DE102010032725B4 - Vorrichtung zum optischen Abtasten und Vermessen einer Umgebung - Google Patents

Vorrichtung zum optischen Abtasten und Vermessen einer Umgebung Download PDF

Info

Publication number
DE102010032725B4
DE102010032725B4 DE102010032725A DE102010032725A DE102010032725B4 DE 102010032725 B4 DE102010032725 B4 DE 102010032725B4 DE 102010032725 A DE102010032725 A DE 102010032725A DE 102010032725 A DE102010032725 A DE 102010032725A DE 102010032725 B4 DE102010032725 B4 DE 102010032725B4
Authority
DE
Germany
Prior art keywords
laser scanner
pivot axis
axis module
support structure
head
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
DE102010032725A
Other languages
English (en)
Other versions
DE102010032725A1 (de
Inventor
Dr. Becker Reinhard
Norbert Homann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Faro Technologies Inc
Original Assignee
Faro Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Faro Technologies Inc filed Critical Faro Technologies Inc
Priority to DE102010032725A priority Critical patent/DE102010032725B4/de
Priority to US13/190,742 priority patent/US8699007B2/en
Publication of DE102010032725A1 publication Critical patent/DE102010032725A1/de
Application granted granted Critical
Publication of DE102010032725B4 publication Critical patent/DE102010032725B4/de
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C15/00Surveying instruments or accessories not provided for in groups G01C1/00 - G01C13/00
    • G01C15/002Active optical surveying means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/42Simultaneous measurement of distance and other co-ordinates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4811Constructional features, e.g. arrangements of optical elements common to transmitter and receiver
    • G01S7/4813Housing arrangements

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Optical Radar Systems And Details Thereof (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

Vorrichtung zum optischen Abtasten und Vermessen einer Umgebung, die als Laserscanner (10) ausgebildet ist, mit a) einem Lichtsender (17), der einen Sendelichtstrahl (18) aussendet, b) einem Lichtempfänger (21), der einen von einem Objekt (O) in der Umgebung des Laserscanners (10) reflektierten oder sonst irgendwie gestreuten Empfangslichtstrahl (20) empfängt, c) einer Steuer- und Auswertevorrichtung (22), die für eine Vielzahl von Messpunkten (X) jeweils wenigstens die Distanz zum Objekt (O) ermittelt, d) einer Tragstruktur (30) eines Messkopfes (12), welcher relativ zu einem im stationären Bezugssystems des Laserscanners (10) ruhenden Fuß (14) drehbar ist, und e) einem Schwenkachsenmodul (40), welches als vormontierte Baugruppe einerseits den Fuß (14) und andererseits Teile aufweist, die an der Tragstruktur (30) zu befestigen sind, und welches in einen Aufnahmeschacht einer Traverse (30a) der Tragstruktur (30) eingeführt ist, wobei die mechanischen und elektrischen Schnittstellen zwischen dem Schwenkachsenmodul (40) und den an der Tragstruktur...

Description

  • Die Erfindung betrifft eine Vorrichtung zum optischen Abtasten und Vermessen einer Umgebung, die als Laserscanner ausgebildet ist, wie sie aus der DE 20 2006 005 643 U1 bekannt ist. In der DE 203 20 216 U1 wird für den Laserscanner ein modularer Aufbau vorgeschlagen, wonach eine Tragstruktur mit der Traverse und einem Getriebe für die vertikale Schwenkachse ein erstes Modul, ein Motor zum Antrieb des Getriebes ein zweites Modul, ein um die horizontale Achse rotierende Spiegel mit seinem Antrieb ein drittes Modul, Lichtsender und Lichtempfanger ein viertes Modul und ein Rechner mit Bedienfeld ein fünftes Modul bilden.
  • Der Erfindung liegt die Aufgabe zu Grunde, eine Vorrichtung der eingangs genannten Art zu verbessern. Diese Aufgabe wird erfindungsgemäß durch eine Vorrichtung mit den Merkmalen des Anspruches 1 gelöst. Vorteilhafte Ausgestaltungen sind Gegenstand der Unteransprüche. Die Erfindung bietet den Vorteil, dass das Schwenkachsenmodul gesondert hergestellt und geprüft werden kann.
  • Die Komponenten des Laserscanners sind in zwei Teilen des Messkopfes und einer diese verbindenden Traverse der Tragstruktur angeordnet. Um das Gewicht des Laserscanners zu verringern, ist als Teil des Gehäuses eine Schale vorgesehen, vorzugsweise für jede der beiden Teile des Messkopfes je eine Schale, welche aus einem leichten Material, beispielsweise Kunststoff, bestehen kann und welche die betreffenden Komponenten des Laserscanners zum Schutz abdeckt. Um wiederum die Schale zu schützen, ist ein Bügel vorgesehen, vorzugsweise für jede Schale je ein Bügel, welcher die Außenseite der Schale teilweise abdeckt und welcher ebenfalls aus einem leichten Material, beispielsweise Aluminium, bestehen kann.
  • Die Tragstruktur, welche vorzugsweise aus Gewichtsgründen ebenfalls aus Aluminium besteht, weist vorzugsweise Wände auf, welche der Befestigung der Komponenten mit der Optik und dem rotierenden Spiegel dienen. Die Wände können auch die halboffenen Schalen schließen. Der Bügel läuft vorzugsweise entlang der Außenkanten und/oder schräg über die Außenflächen der Schale und ist an der Tragstruktur befestigt, vorzugsweise an seinen Enden, gegebenenfalls auch in seiner Mitte an einer der beiden Wände. In den Bügel können zusätzlich zur Schutzfunktion weitere Funktionen integriert sein.
  • Die Parameter des Laserscanners, insbesondere die Temperatur, können sich während des laufenden Betriebs ändern. Für eine Korrektur ist eine Vergleichsmessung notwendig. Es bietet sich daher an, den Fleck des Sendelichtstrahls zeitweise entlang eines Prismas zu bewegen, welches eine bekannte Geometrie und einen bekannte Distanz zum Zentrum des Laserscanners aufweist. Ferner weist das Prisma wenigstens zwei unterschiedliche Helligkeiten und/oder Farben auf, um unterschiedliche Signalpegel des Empfangslichtstrahls zu erzeugen. Die unterschiedlichen Helligkeiten und/oder Farben wechseln vorzugsweise entlang der Bewegungsrichtung des Flecks des Sendelichtstrahls ab.
  • Während der Rotation des Spiegels wird der Sendelichtstrahl bei jeder Umdrehung einmal auf die Traverse der Tragstruktur geworfen, ohne dass die Umgebung unterhalb davon gemessen werden kann. Vorzugsweise ist das Prisma daher an der Traverse ausgebildet. Eine bestimmte geometrische Form senkrecht zur Bewegungsrichtung des Flecks des Sendelichtstrahls (oder in Bewegungsrichtung) kann den Abbildungseigenschaften der empfangenden Optik Rechnung tragen und damit die resultierende Signalqualität kontrollieren. Die Steuer- und Auswertevorrichtung nimmt mittels der unterschiedlichen Helligkeiten und/oder Farben und der bekannten Distanz des Prismas eine (Korrektur der) Distanzkorrektur vor.
  • Für den Zusammenbau des Laserscanners weisen die Komponenten mechanische und elektrische Schnittstellen auf. Besonders zwischen den relativ zu einander drehbaren Teilen ist dann eine hohe Präzision erforderlich. Der Laserscanner weist daher ein Schwenkachsenmodul auf, welches als vormontierte Baugruppe einerseits den im stationären Bezugssystems des Laserscanners ruhenden Fuß und andererseits Teile aufweist, die an der Tragstruktur des relativ zum Fuß drehbaren Messkopfes zu befestigen sind. Die relativ zueinander drehbaren Schnittstellen sind dann ins Innere des Schnittstellenmoduls verlagert. Die Schnittstellen zwischen dem Schwenkachsenmodul und den weiteren Teilen des Messkopfes können einfach(er) ausgebildet werden, so dass sie beim Einführen des Schwenkachsenmoduls, beispielsweise in einen Aufnahmeschacht der Tragstruktur, in Einführrichtung geschlossen werden.
  • Im Laserscanner produzieren die Motoren zur Rotation des Messkopfes und des Spiegels sowie die Steuer- und Auswertevorrichtung und die weitere Elektronik Wärme, die abgeführt werden muss. Der Laserscanner weist hierfür eine integrierte Kühlvorrichtung auf, basierend auf einer Lüftung. Die Luft wird hierzu von einem Lufteinlass in einen Zwischenraum zwischen der Tragstruktur und einer als Gehäuse dienenden Schale geleitet und gelangt von dort in einem gegenüber dem Inneren der Tragstruktur abgedichteten Ansaugkanal in das Innere der Kühlvorrichtung. Von dort bläst ein Lüfter die erwärmte Luft über einen weiteren, gegen das Innere der Tragstruktur abgedichteten Ausblaskanal und einen Luftauslass nach außen. Damit kann vorzugsweise die Wärme abgeführt werden ohne die Dichtigkeit zentraler Komponenten zu beeinträchtigen. Je ein Filter am Lufteinlass und Luftauslass verhindern das Eindringen von Staub und gröberen Schmutz in die Zwischenräume und Kanäle der Kühlvorrichtung. Der Lufteinlass und der Luftauslass sind, beispielsweise mittels Lamellen, so gerichtet, dass die Luftströme voneinander wegweisen, d. h. kreuzungsfrei sind in möglichst auseinander gespreizten Richtungen. Der Ansaugkanal und der Ausblaskanal, beispielsweise mit rechteckigem Profil, sind abgedichtet an das Gehäuse des Lüfters angeschlossen. Zudem können die Kanäle durch geeignete Stopfen bei Bedarf völlig abgedichtet werden. Die vorzugsweise zwei Schalen sind jeweils halboffen ausgebildet und jeweils durch eine Wand der Tragstruktur geschlossen, wobei vorzugsweise an genau eine der beiden Schalen der Lufteinlass und der Luftauslass münden, abgedichtet gegeneinander und gegenüber dem Zwischenraum. Eine Dichtung der außen angeordneten Schalen gegen die Tragstruktur gewährleistet damit eine vollständige Abdichtung des Laserscanners. Zusätzlich zu dieser Lüftung weist die Kühlvorrichtung vorzugsweise noch passive Kühlelemente auf, beispielsweise Kühlrippen und/oder Wärmeleitungen, um die Wärme (aus Teilbereichen des Inneren der Tragstruktur) zu den aktiven Kühlelementen zu transportieren. Dies kann die Wärme der Elektronik oder, wenn die Tragstruktur in zwei zueinander abgedichtete Hälften unterteilt ist, die Wärme aus der anderen Hälfte (ohne aktive Kühlelemente) sein.
  • Im Folgenden ist die Erfindung anhand eines in der Zeichnung dargestellten Ausführungsbeispiels näher erläutert. Es zeigen
  • 1 eine perspektivische Ansicht des Laserscanners,
  • 2 eine leicht perspektivische Seitenansicht des Laserscanners,
  • 3 die Untersicht des Laserscanners,
  • 4 einen Schnitt durch den Laserscanners im Bereich des Schwenkachsenmoduls,
  • 5 eine perspektivische Teilansicht des Laserscanners ohne Schale,
  • 6 eine Teilansicht der Kühlvorrichtung mit der Perspektive von 5, und
  • 7 eine schematische Darstellung des Laserscanners im Betrieb.
  • Ein Laserscanner 10 ist als Vorrichtung zum optischen Abtasten und Vermessen einer Umgebung des Laserscanners 10 vorgesehen. Der Laserscanner 10 weist einen Messkopf 12 und einen Fuß 14 auf. Der Messkopf 12 ist als eine um eine vertikale Achse drehbare Einheit auf dem Fuß 14 montiert. Der Messkopf 12 weist einen um eine horizontale Achse drehbaren Spiegel 16 auf. Der Schnittpunkt der beiden Drehachsen sei als Zentrum C10 des Laserscanners 10 bezeichnet.
  • Der Messkopf 12 weist ferner einen Lichtsender 17 zum Aussenden eines Sendelichtstrahls 18 auf. Der Sendelichtstrahl 18 ist vorzugsweise ein Laserstrahl im Bereich von ca. 300 bis 1600 nm Wellenlänge, beispielsweise 790 nm, 905 nm oder weniger als 400 nm, jedoch sind prinzipiell auch andere elektromagnetische Wellen mit beispielsweise größerer Wellenlänge verwendbar. Der Sendelichtstrahl 18 ist mit einem – beispielsweise sinusförmigen oder rechteckförmigen – Modulationssignal amplitudenmoduliert. Der Sendelichtstrahl 18 wird vom Lichtsender 17 auf den Rotorspiegel 16 gegeben, dort umgelenkt und in die Umgebung ausgesandt. Ein von einem Objekt O in der Umgebung reflektierter oder sonst irgendwie gestreuter Empfangslichtstrahl 20 wird vom Rotorspiegel 16 wieder eingefangen, umgelenkt und auf einen Lichtempfänger 21 gegeben. Die Richtung des Sendelichtstrahls 18 und des Empfangslichtstrahls 20 ergibt sich aus den Winkelstellungen des Rotorspiegels 16 und des Messkopfes 12, welche von den Stellungen ihrer jeweiligen Drehantriebe abhängen, die wiederum von jeweils einem Encoder erfasst werden.
  • Eine Steuer- und Auswertevorrichtung 22 steht mit dem Lichtsender 17 und dem Lichtempfänger 21 im Messkopf 12 in Datenverbindung, wobei Teile derselben auch außerhalb des Messkopfes 12 angeordnet sein können, beispielsweise als ein am Fuß 14 angeschlossener Computer. Die Steuer- und Auswertevorrichtung 22 ist dazu ausgebildet, für eine Vielzahl von Messpunkten X die Distanz d des Laserscanners 10 zu dem (beleuchteten Punkt am) Objekt O aus der Laufzeit des Sendelichtstrahls 18 und des Empfangslichtstrahls 20 zu ermitteln. Hierzu kann beispielsweise die Phasenverschiebung zwischen den beiden Lichtstrahlen 18, 20 bestimmt und ausgewertet werden.
  • Mittels der (schnellen) Drehung des Rotorspiegels 16 wird entlang einer Kreislinie abgetastet. Mittels der (langsamen) Drehung des Messkopfes 12 relativ zum Fuß 14 wird mit den Kreislinien nach und nach der gesamte Raum abgetastet. Die Gesamtheit der Messpunkte X einer solchen Messung sei als Scan bezeichnet. Das Zentrum C10 des Laserscanners 10 definiert für einen solchen Scan den Ursprung des lokalen stationären Bezugssystems. In diesem lokalen stationären Bezugssystem ruht der Fuß 14.
  • Jeder Messpunkt X umfasst außer der Distanz d zum Zentrums C10 des Laserscanners 10 als Wert noch eine Helligkeit, welche ebenfalls von der Steuer- und Auswertevorrichtung 22 ermittelt wird. Die Helligkeit ist ein Graustufenwert, welcher beispielsweise durch Integration des bandpass-gefilterten und verstärkten Signals des Lichtempfängers 21 über eine dem Messpunkt X zugeordnete Messperiode ermittelt wird. Optional können mittels einer Farbkamera noch Bilder erzeugt werden, mittels derer den Messpunkten noch Farben (R, G, B) als Wert zugeordnet werden können.
  • An die Steuer- und Auswertevorrichtung 22 ist eine Anzeigevorrichtung 24 angeschlossen. Die Anzeigevorrichtung 24 ist in den Laserscanner 10 integriert, vorliegend in den Messkopf 12. Die Anzeigevorrichtung 24 zeigt eine Vorschau des Scans an.
  • Der Laserscanner 10 weist eine Tragstruktur 30 auf, welche als ”Skelett” des Messkopfes 12 dient und an welcher verschiedene Komponenten des Laserscanners 10 befestigt sind. Die metallische Tragstruktur 30 ist vorliegend aus Aluminium einstückig ausgebildet. Von außen sichtbar weist die Tragstruktur 30 oberhalb des Fußes 14 eine Traverse 30a auf, die an beiden Enden zwei Wände 30b trägt, welche parallel zueinander von der Traverse 30a nach oben abstehen. Zwei Schalen 32 sind jeweils als ein zu einer Seite hin offenes Gehäuse ausgebildet, vorzugsweise aus Kunststoff. Jede der beiden Schalen 32 deckt einen Teil der an der Tragstruktur 30 befestigten Komponenten des Laserscanners 10 ab und ist einer der beiden Wände 30b zugeordnet, an welcher sie (mit einer Dichtung abgedichtet) befestigt ist. Somit dienen die Wände 30b und die Schalen 32 als Gehäuse des Laserscanners 10.
  • Auf der Außenseite jeder der beiden Schalen 32 ist ein – vorzugsweise metallischer – Bügel 34 angeordnet, der die zugeordnete Schale 32 teilweise abdeckt und dadurch schützt. Jeder Bügel 34 ist an der Tragstruktur 30 befestigt, genauer gesagt auf der Unterseite der Traverse 30a. Vorliegend ist jeder Bügel aus Aluminium ausgebildet und seitlich des Fußes 14 an der Traverse 30a angeschraubt. Jeder Bügel 34 läuft von seiner Befestigung an der Unterseite der Traverse 30a aus schräg zur nächstgelegenen Außenecke der zugeordneten Schale 32, von dort aus entlang der Außenkante der Schale 32 zur oberhalb davon gelegenen Außenecke der Schale 32, auf der Oberseite der Schale 32 schräg bis zur Wand 32b, ein kurzes Stück an dieser entlang, und dann spiegelsymmetrisch zum beschriebenen Verlauf auf der Oberseite der Schale 32 schräg zur anderen Außenecke, entlang der Außenkante der Schale 32 zur unterhalb davon gelegenen Außenecke der Schale 32 und schräg zur anderen Befestigung an der Unterseite der Traverse 30a.
  • Die beiden Bügel 34 zusammen umschreiben einen (konvexen) Raum, innerhalb dessen die beiden Schalen 32 vollständig angeordnet sind, d. h. die beiden Bügel 34 zusammen stehen über alle Außenkanten und Außenflächen der Schalen 32 über. Auf der Oberseite und auf der Unterseite stehen jeweils die schräg verlaufenden Abschnitte der Bügel 34 über die Oberseite bzw. Unterseite der Schalen 32 über, auf den vier anderen Seiten jeweils zwei entlang einer Außenkante der Schalen 32 verlaufenden Abschnitte. Somit werden die Schalen 32 großflächig geschützt. Jeder der Bügel 34 hat zwar primär die Schutzfunktion, insbesondere vor Stößen, welche die Schalen 32 und die darunter angeordneten Komponenten des Laserscanners 10 beschädigen können. Jedoch können weitere Funktionen in einen oder beide Bügel 34 integriert werden, beispielsweise eine Greifmöglichkeit zum Tragen des Laserscanners 10 und/oder eine Beleuchtung.
  • Auf der Oberseite der Traverse 30a ist ein Prisma 36 vorgesehen, welches parallel zu den Wänden 30b verläuft. Vorliegend ist das Prisma 36 ein angeformter (d. h. einstückig ausgebildeter) Bestandteil der Trägerstruktur 30, jedoch ist auch eine separate Ausbildung und Befestigung an der Traverse 30a denkbar. Wenn der Spiegel 16 rotiert, wirft er den Sendelichtstrahl 18 bei jeder Umdrehung einmal auf die Traverse 30a, genauer gesagt auf das Prisma 36, und bewegt den vom Sendelichtstrahl 18 erzeugten Fleck entlang des Prismas 36. Senkrecht zur Bewegungsrichtung des Flecks des Sendelichtstrahls 18 ist das Profil des Prismas 36 so ausgebildet, dass von der Oberseite der Traverse 30a her zwei nach unten weisende Trapeze herausgearbeitet sind, welche zwischen sich ein nach oben weisendes gleichschenkliches Dreieck herausragen lassen. In der Regel ist der Fleck des Sendelichtstrahls 18 so klein, dass er zwar die Spitze des Dreiecks trifft, aber die Schenkel nur teilweise beleuchtet. Die Oberfläche des Prismas 36 ist so beschaffen, dass entlang der Bewegungsrichtung des Flecks des Sendelichtstrahls 18 wenigstens zwei unterschiedliche Helligkeiten und/oder Farben vorgesehen sind. Beispielsweise kann die zuerst beleuchtete Hälfte eine große Helligkeit (”hellgrau”, ”weiß”) und die nach beleuchtete Hälfte eine kleine Helligkeit (”dunkelgrau”, ”schwarz”) aufweisen. Eine umgekehrte Reihenfolge oder ein Streifenmuster mit mehreren Wechseln der Helligkeiten ist auch möglich.
  • Aufgrund von Nichtlinearitäten in den elektronischen Bausteinen, beispielsweise im Lichtempfänger 21, hängen die gemessenen Distanzen d von der Signalstärke, d. h. der Helligkeit, der Temperatur und weiteren Parameter ab. Daher ist eine Distanzkorrektur notwendig, welche als Funktion der Helligkeit gespeichert ist und nichtlinear verläuft. Da das Prisma 36 eine bekannte Distanz d und bekannte Helligkeiten hat, kann mit Hilfe des Prismas 36 eine Korrektur der Distanzkorrektur erfolgen, und zwar online, d. h. im laufenden Betrieb können die Einflüsse der Temperatur und der anderen Parameter kompensiert werden, indem an den Helligkeiten des Prismas 36 entsprechenden Werten die Kurve der Distanzkorrektur an den Unterschied zwischen der bekannten Distanz und der gemessenen Distanz angepasst wird. Diese Korrektur der Distanzkorrektur wird vorzugsweise in der Steuer- und Auswertevorrichtung 22 vorgenommen.
  • Die Traverse 30a weist einen nach unten offenen Aufnahmeschacht auf, in welchen ein Schwenkachsenmodul 40 eingeführt ist. Das Schwenkachsenmodul 40 ist eine vormontierte Baugruppe, welche einerseits an der Tragstruktur 30 zu befestigende Teile und andererseits – relativ dazu drehbar – den Fuß 14 und an ihm befestigte Teile umfasst. Der Fuß 14 weist einen nach oben abstehenden Dom auf, an welchem eine vertikal nach oben abstehende Schwenkachse 42 befestigt, vorliegend angeschraubt, ist. An der Schwenkachse 42 ist ein horizontal angeordnetes Schneckenrad 44 befestigt. Die Schwenkachse 42 trägt einen Innenkopf 46, auf welchem mittels eines Kreuzrollenlagers 47 ein Außenkopf 48 gelagert ist. Am oberen Ende des Innenkopfes 46 ist eine horizontal angeordnete Encoderscheibe 50 befestigt, oberhalb derer der Außenkopf 48 Encoderleseköpfe 52 aufweist. Ferner sind zwischen dem Innenkopf 46 und dem Außenkopf 48 Schleifringe 54 für die interne (d. h. im Schwenkachsenmodul 40 erfolgende) Übertragung der Daten und der Energie der Stromversorgung vorgesehen. Am oberen Ende des Außenkopfes 48 und am unteren Ende des Fußes 14 sind elektrische Steckkontakte 55 für die Übertragung der Daten und Energie vom und zum Messkopf 12 vorgesehen.
  • Zum Zusammenwirken mit dem Schneckenrad 44 ist ein Motor 56 mit einem Planetengetriebe 57 vorgesehen, welcher in der Tragstruktur 30 gelagert ist und eine Schnecke 58 antreibt, welche mit dem Schneckenrad 44 kämmt. Das beschriebene Schwenkachsenmodul 40 wird in die Traverse 30a eingeführt, so dass die Steckkontakte 55 am Außenkopf 48 mit passenden Gegenkontakte zusammengesteckt werden, die Schnecke 58 mit dem Schneckenrad 44 kämmt, der Außenkopf 48 an der Tragstruktur 30 befestigt werden kann und zwischen dem Fuß 14 und der Trägerstruktur 30 eine Dichtung 59 zu liegen kommt. Im Schwenkachsenmodul 40 sind dann die Schwenkachse 42, das Schneckenrad 44, der Innenkopf 46 und die Encoderscheibe 50 am Fuß 14 befestigt, während relativ dazu drehbar an der Tragstruktur 30 der Außenkopf 48 und die Encoderleseköpfe 52 befestigt und der Motor 56 mit Planetengetriebe 57 und Schnecke 58 gelagert sind. Dadurch ist der Messkopf 12 relativ zum Fuß 14 um eine vertikale Achse drehbar.
  • Der Laserscanner 10 weist eine integrierte Kühlvorrichtung 70 auf, die mittels Luft kühlt, welche durch abgedichtete Kanäle strömt. Die Kühlvorrichtung 70 umfasst einen Ansaugkanal 72, der vorzugsweise mit rechteckigem Profil ausgebildet ist, einen Lüfter 74 und einen Ausblaskanal 76, der vorzugsweise ebenfalls mit rechteckigem Profil ausgebildet ist.. Der Lüfter 74 ist mit seinem Gehäuse abgedichtet an den Ansaugkanal 72 und an den Ausblaskanal 76 angeschlossen. Der Ansaugkanal 72 ist zwischen dem Motor 56 für die Schwenkbewegung des Messkopfes 12 und einem oberhalb davon angeordneten Motor für die Rotation des Spiegels 16 angeordnet. Der Ausblaskanal 76 ist zwischen dem Motor 56 und eine Elektronik angeordnet.
  • Der Ansaugkanal 72 öffnet sich zu einem (weitgehend) abgedichteten Zwischenraum Z zwischen der Tragstruktur 30 und der Schale 32. Die Abdichtung des Zwischenraums Z (gegenüber dem Inneren der Tragstruktur 30) verhindert das Eindringen von Schmutz und Staub in das Innere der Tragstruktur. Die Tragstruktur 30 weist unmittelbar neben dem Motor 56 Kühlrippen 78 auf, welche die Wärme aus dem Inneren der Tragstruktur 30 in den Zwischenraum Z leiten. Die Luft gelangt von außen über einen Lufteinlass 80, vorzugsweise ein Lüftungsgitter mit Lamellen, in den Zwischenraum Z. Ein Filter (beispielsweise eine Filtermatte) am Lufteinlass 80 verhindert das Eindringen von grobem Schmutz und Staub in den Zwischenraum Z.
  • Der Ausblaskanal 76 mündet – gegenüber dem Zwischenraum Z abgedichtet – an einem Luftauslass 82, vorzugsweise einem Lüftungsgitter mit lamellen. Der Lufteinlass 80 und der Luftauslass 82 sind voneinander beabstandet und vorliegend durch den Bügel 34 getrennt in der Schale 32 auf deren Unterseite ausgebildet ist. Vorzugsweise sind die Lamellen der Lüftungsgitter so gerichtet, dass die Luftströme zum Lufteinlass 80 und aus dem Luftauslass 82 heraus voneinander wegweisen, d. h. keine erwärmte Luft angesaugt wird. Zusätzlich verläuft zwischen dem Bereich des Messkopfes 12 mit der Steuer- und Auswertevorrichtung 22 und dem Ansaugkanal 72 eine Wärmeleitung, welche ebenfalls Wärme an die Kühlvorrichtung 70 liefert. Der Lüfter 74 saugt Luft über den Lufteinlass 80, den Zwischenraum Z und den Ansaugkanal 72 an und bläst die Luft über den Ausblaskanal 76 und den Luftauslass 82 wieder aus dem Laserscanner 10 aus. Dadurch erfolgt eine Kühlung.
  • Vorzugsweise weist der Laserscanner 10 verschiedene Sensoren auf, beispielsweise Thermometer, Neigungsmesser, Höhenmesser, Kompass, Kreiselkompass, GPS etc., die vorzugsweise an die Steuer- und Auswertevorrichtung 22 angeschlossen sind. Mittels der besagten Sensoren werden die Betriebsbedingungen des Laserscanners 10 überwacht, welche durch bestimmte Parameter, beispielsweise geometrische Ausrichtung oder Temperatur, definiert werden. Weisen ein oder mehrerer Parameter einen Drift auf, wird dieser mit den zugeordneten Sensoren erkannt und kann von der Steuer- und Auswertevorrichtung 22 kompensiert werden. Mittels der besagten Sensoren kann auch eine plötzliche Änderung der Betriebsbedingungen erkannt werden, beispielsweise ein die Ausrichtung ändernder Schlag auf den Laserscanner 10 oder eine Verschiebung des Laserscanners 10. Wenn der Umfang der besagten Änderung nicht genau genug erfasst werden kann, ist der Scanvorgang zu unterbrechen oder abzubrechen. Wenn der Umfang der besagten Änderung der Betriebsbedingungen grob abgeschätzt werden kann, kann der Messkopf 12 ein paar Winkelgrade zurückgedreht werden (bis eine Überlappung mit dem Bereich besteht, welcher vor der plötzlichen Änderung gescannt wurde), und der Scanvorgang wird fortgesetzt. Die zwei verschiedenen Teile des Scans können durch Auswertung des überlappenden Bereichs zusammengefügt werden.
  • Bezugszeichenliste
  • 10
    Laserscanner
    12
    Messkopf
    14
    Fuß
    16
    Spiegel
    17
    Lichtsender
    18
    Sendelichtstrahl
    20
    Empfangslichtstrahl
    21
    Lichtempfänger
    22
    Steuer- und Auswertevorrichtung
    24
    Anzeigevorrichtung
    30
    Tragstruktur
    30a
    Traverse
    30b
    Wand
    32
    Schale
    34
    Bügel
    36
    Prisma
    40
    Schwenkachsenmodul
    42
    Schwenkachse
    44
    Schneckenrad
    46
    Innenkopf
    47
    Kreuzrollenlager
    48
    Außenkopf
    50
    Encoderscheibe
    52
    Encoderlesekopf
    54
    Schleifring
    55
    Steckkontakte
    56
    Motor
    57
    Planetengetriebe
    58
    Schnecke
    70
    Kühlvorrichtung
    72
    Ansaugkanal
    74
    Lüfter
    76
    Ausblaskanal
    78
    Kühlrippe
    80
    Lufteinlass
    82
    Luftauslass
    C10
    Zentrum des Laserscanners
    d
    Distanz
    O
    Objekt
    X
    Messpunkt
    Z
    Zwischenraum

Claims (8)

  1. Vorrichtung zum optischen Abtasten und Vermessen einer Umgebung, die als Laserscanner (10) ausgebildet ist, mit a) einem Lichtsender (17), der einen Sendelichtstrahl (18) aussendet, b) einem Lichtempfänger (21), der einen von einem Objekt (O) in der Umgebung des Laserscanners (10) reflektierten oder sonst irgendwie gestreuten Empfangslichtstrahl (20) empfängt, c) einer Steuer- und Auswertevorrichtung (22), die für eine Vielzahl von Messpunkten (X) jeweils wenigstens die Distanz zum Objekt (O) ermittelt, d) einer Tragstruktur (30) eines Messkopfes (12), welcher relativ zu einem im stationären Bezugssystems des Laserscanners (10) ruhenden Fuß (14) drehbar ist, und e) einem Schwenkachsenmodul (40), welches als vormontierte Baugruppe einerseits den Fuß (14) und andererseits Teile aufweist, die an der Tragstruktur (30) zu befestigen sind, und welches in einen Aufnahmeschacht einer Traverse (30a) der Tragstruktur (30) eingeführt ist, wobei die mechanischen und elektrischen Schnittstellen zwischen dem Schwenkachsenmodul (40) und den an der Tragstruktur (30) befestigten Teilen des Laserscanners (10) aufgrund des Einführens des Schwenkachsenmoduls (40) in den Aufnahmeschacht geschlossen sind.
  2. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass das Schwenkachsenmodul (40) eine am Fuß (14) befestigte Schwenkachse (42) aufweist.
  3. Vorrichtung nach Anspruch 2, dadurch gekennzeichnet, dass das Schwenkachsenmodul (40) ein Schneckenrad (44) aufweist, welches insbesondere an der Schwenkachse (42) befestigt ist, und welches mit einer Schnecke (58) kämmt, welche ein insbesondere im Messkopf (12) gelagerter Motor (56) antreibt.
  4. Vorrichtung nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass das Schwenkachsenmodul (40) einen Innenkopf (46), welcher insbesondere am Fuß (14) befestigt ist, und einen Außenkopf (48) aufweist, welcher relativ zum Innenkopf (46) drehbar gelagert ist, insbesondere mittels eines Kreuzrollenlagers (47).
  5. Vorrichtung nach Anspruch 4, dadurch gekennzeichnet, dass das Schwenkachsenmodul (40) eine Encoderscheibe (50), die insbesondere am Innenkopf (46) befestigt ist, und wenigstens einen relativ zur Encoderscheibe (50) drehbaren Encoderlesekopf (52), der insbesondere am Außenkopf (48) befestigt ist, aufweist, und/oder dass das Schwenkachsenmodul (40) Schleifringe (54) zwischen den relativ zu einander drehbaren Teilen für die interne Übertragung der Daten und der Energie und/oder Steckkontakte (55) für die Übertragung der Daten und Energie vorn und zum Messkopf (12).
  6. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass als Teil eines Gehäuse des Laserscanners (10) wenigstens eine Schale (32) vorgesehen ist, welche auf ihrer Außenseite teilweise von wenigstens einem als Schutz dienenden Bügel (34) abgedeckt wird.
  7. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Fleck des Sendelichtstrahls (18) sich zeitweise entlang eines Prismas (36) des Laserscanners (10) bewegt, welches wenigstens zwei unterschiedliche Helligkeiten und/oder Farben aufweist.
  8. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Laserscanner (10) eine Kühlvorrichtung (70) mit einem Zwischenraum (Z) zwischen einer Tragstruktur (30) und einer als Gehäuse dienenden Schale (32) aufweist, welcher sich mittels eines Lufteinlasses (80) nach außen öffnet und ansonsten gegenüber dem Inneren der Tragstruktur (30) und gegenüber der Schale (32) abgedichtet ist.
DE102010032725A 2010-07-26 2010-07-26 Vorrichtung zum optischen Abtasten und Vermessen einer Umgebung Expired - Fee Related DE102010032725B4 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE102010032725A DE102010032725B4 (de) 2010-07-26 2010-07-26 Vorrichtung zum optischen Abtasten und Vermessen einer Umgebung
US13/190,742 US8699007B2 (en) 2010-07-26 2011-07-26 Device for optically scanning and measuring an environment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102010032725A DE102010032725B4 (de) 2010-07-26 2010-07-26 Vorrichtung zum optischen Abtasten und Vermessen einer Umgebung

Publications (2)

Publication Number Publication Date
DE102010032725A1 DE102010032725A1 (de) 2012-01-26
DE102010032725B4 true DE102010032725B4 (de) 2012-04-26

Family

ID=45443533

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102010032725A Expired - Fee Related DE102010032725B4 (de) 2010-07-26 2010-07-26 Vorrichtung zum optischen Abtasten und Vermessen einer Umgebung

Country Status (2)

Country Link
US (1) US8699007B2 (de)
DE (1) DE102010032725B4 (de)

Families Citing this family (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006031580A1 (de) 2006-07-03 2008-01-17 Faro Technologies, Inc., Lake Mary Verfahren und Vorrichtung zum dreidimensionalen Erfassen eines Raumbereichs
DE102009010465B3 (de) 2009-02-13 2010-05-27 Faro Technologies, Inc., Lake Mary Laserscanner
DE102009015920B4 (de) 2009-03-25 2014-11-20 Faro Technologies, Inc. Vorrichtung zum optischen Abtasten und Vermessen einer Umgebung
US9551575B2 (en) 2009-03-25 2017-01-24 Faro Technologies, Inc. Laser scanner having a multi-color light source and real-time color receiver
DE102009035337A1 (de) 2009-07-22 2011-01-27 Faro Technologies, Inc., Lake Mary Verfahren zum optischen Abtasten und Vermessen eines Objekts
DE102009035336B3 (de) * 2009-07-22 2010-11-18 Faro Technologies, Inc., Lake Mary Vorrichtung zum optischen Abtasten und Vermessen einer Umgebung
US9113023B2 (en) 2009-11-20 2015-08-18 Faro Technologies, Inc. Three-dimensional scanner with spectroscopic energy detector
US9529083B2 (en) 2009-11-20 2016-12-27 Faro Technologies, Inc. Three-dimensional scanner with enhanced spectroscopic energy detector
DE102009055988B3 (de) 2009-11-20 2011-03-17 Faro Technologies, Inc., Lake Mary Vorrichtung zum optischen Abtasten und Vermessen einer Umgebung
US9210288B2 (en) 2009-11-20 2015-12-08 Faro Technologies, Inc. Three-dimensional scanner with dichroic beam splitters to capture a variety of signals
DE102009057101A1 (de) 2009-11-20 2011-05-26 Faro Technologies, Inc., Lake Mary Vorrichtung zum optischen Abtasten und Vermessen einer Umgebung
DE102009055989B4 (de) 2009-11-20 2017-02-16 Faro Technologies, Inc. Vorrichtung zum optischen Abtasten und Vermessen einer Umgebung
US9879976B2 (en) 2010-01-20 2018-01-30 Faro Technologies, Inc. Articulated arm coordinate measurement machine that uses a 2D camera to determine 3D coordinates of smoothly continuous edge features
US9607239B2 (en) 2010-01-20 2017-03-28 Faro Technologies, Inc. Articulated arm coordinate measurement machine having a 2D camera and method of obtaining 3D representations
DE112011100293T5 (de) 2010-01-20 2013-01-10 Faro Technologies, Inc. Tragbares Gelenkarm-Koordinatenmessgerät und integriertes Umgebungsaufzeichnungsgerät
US9163922B2 (en) 2010-01-20 2015-10-20 Faro Technologies, Inc. Coordinate measurement machine with distance meter and camera to determine dimensions within camera images
US9628775B2 (en) 2010-01-20 2017-04-18 Faro Technologies, Inc. Articulated arm coordinate measurement machine having a 2D camera and method of obtaining 3D representations
DE102010020925B4 (de) 2010-05-10 2014-02-27 Faro Technologies, Inc. Verfahren zum optischen Abtasten und Vermessen einer Umgebung
DE102010032726B3 (de) 2010-07-26 2011-11-24 Faro Technologies, Inc. Vorrichtung zum optischen Abtasten und Vermessen einer Umgebung
DE102010032725B4 (de) 2010-07-26 2012-04-26 Faro Technologies, Inc. Vorrichtung zum optischen Abtasten und Vermessen einer Umgebung
DE102010032723B3 (de) 2010-07-26 2011-11-24 Faro Technologies, Inc. Vorrichtung zum optischen Abtasten und Vermessen einer Umgebung
DE102010033561B3 (de) 2010-07-29 2011-12-15 Faro Technologies, Inc. Vorrichtung zum optischen Abtasten und Vermessen einer Umgebung
EP2633364B1 (de) * 2010-10-25 2023-09-06 Nikon Corporation Vorrichtung, optische anordnung, verfahren zur untersuchung oder vermessung eines objektes und verfahren zur herstellung einer struktur
US9168654B2 (en) 2010-11-16 2015-10-27 Faro Technologies, Inc. Coordinate measuring machines with dual layer arm
DE102012100609A1 (de) 2012-01-25 2013-07-25 Faro Technologies, Inc. Vorrichtung zum optischen Abtasten und Vermessen einer Umgebung
US8997362B2 (en) 2012-07-17 2015-04-07 Faro Technologies, Inc. Portable articulated arm coordinate measuring machine with optical communications bus
DE102012107544B3 (de) * 2012-08-17 2013-05-23 Faro Technologies, Inc. Vorrichtung zum optischen Abtasten und Vermessen einer Umgebung
US9074878B2 (en) 2012-09-06 2015-07-07 Faro Technologies, Inc. Laser scanner
CN104620129A (zh) 2012-09-14 2015-05-13 法罗技术股份有限公司 具有角扫描速度的动态调整的激光扫描仪
US9513107B2 (en) 2012-10-05 2016-12-06 Faro Technologies, Inc. Registration calculation between three-dimensional (3D) scans based on two-dimensional (2D) scan data from a 3D scanner
DE102012109481A1 (de) 2012-10-05 2014-04-10 Faro Technologies, Inc. Vorrichtung zum optischen Abtasten und Vermessen einer Umgebung
US10067231B2 (en) 2012-10-05 2018-09-04 Faro Technologies, Inc. Registration calculation of three-dimensional scanner data performed between scans based on measurements by two-dimensional scanner
JP2015114309A (ja) * 2013-12-16 2015-06-22 株式会社オプトン 計測装置
US9594250B2 (en) 2013-12-18 2017-03-14 Hexagon Metrology, Inc. Ultra-portable coordinate measurement machine
TWI584858B (zh) * 2015-02-03 2017-06-01 鴻富錦精密工業(武漢)有限公司 投影遊戲裝置
US10175360B2 (en) 2015-03-31 2019-01-08 Faro Technologies, Inc. Mobile three-dimensional measuring instrument
JP2017072709A (ja) * 2015-10-07 2017-04-13 株式会社トプコン 結像光学部材及び測量機の光学系
DE102015122843B3 (de) * 2015-12-27 2017-01-19 Faro Technologies, Inc. 3D-Messvorrichtung mit Zubehörschnittstelle
DE102015122844A1 (de) 2015-12-27 2017-06-29 Faro Technologies, Inc. 3D-Messvorrichtung mit Batteriepack
GB2555199B (en) 2016-08-19 2022-03-16 Faro Tech Inc Using a two-dimensional scanner to speed registration of three-dimensional scan data
US10380749B2 (en) 2016-09-26 2019-08-13 Faro Technologies, Inc. Device and method for indoor mobile mapping of an environment
US10282854B2 (en) 2016-10-12 2019-05-07 Faro Technologies, Inc. Two-dimensional mapping system and method of operation
US10824773B2 (en) 2017-03-28 2020-11-03 Faro Technologies, Inc. System and method of scanning an environment and generating two dimensional images of the environment
US10267614B2 (en) 2017-04-13 2019-04-23 Sa08700334 Ultra-light and ultra-accurate portable coordinate measurement machine
US11566880B2 (en) 2017-04-13 2023-01-31 Sa08700334 Ultra-light and ultra-accurate portable coordinate measurement machine substantially immune to bearing assembly thermal effects
US11054237B2 (en) 2019-04-04 2021-07-06 Sa08700334 Ultra-light and ultra-accurate portable coordinate measurement machine with unique base plate arrangement
US11092419B2 (en) 2017-04-13 2021-08-17 Sa08700334 Ultra-light and ultra-accurate portable coordinate measurement machine with multi-piece joint engagement
US9803973B1 (en) 2017-04-13 2017-10-31 Sa08700334 Ultra-light and ultra-accurate portable coordinate measurement machine
US10634478B2 (en) 2017-04-13 2020-04-28 Sa08700334 Ultra-light and ultra-accurate portable coordinate measurement machine with serial bus capture
US10782118B2 (en) 2018-02-21 2020-09-22 Faro Technologies, Inc. Laser scanner with photogrammetry shadow filling
US11055532B2 (en) 2018-05-02 2021-07-06 Faro Technologies, Inc. System and method of representing and tracking time-based information in two-dimensional building documentation
DE102018216123A1 (de) * 2018-09-21 2020-03-26 Robert Bosch Gmbh Sensoreinheit mit Reinigungsfunktion
US11024050B2 (en) 2018-11-05 2021-06-01 Faro Technologies, Inc. System and method of scanning an environment
US11486701B2 (en) 2019-02-06 2022-11-01 Faro Technologies, Inc. System and method for performing a real-time wall detection
US11579252B2 (en) * 2019-10-08 2023-02-14 Ford Global Technologies, Llc Sensor-cooling apparatus
US11501478B2 (en) 2020-08-17 2022-11-15 Faro Technologies, Inc. System and method of automatic room segmentation for two-dimensional laser floorplans
US11747126B1 (en) 2022-05-20 2023-09-05 Sa08700334 Ultra-light and ultra-accurate portable coordinate measurement machine with reduced profile swivel joints

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE20320216U1 (de) * 2003-12-29 2004-03-18 Iqsun Gmbh Laserscanner
DE202006005643U1 (de) * 2006-03-31 2006-07-06 Faro Technologies Inc., Lake Mary Vorrichtung zum dreidimensionalen Erfassen eines Raumbereichs

Family Cites Families (213)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1112941A (en) 1965-01-02 1968-05-08 Smiths Industries Ltd Improvements in or relating to scanning apparatus
AT307762B (de) 1971-04-28 1973-06-12 Eumig Verfahren und Einrichtung zur Entfernungsmessung
US3899145A (en) 1973-07-20 1975-08-12 Us Navy Laser transmitting and receiving lens optics
US3945729A (en) 1974-12-30 1976-03-23 Stanford Research Institute Combined ranging and color sensor
DD201245A1 (de) 1981-10-16 1983-07-13 Rolf Jurenz Optische anordnung zur automatischen scharfeinstellung
US4733961A (en) 1983-03-07 1988-03-29 Texas Instruments Incorporated Amplifier for integrated laser/FLIR rangefinder
DE3340317A1 (de) 1983-11-08 1984-08-16 Walter 4790 Paderborn Hesse Messgeraet zur gleichzeitigen lage- und hoehenbestimmung von punkten in schwer zugaenglichen hohlraeumen
CA1268654A (en) 1985-10-24 1990-05-08 Arkady Kutman Camera support and housing
DE3623343C1 (de) 1986-07-11 1989-12-21 Bodenseewerk Geraetetech Optischer Sucher mit Rosettenabtastung
US5155684A (en) 1988-10-25 1992-10-13 Tennant Company Guiding an unmanned vehicle by reference to overhead features
JP2916687B2 (ja) 1989-07-27 1999-07-05 飛島建設株式会社 自動測量装置
US4984881A (en) 1989-12-19 1991-01-15 Ebara Corporation Rotation supporting device of a polygon mirror
CA2038818A1 (en) 1990-03-30 1991-10-01 Akio Nagamune Distance measuring method and apparatus therefor
US5675326A (en) 1990-04-11 1997-10-07 Auto-Sense, Ltd. Method of determining optimal detection beam locations using reflective feature mapping
SE466726B (sv) 1990-08-20 1992-03-23 Kent Lennartsson Anordning vid distribuerat datorsystem
DE4027990C1 (en) 1990-09-04 1992-02-20 Messerschmitt-Boelkow-Blohm Gmbh, 8012 Ottobrunn, De Laser ranging device - uses modulated semiconductor laser and phase sensitive rectifier
JPH04115108A (ja) 1990-09-05 1992-04-16 Matsushita Electric Ind Co Ltd 三次元スキャナ
US5371347A (en) 1991-10-15 1994-12-06 Gap Technologies, Incorporated Electro-optical scanning system with gyrating scan head
JP2969009B2 (ja) 1991-02-22 1999-11-02 株式会社リコー 軸状ミラ−偏向器
US5231470A (en) 1991-09-06 1993-07-27 Koch Stephen K Scanning system for three-dimensional object digitizing
JPH0572477A (ja) 1991-09-13 1993-03-26 Toshiba Corp アフオ−カル光学装置
US5918029A (en) 1996-09-27 1999-06-29 Digital Equipment Corporation Bus interface slicing mechanism allowing for a control/data-path slice
DE4219260C2 (de) * 1992-06-12 1994-07-14 Leuze Electronic Gmbh & Co Lichtelektrische Vorrichtung mit einem Testobjekt
DE4222642A1 (de) 1992-07-10 1994-01-13 Bodenseewerk Geraetetech Bilderfassende Sensoreinheit
US5313261A (en) 1992-07-13 1994-05-17 Applied Remote Technology Inc. Method and apparatus for faithful gray scale representation of under water laser images
US5329347A (en) 1992-09-16 1994-07-12 Varo Inc. Multifunction coaxial objective system for a rangefinder
US5402365A (en) 1992-10-28 1995-03-28 Motorola, Inc. Differential odometer dynamic calibration method and apparatus therefor
DE4340756C5 (de) 1992-12-08 2006-08-10 Sick Ag Laserabstandsermittlungsvorrichtung
DE4303804C2 (de) 1993-02-10 1996-06-27 Leuze Electronic Gmbh & Co Einrichtung zur Entfernungsmessung
JPH07209080A (ja) 1993-12-28 1995-08-11 Amberg Measuring Technik Ltd 光学走査装置
JPH07218261A (ja) 1994-02-03 1995-08-18 Nikon Corp レーザ投光装置
IL108646A0 (en) 1994-02-14 1995-03-15 Israel State Opto-mechanical system
JPH07229963A (ja) 1994-02-21 1995-08-29 Oki Electric Ind Co Ltd 航跡の検出方法
GB2308256B (en) 1995-05-02 2000-02-09 Tokimec Inc An apparatus for measuring a shape of road surface
JP3619545B2 (ja) 1994-08-23 2005-02-09 オリンパス株式会社 カメラの測距装置
US5517297A (en) 1994-10-13 1996-05-14 Hughes Aircraft Company Rangefinder with transmitter, receiver, and viewfinder on a single common optical axis
JPH08129145A (ja) 1994-11-01 1996-05-21 Nec Eng Ltd 回転偏向ユニット
JPH08136849A (ja) 1994-11-08 1996-05-31 Konica Corp 光走査装置
US5793993A (en) 1995-01-26 1998-08-11 General Magic, Inc. Method for transmitting bus commands and data over two wires of a serial bus
JP3582918B2 (ja) 1995-02-14 2004-10-27 株式会社トプコン レーザ測量機
JPH08262140A (ja) 1995-03-20 1996-10-11 Tokyo Gas Co Ltd レーザレーダ用光線あおり機構および該あおり機構を使用したレーザ装置
DE19521771A1 (de) 1995-06-20 1997-01-02 Jan Michael Mrosik FMCW-Abstandsmeßverfahren
US5894123A (en) 1995-10-30 1999-04-13 Kabushiki Kaisha Topcon Laser rotary irradiating system for irradiating a laser beam
US5734417A (en) 1995-12-05 1998-03-31 Yokogawa Precision Corporation Visual presentation equipment
US20020014533A1 (en) 1995-12-18 2002-02-07 Xiaxun Zhu Automated object dimensioning system employing contour tracing, vertice detection, and forner point detection and reduction methods on 2-d range data maps
DE19601875C2 (de) 1996-01-19 1999-08-19 Siemens Ag Verfahren und Vorrichtung zur Elimination von Störeinflüssen beim FMCW-Radar
DE19607345A1 (de) 1996-02-27 1997-08-28 Sick Ag Laserabstandsermittlungsvorrichtung
US5936721A (en) 1996-03-18 1999-08-10 Kabushiki Kaisha Topcon Guide beam direction setting apparatus
JP3908297B2 (ja) 1996-03-19 2007-04-25 株式会社トプコン レーザ測量機
US5831719A (en) * 1996-04-12 1998-11-03 Holometrics, Inc. Laser scanning system
US5988862A (en) 1996-04-24 1999-11-23 Cyra Technologies, Inc. Integrated system for quickly and accurately imaging and modeling three dimensional objects
JPH102714A (ja) 1996-06-19 1998-01-06 Canon Inc 測定方法及び装置
US6057915A (en) 1996-06-21 2000-05-02 Thermotrex Corporation Projectile tracking system
KR100268048B1 (ko) 1996-10-28 2000-11-01 고바야시 마사키 수중레이저영상장치
DE19647152A1 (de) * 1996-11-14 1998-05-28 Sick Ag Laserabstandsermittlungsvorrichtung
JPH10246863A (ja) 1997-03-05 1998-09-14 Sankyo Seiki Mfg Co Ltd 回転多面鏡型光偏向器
WO1998044287A1 (en) 1997-03-28 1998-10-08 Thieltges Gary P Motion stable camera support system
US6069700A (en) 1997-07-31 2000-05-30 The Boeing Company Portable laser digitizing system for large parts
DE19806288A1 (de) 1998-02-16 1999-08-26 Fraunhofer Ges Forschung Laserscanner-Meßsystem
US6480270B1 (en) 1998-03-10 2002-11-12 Riegl Laser Measurement Systems Gmbh Method for monitoring objects or an object area
DE19811550C2 (de) 1998-03-18 2002-06-27 Bosch Gmbh Robert Verfahren und Schaltungsanordnung zur Erzeugung von Frequenzsignalen
EP0949524A1 (de) 1998-04-07 1999-10-13 Fujifilm Electronic Imaging Limited Drehbarer Spiegel
ATE261108T1 (de) 1998-04-24 2004-03-15 Inco Ltd Automatisch geführtes fahrzeug
JP3835016B2 (ja) 1998-10-16 2006-10-18 三菱電機株式会社 レーザレーダ装置
DE19850118A1 (de) 1998-10-30 2000-05-11 Siemens Ag Profilmeßsystem und Verfahren zur Durchführung
JP4088906B2 (ja) 1998-12-16 2008-05-21 株式会社トプコン 測量機の受光装置
JP4180718B2 (ja) 1999-01-29 2008-11-12 株式会社トプコン 回転レーザ装置
JP2000249546A (ja) 1999-02-26 2000-09-14 Seiko Precision Inc 携帯式小型電子メジャー
US6675122B1 (en) 1999-04-19 2004-01-06 Leica Geosystems Ag Indirect position determination with the aid of a tracker
WO2000063681A2 (de) 1999-04-19 2000-10-26 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Bildbearbeitung zur vorbereitung einer texturnalyse
DE19928958A1 (de) 1999-05-22 2000-11-23 Volkswagen Ag Laserscanner
JP2000339468A (ja) 1999-05-31 2000-12-08 Minolta Co Ltd 3次元データの位置合わせ方法及び装置
EP1067361A1 (de) 1999-07-06 2001-01-10 Datalogic S.P.A. Verfahren und Vorrichtung zur Entfernungsmessung eines Objekts
ATE219575T1 (de) 1999-08-31 2002-07-15 Leica Geosystems Ag Tachymeter-fernrohr
US6650402B2 (en) 2000-02-10 2003-11-18 Oceanit Laboratories, Inc. Omni-directional cloud height indicator
US6825923B2 (en) 2000-03-10 2004-11-30 Hamar Laser Instruments, Inc. Laser alignment system with plural lasers for impingement on a single target
JP4613337B2 (ja) 2000-05-29 2011-01-19 株式会社ニコン 顕微鏡
US6750873B1 (en) 2000-06-27 2004-06-15 International Business Machines Corporation High quality texture reconstruction from multiple scans
JP2004504586A (ja) 2000-07-13 2004-02-12 ベルス・メステヒニーク・ゲーエムベーハー 物体の幾何学的形状の無接触測定のための方法
US6734410B2 (en) 2000-08-30 2004-05-11 Pentax Precision Co., Ltd. Surveying instrument having an optical distance meter and an autofocus system, and a surveying instrument having a detachable autofocus system
US6639684B1 (en) 2000-09-13 2003-10-28 Nextengine, Inc. Digitizer using intensity gradient to image features of three-dimensional objects
US7076420B1 (en) 2000-10-26 2006-07-11 Cypress Semiconductor Corp. Emulator chip/board architecture and interface
FR2817339B1 (fr) 2000-11-24 2004-05-14 Mensi Dispositif de relevement tridimensionnel d'une scene a emission laser
JP4595197B2 (ja) 2000-12-12 2010-12-08 株式会社デンソー 距離測定装置
US7101300B2 (en) 2001-01-23 2006-09-05 Black & Decker Inc. Multispeed power tool transmission
DE10137241A1 (de) 2001-03-15 2002-09-19 Tecmath Ag Registrierung von Tiefenbildern mittels optisch projizierter Marken
DE10112833C1 (de) 2001-03-16 2003-03-13 Hilti Ag Verfahren und Einrichtung zur elektrooptischen Distanzmessung
EP1407291B1 (de) 2001-04-10 2010-12-15 Faro Technologies Inc. Chopper-stabilisiertes messgerät für absolute distanzen
JP4530571B2 (ja) 2001-04-16 2010-08-25 Hoya株式会社 3次元画像検出装置
US6649208B2 (en) 2001-04-17 2003-11-18 Wayne E. Rodgers Apparatus and method for thin film deposition onto substrates
JP2003050128A (ja) 2001-08-07 2003-02-21 Sokkia Co Ltd 測距測角儀
DE20208077U1 (de) 2001-08-30 2002-09-26 Z & F Zoller & Froehlich Gmbh Laser-Meßsystem
US7190465B2 (en) 2001-08-30 2007-03-13 Z + F Zoller & Froehlich Gmbh Laser measurement system
DE10143060A1 (de) 2001-09-03 2003-03-20 Sick Ag Optoelektronische Erfassungseinrichtung
AT412028B (de) 2001-11-09 2004-08-26 Riegl Laser Measurement Sys Einrichtung zur aufnahme eines objektraumes
JP2003156330A (ja) 2001-11-22 2003-05-30 Nec Corp 航空機搭載地形計測装置及び方法
JP2003156562A (ja) 2001-11-22 2003-05-30 Optec:Kk 光波距離計
US6759979B2 (en) 2002-01-22 2004-07-06 E-Businesscontrols Corp. GPS-enhanced system and method for automatically capturing and co-registering virtual models of a site
EP1474649B1 (de) * 2002-02-14 2008-01-02 Faro Technologies Inc. Tragbare koordinatenmessmaschine mit gelenkarm
AT411299B (de) 2002-03-04 2003-11-25 Riegl Laser Measurement Sys Verfahren zur aufnahme eines objektraumes
JP4004316B2 (ja) 2002-03-20 2007-11-07 株式会社トプコン 測量装置及び測量装置を用いて画像データを取得する方法
GB0211473D0 (en) 2002-05-18 2002-06-26 Aea Technology Plc Railway surveying
JP2004037317A (ja) 2002-07-04 2004-02-05 Murata Mfg Co Ltd 三次元形状測定方法、三次元形状測定装置
DE10232028C5 (de) 2002-07-16 2011-07-07 Leuze electronic GmbH + Co. KG, 73277 Optischer Sensor
JP2004109106A (ja) 2002-07-22 2004-04-08 Fujitsu Ltd 表面欠陥検査方法および表面欠陥検査装置
JP4121803B2 (ja) 2002-08-08 2008-07-23 株式会社トプコン 光波距離測定装置
JP2004093504A (ja) 2002-09-03 2004-03-25 Topcon Corp 測量装置
DE10244643A1 (de) 2002-09-25 2004-04-08 Ibeo Automobile Sensor Gmbh Optoelektronische Erfassungseinrichtung
JP4228132B2 (ja) 2002-10-18 2009-02-25 株式会社トプコン 位置測定装置
US7069124B1 (en) 2002-10-28 2006-06-27 Workhorse Technologies, Llc Robotic modeling of voids
GB2395261A (en) 2002-11-11 2004-05-19 Qinetiq Ltd Ranging apparatus
JP2006521536A (ja) 2002-11-26 2006-09-21 ジェームス エフ. マンロ 高精度の距離測定装置およびその方法
DE10261386A1 (de) 2002-12-30 2004-07-08 Robert Bosch Gmbh Vorrichtung für einen Leitungsabschluss von Zweidraht-Leitungen
SE526913C2 (sv) 2003-01-02 2005-11-15 Arnex Navigation Systems Ab Förfarande i form av intelligenta funktioner för fordon och automatiska lastmaskiner gällande kartläggning av terräng och materialvolymer, hinderdetektering och styrning av fordon och arbetsredskap
JP2004245832A (ja) 2003-01-22 2004-09-02 Pentax Corp マルチビーム走査カラー検査装置
US7145926B2 (en) 2003-01-24 2006-12-05 Peter Vitruk RF excited gas laser
DE10304188A1 (de) 2003-01-29 2004-08-19 Iqsun Gmbh 3D-Scanner
DE10305010B4 (de) 2003-02-07 2012-06-28 Robert Bosch Gmbh Vorrichtung und Verfahren zur Bilderzeugung
US20040221790A1 (en) 2003-05-02 2004-11-11 Sinclair Kenneth H. Method and apparatus for optical odometry
JP4284644B2 (ja) 2003-05-23 2009-06-24 財団法人生産技術研究奨励会 3次元モデル構築システム及び3次元モデル構築プログラム
JP3875665B2 (ja) 2003-07-31 2007-01-31 北陽電機株式会社 スキャニング型レンジセンサ
JP2005069700A (ja) 2003-08-25 2005-03-17 East Japan Railway Co 三次元データ取得装置
JP2005077379A (ja) 2003-09-03 2005-03-24 Denso Corp レーダ装置
DE10348019A1 (de) 2003-10-15 2005-05-25 Henkel Kgaa Verfahren zur computergestützten Simulation einer Maschinen-Anordnung, Simulationseinrichtung, Computerlesbares Speichermedium und Computerprogramm-Element
US7307701B2 (en) 2003-10-30 2007-12-11 Raytheon Company Method and apparatus for detecting a moving projectile
AT413453B (de) 2003-11-21 2006-03-15 Riegl Laser Measurement Sys Einrichtung zur aufnahme eines objektraumes
JP4344224B2 (ja) 2003-11-21 2009-10-14 浜松ホトニクス株式会社 光学マスクおよびmopaレーザ装置
DE10359415A1 (de) 2003-12-16 2005-07-14 Trimble Jena Gmbh Verfahren zur Kalibrierung eines Vermessungsgeräts
DE10361870B4 (de) 2003-12-29 2006-05-04 Faro Technologies Inc., Lake Mary Laserscanner und Verfahren zum optischen Abtasten und Vermessen einer Umgebung des Laserscanners
US6893133B1 (en) * 2004-01-15 2005-05-17 Yin S. Tang Single panel color image projection system
JP2005215917A (ja) 2004-01-29 2005-08-11 Hitachi Plant Eng & Constr Co Ltd 施工図作成支援方法およびリプレースモデル作成方法
US7140213B2 (en) * 2004-02-21 2006-11-28 Strattec Security Corporation Steering column lock apparatus and method
WO2005084248A2 (en) 2004-03-01 2005-09-15 Quantapoint, Inc Method and apparatus for creating a registration network of a scene
DE102004015111A1 (de) 2004-03-27 2005-10-20 Fraunhofer Ges Forschung Verfahren zur Ermittlung der Position und Orientierung eines navigierenden Systems
DE102004028090A1 (de) 2004-06-09 2005-12-29 Robert Bosch Gmbh Verfahren zur Kalibrierung einer Sensorik zur Fahrzeuginnenraumüberwachung
EP1610091A1 (de) 2004-06-23 2005-12-28 Leica Geosystems AG Scannersystem und Verfahren zur Erfassung von Oberflächen
EP2177413B1 (de) 2004-07-15 2015-02-25 Hitachi, Ltd. Fahrzeugsteuerungssystem
JP2006038683A (ja) 2004-07-28 2006-02-09 Sokkia Co Ltd 三次元測定機
WO2006121457A2 (en) 2004-08-18 2006-11-16 Sarnoff Corporation Method and apparatus for performing three-dimensional computer modeling
US7352446B2 (en) 2004-09-30 2008-04-01 Faro Technologies, Inc. Absolute distance meter that measures a moving retroreflector
DE102004052075A1 (de) 2004-10-26 2006-04-27 Jungheinrich Ag Knoten für ein Bus-Netzwerk, Bus-Netzwerk und Verfahren zum Konfigurieren des Netzwerks
DE102005027208B4 (de) 2004-11-16 2011-11-10 Zoller & Fröhlich GmbH Verfahren zur Ansteuerung eines Laserscanners
EP1659417A1 (de) 2004-11-19 2006-05-24 Leica Geosystems AG Verfahren zur Bestimmung der Ausrichtung eines Ausrichtungsindikators
GB2421383A (en) 2004-12-07 2006-06-21 Instro Prec Ltd Surface profile measurement
US7477359B2 (en) 2005-02-11 2009-01-13 Deltasphere, Inc. Method and apparatus for making and displaying measurements based upon multiple 3D rangefinder data sets
AU2005200937A1 (en) 2005-03-02 2006-09-21 Maptek Pty Ltd Imaging system
JP2006268260A (ja) 2005-03-23 2006-10-05 Seiko Epson Corp データ転送制御装置及び電子機器
DE102005018837A1 (de) 2005-04-22 2006-10-26 Robert Bosch Gmbh Verfahren und Vorrichtung zur Synchronisation zweier Bussysteme sowie Anordnung aus zwei Bussystemen
JP4819403B2 (ja) * 2005-06-06 2011-11-24 株式会社トプコン 距離測定装置
US7285793B2 (en) 2005-07-15 2007-10-23 Verisurf Software, Inc. Coordinate tracking system, apparatus and method of use
ATE504872T1 (de) 2005-07-26 2011-04-15 Macdonald Dettwiler & Associates Inc Führungs-, navigations- und steuersystem für ein fahrzeug
JP4842954B2 (ja) * 2005-08-25 2011-12-21 Thk株式会社 運動案内装置
US7551771B2 (en) 2005-09-20 2009-06-23 Deltasphere, Inc. Methods, systems, and computer program products for acquiring three-dimensional range information
AU2006304812B2 (en) 2005-10-21 2012-02-02 Deere & Company Versatile robotic control module
JP4375320B2 (ja) 2005-10-27 2009-12-02 株式会社日立製作所 移動ロボット
WO2007051972A1 (en) 2005-10-31 2007-05-10 Qinetiq Limited Navigation system
TWI287103B (en) 2005-11-04 2007-09-21 Univ Nat Chiao Tung Embedded network controlled optical flow image positioning omni-direction motion system
DE102005056265A1 (de) 2005-11-14 2007-05-16 Pilz Gmbh & Co Kg Vorrichtung und Verfahren zum Überwachen eines Raumbereichs, insbesondere zum Absichern eines Gefahrenbereichs einer automatisiert arbeitenden Anlage
US20070118269A1 (en) 2005-11-18 2007-05-24 Alex Gibson Engine control unit to valve control unit interface
US20070122250A1 (en) * 2005-11-29 2007-05-31 Mullner Nandor Jr Double-headed screw
JP2007178943A (ja) 2005-12-28 2007-07-12 Brother Ind Ltd 画像表示装置
US7995834B1 (en) 2006-01-20 2011-08-09 Nextengine, Inc. Multiple laser scanner
US20070171394A1 (en) 2006-01-25 2007-07-26 Daniel Steiner Flagstick with integrated reflectors for use with a laser range finder
US7994465B1 (en) 2006-02-06 2011-08-09 Microsoft Corporation Methods and devices for improved charge management for three-dimensional and color sensing
US8050863B2 (en) 2006-03-16 2011-11-01 Gray & Company, Inc. Navigation and control system for autonomous vehicles
US7430070B2 (en) 2006-03-29 2008-09-30 The Boeing Company Method and system for correcting angular drift of laser radar systems
US8117668B2 (en) 2006-04-27 2012-02-14 Stephen James Crampton Optical scanning probe
DE102006024534A1 (de) 2006-05-05 2007-11-08 Zoller & Fröhlich GmbH Laserscanner
DE102006031580A1 (de) 2006-07-03 2008-01-17 Faro Technologies, Inc., Lake Mary Verfahren und Vorrichtung zum dreidimensionalen Erfassen eines Raumbereichs
EP1890168A1 (de) 2006-08-18 2008-02-20 Leica Geosystems AG Laserscanner
FR2905235B1 (fr) * 2006-08-29 2009-03-13 Salomon Sa Casque de protection et son procede de fabrication.
JP5073256B2 (ja) 2006-09-22 2012-11-14 株式会社トプコン 位置測定装置及び位置測定方法及び位置測定プログラム
JP5057734B2 (ja) 2006-09-25 2012-10-24 株式会社トプコン 測量方法及び測量システム及び測量データ処理プログラム
JP2008096123A (ja) 2006-10-05 2008-04-24 Keyence Corp 光学式変位計、光学式変位測定方法、光学式変位測定プログラム及びコンピュータで読み取り可能な記録媒体並びに記録した機器
US7990397B2 (en) 2006-10-13 2011-08-02 Leica Geosystems Ag Image-mapped point cloud with ability to accurately represent point coordinates
US9747698B2 (en) 2006-10-21 2017-08-29 Sam Stathis System for accurately and precisely locating and marking a position in space using wireless communications and robotics
JP4897430B2 (ja) 2006-10-27 2012-03-14 三井造船株式会社 画像情報取得装置
ITRM20060651A1 (it) 2006-12-06 2008-06-07 Enea Ente Nuove Tec Metodo e dispositivo radar ottico tridimensionale utilizzante tre fasci rgb modulati da diodi laser, in particolare per applicazioni metrologiche e delle belle arti.
CA2675619C (en) * 2007-01-19 2016-08-16 Sunnybrook Health Sciences Centre Scanning mechanisms for imaging probe
GB2447258A (en) 2007-03-05 2008-09-10 Geospatial Res Ltd Camera mount for colour enhanced laser imagery
JP5376777B2 (ja) 2007-06-13 2013-12-25 三菱電機株式会社 レーダ装置
DE502007001251D1 (de) 2007-06-14 2009-09-17 Trumpf Laser Marking Systems A Gasgekühltes Lasergerät für hochkompakte Laserstrahlquellen
JP5037248B2 (ja) 2007-07-17 2012-09-26 株式会社日立製作所 情報収集システムおよび情報収集ロボット
DE102007037162A1 (de) 2007-08-07 2009-02-19 Gottfried Wilhelm Leibniz Universität Hannover Vermessungseinrichtung und Verfahren zur dreidimensionalen, geometrischen Erfassung einer Umgebung
CA2597891A1 (en) 2007-08-20 2009-02-20 Marc Miousset Multi-beam optical probe and system for dimensional measurement
JP5598831B2 (ja) 2007-09-05 2014-10-01 北陽電機株式会社 走査式測距装置
US7798453B2 (en) 2007-09-07 2010-09-21 Quickset International, Inc. Boresight apparatus and method of use
WO2009052143A1 (en) 2007-10-16 2009-04-23 Accu-Sort Systems, Inc. Dimensioning and barcode reading system
EP2053353A1 (de) 2007-10-26 2009-04-29 Leica Geosystems AG Distanzmessendes Verfahren und ebensolches Gerät
US8051710B2 (en) 2007-11-28 2011-11-08 General Electric Company Method and apparatus for balancing a rotor
JP5348449B2 (ja) 2007-12-25 2013-11-20 カシオ計算機株式会社 距離測定装置及びプロジェクタ
DE102008014275B4 (de) 2008-02-01 2017-04-13 Faro Technologies, Inc. Vorrichtung zum Bestimmen einer Entfernung zu einem Objekt
DE102008014274B4 (de) 2008-02-01 2020-07-09 Faro Technologies, Inc. Verfahren und Vorrichtung zum Bestimmen einer Entfernung zu einem Objekt
US8152071B2 (en) * 2008-02-08 2012-04-10 Motion Computing, Inc. Multi-purpose portable computer with integrated devices
DE102008015536B4 (de) 2008-03-25 2017-04-06 Mtu Friedrichshafen Gmbh Verfahren zur Adressenzuweisung an Injektoren
JP5173536B2 (ja) 2008-04-02 2013-04-03 シャープ株式会社 撮像装置及び光軸制御方法
JP5153483B2 (ja) 2008-06-30 2013-02-27 三菱電機株式会社 レーザ光源装置
JP5688876B2 (ja) 2008-12-25 2015-03-25 株式会社トプコン レーザスキャナ測定システムの較正方法
JP5478902B2 (ja) 2009-01-20 2014-04-23 スタンレー電気株式会社 光学距離センサー
DE102009015922B4 (de) 2009-03-25 2016-12-15 Faro Technologies, Inc. Verfahren zum optischen Abtasten und Vermessen einer Szene
US20100277472A1 (en) 2009-04-09 2010-11-04 Christopher Kaltenbach Method and system for capturing 3d images of a human body in a moment of movement
DE102009035336B3 (de) 2009-07-22 2010-11-18 Faro Technologies, Inc., Lake Mary Vorrichtung zum optischen Abtasten und Vermessen einer Umgebung
DE102009038964A1 (de) 2009-08-20 2011-02-24 Faro Technologies, Inc., Lake Mary Verfahren zum optischen Abtasten und Vermessen einer Umgebung
AT508635B1 (de) 2009-08-28 2011-05-15 Riegl Laser Measurement Sys Laserscanvorrichtung zur montage an einem fahrzeug mit anhängerkupplung
AT508634B1 (de) 2009-08-28 2011-05-15 Riegl Laser Measurement Sys Laserscanvorrichtung zur montage am dachträger eines fahrzeugs
DE102010032726B3 (de) 2010-07-26 2011-11-24 Faro Technologies, Inc. Vorrichtung zum optischen Abtasten und Vermessen einer Umgebung
DE102010032725B4 (de) 2010-07-26 2012-04-26 Faro Technologies, Inc. Vorrichtung zum optischen Abtasten und Vermessen einer Umgebung
FR2963436B1 (fr) 2010-07-29 2012-09-07 Sagem Defense Securite Procede de determination d'un volume de protection dans le cas de deux pannes satellitaires simultanees
GB2497910B (en) 2010-10-25 2013-10-09 Faro Tech Inc Automated warm-up and stability check for laser trackers
DE102010061382B4 (de) 2010-12-21 2019-02-14 Sick Ag Optoelektronischer Sensor und Verfahren zur Erfassung und Abstandsbestimmung von Objekten
EP2668008A4 (de) 2011-01-28 2018-01-24 Intouch Technologies, Inc. Schnittstelle mit einem mobilen telepräsenzroboter
DE202011051975U1 (de) 2011-11-15 2013-02-20 Sick Ag Optoelektronischer Sicherheitssensor mit funkbasierter Drahtlosschnittstelle
DE102012107544B3 (de) 2012-08-17 2013-05-23 Faro Technologies, Inc. Vorrichtung zum optischen Abtasten und Vermessen einer Umgebung

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE20320216U1 (de) * 2003-12-29 2004-03-18 Iqsun Gmbh Laserscanner
DE202006005643U1 (de) * 2006-03-31 2006-07-06 Faro Technologies Inc., Lake Mary Vorrichtung zum dreidimensionalen Erfassen eines Raumbereichs

Also Published As

Publication number Publication date
US20120019806A1 (en) 2012-01-26
DE102010032725A1 (de) 2012-01-26
US8699007B2 (en) 2014-04-15

Similar Documents

Publication Publication Date Title
DE102010032725B4 (de) Vorrichtung zum optischen Abtasten und Vermessen einer Umgebung
DE102010032723B3 (de) Vorrichtung zum optischen Abtasten und Vermessen einer Umgebung
DE102010032726B3 (de) Vorrichtung zum optischen Abtasten und Vermessen einer Umgebung
DE102010032724A1 (de) Vorrichtung zum optischen Abtasten und Vermessen einer Umgebung
EP2005112B1 (de) Vorrichtung und Verfahren zum dreidimensionalen Erfassen eines Raumbereichs
DE102005012107B4 (de) Meßsystem und Verfahren zur geodätischen Vermessung von Objekten
DE102010033561B3 (de) Vorrichtung zum optischen Abtasten und Vermessen einer Umgebung
DE102012107544B3 (de) Vorrichtung zum optischen Abtasten und Vermessen einer Umgebung
DE69826753T2 (de) Optischer Profilsensor
EP2718669B1 (de) Laserscanner und verfahren zum ansteuern eines laserscanners
EP3408719B1 (de) Verfahren zum erstellen einer umgebungskarte für ein selbsttätig verfahrbares bearbeitungsgerät
DE112013004489T5 (de) Laserscanner mit Dynamischer Einstellung der Winkel-Abtastgeschwindigkeit
EP1018839A2 (de) Verfahren und Einrichtung zur Einsichtnahme des rückwärtigen Beobachtungsraumes bei Kraftfahrzeugen
EP3014569B1 (de) Inspektion der konturierten fläche des unterbodens eines kraftfahrzeugs
DE112010000019T5 (de) Verfahren zum optischen Abtasten und Vermessen einer Umgebung
DE102012109481A1 (de) Vorrichtung zum optischen Abtasten und Vermessen einer Umgebung
EP1068992A2 (de) Rückfahrhilfe
DE102010041490A1 (de) Optisches Instrument und Verfahren zur optischen Überwachung
WO2018015172A1 (de) Optische anordnung für ein lidar-system, lidar-system und arbeitsvorrichtung
EP2856755A1 (de) Vorrichtung und verfahren zur aufnahme von bildern eines fahrzeugunterbodens
DE10227299A1 (de) Scanner für die optische Objekterfassung
WO2019233701A1 (de) Verfahren und vorrichtung zum messen von schwingungen eines objekts unter verwendung einer drohne
DE102005061931B4 (de) Verfahren und Vorrichtung zur Kalibrierung einer optischen Einrichtung
DE102015122843B3 (de) 3D-Messvorrichtung mit Zubehörschnittstelle
EP3421674B1 (de) Vorrichtung und verfahren zum abbilden von bereichen

Legal Events

Date Code Title Description
R016 Response to examination communication
R018 Grant decision by examination section/examining division
R020 Patent grant now final

Effective date: 20120727

R119 Application deemed withdrawn, or ip right lapsed, due to non-payment of renewal fee