EP1730608B1 - Method for modulating an atomic clock signal with coherent population trapping and corresponding atomic clock - Google Patents

Method for modulating an atomic clock signal with coherent population trapping and corresponding atomic clock Download PDF

Info

Publication number
EP1730608B1
EP1730608B1 EP05744396A EP05744396A EP1730608B1 EP 1730608 B1 EP1730608 B1 EP 1730608B1 EP 05744396 A EP05744396 A EP 05744396A EP 05744396 A EP05744396 A EP 05744396A EP 1730608 B1 EP1730608 B1 EP 1730608B1
Authority
EP
European Patent Office
Prior art keywords
pulse
atomic clock
response signal
atomic
intensity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP05744396A
Other languages
German (de)
French (fr)
Other versions
EP1730608A1 (en
Inventor
Noël DIMARCQ
Stéphane GUERANDEL
Thomas Zanon
David Holleville
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Centre National de la Recherche Scientifique CNRS
Original Assignee
Centre National de la Recherche Scientifique CNRS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centre National de la Recherche Scientifique CNRS filed Critical Centre National de la Recherche Scientifique CNRS
Publication of EP1730608A1 publication Critical patent/EP1730608A1/en
Application granted granted Critical
Publication of EP1730608B1 publication Critical patent/EP1730608B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G04HOROLOGY
    • G04FTIME-INTERVAL MEASURING
    • G04F5/00Apparatus for producing preselected time intervals for use as timing standards
    • G04F5/14Apparatus for producing preselected time intervals for use as timing standards using atomic clocks
    • GPHYSICS
    • G04HOROLOGY
    • G04FTIME-INTERVAL MEASURING
    • G04F5/00Apparatus for producing preselected time intervals for use as timing standards
    • G04F5/14Apparatus for producing preselected time intervals for use as timing standards using atomic clocks
    • G04F5/145Apparatus for producing preselected time intervals for use as timing standards using atomic clocks using Coherent Population Trapping

Definitions

  • CPT clocks for "Coherent Population Trapping” Atomic clocks with consistent population trapping, designated CPT clocks for "Coherent Population Trapping" are known from the state of the art.
  • the atomic clocks use an interaction medium, generally formed by cesium or rubidium atoms excited by a radio-electric signal generated by a local oscillator LO and a synthesizer S at an excitation frequency and formed by a signal microwave at 6.8 GHz respectively 9.2 GHz for rubidium and cesium.
  • the atoms of the interaction medium are excited between two energy levels e and f represented in figure 1b .
  • This mode of excitation is called Rabi's interrogation mode if the interaction is continuous and Ramsey interrogation mode if the interrogation is based on two short interactions separated by a dead time.
  • the response signal from the interaction has an amplitude depending on the tuning to the resonance of the excitation signal. Detection of the response signal can be performed by optical absorption, magnetic selection, optical fluorescence or magnetic detection.
  • a system for controlling the local oscillator from the response signal makes it possible to obtain at the output of this oscillator a periodic signal S u , having qualities of accuracy and frequency stability comparable to those of the resonance frequency. e ⁇ f.
  • the CPT clocks also use an interaction medium illuminated by two laser waves and implement a continuous interrogation mode.
  • the interaction medium consisting of sodium is spatially separated into two distinct interaction zones, separated by a distance of 30 cm.
  • the laser beams make it possible to generate a Raman transition resonance at 1 772 MHz, the central fringe of the Ramsey fringe pattern being reduced to a width of 650 Hz, thanks to an interaction produced in the interaction zones.
  • CPT type atomic clocks implement a continuous mode interrogation, by means of two coherent laser waves in phase.
  • Each laser wave is quasi-resonant with an optical transition of the atoms 2 ⁇ e and 2 ⁇ f and the difference between the frequencies of the two waves is close to the atomic reference frequency f ⁇ e.
  • the atoms of the interaction medium are trapped in a coherent superposition of the states f and e corresponding to a black state.
  • the coherent superposition of atomic states is also associated with a magnetization generating an electromagnetic wave oscillating at the frequency of the transition e ⁇ f in the microwave domain.
  • Fluorescence absorption or emission is minimal and the field of the electromagnetic wave emitted has a maximum amplitude at resonance.
  • the atomic clock signal corresponds to the variation of the amplitude of the signal detected by absorption, fluorescence or microwave emission, as a function of the value of the frequency difference of the laser waves.
  • the above-mentioned low amplitude atomic clock signals are detected under degraded signal-to-noise ratio conditions, which again results in a degradation of the frequency stability of the atomic clock.
  • the object of the present invention is to remedy the technical problem of the optical saturation of the interaction media of the atomic clocks, in particular CPT or other clocks, while maintaining non-degraded signal-to-noise ratio conditions.
  • Another object of the present invention is, furthermore, through a specific processing of the response signal generated by the interrogation of the interaction medium in the current CPT atomic clocks, to obtain an increase in the contrast of the fringes of the interference in Ramsey mode and a decrease in slow amplitude variations or drifts of the atomic clock signal, generated in particular by the irreducible fluctuations of the operating parameters, such as the frequency and the amplitude of the interrogation lasers of the interaction medium.
  • Another object of the invention is, finally, the implementation of a method for generating a clock signal CPT and a corresponding clock CPT allowing a miniaturization of this type of clock for the production clocks in which the interaction cell does not exceed a volume of a few mm 3 .
  • the method for generating a coherent population-entrapped atomic clock signal uses a first and a second phase-coherent laser wave, each substantially resonant with an optical transition of the atomic atoms. an interaction medium.
  • the coherent superposition of the atomic states corresponding to the coherent trapping of the atomic population makes it possible to generate a response signal exhibiting a amplitude resonant at the resonance and representative of the atomic clock signal corresponding to the amplitude variation of the detected signal as a function of the value of the frequency difference of the first and second in-phase coherent laser waves.
  • the response signal is detected and superimposed by linear combination of the response signal generated during this current pulse and at least one pulse preceding this current pulse, to generate a resulting compensated atomic clock signal, the spectral width of which is minimized.
  • the pulsed interrogation atomic clock which is the subject of the present invention, comprises at least one interrogation optical module making it possible to generate a coherent first and second phase-coherent laser beam, each substantially resonant with an optical transition of the atomic atoms.
  • an interaction medium an interaction cell comprising this interaction medium, illuminated in operation by the first and second coherent laser beams in phase, to generate a response signal having an extreme amplitude at resonance and corresponding to the amplitude variation of the detected signal as a function of the frequency difference of the first and second coherent laser beams in phase and a detection module of this response signal adapted to the wavelength and amplitude of the response signal .
  • a pulse modulating block of the intensity of the first and second laser beams between a high level and a low intensity level is placed on the path of the first and second laser beams, upstream of the interaction cell, to synchronously generate a first and a second pulsed laser beam.
  • the interaction between the first respectively the second laser beam and the interaction medium is substantially limited to the duration of each successive pulse corresponding to a high intensity level and the signal of The response generated during a current pulse depends on the atomic state generated during at least one pulse preceding this current pulse and the evolution of that atomic state during the low intensity period between these pulses.
  • the detection module comprises a summation module by linear combination of the response signal generated during this current pulse and the response signal generated during at least one pulse preceding this current pulse.
  • the summation module by linear combination makes it possible to generate a resulting compensated atomic clock signal whose spectral width is minimized.
  • the method and the atomic clock with coherent trapping of population objects of the present invention find application to the industrial implementation of timepieces or frequency reference embedded very small footprint, used in particular in space applications.
  • the method which is the subject of the present invention is implemented from a first laser wave L 1 and a second laser wave L 2 consistent in phase.
  • each of the aforementioned laser waves is substantially in resonance with an optical transition of the atoms of an interaction medium, the laser waves L 1 and L 2 being deemed to be emitted at a frequency f 1 and f 2 and at their wavelength corresponding in vacuum or air, the frequency difference of the aforementioned laser waves being noted ⁇ f 12 .
  • the laser waves L1 and L2 are polarized either circularly or linearly orthogonally.
  • the coherent superposition of the atomic states corresponding to the coherent trapping of the atomic population as represented in FIG. figure 1b generates a response signal in the microwave domain having a amplitude at resonance and representative of the atomic clock signal corresponding to the amplitude variation of the detected response signal as a function of the value of the frequency difference ⁇ f 12 of the first and second coherent laser waves in phase L 1 and L 2 .
  • the mode of interaction of the first and second waves with the interaction medium corresponds to the continuous interaction mode known from the state of the art from the physical point of view.
  • this consists at least in a step A of sequentially pulsing modulating the intensity of the first and second laser waves L 1 , L 2 according to a given form factor, between a high level and a low intensity level.
  • the laser waves L 1 and L 2 are represented which are synchronously modulated by successive pulses, the successive pulses being deemed to have a rank r, r-1, ..., rp with respect to a growing time scale t.
  • the current pulse is deemed to have a rank r, the pulse immediately preceding this current pulse rank r-1 and successive previous pulses being deemed to have an earlier rank successively up to r-p.
  • the interaction between the first and second laser waves L 1 , L 2 and in particular the pulsed shape thereof and the interaction medium is substantially limited to the duration of each successive pulse S r , S r-1 to S rp corresponding to a high level of intensity.
  • the response signal generated during a current pulse depends on the atomic state generated during at least one pulse preceding this current pulse, that is to say the previous pulses of rank r-1 to rp and the evolution of this atomic state during the duration of low level of intensity separating the aforementioned pulses.
  • the object process of the invention consists particularly remarkably to detect in step B and superimpose by linear combination in step C the response signal generated during the current pulse response signal noted S r of rank r corresponding to that of the illumination pulse of the same rank and at least one pulse preceding this current pulse to generate the resulting compensated atomic clock signal, whose spectral width is minimized.
  • step B the detection operation is represented in step B, the response signal being deemed to consist of the corresponding response signal S r of rank r and the successive successive response signals S r-1 to S rp .
  • step C of the figure 2a The linear combination superposition operation is represented in step C of the figure 2a and illustrated by the following linear combination formula:
  • S HC represents the resulting compensated atomic clock signal obtained by the aforementioned linear combination C k designating a positive and / or negative weighting coefficient applied to each successive response signal pulse S k .
  • the pulse modulation process of the laser waves L 1 and L 2 is advantageously carried out by pulse train, the frequency of the modulation pulses being between 0.2 Hz and 10 4 Hz.
  • the high intensity level of each pulse for a given pulse train has a duration h and the low intensity level has a duration b.
  • the frequency range of the modulated laser wave pulses represented in point 1 of the figure 2b and finally response signal of successive rows r, r-1, rp is given by the value 1 / h + b for the different values of h and b and the form factor defined by the value h / h + b is then between 10 -6 and 10 -1 .
  • pulses I of modulated laser waves represented in point 1) can be obtained by an electronic control signal having exactly the temporal and / or frequency characteristics of those represented in point 1) of FIG. figure 2b above.
  • duration interval b separating the current pulse of rank r from the pulse preceding this current pulse or any previous pulse of rank r-1 to rp in a pulse train of modulation, one indicates that this duration b is less than the life time of the hyperfine coherence existing between the two clock levels.
  • the two clock levels concerned are the levels e and f which determine the frequency of the resulting atomic clock signal and that this life time depends essentially on the interaction medium considered.
  • One of the remarkable aspects of the process that is the subject of the present invention is in particular that the latter is capable of being implemented from interaction media consisting either of atomic populations the cells contained by cold atoms and, in particular, cooled by laser.
  • the interrogation process is advantageously constituted by a Ramsey interrogation mode with at least two pulses.
  • the thermal atoms are delivered in the form of steam or jet.
  • Obtaining the laser-cooled atoms involves interacting the thermal atoms with correctly tuned laser waves with respect to optical transitions of the atoms.
  • the radiation pressure induced by the laser waves makes it possible to rapidly reduce the kinetic energy of the atoms.
  • samples of cooled atoms are obtained with very low erratic speeds, of the order of 1 cm / s, corresponding to a temperature of 10 -6 K, much lower than that of thermal atoms, of the order of a few hundred meters per second at a temperature of 300 K.
  • the kinetic energy of the atoms or the variation of kinetic energy thereof is proportional to the temperature decrease from the initial value 300 K to 10 -6 K, the coefficient of proportionality depending on the Boltzmann constant.
  • the aforementioned detection process is advantageously chosen from the group of detection processes comprising optical absorption, Optical fluorescence, microwave detection as a function of the frequency of the interrogation signal.
  • the method which is the subject of the present invention can be implemented in many situations taking into account the nature of the interaction medium chosen, the interrogation mode being however preferentially the Ramsey interrogation mode with at least two pulses, as mentioned previously in the description.
  • the detection processes are then the detection processes by optical absorption, optical fluorescence, microwave detection as a function of the frequency of the aforementioned interrogation signal.
  • the table below establishes the type of atomic clock capable of implementing the method that is the subject of the present invention, indicating the atomic source used to enable the implementation of the method, the interrogation method or mode and the process. detecting the corresponding clock signal.
  • TYPE OF ATOMIC CLOCK ATOMIC SOURCE INTERROGATION MODE CLOCK SIGNAL DETECTION CPT coherent trapping of population on thermal atoms in cells
  • Optical interrogation clock transition in the microwave domain
  • Continuous in existing devices Pulsed interrogation in this type of clock
  • Optical absorption or microwave detection CPT coherent trapping of population on cold atoms
  • Optical interrogation (clock transition in the microwave domain) Pulsed type query.
  • such a clock comprises, in an optical section SO, an interrogation optical module 1 for generating a coherent first and second laser beam in the L 1 , L 2 phase.
  • each of the aforementioned laser beams is substantially in resonance with an optical transition of the atoms of an interaction medium.
  • the pulsed interrogation atomic clock further comprises an interaction cell 3 comprising the aforementioned interaction medium.
  • interaction cell 3 By notion of interaction cell 3, it is indicated that the interaction cell can be constituted in a conventional manner by a transparent envelope to the laser beam L 1 , L 2 and of course, by any device generating the interaction medium, c i.e. thermal atoms and / or laser cooled.
  • the interrogation module 1 generates the two laser beams L 1 and L 2 whose difference in frequency is equal to the resonance frequency, the microwave frequency at 9.2 GHz for cesium and 6.8 GHz for rubidium. for example.
  • the frequencies of the laser diodes are in the neighborhood of 852 nm for the D 2 line and 894 nm for the D 1 line .
  • the aforementioned laser lines can be used for a CPT interaction as described above in the description.
  • the transitions of the line D 1 appear more interesting because they make it possible to reduce, on the one hand, the losses of atoms due to leakage on adjacent transitions, and, on the other hand, light shifts.
  • Different processes can be implemented to generate two radiations, that is to say the laser beams L 1 and L 2 , which induce the coherent entrapment of the atomic population of the interaction medium.
  • the frequency difference between the laser beams L 1 and L 2 is equal to the clock frequency, that is to say the frequency of the atomic clock signal.
  • the phase difference between the phase of the laser beams L 1 and L 2 must have fluctuations as low as possible in order to avoid any destruction of the interference phenomenon.
  • the required transmit power for laser beams is in the milliwatt range.
  • the interrogation optics can be made from a single laser source to which a frequency modulation at several GHz of the modulation type is applied. sidebands, the distance between the sidebands corresponding to the clock frequency. The two previously mentioned lines are thus provided with phase coherence as good as that of the modulation signal.
  • the two lines or laser beams L 1 and L 2 are then physically superimposed in a conventional manner so that the latter follow the same optical path and are subjected to the same successive phase shifts until they are applied to the interaction medium.
  • interaction cell 3 it is indicated that it can be implemented from a pyrex or quartz enclosure.
  • buffer gases may be added to eliminate Doppler line broadening by placing in the Lamb-Dicke regime.
  • the magnetic and thermal environment is tightly controlled to avoid any variation in frequency shift that would affect the accuracy and long-term stability of the atomic clock thus formed.
  • the pulsed interrogation atomic clock comprises, in a detection section SD, also a module 4 for detecting the response signal, the response signal being defined as the signal delivered by the interaction medium of the cell 3 after illumination of the interaction medium by laser beams L 1 and L 2 .
  • the detection module 4 is of course adapted to the wavelength and the amplitude of the response signal to deliver an electronic version of the response signal.
  • the module 4 for detecting the response signal may consist of modules implementing the detection processes as described in the above-mentioned table.
  • the pulsed interrogation atomic clock object of the present invention comprises a module 2 pulse modulation of the intensity of the first and second laser beams L 1 and L 2 between a high level and a low level of intensity.
  • the modulation module 2 is placed in the optical section SO on the path of the first and second laser beam upstream of the interaction cell 3 for generating in synchronism a first and a second pulsed laser beam for illuminating the interaction medium contained in the cell 3, according to the figure 2a .
  • the interaction between the aforementioned laser beams and the interaction medium is substantially limited to the duration of each corresponding successive pulse. at a high level of intensity.
  • the response signal generated during a current pulse of rank r for example depends on the atomic state generated during at least one pulse preceding this current pulse, that is to say pulses of rank r-1 to rp previously mentioned in the description, and, of course, the evolution of this atomic state during the duration of low intensity energy level separating these pulses.
  • the detection module of the response signal 4 can be followed by a processing module 5, the processing module receiving the electronic version of the response signal and performing summation processing by linear combination of the response signal generated during the first response signal. current pulse and during at least one pulse preceding this current pulse, that is to say during the successive previous pulses.
  • the linear combination processing module 5 thus makes it possible to generate a resulting compensated atomic clock signal whose spectral width is minimized and to construct a correction signal S c making it possible to drive the frequency of a local oscillator 6.
  • the processing module 5 in fact delivers the correction signal Sc to the module 6 implanted in an analog section SA and constituted for example by a local oscillator LO and a synthesizer S delivering, on the one hand, a periodic signal servocontrolled in frequency S u , for use as a frequency reference for an external user, and, secondly, a control signal S co of the interrogation optical module 1.
  • This control signal S co may for example consist of a frequency reference for performing the control of the modulation process in lateral bands previously mentioned in the description. to obtain the two laser beams L 1 and L 2 , from a single laser source, for example. It is indicated that the above-mentioned control signal S co may also make it possible to provide control of the wavelength and / or the frequency of the laser beams L 1 and L 2 at the chosen value.
  • the pulsed interrogation atomic clock object of the present invention, is provided with a control unit 7 which can be constituted by a microcomputer connected by a bus link to all the modules such as the module of pulse modulation 2, the module 4 for detecting the response signal, and of course the processing module 5 and the module 6 acting as local oscillator LO and / or synthesizer S.
  • a control unit 7 which can be constituted by a microcomputer connected by a bus link to all the modules such as the module of pulse modulation 2, the module 4 for detecting the response signal, and of course the processing module 5 and the module 6 acting as local oscillator LO and / or synthesizer S.
  • control unit 7 makes it possible to ensure the synchronization of all the aforementioned modules as well as the control of the generated modulation pulse trains, from an electronic control signal, for example, developed by the control unit 7, to control the modulation module 2.
  • L 2 indicates that the latter may be constituted by an acousto-optical modulator, an electro-optical modulator or finally by any other component for modulating the intensity of a light signal whose response time is short enough to ensure such modulation.
  • the low level of intensity corresponds to a substantially zero intensity of each of the laser beams or the radio frequency signal, these being totally absorbed by the modulation module 2 previously mentioned.
  • processing module 5 receives the response signal in the form of an electronic signal delivered by the detection module 4.
  • the processing module 5 can, as represented in FIG. figure 4a , advantageously comprising a sampling module 50 of the response signal generated during the interaction of the current pulse and at least one pulse preceding this current pulse, the aforementioned sampling module 50 being triggered in synchronism with the control of the module 2 for modulating the laser beams L 1 and L 2 .
  • the sampling module 50 is preferably followed by a module 51 for storing the sampled values of the response signal generated during the interaction of each of the aforementioned pulses.
  • the storage module 51 can be followed by a module 52 making it possible to calculate a linear combination of the stored sampled values making it possible to generate the compensated atomic clock signal S HC previously mentioned in the description.
  • a module 53 formed for example by an integrator makes it possible to deliver the correction signal S c to the module 6 constituted by the local oscillator LO and the synthesizer S, for example.
  • the synthesizer S makes it possible to generate a microwave signal whose frequency is close to the resonant frequency of the transition e ⁇ f.
  • control unit 7 may advantageously be constituted by a workstation or a microcomputer comprising a control program of the assembly, so as to ensure the synchronization of the modulation module 2, the detection module 4 of the response signal from the processing module 5 previously described in connection with the figure 4a and, of course, the module 6 constituted by the local oscillator and the synthesizer previously described.
  • control unit 7 may advantageously be programmed to ensure, by means of control software, a reading of the sampled values stored in the storage module 51 at given times. .
  • control unit 7 can then comprise a program for sorting the sampled values stored for for each of the pulses S r and S rp, determining the maximum and / or minimum values of these sampled values for each of the aforementioned successive pulses.
  • a treatment process may advantageously consist, as represented in point 2 of FIG. figure 4b for the current pulse S r of rank r, to determine the sampled value of this pulse which has the maximum value, this maximum value being denoted M r then for the successive pulses of prior rank r-1 to rp, to be determined in each of these the minimum of the corresponding sampled values in its successive pulses.
  • the corresponding minima are denoted m r-1 for the previous impulse immediately preceding the current impulse, this anterior impulse being of rank r-1, then the successive values m r-2 to m rp for previous previous impulses of rank r-2 to rp.
  • the linear combination of the sampled values can then consist in adding the maximum of the sampled values for the current rank pulse. r and to subtract the successive minimum values of the previous pulses of rank r-1 to rp, as represented on the figure 4b , or an average value thereof.
  • the sorting program can then perform the sorting with respect to the origin of each of the pulses, these origins being noted successively or, O r-1 , O rp .
  • the maximum M r of the current pulse of rank r makes it possible to obtain the maximum amplitude value for the detected response signal while the subtraction of the successive sampled values representative of the local minima for the latter, on the contrary, makes it possible to subtract a sampled value representative of the drifts and perturbations introduced by the interaction medium contained in the cell 3, in order to obtain a compensated atomic clock signal whose spectral width is thus minimized and whose contrast can to be significantly improved, thanks to the removal of continuous or slowly variable components representative of the drift of the entire system.
  • the modules 51, 52 and 53 can be replaced by a programmed dedicated signal processor. for this purpose.
  • the width of the oscillation line obtained for the clock signal, width to 3dB with respect to the The maximum amplitude at the top of the oscillation is a few kHz for a central frequency of the order of a few GHz.
  • Such a linewidth is too important to be compatible with the use of such atomic clocks as a reference clock. This can be explained by the fact that in the absence of a buffer gas, the atoms of the interaction medium are subjected to an excessive rapid erratic displacement which widens the resonance phenomenon by Doppler effect and limitation of the transit time and finally, the quality of the radio-electric resonator thus formed.
  • ⁇ f TT varies as 1 / T where T denotes the interaction time between an atom and the laser waves.
  • the figure 4c illustrates the mode of implementation of the method that is the subject of the present invention by virtue of a pulsed interrogation atomic clock in which the interaction medium is constituted by thermal atoms of cesium in the presence of a buffer gas, formed by nitrogen. It represents the amplitude of compensated clock signal S HC as a function of the disagreement of the difference in the frequencies ⁇ f 12 of the two laser waves.
  • the x-axis of the figure 4c is graduated in kHz with respect to a 0 value origin of the Raman mismatch.
  • the distance ⁇ represents the disagreement introduced due to the presence of the buffer gas.
  • This frequency bias can be reduced by using two buffer gases, nitrogen and argon for example, inducing collisional movements of opposite sign.
  • the width of the oscillations remains as low as 25 Hz thanks to the implementation of the treatment and, of course, the pulse modulation of the laser beams L 1 and L 2 used.
  • the interaction medium is constituted by atoms cooled by laser, the speed of the atoms is reduced under the conditions previously mentioned in the description, that is to say at erratic speeds about 1000 times lower than those of thermal atoms.
  • the rubidium atom appears more interesting than the cesium atom because the collisional displacement is at least 50 times lower.
  • the interrogation process is carried out in accordance with the method that is the subject of the present invention, that is to say by pulsed interrogation, it is then possible to very significantly reduce the contribution of the saturation effect. while continuing to detect the signals of sufficient intensity, that is to say with a satisfactory signal-to-noise ratio.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Ecology (AREA)
  • Stabilization Of Oscillater, Synchronisation, Frequency Synthesizers (AREA)
  • Lasers (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

Method for modulating an atomic clock signal and a corresponding atomic clock. The laser beams (L1, L2) are pulse-modulated in amplitude to illuminate (A) an interactive medium. A detection (B) of the current pulse (Sr) and of the pulses (Sr-1 to Sr-p) preceding said current impulsion is performed. The pulses are superimposed (C) by linear combination to generate a compensated atomic clock signal (SHC) whereof the spectral width is minimized. The invention is applicable to atomic clocks with pulsed interrogation whereof the interactive medium consists of thermal or laser-cooled atoms.

Description

Les horloges atomiques à piégeage cohérent de population, désignées horloges CPT pour « Coherent Population Trapping » sont connues de l'état de la technique.Atomic clocks with consistent population trapping, designated CPT clocks for "Coherent Population Trapping" are known from the state of the art.

D'une manière générale, ainsi que représenté en figure 1a, les horloges atomiques utilisent un milieu d'interaction, formé en général par des atomes de césium ou de rubidium excités par un signal radio-électrique engendré par un oscillateur local LO et un synthétiseur S à une fréquence d'excitation et formé par un signal micro-onde à 6,8 GHz respectivement 9,2 GHz pour le rubidium et le césium. Les atomes du milieu d'interaction sont excités entre deux niveaux d'énergie e et f représentés en figure 1b. Ce mode d'excitation est désigné mode d'interrogation de Rabi si l'interaction est continue et mode d'interrogation de Ramsey si l'interrogation repose sur deux courtes interactions séparées par un temps mort.In general, as well as represented in figure 1a , the atomic clocks use an interaction medium, generally formed by cesium or rubidium atoms excited by a radio-electric signal generated by a local oscillator LO and a synthesizer S at an excitation frequency and formed by a signal microwave at 6.8 GHz respectively 9.2 GHz for rubidium and cesium. The atoms of the interaction medium are excited between two energy levels e and f represented in figure 1b . This mode of excitation is called Rabi's interrogation mode if the interaction is continuous and Ramsey interrogation mode if the interrogation is based on two short interactions separated by a dead time.

Le signal de réponse issu de l'interaction a une amplitude fonction de l'accord à la résonance du signal d'excitation. La détection du signal de réponse peut être effectuée par absorption optique, par sélection magnétique, fluorescence optique ou détection magnétique.The response signal from the interaction has an amplitude depending on the tuning to the resonance of the excitation signal. Detection of the response signal can be performed by optical absorption, magnetic selection, optical fluorescence or magnetic detection.

Un système d'asservissement de l'oscillateur local à partir du signal de réponse permet d'obtenir en sortie de cet oscillateur un signal périodique Su, présentant des qualités d'exactitude et de stabilité de fréquence comparables à celles de la fréquence de résonance e → f.A system for controlling the local oscillator from the response signal makes it possible to obtain at the output of this oscillator a periodic signal S u , having qualities of accuracy and frequency stability comparable to those of the resonance frequency. e → f.

Reprenant le principe général de l'asservissement précédemment décrit, les horloges CPT utilisent également un milieu d'interaction illuminé par deux ondes laser et mettent en oeuvre un mode d'interrogation continu.Taking again the general principle of the servocontrol previously described, the CPT clocks also use an interaction medium illuminated by two laser waves and implement a continuous interrogation mode.

Dans un mode de réalisation antérieur, le milieu d'interaction constitué par du sodium est spatialement séparé en deux zones d'interaction distinctes, séparées par une distance de 30 cm.In a previous embodiment, the interaction medium consisting of sodium is spatially separated into two distinct interaction zones, separated by a distance of 30 cm.

Les faisceaux laser permettent d'engendrer une résonance par transition Raman à 1 772 MHz, la frange centrale du motif de franges de Ramsey étant ramenée à une largeur de 650 Hz, grâce à une interaction produite dans les zones d'interaction.The laser beams make it possible to generate a Raman transition resonance at 1 772 MHz, the central fringe of the Ramsey fringe pattern being reduced to a width of 650 Hz, thanks to an interaction produced in the interaction zones.

Pour une description plus détaillée de ce type d'horloge atomique on pourra utilement se reporter à l'article intitulé « Observation of Ramsey Fringes Using a simulated, Resonance Raman Transition in a Sodium Atomic Beam » publié par T.E. Thomas, P.R. Hemmer, and S. Ezekiel Research Laboratory of Electronics, Massachusets Institute of Technology, Cambridge, Massachusetts 02 139 et C.C. Leiby, Jr., R.H. Picard, and C.R. Willis, Rome Air Development Center, Hanscom Air Force Base, Massachusetts 01 731 PHYSICAL REVIEW LETTERS Volume 48, Number 13, 29 March 1982 .For a more detailed description of this type of atomic clock it will be useful to refer to the article entitled "Observation of Ramsey Fringes Using a Simulated, Resonance Raman Transition in a Sodium Atomic Beam" published by TE Thomas, PR Hemmer, and S. Ezekiel Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Mass. 02 139 and CC Leiby, Jr., RH Picard, and CR Willis, Rome Air Development Center, Hanscom Air Force Base, Massachusetts 01 731 PHYSICAL REVIEW LETTERS Volume 48, Number 13, 29 March 1982 .

On connait également l'article intitulé " Coherent Population trapping with cold atoms" publié par T.Zanon et al., 2003 IEEE International Frequency Control Symposium . Cet article divulgue un procédé de génération d'un signal d'horloge selon le préambule de la revendication 1 ainsi qu'une horloge atomique selon le préambule de la revendication 7.We also know the article entitled " Coherent Population trapping with cold atoms "published by T.Zanon et al., 2003 IEEE International Frequency Control Symposium . This article discloses a method of generating a clock signal according to the preamble of claim 1 and an atomic clock according to the preamble of claim 7.

De manière générale, les horloges atomiques de type CPT mettent en oeuvre une interrogation en mode continu, au moyen de deux ondes laser cohérentes en phase. Chaque onde laser est quasi résonnante avec une transition optique des atomes 2 → e et 2 → f et la différence entre les fréquences des deux ondes est proche de la fréquence de référence atomique f → e. Lorsque l'accord f → e à la résonance est satisfait, les atomes du milieu d'interaction sont piégés dans une superposition cohérente des états f et e correspondant à un état noir. On observe une diminution de l'amplitude de l'absorption des ondes laser, une diminution de l'amplitude du signal de fluorescence. La superposition cohérente d'états atomiques est aussi associée à une aimantation engendrant une onde électromagnétique oscillant à la fréquence de la transition e → f dans le domaine des micro-ondes.In general, CPT type atomic clocks implement a continuous mode interrogation, by means of two coherent laser waves in phase. Each laser wave is quasi-resonant with an optical transition of the atoms 2 → e and 2 → f and the difference between the frequencies of the two waves is close to the atomic reference frequency f → e. When the agreement f → e at resonance is satisfied, the atoms of the interaction medium are trapped in a coherent superposition of the states f and e corresponding to a black state. There is a decrease in the amplitude of the absorption of the laser waves, a decrease in the amplitude of the fluorescence signal. The coherent superposition of atomic states is also associated with a magnetization generating an electromagnetic wave oscillating at the frequency of the transition e → f in the microwave domain.

L'absorption ou l'émission de fluorescence sont minimales et le champ de l'onde électromagnétique émise a une amplitude maximale à la résonance. Le signal d'horloge atomique correspond à la variation de l'amplitude du signal détecté par absorption, fluorescence ou émission micro-onde, en fonction de la valeur de la différence de fréquence des ondes laser.Fluorescence absorption or emission is minimal and the field of the electromagnetic wave emitted has a maximum amplitude at resonance. The atomic clock signal corresponds to the variation of the amplitude of the signal detected by absorption, fluorescence or microwave emission, as a function of the value of the frequency difference of the laser waves.

Dans tous les types d'horloge atomique CPT connus à l'heure actuelle, l'interrogation du milieu d'interaction est continue, les ondes laser interagissant continûment avec les atomes du milieu d'interaction.In all types of CPT atomic clock currently known, the interrogation of the interaction medium is continuous, the laser waves interacting continuously with the atoms of the interaction medium.

Toutefois, dans les types d'horloges atomiques précités, une trop forte intensité d'illumination du milieu d'interaction par les ondes laser provoque l'élargissement des raies de résonance obtenues, en raison de la saturation optique des atomes du milieu d'interaction.However, in the aforementioned types of atomic clocks, an excessive intensity of illumination of the interaction medium by the laser waves causes the widening of the resonance lines obtained, due to the optical saturation of the atoms of the interaction medium. .

Cet inconvénient conduit à une dégradation de la stabilité de la fréquence du signal d'horloge atomique.This disadvantage leads to a degradation of the stability of the frequency of the atomic clock signal.

Pour cette raison, dans les horloges atomiques CPT actuellement existantes, on tente de résoudre le problème technique précité en réduisant simplement l'intensité d'illumination du milieu d'interaction par les faisceaux laser utilisés.For this reason, in the currently existing CPT atomic clocks, the aforementioned technical problem is solved by simply reducing the intensity of illumination of the interaction medium by the laser beams used.

Une telle mesure ne permet pas de résoudre le problème technique précité car elle se traduit, en fait, par une difficulté accrue de détection des signaux d'horloge atomique, de faible amplitude, issus de l'interaction.Such a measure does not solve the aforementioned technical problem because it actually results in an increased difficulty of detecting atomic clock signals of low amplitude, resulting from the interaction.

Les signaux d'horloge atomique de trop faible amplitude précités sont détectés dans des conditions de rapport signal à bruit dégradées, ce qui se traduit, à nouveau, par une dégradation de la stabilité de la fréquence de l'horloge atomique.The above-mentioned low amplitude atomic clock signals are detected under degraded signal-to-noise ratio conditions, which again results in a degradation of the frequency stability of the atomic clock.

La présente invention a pour objet de remédier au problème technique de la saturation optique des milieux d'interaction des horloges atomiques, notamment horloges CPT ou autres, tout en maintenant des conditions de rapport signal à bruit non dégradées.The object of the present invention is to remedy the technical problem of the optical saturation of the interaction media of the atomic clocks, in particular CPT or other clocks, while maintaining non-degraded signal-to-noise ratio conditions.

Un autre objet de la présente invention est en outre, grâce à un traitement spécifique du signal de réponse engendré par l'interrogation du milieu d'interaction dans les horloges atomiques CPT actuelles, l'obtention d'une augmentation du contraste des franges d'interférence en mode de Ramsey et d'une diminution des variations lentes d'amplitude ou dérives du signal d'horloge atomique, engendrées notamment par les fluctuations irréductibles des paramètres de fonctionnement, tels que la fréquence et l'amplitude des lasers d'interrogation du milieu d'interaction.Another object of the present invention is, furthermore, through a specific processing of the response signal generated by the interrogation of the interaction medium in the current CPT atomic clocks, to obtain an increase in the contrast of the fringes of the interference in Ramsey mode and a decrease in slow amplitude variations or drifts of the atomic clock signal, generated in particular by the irreducible fluctuations of the operating parameters, such as the frequency and the amplitude of the interrogation lasers of the interaction medium.

Un autre objet de l'invention est, enfin, la mise en oeuvre d'un procédé de génération d'un signal d'horloge CPT et d'une horloge CPT correspondante permettant une miniaturisation de ce type d'horloge en vue de la production industrielle d'horloges dans lesquelles la cellule d'interaction n'excède pas un volume de quelques mm3.Another object of the invention is, finally, the implementation of a method for generating a clock signal CPT and a corresponding clock CPT allowing a miniaturization of this type of clock for the production clocks in which the interaction cell does not exceed a volume of a few mm 3 .

Le procédé de génération d'un signal d'horloge atomique à piégeage cohérent de population, objet de la présente invention, met en oeuvre une première et une deuxième onde laser cohérentes en phase, chacune sensiblement en résonance avec une transition optique des atomes d'un milieu d'interaction. La superposition cohérente des états atomiques correspondant au piégeage cohérent de population d'atomes permet d'engendrer un signal de réponse présentant une amplitude extrémale à la résonance et représentative du signal d'horloge atomique correspondant à la variation d'amplitude du signal détecté en fonction de la valeur de la différence de fréquence de la première et de la deuxième onde laser cohérentes en phase.The method for generating a coherent population-entrapped atomic clock signal, which is the subject of the present invention, uses a first and a second phase-coherent laser wave, each substantially resonant with an optical transition of the atomic atoms. an interaction medium. The coherent superposition of the atomic states corresponding to the coherent trapping of the atomic population makes it possible to generate a response signal exhibiting a amplitude resonant at the resonance and representative of the atomic clock signal corresponding to the amplitude variation of the detected signal as a function of the value of the frequency difference of the first and second in-phase coherent laser waves.

Il est remarquable en ce qu'il consiste au moins à moduler en synchronisme par impulsions successives l'intensité de la première et de la deuxième onde laser, selon un facteur de forme déterminé entre un niveau haut et un niveau bas d'intensité, le signal de réponse engendré pendant une impulsion courante dépendant de l'état atomique engendré pendant au moins une impulsion précédant cette impulsion courante et de l'évolution de cet état atomique pendant la durée de niveau bas d'intensité séparant ces impulsions.It is remarkable in that it consists at least in modulating in synchronism by successive pulses the intensity of the first and second laser waves, according to a given form factor between a high level and a low intensity level, the response signal generated during a current pulse depending on the atomic state generated during at least one pulse preceding this current pulse and the evolution of this atomic state during the duration of the low level of intensity separating these pulses.

Le signal de réponse est détecté et superposé par combinaison linéaire du signal de réponse engendré pendant cette impulsion courante et au moins une impulsion précédant cette impulsion courante, pour engendrer un signal d'horloge atomique compensé résultant, dont la largeur spectrale est minimalisée.The response signal is detected and superimposed by linear combination of the response signal generated during this current pulse and at least one pulse preceding this current pulse, to generate a resulting compensated atomic clock signal, the spectral width of which is minimized.

L'horloge atomique à interrogation pulsée, objet de la présente invention, comprend au moins un module optique d'interrogation permettant d'engendrer un premier et un deuxième faisceau laser cohérents en phase, chacun sensiblement en résonance avec une transition optique des atomes d'un milieu d'interaction, une cellule d'interaction comportant ce milieu d'interaction, illuminé en fonctionnement par le premier et le deuxième faisceau laser cohérents en phase, pour engendrer un signal de réponse présentant une amplitude extrémale à la résonance et correspondant à la variation d'amplitude du signal détecté en fonction de la différence de fréquence du premier et du deuxième faisceau laser cohérents en phase et un module de détection de ce signal de réponse adapté à la longueur d'onde et à l'amplitude du signal de réponse.The pulsed interrogation atomic clock, which is the subject of the present invention, comprises at least one interrogation optical module making it possible to generate a coherent first and second phase-coherent laser beam, each substantially resonant with an optical transition of the atomic atoms. an interaction medium, an interaction cell comprising this interaction medium, illuminated in operation by the first and second coherent laser beams in phase, to generate a response signal having an extreme amplitude at resonance and corresponding to the amplitude variation of the detected signal as a function of the frequency difference of the first and second coherent laser beams in phase and a detection module of this response signal adapted to the wavelength and amplitude of the response signal .

Elle est remarquable en ce qu'elle comporte en outre un bloc de modulation par impulsions de l'intensité du premier et du deuxième faisceau laser entre un niveau haut et un niveau bas d'intensité. Ce bloc de modulation est placé sur le trajet du premier et du deuxième faisceau laser, en amont de la cellule d'interaction, pour engendrer en synchronisme un premier et un deuxième faisceau laser pulsé. L'interaction entre le premier respectivement le deuxième faisceau laser et le milieu d'interaction est sensiblement limitée à la durée de chaque impulsion successive correspondant à un niveau haut d'intensité et le signal de réponse engendré pendant une impulsion courante dépend de l'état atomique engendré pendant au moins une impulsion précédant cette impulsion courante et de l'évolution de cet état atomique pendant la durée de niveau bas d'intensité séparant ces impulsions.It is notable in that it further comprises a pulse modulating block of the intensity of the first and second laser beams between a high level and a low intensity level. This modulation block is placed on the path of the first and second laser beams, upstream of the interaction cell, to synchronously generate a first and a second pulsed laser beam. The interaction between the first respectively the second laser beam and the interaction medium is substantially limited to the duration of each successive pulse corresponding to a high intensity level and the signal of The response generated during a current pulse depends on the atomic state generated during at least one pulse preceding this current pulse and the evolution of that atomic state during the low intensity period between these pulses.

En outre, le module de détection comprend un module sommateur par combinaison linéaire du signal de réponse engendré pendant cette impulsion courante et du signal de réponse engendré pendant au moins une impulsion précédant cette impulsion courante. Le module sommateur par combinaison linéaire permet d'engendrer un signal d'horloge atomique compensé résultant, dont la largeur spectrale est minimalisée.In addition, the detection module comprises a summation module by linear combination of the response signal generated during this current pulse and the response signal generated during at least one pulse preceding this current pulse. The summation module by linear combination makes it possible to generate a resulting compensated atomic clock signal whose spectral width is minimized.

Le procédé et l'horloge atomique à piégeage cohérent de population objets de la présente invention trouvent application à la mise en oeuvre industrielle de garde-temps ou de référence de fréquence embarqués de très faible encombrement, utilisables notamment dans les applications spatiales.The method and the atomic clock with coherent trapping of population objects of the present invention find application to the industrial implementation of timepieces or frequency reference embedded very small footprint, used in particular in space applications.

Ils seront mieux compris à la lecture de la description et à l'observation des dessins ci-après dans lesquels, outre les figures 1a et 1b relatives à l'art antérieur :

  • la figure 2a représente, à titre purement illustratif, un organigramme des étapes essentielles de mise en oeuvre du procédé objet de la présente invention ;
  • la figure 2b représente, à titre purement illustratif, au point 1), un chronogramme des signaux d'impulsions de faisceau laser pulsé susceptibles d'être utilisés pour la mise en oeuvre du procédé objet de l'invention décrit en figure 2a, et, au point 2), un chronogramme du signal de réponse obtenu après détection en sortie de la cellule d'interaction ;
  • la figure 3 représente, à titre purement illustratif, un schéma fonctionnel d'une horloge atomique CPT conforme à l'objet de la présente invention, permettant la mise en oeuvre du procédé décrit en liaison avec les figures 2a et 2b;
  • la figure 4a représente, à titre illustratif, un schéma détaillé d'un module de traitement du signal de réponse après détection, dans un mode de réalisation préférentiel non limitatif, ce module de traitement du signal de réponse étant plus particulièrement adapté à l'exécution d'un traitement numérique dédié ;
  • la figure 4b représente, à titre illustratif, un chronogramme d'exécution d'opérations sur des valeurs échantillonnées d'impulsions successives de signal de réponse, plus particulièrement sur une impulsion courante et au moins une impulsion précédant cette impulsion courante, les opérations conduites sur les valeurs échantillonnées précitées permettant en particulier d'améliorer sensiblement la pureté spectrale et le contraste du signal d'horloge atomique compensé résultant obtenu, suite à l'exécution de ces opérations ;
  • la figure 4c représente, à titre illustratif, un diagramme amplitude-fréquence du désaccord Raman, désaccord de la différence de fréquence entre les deux ondes laser et du motif de franges de Ramsey obtenu en sortie du module de traitement dédié représenté en figure 3, après application d'une superposition par combinaison linéaire du signal de réponse engendré pendant une impulsion courante et au moins une impulsion précédant cette impulsion courante.
They will be better understood by reading the description and by observing the drawings below, in which, in addition to the Figures 1a and 1b relating to the prior art:
  • the figure 2a represents, purely by way of illustration, a flowchart of the essential steps for implementing the method which is the subject of the present invention;
  • the figure 2b represents, for purely illustrative purposes, in point 1), a timing diagram of pulsed laser beam pulse signals that may be used for the implementation of the method forming the subject of the invention described in FIG. figure 2a and, in point 2), a timing diagram of the response signal obtained after detection at the output of the interaction cell;
  • the figure 3 represents, purely by way of illustration, a block diagram of an atomic clock CPT according to the subject of the present invention, allowing the implementation of the method described in connection with the Figures 2a and 2b ;
  • the figure 4a represents, by way of illustration, a detailed diagram of a processing module of the response signal after detection, in a preferred non-limiting embodiment, this response signal processing module being more particularly adapted to the execution of a dedicated digital processing;
  • the figure 4b represents, for illustrative purposes, a chronogram of execution of operations on sampled values of successive pulses of response signal, more particularly on a current pulse and at least one pulse preceding this current pulse, the operations conducted on the sampled values above, in particular making it possible to substantially improve the spectral purity and the contrast of the resulting compensated atomic clock signal obtained following the execution of these operations;
  • the figure 4c represents, for illustrative purposes, an amplitude-frequency diagram of the Raman disagreement, disagreement of the frequency difference between the two laser waves and the Ramsey fringe pattern obtained at the output of the dedicated processing module represented in FIG. figure 3 , after applying a superposition by linear combination of the response signal generated during a current pulse and at least one pulse preceding this current pulse.

Le procédé de génération d'un signal d'horloge atomique à piégeage cohérent de population objet de la présente invention sera maintenant décrit en liaison avec les figures 2a et 2b.The method of generating a coherent population-entrapped nucleic acid clock signal of the present invention will now be described in connection with the Figures 2a and 2b .

D'une manière générale, on rappelle que, conformément aux principes du mode opératoire des horloges atomiques CPT, le procédé objet de la présente invention est mis en oeuvre à partir d'une première onde laser L1 et d'une deuxième onde laser L2 cohérentes en phase.In general, it will be recalled that, in accordance with the principles of the operating mode of the CPT atomic clocks, the method which is the subject of the present invention is implemented from a first laser wave L 1 and a second laser wave L 2 consistent in phase.

En référence à la figure 1b, chacune des ondes laser précitées est sensiblement en résonance avec une transition optique des atomes d'un milieu d'interaction, les ondes laser L1 et L2 étant réputées émises à une fréquence f1 et f2 et à leur longueur d'onde correspondante dans le vide ou l'air, la différence de fréquence des ondes laser précitées étant notée Δf12. De préférence, les ondes laser L1 et L2 sont polarisées soit circulairement soit linéairement de manière orthogonale.With reference to the figure 1b , each of the aforementioned laser waves is substantially in resonance with an optical transition of the atoms of an interaction medium, the laser waves L 1 and L 2 being deemed to be emitted at a frequency f 1 and f 2 and at their wavelength corresponding in vacuum or air, the frequency difference of the aforementioned laser waves being noted Δf 12 . Preferably, the laser waves L1 and L2 are polarized either circularly or linearly orthogonally.

La superposition cohérente des états atomiques correspondants au piégeage cohérent de population d'atomes tel que représenté en figure 1b engendre un signal de réponse dans le domaine micro-onde présentant une amplitude extrémale à la résonance et représentative du signal d'horloge atomique correspondant à la variation d'amplitude du signal de réponse détecté en fonction de la valeur de la différence de fréquence Δf12 de la première et la deuxième ondes laser cohérente en phase L1 et L2.The coherent superposition of the atomic states corresponding to the coherent trapping of the atomic population as represented in FIG. figure 1b generates a response signal in the microwave domain having a amplitude at resonance and representative of the atomic clock signal corresponding to the amplitude variation of the detected response signal as a function of the value of the frequency difference Δf 12 of the first and second coherent laser waves in phase L 1 and L 2 .

On comprend, en particulier, que le mode d'interaction de la première et de la deuxième ondes avec le milieu d'interaction correspond au mode d'interaction en continu connu de l'état de la technique du point de vue physique.It is understood, in particular, that the mode of interaction of the first and second waves with the interaction medium corresponds to the continuous interaction mode known from the state of the art from the physical point of view.

Toutefois, et selon un aspect particulièrement remarquable du procédé objet de l'invention, celui-ci consiste au moins en une étape A à moduler en synchronisme par impulsions successives l'intensité de la première et de la deuxième ondes laser L1, L2 selon un facteur de forme déterminé, entre un niveau haut et un niveau bas d'intensité.However, and according to a particularly remarkable aspect of the method which is the subject of the invention, this consists at least in a step A of sequentially pulsing modulating the intensity of the first and second laser waves L 1 , L 2 according to a given form factor, between a high level and a low intensity level.

Sur la figure 2a, à l'étape A de celle-ci, on a représenté les ondes laser L1 et L2 modulées en synchronisme par impulsions successives, les impulsions successives étant réputées présentées un rang r, r-1, ..., r-p vis-à-vis d'une échelle de temps croissante t.On the figure 2a in step A thereof, the laser waves L 1 and L 2 are represented which are synchronously modulated by successive pulses, the successive pulses being deemed to have a rank r, r-1, ..., rp with respect to a growing time scale t.

Par convention, l'impulsion courante est réputée avoir un rang r, l'impulsion précédant immédiatement cette impulsion courante le rang r-1 et les impulsions précédentes successives étant réputées avoir un rang antérieur successivement jusqu'à r-p.By convention, the current pulse is deemed to have a rank r, the pulse immediately preceding this current pulse rank r-1 and successive previous pulses being deemed to have an earlier rank successively up to r-p.

On comprend en outre que les ondes laser L1 et L2 sont superposées sur le même chemin optique, ce qui permet bien entendu d'obtenir des impulsions d'ondes laser modulées cohérentes et en phase dans des conditions qui seront explicitées ultérieurement dans la description.It is furthermore understood that the laser waves L 1 and L 2 are superimposed on the same optical path, which of course makes it possible to obtain modulated laser wave pulses which are coherent and in phase under conditions which will be explained later in the description. .

Ainsi, on comprend que l'interaction entre la première respectivement la deuxième ondes laser L1, L2 et en particulier la forme pulsée de celles-ci et le milieu d'interaction est limitée sensiblement à la durée de chaque impulsion successive Sr, Sr-1 à Sr-p correspondant à un niveau haut d'intensité.Thus, it will be understood that the interaction between the first and second laser waves L 1 , L 2 and in particular the pulsed shape thereof and the interaction medium is substantially limited to the duration of each successive pulse S r , S r-1 to S rp corresponding to a high level of intensity.

En conséquence, le signal de réponse engendré pendant une impulsion courante, l'impulsion de rang r précédemment décrite, dépend de l'état atomique engendré pendant au moins une impulsion précédant cette impulsion courante, c'est-à-dire les impulsions précédentes de rang r-1 à r-p et de l'évolution de cet état atomique pendant la durée de niveau bas d'intensité séparant les impulsions précitées.Consequently, the response signal generated during a current pulse, the pulse of rank r previously described, depends on the atomic state generated during at least one pulse preceding this current pulse, that is to say the previous pulses of rank r-1 to rp and the evolution of this atomic state during the duration of low level of intensity separating the aforementioned pulses.

Suite à la modulation par impulsions successives de l'intensité de la première et de la deuxième ondes laser L1, L2 et bien entendu à l'illumination du milieu d'interaction par les impulsions d'ondes laser ainsi obtenues, le procédé objet de l'invention consiste de manière particulièrement remarquable à détecter à l'étape B et superposer par combinaison linéaire à l'étape C le signal de réponse engendré pendant l'impulsion courante, signal de réponse noté Sr de rang r correspondant à celui de l'impulsion d'illumination de même rang et au moins une impulsion précédant cette impulsion courante pour engendrer le signal d'horloge atomique compensé résultant, dont la largeur spectrale est minimalisée.Following the successive pulse modulation of the intensity of the first and second laser waves L 1 , L 2 and of course the illumination of the interaction medium by the laser wave pulses thus obtained, the object process of the invention consists particularly remarkably to detect in step B and superimpose by linear combination in step C the response signal generated during the current pulse response signal noted S r of rank r corresponding to that of the illumination pulse of the same rank and at least one pulse preceding this current pulse to generate the resulting compensated atomic clock signal, whose spectral width is minimized.

Sur la figure 2a, l'opération de détection est représentée à l'étape B, le signal de réponse étant réputé consister en le signal de réponse Sr correspondant de rang r et les signaux de réponse successifs antérieurs Sr-1 à Sr-p.On the figure 2a , the detection operation is represented in step B, the response signal being deemed to consist of the corresponding response signal S r of rank r and the successive successive response signals S r-1 to S rp .

L'opération de superposition par combinaison linéaire est représentée à l'étape C de la figure 2a et illustrée par la formule de combinaison linéaire ci-après : S HC = k = r - p k = r C k x S k

Figure imgb0001
The linear combination superposition operation is represented in step C of the figure 2a and illustrated by the following linear combination formula: S HC = Σ k = r - p k = r VS k x S k
Figure imgb0001

Dans la formule précitée, on indique que SHC représente le signal d'horloge atomique compensé résultant obtenu par la combinaison linéaire précitée Ck désignant un coefficient de pondération positif et/ou négatif appliqué à chaque impulsion de signal de réponse successive Sk.In the aforementioned formula, it is indicated that S HC represents the resulting compensated atomic clock signal obtained by the aforementioned linear combination C k designating a positive and / or negative weighting coefficient applied to each successive response signal pulse S k .

Par convention, ainsi qu'il sera d'ailleurs décrit ultérieurement de manière plus détaillée relativement à une horloge atomique CPT conforme à l'objet de la présente invention, le coefficient de pondération Ck relatif au rang k=r de l'impulsion courante peut être pris égal à 1, les coefficients de rang k=r, repéré par rapport à l'impulsion courante pour les impulsions antérieures, pouvant alors être pris égaux successivement à des valeurs différentes négatives par exemple afin de corriger et compenser le signal d'horloge atomique finalement obtenu. Le rang final de sommation par combinaison linéaire k=r peut être déterminé expérimentalement ou pris comme paramètre.By convention, as will be described later in more detail with respect to an atomic clock CPT according to the subject of the present invention, the weighting coefficient C k relative to the rank k = r of the current pulse can be taken equal to 1, the rank coefficients k = r, identified with respect to the current pulse for the previous pulses, can then be taken successively equal to different negative values for example in order to correct and compensate the signal of atomic clock finally got. The final summation rank by linear combination k = r can be determined experimentally or taken as a parameter.

En référence à la figure 2b, on indique que le processus de modulation par impulsions des ondes laser L1 et L2 est avantageusement effectué par train d'impulsions, la fréquence des impulsions de modulation étant comprise entre 0,2 Hz et 104 Hz.With reference to the figure 2b it is indicated that the pulse modulation process of the laser waves L 1 and L 2 is advantageously carried out by pulse train, the frequency of the modulation pulses being between 0.2 Hz and 10 4 Hz.

En référence à la figure 2b précitée et à l'axe temporel t, le niveau haut d'intensité de chaque impulsion pour un train d'impulsions donné a une durée h et le niveau bas d'intensité a une durée b.With reference to the figure 2b above and at the time axis t, the high intensity level of each pulse for a given pulse train has a duration h and the low intensity level has a duration b.

Dans ces conditions, la plage de fréquences des impulsions d'ondes laser modulées représentées au point 1 de la figure 2b et finalement de signal de réponse de rangs r, r-1, r-p successifs est donné par la valeur 1/h+b pour les différentes valeurs de h et de b et le facteur de forme défini par la valeur h/h+b est alors compris entre 10-6 et 10-1.Under these conditions, the frequency range of the modulated laser wave pulses represented in point 1 of the figure 2b and finally response signal of successive rows r, r-1, rp is given by the value 1 / h + b for the different values of h and b and the form factor defined by the value h / h + b is then between 10 -6 and 10 -1 .

On comprend bien entendu que les impulsions I d'ondes laser modulées représentées au point 1) peuvent être obtenues par un signal électronique de commande présentant exactement les caractéristiques temporelles et/ou fréquentielles de celles représentées au point 1) de la figure 2b précitées.It will of course be understood that the pulses I of modulated laser waves represented in point 1) can be obtained by an electronic control signal having exactly the temporal and / or frequency characteristics of those represented in point 1) of FIG. figure 2b above.

En ce qui concerne le choix de l'intervalle de durée b séparant l'impulsion courante de rang r de l'impulsion précédant cette impulsion courante ou toute impulsion antérieure de rang r-1 à r-p dans un train d'impulsions de modulation, on indique que cette durée b est inférieure au temps de vie de la cohérence hyperfine existant entre les deux niveaux d'horloge.With regard to the choice of the duration interval b separating the current pulse of rank r from the pulse preceding this current pulse or any previous pulse of rank r-1 to rp in a pulse train of modulation, one indicates that this duration b is less than the life time of the hyperfine coherence existing between the two clock levels.

En référence à la figure 1b, on rappelle que les deux niveaux d'horloge concernés sont les niveaux e et f qui déterminent la fréquence du signal d'horloge atomique résultant et que ce temps de vie dépend essentiellement du milieu d'interaction considéré.With reference to the figure 1b it will be recalled that the two clock levels concerned are the levels e and f which determine the frequency of the resulting atomic clock signal and that this life time depends essentially on the interaction medium considered.

L'un des aspects remarquables du procédé objet de la présente invention est en particulier que ce dernier est susceptible d'être mis en oeuvre à partir de milieux d'interaction constitués soit par des populations d'atomes thermiques contenus dans une cellule soit au contraire par des populations constituées par des atomes froids et, en particulier, refroidis par laser.One of the remarkable aspects of the process that is the subject of the present invention is in particular that the latter is capable of being implemented from interaction media consisting either of atomic populations the cells contained by cold atoms and, in particular, cooled by laser.

Le processus d'interrogation est avantageusement constitué par un mode d'interrogation de Ramsey avec au moins deux impulsions.The interrogation process is advantageously constituted by a Ramsey interrogation mode with at least two pulses.

Pour ce qui concerne la technique de mise en oeuvre des milieux d'interaction précités, on indique que les atomes thermiques sont délivrés sous forme de vapeur ou de jet. L'obtention des atomes refroidis par laser consiste à faire interagir les atomes thermiques avec des ondes laser correctement accordées par rapport à des transitions optiques des atomes. La pression de radiation induite par les ondes laser permet de réduire rapidement l'énergie cinétique des atomes. On obtient ainsi des échantillons d'atomes refroidis de très faibles vitesses erratiques, de l'ordre de 1 cm/s, correspondant à une température de 10-6 K, très inférieure à celle des atomes thermiques, de l'ordre de quelques centaines de mètres par seconde, à la température de 300 K.With regard to the technique for implementing the aforementioned interaction media, it is indicated that the thermal atoms are delivered in the form of steam or jet. Obtaining the laser-cooled atoms involves interacting the thermal atoms with correctly tuned laser waves with respect to optical transitions of the atoms. The radiation pressure induced by the laser waves makes it possible to rapidly reduce the kinetic energy of the atoms. Thus samples of cooled atoms are obtained with very low erratic speeds, of the order of 1 cm / s, corresponding to a temperature of 10 -6 K, much lower than that of thermal atoms, of the order of a few hundred meters per second at a temperature of 300 K.

En ce qui concerne le mode de mise en oeuvre d'une cellule de refroidissement laser des atomes permettant l'interaction d'un ou deux faisceaux laser modulés en impulsion, un tel mode de mise en oeuvre, connu de l'état de la technique, ne sera pas décrit en détail. On pourra, dans ce but, se reporter utilement à la demande de brevet français publiée sous le numéro 2 730 845 au nom du CNRS.With regard to the mode of implementation of a laser cooling cell of the atoms allowing the interaction of one or two pulse modulated laser beams, such an embodiment, known from the state of the art. , will not be described in detail. For this purpose, reference may be made to the French patent application published under number 2 730 845 in the name of the CNRS.

Dans le processus de refroidissement, on rappelle que l'énergie cinétique des atomes ou la variation d'énergie cinétique de ceux-ci est proportionnelle à l'abaissement de température de la valeur initiale 300 K à 10-6 K, le coefficient de proportionnalité dépendant de la constante de Boltzmann.In the cooling process, it is recalled that the kinetic energy of the atoms or the variation of kinetic energy thereof is proportional to the temperature decrease from the initial value 300 K to 10 -6 K, the coefficient of proportionality depending on the Boltzmann constant.

En ce qui concerne le processus de détection du signal de réponse et en particulier des impulsions de signal de réponse successives Sr à Sr-p, le processus de détection précité est avantageusement choisi parmi le groupe des processus de détection comprenant l'absorption optique, la fluorescence optique, la détection micro-onde en fonction de la fréquence du signal d'interrogation.With regard to the process of detecting the response signal and in particular the successive response signal pulses S r to S rp , the aforementioned detection process is advantageously chosen from the group of detection processes comprising optical absorption, Optical fluorescence, microwave detection as a function of the frequency of the interrogation signal.

On comprend que le procédé objet de la présente invention peut être mis en oeuvre dans de nombreuses situations compte tenu de la nature du milieu d'interaction choisi, le mode d'interrogation étant toutefois préférentiellement le mode d'interrogation de Ramsey avec au moins deux impulsions, ainsi que mentionné précédemment dans la description. Les processus de détection sont alors les processus de détection par absorption optique, la fluorescence optique, la détection micro-onde en fonction de la fréquence du signal d'interrogation précité.It will be understood that the method which is the subject of the present invention can be implemented in many situations taking into account the nature of the interaction medium chosen, the interrogation mode being however preferentially the Ramsey interrogation mode with at least two pulses, as mentioned previously in the description. The detection processes are then the detection processes by optical absorption, optical fluorescence, microwave detection as a function of the frequency of the aforementioned interrogation signal.

Le tableau ci-après établit le type d'horloge atomique susceptible de mettre en oeuvre le procédé objet de la présente invention en indiquant la source atomique utilisée pour permettre la mise en oeuvre du procédé, le processus ou mode d'interrogation ainsi que le processus de détection du signal d'horloge correspondant. TYPE D'HORLOGE ATOMIQUE SOURCE ATOMIQUE MODE D'INTERROGATION DETECTION DU SIGNAL D'HORLOGE CPT (piégeage cohérent de population sur des atomes thermiques en cellule) Vapeur thermique avec ou sans gaz tampon Interrogation optique (transition d'horloge dans le domaine micro-onde) Continu dans les dispositifs existants Interrogation pulsée dans ce type d'horloge Absorption optique ou détection micro-onde CPT (piégeage cohérent de population sur des atomes froids) Vapeur + refroidissement laser Interrogation optique (transition d'horloge dans le domaine micro-onde) Interrogation de type pulsé. Absorption optique ou détection micro-onde The table below establishes the type of atomic clock capable of implementing the method that is the subject of the present invention, indicating the atomic source used to enable the implementation of the method, the interrogation method or mode and the process. detecting the corresponding clock signal. TYPE OF ATOMIC CLOCK ATOMIC SOURCE INTERROGATION MODE CLOCK SIGNAL DETECTION CPT (coherent trapping of population on thermal atoms in cells) Thermal steam with or without buffer gas Optical interrogation (clock transition in the microwave domain) Continuous in existing devices Pulsed interrogation in this type of clock Optical absorption or microwave detection CPT (coherent trapping of population on cold atoms) Steam + laser cooling Optical interrogation (clock transition in the microwave domain) Pulsed type query. Optical absorption or microwave detection

En référence au tableau précité on indique que les horloges atomiques de type CPT permettent la mise en oeuvre du procédé objet de l'invention selon la figure 2a.With reference to the aforementioned table, it is pointed out that atomic clocks of CPT type allow the implementation of the method which is the subject of the invention according to the figure 2a .

Une description plus détaillée d'une horloge atomique à interrogation pulsée conforme à l'objet de la présente invention sera maintenant donnée en liaison avec la figure 3 et les figures suivantes.A more detailed description of a pulsed interrogation atomic clock in accordance with the subject of the present invention will now be given in connection with the figure 3 and the following figures.

D'une manière générale, on indique que l'architecture de l'horloge atomique à interrogation pulsée conforme à l'objet de la présente invention correspond à celle qui est représentée en figure 3.In general, it is indicated that the architecture of the pulsed interrogation atomic clock in accordance with the subject of the present invention corresponds to that represented in FIG. figure 3 .

En particulier, une telle horloge comprend, dans une section optique SO, un module optique d'interrogation 1 permettant d'engendrer un premier et un deuxième faisceau laser cohérents en phase L1, L2. Ainsi que cité précédemment, chacun des faisceaux laser précités est sensiblement en résonance avec une transition optique des atomes d'un milieu d'interaction.In particular, such a clock comprises, in an optical section SO, an interrogation optical module 1 for generating a coherent first and second laser beam in the L 1 , L 2 phase. As mentioned earlier, each of the aforementioned laser beams is substantially in resonance with an optical transition of the atoms of an interaction medium.

L'horloge atomique à interrogation pulsée comporte en outre une cellule d'interaction 3 comportant le milieu d'interaction précité.The pulsed interrogation atomic clock further comprises an interaction cell 3 comprising the aforementioned interaction medium.

Par notion de cellule d'interaction 3, on indique que la cellule d'interaction peut être constituée de manière classique par une enveloppe transparente au faisceau laser L1, L2 et bien entendu, par tout dispositif générateur du milieu d'interaction, c'est-à-dire d'atomes thermiques et/ou refroidis par laser.By notion of interaction cell 3, it is indicated that the interaction cell can be constituted in a conventional manner by a transparent envelope to the laser beam L 1 , L 2 and of course, by any device generating the interaction medium, c i.e. thermal atoms and / or laser cooled.

Le module d'interrogation 1 engendre les deux faisceaux laser L1 et L2 dont la différence de fréquence est égale à la fréquence de résonance, la fréquence micro-onde à 9,2 GHz pour le césium et 6,8 GHz pour le rubidium par exemple.The interrogation module 1 generates the two laser beams L 1 and L 2 whose difference in frequency is equal to the resonance frequency, the microwave frequency at 9.2 GHz for cesium and 6.8 GHz for rubidium. for example.

Dans le cas du césium, les fréquences des diodes laser sont au voisinage de 852 nm pour la raie D2 et 894 nm pour la raie D1.In the case of cesium, the frequencies of the laser diodes are in the neighborhood of 852 nm for the D 2 line and 894 nm for the D 1 line .

Les raies laser précitées peuvent être utilisées pour une interaction CPT telle que décrite précédemment dans la description.The aforementioned laser lines can be used for a CPT interaction as described above in the description.

Grâce à leur plus grand écart hyperfin dans l'état excité, les transitions de la raie D1 apparaissent plus intéressantes car elles permettent de réduire, d'une part, les pertes d'atomes à cause des fuites sur des transitions adjacentes, et, d'autre part, les déplacements lumineux.Thanks to their greater hyperfine difference in the excited state, the transitions of the line D 1 appear more interesting because they make it possible to reduce, on the one hand, the losses of atoms due to leakage on adjacent transitions, and, on the other hand, light shifts.

Il est en outre possible de mettre en oeuvre des atomes de rubidium pour lesquels la raie D2 est à 780 nm et la raie D1 est à 795 nm, les fréquences correspondantes f2 et f1 étant accessibles facilement avec des diodes laser du commerce.It is furthermore possible to use rubidium atoms for which the D 2 line is at 780 nm and the D 1 line at 795 nm, the corresponding frequencies f 2 and f 1 being easily accessible with commercial laser diodes. .

Différents processus peuvent être mis en oeuvre pour engendrer deux radiations, c'est-à-dire les faisceaux laser L1 et L2, lesquels induisent le piégeage cohérent de la population d'atomes du milieu d'interaction. La différence de fréquence entre les faisceaux laser L1 et L2 est égale à la fréquence d'horloge, c'est-à-dire la fréquence du signal d'horloge atomique. La différence de phase entre la phase des faisceaux laser L1 et L2 doit présenter des fluctuations aussi faibles que possibles afin d'éviter toute destruction du phénomène d'interférence. La puissance d'émission requise pour les faisceaux laser est de l'ordre du milliwatt.Different processes can be implemented to generate two radiations, that is to say the laser beams L 1 and L 2 , which induce the coherent entrapment of the atomic population of the interaction medium. The frequency difference between the laser beams L 1 and L 2 is equal to the clock frequency, that is to say the frequency of the atomic clock signal. The phase difference between the phase of the laser beams L 1 and L 2 must have fluctuations as low as possible in order to avoid any destruction of the interference phenomenon. The required transmit power for laser beams is in the milliwatt range.

Dans un mode de mise en oeuvre spécifique, on indique que l'optique d'interrogation peut être réalisée à partir d'une source laser unique à laquelle on applique une modulation de fréquence à plusieurs GHz de type modulation à bandes latérales, la distance entre les bandes latérales correspondant à la fréquence d'horloge. On dispose ainsi des deux raies précédemment mentionnées avec une cohérence de phase aussi bonne que celle du signal de modulation.In a specific implementation mode, it is indicated that the interrogation optics can be made from a single laser source to which a frequency modulation at several GHz of the modulation type is applied. sidebands, the distance between the sidebands corresponding to the clock frequency. The two previously mentioned lines are thus provided with phase coherence as good as that of the modulation signal.

Les deux raies ou faisceaux laser L1 et L2 sont alors superposés physiquement de manière classique afin que ces derniers suivent le même chemin optique et soient soumis aux mêmes déphasages successifs jusqu'à leur application sur le milieu d'interaction.The two lines or laser beams L 1 and L 2 are then physically superimposed in a conventional manner so that the latter follow the same optical path and are subjected to the same successive phase shifts until they are applied to the interaction medium.

En ce qui concerne la cellule d'interaction 3, on indique que celle-ci peut être mise en oeuvre à partir d'une enceinte en pyrex ou en quartz.Regarding the interaction cell 3, it is indicated that it can be implemented from a pyrex or quartz enclosure.

En outre, des gaz tampon peuvent être ajoutés afin d'éliminer l'élargissement des raies par effet Doppler en se plaçant dans le régime de Lamb-Dicke. L'environnement magnétique et thermique est contrôlé de manière stricte pour éviter toute variation de déplacement de fréquence qui affecterait l'exactitude et la stabilité à long terme de l'horloge atomique ainsi constituée.In addition, buffer gases may be added to eliminate Doppler line broadening by placing in the Lamb-Dicke regime. The magnetic and thermal environment is tightly controlled to avoid any variation in frequency shift that would affect the accuracy and long-term stability of the atomic clock thus formed.

L'horloge atomique à interrogation pulsée comporte, dans une section de détection SD, également un module 4 de détection du signal de réponse, le signal de réponse étant défini comme le signal délivré par le milieu d'interaction de la cellule 3 après illumination du milieu d'interaction par les faisceaux laser L1 et L2. Le module de détection 4 est bien entendu adapté à la longueur d'onde et à l'amplitude du signal de réponse pour délivrer une version électronique du signal de réponse.The pulsed interrogation atomic clock comprises, in a detection section SD, also a module 4 for detecting the response signal, the response signal being defined as the signal delivered by the interaction medium of the cell 3 after illumination of the interaction medium by laser beams L 1 and L 2 . The detection module 4 is of course adapted to the wavelength and the amplitude of the response signal to deliver an electronic version of the response signal.

De manière plus spécifique, le module 4 de détection du signal de réponse peut être constitué par des modules mettant en oeuvre les processus de détection tels que décrits au tableau précédemment cité.More specifically, the module 4 for detecting the response signal may consist of modules implementing the detection processes as described in the above-mentioned table.

Selon un aspect particulièrement remarquable de l'horloge atomique à interrogation pulsée objet de la présente invention, celle-ci comporte un module 2 de modulation par impulsions de l'intensité du premier et du deuxième faisceaux laser L1 et L2 entre un niveau haut et un niveau bas d'intensité.According to a particularly remarkable aspect of the pulsed interrogation atomic clock object of the present invention, it comprises a module 2 pulse modulation of the intensity of the first and second laser beams L 1 and L 2 between a high level and a low level of intensity.

Bien entendu, ainsi que représenté sur la figure 3, le module 2 de modulation est placé dans la section optique SO sur le trajet des premier et deuxième faisceaux laser en amont de la cellule d'interaction 3 pour engendrer en synchronisme un premier et un deuxième faisceaux laser pulsés permettant d'illuminer le milieu d'interaction contenu dans la cellule 3, selon la figure 2a.Of course, as represented on the figure 3 , the modulation module 2 is placed in the optical section SO on the path of the first and second laser beam upstream of the interaction cell 3 for generating in synchronism a first and a second pulsed laser beam for illuminating the interaction medium contained in the cell 3, according to the figure 2a .

Du fait de l'illumination du milieu d'interaction précité par le premier et le deuxième faisceaux laser ou signal radiofréquence pulsés, l'interaction entre les faisceaux laser précités et le milieu d'interaction est sensiblement limitée à la durée de chaque impulsion successive correspondant à un niveau haut d'intensité.Due to the illumination of the aforementioned interaction medium by the first and the second laser beams or pulsed radiofrequency signal, the interaction between the aforementioned laser beams and the interaction medium is substantially limited to the duration of each corresponding successive pulse. at a high level of intensity.

En conséquence, le signal de réponse engendré pendant une impulsion courante de rang r par exemple dépend de l'état atomique engendré pendant au moins une impulsion précédant cette impulsion courante, c'est-à-dire des impulsions de rang r-1 à r-p précédemment mentionnés dans la description, et, bien entendu, de l'évolution de cet état atomique pendant la durée de niveau bas d'énergie d'intensité séparant ces impulsions.Consequently, the response signal generated during a current pulse of rank r for example depends on the atomic state generated during at least one pulse preceding this current pulse, that is to say pulses of rank r-1 to rp previously mentioned in the description, and, of course, the evolution of this atomic state during the duration of low intensity energy level separating these pulses.

En outre, ainsi que représenté sur la figure 3, le module de détection du signal de réponse 4 peut être suivi d'un module 5 de traitement, le module 5 de traitement recevant la version électronique du signal de réponse et effectuant un traitement de sommation par combinaison linéaire du signal de réponse engendré pendant l'impulsion courante et pendant au moins une impulsion précédant cette impulsion courante, c'est-à-dire pendant les impulsions antérieures successives. Le module 5 de traitement par combinaison linéaire permet ainsi d'engendrer un signal d'horloge atomique compensé résultant dont la largeur spectrale est minimalisée et de construire un signal de correction Sc permettant de piloter la fréquence d'un oscillateur local 6.In addition, as shown on the figure 3 the detection module of the response signal 4 can be followed by a processing module 5, the processing module receiving the electronic version of the response signal and performing summation processing by linear combination of the response signal generated during the first response signal. current pulse and during at least one pulse preceding this current pulse, that is to say during the successive previous pulses. The linear combination processing module 5 thus makes it possible to generate a resulting compensated atomic clock signal whose spectral width is minimized and to construct a correction signal S c making it possible to drive the frequency of a local oscillator 6.

Sur la figure 3, le module 5 de traitement délivre en fait le signal de correction Sc au module 6 implanté dans une section analogique SA et constitué par exemple par un oscillateur local LO et un synthétiseur S délivrant, d'une part, un signal périodique asservi en fréquence Su, pour utilisation comme référence de fréquence pour un utilisateur externe, et, d'autre part, un signal de commande Sco du module optique d'interrogation 1.On the figure 3 , the processing module 5 in fact delivers the correction signal Sc to the module 6 implanted in an analog section SA and constituted for example by a local oscillator LO and a synthesizer S delivering, on the one hand, a periodic signal servocontrolled in frequency S u , for use as a frequency reference for an external user, and, secondly, a control signal S co of the interrogation optical module 1.

Ce signal de commande Sco peut par exemple consister en une référence de fréquence permettant d'effectuer la commande du processus de modulation en bandes latérales précédemment mentionnées dans la description pour obtenir les deux faisceaux laser L1 et L2, à partir d'une source laser unique par exemple. On indique que le signal de commande Sco précité peut également permettre d'assurer une commande d'asservissement de la longueur d'ondes et/ou de la fréquence des faisceaux laser L1 et L2 à la valeur choisie.This control signal S co may for example consist of a frequency reference for performing the control of the modulation process in lateral bands previously mentioned in the description. to obtain the two laser beams L 1 and L 2 , from a single laser source, for example. It is indicated that the above-mentioned control signal S co may also make it possible to provide control of the wavelength and / or the frequency of the laser beams L 1 and L 2 at the chosen value.

Le mode de mise en oeuvre de ce processus de commande d'asservissement ne sera pas décrit en détails car il correspond à un mode de mise en oeuvre connu de l'état de la technique.The mode of implementation of this servo control process will not be described in detail because it corresponds to an implementation mode known from the state of the art.

Bien entendu, ainsi que représenté en outre en figure 3, l'horloge atomique à interrogation pulsée, objet de la présente invention, est munie d'une unité de commande 7 qui peut être constituée par un micro-ordinateur relié par une liaison par bus à l'ensemble des modules tels que le module de modulation par impulsion 2, le module 4 de détection du signal de réponse, et, bien entendu le module 5 de traitement et le module 6 jouant le rôle d'oscillateur local LO et/ou de synthétiseur S.Of course, as well as represented further in figure 3 , the pulsed interrogation atomic clock, object of the present invention, is provided with a control unit 7 which can be constituted by a microcomputer connected by a bus link to all the modules such as the module of pulse modulation 2, the module 4 for detecting the response signal, and of course the processing module 5 and the module 6 acting as local oscillator LO and / or synthesizer S.

On comprend en particulier que l'unité de commande 7 permet d'assurer la synchronisation de l'ensemble des modules précités ainsi que la commande des trains d'impulsions de modulation engendrés, à partir d'un signal de commande électronique, par exemple, élaboré par l'unité de commande 7, pour commander le module 2 de modulation.It is understood in particular that the control unit 7 makes it possible to ensure the synchronization of all the aforementioned modules as well as the control of the generated modulation pulse trains, from an electronic control signal, for example, developed by the control unit 7, to control the modulation module 2.

En ce qui concerne le module 2 de modulation par impulsions de l'intensité du premier et du deuxième faisceaux laser L1, L2 on indique que ce dernier peut être constitué par un modulateur acousto-optique, un modulateur électro-optique ou finalement par tout autre composant de modulation de l'intensité d'un signal lumineux dont le temps de réponse est suffisamment bref pour assurer une telle modulation.With regard to the modulus 2 for pulse modulating the intensity of the first and second laser beams L 1 , L 2 indicates that the latter may be constituted by an acousto-optical modulator, an electro-optical modulator or finally by any other component for modulating the intensity of a light signal whose response time is short enough to ensure such modulation.

D'une manière plus spécifique, on indique que le niveau bas d'intensité correspond à une intensité sensiblement nulle de chacun des faisceaux laser ou du signal radiofréquence, ceux-ci étant totalement absorbés par le module 2 de modulation précédemment mentionné.More specifically, it is indicated that the low level of intensity corresponds to a substantially zero intensity of each of the laser beams or the radio frequency signal, these being totally absorbed by the modulation module 2 previously mentioned.

Une description plus détaillée du module de traitement 5 de sommation par combinaison linéaire du signal de réponse sera maintenant donnée en liaison avec la figure 4a et la figure 4b.A more detailed description of the summation processing module 5 by linear combination of the response signal will now be given in connection with the figure 4a and the figure 4b .

D'une manière générale, on comprend que le module 5 de traitement précité reçoit le signal de réponse sous sa forme de signal électronique délivré par le module de détection 4.In general, it will be understood that the above-mentioned processing module 5 receives the response signal in the form of an electronic signal delivered by the detection module 4.

Pour assurer le traitement des impulsions successives Sr reçues, le module 5 de traitement peut, ainsi que représenté en figure 4a, comporter avantageusement un module d'échantillonnage 50 du signal de réponse engendré pendant l'interaction de l'impulsion courante et d'au moins une impulsion précédant cette impulsion courante, le module 50 d'échantillonnage précité étant déclenché en synchronisme avec la commande du module 2 de modulation des faisceaux laser L1 et L2.To ensure the processing of the successive pulses S r received, the processing module 5 can, as represented in FIG. figure 4a , advantageously comprising a sampling module 50 of the response signal generated during the interaction of the current pulse and at least one pulse preceding this current pulse, the aforementioned sampling module 50 being triggered in synchronism with the control of the module 2 for modulating the laser beams L 1 and L 2 .

Le module 50 d'échantillonnage est préférentiellement suivi d'un module 51 de mémorisation des valeurs échantillonnées du signal de réponse engendré pendant l'interaction de chacune des impulsions précitées.The sampling module 50 is preferably followed by a module 51 for storing the sampled values of the response signal generated during the interaction of each of the aforementioned pulses.

Enfin, le module 51 de mémorisation peut être suivi d'un module 52 permettant d'assurer le calcul d'une combinaison linéaire des valeurs échantillonnées mémorisées permettant d'engendrer le signal d'horloge atomique compensé SHC précédemment mentionné dans la description. A partir de ce dernier un module 53 formé par exemple par un intégrateur permet de délivrer le signal de correction Sc au module 6 constitué par l'oscillateur local LO et le synthétiseur S, par exemple.Finally, the storage module 51 can be followed by a module 52 making it possible to calculate a linear combination of the stored sampled values making it possible to generate the compensated atomic clock signal S HC previously mentioned in the description. From the latter, a module 53 formed for example by an integrator makes it possible to deliver the correction signal S c to the module 6 constituted by the local oscillator LO and the synthesizer S, for example.

Le synthétiseur S permet d'engendrer un signal micro-ondes dont la fréquence est voisine de la fréquence de résonance de la transition e → f.The synthesizer S makes it possible to generate a microwave signal whose frequency is close to the resonant frequency of the transition e → f.

Enfin, l'unité de commande 7 peut avantageusement être constituée par un poste de travail ou un micro-ordinateur comportant un programme de commande de l'ensemble, de façon à assurer la synchronisation du module 2 de modulation, du module 4 de détection du signal de réponse, du module 5 de traitement précédemment décrit en liaison avec la figure 4a et, bien entendu, du module 6 constitué par l'oscillateur local et le synthétiseur précédemment décrits.Finally, the control unit 7 may advantageously be constituted by a workstation or a microcomputer comprising a control program of the assembly, so as to ensure the synchronization of the modulation module 2, the detection module 4 of the response signal from the processing module 5 previously described in connection with the figure 4a and, of course, the module 6 constituted by the local oscillator and the synthesizer previously described.

En particulier, dans un mode de réalisation non limitatif, on indique que l'unité de commande 7 peut être avantageusement programmée pour assurer, grâce à un logiciel de commande, une lecture des valeurs échantillonnées mémorisées dans le module de mémorisation 51 à des instants déterminés.In particular, in a non-limiting embodiment, it is indicated that the control unit 7 may advantageously be programmed to ensure, by means of control software, a reading of the sampled values stored in the storage module 51 at given times. .

En particulier, dans ces conditions, l'unité de commande 7 peut alors comporter un programme de tri des valeurs échantillonnées mémorisées pour déterminer pour chacune des impulsions Sr à Sr-p les valeurs maximales et/ou minimales de ces valeurs échantillonnées pour chacune des impulsions successives précitées.In particular, under these conditions, the control unit 7 can then comprise a program for sorting the sampled values stored for for each of the pulses S r and S rp, determining the maximum and / or minimum values of these sampled values for each of the aforementioned successive pulses.

Ainsi, dans un mode de mise en oeuvre non limitatif de l'horloge atomique objet de la présente invention, on indique qu'un processus de traitement peut consister avantageusement, ainsi que représenté au point 2 de la figure 4b, pour l'impulsion courante Sr de rang r, à déterminer la valeur échantillonnée de cette impulsion qui présente la valeur maximale, cette valeur maximale étant notée Mr puis pour les impulsions successives de rang antérieur r-1 à r-p, à déterminer dans chacune de celles-ci le minimum des valeurs échantillonnées correspondantes dans ses impulsions successives.Thus, in a non-limiting embodiment of the atomic clock which is the subject of the present invention, it is indicated that a treatment process may advantageously consist, as represented in point 2 of FIG. figure 4b for the current pulse S r of rank r, to determine the sampled value of this pulse which has the maximum value, this maximum value being denoted M r then for the successive pulses of prior rank r-1 to rp, to be determined in each of these the minimum of the corresponding sampled values in its successive pulses.

Ainsi, les minima correspondants sont notés mr-1 pour l'impulsion antérieure précédant immédiatement l'impulsion courante, cette impulsion antérieure étant de rang r-1, puis les valeurs successives mr-2 à mr-p pour des impulsions antérieures précédentes de rang r-2 jusqu'à r-p.Thus, the corresponding minima are denoted m r-1 for the previous impulse immediately preceding the current impulse, this anterior impulse being of rank r-1, then the successive values m r-2 to m rp for previous previous impulses of rank r-2 to rp.

Selon un mode de mise en oeuvre non limitatif préférentiel de l'horloge atomique à interrogation pulsée objet de la présente invention, on indique que la combinaison linéaire des valeurs échantillonnées peut alors consister à additionner le maximum des valeurs échantillonnées pour l'impulsion courante de rang r et de retrancher les valeurs minimales successives des impulsions antérieures de rang r-1 à r-p, ainsi que représenté sur la figure 4b, ou une valeur moyenne de celles-ci.According to a preferred non-limiting embodiment of the pulsed interrogation atomic clock object of the present invention, it is indicated that the linear combination of the sampled values can then consist in adding the maximum of the sampled values for the current rank pulse. r and to subtract the successive minimum values of the previous pulses of rank r-1 to rp, as represented on the figure 4b , or an average value thereof.

On comprend que le programme de tri peut alors effectuer le tri par rapport à l'origine de chacune des impulsions, ces origines étant notées successivement or, Or-1, Or-p.It is understood that the sorting program can then perform the sorting with respect to the origin of each of the pulses, these origins being noted successively or, O r-1 , O rp .

Ainsi, grâce à la mise en oeuvre du processus de traitement réalisé par le module de traitement 5 représenté en figure 3, 4a et 4b, on comprend, en particulier, que le maximum Mr de l'impulsion courante de rang r permet d'obtenir la valeur maximale d'amplitude pour le signal de réponse détectée alors que la soustraction des valeurs échantillonnées successives, représentatives des minima locaux pour ces dernières, permet au contraire de retrancher une valeur échantillonnée représentative des dérives et perturbations introduites par le milieu d'interaction contenu dans la cellule 3, pour obtenir un signal d'horloge atomique compensé dont la largeur spectrale est ainsi minimalisée et dont le contraste peut être sensiblement amélioré, grâce à la suppression des composantes continues ou lentement variables représentatives de la dérive de l'ensemble du système.Thus, thanks to the implementation of the processing process performed by the processing module 5 represented in FIG. figure 3 , 4a and 4b it is understood, in particular, that the maximum M r of the current pulse of rank r makes it possible to obtain the maximum amplitude value for the detected response signal while the subtraction of the successive sampled values representative of the local minima for the latter, on the contrary, makes it possible to subtract a sampled value representative of the drifts and perturbations introduced by the interaction medium contained in the cell 3, in order to obtain a compensated atomic clock signal whose spectral width is thus minimized and whose contrast can to be significantly improved, thanks to the removal of continuous or slowly variable components representative of the drift of the entire system.

Bien entendu, et dans un but d'augmenter la rapidité de traitement et l'obtention de réponse en temps réel pour la partie numérique du module 5 de traitement, les modules 51, 52 et 53 peuvent être remplacés par un processeur de signal dédié programmé à cet effet.Of course, and with the aim of increasing the speed of processing and obtaining real-time response for the digital part of the processing module, the modules 51, 52 and 53 can be replaced by a programmed dedicated signal processor. for this purpose.

Des justificatifs théoriques et expérimentaux relatifs aux performances obtenues grâce à la mise en oeuvre du procédé et d'une horloge atomique à interrogation pulsée conformes à l'objet de la présente invention seront maintenant donnés ci-après en liaison avec la figure 4c.Theoretical and experimental justifications relating to the performances obtained thanks to the implementation of the method and of a pulsed interrogation atomic clock in accordance with the subject of the present invention will now be given below in connection with the figure 4c .

Lorsqu'on considère une horloge atomique du type horloge CPT à atomes thermiques dans laquelle le milieu d'interaction est exempt de gaz tampon, la largeur de la raie d'oscillation obtenue pour le signal d'horloge, largeur à 3dB par rapport à l'amplitude maximale au sommet de l'oscillation, est de quelques kHz pour une fréquence centrale de l'ordre de quelques GHz. Une telle largeur de raie est trop importante pour être compatible avec une utilisation de telles horloges atomiques comme horloge de référence. Ceci peut être expliqué en raison du fait qu'en l'absence de gaz tampon, les atomes du milieu d'interaction sont soumis à un déplacement erratique rapide trop important qui élargit le phénomène de résonance par effet Doppler et limitation du temps de transit et, finalement, la qualité du résonateur radio-électrique ainsi constitué.When considering a clock clock atom clock CPT thermal atoms in which the interaction medium is free of buffer gas, the width of the oscillation line obtained for the clock signal, width to 3dB with respect to the The maximum amplitude at the top of the oscillation is a few kHz for a central frequency of the order of a few GHz. Such a linewidth is too important to be compatible with the use of such atomic clocks as a reference clock. This can be explained by the fact that in the absence of a buffer gas, the atoms of the interaction medium are subjected to an excessive rapid erratic displacement which widens the resonance phenomenon by Doppler effect and limitation of the transit time and finally, the quality of the radio-electric resonator thus formed.

Lorsque, au contraire un gaz tampon est utilisé dans ce même type d'horloge, le régime de Lamb-Dicke est atteint et la largeur de raie du signal d'horloge atomique est principalement limitée par la relaxation de la cohérence dans l'état fondamental et l'élargissement dû à la saturation laser. Des largeurs de raie de l'ordre de 100 Hz ont jusqu'ici été obtenues. Des stabilités à court terme de la fréquence du signal utilisateur Su de l'ordre de 5 à 15 10-12 après 1 seconde d'intégration ont été mesurées avec une détection optique ou micro-onde du signal d'horloge précité. La stabilité à long terme est essentiellement limitée par les fluctuations de fréquence induites par les collisions avec le gaz tampon. Le déplacement de fréquence correspondant vis-à-vis du désaccord Raman est directement relié à la pression de gaz tampon qui est elle-même fonction de la température du milieu d'interaction et donc de la cellule.When, on the contrary, a buffer gas is used in this same type of clock, the Lamb-Dicke regime is reached and the linewidth of the atomic clock signal is mainly limited by the relaxation of the coherence in the ground state. and enlargement due to laser saturation. Line widths of the order of 100 Hz have so far been obtained. Short-term stabilities of the user signal frequency S u of about 5 to 10 -12 after 1 second of integration have been measured with optical or microwave detection of the aforementioned clock signal. Long-term stability is essentially limited by the frequency fluctuations induced by collisions with the buffer gas. The corresponding frequency shift with respect to the Raman mismatch is directly related to the buffer gas pressure which is itself a function of the temperature of the interaction medium and therefore of the cell.

La largeur de raie ΔfCPT du signal de résonance et du signal d'horloge dans une horloge de ce type à une valeur donnée par la relation (1). Δf CPT = Δf TT + Δf collision + Δf Doppler + Δf saturation

Figure imgb0002
The line width Δf CPT of the resonance signal and the clock signal in a clock of this type at a value given by the relation (1). .DELTA.f CPT = .DELTA.f TT + .DELTA.f collision + .DELTA.f Doppler + .DELTA.f saturation
Figure imgb0002

Dans cette relation :

  • ΔfTT décrit l'élargissement dû au temps de transit limité des atomes du milieu d'interaction à travers les faisceaux laser.
In this relationship:
  • Δf TT describes the expansion due to the limited transit time of the atoms of the interaction medium through the laser beams.

Pour une interrogation continue, ΔfTT varie comme 1/T où T désigne le temps d'interaction entre un atome et les ondes laser.For a continuous interrogation, Δf TT varies as 1 / T where T denotes the interaction time between an atom and the laser waves.

Pour une interrogation pulsée conformément à la mise en oeuvre du procédé et de l'horloge à interrogation pulsée objet de la présente invention, ΔfTT varie comme 1/2b où b désigne le temps mort entre deux impulsions consécutives d'un train d'impulsions ;

  • Δfcollision est l'élargissement de la raie résultant de l'amortissement de la cohérence dû aux collisions entre atomes ;
  • ΔfDoppler est l'élargissement par effet Doppler du premier ordre ;
  • Δfsaturation est l'élargissement par saturation lié aux intensités réelles des faisceaux laser illuminant le milieu d'interaction.
For pulsed interrogation according to the implementation of the pulsed interrogation method and clock object of the present invention, Δf TT varies as 1 / 2b where b denotes the dead time between two consecutive pulses of a pulse train ;
  • Δf collision is the widening of the line resulting from the damping of the coherence due to collisions between atoms;
  • Δf Doppler is the first order Doppler broadening;
  • Δf saturation is the saturation enlargement related to the real intensities of the laser beams illuminating the interaction medium.

Pour une horloge atomique CPT dont le milieu d'interaction est constitué par des atomes thermiques sous forme d'une vapeur :

  • ΔfDoppler et ΔfTT sont négligeables en raison de la présence du gaz tampon ;
  • Δfsaturation peut être réduit en ajustant la puissance laser mais au détriment du rapport signal à bruit, ainsi que mentionné précédemment dans l'introduction à la description pour les dispositifs de l'art antérieur à interrogation continue ;
  • Δfcollision est la source prédominante de l'élargissement de la raie constitutive du signal d'horloge atomique obtenu.
For an atomic clock CPT whose interaction medium consists of thermal atoms in the form of a vapor:
  • Δf Doppler and Δf TT are negligible due to the presence of the buffer gas;
  • Saturation can be reduced by adjusting the laser power but at the expense of the signal-to-noise ratio, as previously mentioned in the introduction to the description for the devices of the prior art with continuous interrogation;
  • Δf collision is the predominant source of broadening of the constituent line of the atomic clock signal obtained.

La figure 4c illustre le mode de mise en oeuvre du procédé objet de la présente invention grâce à une horloge atomique à interrogation pulsée dans laquelle le milieu d'interaction est constitué par des atomes thermiques de césium en présence d'un gaz tampon, formé par de l'azote. Elle représente l'amplitude du signal d'horloge compensé SHC en fonction du désaccord de la différence des fréquences Δf12 des deux ondes laser.The figure 4c illustrates the mode of implementation of the method that is the subject of the present invention by virtue of a pulsed interrogation atomic clock in which the interaction medium is constituted by thermal atoms of cesium in the presence of a buffer gas, formed by nitrogen. It represents the amplitude of compensated clock signal S HC as a function of the disagreement of the difference in the frequencies Δf 12 of the two laser waves.

L'axe des abscisses de la figure 4c est gradué en kHz vis-à-vis d'une valeur 0 origine du désaccord Raman. La distance δ représente le désaccord introduit en raison de la présence du gaz tampon. Ce biais de fréquence peut être réduit en utilisant deux gaz tampon, azote et argon par exemple, induisant des déplacements collisionnels de signe opposé.The x-axis of the figure 4c is graduated in kHz with respect to a 0 value origin of the Raman mismatch. The distance δ represents the disagreement introduced due to the presence of the buffer gas. This frequency bias can be reduced by using two buffer gases, nitrogen and argon for example, inducing collisional movements of opposite sign.

En référence à la figure précitée, on constate que pour l'amplitude maximale mesurée en millivolts sur l'axe des ordonnées, la largeur des oscillations reste aussi faible que 25 Hz grâce à la mise en oeuvre du traitement et, bien entendu, de la modulation par impulsions des faisceaux laser L1 et L2 utilisés. Lorsque, au contraire et selon un aspect particulièrement remarquable du procédé et de l'horloge atomique à interrogation pulsée conformes à l'objet de la présente invention, le milieu d'interaction est constitué par des atomes refroidis par laser, la vitesse des atomes est réduite dans les conditions précédemment mentionnées dans la description, c'est-à-dire à des vitesses erratiques environ 1000 fois plus faibles que celles des atomes thermiques.With reference to the above-mentioned figure, it can be seen that for the maximum amplitude measured in millivolts on the ordinate axis, the width of the oscillations remains as low as 25 Hz thanks to the implementation of the treatment and, of course, the pulse modulation of the laser beams L 1 and L 2 used. When, on the contrary and according to a particularly remarkable aspect of the method and pulsed interrogation atomic clock in accordance with the subject of the present invention, the interaction medium is constituted by atoms cooled by laser, the speed of the atoms is reduced under the conditions previously mentioned in the description, that is to say at erratic speeds about 1000 times lower than those of thermal atoms.

Dans ces conditions, il est alors possible d'obtenir des longs temps d'interaction entre les faisceaux laser d'illumination et le milieu d'interaction sans l'utilisation d'un gaz tampon, ce qui permet d'annuler ainsi le déplacement δ précédemment mentionné en liaison avec la figure 4c de résonance et l'élargissement de fréquences dû aux collisions.Under these conditions, it is then possible to obtain long interaction times between the illumination laser beams and the interaction medium without the use of a buffer gas, thereby canceling the displacement δ previously mentioned in connection with the figure 4c resonance and frequency expansion due to collisions.

Ainsi, pour une horloge à interrogation pulsée, horloge atomique CPT à atomes froids, les paramètres précités sont alors traités de la façon ci-après :

  • ΔfDoppler et ΔfTT sont négligeables grâce aux faibles vitesses des atomes froids, refroidis par laser ;
  • Δfcollision est également négligeable lorsque la densité d'atomes froids est suffisamment faible.
Thus, for a pulsed interrogation clock, atomic clock CPT with cold atoms, the aforementioned parameters are then processed as follows:
  • Δf Doppler and Δf TT are negligible due to the low velocities of cold atoms, cooled by laser;
  • Δf collision is also negligible when the density of cold atoms is sufficiently low.

A ce titre, l'atome de rubidium apparaît plus intéressant que l'atome de césium car le déplacement collisionnel est au moins 50 fois plus faible.As such, the rubidium atom appears more interesting than the cesium atom because the collisional displacement is at least 50 times lower.

Ainsi, on constate que c'est l'élargissement par saturation Δfsaturation qui limite la largeur de raie d'une horloge atomique dont le milieu d'interaction est constitué par des atomes refroidis par laser.Thus, it can be seen that it is the saturation broadening Δf saturation that limits the linewidth of an atomic clock whose interaction medium consists of atoms cooled by laser.

Lorsque, en outre, le processus d'interrogation est effectué conformément au procédé objet de la présente invention, c'est-à-dire par interrogation pulsée, il est alors possible de réduire de manière très significative la contribution de l'effet de saturation tout en continuant de détecter les signaux d'intensité suffisante, c'est-à-dire avec un rapport signal à bruit satisfaisant.When, moreover, the interrogation process is carried out in accordance with the method that is the subject of the present invention, that is to say by pulsed interrogation, it is then possible to very significantly reduce the contribution of the saturation effect. while continuing to detect the signals of sufficient intensity, that is to say with a satisfactory signal-to-noise ratio.

Claims (10)

  1. A method for generating an atomic clock signal with coherent population trapping from a first and a second phase-coherent laser wave, each substantially in resonance with an optical transition of the atoms of an interactive medium, the coherent superimposition of the atomic states corresponding to the coherent population trapping of atoms producing a response signal having a resonance-extremal amplitude and representing the atomic clock signal corresponding to the variation in amplitude of the signal detected as a function of the value of the difference in frequency of the first and the second phase-coherent laser wave, characterized in that said method consists at least in:
    - modulating in synchronization by successive pulses the intensity of the first and the second laser wave, by a shape factor determined between a high level and a low level of intensity, the interaction between the first or the second laser wave respectively and the interactive medium being substantially limited to the duration of each successive pulse corresponding to a high level of intensity, said response signal produced during a current pulse depending on the atomic state produced during at least one pulse preceding this current pulse and on the development of this atomic state for the duration of a low level of intensity separating said pulses; and
    - detecting and superimposing by linear combination said response signal produced during said current pulse and at least one pulse preceding this current pulse to produce a resultant compensated atomic clock signal, the spectral width of which is minimized.
  2. The method according to claim 1, characterized in that the pulse modulation is carried out by pulse trains, the frequency of the modulation pulses being between 0.2 Hz and 104 Hz.
  3. The method according to either claim 1 or claim 2, characterized in that the modulation pulses have a shape factor of between 10-6 and 10-1.
  4. The method according to any one of claims 1 to 3, characterized in that the duration of a low level of intensity separating said current pulse from said pulse preceding this current pulse is shorter than the lifetime of the hyperfine coherence existing between two clock levels.
  5. The method according to any one of claims 1 to 4, characterized in that said interactive medium is formed by a plurality of thermal or laser-cooled atoms.
  6. The method according to any one of claims 1 to 5, characterized in that the step consisting in detecting said clock signal is chosen as one of the detection processes from among the group of detection processes comprising optical absorption, optical fluorescence, microwave detection, as a function of the difference in frequency of the first and the second phase-coherent laser waves.
  7. An atomic clock with pulsed interrogation, comprising at least:
    - an optical interrogation means (1) allowing the production of a first and a second phase-coherent laser beam (L1, L2), each substantially in resonance with an optical transition of the atoms of an interactive medium (3);
    - an interactive cell (3) comprising said interactive medium, illuminated in operation by the first and the second phase-coherent laser beam, to produce a response signal having a resonance-extremal amplitude and corresponding to the variation in amplitude of the signal detected as a function of the difference in frequency of the first and the second phase-coherent laser beam;
    - means (4) for detecting said response signal, said detection means being adapted to the wavelength and to the amplitude of the response signal,
    characterized in that said atomic clock further comprises:
    - means (2) for pulse-modulating the intensity of the first and the second laser beam between a high level and a low level of intensity, said modulation means being placed on the path of said first and second laser beams upstream of said interactive cell (3) to produce in synchronization a first and a second pulsed laser beam, the interaction between the first or the second laser beam respectively and the interactive medium being substantially limited to the duration of each successive pulse corresponding to a high level of intensity, said response signal produced during a current pulse being dependent on the atomic state produced during at least one pulse preceding this current pulse and on the development of this atomic state for the duration of a low level of intensity energy separating said pulses, and in that
    - said detection means further comprise means (5) for adding by linear combination the response signal produced during this current pulse and the response signal produced during at least one pulse preceding this current pulse, said means for adding by linear combination allowing the production of a resultant compensated atomic clock signal, the spectral width of which is minimized.
  8. The atomic clock according to claim 7, characterized in that said means for pulse-modulating the intensity of the first and the second laser beam between a high level of intensity and a low level comprise at least one acousto-optic modulator.
  9. The atomic clock according to either claim 7 or claim 8, characterized in that said detection means further comprise:
    - means for sampling the response signal produced during the interaction of the current pulse and at least one pulse preceding this current pulse; and
    - means for storing sampled values of the response signal produced during the interaction of each of said pulses.
  10. The atomic clock according to claim 9, characterized in that said detection means further comprise:
    - means for reading the values sampled at predetermined instants stored in said storage means; and
    - means for calculating a linear combination of said stored sampled values allowing the production of said compensated atomic clock signal.
EP05744396A 2004-03-30 2005-03-29 Method for modulating an atomic clock signal with coherent population trapping and corresponding atomic clock Not-in-force EP1730608B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0403289A FR2868558B1 (en) 2004-03-30 2004-03-30 METHOD FOR GENERATING AN ATOMIC CLOCK SIGNAL WITH COHERENT POPULATION TRAPPING AND CORRESPONDING ATOMIC CLOCK
PCT/FR2005/000754 WO2005101141A1 (en) 2004-03-30 2005-03-29 Method for modulating an atomic clock signal with coherent population trapping and corresponding atomic clock

Publications (2)

Publication Number Publication Date
EP1730608A1 EP1730608A1 (en) 2006-12-13
EP1730608B1 true EP1730608B1 (en) 2011-05-04

Family

ID=34945087

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05744396A Not-in-force EP1730608B1 (en) 2004-03-30 2005-03-29 Method for modulating an atomic clock signal with coherent population trapping and corresponding atomic clock

Country Status (8)

Country Link
US (1) US7501906B2 (en)
EP (1) EP1730608B1 (en)
JP (1) JP4801044B2 (en)
CN (1) CN100587629C (en)
AT (1) ATE508396T1 (en)
DE (1) DE602005027826D1 (en)
FR (1) FR2868558B1 (en)
WO (1) WO2005101141A1 (en)

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7965147B2 (en) * 2008-08-11 2011-06-21 Honeywell International Inc. Physics package design for a cold atom primary frequency standard
US7944317B2 (en) * 2008-08-11 2011-05-17 Honeywell International Inc. Cold atom micro primary standard
JP5381400B2 (en) * 2009-02-06 2014-01-08 セイコーエプソン株式会社 Quantum interferometers, atomic oscillators, and magnetic sensors
US8237514B2 (en) 2009-02-06 2012-08-07 Seiko Epson Corporation Quantum interference device, atomic oscillator, and magnetic sensor
JP5589166B2 (en) * 2009-11-12 2014-09-17 セイコーエプソン株式会社 Atomic oscillator
CN102377431B (en) * 2010-08-06 2013-07-31 北京大学 Coherent population trapping atomic clock and realization method thereof
CN102063054B (en) * 2011-02-22 2012-09-05 合肥威师智能电子电器厂 CPT (Coherent Population Trapping) atomic clock
US8854146B2 (en) 2012-01-31 2014-10-07 Honeywell International Inc. Systems and methods for external frit mounted components
US8879059B2 (en) * 2012-02-16 2014-11-04 The Charles Stark Draper Laboratory, Inc. Methods and apparatus for controlled generation of hyperfine polarizations and coherences
JP6124536B2 (en) * 2012-08-30 2017-05-10 株式会社リコー Atomic oscillator and CPT resonance excitation method
US9285249B2 (en) 2012-10-04 2016-03-15 Honeywell International Inc. Atomic sensor physics package with metal frame
CN103067004B (en) * 2012-12-17 2016-03-30 江汉大学 Two bubble atomic clock
JP6346446B2 (en) 2013-02-14 2018-06-20 株式会社リコー Atomic oscillator, CPT resonance detection method, and magnetic sensor
US9410885B2 (en) 2013-07-22 2016-08-09 Honeywell International Inc. Atomic sensor physics package having optically transparent panes and external wedges
US10171095B2 (en) 2013-09-27 2019-01-01 Seiko Epson Corporation Atomic oscillator, electronic apparatus, moving object, and manufacturing method of atomic oscillator
CN103929175B (en) * 2013-11-15 2017-01-18 北京无线电计量测试研究所 Quantum system device for CPT atomic frequency maker
CN104199274B (en) * 2014-09-24 2017-03-22 北京市计量检测科学研究院 Pre-estimating method for frequency modification value of rubidium clock
JP6511298B2 (en) * 2015-03-12 2019-05-15 株式会社リコー CPT resonance generation method, CPT resonance detection method, CPT resonance generator, atomic oscillator, magnetic sensor
US10520900B2 (en) * 2016-12-28 2019-12-31 Texas Instruments Incorporated Methods and apparatus for magnetically compensated chip scale atomic clock
CN108233161B (en) * 2017-12-18 2020-07-14 北京无线电计量测试研究所 Device for realizing high-contrast narrow-linewidth CPT spectral line
CN110824888B (en) * 2018-08-09 2021-02-02 中国计量科学研究院 Signal acquisition method and device applied to atomic fountain clock
CN109188888B (en) * 2018-08-16 2020-09-29 山东师范大学 Experimental device and method for improving accuracy of atomic clock based on Doppler effect
WO2021092512A1 (en) * 2019-11-08 2021-05-14 Rambler Wheels, Llc Continuous time adjustment daylight saving time method and apparatus
CN110928174B (en) * 2019-12-17 2022-01-11 中国科学院国家授时中心 Atomic clock frequency discrimination signal detection system
CN111006661B (en) * 2019-12-18 2021-09-07 中国科学院武汉物理与数学研究所 Measurement method and measurement device for eliminating dead time of cold atom interferometer
CN114637181B (en) * 2022-02-25 2023-04-25 北京大学 Digital control system of CPT atomic clock server chip
CN117331005B (en) * 2023-12-01 2024-02-09 兰州空间技术物理研究所 Triaxial measurement method and device for two-level magnetic resonance Ramsey transition patterns

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3234483A (en) * 1964-03-20 1966-02-08 Itt High stability gas cell frequency standard
FR2581261B1 (en) * 1985-04-30 1987-08-07 Cepe OPTICAL PUMPING CESIUM RESONATOR WITH LASER DIODE DETECTION
US5517157A (en) * 1993-04-27 1996-05-14 Ball Corporation Evanescent-field interrogator for atomic frequency standards
ATE445922T1 (en) * 2002-04-09 2009-10-15 California Inst Of Techn ATOMIC CLOCK BASED ON AN OPTOELECTRONIC OSCILLATOR
WO2005054907A2 (en) * 2003-11-26 2005-06-16 Kernco, Inc. Improved optically excited atomic frequency standard

Also Published As

Publication number Publication date
EP1730608A1 (en) 2006-12-13
WO2005101141A1 (en) 2005-10-27
CN100587629C (en) 2010-02-03
DE602005027826D1 (en) 2011-06-16
CN1973248A (en) 2007-05-30
US7501906B2 (en) 2009-03-10
FR2868558A1 (en) 2005-10-07
JP2007530965A (en) 2007-11-01
FR2868558B1 (en) 2006-06-30
ATE508396T1 (en) 2011-05-15
JP4801044B2 (en) 2011-10-26
US20070200643A1 (en) 2007-08-30

Similar Documents

Publication Publication Date Title
EP1730608B1 (en) Method for modulating an atomic clock signal with coherent population trapping and corresponding atomic clock
EP2791620B1 (en) Measurement by means of atom interferometry
EP0455530B1 (en) Fibre optical measuring device, gyroscope, navigation and stabilisation system, current sensor
EP2708856A1 (en) Device and method for measuring the distribution of physical quantities in an optical fibre
FR2729754A1 (en) DEVICE AND METHOD FOR INCREASING THE RESOLUTION OF ANGULAR SPEED INFORMATION DETECTED FROM A RING LASER GYROSCOPE
CH465907A (en) Exploration interferometer for the analysis of light of unknown spectral composition
JP6386655B2 (en) Terahertz wave generator and spectroscopic device using the same
EP0027763B1 (en) Process and apparatus for measuring distance by laser interferometry with two wavelengths
FR2582825A1 (en) METHOD AND DEVICE FOR MEASURING WAVE PROPAGATION TIME
US8515290B2 (en) Method for coupling two pulsed lasers having an adjustable difference of the pulse frequencies, which is not equal to zero
FR2645264A1 (en) FIBER OPTIC GYROSCOPE
EP3523644B1 (en) Gas detector and method for measuring a gas concentration using photoacoustic effect
FR2725791A1 (en) METHOD AND APPARATUS FOR DETERMINING NOISE FACTOR OF OPTICAL AMPLIFIER
US3885874A (en) Laser plasma diagnostic using ring resonators
EP2738628B1 (en) Wristwatch with atomic oscillator
EP2656454B1 (en) Stabilized femtosecond pulsed laser and stabilization method
WO2013001242A1 (en) Device for managing pulses in pump-probe spectroscopy
EP2498150A1 (en) Atomic clock
EP1995575B1 (en) System for analysing the frequency of resonant devices
EP4256291A1 (en) Device for wide-band spectral analysis of a signal of interest
FR2729755A1 (en) Ring laser gyroscope with phase error correction
FR2826446A1 (en) Gyrometer/accelerometer inertial value atomic interferometer having vacuum ballistic trajectory laser beam transmitting/separating trajectories and detecting recombined level with successive burst alternate directions
WO2022058173A1 (en) Method and apparatus for controlling the delay between two light pulses on the attosecond scale
FR2672388A1 (en) METHOD AND APPARATUS FOR DETERMINING A LATCHING LASER GYROSCOPE LOCKING CHARACTERISTIC BY MEASURING THE AMPLITUDE OF A RETROSPRAY RADIATION COMPONENT OF SAID LASER.
EP4075156A1 (en) Method for using a magnetometer with zero field optical pumping operated in a non-zero ambient field

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20060925

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20100318

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REF Corresponds to:

Ref document number: 602005027826

Country of ref document: DE

Date of ref document: 20110616

Kind code of ref document: P

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602005027826

Country of ref document: DE

Effective date: 20110616

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20110504

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110504

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110905

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110504

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110504

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110805

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110504

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110504

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110504

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110815

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110904

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110504

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110504

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110504

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110504

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110504

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110504

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110504

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110504

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20120207

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110504

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602005027826

Country of ref document: DE

Effective date: 20120207

BERE Be: lapsed

Owner name: CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE (CNR

Effective date: 20120331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110804

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110504

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120329

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050329

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20180316

Year of fee payment: 14

Ref country code: CH

Payment date: 20180315

Year of fee payment: 14

Ref country code: DE

Payment date: 20180309

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20180329

Year of fee payment: 14

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602005027826

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20190329

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190331

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190331

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190329

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190331