EP2358988B1 - Control and regulation method for an internal combustion engine having a common rail system - Google Patents

Control and regulation method for an internal combustion engine having a common rail system Download PDF

Info

Publication number
EP2358988B1
EP2358988B1 EP09771694A EP09771694A EP2358988B1 EP 2358988 B1 EP2358988 B1 EP 2358988B1 EP 09771694 A EP09771694 A EP 09771694A EP 09771694 A EP09771694 A EP 09771694A EP 2358988 B1 EP2358988 B1 EP 2358988B1
Authority
EP
European Patent Office
Prior art keywords
pwm
rail pressure
ist
pressure
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP09771694A
Other languages
German (de)
French (fr)
Other versions
EP2358988A1 (en
Inventor
Armin DÖLKER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rolls Royce Solutions GmbH
Original Assignee
MTU Friedrichshafen GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MTU Friedrichshafen GmbH filed Critical MTU Friedrichshafen GmbH
Publication of EP2358988A1 publication Critical patent/EP2358988A1/en
Application granted granted Critical
Publication of EP2358988B1 publication Critical patent/EP2358988B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/3809Common rail control systems
    • F02D41/3836Controlling the fuel pressure
    • F02D41/3845Controlling the fuel pressure by controlling the flow into the common rail, e.g. the amount of fuel pumped
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1413Controller structures or design
    • F02D2041/1432Controller structures or design the system including a filter, e.g. a low pass or high pass filter
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/202Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit
    • F02D2041/2024Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit the control switching a load after time-on and time-off pulses
    • F02D2041/2027Control of the current by pulse width modulation or duty cycle control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/06Fuel or fuel supply system parameters
    • F02D2200/0602Fuel pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/31Control of the fuel pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/20Varying fuel delivery in quantity or timing
    • F02M59/36Varying fuel delivery in quantity or timing by variably-timed valves controlling fuel passages to pumping elements or overflow passages
    • F02M59/366Valves being actuated electrically

Definitions

  • the invention relates to a control and regulating method for an internal combustion engine having a common rail system, in which the rail pressure is controlled in normal operation and is changed with detection of a load shedding from the control to the control mode, wherein in the control mode, the PWM signal for acting on the controlled system is temporarily set to a higher than normal operation PWM value.
  • a high pressure pump delivers fuel from a fuel tank into a rail.
  • the inlet cross section to the high pressure pump is determined by a variable suction throttle.
  • injectors via which the fuel is injected into the combustion chambers of the internal combustion engine. Since the quality of the combustion depends crucially on the pressure level in the rail, this is regulated.
  • the high pressure control circuit includes a pressure regulator, the suction throttle with high pressure pump and the rail as a controlled system and a filter in the feedback branch. In this high-pressure control circuit, the pressure level in the rail corresponds to the controlled variable.
  • the measured pressure values of the rail are converted via the filter into an actual rail pressure and compared with a desired rail pressure.
  • the resulting deviation is then converted via the pressure regulator into a control signal for the suction throttle.
  • the actuating signal corresponds to z. B. a volume flow with the unit liters / minute.
  • the control signal is implemented electrically as a PWM signal (pulse width modulated) with a constant frequency, for example 50 Hz.
  • the high-pressure control circuit described above is from the DE 103 30 466 B3 known.
  • control mode the PWM signal for controlling the suction throttle is temporarily set via a staircase function to an increased PWM value, whereby the closing process of the suction throttle is accelerated.
  • a critical engine speed is calculated from the angular distance between two injections and the frequency of the PWM signal, in which the frequencies of the PWM signal and the injection are almost the same size and from this defines a speed range. If the engine speed passes through this speed range, then the PWM signal from a first frequency, for example, 100 Hz, to a second Frequency, for example, 120 Hz, switched. Frequency switching stabilizes the high-pressure control loop in the range around the critical speeds.
  • the invention is based on the object to further optimize the pressure control in a load shedding.
  • the function is ended when the second actual rail pressure falls below the first limit value reduced by a hysteresis value.
  • the PWM signal from the second frequency is then switched back to the first, lower frequency. Since the higher PWM frequency is set only for a short period of time, the power dissipation and heat generation of the switching transistors in the electronic engine control unit remain within the specification specified by the semiconductor manufacturer.
  • the FIG. 1 shows a system diagram of an electronically controlled internal combustion engine 1 with a common rail system.
  • the common rail system comprises as mechanical components a low pressure pump 3 for conveying fuel from a tank 2, a suction throttle 4 for influencing the volume flow, a high pressure pump 5, a rail 6 and injectors 8 for injecting fuel into the combustion chambers of the internal combustion engine 1.
  • the internal combustion engine 1 is controlled via an electronic engine control unit 9 (ECU).
  • ECU electronic engine control unit 9
  • the illustrated input variables of the electronic engine control unit 9 exemplified by the rail pressure pCR, which is detected by a pressure sensor 7, the engine speed nMOT and a size ON.
  • the size ON is representative of the other input signals, for example for the oil or the fuel temperature.
  • the illustrated outputs of the electronic engine control unit 9 are a PWM signal PWM for controlling the intake throttle 4, a power-determining signal ve for driving the injectors 8 and a size OFF.
  • the power-determining signal ve characterizes a start of injection and an injection duration.
  • the size OFF is representative of the other control signals for controlling the internal combustion engine 1, for example, a control signal for controlling an EGR valve.
  • the illustrated common rail system can of course also be designed as a common rail system with individual memories. In this case, the individual memory is integrated in the injector 8, in which case the individual accumulator pressure pE is another
  • the FIG. 2 shows the high-pressure control loop for regulating the rail pressure as a block diagram.
  • the input quantity corresponds to a nominal rail pressure pCR (SL).
  • the output quantity corresponds to the raw value of the rail pressure pCR.
  • a first actual rail pressure pCR1 (IST) is determined by means of a first filter 15. This is compared with the set point pCR (SL) at a summation point A, resulting in a control deviation ep.
  • a manipulated variable is calculated by means of a pressure regulator 10.
  • the manipulated variable corresponds to a volume flow qV1.
  • the physical unit of the volume flow is liters / minute.
  • the calculated nominal consumption is added to the volume flow qV1.
  • the volume flow qV1 corresponds to the input variable for a limit 11.
  • the limit 11 can be speed-dependent, input variable nMOT.
  • the output qV2 of the limit 11 is then converted in a calculation 12 into a PWM signal PWM1.
  • the PWM signal PWM1 represents the duty cycle and the frequency fPWM corresponds to the frequency, for example 50 Hz (period: 20 ms). In the conversion, the fluctuations of the operating voltage and the pilot fuel pressure are taken into account.
  • the PWM signal PWM1 is the input of a first switch 13.
  • a second input of the first switch 13 is a PWM signal PWM2.
  • the output signal PWM of the first switch 13 corresponds either to the signal PWM1 or PWM2.
  • the solenoid of the suction throttle is applied.
  • the path of the magnetic core is changed, whereby the flow rate of the high-pressure pump is influenced freely.
  • the high-pressure pump, the suction throttle and the rail correspond to a controlled system 14. From the rail 6, a consumption volume flow qV3 is discharged via the injectors 8. This closes the control loop.
  • This control loop is supplemented by the temporary PWM specification, as this one from the DE 10 2005 029 138 B3 is known.
  • the elements of the temporary PWM specification are a second filter 17 for calculating a second actual rail pressure pCR2 (IST), a function block 18 for determining a signal SZ1 for driving the first switch 13 and a PWM default 16.
  • the first switch 13 in the position a ie the calculated by the pressure regulator 10 manipulated variable qV1 is limited, converted into a PWM signal PWM1 and thus the controlled system 14 is applied.
  • the function block 18 changes the signal level of the signal SZ1, whereby the first switch 13 is reversed to the position b.
  • a PWM value PWM2 which is increased in comparison to the normal mode, is temporarily output via the PWM preset 16. In other words, it is changed from the control mode to the control mode.
  • the temporary PWM specification can - as shown - be designed staircase. After expiry of a predefinable period then the first switch 13 changes back to position a. Thus, the control mode is set again.
  • the PWM signal is provided with a low PWM frequency fPWM, for example 50 Hz, from the corresponding driver software.
  • the PWM value can therefore be updated in a 20 ms time frame.
  • the low PWM frequency ensures that, first, the slider of the suction throttle moves, so only the sliding friction is overcome, and second, the power loss of the switching transistors in the electronic engine control unit remains within the specification.
  • the pressure regulator 10 is calculated by the motor software with a constant sampling time. If the pressure regulator 10 recognizes a control deviation ep that increases in magnitude, it may be that a PWM period has started shortly before.
  • the new, increased PWM duty cycle can therefore only be set at the beginning of the next PWM period, that is, at the earliest after the expiration of the 20 ms time interval. This in turn means that the rail pressure pCR continues to rise during the current and also at the beginning of the next PWM period. Due to the asynchronicity of the PWM signal and pressure controller sampling, this results in a corresponding dead time.
  • the invention begins by the block diagram of FIG. 2 is supplemented by a function block 19 and a second switch 20.
  • the second switch 20 In control mode, the second switch 20 is in the position a, in which the first frequency f1 (50 Hz) determines the frequency fPWM. If the second actual rail pressure pCR2 (IST) exceeds a first limit value GW1, this is the case with a load shedding, then the function block 19 sets the activation signal SZ2 for activating the second switch 20 to a second value, whereby it is reversed to the position b , Now, the frequency fPWM corresponds to the second frequency f2 of, for example, 500 Hz.
  • the PWM signal PWM1 is now updated every 2 ms.
  • the switch 20 changes back to the position a, with which the PWM frequency fPWM is again identical to the first frequency f1.
  • the FIG. 3 shows a load shedding as a time diagram.
  • the FIG. 3 consists of the subfigures 3A to 3D. These show each over time: in FIG. 3A the course of the second actual rail pressure pCR2 (IST), in FIG. 3B the value of the PWM signal PWM, in FIG. 3C the PWM signal in the pulse-pause display according to the prior art and in Figure 3D the PWM signal in the pulse-pause display according to the invention.
  • the FIG. 3C corresponds to the pressure curve shown as a solid line in the FIG. 3A
  • the Figure 3D corresponds to the pressure curve shown as a dashed line in the FIG.
  • the illustrated example was based on a first PWM frequency of 50 Hz, which corresponds to a time interval of 20 ms, and a second PWM frequency of 500 Hz, which corresponds to a time interval of 2 ms.
  • the nominal rail pressure was maintained constant.
  • the increase of the PWM frequency is deactivated when the second actual rail pressure pCR2 (IST) falls below the first limit value GW1 by a predetermined hysteresis value pHY, for example 30 bar, in the point C.
  • pHY a predetermined hysteresis value for example 30 bar
  • 500 Hz is switched from the second frequency to the first frequency 50 Hz, see Fig. 3D at time t6. Since, in the context of the invention, switching to a high PWM frequency occurs only during the high-pressure overshoot (period t2 / t6), the heat generation of the power output stage remains within the permissible hardware specification despite the large number of transistor switching operations.
  • the switching logic of the invention is in the FIG. 4 shown.
  • the PWM frequency fPWM is set to the first frequency f1, for example 50 Hz. If the second actual rail pressure pCR2 (IST) is greater than or equal to the first limit value GW1, the PWM frequency fPWM is set to the second frequency f2, for example 500 Hz. The switching back to the first frequency f1 takes place when the first limit value GW1 is undershot by the hysteresis value pHY.
  • FIG. 5 shows a program flowchart of the method.
  • a flag 0 is initialized and the frequency fPWM of the PWM signal is set to the value f1, for example 50 Hz.
  • the value of the flag is checked. If the value is 1, the program part is run through with the steps S6 to S8. On the other hand, if the value of the flag is 0, then the program part is run through with steps S3 to S5.
  • the first program run 0
  • query result S3 yes, then at S4 the second frequency f2, for example 500 Hz, is switched over.
  • the PWM value can now be changed within a 2 ms time frame.
  • the flag is then set to the value 1 at S5 and the program sequence continues at A.
  • query result S2 indicates that the flag has the value 1
  • query result S2 yes
  • the switch-off threshold is set to the difference between the first limit value GW1 and the hysteresis value pHY. If the switch-off threshold has not yet fallen below, the program sequence continues at A. If the switch-off threshold has been reached or undershot, query result S6: yes, the frequency fPWM of the PWM signal is switched from the second frequency f2 back to the first frequency f1 at S7. The flag is then set to its initialization value 0, S8, and the program sequence continues at A.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Description

Die Erfindung betrifft ein Steuerungs- und Regelungsverfahren für eine Brennkraftmaschine mit einem Common-Railsystem, bei dem im Normalbetrieb der Raildruck geregelt wird und mit Erkennen eines Lastabwurfs vom Regelungs- in den Steuerungsbetrieb gewechselt wird, wobei im Steuerungsbetrieb das PWM-Signal zur Beaufschlagung der Regelstrecke temporär auf einen gegenüber dem Normalbetrieb erhöhten PWM-Wert gesetzt wird.The invention relates to a control and regulating method for an internal combustion engine having a common rail system, in which the rail pressure is controlled in normal operation and is changed with detection of a load shedding from the control to the control mode, wherein in the control mode, the PWM signal for acting on the controlled system is temporarily set to a higher than normal operation PWM value.

Bei einem Common-Railsystem fördert eine Hochdruckpumpe den Kraftstoff aus einem Kraftstofftank in ein Rail. Der Zulaufquerschnitt zur Hochdruckpumpe wird über eine veränderliche Saugdrossel festgelegt. Am Rail angeschlossen sind Injektoren über welche der Kraftstoff in die Brennräume der Brennkraftmaschine eingespritzt wird. Da die Güte der Verbrennung entscheidend vom Druckniveau im Rail abhängt, wird dieses geregelt. Der Hochdruck-Regelkreis umfasst einen Druckregler, die Saugdrossel mit Hochdruckpumpe und das Rail als Regelstrecke sowie ein Filter im Rückkopplungszweig. In diesem Hochdruck-Regelkreis entspricht das Druckniveau im Rail der Regelgröße. Die gemessenen Druckwerte des Rails werden über das Filter in einen Ist-Raildruck gewandelt und mit einem Soll-Raildruck verglichen. Die sich hieraus ergebende Regelabweichung wird dann über den Druckregler in ein Stellsignal für die Saugdrossel gewandelt. Das Stellsignal entspricht z. B. einem Volumenstrom mit der Einheit Liter/Minute. Typischerweise ist das Stellsignal elektrisch als PWM-Signal (pulsweitenmoduliert) mit konstanter Frequenz, zum Beispiel 50 Hz, ausgeführt. Der zuvor beschriebene Hochdruck-Regelkreis ist aus der DE 103 30 466 B3 bekannt.In a common rail system, a high pressure pump delivers fuel from a fuel tank into a rail. The inlet cross section to the high pressure pump is determined by a variable suction throttle. On the rail are injectors via which the fuel is injected into the combustion chambers of the internal combustion engine. Since the quality of the combustion depends crucially on the pressure level in the rail, this is regulated. The high pressure control circuit includes a pressure regulator, the suction throttle with high pressure pump and the rail as a controlled system and a filter in the feedback branch. In this high-pressure control circuit, the pressure level in the rail corresponds to the controlled variable. The measured pressure values of the rail are converted via the filter into an actual rail pressure and compared with a desired rail pressure. The resulting deviation is then converted via the pressure regulator into a control signal for the suction throttle. The actuating signal corresponds to z. B. a volume flow with the unit liters / minute. Typically, the control signal is implemented electrically as a PWM signal (pulse width modulated) with a constant frequency, for example 50 Hz. The high-pressure control circuit described above is from the DE 103 30 466 B3 known.

Auf Grund der hohen Dynamik ist ein Lastabwurf regelungstechnisch ein schwer beherrschbarer Vorgang, so kann nach einem Lastabwurf der Raildruck mit einem Druckgradienten von bis zu 4000 bar/Sekunde ansteigen. Wird beispielsweise die Brennkraftmaschine bei einem stationären Raildruck von 1800 bar betrieben und beträgt die PWM-Frequenz 50 Hz, entsprechend 20 ms Periodendauer, so kann der Raildruck um bis zu 80 bar ansteigen bevor auf den Lastabwurf über die Veränderung des PWM-Signals reagiert wird. Erschwerend kommt hinzu, dass Drucksignal-Erfassung, Stellgrößen-Berechnung und Ausgeben des PWM-Signals zu unterschiedlichen Zeitpunkten, also asynchron, erfolgen. Im ungünstigsten Fall kann die sich ergebende Totzeit bis zu zwei PWM-Perioden betragen. Diese Totzeit ist kritisch, da der maximale Raildruck über ein passives Druckbegrenzungsventil begrenzt wird, welches zum Beispiel bei 1950 bar öffnet.Due to the high dynamics of a load shedding control technology is a difficult to control process, so after a load shedding the rail pressure with a Pressure gradients of up to 4000 bar / second increase. If, for example, the internal combustion engine is operated at a stationary rail pressure of 1800 bar and the PWM frequency is 50 Hz, corresponding to 20 ms period duration, then the rail pressure can rise by up to 80 bar before reacting to the load shedding via the change of the PWM signal. To make matters worse, that pressure signal detection, manipulated variable calculation and outputting of the PWM signal at different times, so asynchronous done. In the worst case, the resulting dead time can be up to two PWM periods. This dead time is critical because the maximum rail pressure is limited by a passive pressure relief valve, which opens at 1950 bar, for example.

Zur Verbesserung der Sicherheit der Druckregelung bei einem Lastabwurf schlägt die DE 10 2005 029 138 B3 vor, dass vom Regelungs- in den Steuerungsbetrieb gewechselt wird. Im Steuerungsbetrieb wird das PWM-Signal zur Ansteuerung der Saugdrossel temporär über eine Treppenfunktion auf einen erhöhten PWM-Wert gesetzt, wodurch der Schließvorgang der Saugdrossel beschleunigt wird.To improve the safety of the pressure control during a load shedding beats the DE 10 2005 029 138 B3 before switching from control to control mode. In control mode, the PWM signal for controlling the suction throttle is temporarily set via a staircase function to an increased PWM value, whereby the closing process of the suction throttle is accelerated.

Zur Verbesserung der Dynamik bei großen Sollwert-Sprüngen schlägt die DE 40 20 654 A1 vor, dass das Impulsende des PWM-Signals oder die Frequenz des PWM-Signals der aktuellen Entwicklung der Soll- und Istwerte nachgeführt wird. Grundlegende Voraussetzung für dieses Verfahren ist jedoch der zeitsynchrone Start des PWM-Signals und der Erfassung der Soll-Istwerte. Für die Druckregelung im Common-Railsystem kommt dieses Verfahren nicht in Betracht, da hier eine Asynchronität von Druckregelung und PWM-Signal der Regelfall ist. Zudem ist bei einem Lastabwurf auf Grund des hohen Druckgradienten eine Frequenznachführung, im Sinne einer Frequenzerhöhung mit anschließender Frequenzverringerung, technisch nicht darstellbar.To improve the dynamics of large setpoint jumps beats the DE 40 20 654 A1 that the pulse end of the PWM signal or the frequency of the PWM signal of the current development of the setpoints and actual values is tracked. The basic prerequisite for this method, however, is the time-synchronous start of the PWM signal and the acquisition of the setpoint actual values. For the pressure control in the common rail system, this method is out of the question, since an asynchronism of pressure control and PWM signal is the rule here. In addition, in a load shedding due to the high pressure gradient, a frequency tracking, in the sense of a frequency increase with subsequent frequency reduction, technically unrepresentable.

Zur Verringerung von Druckschwingungen im Rail, welche durch die Saugdrossel angeregt werden, sieht die DE 103 30 466 B3 eine Frequenzumschaltung des PWM-Signals vor. Hierzu wird aus dem Winkelabstand zweier Einspritzungen und der Frequenz des PWM-Signals eine kritische Motordrehzahl berechnet, bei der die Frequenzen des PWM-Signals und der Einspritzung nahezu gleich groß sind und hieraus ein Drehzahlbereich definiert. Durchläuft die Motordrehzahl diesen Drehzahlbereich, so wird das PWM-Signal von einer ersten Frequenz, zum Beispiel 100 Hz, auf eine zweite Frequenz, zum Beispiel 120 Hz, umgeschaltet. Durch die Frequenzumschaltung wird der Hochdruck-Regelkreis im Bereich um die kritischen Drehzahlen stabilisiert.To reduce pressure oscillations in the rail, which are excited by the suction throttle, sees the DE 103 30 466 B3 a frequency switching of the PWM signal before. For this purpose, a critical engine speed is calculated from the angular distance between two injections and the frequency of the PWM signal, in which the frequencies of the PWM signal and the injection are almost the same size and from this defines a speed range. If the engine speed passes through this speed range, then the PWM signal from a first frequency, for example, 100 Hz, to a second Frequency, for example, 120 Hz, switched. Frequency switching stabilizes the high-pressure control loop in the range around the critical speeds.

Ausgehend von der in der DE 10 2005 029 138 B3 beschrieben temporären PWM-Vorgabe bei einem Lastabwurf, liegt der Erfindung die Aufgabe zu Grunde, die Druckregelung bei einem Lastabwurf weiter zu optimieren.Starting from the in the DE 10 2005 029 138 B3 described temporary PWM specification in a load shedding, the invention is based on the object to further optimize the pressure control in a load shedding.

Gelöst wird diese Aufgabe durch die im Anspruch 1 aufgeführten Merkmale. In den Unteransprüchen sind die Ausgestaltungen dargestellt.This object is achieved by the features listed in claim 1. In the dependent claims, the embodiments are shown.

Wie in der DE 10 2005 029 138 B3 dargestellt, wird über ein erstes Filter der erste Ist-Raildruck und hieraus die Regelabweichung berechnet. Gleichzeitig wird über ein zweites, schnelleres Filter ein zweiter Ist-Raildruck berechnet. Ein Lastabwurf wird nun daran erkannt, dass der zweite Ist-Raildruck einen ersten Grenzwert übersteigt. Mit Erkennen des Lastabwurfs wird dann das PWM-Signal von einer ersten Frequenz, zum Beispiel 50 Hz, auf eine zweite, wesentlich höhere Frequenz, zum Beispiel 500 Hz, umgeschaltet. Übersteigt danach der zweite Ist-Raildruck einen zweiten Grenzwert, so wird in den Steuerungsbetrieb mit der temporären PWM-Vorgabe gewechselt. Auf Grund der wesentlich höheren PWM-Frequenz greift die temporäre PWM-Vorgabe früher. Die Optimierung besteht also darin, dass die Totzeit zwischen Erkennen des Lastabwurfs und Ausgeben des PWM-Signals verkürzt wird, mit dem Vorteil einer deutlichen Verringerung des Raildruck-Überschwingens nach dem Lastabwurf.Like in the DE 10 2005 029 138 B3 represented, is calculated by a first filter, the first actual rail pressure and from this the control deviation. At the same time, a second, faster filter calculates a second actual rail pressure. A load shedding is now recognized that the second actual rail pressure exceeds a first limit. Upon detection of the load shedding, the PWM signal is then switched from a first frequency, for example 50 Hz, to a second, much higher frequency, for example 500 Hz. Thereafter, if the second actual rail pressure exceeds a second threshold, the control mode is changed to the temporary PWM default. Due to the much higher PWM frequency, the temporary PWM specification starts earlier. The optimization is thus that the dead time between detection of the load shedding and outputting the PWM signal is shortened, with the advantage of a significant reduction of the rail pressure overshoot after load shedding.

Beendet wird die Funktion, wenn der zweite Ist-Raildruck den um einen Hysteresewert reduzierten ersten Grenzwert wieder unterschreitet. Mit Ende der Funktion wird dann das PWM-Signal von der zweiten Frequenz wieder zurück auf die erste, niedere Frequenz geschaltet. Da die höhere PWM-Frequenz lediglich während eines kurzen Zeitraums gesetzt wird, bleibt die Verlustleistung und die Wärmeentwicklung der Schalttransistoren im elektronischen Motorsteuergerät innerhalb der vom Halbleiterhersteller angegebenen Spezifikation.The function is ended when the second actual rail pressure falls below the first limit value reduced by a hysteresis value. At the end of the function, the PWM signal from the second frequency is then switched back to the first, lower frequency. Since the higher PWM frequency is set only for a short period of time, the power dissipation and heat generation of the switching transistors in the electronic engine control unit remain within the specification specified by the semiconductor manufacturer.

In den Figuren ist ein bevorzugtes Ausführungsbeispiel dargestellt. Es zeigen:

Figur 1
ein Systemschaubild,
Figur 2
einen Hockdruck-Regelkreis als Blockschaltbild,
Figur 3
einen Lastabwurf als Zeitdiagramm,
Figur 4
ein Zustandsdiagramm und
Figur 5
einen Programm-Ablaufplan.
In the figures, a preferred embodiment is shown. Show it:
FIG. 1
a system diagram,
FIG. 2
a high-pressure control loop as a block diagram,
FIG. 3
a load shedding as a time diagram,
FIG. 4
a state diagram and
FIG. 5
a program schedule.

Die Figur 1 zeigt ein Systemschaubild einer elektronisch gesteuerten Brennkraftmaschine 1 mit einem Common-Railsystem. Das Common-Railsystem umfasst als mechanische Komponenten eine Niederdruckpumpe 3 zur Förderung von Kraftstoff aus einem Tank 2, eine Saugdrossel 4 zur Beeinflussung des Volumenstroms, eine Hochdruckpumpe 5, ein Rail 6 und Injektoren 8 zum Einspritzen von Kraftstoff in die Brennräume der Brennkraftmaschine 1.The FIG. 1 shows a system diagram of an electronically controlled internal combustion engine 1 with a common rail system. The common rail system comprises as mechanical components a low pressure pump 3 for conveying fuel from a tank 2, a suction throttle 4 for influencing the volume flow, a high pressure pump 5, a rail 6 and injectors 8 for injecting fuel into the combustion chambers of the internal combustion engine 1.

Gesteuert wird die Brennkraftmaschine 1 über ein elektronisches Motorsteuergerät 9 (ECU). In der Figur 1 sind als Eingangsgrößen des elektronischen Motorsteuergeräts 9 exemplarisch der Raildruck pCR, welcher über einen Drucksensor 7 erfasst wird, die Motordrehzahl nMOT und eine Größe EIN dargestellt. Die Größe EIN steht stellvertretend für die weiteren Eingangssignale, beispielsweise für die Öl- oder die Kraftstofftemperatur. Die dargestellten Ausgangsgrößen des elektronischen Motorsteuergeräts 9 sind ein PWM-Signal PWM zur Ansteuerung der Saugdrossel 4, ein leistungsbestimmendes Signal ve zur Ansteuerung der Injektoren 8 und eine Größe AUS. Das leistungsbestimmende Signal ve kennzeichnet einen Spritzbeginn und eine Spritzdauer. Die Größe AUS steht stellvertretend für die weiteren Stellsignale zur Steuerung der Brennkraftmaschine 1, beispielsweise ein Stellsignal zur Ansteuerung eines AGR-Ventils. Das dargestellte Common-Railsystem kann selbstverständlich auch als Common-Railsystem mit Einzelspeichern ausgeführt sein. In diesem Fall ist der Einzelspeicher im Injektor 8 integriert, wobei dann der Einzelspeicherdruck pE ein weiteres Eingangssignal des elektronischen Motorsteuergeräts 9 ist.The internal combustion engine 1 is controlled via an electronic engine control unit 9 (ECU). In the FIG. 1 are the input variables of the electronic engine control unit 9 exemplified by the rail pressure pCR, which is detected by a pressure sensor 7, the engine speed nMOT and a size ON. The size ON is representative of the other input signals, for example for the oil or the fuel temperature. The illustrated outputs of the electronic engine control unit 9 are a PWM signal PWM for controlling the intake throttle 4, a power-determining signal ve for driving the injectors 8 and a size OFF. The power-determining signal ve characterizes a start of injection and an injection duration. The size OFF is representative of the other control signals for controlling the internal combustion engine 1, for example, a control signal for controlling an EGR valve. The illustrated common rail system can of course also be designed as a common rail system with individual memories. In this case, the individual memory is integrated in the injector 8, in which case the individual accumulator pressure pE is another input signal of the electronic engine control unit 9.

Die Figur 2 zeigt den Hochdruck-Regelkreis zur Regelung des Raildrucks als Blockschaltbild. Die Eingangsgröße entspricht einem Soll-Raildruck pCR(SL). Die Ausgangsgröße entspricht dem Rohwert des Raildrucks pCR. Aus dem Rohwert des Raildrucks pCR wird mittels eines ersten Filters 15 ein erster Ist-Raildruck pCR1(IST) bestimmt. Dieser wird mit dem Sollwert pCR(SL) an einem Summationspunkt A verglichen, woraus eine Regelabweichung ep resultiert. Aus der Regelabweichung ep wird mittels eines Druckreglers 10 eine Stellgröße berechnet. Die Stellgröße entspricht einem Volumenstrom qV1. Die physikalische Einheit des Volumenstroms ist Liter/Minute. Optional ist vorgesehen, dass zum Volumenstrom qV1 der berechnete Sollverbrauch addiert wird. Der Volumenstrom qV1 entspricht der Eingangsgröße für eine Begrenzung 11. Die Begrenzung 11 kann drehzahlabhängig ausgeführt sein, Eingangsgröße nMOT. Die Ausgangsgröße qV2 der Begrenzung 11 wird danach in einer Berechnung 12 in ein PWM-Signal PWM1 umgerechnet. Das PWM-Signal PWM1 stellt hierbei die Einschaltdauer dar und die Frequenz fPWM entspricht der Frequenz, zum Beispiel 50 Hz (Periodendauer: 20 ms). Mitberücksichtigt werden bei der Umrechnung die Schwankungen der Betriebsspannung und des Kraftstoffvordrucks. Das PWM-Signal PWM1 ist die Eingangsgröße eines ersten Schalters 13. Eine zweite Eingangsgröße des ersten Schalters 13 ist ein PWM-Signal PWM2. Das Ausgangssignal PWM des ersten Schalters 13 entspricht je nach Stellung entweder dem Signal PWM1 oder PWM2. Mit dem PWM-Signal PWM wird dann die Magnetspule der Saugdrossel beaufschlagt. Dadurch wird der Weg des Magnetkerns verändert, wodurch der Förderstrom der Hochdruckpumpe frei beeinflusst wird. Die Hochdruckpumpe, die Saugdrossel und das Rail entsprechen einer Regelstrecke 14. Aus dem Rail 6 wird über die Injektoren 8 ein Verbrauchsvolumenstrom qV3 abgeführt. Damit ist der Regelkreis geschlossen.The FIG. 2 shows the high-pressure control loop for regulating the rail pressure as a block diagram. The input quantity corresponds to a nominal rail pressure pCR (SL). The output quantity corresponds to the raw value of the rail pressure pCR. From the raw value of the rail pressure pCR, a first actual rail pressure pCR1 (IST) is determined by means of a first filter 15. This is compared with the set point pCR (SL) at a summation point A, resulting in a control deviation ep. From the control deviation ep, a manipulated variable is calculated by means of a pressure regulator 10. The manipulated variable corresponds to a volume flow qV1. The physical unit of the volume flow is liters / minute. Optionally, it is provided that the calculated nominal consumption is added to the volume flow qV1. The volume flow qV1 corresponds to the input variable for a limit 11. The limit 11 can be speed-dependent, input variable nMOT. The output qV2 of the limit 11 is then converted in a calculation 12 into a PWM signal PWM1. The PWM signal PWM1 represents the duty cycle and the frequency fPWM corresponds to the frequency, for example 50 Hz (period: 20 ms). In the conversion, the fluctuations of the operating voltage and the pilot fuel pressure are taken into account. The PWM signal PWM1 is the input of a first switch 13. A second input of the first switch 13 is a PWM signal PWM2. Depending on the position, the output signal PWM of the first switch 13 corresponds either to the signal PWM1 or PWM2. With the PWM signal PWM then the solenoid of the suction throttle is applied. As a result, the path of the magnetic core is changed, whereby the flow rate of the high-pressure pump is influenced freely. The high-pressure pump, the suction throttle and the rail correspond to a controlled system 14. From the rail 6, a consumption volume flow qV3 is discharged via the injectors 8. This closes the control loop.

Ergänzt wird dieser Regelkreis durch die temporäre PWM-Vorgabe, wie diese aus der DE 10 2005 029 138 B3 bekannt ist. Die Elemente der temporären PWM-Vorgabe sind ein zweites Filter 17 zur Berechnung eines zweiten Ist-Raildrucks pCR2(IST), ein Funktionsblock 18 zur Festlegung eines Signals SZ1 zur Ansteuerung des ersten Schalters 13 und eine PWM-Vorgabe 16. Im Regelungsbetrieb befindet sich der erste Schalter 13 in der Stellung a, d. h. die vom Druckregler 10 berechnete Stellgröße qV1 wird begrenzt, in ein PWM-Signal PWM1 umgesetzt und damit die Regelstrecke 14 beaufschlagt. Übersteigt der zweite Ist-Raildruck pCR2(IST) einen Grenzwert, hier: der zweite Grenzwert GW2, so ändert der Funktionsblock 18 den Signalpegel des Signals SZ1, wodurch der erste Schalter 13 in die Stellung b umgesteuert wird. In der Stellung b wird über die PWM-Vorgabe 16 temporär ein gegenüber dem Normalbetrieb erhöhter PWM-Wert PWM2 ausgegeben. Mit anderen Worten: Es wird vom Regelungsbetrieb in den Steuerungsbetrieb gewechselt. Die temporäre PWM-Vorgabe kann - wie dargestellt- treppenförmig ausgeführt sein. Nach Ablauf eines vorgebbaren Zeitraums wechselt dann der erste Schalter 13 wieder zurück in Stellung a. Damit ist wieder der Regelungsbetrieb gesetzt.This control loop is supplemented by the temporary PWM specification, as this one from the DE 10 2005 029 138 B3 is known. The elements of the temporary PWM specification are a second filter 17 for calculating a second actual rail pressure pCR2 (IST), a function block 18 for determining a signal SZ1 for driving the first switch 13 and a PWM default 16. In the control mode is the first switch 13 in the position a, ie the calculated by the pressure regulator 10 manipulated variable qV1 is limited, converted into a PWM signal PWM1 and thus the controlled system 14 is applied. If the second actual rail pressure pCR2 (IST) exceeds a limit value, here: the second limit value GW2, the function block 18 changes the signal level of the signal SZ1, whereby the first switch 13 is reversed to the position b. In the position b, a PWM value PWM2, which is increased in comparison to the normal mode, is temporarily output via the PWM preset 16. In other words, it is changed from the control mode to the control mode. The temporary PWM specification can - as shown - be designed staircase. After expiry of a predefinable period then the first switch 13 changes back to position a. Thus, the control mode is set again.

Im praktischen Betrieb wird das PWM-Signal mit einer niederen PWM-Frequenz fPWM, beispielsweise 50 Hz, von der entsprechenden Treibersoftware ausgestattet. Der PWM-Wert kann daher in einem 20ms-Zeitraster aktualisiert werden. Durch die niedere PWM-Frequenz wird erreicht, dass erstens der Schieber der Saugdrossel sich bewegt, also nur die Gleitreibung zu überwinden ist, und zweitens die Verlustleistung der Schalttransistoren im elektronischen Motorsteuergerät innerhalb der Spezifikation bleibt. Der Druckregier 10 wird von der Motorsoftware mit konstanter Abtastzeit gerechnet. Erkennt der Druckregler 10 eine sich betragsmäßig vergrößernde Regelabweichung ep, so kann es sein, dass eine PWM-Periode kurz zuvor begonnen hat. Die neue, erhöhte PWM-Einschaltdauer kann daher erst bei Beginn der nächsten PWM-Periode gesetzt werden, also frühestens nach Ablauf des 20ms-Zeitrasters. Dies bedeutet wiederum, dass der Raildruck pCR während der aktuellen und auch zu Beginn der nächsten PWM-Periode weiter ansteigt. Bedingt durch die Asynchronität von PWM-Signal und Druckregler-Abtastung entsteht damit eine entsprechende Totzeit.In practical operation, the PWM signal is provided with a low PWM frequency fPWM, for example 50 Hz, from the corresponding driver software. The PWM value can therefore be updated in a 20 ms time frame. The low PWM frequency ensures that, first, the slider of the suction throttle moves, so only the sliding friction is overcome, and second, the power loss of the switching transistors in the electronic engine control unit remains within the specification. The pressure regulator 10 is calculated by the motor software with a constant sampling time. If the pressure regulator 10 recognizes a control deviation ep that increases in magnitude, it may be that a PWM period has started shortly before. The new, increased PWM duty cycle can therefore only be set at the beginning of the next PWM period, that is, at the earliest after the expiration of the 20 ms time interval. This in turn means that the rail pressure pCR continues to rise during the current and also at the beginning of the next PWM period. Due to the asynchronicity of the PWM signal and pressure controller sampling, this results in a corresponding dead time.

Hier setzt nun die Erfindung an, indem das Blockschaltbild der Figur 2 durch einen Funktionsblock 19 und einen zweiten Schalter 20 ergänzt wird. Im Regelungsbetrieb befindet sich der zweite Schalter 20 in der Stellung a, in welcher die erste Frequenz f1 (50 Hz) die Frequenz fPWM bestimmt. Übersteigt der zweite Ist-Raildruck pCR2(IST) einen ersten Grenzwert GW1, dies ist bei einem Lastabwurf der Fall, so setzt der Funktionsblock 19 das Ansteuersignal SZ2 zur Ansteuerung des zweiten Schalters 20 auf einen zweiten Wert, wodurch dieser in die Stellung b umgesteuert wird. Jetzt entspricht die Frequenz fPWM der zweiten Frequenz f2 von zum Beispiel 500 Hz. Das PWM-Signal PWM1 wird nunmehr alle 2 ms aktualisiert. Übersteigt der zweite Ist-Raildruck pCR2(IST) den zweiten Grenzwert GW2, so wird die temporäre PWM-Vorgabe aktiviert. Unterschreitet der zweite Ist-Raildruck pCR2(IST) die Differenz von erstem Grenzwert und eines Hysteresewerts, so wechselt der Schalter 20 wieder zurück in die Stellung a, womit die PWM-Frequenz fPWM wieder mit der ersten Frequenz f1 identisch ist.This is where the invention begins by the block diagram of FIG. 2 is supplemented by a function block 19 and a second switch 20. In control mode, the second switch 20 is in the position a, in which the first frequency f1 (50 Hz) determines the frequency fPWM. If the second actual rail pressure pCR2 (IST) exceeds a first limit value GW1, this is the case with a load shedding, then the function block 19 sets the activation signal SZ2 for activating the second switch 20 to a second value, whereby it is reversed to the position b , Now, the frequency fPWM corresponds to the second frequency f2 of, for example, 500 Hz. The PWM signal PWM1 is now updated every 2 ms. If the second actual rail pressure pCR2 (IST) exceeds the second limit value GW2, then the temporary PWM specification is activated. If the second actual rail pressure pCR2 (IST) falls below the difference between the first limit value and a hysteresis value, the switch 20 changes back to the position a, with which the PWM frequency fPWM is again identical to the first frequency f1.

Die Figur 3 zeigt einen Lastabwurf als Zeitdiagramm. Die Figur 3 besteht aus den Teilfiguren 3A bis 3D. Diese zeigen jeweils über der Zeit: in Figur 3A den Verlauf des zweiten Ist-Raildrucks pCR2(IST), in Figur 3B den Wert des PWM-Signals PWM, in Figur 3C das PWM-Signat in der Impuls-Pausendarstellung gemäß dem Stand der Technik und in Figur 3D das PWM-Signal in der Impuls-Pausendarstellung gemäß der Erfindung. Zum PWM-Signal der Figur 3C korrespondiert der als durchgezogene Linie dargestellte Druckverlauf in der Figur 3A. Zum PWM-Signal der Figur 3D korrespondiert der als gestrichelte Linie dargestellte Druckverlauf in der Figur 3A. Dem dargestellten Beispiel wurde eine erste PWM-Frequenz von 50 Hz, welche einem Zeitraster von 20 ms entspricht, und eine zweite PWM-Frequenz von 500 Hz, welche einem Zeitraster von 2 ms entspricht, zu Grunde gelegt. Der Soll-Raildruck wurde konstant beibehalten.The FIG. 3 shows a load shedding as a time diagram. The FIG. 3 consists of the subfigures 3A to 3D. These show each over time: in FIG. 3A the course of the second actual rail pressure pCR2 (IST), in FIG. 3B the value of the PWM signal PWM, in FIG. 3C the PWM signal in the pulse-pause display according to the prior art and in Figure 3D the PWM signal in the pulse-pause display according to the invention. To the PWM signal the FIG. 3C corresponds to the pressure curve shown as a solid line in the FIG. 3A , To the PWM signal the Figure 3D corresponds to the pressure curve shown as a dashed line in the FIG. 3A , The illustrated example was based on a first PWM frequency of 50 Hz, which corresponds to a time interval of 20 ms, and a second PWM frequency of 500 Hz, which corresponds to a time interval of 2 ms. The nominal rail pressure was maintained constant.

Der Ablauf des Verfahrens nach dem Stand der Technik ist folgendermaßen:

  • Vor dem Zeitpunkt t1 wird die Brennkraftmaschine im stationären Zustand bei einem Raildruck von 1800 bar betrieben. Im stationären Zustand wird der Raildruck geregelt. Zum Zeitpunkt t1 erfolgt ein Abwerfen der Last, was ein Ansteigen des Raildrucks zur Folge hat. Der aus dem Raildruck über das erste Filter (Fig. 2: 15) berechnete erste Ist-Raildruck pCR1(IST) und der über das zweite Filter (Fig. 2: 17) berechnete zweite Ist-Raildruck pCR2(IST) steigen jeweils an. Der zunehmende erste Ist-Raildruck pCR1(IST) verursacht eine betragsmäßig zunehmende Regelabweichung, welche der Druckregler in ein zunehmendes PWM-Signal (Fig. 3B) umsetzt, wodurch die Saugdrossel in Schließrichtung bewegt wird. Übersteigt nun der zweite Ist-Raildruck pCR2(IST) zum Zeitpunkt t3 den zweiten Grenzwert GW2, hier: 1900 bar, Punkt B in Fig. 3A, so wird die temporäre PWM-Vorgabe aktiviert, es wird also vom Regelungsbetrieb in den Steuerungsbetrieb gewechselt. Ab dem Zeitpunkt t3 wird daher das PWM-Signal 20 ms lang auf 100% erhöht (Fig. 3B). Die eingestellte Frequenz des PWM-Signals bleibt unverändert bei 50 Hz. Zum Zeitpunkt t3 hat gerade eine neue PWM-Periode begonnen, so dass die PWM-Erhöhung nicht unmittelbar wirksam wird. Siehe in der Fig. 3C der vergrößert dargestellte Ausschnitt. Die PWM-Erhöhung wird erst 20 ms, also eine Periodendauer, später zum Zeitpunkt t5 wirksam. Dem PWM-Wert von 100 % in der Fig. 3B entspricht der Impuls D in der Fig. 3C. Auf Grund dieser Totzeit steigt der zweite Ist-Raildruck pCR2(IST) weiter an und erreicht mit dem Wert 2030 bar seinen Höchstwert.
The procedure of the prior art method is as follows:
  • Before the time t1, the internal combustion engine is operated in the steady state at a rail pressure of 1800 bar. In steady state, the rail pressure is regulated. At time t1, the load is dropped, resulting in an increase in the rail pressure. The from the rail pressure on the first filter ( Fig. 2 : 15) calculated first actual rail pressure pCR1 (IST) and via the second filter ( Fig. 2 : 17) calculated second actual rail pressure pCR2 (IST) increase respectively. The increasing first actual rail pressure pCR1 (IST) causes a magnitude-increasing control deviation, which the pressure regulator converts into an increasing PWM signal ( Fig. 3B ), whereby the suction throttle is moved in the closing direction. Now exceeds the second actual rail pressure pCR2 (IST) at time t3, the second threshold GW2, here: 1900 bar, point B in Fig. 3A , the temporary PWM specification is activated, so it is changed from the control mode to the control mode. From time t3, therefore, the PWM signal is increased to 100% for 20 ms ( Fig. 3B ). The set frequency of the PWM signal remains unchanged at 50 Hz. At time t3, a new PWM period has just started, so that the PWM increase does not take effect immediately. See in the Fig. 3C the enlarged detail shown. The PWM increase only takes effect 20 ms, ie one period duration, later at time t5. The PWM value of 100% in the Fig. 3B corresponds to the pulse D in the Fig. 3C , Due to this dead time of rising second actual rail pressure pCR2 (IST) continues, reaching its maximum value of 2030 bar.

Der Ablauf des Verfahrens nach der Erfindung ist folgendermaßen:

  • Der zweite Ist-Raildruck pCR2(IST) überschreitet zum Zeitpunkt t2 den ersten Grenzwert GW1, hier: 1850 bar, Punkt A in Fig. 3A. Mit Überschreiten des ersten Grenzwerts GW1 wird auf die zweite PWM-Frequenz 500 Hz umgeschaltet (Fig. 3D). Zum Zeitpunkt t3 überschreitet der zweite Ist-Raildruck pCR2(IST) dann den zweiten Grenzwert GW2, hier: 1900 bar, Punkt B in Fig. 3A. Mit Überschreiten des zweiten Grenzwerts GW2 wird die temporäre PWM-Vorgabe aktiviert, also vom Regelungsbetrieb in den Steuerungsbetrieb gewechselt. Dem PWM-Wert von 100 % in der Fig. 3B entspricht der Impuls E in der Fig. 3D, ab dem Zeitpunkt t4. Die Totzeit bis zur Wirksamkeit der PWM-Erhöhung beträgt diesmal ebenfalls wiederum eine volle Periodendauer, nur beträgt diese jetzt 2 ms. Insgesamt wird die PWM-Erhöhung also 18 ms früher wirksam. Als Folge steigt der zweite Ist-Raildruck pCR2(IST) diesmal nur auf 1940 bar an. Die Umschaltung der PWM-Frequenz reduziert daher den Hochdruck-Überschwinger um 90 bar. In der Fig. 3A ist dies mit dem Bezugszeichen dp dargestellt.
The procedure of the method according to the invention is as follows:
  • The second actual rail pressure pCR2 (IST) exceeds the first limit value GW1 at the time t2, here: 1850 bar, point A in Fig. 3A , When the first limit GW1 is exceeded, the second PWM frequency is switched to 500 Hz ( Fig. 3D ). At time t3, the second actual rail pressure pCR2 (IST) then exceeds the second limit value GW2, here: 1900 bar, point B in Fig. 3A , When the second limit value GW2 is exceeded, the temporary PWM specification is activated, that is, it is changed over from the control mode to the control mode. The PWM value of 100% in the Fig. 3B corresponds to the momentum E in the Fig. 3D , from the time t4. The dead time to the effectiveness of the PWM increase this time again also a full period, only this is now 2 ms. Overall, the PWM increase thus takes effect 18 ms earlier. As a result, the second actual rail pressure pCR2 (IST) only increases to 1940 bar this time. Switching the PWM frequency therefore reduces the high pressure overshoot by 90 bar. In the Fig. 3A this is represented by the reference numeral dp.

Deaktiviert wird die Erhöhung der PWM-Frequenz, wenn der zweite Ist-Raildruck pCR2(IST) den ersten Grenzwert GW1 um einen vorgegebenen Hysteresewert pHY, zum Beispiel 30 bar, im Punkt C unterschreitet. Als Folge wird von der zweiten Frequenz 500 Hz auf die erste Frequenz 50 Hz umgeschaltet, siehe Fig. 3D zum Zeitpunkt t6. Da im Rahmen der Erfindung nur während des Hochdruck-Überschwingens (Zeitraum t2/t6) auf eine hohe PWM-Frequenz umgeschaltet wird, bleibt die Wärmeentwicklung der Leistungsendstufe trotz der Vielzahl der Transistor-Schaltvorgänge innerhalb der zulässigen Hardware-Spezifikation.The increase of the PWM frequency is deactivated when the second actual rail pressure pCR2 (IST) falls below the first limit value GW1 by a predetermined hysteresis value pHY, for example 30 bar, in the point C. As a result, 500 Hz is switched from the second frequency to the first frequency 50 Hz, see Fig. 3D at time t6. Since, in the context of the invention, switching to a high PWM frequency occurs only during the high-pressure overshoot (period t2 / t6), the heat generation of the power output stage remains within the permissible hardware specification despite the large number of transistor switching operations.

Die Schaltlogik der Erfindung ist in der Figur 4 dargestellt. Im stationären Betrieb ist die PWM-Frequenz fPWM auf die erste Frequenz f1, zum Beispiel 50 Hz, gesetzt. Wird der zweite Ist-Raildruck pCR2(IST) größer/gleich als der erste Grenzwert GW1, so wird die PWM-Frequenz fPWM auf die zweite Frequenz f2, zum Beispiel 500 Hz, gesetzt. Das Rückschalten auf die erste Frequenz f1 erfolgt dann, wenn der erste Grenzwert GW1 um den Hysteresewert pHY unterschritten wird.The switching logic of the invention is in the FIG. 4 shown. In stationary operation, the PWM frequency fPWM is set to the first frequency f1, for example 50 Hz. If the second actual rail pressure pCR2 (IST) is greater than or equal to the first limit value GW1, the PWM frequency fPWM is set to the second frequency f2, for example 500 Hz. The switching back to the first frequency f1 takes place when the first limit value GW1 is undershot by the hysteresis value pHY.

Die Figur 5 zeigt einen Programm-Ablaufplan des Verfahrens. Bei S1 werden ein Merker mit dem Wert 0 initialisiert und die Frequenz fPWM des PWM-Signals auf den Wert f1, zum Beispiel 50 Hz, gesetzt. Bei der Abfrage in S2 wird der Wert des Merkers geprüft. Ist der Wert 1, wird der Programmteil mit den Schritten S6 bis S8 durchlaufen. Ist der Wert des Merkers hingegen 0, so wird der Programmteil mit den Schritten S3 bis S5 durchlaufen. Beim ersten Programmdurchlauf (Merker=0) wird danach bei S3 geprüft, ob der zweite Ist-Raildruck pCR2(IST) den ersten Grenzwert GW1 erreicht oder überschreitet. Ist dies nicht der Fall, Abfrageergebnis S3: nein, befindet sich die Brennkraftmaschine im stationären Zustand und der Programmablauf wird bei A fortgesetzt. Wird hingegen bei S3 ein Lastabwurf erkannt, Abfrageergebnis S3: ja, so wird bei S4 auf die zweite Frequenz f2, zum Beispiel 500 Hz, umgeschaltet. Der PWM-Wert kann jetzt innerhalb eines 2-ms-Zeitrasters verändert werden. Anschließend wird bei S5 der Merker auf den Wert 1 gesetzt und der Programmablauf bei A fortgesetzt.The FIG. 5 shows a program flowchart of the method. At S1, a flag 0 is initialized and the frequency fPWM of the PWM signal is set to the value f1, for example 50 Hz. When polling in S2, the value of the flag is checked. If the value is 1, the program part is run through with the steps S6 to S8. On the other hand, if the value of the flag is 0, then the program part is run through with steps S3 to S5. During the first program run (flag = 0), it is then checked at S3 whether the second actual rail pressure pCR2 (IST) reaches or exceeds the first limit value GW1. If this is not the case, query result S3: no, the internal combustion engine is stationary and the program sequence is continued at A. If, on the other hand, a load shedding is detected at S3, query result S3: yes, then at S4 the second frequency f2, for example 500 Hz, is switched over. The PWM value can now be changed within a 2 ms time frame. The flag is then set to the value 1 at S5 and the program sequence continues at A.

Ergibt die Abfrage bei S2, dass der Merker den Wert 1 hat, Abfrageergebnis S2: ja, so wird bei S6 geprüft, ob der zweite Ist-Raildruck pCR2(IST) kleiner oder gleich die Ausschaltschwelle ist. Die Ausschaltschwelle ist auf die Differenz von erstem Grenzwert GW1 und dem Hysteresewert pHY gesetzt. Wurde die Ausschaltschwelle noch nicht unterschritten, so wird der Programmablauf bei A fortgesetzt. Wurde die Ausschaltschwelle erreicht oder unterschritten, Abfrageergebnis S6: ja, so wird bei S7 die Frequenz fPWM des PWM-Signals von der zweiten Frequenz f2 zurück auf die erste Frequenz f1 geschaltet. Anschließend wird der Merker auf seinen Initialisierungswert 0 gesetzt, S8, und der Programmablauf bei A fortgesetzt.If the query at S2 indicates that the flag has the value 1, query result S2: yes, then it is checked at S6 whether the second actual rail pressure pCR2 (IST) is less than or equal to the switch-off threshold. The switch-off threshold is set to the difference between the first limit value GW1 and the hysteresis value pHY. If the switch-off threshold has not yet fallen below, the program sequence continues at A. If the switch-off threshold has been reached or undershot, query result S6: yes, the frequency fPWM of the PWM signal is switched from the second frequency f2 back to the first frequency f1 at S7. The flag is then set to its initialization value 0, S8, and the program sequence continues at A.

Bezugszeichenreference numeral

11
BrennkraftmaschineInternal combustion engine
22
Tanktank
33
NiederdruckpumpeLow pressure pump
44
Saugdrosselinterphase
55
Hochdruckpumpehigh pressure pump
66
RailRail
77
Drucksensor (Rail)Pressure sensor (rail)
88th
Injektorinjector
99
elektronisches Motorsteuergerät (ECU)electronic engine control unit (ECU)
1010
Druckreglerpressure regulator
1111
Begrenzunglimit
1212
Berechnung PWM-SignalCalculation PWM signal
1313
erster Schalterfirst switch
1414
Regelstreckecontrolled system
1515
erstes Filterfirst filter
1616
PWM-VorgabePWM assignment
1717
zweites Filtersecond filter
1818
Funktionsblockfunction block
1919
Funktionsblockfunction block
2020
zweiter Schaltersecond switch

Claims (3)

  1. Control and regulating method for an internal combustion engine (1) having a common rail system, in which method, during normal operation, a rail pressure (pCR) is regulated by virtue of a first actual rail pressure (pCR1(IST)) being determined from the rail pressure (pCR) by means of a first filter (15), a regulating deviation (ep) is calculated from a setpoint rail pressure (pCR(SL)) and from the first actual rail pressure (pCR1(IST)), an actuating variable (qV1) is calculated from the regulating deviation (ep) by means of a pressure regulator (10), and a PWM signal (PWM1) with a first PWM frequency (f1) for the activation of a regulating path (14) is defined as a function of the actuating variable (qV1), in which method a second actual rail pressure (pCR2(IST)) is determined by means of a second filter (17), a load dump is identified if the second actual rail pressure (pCR2(IST)) exceeds a first threshold value (GW1), the PWM signal (PWM1) is switched from the first PWM frequency (f1) to a second, significantly higher PWM frequency (f2) upon the exceedance of the first threshold value (GW1), and in which method, upon the exceedance of a second threshold value (GW2), the rail pressure (pCR) is controlled by virtue of the PWM signal (PWM1) being set temporarily to a PWM value (PWM2) which is elevated in relation to normal operation.
  2. Method according to Claim 1,
    characterized
    in that, after the expiry of a time interval, the control operation with elevated PWM value (PWM2) is deactivated and the regulating operation is activated.
  3. Method according to Claim 2,
    characterized
    in that the PWM signal (PWM1) is switched from the second PWM frequency (f2) to the first PWM frequency (f1) when the second actual rail pressure (pCR2(IST)) falls below the first threshold value (GW1) again by a hysteresis value (pHY).
EP09771694A 2008-11-24 2009-11-09 Control and regulation method for an internal combustion engine having a common rail system Active EP2358988B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102008058720A DE102008058720A1 (en) 2008-11-24 2008-11-24 Control method for an internal combustion engine with a common rail system
PCT/EP2009/007989 WO2010057588A1 (en) 2008-11-24 2009-11-09 Control and regulation method for an internal combustion engine having a common rail system

Publications (2)

Publication Number Publication Date
EP2358988A1 EP2358988A1 (en) 2011-08-24
EP2358988B1 true EP2358988B1 (en) 2012-09-19

Family

ID=41718476

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09771694A Active EP2358988B1 (en) 2008-11-24 2009-11-09 Control and regulation method for an internal combustion engine having a common rail system

Country Status (5)

Country Link
US (1) US8844501B2 (en)
EP (1) EP2358988B1 (en)
CN (1) CN102245884B (en)
DE (1) DE102008058720A1 (en)
WO (1) WO2010057588A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008058720A1 (en) 2008-11-24 2010-05-27 Mtu Friedrichshafen Gmbh Control method for an internal combustion engine with a common rail system
DE102011100187B3 (en) * 2011-05-02 2012-11-08 Mtu Friedrichshafen Gmbh Method for controlling and regulating an internal combustion engine
US9376977B2 (en) * 2012-09-07 2016-06-28 Caterpillar Inc. Rail pressure control strategy for common rail fuel system
DE102012019457B3 (en) * 2012-10-04 2014-03-20 Mtu Friedrichshafen Gmbh Method for regulating the rail pressure of an internal combustion engine
FR3051263B1 (en) * 2016-05-10 2018-04-20 Safran Aircraft Engines ACTUATOR CONTROL METHOD AND CONTROL DEVICE THEREFOR
DE102017206084A1 (en) * 2017-04-10 2018-10-11 Robert Bosch Gmbh Fuel injection with reduced return flow

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58174773A (en) * 1982-04-05 1983-10-13 Komatsu Ltd Driving process of solenoid valve
DE4020654C2 (en) 1990-06-29 1999-12-16 Bosch Gmbh Robert Control method in connection with an internal combustion engine and / or a motor vehicle and control device for carrying out the control method
JP4206563B2 (en) * 1999-06-18 2009-01-14 株式会社デンソー Fuel injection device
JP4841772B2 (en) * 2001-09-28 2011-12-21 いすゞ自動車株式会社 Common rail fuel injection control device
DE10330466B3 (en) 2003-07-05 2004-10-21 Mtu Friedrichshafen Gmbh Regulation method for IC engine with common-rail fuel injection system has pulse width modulation signal frequency switched between 2 values dependent on engine speed
JP4088600B2 (en) * 2004-03-01 2008-05-21 トヨタ自動車株式会社 Correction method for booster fuel injection system
DE102005020362A1 (en) * 2005-05-02 2006-11-09 Robert Bosch Gmbh Control method for volume flow and pressure regulation of motor vehicle internal combustion engine fuel feed uses common actuator for respective valves
DE102005029138B3 (en) * 2005-06-23 2006-12-07 Mtu Friedrichshafen Gmbh Control and regulating process for engine with common rail system has second actual rail pressure determined by second filter
JP4600369B2 (en) * 2006-09-05 2010-12-15 株式会社デンソー Pressure reducing valve delay compensation device and program
DE102008058720A1 (en) 2008-11-24 2010-05-27 Mtu Friedrichshafen Gmbh Control method for an internal combustion engine with a common rail system

Also Published As

Publication number Publication date
US8844501B2 (en) 2014-09-30
WO2010057588A1 (en) 2010-05-27
US20110220066A1 (en) 2011-09-15
CN102245884B (en) 2014-08-13
CN102245884A (en) 2011-11-16
DE102008058720A1 (en) 2010-05-27
EP2358988A1 (en) 2011-08-24

Similar Documents

Publication Publication Date Title
EP1896712B1 (en) Control and regulation method for an internal combustion engine provided with a common-railsystem
DE102006040441B3 (en) Method for identifying opening of passive pressure limiting valve, involves supplying fuel from common-rail system in fuel tank, where load shedding is identified
DE102006049266B3 (en) Method for recognizing opened passive pressure-relief-valve, which deviates fuel from common-railsystem into fuel tank, involves regulating the rail pressure, in which actuating variable is computed from rail-pressure offset
EP2449242B1 (en) Control and regulation method of the fuel pressure of a common-rail of a combustion engine
EP2358988B1 (en) Control and regulation method for an internal combustion engine having a common rail system
EP2449241B1 (en) Method for controlling the rail pressure in a common-rail injection system of a combustion engine
DE102008036299B3 (en) Method for regulating pressure of common-rail system on both sides of V-type internal combustion engine, involves correcting variables of both sided pressure controllers based on disturbance variable
EP2006521B1 (en) Method for controlling rail pressure during a starting process
WO2005111402A1 (en) Method for pressure regulation of an accumulator injection system
DE10330466B3 (en) Regulation method for IC engine with common-rail fuel injection system has pulse width modulation signal frequency switched between 2 values dependent on engine speed
EP2449240B1 (en) Method for controlling the rail pressure in a common-rail injection system of a combustion engine
EP2491236B1 (en) Method for the open-loop control and closed-loop control of an internal combustion engine
EP1611333A1 (en) Method for engine speed control
EP1444431B1 (en) Method for controlling and adjusting the starting mode of an internal combustion engine
DE102004001358B4 (en) Control method and control device for an actuator
EP2718556B1 (en) Method for controlling rail pressure
EP2358987B1 (en) Control and regulation method for an internal combustion engine having a common rail system
WO2004016927A1 (en) Method and device for controlling an actuator
DE10058959B4 (en) Method for monitoring a control circuit
DE19535419A1 (en) Method and device for controlling an actuator
DE102007060018B3 (en) Method and control unit for the electrical control of an actuator of an injection valve
DE10330705A1 (en) Method and device for controlling an internal combustion engine
DE102006057522A1 (en) Controlling volumetric flowrate during fuel injection in internal combustion engine, measures current of pulse width modulated control valve actuation signal
DE102004003417A1 (en) Control process for a combustion engine has electromagnetically controlled two phase actuator with different flow values according to operating conditions

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20110610

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 576166

Country of ref document: AT

Kind code of ref document: T

Effective date: 20121015

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502009004811

Country of ref document: DE

Effective date: 20121115

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121219

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120919

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120919

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120919

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20120919

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

Effective date: 20120919

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120919

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120919

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121220

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120919

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130119

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120919

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120919

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120919

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120919

BERE Be: lapsed

Owner name: MTU FRIEDRICHSHAFEN G.M.B.H.

Effective date: 20121130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120919

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130121

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120919

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120919

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121219

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

26N No opposition filed

Effective date: 20130620

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121130

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120919

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502009004811

Country of ref document: DE

Effective date: 20130620

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121230

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121109

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120919

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120919

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120919

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120919

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121109

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20131109

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091109

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131130

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131109

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120919

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 576166

Country of ref document: AT

Kind code of ref document: T

Effective date: 20141109

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141109

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502009004811

Country of ref document: DE

Owner name: ROLLS-ROYCE SOLUTIONS GMBH, DE

Free format text: FORMER OWNER: MTU FRIEDRICHSHAFEN GMBH, 88045 FRIEDRICHSHAFEN, DE

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230530

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231120

Year of fee payment: 15

Ref country code: DE

Payment date: 20231121

Year of fee payment: 15