 10 sind ein PWM-Signal SD(A) zur Ansteuerung der A-seitigen Saugdrossel 4A, ein leistungsbestimmendes Signal ve(A) zur Ansteuerung der A-seitigen Injektoren 7A, zum Beispiel Spritzbeginn/Spritzende, ein PWM-Signal SD(B) zur Ansteuerung der B-seitigen Saugdrossel 4B, ein leistungsbestimmendes Signal ve(B) zur Ansteuerung der B-seitigen Injektoren 7B und eine Größe AUS. Letztere steht stellvertretend für die weiteren Stellsignale zur Steuerung der Brennkraftmaschine 1, beispielsweise ein Stellsignal zur Ansteuerung eines AGR-Ventils. Das dargestellte Common-Railsystem kann auch als Common-Railsystem mit Einzelspeichern ausgeführt sein. In diesem Fall sind dann im Injektor 7A ein Einzelspeicher 8A und im Injektor 7B ein Einzelspeicher 8B als zusätzliche Puffervolumina für den Kraftstoff integriert. Die Einzelspeicherdrücke pE(A) und pE(B) sind dann weitere Eingangsgrößen des elektronischen Motorsteuergeräts 10. Kennzeichnendes Merkmal der dargestellten Ausführungsform ist die von einander unabhängige Regelung des A-seitigen Raildrucks pCR(A) und die unabhängige Regelung des B-seitigen Raildrucks pCR(B).The internal combustion engine 1 is controlled via an electronic engine control unit 10 (ECU). In the FIG. 1 For example, an A-side rail pressure pCR (A), a B-side rail pressure pCR (B), and a size ON are shown as inputs to the electronic engine control unit 10. The A-side rail pressure pCR (A) is detected via an A-side rail pressure sensor 9A. The B-side rail pressure pCR (B) is detected via a B-side rail pressure sensor 9B. The size ON is representative of the other input signals, for example for an engine speed or for a performance request of the operator. The illustrated outputs of the electronic engine control unit 10 are a PWM signal SD (A) for driving the A-side intake throttle 4A, a power-determining signal ve (A) for driving the A-side injectors 7A, for example injection start / end injection, a PWM Signal SD (B) for driving the B-side suction throttle 4B, a power-determining signal ve (B) for driving the B-side injectors 7B and a size OFF. The latter is representative of the other control signals for controlling the internal combustion engine 1, for example, a control signal for controlling an EGR valve. The illustrated common rail system can also be designed as a common rail system with individual memories. In this case, then in the injector 7A a single memory 8A and in the injector 7B a single memory 8B are integrated as additional buffer volumes for the fuel. The individual storage pressures pE (A) and pE (B) are then further inputs of the electronic engine control unit 10. Characteristic feature of the illustrated embodiment is the independent control of the A-side rail pressure pCR (A) and the independent control of the B-side rail pressure pCR (B).

Die Figur 2 zeigt ein Blockschaltbild des A-seitigen Raildruck-Regelkreises, welcher in der Figur durch den Zusatz A bei den Bezugszeichen gekennzeichnet ist. Beide Regelkreise sind identisch aufgebaut. Im Folgenden wird der A-seitige Raildruck-Regelkreis 11A beschrieben, wobei dessen Beschreibung auch sinngemäß auf den B-seitigen Raildruck-Regelkreis zutrifft. Die Führungsgröße ist für beide Raildruck-Regelkreise identisch, hier: ein gemeinsamer Soll-Raildruck pCR(SL). Berechnet wird der Soll-Raildruck in Abhängigkeit eines Soll-Moments oder in Abhängigkeit der Soll-Einspritzmenge und der Motordrehzahl.The FIG. 2 shows a block diagram of the A-side rail pressure control loop, which is indicated in the figure by the addition A at the reference numerals. Both control circuits are identical. In the following, the A-side rail pressure control loop 11A will be described, the description of which applies mutatis mutandis to the B-side rail pressure control loop. The reference variable is identical for both rail pressure control circuits, here: a common target rail pressure pCR (SL). The target rail pressure is calculated as a function of a desired torque or as a function of the desired injection quantity and the engine speed.

Die Eingangsgrößen des Raildruck-Regelkreises 11A sind der Soll-Raildruck pCR(SL), eine Grund-Frequenz fPWM für das PWM-Signal, eine Größe E1, die Motordrehzahl nMOT, eine Zeitkonstante T1 und eine Zeitkonstante T2. Die Eingangsgröße E1 umfasst die Batterie-Spannung und den ohmschen Widerstand der Saugdrossel einschließlich Zuleitung, welche in die Berechnung des Ansteuersignals SD(A) für die Saugdrossel 4A eingehen. Die Ausgangsgröße des A-seitigen Raildruck-Regelkreises sind die Rohwerte des Raildrucks pCR(A). Gemessen werden die Rohwerte des Raildrucks pCR(A) vom A-seitigen Raildrucksensor 9A. Dessen Ausgangssignal pMESS wird anschließend über ein Hardwarefilter 16A mit PT1-Verhalten und einer Eckfrequenz von 20 Hz gefiltert. Die Ausgangswerte pHW werden durch einen A/D-Wandler 17A digitalisiert. Die Ausgangswerte pAD des A/D-Wandlers 17A werden dann über zwei Informationspfade weiterverarbeitet. Ein erster Informationspfad umfasst ein Mittelwertfilter 18A und ein optionales Tiefpassfilter 19A. Der erste Informationspfad entspricht einer langsamen Filterung, über welche der Ist-Raildruck pIST(A) bestimmt wird. Das Mittelwertfilter 18A hat als weitere Eingangsgrößen die Motordrehzahl nMOT und die Grenzdrehzahl nLi. Über das Mittelwertfilter 18A wird festgelegt, ob die Mittelung des Raildrucks entweder über ein Arbeitsspiel, also zwei Umdrehungen der Kurbelwelle, erfolgt oder über eine konstante Zeit. Die Umschaltung zwischen den beiden Methoden der Mittelwertbildung erfolgt dabei bei der Grenzdrehzahl nLi. Die Ausgangsgröße pMW des Mittelwertfilters 18A wird dann -wie dargestellt- vom Tiefpassfilter 19A weiterverarbeitet. Dieses hat eine Zeitkonstante T1 als Eingangsgröße. In der Praxis wird für die Zeitkonstante ein Wert von T1=16 ms verwendet, was einer Frequenz von 10 Hz entspricht. Über das Tiefpassfilter 19A werden hochfrequente Raildruckschwingungen, welche nicht arbeitsspielperiodisch sind, bedämpft. Ein zweiter Informationspfad beinhaltet ein schnelles Filter 20A mit PT1-Verhalten. Das schnelle Filter 20A besitzt hierbei eine kleinere Zeitkonstante und damit einen geringeren Phasenverzug als das Mittelwertfilter 18A und das optionale Tiefpassfilter 19A. Der Ausgangswert pDYN(A) des schnellen Filters 20A wird unter anderem verwendet, um eine Schnellbestromung der Saugdrossel durchzuführen, wodurch eine höhere Dynamik bei einem Lastabwurf erzielt wird.The input variables of the rail pressure control loop 11A are the target rail pressure pCR (SL), a basic frequency fPWM for the PWM signal, a quantity E1, the engine speed nMOT, a time constant T1 and a time constant T2. The input quantity E1 comprises the battery voltage and the resistance of the suction throttle including the supply line, which are included in the calculation of the drive signal SD (A) for the suction throttle 4A. The output of the A-side rail pressure control loop are the raw values of the rail pressure pCR (A). The raw values of the rail pressure pCR (A) are measured by the A-side rail pressure sensor 9A. Its output signal pMESS is then filtered via a hardware filter 16A with PT1 behavior and a corner frequency of 20 Hz. The output values pHW are digitized by an A / D converter 17A. The output values pAD of the A / D converter 17A are then further processed via two information paths. A first information path includes a mean value filter 18A and an optional low pass filter 19A. The first information path corresponds to a slow filtering, via which the actual rail pressure pIST (A) is determined. The mean value filter 18A has, as further input variables, the engine speed nMOT and the limit speed nLi. Via the mean value filter 18A it is determined whether the averaging of the rail pressure takes place either via a working cycle, ie two revolutions of the crankshaft, or over a constant time. The switching between the two methods of averaging takes place at the limit speed nLi. The output pMW of the average filter 18A is then further processed by the low-pass filter 19A, as shown. This has a time constant T1 as input. In practice, a value of T1 = 16 ms is used for the time constant, which corresponds to a frequency of 10 Hz. About the low-pass filter 19A high-frequency rail pressure vibrations, which are not Arbeitsspielperiodisch attenuated. A second information path includes a fast filter 20A with PT1 behavior. The fast filter 20A in this case has a smaller time constant and thus a lower phase delay than the average value filter 18A and the optional low-pass filter 19A. The output value pDYN (A) of the fast filter 20A is used, inter alia, to perform a rapid energization of the suction throttle, whereby a higher dynamics is achieved in a load shedding.

An einem Punkt A wird der Ist-Raildruck pIST(A) mit dem Soll-Raildruck pCR(SL) verglichen. Hieraus resultiert die Regelabweichung ep(A), aus welcher ein Druckregler 12A mit zumindest PID-Verhalten einen Soll-Volumenstrom VSL als Stellgröße berechnet. Der Soll-Volumenstrom VSL hat die physikalische Einheit Liter/Minute. Danach wird der Soll-Volumenstrom begrenzt (nicht dargestellt) und dem Soll-Volumenstrom VSL über eine Pumpen-Kennlinie 13A ein elektrischer Soll-Strom iSL zugeordnet. Der Soll-Strom iSL wird in einer Berechnung 14A in ein PWM-Signal SD(A) umgerechnet. Das PWM-Signal SD(A) ist die Einschaltdauer und die Frequenz fPWM entspricht der Grundfrequenz des PWM-Signals SD(A). Bei der Umrechnung werden unter anderem die Schwankungen der Betriebsspannung und der ohmsche Widerstand der Saugdrossel einschließlich der elektrischen Zuleitungen mitberücksichtigt. Mit dem PWM-Signal SD(A) wird dann die Magnetspule der A-seitigen Saugdrossel beaufschlagt. Dadurch wird der Weg des Magnetkerns verändert, wodurch der Förderstrom der Hochdruckpumpe frei beeinflusst wird. Die Hochdruckpumpe 5A, die Saugdrossel 4A und das Rail 6A entsprechen einer A-seitigen Regelstrecke 15A. Damit ist der A-seitige Regelkreis 11A geschlossen.At a point A, the actual rail pressure pIST (A) is compared with the target rail pressure pCR (SL). This results in the control deviation ep (A), from which a pressure regulator 12A with at least PID behavior calculates a setpoint volume flow VSL as a manipulated variable. The nominal volume flow VSL has the physical unit liters / minute. Thereafter, the desired volume flow is limited (not shown) and the desired volume flow VSL via a pump characteristic 13A assigned a target electric current iSL. The target current iSL is converted in a calculation 14A into a PWM signal SD (A). The PWM signal SD (A) is the duty cycle and the frequency fPWM corresponds to the fundamental frequency of the PWM signal SD (A). During the conversion, inter alia, the fluctuations of the operating voltage and the ohmic resistance of the suction throttle including the electrical leads are taken into account. With the PWM signal SD (A) then the solenoid of the A-side suction throttle is applied. As a result, the path of the magnetic core is changed, whereby the flow rate of the high-pressure pump is influenced freely. The high-pressure pump 5A, the suction throttle 4A and the rail 6A correspond to an A-side controlled system 15A. Thus, the A-side control loop 11A is closed.

Die Figur 3 zeigt eine Kennlinie 21. Über die Kennlinie 21 wird in Abhängigkeit der Motordrehzahl nMOT eine Mittelungszeit dT berechnet. Die Mittelungszeit dT entspricht also der Zeit über welche die Raildruckwerte vom Mittelwertfilter (Fig. 2: 18A) gemittelt werden. Die Kennlinie 21 setzt sich aus einer abszissenparallelen Geraden 22 und einer Hyperbel 23 zusammen. Bei kleineren Motordrehzahlwerten als eine Grenzdrehzahl nLi=1000 1/min wird über die Gerade 22 eine konstante Mittelungszeit dT=120 ms bestimmt. Dieser Bereich ist in der Figur 3 schraffiert dargestellt. Die Mittelungszeit dT=120 ms errechnet sich aus der Dauer eines Arbeitsspiels bei einer Drehzahl von 1000 1/min. Ein Arbeitsspiel entspricht zwei Umdrehungen der Kurbelwelle der Brennkraftmaschine, also 720° Kurbelwellenwinkel. Unterhalb der Grenzdrehzahl nLi wird der Raildruck mit einer konstanten Mittelungszeit dT=120 ms gefiltert. Bei größeren Motordrehzahlwerten nMOT als die Grenzdrehzahl nLi=1000 1/min entspricht die Mittelungszeit dT einem Arbeitsspiel, was die Hyperbel 23 ergibt. So berechnet sich zum Beispiel bei einer Motordrehzahl nMOT=1500 1/min eine Mittelungszeit dT=80 ms oder bei einer Motordrehzahl nMOT=2000 1/min eine Mittelungszeit von dT=60 ms.The FIG. 3 shows a characteristic curve 21. On the characteristic curve 21, an averaging time dT is calculated as a function of the engine speed nMOT. The averaging time dT thus corresponds to the time over which the rail pressure values from the mean value filter ( Fig. 2 : 18A) are averaged. The characteristic curve 21 is composed of an abscissa-parallel straight line 22 and a hyperbola 23. For engine speed values smaller than a limit speed nLi = 1000 rpm, a constant averaging time dT = 120 ms is determined via the straight line 22. This area is in the FIG. 3 hatched shown. The averaging time dT = 120 ms is calculated from the duration of a working cycle at a speed of 1000 rpm. A working cycle corresponds to two revolutions of the crankshaft of the internal combustion engine, ie 720 ° crankshaft angle. Below the limit speed nLi, the rail pressure is filtered with a constant averaging time dT = 120 ms. For larger engine speed values nMOT than the limit speed nLi = 1000 1 / min, the averaging time dT corresponds to a working cycle, which gives the hyperbola 23. For example, at an engine speed nMOT = 1500 1 / min, an averaging time dT = 80 ms or at an engine speed nMOT = 2000 1 / min an averaging time of dT = 60 ms is calculated.

Die Figur 4 besteht aus den Teilfiguren 4A bis 4C, welche verschiedene Zustandsgrößen zeigen. Über der Zeit t sind dargestellt: die Motordrehzahl nMOT in Figur 4A, die Mittelungszeit dT in Figur 4B und der gemittelte Raildruck pMW in Figur 4C.The FIG. 4 consists of the subfigures 4A to 4C, which show different state variables. Over time t are shown: the engine speed nMOT in FIG. 4A , the averaging time dT in FIG. 4B and the average rail pressure pMW in FIG. 4C ,

In der Figur 4A sind der Startvorgang und eine Lastaufschaltung bei einer Brennkraftmaschinen-Generatoranordnung dargestellt. Die Soll-Drehzahl nSL ist als strichpunktiert Linie und die Grenzdrehzahl nLi als gestrichelte Linie in der Figur 4A eingezeichnet. Die Soll-Drehzahl bleibt konstant bei nSL=1500 1/min, was einer Frequenz von 50 Hz entspricht. Die Motordrehzahl nMOT erreicht zum Zeitpunkt t1 die Grenzdrehzahl von nLi=1000 1/min. Zum Zeitpunkt t2 wird die Soll-Drehzahl von nSL=1500 1/min erreicht. Nach einem Drehzahlüberschwinger ist die Motordrehzahl nMOT zum Zeitpunkt t4 auf der Soll-Drehzahl nSL eingeschwungen. Zum Zeitpunkt t6 erfolgt eine Lastaufschaltung, was zu einem Einbrechen der Motordrehzahl nMOT führt. Im Zeitraum t7 bis t8 unterschreitet die Motordrehzahl die Grenzdrehzahl nLi. Aufgrund der Soll-Istabweichung der Motordrehzahl wird nun mehr Kraftstoff eingespritzt, wodurch sich die Motordrehzahl nMOT wieder erhöht. Zum Zeitpunkt t9 erreicht die Motordrehzahl nMOT wieder das Drehzahlniveau der Soll-Drehzahl nSL und ist zum Zeitpunkt t10 auf der Soll-Drehzahl nSL eingeschwungen.In the FIG. 4A the startup procedure and a load application in an internal combustion engine generator arrangement are shown. The target speed nSL is shown as a dot-dash line and the limit speed nLi as a dashed line in the FIG. 4A located. The setpoint speed remains constant at nSL = 1500 1 / min, which corresponds to a frequency of 50 Hz. The engine speed nMOT reaches the limit speed of nLi = 1000 1 / min at time t1. At time t2, the target speed of nSL = 1500 1 / min is reached. After a speed overshoot, the engine speed nMOT is steady at the target speed nSL at time t4. At time t6, a load application takes place, which leads to a collapse of the engine speed nMOT. In the period t7 to t8, the engine speed falls below the limit speed nLi. Due to the target actual deviation of the engine speed now more fuel is injected, whereby the engine speed nMOT increases again. At the time t9, the engine speed nMOT again reaches the speed level of the setpoint speed nSL and has settled at the setpoint speed nSL at the time t10.

Die Figur 4B zeigt die Mittelungszeit dT, über welche die Raildruckwerte, beispielsweise der A-seitige Raildruck pCR(A), gemittelt werden. Bis zum Zeitpunkt t1 ist die Motordrehzahl nMOT kleiner als die Grenzdrehzahl nLi. Über die Kennlinie der Figur 3 wird daher eine konstante Mittelungszeit dT=120 ms berechnet. Im Drehzahlbereich unterhalb der Grenzdrehzahl nLi ist eine exakte Mittelung über ein Arbeitsspiel nicht erforderlich, da dieser Bereich nur dynamisch durchfahren wird und sich deshalb Raildruckschwingungen hier erst gar nicht entwickeln. Die Mittelung über eine konstante Zeit wirkt sich stabilisierend auf die Raildruck-Regelung aus, da das Signal des Ist-Raildrucks nicht zu stark verzögert wird. Nach dem Zeitpunkt t1 ist die Motordrehzahl nMOT größer als die Grenzdrehzahl nLi. Jetzt wird die Mittlungszeit dT in Abhängigkeit der Motordrehzahl nMOT berechnet und zwar über die Hyperbel der Figur 3. Demzufolge sinkt die Mittelungszeit dT mit zunehmender Motordrehzahl nMOT. Da der Raildruck nunmehr über ein Arbeitsspiel der Brennkraftmaschine gemittelt wird, werden die arbeitsspielperiodischen Schwankungen des Raildrucks herausgefiltert.The FIG. 4B shows the averaging time dT, over which the rail pressure values, for example the A-side rail pressure pCR (A), are averaged. Until the time t1, the engine speed nMOT is smaller than the limit speed nLi. About the characteristic of the FIG. 3 Therefore, a constant averaging time dT = 120 ms is calculated. In the speed range below the limit speed nLi an exact averaging over a working cycle is not required because this area is only passed through dynamically and therefore do not develop rail pressure vibrations here. The averaging over a constant time has a stabilizing effect on the rail pressure control since the signal of the actual rail pressure is not delayed too much. After the time t1, the engine speed nMOT is greater than the limit speed nLi. Now the averaging time dT is calculated as a function of the engine speed nMOT via the hyperbola of the FIG. 3 , As a result, the averaging time dT decreases as the engine speed nMOT increases. Since the rail pressure is now averaged over a cycle of the internal combustion engine, the working cycle periodic fluctuations of the rail pressure are filtered out.

Zum Zeitpunkt t4 ist die Motordrehzahl nMOT auf der Soll-Drehzahl nSL=1500 1/min eingeschwungen. Damit ist auch die Mittelungszeit auf den Wert dT=80 ms eingeschwungen. Erfolgt nun zum Zeitpunkt t6 eine Lastaufschaltung, so steigt die Mittelungszeit dT aufgrund der sinkenden Motordrehzahl an. Im Zeitraum t7/t8 unterschreitet die Motordrehzahl die Grenzdrehzahl nLi=1000 1/min. Nunmehr wird über die Kennlinie der Figur 3, hier: Gerade 22, eine konstante Mittelungszeit von dT=120 ms berechnet. Ab dem Zeitpunkt t8 übersteigt die Motordrehzahl nMOT wieder die Grenzdrehzahl nLi, sodass die Mittelungszeit nunmehr wieder in Abhängigkeit der Motordrehzahl (Fig. 3: Hyperbel 23) berechnet wird.At the time t4, the engine speed nMOT has settled at the target speed nSL = 1500 rpm. This means that the averaging time has stabilized at the value dT = 80 ms. If a load connection occurs at time t6, the averaging time dT increases due to the decreasing engine speed. In the period t7 / t8, the engine speed falls below the limit speed nLi = 1000 1 / min. Now it is about the characteristic of the FIG. 3 , here: Just 22, calculated a constant averaging time of dT = 120 ms. From the time t8, the engine speed nMOT again exceeds the limit speed nLi, so that the averaging time now again as a function of the engine speed ( Fig. 3 : Hyperbola 23) is calculated.

Das Diagramm der Figur 4C zeigt den gemittelten Raildruck pMW, welcher zunächst ansteigt und zum Zeitpunkt t3 den konstanten Soll-Raildruck pCR(SL)=800 bar erreicht. Nach einem Überschwinger pendelt sich der gemittelte Raildruck pMW zum Zeitpunkt t5 auf dem Soll-Raildruck pCR(SL) ein. Wie dargestellt wirkt sich der Drehzahleinbruch infolge der Lastaufschaltung nur geringfügig auf den gemittelten Raildruck pMW aus.The diagram of FIG. 4C shows the averaged rail pressure pMW, which initially increases and at time t3 reaches the constant target rail pressure pCR (SL) = 800 bar. After an overshoot, the averaged rail pressure pMW settles at the desired rail pressure pCR (SL) at time t5. As shown, the speed drop due to the load application has only a minor effect on the average rail pressure pMW.

In der Figur 5 ist das Verfahren in einem Programm-Ablaufplan als Unterprogramm dargestellt. Bei S1 wird geprüft, ob die Motordrehzahl nMOT größer/gleich der Grenzdrehzahl nLi ist. In der Praxis wird nLi=1000 1/min gewählt. Liegt die Motordrehzahl nMOT oberhalb der Grenzdrehzahl nLi, Abfrageergebnis S1: ja, so wird bei S2 die Anzahl der Werte N, über welche der Raildruck gemittelt wird, entsprechend der Motordrehzahl nMOT und der Abtastzeit tS berechnet. Für nMOT=1500 1/min und einer Abtastzeit tS=1 ms ergibt dies eine Anzahl von N=80 Werten. Ist die Motordrehzahl nMOT kleiner als die Grenzdrehzahl nLi, Abfrageergebnis S1: nein, so wird bei S3 die Anzahl N nicht in Abhängigkeit der Motordrehzahl nMOT berechnet, sondern anhand der konstant vorgegebenen Grenzdrehzahl nLi. Für eine Grenzdrehzahl nLi=1000 1/min sind dies N=120 Werte. Danach ist der Programm-Ablaufplan beendet.In the FIG. 5 the procedure is shown in a program flowchart as a subroutine. At S1 it is checked whether the engine speed nMOT is greater than or equal to the limit speed nLi. In practice nLi = 1000 1 / min is chosen. If the engine speed nMOT is above the limit speed nLi, query result S1: yes, then at S2 the number of values N, via which the rail pressure is averaged, is calculated according to the engine speed nMOT and the sampling time tS. For nMOT = 1500 1 / min and a sampling time tS = 1 ms this gives a number of N = 80 values. If the engine speed nMOT is smaller than the limit speed nLi, query result S1: no, then the number N is not calculated in S3 as a function of the engine speed nMOT but based on the constant preset limit speed nLi. For a limit speed nLi = 1000 1 / min these are N = 120 values. Then the program schedule is finished.

Bezugszeichenreference numeral

11
BrennkraftmaschineInternal combustion engine
22
Tanktank
3A, 3B3A, 3B
NiederdruckpumpeLow pressure pump
4A, 4B4A, 4B
Saugdrosselinterphase
5A, 5B5A, 5B
Hochdruckpumpehigh pressure pump
6A, 6B6A, 6B
RailRail
7A, 7B7A, 7B
Injektorinjector
8A, 8B8A, 8B
Einzelspeicher (optional)Single memory (optional)
9A, 9B9A, 9B
RaildrucksensorRail pressure sensor
1010
elektronisches Motorsteuergerät (ECU)electronic engine control unit (ECU)
11A, 11B11A, 11B
Raildruck-RegelkreisRail pressure control circuit
12A, 12B12A, 12B
Druckreglerpressure regulator
13A, 13B13A, 13B
Pumpen-KennliniePump curve
14A, 14B14A, 14B
Berechnung PWM-SignalCalculation PWM signal
15A, 15B15A, 15B
Regelstreckecontrolled system
16A, 16B16A, 16B
Hardwarefilterhardware filters
17A, 17B17A, 17B
A/D-WandlerA / D converter
18A, 18B18A, 18B
MittelwertfilterAverage filter
19A, 19B19A, 19B
Tiefpassfilter (PT1-Filter,optional)Low pass filter (PT1 filter, optional)
20A, 20B20A, 20B
schnelles Filter (PT1-Filter)fast filter (PT1 filter)
2121
Kennliniecurve
2222
GeradeJust
2323
Hyperbelhyperbole

Claims (4)

  1. Method for rail pressure regulation in an internal combustion engine (1) in a V arrangement with nonuniform ignition sequence, in which method an actual rail pressure is calculated from the measured rail pressure, a regulation deviation is determined on the basis of the actual rail pressure and a setpoint rail pressure, and in which method an actuation variable for the activation of a pressure actuator, in particular of a suction throttle, for the regulation of the rail pressure is calculated,
    characterized
    in that the actual rail pressure (pIST(A), pIST(B)) is calculated by means of an average-value filter (18A, 18B) from the measured rail pressure (pCR(A), pCR(B)) in that, below a threshold rotational speed (nLi), the rail pressure (pCR(A), pCR(B)) is averaged over a constant time and, above the threshold rotational speed (nLi), the rail pressure (pCR(A), pCR(B)) is averaged over one working cycle of the internal combustion engine (1).
  2. Method according to Claim 1,
    characterized
    in that, in addition, the actual rail pressure (pIST(A), pIST(B)) is calculated by means of a low-pass filter (19A, 19B).
  3. Method according to Claim 1,
    characterized
    in that the rail pressure (pCR(A)) of the common rail system on the A side and the rail pressure (pCR(B)) of the common rail system on the B side are regulated independently of one another by means of an A-side rail pressure regulation loop (11A) and by means of a B-side rail pressure regulation loop (11B) respectively, and a common setpoint rail pressure (pSL) is set as a reference variable for both rail pressure regulation loops (11A, 11B).
  4. Method according to one of the preceding claims,
    characterized
    in that the common setpoint rail pressure (pCR(SL)) is calculated as a function of a setpoint torque or as a function of the setpoint injection quantity and the engine speed (nMOT).
EP12726024.8A 2011-06-10 2012-06-05 Method for controlling rail pressure Active EP2718556B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102011103988A DE102011103988A1 (en) 2011-06-10 2011-06-10 Method for rail pressure control
PCT/EP2012/002391 WO2012167916A2 (en) 2011-06-10 2012-06-05 Method for controlling rail pressure

Publications (2)

Publication Number Publication Date
EP2718556A2 EP2718556A2 (en) 2014-04-16
EP2718556B1 true EP2718556B1 (en) 2017-08-09

Family

ID=46210196

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12726024.8A Active EP2718556B1 (en) 2011-06-10 2012-06-05 Method for controlling rail pressure

Country Status (6)

Country Link
US (1) US9657669B2 (en)
EP (1) EP2718556B1 (en)
CN (1) CN103748342B (en)
DE (1) DE102011103988A1 (en)
HK (1) HK1197286A1 (en)
WO (1) WO2012167916A2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110284985B (en) * 2019-06-28 2022-04-05 潍柴动力股份有限公司 Rail pressure adjusting method and device
DE102020105287A1 (en) 2020-02-28 2021-09-02 Bayerische Motoren Werke Aktiengesellschaft Method for determining an average value of pressure oscillation in a low-pressure fuel system for a motor vehicle, computer-readable storage medium and low-pressure fuel system

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4335171C1 (en) 1993-10-15 1995-05-04 Daimler Benz Ag Fuel injection system for a multi-cylinder diesel internal combustion engine
US5535621A (en) * 1994-03-02 1996-07-16 Ford Motor Company On-board detection of fuel injector malfunction
US5609136A (en) * 1994-06-28 1997-03-11 Cummins Engine Company, Inc. Model predictive control for HPI closed-loop fuel pressure control system
US5533492A (en) * 1994-07-05 1996-07-09 Ford Motor Company Gaseous fuel injection control system using averaged fuel pressure compensation
US5699772A (en) * 1995-01-17 1997-12-23 Nippondenso Co., Ltd. Fuel supply system for engines with fuel pressure control
JPH09256897A (en) * 1996-03-22 1997-09-30 Unisia Jecs Corp Fuel injection control device for internal combustion engine
JP3834918B2 (en) * 1997-03-04 2006-10-18 いすゞ自動車株式会社 Engine fuel injection method and apparatus
JP3849367B2 (en) * 1999-09-20 2006-11-22 いすゞ自動車株式会社 Common rail fuel injection system
JP3511492B2 (en) * 1999-12-14 2004-03-29 三菱電機株式会社 Fuel injection control device for in-cylinder injection engine
US6131551A (en) * 1999-12-21 2000-10-17 Ford Global Technologies, Inc. Method for controlling evaporative emission control system
DE10157641C2 (en) * 2001-11-24 2003-09-25 Mtu Friedrichshafen Gmbh Method for controlling an internal combustion engine
US6581574B1 (en) * 2002-03-27 2003-06-24 Visteon Global Technologies, Inc. Method for controlling fuel rail pressure
JP3965098B2 (en) * 2002-09-30 2007-08-22 ヤンマー株式会社 Fuel pressure detection device for common rail type fuel injection device and common rail type fuel injection device provided with the fuel pressure detection device
DE10253739B3 (en) * 2002-11-19 2004-05-06 Mtu Friedrichshafen Gmbh Idling rev regulation method for IC engine has two filters providing different filtered actual revs signals each compared with required revs signal for providing regulation disparities for rev regulator
JP2004183550A (en) 2002-12-03 2004-07-02 Isuzu Motors Ltd Filter treating device for common-rail pressure detection value and common-rail type fuel injection controller
DE102004023365B4 (en) * 2004-05-12 2007-07-19 Mtu Friedrichshafen Gmbh Method for pressure control of a storage injection system
DE102004056893A1 (en) * 2004-11-25 2006-06-01 Robert Bosch Gmbh Device and method for determining pressure fluctuations in a fuel supply system
DE102005008364B3 (en) * 2005-02-23 2006-08-03 Siemens Ag Method for determination of fuel pressure values of fuel pressure accumulator of internal combustion engine, involves assigning of several ranges to operating states of internal combustion engine
DE102005027650B4 (en) * 2005-06-15 2018-02-08 Robert Bosch Gmbh Method and device for operating an internal combustion engine
US7317983B2 (en) * 2005-06-22 2008-01-08 Denso Corporation Fuel injection controlling apparatus for internal combustion engine
DE102006049266B3 (en) * 2006-10-19 2008-03-06 Mtu Friedrichshafen Gmbh Method for recognizing opened passive pressure-relief-valve, which deviates fuel from common-railsystem into fuel tank, involves regulating the rail pressure, in which actuating variable is computed from rail-pressure offset
JP4353256B2 (en) * 2007-02-15 2009-10-28 株式会社デンソー Fuel injection control device and fuel injection control system
DE102007030713A1 (en) * 2007-07-02 2009-01-08 Robert Bosch Gmbh Method for plausibilizing the output signal of a rail pressure sensor
DE102007034317A1 (en) * 2007-07-24 2009-01-29 Robert Bosch Gmbh Internal combustion engine with several cylinders
US7552717B2 (en) * 2007-08-07 2009-06-30 Delphi Technologies, Inc. Fuel injector and method for controlling fuel injectors
US7873460B2 (en) * 2007-09-25 2011-01-18 Denso Corporation Controller for fuel injection system
DE102008036300B3 (en) * 2008-08-04 2010-01-28 Mtu Friedrichshafen Gmbh Method for controlling an internal combustion engine in V-arrangement
DE102008036299B3 (en) * 2008-08-04 2009-12-03 Mtu Friedrichshafen Gmbh Method for regulating pressure of common-rail system on both sides of V-type internal combustion engine, involves correcting variables of both sided pressure controllers based on disturbance variable
DE102009050469B4 (en) * 2009-10-23 2015-11-05 Mtu Friedrichshafen Gmbh Method for controlling and regulating an internal combustion engine
DE102009051389A1 (en) * 2009-10-30 2011-05-26 Mtu Friedrichshafen Gmbh Method for controlling and regulating an internal combustion engine in V-arrangement
US8950379B2 (en) * 2012-08-28 2015-02-10 GM Global Technology Operations LLC Measured fuel rail pressure adjustment systems and methods
US9376977B2 (en) * 2012-09-07 2016-06-28 Caterpillar Inc. Rail pressure control strategy for common rail fuel system

Also Published As

Publication number Publication date
EP2718556A2 (en) 2014-04-16
US9657669B2 (en) 2017-05-23
CN103748342A (en) 2014-04-23
WO2012167916A3 (en) 2013-11-14
CN103748342B (en) 2016-08-24
WO2012167916A2 (en) 2012-12-13
HK1197286A1 (en) 2015-01-09
US20140156168A1 (en) 2014-06-05
DE102011103988A1 (en) 2012-12-13

Similar Documents

Publication Publication Date Title
DE102008036299B3 (en) Method for regulating pressure of common-rail system on both sides of V-type internal combustion engine, involves correcting variables of both sided pressure controllers based on disturbance variable
EP2449241B1 (en) Method for controlling the rail pressure in a common-rail injection system of a combustion engine
EP2449242B1 (en) Control and regulation method of the fuel pressure of a common-rail of a combustion engine
DE102005029138B3 (en) Control and regulating process for engine with common rail system has second actual rail pressure determined by second filter
DE10162989C1 (en) Circuit for regulating injection system fuel pump, derives adaptive component of desired delivery volume from integral component if integral component above threshold for defined time
EP1568874B1 (en) Method and apparatus for controlling the volume flow in a fuel injection system of an internal combustion engine
DE102009050467B4 (en) Method for controlling and regulating an internal combustion engine
DE102009056381B4 (en) Method for controlling and regulating an internal combustion engine
DE102007037037B3 (en) Method for controlling an internal combustion engine
EP2006521B1 (en) Method for controlling rail pressure during a starting process
EP0837986A1 (en) Device and process to regulate fuel pressure in a high pressure accumulator
EP1086307A1 (en) Common-rail system comprising a controlled high-pressure pump as a second pressure regulator
EP2449240B1 (en) Method for controlling the rail pressure in a common-rail injection system of a combustion engine
EP2358988B1 (en) Control and regulation method for an internal combustion engine having a common rail system
DE102004008261B3 (en) Method for controlling and regulating an internal combustion engine-generator unit
EP2718556B1 (en) Method for controlling rail pressure
EP1611333A1 (en) Method for engine speed control
EP2358987B1 (en) Control and regulation method for an internal combustion engine having a common rail system
DE102013000060B3 (en) Method of operating internal combustion engine, involves dividing high pressure pump associated with suction throttle into units, and controlling each unit by separate control loop
DE102017211770B4 (en) Method for regulating pressure in a high-pressure injection system of an internal combustion engine, and internal combustion engine for carrying out such a method
DE102009027806A1 (en) Method for operating fuel system of internal combustion engine, involves providing metering unit and fuel pump, where actuator of metering unit is controlled by periodically pulsed signal
DE102018204549A1 (en) Method for controlling a fluid pump in an internal combustion engine
DE102012216352A1 (en) Method for operating diesel internal combustion engine, involves changing control parameters depending on relative time position and/or relative amplitude of minimum and/or maximum of injection

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20131030

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20170118

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 917132

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170815

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502012010979

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20170809

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170809

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170809

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170809

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171109

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170809

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170809

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171110

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171109

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170809

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170809

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171209

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170809

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170809

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170809

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170809

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170809

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502012010979

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170809

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170809

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170809

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170809

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20180511

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170809

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170809

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20180630

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180605

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170809

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180630

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180630

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180630

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180605

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180630

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 917132

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180605

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180605

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170809

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20120605

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170809

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170809

Ref country code: MK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170809

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170809

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502012010979

Country of ref document: DE

Owner name: ROLLS-ROYCE SOLUTIONS GMBH, DE

Free format text: FORMER OWNER: MTU FRIEDRICHSHAFEN GMBH, 88045 FRIEDRICHSHAFEN, DE

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230530

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230620

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230622

Year of fee payment: 12