EP2449242B1 - Control and regulation method of the fuel pressure of a common-rail of a combustion engine - Google Patents

Control and regulation method of the fuel pressure of a common-rail of a combustion engine Download PDF

Info

Publication number
EP2449242B1
EP2449242B1 EP10732642.3A EP10732642A EP2449242B1 EP 2449242 B1 EP2449242 B1 EP 2449242B1 EP 10732642 A EP10732642 A EP 10732642A EP 2449242 B1 EP2449242 B1 EP 2449242B1
Authority
EP
European Patent Office
Prior art keywords
pcr
rail pressure
pressure
volume flow
calculated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP10732642.3A
Other languages
German (de)
French (fr)
Other versions
EP2449242A1 (en
Inventor
Armin DÖLKER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rolls Royce Solutions GmbH
Original Assignee
MTU Friedrichshafen GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MTU Friedrichshafen GmbH filed Critical MTU Friedrichshafen GmbH
Publication of EP2449242A1 publication Critical patent/EP2449242A1/en
Application granted granted Critical
Publication of EP2449242B1 publication Critical patent/EP2449242B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/3809Common rail control systems
    • F02D41/3836Controlling the fuel pressure
    • F02D41/3863Controlling the fuel pressure by controlling the flow out of the common rail, e.g. using pressure relief valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1413Controller structures or design
    • F02D2041/1432Controller structures or design the system including a filter, e.g. a low pass or high pass filter
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/202Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit
    • F02D2041/2024Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit the control switching a load after time-on and time-off pulses
    • F02D2041/2027Control of the current by pulse width modulation or duty cycle control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/31Control of the fuel pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/3809Common rail control systems
    • F02D41/3836Controlling the fuel pressure
    • F02D41/3845Controlling the fuel pressure by controlling the flow into the common rail, e.g. the amount of fuel pumped
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/02Fuel-injection apparatus having several injectors fed by a common pumping element, or having several pumping elements feeding a common injector; Fuel-injection apparatus having provisions for cutting-out pumps, pumping elements, or injectors; Fuel-injection apparatus having provisions for variably interconnecting pumping elements and injectors alternatively
    • F02M63/0225Fuel-injection apparatus having a common rail feeding several injectors ; Means for varying pressure in common rails; Pumps feeding common rails
    • F02M63/023Means for varying pressure in common rails
    • F02M63/0235Means for varying pressure in common rails by bleeding fuel pressure
    • F02M63/025Means for varying pressure in common rails by bleeding fuel pressure from the common rail

Definitions

  • the invention relates to a method for controlling and regulating an internal combustion engine according to the preamble of claim 1.
  • a rail pressure control circuit comprises a comparison point for determining a control deviation, a pressure regulator for calculating an actuating signal, the controlled system and a software filter for calculating the actual rail pressure in the feedback branch.
  • the control deviation is calculated from a target rail pressure to the actual rail pressure.
  • the controlled system includes the pressure actuator, the rail and the injectors for injecting the fuel into the combustion chambers of the internal combustion engine.
  • a common rail system with pressure control in which the pressure regulator is equipped with different regulator parameters.
  • the pressure control should be more stable due to the different controller parameters.
  • the controller parameters in turn are calculated depending on operating parameters, here: the engine speed and the target injection quantity.
  • the pressure controller uses the controller parameters, the pressure controller then calculates the control signal for a pressure control valve, via which the fuel outflow from the rail into the fuel tank is determined.
  • the pressure control valve is consequently arranged on the high-pressure side of the common rail system.
  • An electrical pre-feed pump or a controllable high-pressure pump are shown in this reference as alternative measures for pressure regulation.
  • the DE 103 30 466 B3 describes a common rail system with pressure control, in which the pressure regulator accesses a suction throttle via the control signal. About the Suction throttle in turn determines the inlet cross-section to the high pressure pump. The suction throttle is consequently arranged on the low pressure side of the common rail system.
  • a passive pressure relief valve can be provided as a protective measure against excessive rail pressure in this common rail system. The fuel is then discharged from the rail into the fuel tank via the open pressure relief valve.
  • a corresponding common rail system with a passive pressure relief valve is out of the DE 10 2006 040 441 B3 known.
  • the control leakage is effective when the injector is controlled electrically, that is, during the duration of the injection. As the injection duration decreases, the control leakage also decreases.
  • the constant leakage is always effective, that is, even if the injector is not activated. This is also caused by the component tolerances. Since the constant leakage increases with increasing rail pressure and decreases with falling rail pressure, the pressure vibrations in the rail are dampened. The opposite is true for tax leakage. If the rail pressure rises, the injection duration is shortened to display a constant injection quantity, which results in a decreasing control leakage. If the rail pressure drops, the injection duration is increased accordingly, which results in increasing control leakage.
  • the control leakage means that the pressure vibrations in the rail are amplified.
  • the control and constant leakage represent a loss volume flow, which is pumped and compressed by the high pressure pump.
  • this loss volume flow means that the high-pressure pump must be designed larger than necessary.
  • part of the drive energy of the high-pressure pump is converted into heat, which in turn heats up the fuel and reduces the efficiency of the internal combustion engine.
  • the object of the invention is to optimize the stability behavior and the settling time.
  • the method consists in that, in addition to the rail pressure control via the low-pressure suction throttle as the first pressure control element, a rail pressure disturbance variable for influencing the rail pressure is generated via a pressure control valve on the high pressure side as the second pressure control element. Fuel is diverted from the rail into a fuel tank via the pressure control valve on the high pressure side.
  • An essential element of the invention therefore consists in that a constant leak is simulated via the control of the pressure control valve.
  • the rail pressure disturbance variable is calculated on the basis of a corrected target volume flow of the pressure control valve, which in turn is calculated from a static target volume flow and a dynamic target volume flow.
  • the static target volume flow is calculated as a function of a target injection quantity, alternatively a target torque, and an engine speed using a target volume flow map.
  • the target volume flow map is designed in such a way that a target volume flow with a positive value, for example 2 liters / minute, is calculated in a low-load range and a target volume flow of zero is calculated in a normal operating range.
  • the low-load range is to be understood to mean the range of small injection quantities and thus small engine output.
  • the dynamic set volume flow of the pressure control valve is calculated via a dynamic correction depending on the set rail pressure and the actual rail pressure, by calculating a resulting control deviation and by setting the dynamic set volume flow to zero if the control deviation is less than zero . If, on the other hand, the resulting control deviation is greater than or equal to zero, the dynamic set volume flow is set to the value of the product of the resulting control deviation and a factor.
  • the dynamic target volume flow is largely determined by the control deviation of the rail pressure. Is this is negative and falls below a limit value, for example in the event of a load shedding, the static target volume flow is corrected via the dynamic target volume flow. Otherwise there is no change in the static target volume flow.
  • the fuel Since the fuel is only discharged stationary in the low-load range and in small quantities, there is no significant increase in the fuel temperature and no significant reduction in the efficiency of the internal combustion engine.
  • the increased stability of the rail pressure control circuit in the low-load range can be recognized from the fact that the rail pressure remains approximately constant in overrun mode and the rail pressure peak value is significantly lower when the load is shed.
  • the increase in the rail pressure is counteracted via the dynamic set volume flow, with the advantage that the settling time of the system can be improved again.
  • the Figure 1 shows a system diagram of an electronically controlled internal combustion engine 1 with a common rail system.
  • the common rail system comprises the following mechanical components: a low-pressure pump 3 for conveying fuel from a fuel tank 2, a variable, low-pressure suction throttle 4 for influencing the fuel volume flow flowing through it, a high-pressure pump 5 for conveying the fuel while increasing the pressure, and a rail 6 for storing of the fuel and injectors 7 for injecting the fuel into the combustion chambers of the internal combustion engine 1.
  • the common rail system can also be designed with individual stores, in which case for example, an individual memory 8 is integrated in the injector 7 as an additional buffer volume.
  • a passive pressure relief valve 11 which, in the open state, controls the fuel from the rail 6.
  • An electrically controllable pressure control valve 12 likewise connects the rail 6 to the fuel tank 2.
  • a fuel volume flow is defined via the position of the pressure control valve 12 and is derived from the rail 6 into the fuel tank 2. In the further text, this fuel volume flow is referred to as rail pressure disturbance variable VDRV.
  • the operating mode of the internal combustion engine 1 is determined by an electronic control unit (ECU) 10.
  • the electronic control unit 10 contains the usual components of a microcomputer system, for example a microprocessor, I / O modules, buffers and memory modules (EEPROM, RAM).
  • the operating data relevant to the operation of the internal combustion engine 1 are applied in characteristic maps / characteristic curves in the memory modules.
  • the electronic control unit 10 uses these to calculate the output variables from the input variables.
  • the following input variables are shown as examples: the rail pressure pCR, which is measured by means of a rail pressure sensor 9, an engine speed nMOT, a signal FP for the power specification by the operator and an input variable IN.
  • the other sensor signals are summarized under input variable IN, for example the charge air pressure of an exhaust gas turbocharger.
  • the individual store pressure pE is an additional input variable of the electronic control unit 10.
  • the output variables of the electronic control unit 10 are a signal PWMSD for controlling the suction throttle 4 as the first pressure control element, a signal ve for controlling the injectors 7 (start / end of spray), a signal PWMDV for controlling the pressure control valve 12 as the second pressure control element and an output variable OFF.
  • the position of the pressure control valve 12 and thus the rail pressure disturbance variable VDRV is defined via the signal PWMDV.
  • the output variable AUS represents the other actuating signals for controlling and regulating the internal combustion engine 1, for example an actuating signal for activating a second exhaust gas turbocharger when charging with a register.
  • a rail pressure control circuit 13 for regulating the rail pressure pCR is shown.
  • the input variables of the rail pressure control circuit 13 are: a target rail pressure pCR (SL), a volume flow which characterizes the target consumption VVb, the engine speed nMOT, the PWM basic frequency fPWM and a variable E1.
  • Size E1 includes, for example, the battery voltage and the ohmic resistance of the inductor with supply line, which are included in the calculation of the PWM signal.
  • the output variables of the rail pressure control circuit 13 are the raw value of the rail pressure pCR, an actual rail pressure pCR (IST) and a dynamic rail pressure pCR (DYN).
  • the actual rail pressure pCR (IST) and the dynamic rail pressure pCR (DYN) are in the in Figure 3 controller shown processed.
  • the actual rail pressure pCR (IST) is calculated from the raw value of the rail pressure pCR using a first filter 19. This is then compared with the setpoint pCR (SL) at a summation point A, which results in a control deviation ep.
  • a pressure regulator 14 calculates its manipulated variable from the control deviation ep, which corresponds to a volume flow VR with the physical unit liter / minute.
  • the calculated target consumption Wb is added to the volume flow VR at a summation point B.
  • the target consumption VVb is calculated via a calculation 23, which is carried out in the Figure 3 is shown and explained in connection with this.
  • the result of the addition at the summation point B corresponds to an unlimited target volume flow VSDu (SL) of the suction throttle.
  • a limit 15 is then used to limit the unlimited set volume flow VSDu (SL) as a function of the engine speed nMOT.
  • the output variable of the limitation 15 corresponds to a target volume flow VSD (SL) of the suction throttle.
  • An electrical target current iSD (SL) of the suction throttle is then assigned to the target volume flow VSD (SL) via the pump characteristic curve 16.
  • the target current iSD (SL) is converted into a PWM signal PWMSD in a calculation 17.
  • the PWM signal PWMSD represents the duty cycle and the frequency fPWM corresponds to the basic frequency.
  • the PWM signal PWMSD is then applied to the solenoid of the suction throttle. This changes the path of the magnetic core, which freely influences the flow rate of the high pressure pump.
  • the suction throttle is open when de-energized and is acted upon by the PWM control in the direction of the closed position.
  • the calculation of the PWM signal 17 can be subordinated to a current control loop, such as this from the DE 10 2004 061 474 A1 is known.
  • the high-pressure pump, the suction throttle, the rail and, if applicable, the individual stores correspond to a controlled system 18 Closed loop.
  • the dynamic rail pressure pCR (DYN) is calculated via a second filter 20, which is one of the input variables of the block diagram of the Figure 3 is.
  • the second filter 20 has a smaller time constant and a smaller phase delay than the first filter 19 in the feedback branch.
  • the Figure 3 shows as a block diagram the highly simplified rail pressure control circuit 13 of the Figure 2 and a controller 21.
  • the rail pressure disturbance variable VDRV is generated via the controller 21, that is to say the volume flow which the pressure control valve controls from the rail into the fuel tank.
  • the input variables of the controller 21 are: the target rail pressure pCR (SL), the actual rail pressure pCR (IST), the dynamic rail pressure pCR (DYN), the engine speed nMOT and the target injection quantity QSL.
  • the target injection quantity QSL is either calculated via a map depending on the desired performance or corresponds to the manipulated variable of a speed controller.
  • the physical unit of the target injection quantity is mm 3 / stroke. In the case of a torque-based structure, a target torque MSL is used instead of the target injection quantity QSL.
  • the output variable of the controller 21 corresponds to the rail pressure disturbance variable VDRV.
  • the static target volume flow Vs (SL) for the pressure control valve is calculated via a target volume flow map 22 (3D map).
  • the target volume flow map 22 is designed in such a way that a positive value of the static target volume flow Vs (SL) is calculated in the low load range, for example when idling, while in the normal operating range a static target volume flow Vs (SL) of Zero is calculated.
  • a possible embodiment of the target volume flow map 22 is shown in FIG Figure 7 shown and explained in connection with this.
  • the target consumption Wb which is an input variable of the rail pressure control circuit 13, is also calculated on the basis of the engine speed nMOT and the target injection quantity QSL.
  • the static desired volume flow Vs (SL) is corrected according to the invention by adding up a dynamic desired volume flow Vd (SL).
  • the dynamic target volume flow Vd (SL) is calculated via a dynamic correction 24.
  • the input variables of the dynamic correction 24 are the target rail pressure pCR (SL), the actual rail pressure pCR (IST) and the dynamic rail pressure pCR (DYN).
  • the dynamic correction 24 is shown as a block diagram in FIG Figure 4 shown and described in connection with this.
  • the sum of the static set volume flow Vs (SL) and dynamic Target volume flow Vd (SL) corresponds to a corrected target volume flow Vk (SL), which is limited by an upper limit 25 to a maximum volume flow VMAX and lower limit to the value zero.
  • the maximum volume flow VMAX is calculated using a (2D) characteristic curve 26 as a function of the actual rail pressure pCR (IST).
  • the output variable of the limitation 25 corresponds to a resulting target volume flow Vres (SL), which is one of the input variables of a pressure control valve map 27.
  • the second input variable is the actual rail pressure pCR (IST).
  • the resulting set volume flow Vres (SL) and the actual rail pressure pCR (IST) are assigned a set current iDV (SL) of the pressure control valve.
  • the target current iDV (SL) is converted via a PWM calculation 28 into the duty cycle PWMDV with which the pressure control valve 12 is activated.
  • a current control, current control circuit 29, or a current control with feedforward control can be subordinate to the conversion.
  • the current regulation is in the Figure 5 shown and explained in connection with this.
  • the current control with pilot control is in the Figure 6 shown and explained in connection with this.
  • the pressure control valve 12 is controlled with the PWM signal PWMDV.
  • the electrical current iDV which arises at the pressure control valve 12 is converted into an actual current iDV (ACTUAL) via a filter 30 for current control and is fed back to the calculation PWM signal 28.
  • the output signal of the pressure control valve 12 corresponds to the rail pressure disturbance variable VDRV, that is to say the fuel volume flow which is diverted from the rail into the fuel tank.
  • the input variables are the target rail pressure pCR (SL), the actual rail pressure pCR (IST), the dynamic rail pressure pCR (DYN), a constant control deviation epKON and a constant factor fKON.
  • the output quantity corresponds to the dynamic set volume flow Vd (SL).
  • the set rail pressure pCR (SL) is assigned the limited control deviation epLIM via a characteristic curve 31.
  • the value of the limited control deviation epLIM is negative.
  • a first switch S1 determines whether its output variable AG1 corresponds to the limited control deviation epLIM or the constant control deviation epKON.
  • switch position S1 1
  • switch position S1 2
  • the output variable AG1 is compared with the control deviation ep.
  • the control deviation ep is calculated at a summation point B from the target rail pressure pCR (SL) and the actual rail pressure pCR (IST), alternatively from the dynamic rail pressure pCR (DYN). The selection is made via a second switch S2.
  • the actual rail pressure pCR (IST) is decisive for the calculation of the control deviation ep.
  • the dynamic rail pressure pCR (DYN) is decisive for the calculation of the control deviation ep.
  • the difference calculated at summation point A corresponds to a resulting control deviation epRES.
  • the dynamic set volume flow Vd (SL) is calculated by multiplying the resulting control deviation epRES by a factor f.
  • the Figure 5 shows a pure current control, which to the current control circuit 29 Figure 3 corresponds.
  • the input variables are the target current iDV (SL) for the pressure control valve, the actual current iDV (IST) of the pressure control valve, the battery voltage UBAT and controller parameters (kp, Tn).
  • the output variable is the PWM signal PWMDV, which is used to control the pressure control valve.
  • the current control deviation ei is first calculated.
  • the current control deviation ei is the input variable of the current controller 34.
  • the current controller 34 can be designed as a PI or PI (DT1) algorithm.
  • the controller parameters are processed in the algorithm.
  • the output variable of the current regulator 34 is a target voltage UDV (SL) of the pressure control valve. This is divided by the battery voltage UBAT and then multiplied by 100. The result corresponds to the duty cycle of the pressure control valve in percent.
  • the Figure 6 shows as an alternative to Figure 5 a current control with combined pilot control.
  • the input variables are the target current iDV (SL), the actual current iDV (IST), the controller parameters (kp, Tn), the ohmic resistance RDV of the pressure control valve and the battery voltage UBAT.
  • the output variable is also the PWM signal PWMDV, which is used to control the pressure control valve.
  • the target current iDV (SL) is multiplied by the ohmic resistance RDV of the pressure control valve.
  • the result corresponds to a pre-control voltage UDV (VS).
  • the current control deviation ei is calculated on the basis of the target current iDV (SL) and the actual current iDV (IST).
  • the current controller 34 calculates the desired voltage UDV (SL) of the pressure control valve as a manipulated variable.
  • the current controller 34 can also be designed here either as a PI or as a PI (DT1) controller. Then the target voltage UDV (SL) and the pilot voltage UDV (VS) are added, the sum then divided by the battery voltage UBAT and multiplied by 100.
  • the target volume flow map 22 is shown. This is used to determine the static target volume flow Vs (SL) for the pressure control valve.
  • the input variables are the engine speed nMOT and the target injection quantity QSL. In the horizontal direction, engine speed values from 0 to 2000 1 / min are plotted. The nominal injection quantity values from 0 to 270 mm 3 / stroke are plotted in the vertical direction. The values within the map then correspond to the assigned static target volume flow Vs (SL) in liters / minute. A part of the fuel volume flow to be controlled is determined via the target volume flow map 22.
  • the normal operating range is double-framed in the figure.
  • the simply framed area corresponds to the low-load area.
  • the Figure 8 shows as a timing diagram a load shedding from 100% to 0% load in an internal combustion engine which drives an emergency power generator (60 Hz generator).
  • the Figure 8 consists of the partial diagrams 8A to 8D. These show over time: the generator power P in kilowatts Figure 8A , the engine speed nMOT in Figure 8B , the actual rail pressure pCR (IST) in Figure 8C and the dynamic target volume flow Vd (SL) in Figure 8D .
  • the dashed line is in the Figure 8C a curve of the actual rail pressure pCR (IST) is shown without dynamic correction.
  • the representation of the Figure 8 the same parameters were used as in the example for Figure 4 .
  • a constant target rail pressure of pCR (SL) 2200 bar was also used.
  • Vd (SL) 0.5 liters / min.
  • An increasing dynamic target volume flow Vd (SL) corresponds to the increasing actual rail pressure pCR (IST).
  • a decreasing dynamic target volume flow Vd (SL) corresponds to the decreasing actual rail pressure pCR (IST).
  • the target injection quantity QSL, the engine speed nMOT, the actual rail pressure pCR (IST), the battery voltage UBAT and the actual current iDV (IST) of the pressure control valve are read.
  • the static target volume flow rate Vs (SL) is then calculated at S2 via the target volume flow characteristic map as a function of the target injection quantity QSL and the engine speed nMOT.
  • the control deviation ep is calculated from the target rail pressure pCR (SL) and the actual rail pressure pCR (IST).
  • the target rail pressure is converted to a characteristic curve ( Fig. 4 : 31) calculates the limited control deviation epLIM, which is negative, step S4.
  • the resulting control deviation epRES is then calculated at S5.
  • the resulting control deviation epRES is in turn determined from the control deviation ep and the limited control deviation epLIM. It is then checked at S6 whether the resulting control deviation epRES is negative. If this is the case, the dynamic set volume flow Vd (SL) is set to zero in S7. If the resulting control deviation epRES is not negative, the dynamic set volume flow Vd (SL) at S8 is calculated as the product of the costly factor fKON and the resulting control deviation epRES. At S9, the corrected target volume flow Vk (SL) is calculated from the sum of the static target volume flow Vs (SL) and the dynamic target volume flow Vd (SL). The actual rail pressure pCR (IST) is converted to a characteristic curve ( Fig.
  • the maximum volume flow VMAX is calculated at S10, to which the corrected desired volume flow Vk (SL) is then limited at S11.
  • the result corresponds to the resulting target volume flow Vres (SL).
  • the target current iDV (SL) is calculated depending on the resulting target volume flow Vres (SL) and the actual rail pressure pCR (IST) and finally at S13 the PWM signal for controlling the pressure control valve depending on the target current iDV (SL) calculated.
  • the program sequence is now finished.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Description

Die Erfindung betrifft ein Verfahren zur Steuerung und Regelung einer Brennkraftmaschine nach dem Oberbegriff von Anspruch 1.The invention relates to a method for controlling and regulating an internal combustion engine according to the preamble of claim 1.

Bei einer Brennkraftmaschine mit Common-Railsystem wird die Güte der Verbrennung maßgeblich über das Druckniveau im Rail bestimmt. Zur Einhaltung der gesetzlichen Emissionsgrenzwerte wird daher der Raildruck geregelt. Typischerweise umfasst ein Raildruck-Regelkreis eine Vergleichsstelle zur Bestimmung einer Regelabweichung, einen Druckregler zum Berechnen eines Stellsignals, die Regelstrecke und ein Softwarefilter zur Berechnung des Ist-Raildrucks im Rückkopplungszweig. Berechnet wird die Regelabweichung aus einem Soll-Raildruck zum Ist-Raildruck. Die Regelstrecke umfasst das Druckstellglied, das Rail und die Injektoren zum Einspritzen des Kraftstoffs in die Brennräume der Brennkraftmaschine.In an internal combustion engine with a common rail system, the quality of the combustion is largely determined by the pressure level in the rail. The rail pressure is therefore regulated to comply with the statutory emission limit values. Typically, a rail pressure control circuit comprises a comparison point for determining a control deviation, a pressure regulator for calculating an actuating signal, the controlled system and a software filter for calculating the actual rail pressure in the feedback branch. The control deviation is calculated from a target rail pressure to the actual rail pressure. The controlled system includes the pressure actuator, the rail and the injectors for injecting the fuel into the combustion chambers of the internal combustion engine.

Aus der DE 197 31 995 A1 ist ein Common-Railsystem mit Druckregelung bekannt, bei dem der Druckregler mit unterschiedlichen Reglerparametern bestückt wird. Durch die unterschiedlichen Reglerparameter soll die Druckregelung stabiler sein. Die Reglerparameter wiederum werden in Abhängigkeit von Betriebsparametern, hier: die Motordrehzahl und die Soll-Einspritzmenge, berechnet. An Hand der Reglerparameter berechnet dann der Druckregler das Stellsignal für ein Druckregelventil, über welches der Kraftstoffabfluss aus dem Rail in den Kraftstofftank festgelegt wird. Das Druckregelventil ist folglich auf der Hochdruckseite des Common-Railsystems angeordnet. Als alternative Maßnahmen zur Druckregelung sind eine elektrische Vorförderpumpe oder eine steuerbare Hochdruckpumpe in dieser Fundstelle aufgezeigt.From the DE 197 31 995 A1 a common rail system with pressure control is known, in which the pressure regulator is equipped with different regulator parameters. The pressure control should be more stable due to the different controller parameters. The controller parameters in turn are calculated depending on operating parameters, here: the engine speed and the target injection quantity. Using the controller parameters, the pressure controller then calculates the control signal for a pressure control valve, via which the fuel outflow from the rail into the fuel tank is determined. The pressure control valve is consequently arranged on the high-pressure side of the common rail system. An electrical pre-feed pump or a controllable high-pressure pump are shown in this reference as alternative measures for pressure regulation.

Auch die DE 103 30 466 B3 beschreibt ein Common-Railsystem mit Druckregelung, bei dem der Druckregler über das Stellsignal jedoch auf eine Saugdrossel zugreift. Über die Saugdrossel wiederum wird der Zulaufquerschnitt zur Hochdruckpumpe festgelegt. Die Saugdrossel ist folglich auf der Niederdruckseite des Common-Railsystems angeordnet. Ergänzend kann bei diesem Common-Railsystem noch ein passives Druckbegrenzungsventil als Schutzmaßnahme vor einem zu hohen Raildruck vorgesehen sein. Über das geöffnete Druckbegrenzungsventil wird dann der Kraftstoff aus dem Rail in den Kraftstofftank abgeleitet. Ein entsprechendes Common-Railsystem mit passivem Druckbegrenzungsventil ist aus der DE 10 2006 040 441 B3 bekannt.Also the DE 103 30 466 B3 describes a common rail system with pressure control, in which the pressure regulator accesses a suction throttle via the control signal. About the Suction throttle in turn determines the inlet cross-section to the high pressure pump. The suction throttle is consequently arranged on the low pressure side of the common rail system. In addition, a passive pressure relief valve can be provided as a protective measure against excessive rail pressure in this common rail system. The fuel is then discharged from the rail into the fuel tank via the open pressure relief valve. A corresponding common rail system with a passive pressure relief valve is out of the DE 10 2006 040 441 B3 known.

Ein weiteres Kraftstoffdruckregelsystem ist aus DE 10 2007 059 352 B3 bekannt.Another fuel pressure control system is out DE 10 2007 059 352 B3 known.

Bauartbedingt treten bei einem Common-Railsystem eine Steuer- und eine Konstantleckage auf. Die Steuerleckage ist dann wirksam, wenn der Injektor elektrisch angesteuert wird, das heißt, während der Dauer der Einspritzung. Mit abnehmender Einspritzdauer sinkt daher auch die Steuerleckage. Die Konstantleckage ist immer wirksam, das heißt, auch dann, wenn der Injektor nicht angesteuert wird. Verursacht wird diese auch durch die Bauteiltoleranzen. Da die Konstantleckage mit steigendem Raildruck zunimmt und mit fallendem Raildruck abnimmt, werden die Druckschwingungen im Rail bedämpft. Bei der Steuerleckage verhält es sich hingegen umgekehrt. Steigt der Raildruck, so wird zur Darstellung einer konstanten Einspritzmenge die Einspritzdauer verkürzt, was eine sinkende Steuerleckage zur Folge hat. Sinkt der Raildruck, so wird die Einspritzdauer entsprechend vergrößert, was eine steigende Steuerleckage zur Folge hat. Die Steuerleckage führt also dazu, dass die Druckschwingungen im Rail verstärkt werden. Die Steuer- und die Konstantleckage stellen einen Verlustvolumenstrom dar, welcher von der Hochdruckpumpe gefördert und verdichtet wird. Dieser Verlustvolumenstrom führt aber dazu, dass die Hochdruckpumpe größer als notwendig ausgelegt werden muss. Zudem wird ein Teil der Antriebsenergie der Hochdruckpumpe in Wärme umgesetzt, was wiederum die Erwärmung des Kraftstoffs und eine Wirkungsgrad-Reduktion der Brennkraftmaschine bewirkt.Due to the design, a control and constant leakage occur in a common rail system. The control leakage is effective when the injector is controlled electrically, that is, during the duration of the injection. As the injection duration decreases, the control leakage also decreases. The constant leakage is always effective, that is, even if the injector is not activated. This is also caused by the component tolerances. Since the constant leakage increases with increasing rail pressure and decreases with falling rail pressure, the pressure vibrations in the rail are dampened. The opposite is true for tax leakage. If the rail pressure rises, the injection duration is shortened to display a constant injection quantity, which results in a decreasing control leakage. If the rail pressure drops, the injection duration is increased accordingly, which results in increasing control leakage. The control leakage means that the pressure vibrations in the rail are amplified. The control and constant leakage represent a loss volume flow, which is pumped and compressed by the high pressure pump. However, this loss volume flow means that the high-pressure pump must be designed larger than necessary. In addition, part of the drive energy of the high-pressure pump is converted into heat, which in turn heats up the fuel and reduces the efficiency of the internal combustion engine.

Zur Verringerung der Konstantleckage werden in der Praxis die Bauteile miteinander vergossen. Eine Verringerung der Konstantleckage hat allerdings den Nachteil, dass sich das Stabilitätsverhalten des Common-Railsystems verschlechtert und die Druckregelung schwieriger wird. Deutlich wird dies im Schwachlastbereich, weil hier die Einspritzmenge, also das entnommene Kraftstoffvolumen, sehr gering ist. Ebenso deutlich wird dies bei einem Lastabwurf von 100% nach 0% Last, da hier die Einspritzmenge auf Null reduziert wird und sich daher der Raildruck nur langsam wieder abbaut. Dies wiederum bewirkt eine lange Ausregelzeit.In practice, the components are cast together to reduce the constant leakage. However, reducing the constant leakage has the disadvantage that the stability behavior of the common rail system deteriorates and pressure control becomes more difficult. This becomes clear in the low-load range, because here the injection quantity, i.e. the volume of fuel withdrawn, is very small. This becomes just as clear with a load shedding from 100% to 0% load, since the injection quantity is reduced to zero here and therefore the rail pressure only slowly decreases again. This in turn causes a long settling time.

Ausgehend von einem Common-Railsystem mit einer Raildruckregelung über eine niederdruckseitige Saugdrossel und mit verringerter Konstantleckage, liegt der Erfindung die Aufgabe zu Grunde, das Stabilitätsverhalten und die Ausregelzeit zu optimieren.Starting from a common rail system with rail pressure control via a low-pressure suction throttle and with reduced constant leakage, the object of the invention is to optimize the stability behavior and the settling time.

Gelöst wird diese Aufgabe durch ein Verfahren zur Steuerung und Regelung einer Brennkraftmaschine mit den Merkmalen von Anspruch 1. Die Ausgestaltungen sind in den Unteransprüchen dargestellt.This object is achieved by a method for controlling and regulating an internal combustion engine having the features of claim 1. The configurations are shown in the subclaims.

Das Verfahren besteht darin, dass neben der Raildruckregelung über die niederdruckseitige Saugdrossel als erstes Druckstellglied eine Raildruck-Störgröße zur Beeinflussung des Raildrucks über ein hochdruckseitiges Druckregelventil als zweites Druckstellglied erzeugt wird. Über das hochdruckseitige Druckregelventil wird Kraftstoff aus dem Rail in einen Kraftstofftank abgesteuert. Ein wesentliches Element der Erfindung besteht also darin, dass über die Steuerung des Druckregelventils eine Konstantleckage nachgebildet wird. Berechnet wird die Raildruck-Störgröße an Hand eines korrigierten Soll-Volumenstroms des Druckregelventils, welcher wiederum aus einem statischen Soll-Volumenstrom und einem dynamischen Soll-Volumenstrom berechnet wird.The method consists in that, in addition to the rail pressure control via the low-pressure suction throttle as the first pressure control element, a rail pressure disturbance variable for influencing the rail pressure is generated via a pressure control valve on the high pressure side as the second pressure control element. Fuel is diverted from the rail into a fuel tank via the pressure control valve on the high pressure side. An essential element of the invention therefore consists in that a constant leak is simulated via the control of the pressure control valve. The rail pressure disturbance variable is calculated on the basis of a corrected target volume flow of the pressure control valve, which in turn is calculated from a static target volume flow and a dynamic target volume flow.

Berechnet wird der statische Soll-Volumenstrom in Abhängigkeit einer Soll-Einspritzmenge, alternativ einem Soll-Moment, und einer Motordrehzahl über ein Soll-Volumenstrom-Kennfeld. Das Soll-Volumenstrom-Kennfeld ist in der Form ausgeführt, dass in einem Schwachlastbereich ein Soll-Volumenstrom mit einem positiven Wert, zum Beispiel 2 Liter/Minute, und in einem Normalbetriebsbereich ein Soll-Volumenstrom von Null berechnet wird. Unter Schwachlastbereich ist im Sinne der Erfindung der Bereich kleiner Einspritzmengen und damit kleiner Motorleistung zu verstehen.The static target volume flow is calculated as a function of a target injection quantity, alternatively a target torque, and an engine speed using a target volume flow map. The target volume flow map is designed in such a way that a target volume flow with a positive value, for example 2 liters / minute, is calculated in a low-load range and a target volume flow of zero is calculated in a normal operating range. In the context of the invention, the low-load range is to be understood to mean the range of small injection quantities and thus small engine output.

Der dynamische Soll-Volumenstrom des Druckregelventils wird über eine dynamische Korrektur in Abhängigkeit des Soll-Raildrucks und des Ist-Raildrucks berechnet, indem eine resultierende Regelabweichung berechnet wird und indem bei einer resultierenden Regelabweichung kleiner Null der dynamische Soll-Volumenstrom auf den Wert Null gesetzt wird. Ist die resultierende Regelabweichung hingegen größer/gleich Null, so wird der dynamische Soll-Volumenstrom auf den Wert des Produkts von resultierender Regelabweichung und einem Faktor gesetzt. Mit anderen Worten: Der dynamische Soll-Volumenstrom wird maßgeblich von der Regelabweichung des Raildrucks bestimmt. Ist diese negativ und unterschreitet einen Grenzwert, also zum Beispiel bei einem Lastabwurf, wird über den dynamischen Soll-Volumenstrom der statische Soll-Volumenstrom korrigiert. Anderenfalls erfolgt keine Veränderung des statischen Soll-Volumenstroms.The dynamic set volume flow of the pressure control valve is calculated via a dynamic correction depending on the set rail pressure and the actual rail pressure, by calculating a resulting control deviation and by setting the dynamic set volume flow to zero if the control deviation is less than zero . If, on the other hand, the resulting control deviation is greater than or equal to zero, the dynamic set volume flow is set to the value of the product of the resulting control deviation and a factor. In other words: The dynamic target volume flow is largely determined by the control deviation of the rail pressure. Is this is negative and falls below a limit value, for example in the event of a load shedding, the static target volume flow is corrected via the dynamic target volume flow. Otherwise there is no change in the static target volume flow.

Da der Kraftstoff stationär nur im Schwachlastbereich und in kleiner Menge abgesteuert wird, erfolgt keine signifikante Erhöhung der Kraftstofftemperatur und auch keine signifikante Verringerung des Wirkungsgrads der Brennkraftmaschine. Die erhöhte Stabilität des Raildruck-Regelkreises im Schwachlastbereich kann daran erkannt werden, dass der Raildruck im Schubbetrieb etwa konstant bleibt und bei einem Lastabwurf der Raildruck-Spitzenwert deutlich niedriger ist. Über den dynamischen Soll-Volumenstrom wird der Druckerhöhung des Raildrucks entgegengewirkt, mit dem Vorteil, dass die Ausregelzeit des Systems nochmals verbessert werden kann.Since the fuel is only discharged stationary in the low-load range and in small quantities, there is no significant increase in the fuel temperature and no significant reduction in the efficiency of the internal combustion engine. The increased stability of the rail pressure control circuit in the low-load range can be recognized from the fact that the rail pressure remains approximately constant in overrun mode and the rail pressure peak value is significantly lower when the load is shed. The increase in the rail pressure is counteracted via the dynamic set volume flow, with the advantage that the settling time of the system can be improved again.

In den Figuren ist ein bevorzugtes Ausführungsbeispiel dargestellt. Es zeigen:

Figur 1
ein Systemschaubild,
Figur 2
einen Raildruck-Regelkreis,
Figur 3
ein Blockschaltbild des Raildruck-Regelkreises mit Steuerung,
Figur 4
ein Blockschaltbild der dynamischen Korrektur,
Figur 5
einen Stromregelkreis,
Figur 6
einen Stromregelkreis mit Vorsteuerung,
Figur 7
ein Soll-Volumenstrom-Kennfeld,
Figur 8
ein Zeitdiagramm und
Figur 9
einen Programm-Ablaufplan.
A preferred exemplary embodiment is shown in the figures. Show it:
Figure 1
a system diagram,
Figure 2
a rail pressure control loop,
Figure 3
a block diagram of the rail pressure control circuit with control,
Figure 4
a block diagram of the dynamic correction,
Figure 5
a current control loop,
Figure 6
a current control loop with pilot control,
Figure 7
a target volume flow map,
Figure 8
a timing diagram and
Figure 9
a program schedule.

Die Figur 1 zeigt ein Systemschaubild einer elektronisch gesteuerten Brennkraftmaschine 1 mit einem Common-Railsystem. Das Common-Railsystem umfasst folgende mechanische Komponenten: eine Niederdruckpumpe 3 zur Förderung von Kraftstoff aus einem Kraftstofftank 2, eine veränderbare, niederdruckseitige Saugdrossel 4 zur Beeinflussung des durchströmenden Kraftstoff-Volumenstroms, eine Hochdruckpumpe 5 zur Förderung des Kraftstoffs unter Druckerhöhung, ein Rail 6 zum Speichern des Kraftstoffs und Injektoren 7 zum Einspritzen des Kraftstoffs in die Brennräume der Brennkraftmaschine 1. Optional kann das Common-Railsystem auch mit Einzelspeichern ausgeführt sein, wobei dann zum Beispiel im Injektor 7 ein Einzelspeicher 8 als zusätzliches Puffervolumen integriert ist. Als Schutz vor einem unzulässig hohen Druckniveau im Rail 6 ist ein passives Druckbegrenzungsventil 11 vorgesehen, welches im geöffneten Zustand den Kraftstoff aus dem Rail 6 absteuert. Ein elektrisch ansteuerbares Druckregelventil 12 verbindet ebenfalls das Rail 6 mit dem Kraftstofftank 2. Über die Stellung des Druckregelventils 12 wird ein Kraftstoffvolumenstrom definiert, welcher aus dem Rail 6 in den Kraftstofftank 2 abgeleitet wird. Im weiteren Text wird dieser Kraftstoffvolumenstrom als Raildruck-Störgröße VDRV bezeichnet.The Figure 1 shows a system diagram of an electronically controlled internal combustion engine 1 with a common rail system. The common rail system comprises the following mechanical components: a low-pressure pump 3 for conveying fuel from a fuel tank 2, a variable, low-pressure suction throttle 4 for influencing the fuel volume flow flowing through it, a high-pressure pump 5 for conveying the fuel while increasing the pressure, and a rail 6 for storing of the fuel and injectors 7 for injecting the fuel into the combustion chambers of the internal combustion engine 1. Optionally, the common rail system can also be designed with individual stores, in which case for example, an individual memory 8 is integrated in the injector 7 as an additional buffer volume. To protect against an impermissibly high pressure level in the rail 6, a passive pressure relief valve 11 is provided which, in the open state, controls the fuel from the rail 6. An electrically controllable pressure control valve 12 likewise connects the rail 6 to the fuel tank 2. A fuel volume flow is defined via the position of the pressure control valve 12 and is derived from the rail 6 into the fuel tank 2. In the further text, this fuel volume flow is referred to as rail pressure disturbance variable VDRV.

Die Betriebsweise der Brennkraftmaschine 1 wird durch ein elektronisches Steuergerät (ECU) 10 bestimmt. Das elektronische Steuergerät 10 beinhaltet die üblichen Bestandteile eines Mikrocomputersystems, beispielsweise einen Mikroprozessor, I/O-Bausteine, Puffer und Speicherbausteine (EEPROM, RAM). In den Speicherbausteinen sind die für den Betrieb der Brennkraftmaschine 1 relevanten Betriebsdaten in Kennfeldern/Kennlinien appliziert. Über diese berechnet das elektronische Steuergerät 10 aus den Eingangsgrößen die Ausgangsgrößen. In der Figur 1 sind exemplarisch folgende Eingangsgrößen dargestellt: der Raildruck pCR, der mittels eines Rail-Drucksensors 9 gemessen wird, eine Motordrehzahl nMOT, ein Signal FP zur Leistungsvorgabe durch den Betreiber und eine Eingangsgröße EIN. Unter der Eingangsgröße EIN sind die weiteren Sensorsignale zusammengefasst, beispielsweise der Ladeluftdruck eines Abgasturboladers. Bei einem Common-Railsystem mit Einzelspeichern 8 ist der Einzelspeicherdruck pE eine zusätzliche Eingangsgröße des elektronischen Steuergeräts 10.The operating mode of the internal combustion engine 1 is determined by an electronic control unit (ECU) 10. The electronic control unit 10 contains the usual components of a microcomputer system, for example a microprocessor, I / O modules, buffers and memory modules (EEPROM, RAM). The operating data relevant to the operation of the internal combustion engine 1 are applied in characteristic maps / characteristic curves in the memory modules. The electronic control unit 10 uses these to calculate the output variables from the input variables. In the Figure 1 The following input variables are shown as examples: the rail pressure pCR, which is measured by means of a rail pressure sensor 9, an engine speed nMOT, a signal FP for the power specification by the operator and an input variable IN. The other sensor signals are summarized under input variable IN, for example the charge air pressure of an exhaust gas turbocharger. In a common rail system with individual stores 8, the individual store pressure pE is an additional input variable of the electronic control unit 10.

In Figur 1 sind als Ausgangsgrößen des elektronischen Steuergeräts 10 ein Signal PWMSD zur Ansteuerung der Saugdrossel 4 als erstes Druckstellglied, ein Signal ve zur Ansteuerung der Injektoren 7 (Spritzbeginn/Spritzende), ein Signal PWMDV zur Ansteuerung des Druckregelventils 12 als zweites Druckstellglied und eine Ausgangsgröße AUS dargestellt. Über das Signal PWMDV wird die Stellung des Druckregelventils 12 und damit die Raildruck-Störgröße VDRV definiert. Die Ausgangsgröße AUS steht stellvertretend für die weiteren Stellsignale zur Steuerung und Regelung der Brennkraftmaschine 1, beispielsweise für ein Stellsignal zur Aktivierung eines zweiten Abgasturboladers bei einer Registeraufladung.In Figure 1 The output variables of the electronic control unit 10 are a signal PWMSD for controlling the suction throttle 4 as the first pressure control element, a signal ve for controlling the injectors 7 (start / end of spray), a signal PWMDV for controlling the pressure control valve 12 as the second pressure control element and an output variable OFF. The position of the pressure control valve 12 and thus the rail pressure disturbance variable VDRV is defined via the signal PWMDV. The output variable AUS represents the other actuating signals for controlling and regulating the internal combustion engine 1, for example an actuating signal for activating a second exhaust gas turbocharger when charging with a register.

In der Figur 2 ist ein Raildruck-Regelkreis 13 zur Regelung des Raildrucks pCR dargestellt. Die Eingangsgrößen des Raildruck-Regelkreises 13 sind: ein Soll-Raildruck pCR(SL), ein Volumenstrom der den Soll-Verbrauch VVb kennzeichnet, die Motordrehzahl nMOT, die PWM-Grundfrequenz fPWM und eine Größe E1. Unter der Größe E1 sind beispielsweise die Batteriespannung und der ohmsche Widerstand der Saugdrosselspule mit Zuleitung zusammengefasst, welche in die Berechnung des PWM-Signals mit eingehen. Die Ausgangsgrößen des Raildruck-Regelkreises 13 sind der Rohwert des Raildrucks pCR, ein Ist-Raildruck pCR(IST) und ein dynamischer Raildruck pCR(DYN). Der Ist-Raildruck pCR(IST) und der dynamische Raildruck pCR(DYN) werden in der in Figur 3 dargestellten Steuerung weiterverarbeitet.In the Figure 2 a rail pressure control circuit 13 for regulating the rail pressure pCR is shown. The input variables of the rail pressure control circuit 13 are: a target rail pressure pCR (SL), a volume flow which characterizes the target consumption VVb, the engine speed nMOT, the PWM basic frequency fPWM and a variable E1. Size E1 includes, for example, the battery voltage and the ohmic resistance of the inductor with supply line, which are included in the calculation of the PWM signal. The output variables of the rail pressure control circuit 13 are the raw value of the rail pressure pCR, an actual rail pressure pCR (IST) and a dynamic rail pressure pCR (DYN). The actual rail pressure pCR (IST) and the dynamic rail pressure pCR (DYN) are in the in Figure 3 controller shown processed.

Aus dem Rohwert des Raildrucks pCR wird mittels eines ersten Filters 19 der Ist-Raildruck pCR(IST) berechnet. Dieser wird dann mit dem Sollwert pCR(SL) an einem Summationspunkt A verglichen, woraus eine Regelabweichung ep resultiert. Aus der Regelabweichung ep berechnet ein Druckregler 14 seine Stellgröße, welche einem Volumenstrom VR mit der physikalischen Einheit Liter/Minute entspricht. Zum Volumenstrom VR wird an einem Summationspunkt B der berechnete Soll-Verbrauch Wb addiert. Berechnet wird der Soll-Verbrauch VVb über eine Berechnung 23, welche in der Figur 3 dargestellt ist und in Verbindung mit dieser erklärt wird. Das Ergebnis der Addition am Summationspunkt B entspricht einem unbegrenzten Soll-Volumenstrom VSDu(SL) der Saugdrossel. Über eine Begrenzung 15 wird anschließend der unbegrenzte Soll-Volumenstrom VSDu(SL) in Abhängigkeit der Motordrehzahl nMOT limitiert. Die Ausgangsgröße der Begrenzung 15 entspricht einem Soll-Volumenstrom VSD(SL) der Saugdrossel. Dem Soll-Volumenstrom VSD(SL) wird danach über die Pumpen-Kennlinie 16 ein elektrischer Soll-Strom iSD(SL) der Saugdrossel zugeordnet. Der Soll-Strom iSD(SL) wird in einer Berechnung 17 in ein PWM-Signal PWMSD umgerechnet. Das PWM-Signal PWMSD stellt hierbei die Einschaltdauer dar und die Frequenz fPWM entspricht der Grundfrequenz. Mit dem PWM-Signal PWMSD wird dann die Magnetspule der Saugdrossel beaufschlagt. Dadurch wird der Weg des Magnetkerns verändert, wodurch der Förderstrom der Hochdruckpumpe frei beeinflusst wird. Aus Sicherheitsgründen ist die Saugdrossel stromlos offen und wird über die PWM-Ansteuerung in Richtung der Schließstellung beaufschlagt. Der Berechnung des PWM-Signals 17 kann ein Stromregelkreis unterlagert sein, wie dieser aus der DE 10 2004 061 474 A1 bekannt ist. Die Hochdruckpumpe, die Saugdrossel, das Rail und gegebenenfalls die Einzelspeicher entsprechen einer Regelstrecke 18. Damit ist der Regelkreis geschlossen. Aus dem Rohwert des Raildrucks pCR wird über ein zweites Filter 20 der dynamische Raildruck pCR(DYN) berechnet, welcher eine der Eingangsgrößen des Blockschaltbilds der Figur 3 ist. Das zweite Filter 20 besitzt hierbei eine kleinere Zeitkonstante und einen geringeren Phasenverzug als das erste Filter 19 im Rückkopplungszweig.The actual rail pressure pCR (IST) is calculated from the raw value of the rail pressure pCR using a first filter 19. This is then compared with the setpoint pCR (SL) at a summation point A, which results in a control deviation ep. A pressure regulator 14 calculates its manipulated variable from the control deviation ep, which corresponds to a volume flow VR with the physical unit liter / minute. The calculated target consumption Wb is added to the volume flow VR at a summation point B. The target consumption VVb is calculated via a calculation 23, which is carried out in the Figure 3 is shown and explained in connection with this. The result of the addition at the summation point B corresponds to an unlimited target volume flow VSDu (SL) of the suction throttle. A limit 15 is then used to limit the unlimited set volume flow VSDu (SL) as a function of the engine speed nMOT. The output variable of the limitation 15 corresponds to a target volume flow VSD (SL) of the suction throttle. An electrical target current iSD (SL) of the suction throttle is then assigned to the target volume flow VSD (SL) via the pump characteristic curve 16. The target current iSD (SL) is converted into a PWM signal PWMSD in a calculation 17. The PWM signal PWMSD represents the duty cycle and the frequency fPWM corresponds to the basic frequency. The PWM signal PWMSD is then applied to the solenoid of the suction throttle. This changes the path of the magnetic core, which freely influences the flow rate of the high pressure pump. For safety reasons, the suction throttle is open when de-energized and is acted upon by the PWM control in the direction of the closed position. The calculation of the PWM signal 17 can be subordinated to a current control loop, such as this from the DE 10 2004 061 474 A1 is known. The high-pressure pump, the suction throttle, the rail and, if applicable, the individual stores correspond to a controlled system 18 Closed loop. From the raw value of the rail pressure pCR, the dynamic rail pressure pCR (DYN) is calculated via a second filter 20, which is one of the input variables of the block diagram of the Figure 3 is. The second filter 20 has a smaller time constant and a smaller phase delay than the first filter 19 in the feedback branch.

Die Figur 3 zeigt als Blockschaltbild den stark vereinfachten Raildruck-Regelkreis 13 der Figur 2 und eine Steuerung 21. Über die Steuerung 21 wird die Raildruck-Störgröße VDRV erzeugt, also derjenige Volumenstrom, welchen das Druckregelventil aus dem Rail in den Kraftstofftank absteuert. Die Eingangsgrößen der Steuerung 21 sind: der Soll-Raildruck pCR(SL), der Ist-Raildruck pCR(IST), der dynamische Raildruck pCR(DYN), die Motordrehzahl nMOT und die Soll-Einspritzmenge QSL. Die Soll-Einspritzmenge QSL wird entweder über ein Kennfeld in Abhängigkeit des Leistungswunsches berechnet oder entspricht der Stellgröße eines Drehzahlreglers. Die physikalische Einheit der Soll-Einspritzmenge ist mm3/Hub. Bei einer momentenbasierten Struktur wird anstelle der Soll-Einspritzmenge QSL ein Soll-Moment MSL verwendet. Die Ausgangsgröße der Steuerung 21 entspricht der Raildruck-Störgröße VDRV.The Figure 3 shows as a block diagram the highly simplified rail pressure control circuit 13 of the Figure 2 and a controller 21. The rail pressure disturbance variable VDRV is generated via the controller 21, that is to say the volume flow which the pressure control valve controls from the rail into the fuel tank. The input variables of the controller 21 are: the target rail pressure pCR (SL), the actual rail pressure pCR (IST), the dynamic rail pressure pCR (DYN), the engine speed nMOT and the target injection quantity QSL. The target injection quantity QSL is either calculated via a map depending on the desired performance or corresponds to the manipulated variable of a speed controller. The physical unit of the target injection quantity is mm 3 / stroke. In the case of a torque-based structure, a target torque MSL is used instead of the target injection quantity QSL. The output variable of the controller 21 corresponds to the rail pressure disturbance variable VDRV.

An Hand der Motordrehzahl nMOT und der Soll-Einspritzmenge QSL wird über ein Soll-Volumenstrom-Kennfeld 22 (3D-Kennfeld) der statische Soll-Volumenstrom Vs(SL) für das Druckregelventil berechnet. Das Soll-Volumenstrom-Kennfeld 22 ist in der Form ausgeführt, dass im Schwachlastbereich, zum Beispiel bei Leerlauf, ein positiver Wert des statischen Soll-Volumenstroms Vs(SL) berechnet wird, während im Normalbetriebsbereich ein statischer Soll-Volumenstrom Vs(SL) von Null berechnet wird. Eine mögliche Ausführungsform des Soll-Volumenstrom-Kennfelds 22 ist in der Figur 7 dargestellt und wird in Verbindung mit dieser näher erklärt. Ebenfalls an Hand der Motordrehzahl nMOT und der Soll-Einspritzmenge QSL wird über die Berechnung 23 der Soll-Verbrauch Wb berechnet, welcher eine Eingangsgröße des Raildruck-Regelkreises 13 ist. Der statische Soll-Volumenstrom Vs(SL) wird erfindungsgemäß durch Aufaddieren eines dynamischen Soll-Volumenstroms Vd(SL) korrigiert. Berechnet wird der dynamische Soll-Volumenstrom Vd(SL) über eine dynamische Korrektur 24. Die Eingangsgrößen der dynamischen Korrektur 24 sind der Soll-Raildruck pCR(SL), der Ist-Raildruck pCR(IST) und der dynamische Raildruck pCR(DYN). Die dynamische Korrektur 24 ist als Blockschaltbild in der Figur 4 dargestellt und wird in Verbindung mit dieser beschrieben. Die Summe aus statischem Soll-Volumenstrom Vs(SL) und dynamischem Soll-Volumenstrom Vd(SL) entspricht einem korrigierten Soll-Volumenstrom Vk(SL), welcher über eine Begrenzung 25 nach oben auf einen maximalen Volumenstrom VMAX und nach unten auf den Wert Null begrenzt wird. Berechnet wird der maximale Volumenstrom VMAX über eine (2D-) Kennlinie 26 in Abhängigkeit des Ist-Raildrucks pCR(IST). Die Ausgangsgröße der Begrenzung 25 entspricht einem resultierenden Soll-Volumenstrom Vres(SL), welcher eine der Eingangsgrößen eines Druckregelventil-Kennfelds 27 ist. Die zweite Eingangsgröße ist der Ist-Raildruck pCR(IST). Über das Druckregelventil-Kennfeld 27 wird dem resultierenden Soll-Volumenstrom Vres(SL) und dem Ist-Raildruck pCR(IST) ein Soll-Strom iDV(SL) des Druckregelventils zugeordnet. Der Soll-Strom iDV(SL) wird über eine PWM-Berechnung 28 in die Einschaltdauer PWMDV umgerechnet, mit welcher das Druckregelventil 12 angesteuert wird. Der Umrechnung kann eine Stromregelung, Stromregelkreis 29, oder eine Stromregelung mit Vorsteuerung unterlagert sein. Die Stromregelung ist in der Figur 5 dargestellt und wird in Verbindung mit dieser erklärt. Die Stromregelung mit Vorsteuerung ist in der Figur 6 dargestellt und wird in Verbindung mit dieser erklärt. Mit dem PWM-Signal PWMDV wird das Druckregelventil 12 angesteuert. Der sich am Druckregelventil 12 einstellende elektrische Strom iDV wird zur Stromregelung über ein Filter 30 in einen Ist-Strom iDV(IST) umgerechnet und auf die Berechnung PWM-Signal 28 zurückgekoppelt. Das Ausgangssignal des Druckregelventils 12 entspricht der Raildruck-Störgröße VDRV, also demjenigen Kraftstoffvolumenstrom, welcher aus dem Rail in den Kraftstofftank abgesteuert wird.Based on the engine speed nMOT and the target injection quantity QSL, the static target volume flow Vs (SL) for the pressure control valve is calculated via a target volume flow map 22 (3D map). The target volume flow map 22 is designed in such a way that a positive value of the static target volume flow Vs (SL) is calculated in the low load range, for example when idling, while in the normal operating range a static target volume flow Vs (SL) of Zero is calculated. A possible embodiment of the target volume flow map 22 is shown in FIG Figure 7 shown and explained in connection with this. The target consumption Wb, which is an input variable of the rail pressure control circuit 13, is also calculated on the basis of the engine speed nMOT and the target injection quantity QSL. The static desired volume flow Vs (SL) is corrected according to the invention by adding up a dynamic desired volume flow Vd (SL). The dynamic target volume flow Vd (SL) is calculated via a dynamic correction 24. The input variables of the dynamic correction 24 are the target rail pressure pCR (SL), the actual rail pressure pCR (IST) and the dynamic rail pressure pCR (DYN). The dynamic correction 24 is shown as a block diagram in FIG Figure 4 shown and described in connection with this. The sum of the static set volume flow Vs (SL) and dynamic Target volume flow Vd (SL) corresponds to a corrected target volume flow Vk (SL), which is limited by an upper limit 25 to a maximum volume flow VMAX and lower limit to the value zero. The maximum volume flow VMAX is calculated using a (2D) characteristic curve 26 as a function of the actual rail pressure pCR (IST). The output variable of the limitation 25 corresponds to a resulting target volume flow Vres (SL), which is one of the input variables of a pressure control valve map 27. The second input variable is the actual rail pressure pCR (IST). Via the pressure control valve map 27, the resulting set volume flow Vres (SL) and the actual rail pressure pCR (IST) are assigned a set current iDV (SL) of the pressure control valve. The target current iDV (SL) is converted via a PWM calculation 28 into the duty cycle PWMDV with which the pressure control valve 12 is activated. A current control, current control circuit 29, or a current control with feedforward control can be subordinate to the conversion. The current regulation is in the Figure 5 shown and explained in connection with this. The current control with pilot control is in the Figure 6 shown and explained in connection with this. The pressure control valve 12 is controlled with the PWM signal PWMDV. The electrical current iDV which arises at the pressure control valve 12 is converted into an actual current iDV (ACTUAL) via a filter 30 for current control and is fed back to the calculation PWM signal 28. The output signal of the pressure control valve 12 corresponds to the rail pressure disturbance variable VDRV, that is to say the fuel volume flow which is diverted from the rail into the fuel tank.

In der Figur 4 ist die dynamische Korrektur 24 aus Figur 3 dargestellt. Die Eingangsgrößen sind der Soll-Raildruck pCR(SL), der Ist-Raildruck pCR(IST), der dynamische Raildruck pCR(DYN), eine konstante Regelabweichung epKON und ein konstanter Faktor fKON. Die Ausgangsgröße entspricht dem dynamischen Soll-Volumenstrom Vd(SL). Dem Soll-Raildruck pCR(SL) wird über eine Kennlinie 31 die limitierte Regelabweichung epLIM zugeordnet. Der Wert der limitierten Regelabweichung epLIM ist negativ. So wird zum Beispiel einem Soll-Raildruck pCR(SL)=2150 bar über die Kennlinie 31 eine limitierte Regelabweichung epLIM= -100 bar zugeordnet. Über einen ersten Schalter S1 wird festgelegt, ob dessen Ausgangsgröße AG1 der limitierten Regelabweichung epLIM oder der konstanten Regelabweichung epKON entspricht. In der Schalterstellung S1=1 gilt AG1=epLIM, während in der Schalterstellung S1=2 gilt AG1=epKON. Die konstante Regelabweichung kann zum Beispiel auf den Wert epKON= -50 bar gesetzt sein. An einem Summationspunkt A wird die Ausgangsgröße AG1 mit der Regelabweichung ep verglichen. Berechnet wird die Regelabweichung ep an einem Summationspunkt B aus dem Soll-Raildruck pCR(SL) und dem Ist-Raildruck pCR(IST), alternativ aus dem dynamischen Raildruck pCR(DYN). Die Auswahl erfolgt über einen zweiten Schalter S2. In der ersten Stellung S2=1 ist der Ist-Raildruck pCR(IST) maßgeblich für die Berechnung der Regelabweichung ep. In der zweiten Stellung S2=2 ist hingegen der dynamische Raildruck pCR(DYN) maßgeblich für die Berechnung der Regelabweichung ep. Die am Summationspunkt A berechnete Differenz entspricht einer resultierenden Regelabweichung epRES. Über einen Komparator 32 wird die resultierende Regelabweichung epRES mit dem Wert Null verglichen. Ist die resultierende Regelabweichung epRES kleiner als Null (epRES<0), so wird ein dritter Schalter S3 auf die Stellung S3=2 gesetzt. In diesem Fall ist der dynamische Soll-Volumenstrom Vd(SL) gleich Null (Vd(SL)=0). Ist hingegen die resultierende Regelabweichung epRES größer/gleich Null (epRES≥0), so wird der dritte Schalter in die Stellung S3=1 umgesteuert. In dieser Stellung S3=1 wird der dynamische Soll-Volumenstrom Vd(SL) berechnet, indem die resultierende Regelabweichung epRES mit einem Faktor f multipliziert wird. Der Faktor f wiederum wird über einen vierten Schalter S4 festgelegt. Ist der vierte Schalter in der Stellung S4=1, dann wird der Faktor f über eine Kennlinie 33 in Abhängigkeit des Ist-Raildrucks pCR(IST), Schalter S2=1, oder in Abhängigkeit des dynamischen Raildrucks pCR(DYN), Schalter S2=2, berechnet. Befindet sich hingegen der vierte Schalter in der Stellung S4=2, so wird der Faktor f auf einen konstanten Wert fKON gesetzt, zum Beispiel fKON=0,01 Liter/(min·bar).In the Figure 4 the dynamic correction 24 is off Figure 3 shown. The input variables are the target rail pressure pCR (SL), the actual rail pressure pCR (IST), the dynamic rail pressure pCR (DYN), a constant control deviation epKON and a constant factor fKON. The output quantity corresponds to the dynamic set volume flow Vd (SL). The set rail pressure pCR (SL) is assigned the limited control deviation epLIM via a characteristic curve 31. The value of the limited control deviation epLIM is negative. For example, a set rail pressure pCR (SL) = 2150 bar is assigned a limited control deviation epLIM = -100 bar via characteristic curve 31. A first switch S1 determines whether its output variable AG1 corresponds to the limited control deviation epLIM or the constant control deviation epKON. In switch position S1 = 1, AG1 = epLIM applies, while in switch position S1 = 2, AG1 = epKON applies. The constant control deviation can, for example, be set to the value epKON = -50 bar. On At a summation point A, the output variable AG1 is compared with the control deviation ep. The control deviation ep is calculated at a summation point B from the target rail pressure pCR (SL) and the actual rail pressure pCR (IST), alternatively from the dynamic rail pressure pCR (DYN). The selection is made via a second switch S2. In the first position S2 = 1, the actual rail pressure pCR (IST) is decisive for the calculation of the control deviation ep. In the second position S2 = 2, however, the dynamic rail pressure pCR (DYN) is decisive for the calculation of the control deviation ep. The difference calculated at summation point A corresponds to a resulting control deviation epRES. The resulting control deviation epRES is compared with the value zero via a comparator 32. If the resulting control deviation epRES is less than zero (epRES <0), a third switch S3 is set to position S3 = 2. In this case, the dynamic set volume flow Vd (SL) is zero (Vd (SL) = 0). If, on the other hand, the resulting control deviation epRES is greater than or equal to zero (epRES≥0), the third switch is switched to position S3 = 1. In this position S3 = 1, the dynamic set volume flow Vd (SL) is calculated by multiplying the resulting control deviation epRES by a factor f. The factor f in turn is determined by a fourth switch S4. If the fourth switch is in the position S4 = 1, then the factor f is via a characteristic curve 33 as a function of the actual rail pressure pCR (IST), switch S2 = 1, or as a function of the dynamic rail pressure pCR (DYN), switch S2 = 2, calculated. If, however, the fourth switch is in the position S4 = 2, the factor f is set to a constant value fKON, for example fKON = 0.01 liter / (min · bar).

Die Funktion der dynamischen Korrektur 24 soll an Hand eines Beispiels erläutert werden. Folgende Parameter wurden zu Grunde gelegt:

  • erster Schalter S 1 = 2 mit epKON = 50 bar ,
    Figure imgb0001
  • zweiter Schalter S 2 = 1 mit ep = pCR SL pCR IST
    Figure imgb0002
    und
  • vierter Schalter S 4 = 2 mit f = fKON = 0,01 Liter / min bar .
    Figure imgb0003
The function of the dynamic correction 24 will be explained using an example. The following parameters were used:
  • first counter S 1 = 2nd With epKON = - 50 bar ,
    Figure imgb0001
  • second counter S 2nd = 1 With ep = pCR SL - pCR IS
    Figure imgb0002
    and
  • fourth counter S 4th = 2nd With f = fKON = 0.01 liter / min bar .
    Figure imgb0003

Ist die Regelabweichung größer als -50 bar (ep>(-50 bar)), dann ist die resultierende Regelabweichung epRES kleiner als Null (epRES<O). Damit wird über den Komparator 32 der dritte Schalter in die Stellung S3=2 gesteuert, so dass der dynamische Soll-Volumenstrom Vd(SL)=0 ist. Ist die Regelabweichung hingegen kleiner/gleich als -50 bar (eps(-50 bar)), dann ist die resultierende Regelabweichung epRES>0. Damit steuert der Komparator 32 den dritten Schalter in die Stellung S3=1. Der dynamische Soll-Volumenstrom wird nunmehr zu Vd(SL)=(-50 bar-ep) · 0,01 Liter/(min·bar) berechnet.If the control deviation is greater than -50 bar (ep> (- 50 bar)), the resulting control deviation epRES is less than zero (epRES <O). The third switch is thus set to position S3 = 2 via comparator 32, so that the dynamic set volume flow Vd (SL) = 0. However, the control deviation is less than / equal to -50 bar (eps (-50 bar)), then the resulting control deviation epRES> 0. The comparator 32 thus controls the third switch to the position S3 = 1. The dynamic target volume flow is now calculated as Vd (SL) = (- 50 bar-ep) · 0.01 liters / (min · bar).

Eine Korrektur mittels des dynamischen Soll-Volumenstroms Vd(SL) findet also dann statt, wenn die Regelabweichung ep den Wert ep= -50 bar unterschreitet. Wird die Regelabweichung ep noch kleiner (negativer), das heißt, schwingt der Ist-Raildruck noch stärker über, so wird über den dynamischen Soll-Volumenstrom Vd(SL) der vom Druckregelventil abgesteuerte Kraftstoffvolumenstrom, also die Raildruck-Störgröße, vergrößert. Dies führt schließlich dazu, dass der Raildruck abgefangen wird.A correction by means of the dynamic target volume flow Vd (SL) therefore takes place when the control deviation ep falls below the value ep = -50 bar. If the control deviation ep becomes even smaller (more negative), that is, if the actual rail pressure overshoots even more, the fuel volume flow controlled by the pressure control valve, i.e. the rail pressure disturbance variable, is increased via the dynamic set volume flow Vd (SL). This ultimately leads to the rail pressure being intercepted.

Die Figur 5 zeigt eine reine Stromregelung, welche zum Strom-Regelkreis 29 der Figur 3 korrespondiert. Die Eingangsgrößen sind der Soll-Strom iDV(SL) für das Druckregelventil, der Ist-Strom iDV(IST) des Druckregelventils, die Batteriespannung UBAT und Reglerparameter (kp, Tn). Die Ausgangsgröße ist das PWM-Signal PWMDV, mit welchem das Druckregelventil angesteuert wird. Aus dem Soll-Strom iDV(SL) und dem Ist-Strom iDV(IST), siehe Figur 3, wird zunächst die Strom-Regelabweichung ei berechnet. Die Strom-Regelabweichung ei ist die Eingangsgröße des Stromreglers 34. Der Stromregler 34 kann als PI- oder PI(DT1)-Algorithmus ausgeführt sein. Im Algorithmus werden die Reglerparameter verarbeitet. Diese sind unter anderem durch den Proportionalbeiwert kp und die Nachstellzeit Tn charakterisiert. Die Ausgangsgröße des Stromreglers 34 ist eine Soll-Spannung UDV(SL) des Druckregelventils. Diese wird durch die Batteriespannung UBAT dividiert und danach mit 100 multipliziert. Das Ergebnis entspricht der Einschaltdauer des Druckregelventils in Prozent.The Figure 5 shows a pure current control, which to the current control circuit 29 Figure 3 corresponds. The input variables are the target current iDV (SL) for the pressure control valve, the actual current iDV (IST) of the pressure control valve, the battery voltage UBAT and controller parameters (kp, Tn). The output variable is the PWM signal PWMDV, which is used to control the pressure control valve. From the target current iDV (SL) and the actual current iDV (IST), see Figure 3 , the current control deviation ei is first calculated. The current control deviation ei is the input variable of the current controller 34. The current controller 34 can be designed as a PI or PI (DT1) algorithm. The controller parameters are processed in the algorithm. These are characterized, among other things, by the proportional coefficient kp and the reset time Tn. The output variable of the current regulator 34 is a target voltage UDV (SL) of the pressure control valve. This is divided by the battery voltage UBAT and then multiplied by 100. The result corresponds to the duty cycle of the pressure control valve in percent.

Die Figur 6 zeigt als Alternative zur Figur 5 eine Stromregelung mit kombinierter Vorsteuerung. Die Eingangsgrößen sind der Soll-Strom iDV(SL), der Ist-Strom iDV(IST), die Reglerparameter (kp, Tn), der ohmsche Widerstand RDV des Druckregelventils und die Batteriespannung UBAT. Die Ausgangsgröße ist auch hier das PWM-Signal PWMDV, mit welchem das Druckregelventil angesteuert wird. Zunächst wird der Soll-Strom iDV(SL) mit dem ohmschen Widerstand RDV des Druckregelventils multipliziert. Das Ergebnis entspricht einer Vorsteuerspannung UDV(VS). An Hand des Soll-Stroms iDV(SL) und des Ist-Stroms iDV(IST) wird die Strom-Regelabweichung ei berechnet. Aus der Strom-Regelabweichung ei berechnet dann der Stromregler 34 als Stellgröße die Soll-Spannung UDV(SL) des Druckregelventils. Der Stromregler 34 kann auch hier entweder als PI- oder als PI(DT1)-Regler ausgeführt sein. Danach werden die Soll-Spannung UDV(SL) und die Vorsteuerspannung UDV(VS) addiert, die Summe anschließend durch die Batteriespannung UBAT geteilt und mit 100 multipliziert.The Figure 6 shows as an alternative to Figure 5 a current control with combined pilot control. The input variables are the target current iDV (SL), the actual current iDV (IST), the controller parameters (kp, Tn), the ohmic resistance RDV of the pressure control valve and the battery voltage UBAT. The output variable is also the PWM signal PWMDV, which is used to control the pressure control valve. First, the target current iDV (SL) is multiplied by the ohmic resistance RDV of the pressure control valve. The result corresponds to a pre-control voltage UDV (VS). The current control deviation ei is calculated on the basis of the target current iDV (SL) and the actual current iDV (IST). From the current control deviation ei, the current controller 34 then calculates the desired voltage UDV (SL) of the pressure control valve as a manipulated variable. The current controller 34 can also be designed here either as a PI or as a PI (DT1) controller. Then the target voltage UDV (SL) and the pilot voltage UDV (VS) are added, the sum then divided by the battery voltage UBAT and multiplied by 100.

In der Figur 7 ist das Soll-Volumenstrom-Kennfeld 22 dargestellt. Über dieses wird der statische Soll-Volumenstrom Vs(SL) für das Druckregelventil bestimmt. Die Eingangsgrößen sind die Motordrehzahl nMOT und die Soll-Einspritzmenge QSL. In waagerechter Richtung sind Motordrehzahlwerte von 0 bis 2000 1/min aufgetragen. In senkrechter Richtung sind die Soll-Einspritzmengenwerte von 0 bis 270 mm3/Hub aufgetragen. Die Werte innerhalb des Kennfelds entsprechen dann dem zugeordneten statischen Soll-Volumenstrom Vs(SL) in Liter/Minute. Über das Soll-Volumenstrom-Kennfeld 22 wird ein Teil des abzusteuernden Kraftstoffvolumenstroms festgelegt. Das Soll-Volumenstrom-Kennfeld 22 ist in der Form ausgeführt, dass im Normalbetriebsbereich ein statischer Soll-Volumenstrom von Vs(SL)= 0 Liter/Minute berechnet wird. Der Normalbetriebsbereich ist in der Figur doppelt gerahmt. Der einfach gerahmte Bereich entspricht dem Schwachlastbereich. Im Schwachlastbereich wird ein positiver Wert des statischen Soll-Volumenstroms Vs(SL) berechnet. Beispielsweise bei nMOT=1000 1/min und QSL=30 mm3/Hub wird ein statischer Soll-Volumenstrom von Vs(SL)=1.5 Liter/Minute festgelegt.In the Figure 7 The target volume flow map 22 is shown. This is used to determine the static target volume flow Vs (SL) for the pressure control valve. The input variables are the engine speed nMOT and the target injection quantity QSL. In the horizontal direction, engine speed values from 0 to 2000 1 / min are plotted. The nominal injection quantity values from 0 to 270 mm 3 / stroke are plotted in the vertical direction. The values within the map then correspond to the assigned static target volume flow Vs (SL) in liters / minute. A part of the fuel volume flow to be controlled is determined via the target volume flow map 22. The target volume flow map 22 is designed in such a way that a static target volume flow of Vs (SL) = 0 liters / minute is calculated in the normal operating range. The normal operating range is double-framed in the figure. The simply framed area corresponds to the low-load area. In the low-load range, a positive value of the static target volume flow Vs (SL) is calculated. For example, with nMOT = 1000 1 / min and QSL = 30 mm 3 / stroke, a static target volume flow of Vs (SL) = 1.5 liters / minute is specified.

Die Figur 8 zeigt als Zeitdiagramm einen Lastabwurf von 100% auf 0% Last bei einer Brennkraftmaschine, welche ein Notstromaggregat (60Hz-Generator) antreibt. Die Figur 8 besteht aus den Teildiagrammen 8A bis 8D. Diese zeigen jeweils über der Zeit: die Generatorleistung P in Kilowatt in der Figur 8A, die Motordrehzahl nMOT in Figur 8B, den Ist-Raildruck pCR(IST) in Figur 8C und den dynamischen Soll-Volumenstrom Vd(SL) in Figur 8D. Als gestrichelte Linie ist in der Figur 8C ein Verlauf des Ist-Raildrucks pCR(IST) ohne dynamische Korrektur dargestellt. Der Darstellung der Figur 8 wurden dieselben Parameter zu Grunde gelegt, wie im zuvor beschriebenen Beispiel zur Figur 4. Ebenfalls zu Grunde gelegt wurde ein konstanter Soll-Raildruck von pCR(SL)=2200 bar.The Figure 8 shows as a timing diagram a load shedding from 100% to 0% load in an internal combustion engine which drives an emergency power generator (60 Hz generator). The Figure 8 consists of the partial diagrams 8A to 8D. These show over time: the generator power P in kilowatts Figure 8A , the engine speed nMOT in Figure 8B , the actual rail pressure pCR (IST) in Figure 8C and the dynamic target volume flow Vd (SL) in Figure 8D . The dashed line is in the Figure 8C a curve of the actual rail pressure pCR (IST) is shown without dynamic correction. The representation of the Figure 8 the same parameters were used as in the example for Figure 4 . A constant target rail pressure of pCR (SL) = 2200 bar was also used.

Zum Zeitpunkt t1 wird die Last am Generator von der Leistung P=2000 kW sprunghaft auf 0 kW abgeworfen. Die fehlende Last am Abtrieb der Brennkraftmaschine verursacht eine sich erhöhende Motordrehzahl ab dem Zeitpunkt t1. Zum Zeitpunkt t4 erreicht diese ihren Maximalwert nMOT=1950 1/min. Da die Motordrehzahl in einem eigenen Regelkreis geregelt wird, schwingt sich die Motordrehzahl auf den ursprünglichen Anfangswert wieder ein. Auf Grund der sich erhöhenden Motordrehzahl nMOT und der daraus resultierenden Reduktion der Einspritzmenge ab dem Zeitpunkt t1, baut die Hochdruckpumpe ein höheres Druckniveau im Rail auf, so dass sich der Ist-Raildruck pCR(IST) zeitverzögert zur Motordrehzahl nMOT erhöht. Zum Zeitpunkt t2 erreicht der Ist-Raildruck pCR(IST) den Wert pCR(IST)=2250 bar. Die Regelabweichung ep beträgt damit ep= -50 bar. Der dynamische Soll-Volumenstrom Vd(SL), welcher über die dynamische Korrektur (Fig. 3: 24) berechnet wird, ist daher Vd(SL)=0 Liter/min. Da der Ist-Raildruck pCR(IST) nach dem Zeitpunkt t2 weiter ansteigt, nimmt die Regelabweichung ep ab, das heißt, diese unterschreitet den Wert -50 bar, wodurch nun ein positiver dynamischer Soll-Volumenstrom Vd(SL) berechnet wird, siehe Figur 8D. Zum Zeitpunkt t3 erreicht der Ist-Raildruck den Wert pCR(IST)=2300 bar. Damit ergibt sich eine Regelabweichung von ep= -100 bar. Der daraus berechnete dynamische Soll-Volumenstrom beträgt nunmehr Vd(SL)=0,5 Liter/min. Zum ansteigenden Ist-Raildruck pCR(IST) korrespondiert ein zunehmender dynamischer Soll-Volumenstrom Vd(SL). Zum abnehmenden Ist-Raildruck pCR(IST) korrespondiert ein abnehmender dynamischer Soll-Volumenstrom Vd(SL). Zum Zeitpunkt t7 unterschreitet der Ist-Raildruck pCR(IST) wieder den Wert pCR(IST)=2250 bar, womit sich ein dynamischer Soll-Volumenstrom von Vd(SL)=0 Liter/min ergibt, siehe Figur 8D.At time t1, the load on the generator is suddenly dropped from the power P = 2000 kW to 0 kW. The missing load on the output of the internal combustion engine causes an increasing engine speed from time t1. At time t4, this reaches its maximum value nMOT = 1950 1 / min. Since the engine speed is regulated in a separate control loop, the engine speed swings back to the original initial value. Due to the increasing engine speed nMOT and the resulting reduction in the injection quantity from time t1, the high-pressure pump builds up a higher pressure level in the rail, so that the actual rail pressure pCR (ACTUAL) increases with a time delay to the engine speed nMOT. At time t2, the actual rail pressure pCR (IST) reaches the value pCR (IST) = 2250 bar. The control deviation ep is thus ep = -50 bar. The dynamic set volume flow Vd (SL), which is determined by the dynamic correction ( Fig. 3 : 24) is calculated, Vd (SL) = 0 liters / min. Since the actual rail pressure pCR (IST) continues to increase after the time t2, the control deviation ep decreases, that is to say it falls below the value -50 bar, as a result of which a positive dynamic set volume flow Vd (SL) is now calculated, see Figure 8D . At time t3, the actual rail pressure reaches the value pCR (IST) = 2300 bar. This results in a control deviation of ep = -100 bar. The dynamic target volume flow calculated from this is now Vd (SL) = 0.5 liters / min. An increasing dynamic target volume flow Vd (SL) corresponds to the increasing actual rail pressure pCR (IST). A decreasing dynamic target volume flow Vd (SL) corresponds to the decreasing actual rail pressure pCR (IST). At time t7, the actual rail pressure pCR (IST) again falls below the value pCR (IST) = 2250 bar, which results in a dynamic set volume flow of Vd (SL) = 0 liters / min, see Figure 8D .

Ein Vergleich der beiden Kurven des Ist-Raildrucks pCR(IST) in der Figur 8C mit dynamischer Korrektur (durchgezogene Linie) und ohne dynamische Korrektur (gestrichelte Linie) zeigt eine Reduktion des Überschwingens, woraus dann auch eine kürzere Ausregelzeit resultiert.A comparison of the two curves of the actual rail pressure pCR (IST) in the Figure 8C with dynamic correction (solid line) and without dynamic correction (dashed line) shows a reduction in overshoot, which also results in a shorter settling time.

In der Figur 9 ist ein Programm-Ablaufplan des Verfahrens zur Bestimmung der Raildruck-Störgröße mit Korrektur dargestellt. Zu Grunde gelegt wurden folgende Parameter:

  • erster Schalter S1=1, womit die Berechnung der limitierten Regelabweichung epLIM aktiviert ist,
  • der zweite Schalter S2=1, womit sich die Regelabweichung ep aus dem Soll-Raildruck pCR(SL) und dem Ist-Raildruck pCR(IST) berechnet, und
  • der vierte Schalter S4=2, womit der Faktor f gleich fKON ist.
In the Figure 9 a program flow chart of the method for determining the rail pressure disturbance with correction is shown. The following parameters were used:
  • first switch S1 = 1, which activates the calculation of the limited control deviation epLIM,
  • the second switch S2 = 1, with which the control deviation ep is calculated from the set rail pressure pCR (SL) and the actual rail pressure pCR (IST), and
  • the fourth switch S4 = 2, with which the factor f is fKON.

Bei S1 werden die Soll-Einspritzmenge QSL, die Motordrehzahl nMOT, der Ist-Raildruck pCR(IST), die Batteriespannung UBAT und der Ist-Strom iDV(IST) des Druckregelventils eingelesen. Danach wird bei S2 über das Soll-Volumenstrom-Kennfeld in Abhängigkeit der Soll-Einspritzmenge QSL und der Motordrehzahl nMOT der statische Soll-Volumenstrom Vs(SL) berechnet. Bei S3 wird die Regelabweichung ep aus dem Soll-Raildruck pCR(SL) und dem Ist-Raildruck pCR(IST) berechnet. Aus dem Soll-Raildruck wird über eine Kennlinie (Fig. 4: 31) die limitierte Regelabweichung epLIM berechnet, welche negativ ist, Schritt S4. Danach wird bei S5 die resultierende Regelabweichung epRES berechnet. Die resultierende Regelabweichung epRES wiederum wird aus der Regelabweichung ep und der limitierten Regelabweichung epLIM bestimmt. Anschließend wird bei S6 geprüft, ob die resultierende Regelabweichung epRES negativ ist. Ist dies der Fall, so wird der dynamische Soll-Volumenstrom Vd(SL) bei S7 auf den Wert Null gesetzt. Ist die resultierende Regelabweichung epRES nicht negativ, so wird der dynamische Soll-Volumenstrom Vd(SL) bei S8 als Produkt des kostanten Faktors fKON und der resultierenden Regelabweichung epRES berechnet. Bei S9 wird der korrigierte Soll-Volumenstrom Vk(SL) aus der Summe des statischen Soll-Volumenstrom Vs(SL) und des dynamischen Soll-Volumenstroms Vd(SL) berechnet. Aus dem Ist-Raildruck pCR(IST) wird über eine Kennlinie (Fig. 3: 26) der maximale Volumenstrom VMAX bei S10 berechnet, auf welchen der korrigierte Soll-Volumenstrom Vk(SL) dann bei S11 begrenzt wird. Das Ergebnis entspricht dem resultierenden Soll-Volumenstrom Vres(SL). Bei S12 wird in Abhängigkeit des resultierenden Soll-Volumenstroms Vres(SL) und des Ist-Raildrucks pCR(IST) der Soll-Strom iDV(SL) berechnet und bei S13 schließlich das PWM-Signal zur Ansteuerung des Druckregelventils in Abhängigkeit des Soll-Stroms iDV(SL) berechnet. Damit ist der Programmablauf beendet. Bezugszeichen 1 Brennkraftmaschine 33 Kennlinie 2 Kraftstofftank 34 Stromregler 3 Niederdruckpumpe 4 Saugdrossel 5 Hochdruckpumpe 6 Rail 7 Injektor 8 Einzelspeicher (optional) 9 Rail-Drucksensor 10 elektronisches Steuergerät (ECU) 11 Druckbegrenzungsventil, passiv 12 Druckregelventil, elektrisch ansteuerbar 13 Raildruck-Regelkreis 14 Druckregler 15 Begrenzung 16 Pumpen-Kennlinie 17 Berechnung PWM-Signal 18 Regelstrecke 19 erstes Filter 20 zweites Filter 21 Steuerung 22 Soll-Volumenstrom-Kennfeld 23 Berechnung 24 dynamische Korrektur 25 Begrenzung 26 Kennlinie 27 Druckregelventil-Kennfeld 28 Berechnung PWM-Signal 29 Stromregelkreis (Druckregelventil) 30 Filter 31 Kennlinie 32 Komparator At S1, the target injection quantity QSL, the engine speed nMOT, the actual rail pressure pCR (IST), the battery voltage UBAT and the actual current iDV (IST) of the pressure control valve are read. The static target volume flow rate Vs (SL) is then calculated at S2 via the target volume flow characteristic map as a function of the target injection quantity QSL and the engine speed nMOT. At S3, the control deviation ep is calculated from the target rail pressure pCR (SL) and the actual rail pressure pCR (IST). The target rail pressure is converted to a characteristic curve ( Fig. 4 : 31) calculates the limited control deviation epLIM, which is negative, step S4. The resulting control deviation epRES is then calculated at S5. The resulting control deviation epRES is in turn determined from the control deviation ep and the limited control deviation epLIM. It is then checked at S6 whether the resulting control deviation epRES is negative. If this is the case, the dynamic set volume flow Vd (SL) is set to zero in S7. If the resulting control deviation epRES is not negative, the dynamic set volume flow Vd (SL) at S8 is calculated as the product of the costly factor fKON and the resulting control deviation epRES. At S9, the corrected target volume flow Vk (SL) is calculated from the sum of the static target volume flow Vs (SL) and the dynamic target volume flow Vd (SL). The actual rail pressure pCR (IST) is converted to a characteristic curve ( Fig. 3 : 26) the maximum volume flow VMAX is calculated at S10, to which the corrected desired volume flow Vk (SL) is then limited at S11. The result corresponds to the resulting target volume flow Vres (SL). At S12 the target current iDV (SL) is calculated depending on the resulting target volume flow Vres (SL) and the actual rail pressure pCR (IST) and finally at S13 the PWM signal for controlling the pressure control valve depending on the target current iDV (SL) calculated. The program sequence is now finished. Reference numerals 1 Internal combustion engine 33 curve 2nd Fuel tank 34 Current regulator 3rd Low pressure pump 4th Suction throttle 5 high pressure pump 6 Rail 7 Injector 8th Individual storage (optional) 9 Rail pressure sensor 10th electronic control unit (ECU) 11 Pressure relief valve, passive 12th Pressure control valve, electrically controllable 13 Rail pressure control loop 14 Pressure regulator 15 Limitation 16 Pump characteristic 17th Calculation of PWM signal 18th Controlled system 19th first filter 20 second filter 21 control 22 Set volume flow map 23 calculation 24th dynamic correction 25th Limitation 26 curve 27 Pressure control valve map 28 Calculation of PWM signal 29 Current control loop (pressure control valve) 30th filter 31 curve 32 Comparator

Claims (6)

  1. A method for controlling and regulating an internal combustion engine (1), in which the rail pressure (pCR) is regulated via a first pressure adjusting member in a rail pressure control loop (13), wherein
    a rail pressure disturbance value (VDRV) is generated in order to influence the rail pressure (pCR) via a pressure regulating valve (12) on the high pressure side as second pressure adjusting member, via which fuel is discharged from the rail (6) into a fuel tank (2), wherein the rail pressure disturbance value (VDRV) is calculated using a corrected target volume flow (Vk(SL)) of the pressure regulating valve (12), wherein
    the corrected target volume flow (Vk(SL)) is calculated from a static target volume flow (Vs(SL)) and a dynamic target volume flow (Vd(SL)), wherein the dynamic target volume flow (Vd(SL)) of the pressure regulating valve (12) is calculated via a dynamic correction (24) as a function of a target rail pressure (pCR(SL)) and of an actual rail pressure (pCR(IST)),
    characterised in that a suction throttle (4) on the low pressure side is used as first pressure adjusting member, and that the dynamic target volume flow (Vd(SL)) is calculated in that a resulting control deviation (epRES) of the rail pressure (pCR) is calculated and in that, if a resulting control deviation (epRES) is smaller than zero (epRES<0), the dynamic target volume flow (Vd(SL)) is set to the value of zero (Vd(SL)=0)) or if a resulting control deviation (epRES) is greater than/equal to zero (epRES≥0), the dynamic target volume flow (Vd(SL)) is set to the value of the product of resulting control deviation (epRES) and a factor (f), and wherein the resulting control deviation (epRES) is calculated in that a control deviation (ep) of the rail pressure (pCR) is calculated from the difference of target rail pressure (pCR(SL)) and actual rail pressure (pCR(IST)), in that a limited control deviation (epLIM) is calculated from the target rail pressure (pCR(SL)) via a characteristic curve (31) and in that the resulting control deviation (epRes) is calculated as the difference of the limited control deviation (epLIM) and the control deviation (ep).
  2. The method according to claim 1,
    characterised in
    that the static target volume flow (Vs(SL)) of the pressure regulating valve (12) is calculated via a target volume flow characteristic field (22) as a function of a target injection amount (QSL), alternatively to a target moment (MSL), and a motor speed (nMOT).
  3. The method according to claim 1,
    characterised in
    that the factor (f) is calculated via a characteristic curve (33) as a function of the actual rail pressure (pCR(IST)).
  4. The method according to any one of the preceding claims,
    characterised in
    that alternatively to the actual rail pressure (pCR(IST)), a dynamic rail pressure (pCR(DYN)) is used in the calculation, wherein the actual rail pressure (pCR(IST)) is calculated from the rail pressure (pCR) via a first filter (19), and the dynamic rail pressure (pCR(DYN)) is calculated from the rail pressure (pCR) via a second filter (20).
  5. The method according to any one of the preceding claims,
    characterised in
    that the limited control deviation (epLIM) and/or the factor (f) are set to a constant value (epKON, fKON).
  6. The method according to claim 1,
    characterised in
    that the rail pressure disturbance value (VDRV) is calculated via a pressure regulating valve characteristic field (27).
EP10732642.3A 2009-07-02 2010-06-17 Control and regulation method of the fuel pressure of a common-rail of a combustion engine Active EP2449242B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102009031527A DE102009031527B3 (en) 2009-07-02 2009-07-02 Method for controlling and regulating an internal combustion engine
PCT/EP2010/003652 WO2011000478A1 (en) 2009-07-02 2010-06-17 Method for controlling and regulating the fuel pressure in the common rail of an internal combustion engine

Publications (2)

Publication Number Publication Date
EP2449242A1 EP2449242A1 (en) 2012-05-09
EP2449242B1 true EP2449242B1 (en) 2020-07-29

Family

ID=42979356

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10732642.3A Active EP2449242B1 (en) 2009-07-02 2010-06-17 Control and regulation method of the fuel pressure of a common-rail of a combustion engine

Country Status (5)

Country Link
US (1) US9441572B2 (en)
EP (1) EP2449242B1 (en)
CN (1) CN102510942B (en)
DE (1) DE102009031527B3 (en)
WO (1) WO2011000478A1 (en)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009031528B3 (en) * 2009-07-02 2010-11-11 Mtu Friedrichshafen Gmbh Method for controlling and regulating an internal combustion engine
DE102009031527B3 (en) * 2009-07-02 2010-11-18 Mtu Friedrichshafen Gmbh Method for controlling and regulating an internal combustion engine
DE102009050467B4 (en) 2009-10-23 2017-04-06 Mtu Friedrichshafen Gmbh Method for controlling and regulating an internal combustion engine
DE102009051390B4 (en) 2009-10-30 2015-10-22 Mtu Friedrichshafen Gmbh Method for controlling and regulating an internal combustion engine
CN102140973B (en) * 2011-04-19 2016-09-14 潍柴动力股份有限公司 Control equipment and the method for the high-pressure common rail tube chamber rail pressure of high-pressure common-rail fuel system
FI123271B (en) * 2011-06-23 2013-01-31 Waertsilae Finland Oy Fuel injection systems
DE102012019457B3 (en) * 2012-10-04 2014-03-20 Mtu Friedrichshafen Gmbh Method for regulating the rail pressure of an internal combustion engine
DE102013213506B4 (en) * 2012-10-15 2023-06-15 Vitesco Technologies GmbH Method for operating a fuel injection system with a fuel filter heater and fuel injection system
US9587581B2 (en) * 2013-06-20 2017-03-07 GM Global Technology Operations LLC Wideband diesel fuel rail control using active pressure control valve
US10260444B2 (en) * 2013-12-19 2019-04-16 Fca Us Llc Direct injection fuel system with controlled accumulator energy storage
DE102014213648B3 (en) * 2014-07-14 2015-10-08 Mtu Friedrichshafen Gmbh Method for operating an internal combustion engine, injection system for an internal combustion engine and internal combustion engine
DE102015207961B4 (en) * 2015-04-29 2017-05-11 Mtu Friedrichshafen Gmbh Method for detecting a continuous injection during operation of an internal combustion engine, injection system for an internal combustion engine and internal combustion engine
DE102015209377B4 (en) 2015-05-21 2017-05-11 Mtu Friedrichshafen Gmbh Injection system for an internal combustion engine and internal combustion engine with such an injection system
DE102017214001B3 (en) 2017-08-10 2019-02-07 Mtu Friedrichshafen Gmbh Method for operating an internal combustion engine with an injection system, injection system, configured for carrying out such a method, and internal combustion engine with such an injection system
DE102019202004A1 (en) 2019-02-14 2020-08-20 Mtu Friedrichshafen Gmbh Method for operating an injection system of an internal combustion engine, an injection system for an internal combustion engine and an internal combustion engine with such an injection system
CN111651547B (en) * 2020-06-04 2023-07-18 北京四维图新科技股份有限公司 Method and device for acquiring high-precision map data and readable storage medium
CN112555043B (en) * 2020-12-04 2022-07-19 东风汽车股份有限公司 Fuel injector flow correction method based on vehicle finishing conditions
CN113250841B (en) * 2021-06-18 2023-05-19 中国北方发动机研究所(天津) High-pressure common rail fuel injection system and rail pressure control method thereof

Family Cites Families (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH674243A5 (en) * 1987-07-08 1990-05-15 Dereco Dieselmotoren Forschung
JP3939779B2 (en) * 1995-05-26 2007-07-04 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Fuel supply device for fuel supply of an internal combustion engine
DE19548278B4 (en) * 1995-12-22 2007-09-13 Robert Bosch Gmbh Method and device for controlling an internal combustion engine
DE19548280A1 (en) * 1995-12-22 1997-06-26 Bosch Gmbh Robert Method and device for controlling an internal combustion engine
DE19607070B4 (en) * 1996-02-24 2013-04-25 Robert Bosch Gmbh Method and device for controlling an internal combustion engine
DE19618932C2 (en) * 1996-05-10 2001-02-01 Siemens Ag Device and method for regulating the fuel pressure in a high pressure accumulator
US6016791A (en) * 1997-06-04 2000-01-25 Detroit Diesel Corporation Method and system for controlling fuel pressure in a common rail fuel injection system
DE19731995B4 (en) * 1997-07-25 2008-02-21 Robert Bosch Gmbh Method and device for controlling an internal combustion engine
DE19739653A1 (en) * 1997-09-10 1999-03-11 Bosch Gmbh Robert Process for producing high-pressure fuel and system for producing high-pressure fuel
DE19752025B4 (en) * 1997-11-24 2006-11-09 Siemens Ag Method and device for regulating the fuel pressure in a fuel storage
DE19757655C2 (en) * 1997-12-23 2002-09-26 Siemens Ag Method and device for monitoring the function of a pressure sensor
DE19802583C2 (en) * 1998-01-23 2002-01-31 Siemens Ag Device and method for regulating pressure in accumulator injection systems with an electromagnetically actuated pressure actuator
US6311674B1 (en) * 1998-04-15 2001-11-06 Denso Corporation Fuel injection system for internal combustion engine
JP2001055961A (en) * 1999-08-11 2001-02-27 Mitsubishi Electric Corp High pressure fuel supplying device
JP2001159359A (en) * 1999-12-02 2001-06-12 Mitsubishi Electric Corp Fuel pressure control device for cylinder injection engine
IT1320684B1 (en) * 2000-10-03 2003-12-10 Fiat Ricerche FLOW RATE CONTROL DEVICE OF A HIGH PRESSURE PUMP IN A COMMON COLLECTOR INJECTION SYSTEM OF A FUEL
JP3908480B2 (en) * 2001-05-16 2007-04-25 ボッシュ株式会社 Operation control method in fuel injection device and fuel injection device
DE10211283A1 (en) * 2002-03-14 2003-09-25 Bosch Gmbh Robert Operating method for automobile engine fuel metering system with limitation of variation rate of pressure in high pressure region of latter
DE10218021A1 (en) * 2002-04-23 2003-11-06 Bosch Gmbh Robert Fuel injection device for an internal combustion engine
US7318414B2 (en) * 2002-05-10 2008-01-15 Tmc Company Constant-speed multi-pressure fuel injection system for improved dynamic range in internal combustion engine
ITTO20020619A1 (en) * 2002-07-16 2004-01-16 Fiat Ricerche METHOD OF CHECKING THE FUEL INJECTION PRESSURE OF A COMMON MANIFOLD INJECTION SYSTEM OF A COMBUSTION ENGINE
DE10247564A1 (en) 2002-10-11 2004-04-22 Robert Bosch Gmbh Operating common rail fuel injection system for combustion engine involves driving pressure regulating valve if fuel quantity less than threshold so defined leakage occurs at pressure regulating valve
JP2004183550A (en) * 2002-12-03 2004-07-02 Isuzu Motors Ltd Filter treating device for common-rail pressure detection value and common-rail type fuel injection controller
DE10261414B4 (en) * 2002-12-30 2005-03-17 Siemens Ag Fuel injection system
DE10261446A1 (en) * 2002-12-31 2004-07-08 Robert Bosch Gmbh Method for actuating a pressure control valve in a fuel injection system of an internal combustion engine
DE10318646A1 (en) * 2003-04-24 2004-11-18 Siemens Ag Method for controlling a fuel pressure in a fuel supply device for an internal combustion engine
DE10330466B3 (en) * 2003-07-05 2004-10-21 Mtu Friedrichshafen Gmbh Regulation method for IC engine with common-rail fuel injection system has pulse width modulation signal frequency switched between 2 values dependent on engine speed
DE10349628A1 (en) * 2003-10-24 2005-06-02 Robert Bosch Gmbh Method for regulating the pressure in a fuel accumulator of an internal combustion engine
DE102004023365B4 (en) * 2004-05-12 2007-07-19 Mtu Friedrichshafen Gmbh Method for pressure control of a storage injection system
JP2005337182A (en) * 2004-05-28 2005-12-08 Mitsubishi Electric Corp Fuel pressure control device for internal combustion engine
DE102004059330A1 (en) * 2004-12-09 2006-06-14 Robert Bosch Gmbh Method for operating a fuel system of an internal combustion engine
DE102004061474B4 (en) * 2004-12-21 2014-07-17 Mtu Friedrichshafen Gmbh Method and device for controlling the rail pressure
US20060225760A1 (en) * 2005-04-06 2006-10-12 Crown Packaging Technology, Inc., United States Flocked wire mascara brush
DE102005029138B3 (en) * 2005-06-23 2006-12-07 Mtu Friedrichshafen Gmbh Control and regulating process for engine with common rail system has second actual rail pressure determined by second filter
JP4508011B2 (en) * 2005-06-30 2010-07-21 トヨタ自動車株式会社 Control device for internal combustion engine
JP4475205B2 (en) * 2005-09-01 2010-06-09 株式会社デンソー Control device for common rail fuel injection system
JP4170345B2 (en) * 2006-01-31 2008-10-22 三菱電機株式会社 High pressure fuel pump control device for internal combustion engine
JP4538851B2 (en) * 2006-02-15 2010-09-08 株式会社デンソー In-cylinder injection internal combustion engine fuel pressure control device
DE102006018164B3 (en) * 2006-04-19 2007-08-30 Siemens Ag Fuel injection system controlling method for internal combustion engine, involves adjusting volume flow control valve depending on control value for volume flow control valve and controlling of pressure control valve
DE102006040441B3 (en) * 2006-08-29 2008-02-21 Mtu Friedrichshafen Gmbh Method for identifying opening of passive pressure limiting valve, involves supplying fuel from common-rail system in fuel tank, where load shedding is identified
JP4525691B2 (en) * 2007-03-05 2010-08-18 株式会社デンソー Fuel injection pressure control device and fuel injection pressure control system
DE102007027943B3 (en) * 2007-06-18 2008-10-16 Mtu Friedrichshafen Gmbh Method for regulating the rail pressure during a start-up procedure
DE102008040441A1 (en) 2008-07-16 2010-02-18 Zf Friedrichshafen Ag Transmission device for use in vehicle power train, has planetary gear unit and variator whose shafts are connected to transmission output via switching elements for illustrating transmission regions, respectively
DE102007059352B3 (en) * 2007-12-10 2009-06-18 Continental Automotive Gmbh Fuel pressure control system and fuel pressure control method
DE102008044050A1 (en) * 2007-12-19 2009-06-25 Robert Bosch Gmbh Method of operating a fuel system
US20090326788A1 (en) * 2008-06-25 2009-12-31 Honda Motor Co., Ltd. Fuel injection device
US8210156B2 (en) * 2009-07-01 2012-07-03 Ford Global Technologies, Llc Fuel system with electrically-controllable mechanical pressure regulator
DE102009031527B3 (en) * 2009-07-02 2010-11-18 Mtu Friedrichshafen Gmbh Method for controlling and regulating an internal combustion engine
DE102009031529B3 (en) * 2009-07-02 2010-11-11 Mtu Friedrichshafen Gmbh Method for controlling and regulating an internal combustion engine

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
EP2449242A1 (en) 2012-05-09
US20120097134A1 (en) 2012-04-26
DE102009031527B3 (en) 2010-11-18
CN102510942B (en) 2015-06-03
CN102510942A (en) 2012-06-20
US9441572B2 (en) 2016-09-13
WO2011000478A1 (en) 2011-01-06

Similar Documents

Publication Publication Date Title
EP2449242B1 (en) Control and regulation method of the fuel pressure of a common-rail of a combustion engine
EP2449241B1 (en) Method for controlling the rail pressure in a common-rail injection system of a combustion engine
EP2449240B1 (en) Method for controlling the rail pressure in a common-rail injection system of a combustion engine
DE10162989C1 (en) Circuit for regulating injection system fuel pump, derives adaptive component of desired delivery volume from integral component if integral component above threshold for defined time
EP0970304B1 (en) Device and method for controlling pressure in storage injection systems with an electromagnetically actuated pressure control member
DE102005029138B3 (en) Control and regulating process for engine with common rail system has second actual rail pressure determined by second filter
DE102009050467B4 (en) Method for controlling and regulating an internal combustion engine
EP2006521B1 (en) Method for controlling rail pressure during a starting process
DE102009050468A1 (en) Method for controlling and regulating an internal combustion engine
DE19913477B4 (en) Method for operating a fuel supply device of an internal combustion engine, in particular a motor vehicle
EP2491236B1 (en) Method for the open-loop control and closed-loop control of an internal combustion engine
WO2016008565A1 (en) Method for operating an internal combustion engine, injection system for an internal combustion engine and internal combustion engine
EP0963514B1 (en) Method for regulating a controlled variable with limited controller intervention
WO2010057588A1 (en) Control and regulation method for an internal combustion engine having a common rail system
WO2017186326A1 (en) Method for operating an internal combustion engine, device for the open-loop and/or closed-loop control of an internal combustion engine, injection system and internal combustion engine
WO2017075641A1 (en) Internal combustion engine having injection amount control
EP2358987B1 (en) Control and regulation method for an internal combustion engine having a common rail system
EP2718556B1 (en) Method for controlling rail pressure
DE102013000060B3 (en) Method of operating internal combustion engine, involves dividing high pressure pump associated with suction throttle into units, and controlling each unit by separate control loop
DE102019202004A1 (en) Method for operating an injection system of an internal combustion engine, an injection system for an internal combustion engine and an internal combustion engine with such an injection system
WO2019011839A1 (en) Method for regulating pressure in a high-pressure injection system of an internal combustion engine, and internal combustion engine for carrying out such a method

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20120120

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20190225

RIC1 Information provided on ipc code assigned before grant

Ipc: F02D 41/14 20060101ALN20191209BHEP

Ipc: F02M 63/02 20060101ALN20191209BHEP

Ipc: F02D 41/20 20060101ALN20191209BHEP

Ipc: F02D 41/38 20060101AFI20191209BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200212

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1296087

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200815

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502010016715

Country of ref document: DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200729

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201029

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201029

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201130

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201030

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502010016715

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

26N No opposition filed

Effective date: 20210430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210617

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210630

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210617

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210630

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1296087

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210617

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210617

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20100617

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230530

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230627

Year of fee payment: 14

Ref country code: DE

Payment date: 20230620

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230623

Year of fee payment: 14

Ref country code: GB

Payment date: 20230622

Year of fee payment: 14

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729