ZA200503934B - Methods for inhibiting intergranular corrosion of metal surfaces - Google Patents
Methods for inhibiting intergranular corrosion of metal surfaces Download PDFInfo
- Publication number
- ZA200503934B ZA200503934B ZA200503934A ZA200503934A ZA200503934B ZA 200503934 B ZA200503934 B ZA 200503934B ZA 200503934 A ZA200503934 A ZA 200503934A ZA 200503934 A ZA200503934 A ZA 200503934A ZA 200503934 B ZA200503934 B ZA 200503934B
- Authority
- ZA
- South Africa
- Prior art keywords
- recited
- spray water
- corrosion
- reaction product
- metal surfaces
- Prior art date
Links
- 238000005260 corrosion Methods 0.000 title claims abstract description 39
- 230000007797 corrosion Effects 0.000 title claims abstract description 39
- 229910052751 metal Inorganic materials 0.000 title claims abstract description 15
- 239000002184 metal Substances 0.000 title claims abstract description 15
- 238000000034 method Methods 0.000 title claims description 21
- 230000002401 inhibitory effect Effects 0.000 title claims description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 29
- 239000007921 spray Substances 0.000 claims abstract description 23
- 239000007795 chemical reaction product Substances 0.000 claims abstract description 16
- 229920000768 polyamine Polymers 0.000 claims abstract description 8
- 229920001281 polyalkylene Polymers 0.000 claims abstract description 7
- 238000009833 condensation Methods 0.000 claims abstract description 5
- 230000005494 condensation Effects 0.000 claims abstract description 5
- 238000012994 industrial processing Methods 0.000 claims abstract description 5
- 239000003595 mist Substances 0.000 claims abstract description 4
- 238000004299 exfoliation Methods 0.000 claims description 13
- 125000004432 carbon atom Chemical group C* 0.000 claims description 5
- 125000003277 amino group Chemical group 0.000 claims description 3
- 125000002947 alkylene group Chemical group 0.000 claims description 2
- 239000003125 aqueous solvent Substances 0.000 claims description 2
- 239000000498 cooling water Substances 0.000 claims description 2
- LSHROXHEILXKHM-UHFFFAOYSA-N n'-[2-[2-[2-(2-aminoethylamino)ethylamino]ethylamino]ethyl]ethane-1,2-diamine Chemical group NCCNCCNCCNCCNCCN LSHROXHEILXKHM-UHFFFAOYSA-N 0.000 claims description 2
- 125000002355 alkine group Chemical group 0.000 claims 1
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 6
- 239000000047 product Substances 0.000 description 6
- 229910000831 Steel Inorganic materials 0.000 description 5
- 230000007246 mechanism Effects 0.000 description 5
- 239000010959 steel Substances 0.000 description 5
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 4
- 229910001209 Low-carbon steel Inorganic materials 0.000 description 4
- 230000002829 reductive effect Effects 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 3
- 229910052742 iron Inorganic materials 0.000 description 3
- 229910001220 stainless steel Inorganic materials 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 150000001805 chlorine compounds Chemical class 0.000 description 2
- 239000011651 chromium Substances 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 239000004615 ingredient Substances 0.000 description 2
- 239000003112 inhibitor Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- NGNBDVOYPDDBFK-UHFFFAOYSA-N 2-[2,4-di(pentan-2-yl)phenoxy]acetyl chloride Chemical compound CCCC(C)C1=CC=C(OCC(Cl)=O)C(C(C)CCC)=C1 NGNBDVOYPDDBFK-UHFFFAOYSA-N 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- RPNUMPOLZDHAAY-UHFFFAOYSA-N Diethylenetriamine Chemical compound NCCNCCN RPNUMPOLZDHAAY-UHFFFAOYSA-N 0.000 description 1
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 1
- 206010070834 Sensitisation Diseases 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- -1 copper acetate Chemical compound 0.000 description 1
- OPQARKPSCNTWTJ-UHFFFAOYSA-L copper(ii) acetate Chemical compound [Cu+2].CC([O-])=O.CC([O-])=O OPQARKPSCNTWTJ-UHFFFAOYSA-L 0.000 description 1
- 230000032798 delamination Effects 0.000 description 1
- 150000004985 diamines Chemical class 0.000 description 1
- 150000002009 diols Chemical class 0.000 description 1
- 235000010299 hexamethylene tetramine Nutrition 0.000 description 1
- 239000004312 hexamethylene tetramine Substances 0.000 description 1
- VKYKSIONXSXAKP-UHFFFAOYSA-N hexamethylenetetramine Chemical compound C1N(C2)CN3CN1CN2C3 VKYKSIONXSXAKP-UHFFFAOYSA-N 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000008235 industrial water Substances 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- NMCUIPGRVMDVDB-UHFFFAOYSA-L iron dichloride Chemical class Cl[Fe]Cl NMCUIPGRVMDVDB-UHFFFAOYSA-L 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- SZLZWPPUNLXJEA-QEGASFHISA-N rescinnamine Chemical group O([C@H]1[C@@H]([C@H]([C@H]2C[C@@H]3C4=C(C5=CC=C(OC)C=C5N4)CCN3C[C@H]2C1)C(=O)OC)OC)C(=O)\C=C\C1=CC(OC)=C(OC)C(OC)=C1 SZLZWPPUNLXJEA-QEGASFHISA-N 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 230000008313 sensitization Effects 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D11/00—Continuous casting of metals, i.e. casting in indefinite lengths
- B22D11/12—Accessories for subsequent treating or working cast stock in situ
- B22D11/124—Accessories for subsequent treating or working cast stock in situ for cooling
- B22D11/1245—Accessories for subsequent treating or working cast stock in situ for cooling using specific cooling agents
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D11/00—Continuous casting of metals, i.e. casting in indefinite lengths
- B22D11/12—Accessories for subsequent treating or working cast stock in situ
- B22D11/124—Accessories for subsequent treating or working cast stock in situ for cooling
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23F—NON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
- C23F11/00—Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent
- C23F11/08—Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids
- C23F11/10—Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids using organic inhibitors
- C23F11/14—Nitrogen-containing compounds
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Preventing Corrosion Or Incrustation Of Metals (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
The present invention is directed toward the use of a reaction product of an alkynediol and a polyalkylene polyamine to inhibit intergranular corrosion of metal surfaces in industrial processing systems caused by spray water mist or condensation.
Description
METHODS FOR INHIBITING INTERGRANULAR CORROSION OF METAL
SURFACES
The present invention is directed to the use of the reaction product of alkynediols and polyalkylene polyamine compounds to inhibit intergranular corrosion of metal surfaces in industrial water and process systems, which surfaces are in contact with spray water or condensation.
The microstructure of metals and alloys is made up of grains, separated by grain boundaries. Intergranular corrosion may be defined as localized attack along the grain boundaries, or immediately adjacent to grain boundaries. Such precipitation can produce zones of reduced corrosion resistance in the immediate vicinity. :
An example of intergranular corrosion is the sensitization of stainless steels or weld decay. Chromium-rich grain boundary precipitates lead to a local depletion of Cr adjacent to these precipitates, leaving these areas vulnerable to corrosive attack.
Exfoliation corrosion is a particular form of intergranular corrosion. Exfoliation or delamination presents itself as a loss of metal in layers that appear to follow grain boundaries along the surface. The exfoliation in the casters, for instance, occurs on the non-wetted structures of the lower segments where direct spray water contact does not occur. The steel is exposed to a hot, humid environment in which the surfaces are wetted only by spray water mist or condensation. The corrosion propagates rapidly along the steel surfaces, resulting in the loss of structural integrity of the secondary supporting structure.
The mechanism for exfoliation corrosion is related to the presence of chlorides in the spray water. When used in the spray water system, the mist (steam) travels throughout the steam chamber and concentrates on steel surfaces. The heat and humidity evaporates the water from the steel surface, leaving behind a concentrated chloride ion. This process continues, concentrating more and more chloride ions to the point where exfoliation occurs.
Coupon analysis reveals that the corrosion mechanism occurs as follows: The chloride ion that is deposited on the metal surface migrates through the brittle layer of corrosion product/deposit that is generated. Under the deposit, a transient iron chloride salt is generated. The salt is hygroscopic (moisture absorbing) and undergoes hydrolysis, creating acid chloride conditions. Additional iron oxide corrosion products are left behind as the acidic corrosion front advances deeper into the metal surface.
In view of the forgoing, industry is looking for techniques and inhibitors to combat exfoliation corrosion present in industrial processing systems.
The present invention is directed toward methods for inhibiting the intergranular corrosion of metal surfaces in industrial processing systems, e.g., steam and cooling water systems, which surfaces are in contact with spray water or condensation, which comprises adding to the spray water a sufficient corrosion inhibiting amount of the reaction product of an alkynediol and a polyalkylene polyamine.
The conditions under which the reaction product are formed are described in U.S.
Patent No. 3,211,667, the contents of which are wholly incorporated herein.
The alkynediols and alkenediols taught to be effective in producing the reaction product are those containing four to twelve carbon atoms. Preferably, the alkynediols contain four carbon atoms. An exemplary alkynediol is butynediol.
The polyalkylene polyamine compounds taught to be effective in producing the reaction product are those containing two to ten amine groups, and preferably, three to seven amine groups. These amine groups may be substituted or unsubstituted, and each is separated by an alkylene group having from one to six carbon atoms, with two to four being preferred. Exemplary polyamines include ethylene diamine, diethylene triamine, pentaethylene hexamine, pentapropylene hexamine, triheptylene diamine, and the like.
The weight ratio of the reactants are such as to attain fail reaction between the respective ingredients with weight ratios of amine to diol of 4:1 to 1:1, with 3:1 being preferred. An ionizable compound of copper, such as copper acetate, is employed in this reaction in catalytic amounts.
The reaction product of the present invention may be added to the spray water in an amount which is sufficient to inhibit corrosion of the metal surfaces. The reaction product may be added to a supply line in an amount ranging from 0.5 parts to about 500 parts per million parts of water present in the supply line. Preferably, about 1 to 100 parts per million parts water are added, with about 5 to 10 parts per million parts water particularly preferred.
The reaction product of the present invention is added to the supply line in either a solvent or in neat form. Preferably, the reaction product is added in an aqueous solvent, of which water is an example. The reaction product can be added to the spray water along with other suitable ingredients, such as antifoams, corrosion inhibitors, and the like. The spray water is typically at a temperature of from about 110 — 180 °F in the systems to be treated.
The data set forth below demonstrate the unexpected results occasioned by use of this invention. The following examples are included as being an illustration of the invention, and should not be construed as limiting the scope thereof.
In order to inhibit the corrosion mechanism from occurring on metal surfaces, the addition of a filming material to isolate the surfaces from water and chlorides was postulated. The addition of 2-butyne-1, 4-diol-polyethylenepolyamine (Product A) reduced corrosion rates of steel significantly (as shown in Tables 1 and 2). In all tests, coupon trees were constructed, in order to place a variety of corrosion coupons within a spray chamber. The solution was injected into the supply line to the caster sprays.
This distributed the material throughout the spray chamber.
Table 1 (coupons submitted for SEM) :
The iron level was greatly reduced in the deposit.
Table 2 (coupons submitted for SEM)
The results showed that while the chloride concentration was similar for both the untreated (5%) and treated side (6%), the other components were dramatically different. The iron level on the untreated side was 88%; the level of exfoliation was also significant. On the treated side, the iron level was only 23% and exfoliation was not present. The treated side had 52% calcium, indicating the presence of corrosion inhibition.
In additional tests, a corrosion coupon was dipped in Product A and placed next to an untreated coupon in both the treated and untreated strands. In the untreated strand, the dipped coupon showed very little corrosion, while the untreated coupon was exfoliated. In the treated strand there was a significant improvement in corrosion control versus the undipped coupon.
In other testing of the present invention, alternative coupon trees were constructed.
Coupons tested included: mild steel, stainless steel, copper and coated mild steel.
A single set of mild steel coupons was removed after eight days as an initial inspection. Coupon results are shown in Table 3, below. Coupons from Strand #2 showed signs of exfoliation, while coupons from Strand #1 showed only a general corrosion mechanism,
Table 3 - Eight day Coupon Results (mpy)
Strand #1 Strand #2
As further shown in Table 4 below, there was a significant reduction in the rate of corrosion on the corrosion coupon tree in Strand #1, where Product A was injected.
Product A was fed at 15 ppm through the system. Mild steel corrosion rates were reduced by approximately 50 to 80% on most of the locations. As above, coupons from Strand #2 showed signs of exfoliation, while coupons from Strand #1 showed only a general corrosion mechanism (exfoliation was not present).
Table 4 - Coupon Corrosion Results (mpy)
Days Exposed | Strand #1 Strand #2
Note that all of the remaining coupons were either stainless steel or coated coupons; no significant corrosion was visible on any of these coupons. Additionally, the treatment of the present invention did not adversely impact nozzle performance in the spray water system.
While this invention has been described with respect to particular embodiments thereof, it is apparent that numerous other forms and modifications of this invention will be obvious to those skilled in the art. The appended claims and this invention generally should be construed to cover all such obvious forms and modifications which are within the true spirit and scope of the present invention.
Claims (15)
1. A method for inhibiting the intergranular corrosion of metal surfaces in industrial processing systems, which surfaces are in contact with spray water, which comprises adding to the spray water a sufficient corrosion inhibiting amount of the reaction product of an alkynediol and a polyalkylene polyamine.
2. The method as recited in claim 1, wherein said intergranular corrosion is exfoliation corrosion.
3. The method as recited in claim 1, wherein said metal surfaces comprise continuous caster surfaces.
4, The method as recited in claim 2, wherein said exfoliation corrosion occurs on metal surfaces wetted by spray water mist or condensation.
5. The method as recited in claim 1, wherein said alkynediol contains an alkyne group having from about 4 to 12 carbon atoms.
6. The method as recited in claim 1, wherein said alkynediol is butynediol.
7. The method as recited in claim 1, wherein said polyalkylene polyamine contains from 2 to 10 amine groups, each separated from another by an alkylene group having from 1 to 6 carbon atoms.
8. The method as recited in claim 1, wherein said polyalkylene polyamine is pentaethylene hexamine.
9. The method as recited in claim 1, wherein said reaction product is added to said spray water in an amount ranging from 0.5 parts to about 500 parts per million parts water.
10. The method as recited in claim 1, wherein said spray water is at a temperature from about 110°F to about 180°F.
11. The method as recited in claim 1, wherein said reaction product is added to said spray water in an aqueous solvent.
12. The method as recited in claim 1, wherein said metal surfaces are iron- containing metal surfaces.
13. The method as recited in claim 9, wherein said reaction product is added to said spray water in an amount ranging from 1 parts to about 100 parts per million parts water.
14. The method as recited in claim 13, wherein said reaction product is added to said spray water in an amount ranging from 5 parts to about 10 parts per million parts water.
15. The method as recited in claim 1, wherein said industrial processing systems comprise steam and cooling water systems.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/283,457 US20040086419A1 (en) | 2002-10-30 | 2002-10-30 | Methods for inhibiting intergranular corrosion of metal surfaces |
Publications (1)
Publication Number | Publication Date |
---|---|
ZA200503934B true ZA200503934B (en) | 2006-08-30 |
Family
ID=32174660
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
ZA200503934A ZA200503934B (en) | 2002-10-30 | 2005-05-16 | Methods for inhibiting intergranular corrosion of metal surfaces |
Country Status (17)
Country | Link |
---|---|
US (1) | US20040086419A1 (en) |
EP (1) | EP1558787B1 (en) |
JP (1) | JP4424671B2 (en) |
KR (1) | KR101058965B1 (en) |
CN (1) | CN100425735C (en) |
AT (1) | ATE355402T1 (en) |
AU (1) | AU2003267075B2 (en) |
BR (1) | BR0315190B1 (en) |
CA (1) | CA2504421A1 (en) |
DE (1) | DE60312202T2 (en) |
ES (1) | ES2282654T3 (en) |
NZ (1) | NZ540134A (en) |
PL (1) | PL376482A1 (en) |
RU (1) | RU2320778C2 (en) |
UA (1) | UA80451C2 (en) |
WO (1) | WO2004042115A1 (en) |
ZA (1) | ZA200503934B (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
MD307Z (en) * | 2010-04-27 | 2011-07-31 | Институт Прикладной Физики Академии Наук Молдовы | Inhibitor of steel corrosion in the water |
RU2754326C1 (en) * | 2020-12-14 | 2021-09-01 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Башкирский государственный университет" | Method for producing bis-imidazolines and their derivatives based on pentaethylene hexamines for corrosion protection of oilfield equipment and pipelines |
RU2754319C1 (en) * | 2020-12-14 | 2021-09-01 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Башкирский государственный университет" | Method for obtaining corrosion inhibitors based on tetrapropylene pentamines for oilfield equipment and pipelines |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2923599A (en) * | 1958-03-26 | 1960-02-02 | Universal Oil Prod Co | Water-soluble corrosion inhibitors |
US3113113A (en) * | 1958-11-07 | 1963-12-03 | Armour & Co | Corrosion inhibitor compositions |
GB894386A (en) * | 1959-04-20 | 1962-04-18 | Continental Oil Co | Polyamine-diol reaction products and corrosion inhibiting compositions containing same |
US3211667A (en) * | 1960-04-13 | 1965-10-12 | Continental Oil Co | Corrosion inhibition |
US3152187A (en) * | 1960-04-13 | 1964-10-06 | Continental Oil Co | Condensation product of unsaturated diols and polyalkylene polyamines and method of preparation thereof |
US3320318A (en) | 1963-08-19 | 1967-05-16 | Continental Oil Co | Thiobenzene-diol-polyamine corrosion inhibiting composition |
FR2477923A1 (en) * | 1980-03-11 | 1981-09-18 | Compiegne Universite Technolog | Water spray cooling process, esp. in continuous casting - with addn. of ions to water to reduce wear of rolls |
DE3317126C2 (en) * | 1983-05-06 | 1986-07-24 | Mannesmann AG, 4000 Düsseldorf | Process to avoid acid corrosion on continuous casting plants |
US5173213A (en) * | 1991-11-08 | 1992-12-22 | Baker Hughes Incorporated | Corrosion and anti-foulant composition and method of use |
US5311925A (en) * | 1993-11-12 | 1994-05-17 | Nalco Chemical Company | Magnesium hydroxide to prevent corrosion caused by water spray in continuous casting |
CA2123936C (en) * | 1994-04-06 | 2005-12-27 | Bruno E. Morin | Methods of inhibiting water corrosion in crude oil pipelines |
-
2002
- 2002-10-30 US US10/283,457 patent/US20040086419A1/en not_active Abandoned
-
2003
- 2003-09-10 DE DE60312202T patent/DE60312202T2/en not_active Expired - Lifetime
- 2003-09-10 CA CA002504421A patent/CA2504421A1/en not_active Abandoned
- 2003-09-10 NZ NZ540134A patent/NZ540134A/en not_active IP Right Cessation
- 2003-09-10 AU AU2003267075A patent/AU2003267075B2/en not_active Expired
- 2003-09-10 KR KR1020057007590A patent/KR101058965B1/en active IP Right Grant
- 2003-09-10 RU RU2005116268/02A patent/RU2320778C2/en not_active IP Right Cessation
- 2003-09-10 JP JP2004549947A patent/JP4424671B2/en not_active Expired - Fee Related
- 2003-09-10 CN CNB038256347A patent/CN100425735C/en not_active Expired - Lifetime
- 2003-09-10 AT AT03749550T patent/ATE355402T1/en not_active IP Right Cessation
- 2003-09-10 ES ES03749550T patent/ES2282654T3/en not_active Expired - Lifetime
- 2003-09-10 WO PCT/US2003/028266 patent/WO2004042115A1/en active IP Right Grant
- 2003-09-10 EP EP03749550A patent/EP1558787B1/en not_active Expired - Lifetime
- 2003-09-10 BR BRPI0315190-5A patent/BR0315190B1/en active IP Right Grant
- 2003-09-10 PL PL03376482A patent/PL376482A1/en unknown
- 2003-10-09 UA UAA200505034A patent/UA80451C2/en unknown
-
2005
- 2005-05-16 ZA ZA200503934A patent/ZA200503934B/en unknown
Also Published As
Publication number | Publication date |
---|---|
JP2006504870A (en) | 2006-02-09 |
ATE355402T1 (en) | 2006-03-15 |
WO2004042115A1 (en) | 2004-05-21 |
RU2005116268A (en) | 2006-02-10 |
EP1558787B1 (en) | 2007-02-28 |
EP1558787A1 (en) | 2005-08-03 |
US20040086419A1 (en) | 2004-05-06 |
UA80451C2 (en) | 2007-09-25 |
KR101058965B1 (en) | 2011-08-23 |
CN100425735C (en) | 2008-10-15 |
KR20050083872A (en) | 2005-08-26 |
CA2504421A1 (en) | 2004-05-21 |
BR0315190B1 (en) | 2013-02-05 |
AU2003267075A1 (en) | 2004-06-07 |
RU2320778C2 (en) | 2008-03-27 |
NZ540134A (en) | 2006-10-27 |
JP4424671B2 (en) | 2010-03-03 |
PL376482A1 (en) | 2005-12-27 |
BR0315190A (en) | 2005-08-23 |
DE60312202T2 (en) | 2007-10-31 |
AU2003267075B2 (en) | 2009-06-25 |
CN1714173A (en) | 2005-12-28 |
ES2282654T3 (en) | 2007-10-16 |
DE60312202D1 (en) | 2007-04-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3935125A (en) | Method and composition for inhibiting corrosion in aqueous systems | |
US4066398A (en) | Corrosion inhibition | |
US3960576A (en) | Silicate-based corrosion inhibitor | |
EP0810302A1 (en) | Corrosion inhibition composition and method | |
ZA200503934B (en) | Methods for inhibiting intergranular corrosion of metal surfaces | |
US4595723A (en) | Corrosion inhibitors for alkanolamines | |
MXPA06004033A (en) | Formulation for corrosion and scale inhibition. | |
CA2107791A1 (en) | Method and composition for inhibiting general and pitting corrosion in cooling tower water | |
US3152187A (en) | Condensation product of unsaturated diols and polyalkylene polyamines and method of preparation thereof | |
EP2971245B1 (en) | Method to control corrosion of a metal surface using alkyl sulfamic acids or salts thereof | |
US4004055A (en) | Inhibiting stress cracking | |
WO2003038007A1 (en) | Corrosion inhibiting composition | |
US6187262B1 (en) | Inhibition of corrosion in aqueous systems | |
Okediran et al. | Inhibitive effect of Bitter Leaf (Vernonia Amygdalina) Extract on Mild Steel in Sulphuric Acid solution | |
US4873014A (en) | Polyamine-polyglycol inhibitor for steel pickling | |
WO1996011169A1 (en) | Composition and method for inhibiting chloride-induced corrosion of and limescale formation on ferrous metals and alloys | |
JP2006504870A5 (en) | ||
CN1168637C (en) | Antirust stainless steel packing paper and its making process | |
Sherstobitova et al. | Influence of inhibitor PGU-2 on acid pickling and hydrogen absorption of steels. | |
SU1723197A1 (en) | Composition for protection of ferrous metals against corrosion | |
CN105256319A (en) | Pickling inhibiter of sea water desalination evaporator | |
RU2339587C1 (en) | Method of protection of water-circulation systems against corrosion and salt deposits | |
CA1126497A (en) | Method for the prevention of fouling and corrosion utilizing technetium-99 | |
Kennedy | Inhibitors for aqueous solutions | |
Pospelov et al. | Corrosion state of a metal-polymer boundary |