WO2024228342A1 - Polymerizable composition, resin obtained by polymerizing and curing same, and optical material comprising said resin - Google Patents

Polymerizable composition, resin obtained by polymerizing and curing same, and optical material comprising said resin Download PDF

Info

Publication number
WO2024228342A1
WO2024228342A1 PCT/JP2024/015663 JP2024015663W WO2024228342A1 WO 2024228342 A1 WO2024228342 A1 WO 2024228342A1 JP 2024015663 W JP2024015663 W JP 2024015663W WO 2024228342 A1 WO2024228342 A1 WO 2024228342A1
Authority
WO
WIPO (PCT)
Prior art keywords
meth
acrylate
formula
group
polymerizable composition
Prior art date
Application number
PCT/JP2024/015663
Other languages
French (fr)
Japanese (ja)
Inventor
喜久夫 古川
英輝 金
喜男 西村
燎 神谷
吉将 松村
文吾 落合
Original Assignee
三菱瓦斯化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱瓦斯化学株式会社 filed Critical 三菱瓦斯化学株式会社
Publication of WO2024228342A1 publication Critical patent/WO2024228342A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G75/00Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
    • C08G75/02Polythioethers
    • C08G75/04Polythioethers from mercapto compounds or metallic derivatives thereof
    • C08G75/045Polythioethers from mercapto compounds or metallic derivatives thereof from mercapto compounds and unsaturated compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G79/00Macromolecular compounds obtained by reactions forming a linkage containing atoms other than silicon, sulfur, nitrogen, oxygen, and carbon with or without the latter elements in the main chain of the macromolecule
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics

Definitions

  • the present invention relates to a polymerizable composition and a resin obtained by polymerizing and curing the polymerizable composition, as well as an optical material containing the resin.
  • the present invention particularly relates to a polymerizable composition and a resin obtained by polymerizing and curing the polymerizable composition that are suitable for use in optical materials such as filters, plastic lenses, prisms, and optical fibers, particularly filters and plastic lenses, as transparent members that need to block radiation.
  • Radiation shielding materials generally can easily block alpha rays using thin materials such as paper, and beta rays using thin metal plates such as aluminum, but gamma rays and X-rays can be weakened by using thick plates of lead or iron as shielding materials. However, these materials are not transparent, making it impossible to visualize the other side of the shielding material.
  • CT computed tomography
  • PET positron emission tomography
  • lead-containing glass is commonly known as a material that is transparent to visible light and can block radiation (Patent Documents 1 and 2).
  • Patent Documents 1 and 2 lead-containing glass is poorly processable and moldable, making it unsuitable for complex shapes, and its high specific gravity makes it disadvantageous for applications requiring light weight.
  • Patent Document 3 rubber sheets filled with heavy metals such as barium sulfate, cerium oxide, and barium oxide are commonly known as radiation shielding plastics (Patent Document 3).
  • these rubber sheets are opaque to visible light, so it is not possible to visually or camera-visually confirm the location where radiation is being used.
  • the present invention aims to solve at least one of the problems in the above-mentioned conventional techniques. Furthermore, the present invention aims to provide a polymerizable composition that is solvent-soluble and thermoplastic, can be easily processed, and can be cured by heat or light, and can provide a transparent resin or optical material that has radiation shielding capabilities.
  • the present inventors conducted extensive research and found that the above problems can be solved by using a bismuth-containing compound having a specific structure. Specifically, the present invention includes the following aspects.
  • X 1 to X 3 are the same or different and represent a structure represented by formula (2) below or a phenyl group, and at least one of X 1 to X 3 represents a structure represented by formula (2).
  • a bismuth atom in formula (1) is bonded to a structure represented by formula (2), it is bonded to an oxygen atom in formula (2).
  • the oxygen atom in formula (2) is bonded to the same bismuth atom to form a cyclic structure, or is bonded to another bismuth atom to form a chain structure.
  • Z represents a hydrocarbon group).
  • R2 represents a hydrocarbon group having 1 to 10 carbon atoms.
  • R4> The polymerizable composition according to any one of ⁇ 1> to ⁇ 3> above, further comprising (b) a compound having at least one group selected from the group consisting of an acryloyl group, a methacryloyl group, an allyl group, and a vinyl group.
  • ⁇ 5> The polymerizable composition according to any one of ⁇ 1> to ⁇ 4> above, further comprising (c) a compound having two or more thiol groups in one molecule.
  • ⁇ 8> A resin obtained by polymerizing and curing the polymerizable composition according to any one of ⁇ 1> to ⁇ 7> above.
  • ⁇ 9> An optical material containing the resin according to ⁇ 8> above.
  • ⁇ 10> A color tone changing material containing the resin according to ⁇ 8> above.
  • the present invention provides a polymerizable composition that is solvent-soluble and thermoplastic, can be easily processed, and can be cured by heat or light, providing a transparent resin or optical material with radiation shielding capabilities.
  • Fig. 1 is a diagram showing the measurement results of the 1 H-NMR (400 MHz, CDCl 3 ) spectrum of the polycondensate obtained in Example 1. Note that the structure bonded to the bismuth element in Fig. 1 is a phenyl group or a carboxylic acid group represented by formula (2).
  • Fig. 2 is a diagram showing the measurement results of the 13C -NMR (100 MHz, CDCl3 ) spectrum of the polycondensate obtained in Example 1. Note that the structure bonded to the bismuth element in Fig. 2 is a phenyl group or a carboxylic acid group represented by formula (2).
  • FIG. 1 is a diagram showing the measurement results of the 1 H-NMR (400 MHz, CDCl 3 ) spectrum of the polycondensate obtained in Example 1. Note that the structure bonded to the bismuth element in Fig. 1 is a phenyl group or a carboxylic acid group represented by formula (2).
  • FIG. 3 is a diagram showing the measurement results of the IR spectrum (KBr, cm ⁇ 1 ) of the polycondensate obtained in Example 1.
  • Fig. 4 is a diagram showing the measurement results of the 1 H-NMR (400 MHz, CDCl 3 ) spectrum of the polycondensate obtained in Example 5. Note that the structure bonded to the bismuth element in Fig. 4 is a phenyl group or a carboxylic acid group represented by formula (2).
  • FIG. 5 is a diagram showing the measurement results of the IR spectrum (KBr, cm ⁇ 1 ) of the polycondensate obtained in Example 5.
  • FIG. 6 is a diagram showing the measurement results of the IR spectrum (KBr, cm ⁇ 1 ) of the polycondensate obtained in Example 6.
  • FIG. 7 is a diagram showing the measurement results of the IR spectrum (KBr, cm ⁇ 1 ) of the polycondensate obtained in Example 7.
  • Fig. 8 is a diagram showing the measurement results of the 1 H-NMR (400 MHz, CDCl 3 ) spectrum of the polycondensate obtained in Example 9. Note that the structure bonded to the bismuth element in Fig. 8 is a phenyl group or a carboxylic acid group represented by formula (2).
  • a polymerizable composition comprising a compound (a) represented by the following formula (1).
  • the polymerizable composition of the present invention encompasses both an embodiment comprising only the compound (a) represented by the following formula (1) and an embodiment comprising the compound (a) represented by the following formula (1) and other components.
  • X 1 to X 3 are the same or different and represent a structure represented by formula (2) below or a phenyl group, and at least one of X 1 to X 3 represents a structure represented by formula (2).
  • a bismuth atom in formula (1) is bonded to a structure represented by formula (2), it is bonded to an oxygen atom in formula (2).
  • the oxygen atom in formula (2) is bonded to the same bismuth atom to form a cyclic structure, or is bonded to another bismuth atom to form a chain structure.
  • Z represents a hydrocarbon group).
  • the compound (a) represented by the above formula (1) includes all compounds that satisfy the above conditions. These may be used alone or in combination of two or more.
  • the (a) compound used in the present invention has the advantage of being odorless, unlike sulfur compounds.
  • a preferred embodiment of the present invention preferably includes a structure represented by the following formula (3).
  • n represents an integer of 0 to 10.
  • R 1 represents a hydrogen atom or a hydrocarbon group.
  • R 1 in formula (3) preferably represents a substituent represented by the following formula (4).
  • m represents an integer of 0 to 3.
  • R2 represents a hydrocarbon group having 1 to 10 carbon atoms.
  • the structure represented by formula (3) is at least one of structures represented by the following formula (5) or formula (6).
  • R2 represents a hydrocarbon group having 1 to 10 carbon atoms.
  • the compound (a) can be obtained by reacting a triphenylbismuthine compound with a precursor dicarboxylic acid compound as shown below.
  • the precursor dicarboxylic acid compound used in the present invention can be used without any particular limitation, but preferably used are 2-octenylsuccinic acid, itaconic acid, phenylsuccinic acid, suberic acid, malonic acid, succinic acid, glutaric acid, adipic acid, azelaic acid, sebacic acid, allylsuccinic acid, 4-cyclohexene-1,2-dicarboxylic acid, cyclohexane-1,2-dicarboxylic acid, cyclohexane-1,3-dicarboxylic acid, cyclohexane-1,4-dicarboxylic acid, 4-methylcyclohexane-1,2-dicarboxylic acid, norbornane-2,3-dicarboxylic acid, 5-norbornene-2,3-dica
  • n 0 or 1.
  • R1 represents a substituent having at least an ene structure.
  • triphenylbismuthine compound/precursor dicarboxylic acid compound 2/3, where the numbers of phenyl groups and carboxylic acid groups are the same, the fewer the unreacted phenyl groups and carboxylic acid groups will be, and the more stable the resin network structure will be, and the higher the heat resistance, etc., can be expected to be.
  • Solvents that can be used during the reaction include aliphatic hydrocarbon compounds such as hexane, heptane, and octane; aromatic hydrocarbon compounds such as benzene, toluene, and xylene; ketone compounds such as acetone, methyl ethyl ketone, and methyl isobutyl ketone; ether compounds such as diethyl ether, tetrahydrofuran, and methylcyclopentyl ether; ester compounds such as ethyl acetate and butyl acetate; and halogen compounds such as dichloromethane, chloroform, and dichloroethane. Among these, tetrahydrofuran and methyl ethyl ketone are preferred.
  • the reaction solution is mixed with a solvent in which the resin has low solubility to cause reprecipitation, and the solvent is separated by a common method such as filtration or centrifugation to obtain the target compound (a) represented by formula (1).
  • the solvent for reprecipitation include aliphatic hydrocarbon compounds such as hexane, heptane, and octane, and alcohol compounds such as methanol, among which aliphatic hydrocarbon compounds such as hexane, heptane, and octane are preferred.
  • the reprecipitation solvent may be mixed in advance during the reaction, and the solvent that dissolves compound (a) represented by formula (1) may be distilled off first after the reaction to cause reprecipitation.
  • the compound (a) represented by formula (1) can have multiple structures, not just a single one.
  • the bismuth atom has three substitution sites, two of the substitution sites may form an intramolecular cyclic structure with the precursor dicarboxylic acid compound, and the remaining substitution site may bond to another bismuth atom via the precursor dicarboxylic acid compound. Therefore, the compound (a) can have structures as exemplified by the following formulas (7) to (10).
  • the compound (a) represented by formula (1) is not limited to these.
  • the polymerizable composition containing the compound (a) may further contain (b) a compound having at least one group selected from the group consisting of an acryloyl group, a methacryloyl group, an allyl group, and a vinyl group, and/or (c) a compound having two or more thiol groups in one molecule.
  • (b) Compounds having at least one group selected from the group consisting of an acryloyl group, a methacryloyl group, an allyl group, and a vinyl group (hereinafter also referred to as “(b) compounds”) include all compounds that satisfy this condition.
  • Examples of the (b) compound include methyl (meth)acrylate, butyl (meth)acrylate, isobutyl (meth)acrylate, 2-hydroxyethyl (meth)acrylate, benzyl (meth)acrylate, glycidyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, cyclohexyl (meth)acrylate, ethylene glycol di(meth)acrylate, diethylene glycol di(meth)acrylate, triethylene glycol di(meth)acrylate, polyethylene glycol di(meth)acrylate, butanediol di(meth)acrylate, neopentyl glycol di(meth)acrylate, hexanediol di(meth)acrylate, nonanediol di(meth)acrylate,
  • Examples of the acrylates include, but are not limited to, glycerin di(meth)acrylate, trimethylolpropane
  • the ratio of compound (a) to compound (b) can be any ratio. It is possible to adjust the viscosity of the polymerizable composition to a range that is easy to handle, improve the uniformity of the solution, and produce a homogeneous cured product after curing. By mixing, it is also possible to adjust the mechanical strength of the cured resin and optical properties such as the refractive index. Compound (b) can also be used as a solvent.
  • (c) Compounds having two or more thiol groups in one molecule (hereinafter also referred to as “(c) compounds”) include all compounds that satisfy this condition.
  • Examples of the (c) compound include o-dimercaptobenzene, m-dimercaptobenzene, p-dimercaptobenzene, 1,3,5-trimercaptobenzene, methanedithiol, 1,2-dimercaptoethane, 2,2-dimercaptopropane, 1,3-dimercaptopropane, 1,2,3-trimercaptopropane, 1,4-dimercaptobutane, 1,6-dimercaptohexane, bis(2-mercaptoethyl)sulfide, 1,2-bis(2-mercaptoethylthio)ethane, 1,5-dimercapto-3-oxapentane, 1,8-dimercapto-3,6-dioxaoctane, 2,2-dimethylpropane-1,3-dithiol, 3,4-dimethoxybutane-1,2-dithiol, 2-mercaptomethyl-1,
  • Preferred compounds as the compound are bis(2-mercaptoethyl)sulfide, pentaerythritol tetrakis(2-mercaptoacetate), pentaerythritol tetrakis(3-mercaptopropionate), 2,5-bis(mercaptomethyl)-1,4-dithiane, 1,2-bis(2-mercaptoethylthio)-3-mercaptopropane, 1,2,6,7-tetramercapto-4-thiapentane, 4,8-dimercapto
  • preferred compounds include bis(2-mercaptoethyl)sulfide, pentaerythritol tetrakis(3-mercaptopropionate), 1,2-bis(2-mercaptoethylthio)-3-mercaptopropane, and 1,3-bis(mercaptomethyl)benzene.
  • the ratio of the (a) compound, the (b) compound, and the (c) compound may be any ratio.
  • a preferred range of the composition is a ratio of (number of SH groups in the (c) compound)/(number of double bonds in the (a) compound + number of double bonds in the (b) compound) of 10.0 or less, more preferably 5.0 or less, and most preferably 1.2 or less. If the above ratio exceeds 10.0, polymerization may not be sufficient, resulting in reduced heat resistance.
  • the polymerizable composition containing the compound (a) is provided as it is as a thermoplastic resin. Also, a resin obtained by polymerizing and curing the polymerizable composition containing the compound (a) is provided.
  • the polymerizable composition containing the compound (a) of the present invention has a polymerizable group containing an unsaturated double bond, and therefore hardens by a polymerization reaction to obtain a resin.
  • the polymerization reaction include a polymerization hardening reaction caused by light and a polymerization hardening reaction caused by heat.
  • a photopolymerization hardening reaction which allows polymerization in a short time, is preferred.
  • a thermal polymerization hardening reaction may be selected.
  • a thermal hardening reaction and a photohardening reaction may be combined.
  • the reaction of polymerizing and curing the polymerizable composition containing the compound (a) of the present invention can be carried out in the presence or absence of a polymerization catalyst.
  • a polymerization catalyst it is preferable to polymerize and cure in the presence of a polymerization catalyst to promote the polymerization reaction. Therefore, in one embodiment of the present invention, there is provided a resin obtained by polymerizing and curing the polymerizable composition of the present invention in the presence of a polymerization catalyst, as well as an optical material obtained from the resin.
  • the resin and optical material thus obtained are preferably transparent.
  • a method for producing a cured product preferably an optical material, characterized in that the polymerizable composition of the present invention is cured by irradiation with ultraviolet light or visible light in the presence of a polymerization catalyst.
  • a polymerizable composition containing the compound (a) of the present invention is cured by irradiation with light (active energy rays) to produce a resin as a cured product.
  • the light is not particularly limited as long as it can cure the polymerizable composition, but typically includes ultraviolet light, visible light, radiation, electron beam, etc., preferably ultraviolet light or visible light, and more preferably ultraviolet light because of its fast polymerization rate.
  • the irradiation intensity of the light beam is not particularly limited, but is usually 10 to 100,000 mW/ cm2 .
  • the irradiation time is not particularly limited, but is usually 1 minute to several hours, preferably 1 to 60 minutes.
  • the irradiation temperature is not particularly limited, and polymerization is possible at around room temperature.
  • photocuring may be performed while heating to a temperature equal to or higher than the melting point.
  • the polymerization catalyst there are no particular limitations on the polymerization catalyst, and it may be selected appropriately depending on the type of reactant, polymerization conditions, etc.
  • a compound that generates radicals when irradiated with light preferably active energy rays
  • photodecomposition type radical polymerization initiator is preferred, and specific examples include, but are not limited to, benzoin derivatives, benzyl derivatives, benzophenone derivatives, acetophenone derivatives, etc.
  • a compound (redox-type polymerization initiator) that generates radicals (free radicals) in the coexistence of an oxidizing agent and a reducing agent as a polymerization catalyst for the photopolymerization reaction.
  • a system that combines an oxide selected from persulfates such as sodium persulfate, potassium persulfate, and ammonium persulfate; peroxides such as hydrogen peroxide, t-butyl peroxide, and methyl ethyl ketone peroxide, and a reducing compound selected from L-ascorbic acid, sodium hydrogen sulfite, etc.
  • a photoredox catalyst that generates radicals upon irradiation with light such as visible light is also preferably used.
  • transition metal complexes such as ruthenium (II) polypyridyl complexes (e.g., Ru(bpz) 3 -(PF 6 ) 2 catalyst, etc.) and iridium (III) phenylpyridyl complexes.
  • a polymerizable composition containing the compound (a) of the present invention is polymerized (cured) by heating to produce a cured resin.
  • the polymerization catalyst used in the thermal polymerization reaction is preferably a compound that generates radicals when heated (thermolyzable radical polymerization initiator).
  • specific examples include persulfates such as sodium persulfate, ammonium persulfate, and potassium persulfate; hydrogen peroxide; organic peroxides such as t-butyl hydroperoxide; and azo compounds such as 2,2'-azobis(2-amidinopropane) dihydrochloride, 2,2'-azobis[2-2(-imidazolin-2-yl)propane] dihydrochloride, 2,2'-azobis(2-methylpropionitrile), and 2,2'-azobis(isobutyronitrile) (AIBN).
  • persulfates such as sodium persulfate, ammonium persulfate, and potassium persulfate
  • hydrogen peroxide such as t-butyl hydroperoxide
  • azo compounds such as 2,2'-azobis(2-
  • the polymerization catalyst may be one or more compounds selected from the group consisting of peroxides, azo compounds, redox polymerization initiators, and transition metal complexes.
  • a single type of polymerization catalyst may be used alone, or multiple types may be used in combination.
  • the amount of polymerization catalyst added varies depending on the components of the polymerizable composition containing the compound (a) of the present invention, the mixing ratio, and the polymerization and curing method, and cannot be determined in general, but is usually 0.0001% by mass to 10% by mass, preferably 0.001% by mass to 5% by mass, more preferably 0.01% by mass to 1% by mass, and most preferably 0.01% by mass to 0.5% by mass, relative to 100% by mass of the total polymerizable composition. If the amount added is more than 10% by mass, rapid polymerization may occur. If the amount added is less than 0.0001% by mass, the composition may not be sufficiently cured, resulting in poor heat resistance. Therefore, in a preferred embodiment of the present invention, the method for producing a resin includes a step of adding 0.0001 to 10% by mass of a polymerization catalyst relative to the total amount of the polymerizable composition, and polymerizing and curing the composition.
  • the polymerization (curing) of the polymerizable composition containing the compound (a) of the present invention by heating is usually carried out as follows. That is, the curing time is usually 1 to 100 hours, and the curing temperature is usually -10°C to 140°C.
  • the polymerization is carried out by a process of holding the polymerizing temperature at a predetermined temperature for a predetermined time, a process of raising the temperature at a rate of 0.1°C to 100°C/h, and a process of lowering the temperature at a rate of 0.1°C to 100°C/h, or a combination of these processes.
  • the curing time refers to the polymerization and curing time including the temperature rise process, and includes the process of raising the temperature to the predetermined polymerization (curing) temperature and cooling it down in addition to the process of holding the polymerizing (curing) temperature at the predetermined polymerization (curing) temperature.
  • the polymerization and curing process is not particularly limited, but is preferably a curing process using a metal, ceramic, glass, resin, or other mold.
  • the components of the polymerizable composition containing the compound (a) of the present invention and the polymerization catalyst, etc. are mixed. These may all be mixed simultaneously in the same container under stirring, each raw material may be added and mixed in stages, or several components may be mixed separately and then remixed in the same container. In addition, each raw material and auxiliary raw material may be mixed in any order.
  • the set temperature, the time required, etc. may basically be conditions that allow each component to be sufficiently mixed.
  • the polymerizable composition obtained in this way is poured into a mold or other form, and the polymerization and curing reaction is advanced by heating or irradiation with light such as ultraviolet rays, and then the composition is removed from the mold. In this way, a resin is obtained by curing the polymerizable composition containing the compound (a) of the present invention.
  • the polymerization reaction (curing process) can be carried out in air, in an inert gas atmosphere such as nitrogen, or under reduced pressure or pressure.
  • the resulting resin After curing is complete, it is preferable to anneal the resulting resin at a temperature of 50 to 150°C for about 10 minutes to 5 hours in order to remove distortion. If necessary, the resulting resin may also be subjected to surface treatments such as hard coating and anti-reflection.
  • additives such as ultraviolet absorbers, antioxidants, adhesion improvers, and release agents can be added to the polymerizable composition to further improve the practical utility of the resulting resin.
  • the polymerizable composition containing the compound (a) of the present invention can provide a resin having at least one excellent property, such as a high refractive index, photopolymerization curability, or thermal polymerization curability, as described above.
  • a resin having at least one excellent property such as a high refractive index, photopolymerization curability, or thermal polymerization curability, as described above.
  • the resin (cured product) obtained by curing the polymerizable composition is also one embodiment of the present invention.
  • One embodiment of the present invention is a molded article produced using a resin obtained by polymerizing and curing a polymerizable composition containing the compound (a) of the present invention.
  • the molded article is useful, for example, in advanced medical settings where CT (Computed Tomography) and PET (Positron Emission Tomography) devices are used for diagnosis and treatment, and in nuclear power plants. It can be used as a radiation shielding plate or shielding filter, and can also be used directly as an optical material (component). For example, by using it in a camera lens, it is possible to protect the camera sensor from damage caused by radiation, and it is also possible to transmit images with noise caused by radiation removed.
  • optical materials for example, lenses such as eyeglass lenses, (digital) camera imaging lenses, light beam condensing lenses, and light diffusing lenses, LED sealants, optical adhesives, optical transmission bonding materials, prisms, filters, diffraction gratings, watch glasses, and transparent glass and cover glass for display devices; display device applications such as substrates for display elements such as LCDs, organic ELs, and PDPs, substrates for color filters, substrates for touch panels, display backlights, light guide plates, display protective films, anti-reflection films, anti-fogging films, and other coating agents (coating films); optical memories, recording media such as electronic paper, sensor materials such as UV checkers, light control materials such as window glass, sunglasses, and automotive window glass, textile products, cosmetic materials, photochromic materials, and other color tone changing materials such
  • Example 1 Polycondensation of triphenylbismuthine (BiPh 3 ) and 2-octenylsuccinic acid (cis, trans mixture) (Bi-OSA:1-1) (typical example) Triphenylbismuthine (220 mg, 0.500 mmol) represented by the structural formula below and 2-octenylsuccinic acid (cis, trans mixture) (OSA) (114 mg, 0.500 mmol) represented by the structural formula below were added to a two-necked test tube, and dehydrated THF (1.00 mL) was added under a nitrogen atmosphere, and the reaction was carried out under reflux conditions for 24 hours.
  • Triphenylbismuthine (220 mg, 0.500 mmol) represented by the structural formula below
  • 2-octenylsuccinic acid (cis, trans mixture) (OSA) 114 mg, 0.500 mmol represented by the structural formula below were added to a two-necked test tube, and dehydrated THF (1.00 mL)
  • Example 1 An example of the structure of the white solid obtained in Example 1 is shown in the following formula (11).
  • the measurement result of the 1 H-NMR (400 MHz, CDCl 3 ) spectrum of the polycondensate obtained in Example 1 is shown in FIG.
  • the 13 C-NMR (100 MHz, CDCl 3 ) spectrum of the polycondensate obtained in Example 1 is shown in FIG.
  • the IR spectrum (KBr, cm ⁇ 1 ) of the polycondensate obtained in Example 1 is shown in FIG.
  • Example 2 Polymerization was carried out in the same manner as in Example 1, except that the compounding ratio of triphenylbismuthine and 2-octenylsuccinic acid and the solvent were changed as shown in the following Table 1. The obtained results are shown in the following Table 1.
  • Example 5 An example of the structure of the white solid obtained in Example 5 is shown in the following formula (12).
  • the 1 H-NMR (400 MHz, CDCl 3 ) spectrum of the polycondensate obtained in Example 5 is shown in FIG.
  • the IR spectrum (KBr, cm ⁇ 1 ) of the polycondensate obtained in Example 5 is shown in FIG.
  • Example 6 Polycondensation of triphenylbismuthine (BiPh 3 ), 2-octenylsuccinic acid (cis, trans mixture), and phenylsuccinic acid [Bi(OSA-PSA:5-5)] Triphenylbismuthine (220 mg, 0.500 mmol), 2-octenylsuccinic acid (cis, trans mixture) (57.1 mg, 0.250 mmol), and phenylsuccinic acid (48.5 mg, 0.250 mmol) represented by the following structural formula were added to a two-necked test tube, and dehydrated THF (1 mL) was added under a nitrogen atmosphere, and the reaction was carried out under reflux conditions for 24 hours.
  • Example 6 An example of the structure of the white solid obtained in Example 6 is shown in the following formula (13).
  • the IR spectrum (KBr, cm ⁇ 1 ) of the polycondensate obtained in Example 6 is shown in FIG.
  • Example 7 Polycondensation of triphenylbismuthine (BiPh 3 ), 2-octenylsuccinic acid (cis, trans mixture), and methacrylic acid [Bi(OSA-MA:5-5)] Triphenylbismuthine (220 mg, 0.500 mmol), 2-octenylsuccinic acid (cis, trans mixture) (114 mg, 0.500 mmol), and methacrylic acid (43.0 mg, 0.500 mmol) were added to a two-necked test tube, and dehydrated THF (1.5 mL) was added under a nitrogen atmosphere, and the reaction was carried out under reflux conditions for 24 hours. After the reaction was completed, 251 mg of a white solid was obtained. An example of the structure of the white solid obtained in Example 7 is shown in the following formula (14). The IR spectrum (KBr, cm ⁇ 1 ) of the polycondensate obtained in Example 7 is shown in FIG.
  • Example 8 Polycondensation of triphenylbismuthine (BiPh 3 ), 2-octenylsuccinic acid (cis, trans mixture), and methacrylic acid [Bi(OSA-MA:5-5)] Triphenylbismuthine (220 mg, 0.500 mmol), 2-octenylsuccinic acid (cis, trans mixture) (114 mg, 0.500 mmol), and methacrylic acid (43.0 mg, 0.500 mmol) were added to a two-necked test tube, and dehydrated THF (1.5 mL) was added under a nitrogen atmosphere, and the reaction was carried out under reflux conditions for 24 hours. After the reaction was completed, 251 mg of a white solid was obtained.
  • Example 9 An example of the structure of the white solid obtained in Example 9 is shown in the following formula (15).
  • the 1 H-NMR (400 MHz, CDCl 3 ) spectrum of the polycondensate obtained in Example 9 is shown in FIG.
  • Example 10 The Bi -OSA :1-1 (250 mg) obtained in Example 1 was sandwiched between two polyimide films and pressed for 1 minute at 150° C. under a pressure of 15 kN in an Imoto Seisakusho press (IMC-1A45). After this, it was gradually cooled to room temperature to obtain a film with a transmittance of 50%.
  • IMC-1A45 Imoto Seisakusho press
  • the X-ray shielding property of the bismuth-containing film was evaluated using a small angle X-ray scattering device (SAXS: NANO-Viewer manufactured by Rigaku Corporation) as an X-ray source (detector).
  • SAXS small angle X-ray scattering device
  • the evaluation of the X-ray transmittance was calculated using the following formula.
  • the X-ray transmittance of the Bi-OSA:1-1 film obtained above was 0.012% at a thickness of 449 ⁇ m (0.0449 cm) and 0.001% or less at a thickness of 947 ⁇ m (0.0947 cm). The results are shown in Table 2.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

According to the present invention, it is possible to provide a polymerizable composition comprising a compound (a) represented by formula (1). (In formula (1), X1-X3 are the same as or different from each other, and represent a structure represented by formula (2) or a phenyl group, and at least one among X1-X3 represents a structure represented by formula (2). When the bismuth atom in formula (1) is bonded to the structure represented by formula (2), the bismuth atom is bonded to the oxygen atom in formula (2). The oxygen atom in formula (2) is bonded to the same bismuth atom to form a cyclic structure or is bonded to another bismuth atom to form a chain structure.) (In formula (2), Z represents a hydrocarbon group.)

Description

重合性組成物及びそれを重合硬化してなる樹脂、並びに該樹脂を含む光学材料Polymerizable composition, resin obtained by polymerizing and curing the composition, and optical material containing the resin

 本発明は、重合性組成物及びそれを重合硬化してなる樹脂、並びに該樹脂を含む光学材料に関する。本発明は、特に、放射線を遮蔽する必要がある透明部材として、フィルター、プラスチックレンズ、プリズム、光ファイバー等の光学材料、中でもフィルター、プラスチックレンズに好適に使用される重合性組成物及びそれを重合硬化してなる樹脂に関する。 The present invention relates to a polymerizable composition and a resin obtained by polymerizing and curing the polymerizable composition, as well as an optical material containing the resin. The present invention particularly relates to a polymerizable composition and a resin obtained by polymerizing and curing the polymerizable composition that are suitable for use in optical materials such as filters, plastic lenses, prisms, and optical fibers, particularly filters and plastic lenses, as transparent members that need to block radiation.

 放射線を遮蔽する部材として、一般的にはアルファ線に対しては紙などの薄い材料、ベータ線に対してはアルミニウム等の薄い金属板を用いることによって容易に遮蔽することができるが、ガンマ線、X線に対しては鉛や鉄などの厚い板を遮蔽材として用いることでこれらを弱めることができる。一方で、それらの材料は透明性がなく遮蔽材の反対側を可視化することができない。 Radiation shielding materials generally can easily block alpha rays using thin materials such as paper, and beta rays using thin metal plates such as aluminum, but gamma rays and X-rays can be weakened by using thick plates of lead or iron as shielding materials. However, these materials are not transparent, making it impossible to visualize the other side of the shielding material.

 そのような中で、CT (コンピューター断層撮影) やPET (陽電子放出断層撮影) 装置などによる診療を行う高度医療の現場や、原子力発電所での現場では、放射線を十分に遮蔽しつつ、放射線を使用している現場での状況を確認するため、目視あるいはカメラを通して映像を伝送する必要があるため、放射線を十分に遮蔽しつつ、可視光に対して透明な材料が必要となる。 In such circumstances, at advanced medical facilities where CT (computed tomography) and PET (positron emission tomography) equipment are used for diagnosis and treatment, and at nuclear power plants, it is necessary to transmit images visually or through a camera while still providing sufficient shielding from radiation in order to check the situation at the site where radiation is being used. This requires materials that provide sufficient shielding from radiation while also being transparent to visible light.

 そのような要求がある中で、可視光に対して透明かつ放射線を遮蔽できる材料としては、鉛含有ガラスが一般的に知られている(特許文献1及び2)。しかしながら、鉛含有ガラスはプラスチックと異なり加工性や成形性に劣るため複雑な形状には適していないことや、比重が高く軽量性を求められる用途に対しては不利である。 Amid such demands, lead-containing glass is commonly known as a material that is transparent to visible light and can block radiation (Patent Documents 1 and 2). However, unlike plastics, lead-containing glass is poorly processable and moldable, making it unsuitable for complex shapes, and its high specific gravity makes it disadvantageous for applications requiring light weight.

 一方、放射線遮蔽プラスチックとしては、硫酸バリウムや酸化セリウム、酸化バリウムなどの重金属を充填したゴムシートが一般的に知られている(特許文献3)。しかしながら、これらのゴムシートは可視光に対して不透明であるため、放射線を使用している現場を目視あるいはカメラを通して確認することができない。 On the other hand, rubber sheets filled with heavy metals such as barium sulfate, cerium oxide, and barium oxide are commonly known as radiation shielding plastics (Patent Document 3). However, these rubber sheets are opaque to visible light, so it is not possible to visually or camera-visually confirm the location where radiation is being used.

 これらのことから、加工性に優れ軽量であるプラスチック材料で放射線遮蔽能力を有する材料が求められている。 For these reasons, there is a demand for plastic materials that are lightweight, easy to process, and have radiation shielding capabilities.

特開2016-008146Patent Publication 2016-008146 特開2014-062863Patent Publication 2014-062863 特開2015-224967Patent Publication 2015-224967

 本発明は、上記従来技術における問題の少なくとも一つを解決することを課題とする。更に、本発明は、溶剤溶解性と熱可塑性を有し容易に加工することが可能であり、更には、熱あるいは光硬化が可能であり、放射線遮蔽能力を有する透明な樹脂や光学材料を提供し得る重合性組成物を提供することを課題とする。 The present invention aims to solve at least one of the problems in the above-mentioned conventional techniques. Furthermore, the present invention aims to provide a polymerizable composition that is solvent-soluble and thermoplastic, can be easily processed, and can be cured by heat or light, and can provide a transparent resin or optical material that has radiation shielding capabilities.

 本発明者らは、このような状況に鑑み、鋭意研究を重ねた結果、ビスマスを含有する特定構造の化合物を用いることによって上記課題を解決できることを見出した。
 具体的には、本発明は以下の態様を含む。
In view of the above circumstances, the present inventors conducted extensive research and found that the above problems can be solved by using a bismuth-containing compound having a specific structure.
Specifically, the present invention includes the following aspects.

<1> 下記式(1)で表される化合物(a)を含む、重合性組成物である。

Figure JPOXMLDOC01-appb-C000007
(式(1)中、X~Xは同一または異なって、下記式(2)で表される構造またはフェニル基を表し、X~Xの少なくとも1つは式(2)で表される構造を表す。式(1)のビスマス原子について、式(2)で表される構造と結合している場合は、式(2)の酸素原子と結合する。式(2)の酸素原子は同一のビスマス原子と結合して環状構造を形成するか、あるいは他のビスマス原子と結合して鎖状構造を形成する。)
Figure JPOXMLDOC01-appb-C000008
(式(2)中、Zは炭化水素基を表す)。
<2> 前記式(2)で表される構造が、下記式(3)で表される構造を表す、上記<1>に記載の重合性組成物である。
Figure JPOXMLDOC01-appb-C000009
(式(3)中、nは0~10の整数を表す。Rは水素原子または炭化水素基を表す。)
<3> 式(3)におけるRが、下記式(4)で表される置換基を表す、上記<1>または<2>に記載の重合性組成物である。
Figure JPOXMLDOC01-appb-C000010
(式(4)中、mは0~3の整数を表す。Rは炭素数1~10の炭化水素基を表す。)
<4> さらに、(b)アクリロイル基、メタクリロイル基、アリル基、及びビニル基からなる群より選択される少なくとも1つの基を有する化合物を含有する、上記<1>~<3>のいずれかに記載の重合性組成物である。
<5> さらに、(c)チオール基を1分子中に2個以上有する化合物を含有する、上記<1>~<4>のいずれかに記載の重合性組成物である。
<6> 前記式(3)で表される構造が、下記式(5)または式(6)で表される構造の少なくとも一つである、上記<2>に記載の重合性組成物である。
Figure JPOXMLDOC01-appb-C000011
(式(5)中、Rは炭素数1~10の炭化水素基を表す。)
Figure JPOXMLDOC01-appb-C000012
<7> 前記(b)アクリロイル基、メタクリロイル基、アリル基、及びビニル基からなる群より選択される少なくとも1つの基を有する化合物が、メチル(メタ)アクリレート、ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、ベンジル(メタ)アクリレート、グリシジル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、ブタンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、ヘキサンジオールジ(メタ)アクリレート、ノナンジオールジ(メタ)アクリレート、グリセリンジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ビスフェノールAのエチレンオキサイド付加物ジ(メタ)アクリレート、イソボニル(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、アリル(メタ)アクリレート、2-カルボキシエチル(メタ)アクリレート、ジメチル(メタ)アクリルアミド、フェニルビニルスルフィド、フェニルビニルスルホキシド、4-メチル-5-ビニルイミダゾール、及び1-ビニルイミダゾールからなる群より選ばれる1種以上の化合物である、上記<4>に記載の重合性組成物である。
<8> 上記<1>~<7>のいずれかに記載の重合性組成物を重合硬化してなる樹脂である。
<9> 上記<8>に記載の樹脂を含む光学材料である。
<10> 上記<8>に記載の樹脂を含む色調変化材料である。 <1> A polymerizable composition containing a compound (a) represented by the following formula (1):
Figure JPOXMLDOC01-appb-C000007
(In formula (1), X 1 to X 3 are the same or different and represent a structure represented by formula (2) below or a phenyl group, and at least one of X 1 to X 3 represents a structure represented by formula (2). When a bismuth atom in formula (1) is bonded to a structure represented by formula (2), it is bonded to an oxygen atom in formula (2). The oxygen atom in formula (2) is bonded to the same bismuth atom to form a cyclic structure, or is bonded to another bismuth atom to form a chain structure.)
Figure JPOXMLDOC01-appb-C000008
(In formula (2), Z represents a hydrocarbon group).
<2> The polymerizable composition according to <1> above, wherein the structure represented by formula (2) represents a structure represented by formula (3):
Figure JPOXMLDOC01-appb-C000009
(In formula (3), n represents an integer of 0 to 10. R 1 represents a hydrogen atom or a hydrocarbon group.)
<3> The polymerizable composition according to <1> or <2> above, wherein R 1 in formula (3) represents a substituent represented by the following formula (4):
Figure JPOXMLDOC01-appb-C000010
(In formula (4), m represents an integer of 0 to 3. R2 represents a hydrocarbon group having 1 to 10 carbon atoms.)
<4> The polymerizable composition according to any one of <1> to <3> above, further comprising (b) a compound having at least one group selected from the group consisting of an acryloyl group, a methacryloyl group, an allyl group, and a vinyl group.
<5> The polymerizable composition according to any one of <1> to <4> above, further comprising (c) a compound having two or more thiol groups in one molecule.
<6> The polymerizable composition according to the above item <2>, wherein the structure represented by formula (3) is at least one of structures represented by the following formula (5) or formula (6):
Figure JPOXMLDOC01-appb-C000011
(In formula (5), R2 represents a hydrocarbon group having 1 to 10 carbon atoms.)
Figure JPOXMLDOC01-appb-C000012
<7> The compound (b) having at least one group selected from the group consisting of an acryloyl group, a methacryloyl group, an allyl group, and a vinyl group is selected from the group consisting of methyl (meth)acrylate, butyl (meth)acrylate, isobutyl (meth)acrylate, 2-hydroxyethyl (meth)acrylate, benzyl (meth)acrylate, glycidyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, cyclohexyl (meth)acrylate, ethylene glycol di(meth)acrylate, diethylene glycol di(meth)acrylate, triethylene glycol di(meth)acrylate, polyethylene glycol di(meth)acrylate, butanediol di(meth)acrylate, neopentyl glycol di(meth)acrylate, hexanediol di(meth)acrylate, nonanediol di( ... The polymerizable composition according to <4> above, wherein the compound is one or more compounds selected from the group consisting of diol di(meth)acrylate, glycerin di(meth)acrylate, trimethylolpropane tri(meth)acrylate, pentaerythritol tri(meth)acrylate, pentaerythritol tetra(meth)acrylate, dipentaerythritol hexa(meth)acrylate, an ethylene oxide adduct of bisphenol A di(meth)acrylate, isobornyl (meth)acrylate, tetrahydrofurfuryl (meth)acrylate, allyl (meth)acrylate, 2-carboxyethyl (meth)acrylate, dimethyl (meth)acrylamide, phenyl vinyl sulfide, phenyl vinyl sulfoxide, 4-methyl-5-vinylimidazole, and 1-vinylimidazole.
<8> A resin obtained by polymerizing and curing the polymerizable composition according to any one of <1> to <7> above.
<9> An optical material containing the resin according to <8> above.
<10> A color tone changing material containing the resin according to <8> above.

 本発明によれば、溶剤溶解性と熱可塑性を有し容易に加工することが可能であり、更には、熱あるいは光硬化が可能であり、放射線遮蔽能力を有する透明な樹脂や光学材料を提供し得る重合性組成物を提供することができる。 The present invention provides a polymerizable composition that is solvent-soluble and thermoplastic, can be easily processed, and can be cured by heat or light, providing a transparent resin or optical material with radiation shielding capabilities.

図1は、実施例1で得られた重縮合物のH-NMR(400MHz、CDCl)スペクトルの測定結果を示す図である。なお、図1におけるビスマス元素と結合している構造は、フェニル基または式(2)で表されるカルボン酸基である。Fig. 1 is a diagram showing the measurement results of the 1 H-NMR (400 MHz, CDCl 3 ) spectrum of the polycondensate obtained in Example 1. Note that the structure bonded to the bismuth element in Fig. 1 is a phenyl group or a carboxylic acid group represented by formula (2). 図2は、実施例1で得られた重縮合物の13C-NMR(100MHz、CDCl)スペクトルの測定結果を示す図である。なお、図2におけるビスマス元素と結合している構造は、フェニル基または式(2)で表されるカルボン酸基である。Fig. 2 is a diagram showing the measurement results of the 13C -NMR (100 MHz, CDCl3 ) spectrum of the polycondensate obtained in Example 1. Note that the structure bonded to the bismuth element in Fig. 2 is a phenyl group or a carboxylic acid group represented by formula (2). 図3は、実施例1で得られた重縮合物のIRスペクトル(KBr、cm-1)の測定結果を示す図である。FIG. 3 is a diagram showing the measurement results of the IR spectrum (KBr, cm −1 ) of the polycondensate obtained in Example 1. 図4は、実施例5で得られた重縮合物のH-NMR(400MHz、CDCl)スペクトルの測定結果を示す図である。なお、図4におけるビスマス元素と結合している構造は、フェニル基または式(2)で表されるカルボン酸基である。Fig. 4 is a diagram showing the measurement results of the 1 H-NMR (400 MHz, CDCl 3 ) spectrum of the polycondensate obtained in Example 5. Note that the structure bonded to the bismuth element in Fig. 4 is a phenyl group or a carboxylic acid group represented by formula (2). 図5は、実施例5で得られた重縮合物のIRスペクトル(KBr、cm-1)の測定結果を示す図である。FIG. 5 is a diagram showing the measurement results of the IR spectrum (KBr, cm −1 ) of the polycondensate obtained in Example 5. 図6は、実施例6で得られた重縮合物のIRスペクトル(KBr、cm-1)の測定結果を示す図である。FIG. 6 is a diagram showing the measurement results of the IR spectrum (KBr, cm −1 ) of the polycondensate obtained in Example 6. 図7は、実施例7で得られた重縮合物のIRスペクトル(KBr、cm-1)の測定結果を示す図である。FIG. 7 is a diagram showing the measurement results of the IR spectrum (KBr, cm −1 ) of the polycondensate obtained in Example 7. 図8は、実施例9で得られた重縮合物のH-NMR(400MHz、CDCl)スペクトルの測定結果を示す図である。なお、図8におけるビスマス元素と結合している構造は、フェニル基または式(2)で表されるカルボン酸基である。Fig. 8 is a diagram showing the measurement results of the 1 H-NMR (400 MHz, CDCl 3 ) spectrum of the polycondensate obtained in Example 9. Note that the structure bonded to the bismuth element in Fig. 8 is a phenyl group or a carboxylic acid group represented by formula (2).

 以下、本発明について製造例や実施例等を例示して詳細に説明するが、本発明は例示される製造例や実施例等に限定されるものではなく、本発明の内容を大きく逸脱しない範囲であれば任意の態様に変更して行うこともできる。
 本発明の一実施形態において、下記式(1)で表される化合物(a)を含む、重合性組成物が提供される。なお、本発明の重合性組成物は、下記式(1)で表される化合物(a)のみを含む態様と、下記式(1)で表される化合物(a)とその他の成分とを含む態様の両方を包含するものである。

Figure JPOXMLDOC01-appb-C000013
(式(1)中、X~Xは同一または異なって、下記式(2)で表される構造またはフェニル基を表し、X~Xの少なくとも1つは式(2)で表される構造を表す。式(1)のビスマス原子について、式(2)で表される構造と結合している場合は、式(2)の酸素原子と結合する。式(2)の酸素原子は同一のビスマス原子と結合して環状構造を形成するか、あるいは他のビスマス原子と結合して鎖状構造を形成する。)
Figure JPOXMLDOC01-appb-C000014
(式(2)中、Zは炭化水素基を表す)。 Hereinafter, the present invention will be described in detail by way of examples and working examples. However, the present invention is not limited to the illustrated examples and working examples, and can be modified in any manner without departing from the scope of the present invention.
In one embodiment of the present invention, there is provided a polymerizable composition comprising a compound (a) represented by the following formula (1). The polymerizable composition of the present invention encompasses both an embodiment comprising only the compound (a) represented by the following formula (1) and an embodiment comprising the compound (a) represented by the following formula (1) and other components.
Figure JPOXMLDOC01-appb-C000013
(In formula (1), X 1 to X 3 are the same or different and represent a structure represented by formula (2) below or a phenyl group, and at least one of X 1 to X 3 represents a structure represented by formula (2). When a bismuth atom in formula (1) is bonded to a structure represented by formula (2), it is bonded to an oxygen atom in formula (2). The oxygen atom in formula (2) is bonded to the same bismuth atom to form a cyclic structure, or is bonded to another bismuth atom to form a chain structure.)
Figure JPOXMLDOC01-appb-C000014
(In formula (2), Z represents a hydrocarbon group).

 以下、各構成成分について説明する。
 上記式(1)で表される化合物(a)(以下、「(a)化合物」とも称する)は、上記の条件を満たすすべての化合物を包含する。これらは単独で使用しても、2種以上を混合して使用してもよい。本発明で使用される(a)化合物は、硫黄化合物のような臭気がないという利点がある。
Each component will be described below.
The compound (a) represented by the above formula (1) (hereinafter also referred to as "(a) compound") includes all compounds that satisfy the above conditions. These may be used alone or in combination of two or more. The (a) compound used in the present invention has the advantage of being odorless, unlike sulfur compounds.

 本発明の好ましい一実施形態は、下記式(3)で表される構造を含むことが好ましい。

Figure JPOXMLDOC01-appb-C000015
(式(3)中、nは0~10の整数を表す。Rは水素原子または炭化水素基を表す。)
 さらに式(3)におけるRが、下記式(4)で表される置換基を表すことが好ましい。
Figure JPOXMLDOC01-appb-C000016
(式(4)中、mは0~3の整数を表す。Rは炭素数1~10の炭化水素基を表す。) A preferred embodiment of the present invention preferably includes a structure represented by the following formula (3).
Figure JPOXMLDOC01-appb-C000015
(In formula (3), n represents an integer of 0 to 10. R 1 represents a hydrogen atom or a hydrocarbon group.)
Furthermore, R 1 in formula (3) preferably represents a substituent represented by the following formula (4).
Figure JPOXMLDOC01-appb-C000016
(In formula (4), m represents an integer of 0 to 3. R2 represents a hydrocarbon group having 1 to 10 carbon atoms.)

 本発明の別の好ましい一実施形態は、式(3)で表される構造が、下記式(5)または式(6)で表される構造の少なくとも一つである。

Figure JPOXMLDOC01-appb-C000017
(式(5)中、Rは炭素数1~10の炭化水素基を表す。)
Figure JPOXMLDOC01-appb-C000018
In another preferred embodiment of the present invention, the structure represented by formula (3) is at least one of structures represented by the following formula (5) or formula (6).
Figure JPOXMLDOC01-appb-C000017
(In formula (5), R2 represents a hydrocarbon group having 1 to 10 carbon atoms.)
Figure JPOXMLDOC01-appb-C000018

 上記(a)化合物は、下記に示すように、トリフェニルビスムチン化合物と、前駆体ジカルボン酸化合物とを反応させることにより得ることができる。
 本発明で使用される前駆体ジカルボン酸化合物は、特に制限なく使用することができるが、2-オクテニルコハク酸、イタコン酸、フェニルコハク酸、スベリン酸、マロン酸、コハク酸、グルタル酸、アジピン酸、アゼライン酸、セバシン酸、アリルコハク酸、4-シクロヘキセン-1,2-ジカルボン酸、シクロヘキサン-1,2-ジカルボン酸、シクロヘキサン-1,3-ジカルボン酸、シクロヘキサン-1,4-ジカルボン酸、4-メチルシクロヘキサン-1,2-ジカルボン酸、ノルボルナン-2,3-ジカルボン酸、5-ノルボルネン-2,3-ジカルボン酸、オキサ-5-ノルボルネン-2,3-ジカルボン酸などを好ましく使用することができる。
The compound (a) can be obtained by reacting a triphenylbismuthine compound with a precursor dicarboxylic acid compound as shown below.
The precursor dicarboxylic acid compound used in the present invention can be used without any particular limitation, but preferably used are 2-octenylsuccinic acid, itaconic acid, phenylsuccinic acid, suberic acid, malonic acid, succinic acid, glutaric acid, adipic acid, azelaic acid, sebacic acid, allylsuccinic acid, 4-cyclohexene-1,2-dicarboxylic acid, cyclohexane-1,2-dicarboxylic acid, cyclohexane-1,3-dicarboxylic acid, cyclohexane-1,4-dicarboxylic acid, 4-methylcyclohexane-1,2-dicarboxylic acid, norbornane-2,3-dicarboxylic acid, 5-norbornene-2,3-dicarboxylic acid, oxa-5-norbornene-2,3-dicarboxylic acid, and the like.

Figure JPOXMLDOC01-appb-C000019
(式中、nは0又は1を表す。Rは少なくともエン構造を有する置換基を表す。)
Figure JPOXMLDOC01-appb-C000019
(In the formula, n represents 0 or 1. R1 represents a substituent having at least an ene structure.)

 トリフェニルビスムチン化合物と、前駆体ジカルボン酸化合物との仕込のモル比は、トリフェニルビスムチン化合物/前駆体ジカルボン酸化合物=1/3~3/3が好ましい。より好ましくは、トリフェニルビスムチン化合物/前駆体ジカルボン酸化合物=1.5/3~2.5~3、さらに好ましくは、1.8/3~2.2/3である。フェニル基とカルボン酸基の数が一致する、トリフェニルビスムチン化合物/前駆体ジカルボン酸化合物=2/3に近いほど、未反応のフェニル基やカルボン酸基が少なくなり、樹脂のネットワーク構造が安定して耐熱性等が高くなることが期待できる。 The molar ratio of the triphenylbismuthine compound to the precursor dicarboxylic acid compound is preferably triphenylbismuthine compound/precursor dicarboxylic acid compound = 1/3 to 3/3. More preferably, triphenylbismuthine compound/precursor dicarboxylic acid compound = 1.5/3 to 2.5 to 3, and even more preferably, 1.8/3 to 2.2/3. The closer the ratio is to triphenylbismuthine compound/precursor dicarboxylic acid compound = 2/3, where the numbers of phenyl groups and carboxylic acid groups are the same, the fewer the unreacted phenyl groups and carboxylic acid groups will be, and the more stable the resin network structure will be, and the higher the heat resistance, etc., can be expected to be.

 反応時の溶剤としては、ヘキサン、ヘプタン、オクタンなどの脂肪族炭化水素化合物、ベンゼン、トルエン、キシレンなどの芳香族炭化水素化合物、アセトン、メチルエチルケトン、メチルイソブチルケトンなどのケトン化合物、ジエチルエーテル、テトラヒドロフラン、メチルシクロペンチルエーテルなどのエーテル化合物、酢酸エチル、酢酸ブチルなどのエステル化合物、ジクロロメタン、クロロホルム、ジクロロエタンなどのハロゲン化合物等が使用できるが、それらの中でも、テトラヒドロフラン、及びメチルエチルケトンが好ましい。  Solvents that can be used during the reaction include aliphatic hydrocarbon compounds such as hexane, heptane, and octane; aromatic hydrocarbon compounds such as benzene, toluene, and xylene; ketone compounds such as acetone, methyl ethyl ketone, and methyl isobutyl ketone; ether compounds such as diethyl ether, tetrahydrofuran, and methylcyclopentyl ether; ester compounds such as ethyl acetate and butyl acetate; and halogen compounds such as dichloromethane, chloroform, and dichloroethane. Among these, tetrahydrofuran and methyl ethyl ketone are preferred.

 反応後は、反応溶液を樹脂の溶解性が低い溶剤と混合して再沈し、濾別や遠心分離などの一般的な手法で溶剤と分離して、目的の式(1)で表される化合物(a)を取得することができる。再沈する溶剤としては、ヘキサン、ヘプタン、オクタンなどの脂肪族炭化水素化合物、メタノールなどのアルコール化合物等が挙げられるが、それらの中でも、ヘキサン、ヘプタン、オクタンなどの脂肪族炭化水素化合物が好ましい。再沈溶剤は、反応時に予め混合しておいて、反応後に式(1)で表される化合物(a)を溶解させる溶剤を先に留去させることで、再沈してもよい。 After the reaction, the reaction solution is mixed with a solvent in which the resin has low solubility to cause reprecipitation, and the solvent is separated by a common method such as filtration or centrifugation to obtain the target compound (a) represented by formula (1). Examples of the solvent for reprecipitation include aliphatic hydrocarbon compounds such as hexane, heptane, and octane, and alcohol compounds such as methanol, among which aliphatic hydrocarbon compounds such as hexane, heptane, and octane are preferred. The reprecipitation solvent may be mixed in advance during the reaction, and the solvent that dissolves compound (a) represented by formula (1) may be distilled off first after the reaction to cause reprecipitation.

 式(1)で表される化合物(a)は単一ではなく、複数の構造を有することができる。例えば、ビスマス原子は3つの置換部位を有するため、2つの置換部位が前駆体ジカルボン酸化合物と分子内環状構造を形成し、残り1つの置換部位が前駆体ジカルボン酸化合物を介して別のビスマス原子と結合してもよい。そのため、下記式(7)~式(10)で例示さるような構造を有することができる。なお、式(1)で表される化合物(a)はこれらに限らない。

Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
The compound (a) represented by formula (1) can have multiple structures, not just a single one. For example, since the bismuth atom has three substitution sites, two of the substitution sites may form an intramolecular cyclic structure with the precursor dicarboxylic acid compound, and the remaining substitution site may bond to another bismuth atom via the precursor dicarboxylic acid compound. Therefore, the compound (a) can have structures as exemplified by the following formulas (7) to (10). However, the compound (a) represented by formula (1) is not limited to these.
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023

 上記(a)化合物を含む重合性組成物は、さらに、(b)アクリロイル基、メタクリロイル基、アリル基、及びビニル基からなる群より選択される少なくとも1つの基を有する化合物、及び/又は(c)チオール基を1分子中に2個以上有する化合物を含有してもよい。 The polymerizable composition containing the compound (a) may further contain (b) a compound having at least one group selected from the group consisting of an acryloyl group, a methacryloyl group, an allyl group, and a vinyl group, and/or (c) a compound having two or more thiol groups in one molecule.

 (b)アクリロイル基、メタクリロイル基、アリル基、及びビニル基からなる群より選択される少なくとも1つの基を有する化合物(以下、「(b)化合物」とも称する)は、この条件を満たすすべての化合物を包含する。 (b) Compounds having at least one group selected from the group consisting of an acryloyl group, a methacryloyl group, an allyl group, and a vinyl group (hereinafter also referred to as "(b) compounds") include all compounds that satisfy this condition.

 (b)化合物としては、メチル(メタ)アクリレート、ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、ベンジル(メタ)アクリレート、グリシジル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、ブタンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、ヘキサンジオールジ(メタ)アクリレート、ノナンジオールジ(メタ)アクリレート、グリセリンジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ビスフェノールAのエチレンオキサイド付加物ジ(メタ)アクリレート、イソボニル(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、アリル(メタ)アクリレート、2-カルボキシエチル(メタ)アクリレート、ジメチル(メタ)アクリルアミド、フェニルビニルスルフィド、フェニルビニルスルホキシド、4-メチル-5-ビニルイミダゾール、1-ビニルイミダゾール等を挙げることができるが、これらに限定されない。
 また、これらは単独で使用しても、2種以上を混合して使用してもよい。
Examples of the (b) compound include methyl (meth)acrylate, butyl (meth)acrylate, isobutyl (meth)acrylate, 2-hydroxyethyl (meth)acrylate, benzyl (meth)acrylate, glycidyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, cyclohexyl (meth)acrylate, ethylene glycol di(meth)acrylate, diethylene glycol di(meth)acrylate, triethylene glycol di(meth)acrylate, polyethylene glycol di(meth)acrylate, butanediol di(meth)acrylate, neopentyl glycol di(meth)acrylate, hexanediol di(meth)acrylate, nonanediol di(meth)acrylate, Examples of the acrylates include, but are not limited to, glycerin di(meth)acrylate, trimethylolpropane tri(meth)acrylate, pentaerythritol tri(meth)acrylate, pentaerythritol tetra(meth)acrylate, dipentaerythritol hexa(meth)acrylate, ethylene oxide adduct di(meth)acrylate of bisphenol A, isobornyl (meth)acrylate, tetrahydrofurfuryl (meth)acrylate, allyl (meth)acrylate, 2-carboxyethyl (meth)acrylate, dimethyl (meth)acrylamide, phenyl vinyl sulfide, phenyl vinyl sulfoxide, 4-methyl-5-vinylimidazole, and 1-vinylimidazole.
These may be used alone or in combination of two or more.

 (a)化合物と、(b)化合物との割合は任意である。重合性組成物の粘度をハンドリングしやすい範囲に調整したり、溶液の均一性を向上させたり、硬化後に均質な硬化物を作製することができる。また混合することで、硬化後の樹脂の機械強度や、屈折率などの光学特性を調整することができる。また(b)化合物を溶剤として使用することもできる。 The ratio of compound (a) to compound (b) can be any ratio. It is possible to adjust the viscosity of the polymerizable composition to a range that is easy to handle, improve the uniformity of the solution, and produce a homogeneous cured product after curing. By mixing, it is also possible to adjust the mechanical strength of the cured resin and optical properties such as the refractive index. Compound (b) can also be used as a solvent.

 (c)チオール基を1分子中に2個以上有する化合物(以下、「(c)化合物」とも称する)は、この条件を満たすすべての化合物を包含する。  (c) Compounds having two or more thiol groups in one molecule (hereinafter also referred to as "(c) compounds") include all compounds that satisfy this condition.

 (c)化合物としては、o-ジメルカプトベンゼン、m-ジメルカプトベンゼン、p-ジメルカプトベンゼン、1,3,5-トリメルカプトベンゼン、メタンジチオール、1,2-ジメルカプトエタン、2,2-ジメルカプトプロパン、1,3-ジメルカプトプロパン、1,2,3-トリメルカプトプロパン、1,4-ジメルカプトブタン、1,6-ジメルカプトヘキサン、ビス(2-メルカプトエチル)スルフィド、1,2-ビス(2-メルカプトエチルチオ)エタン、1,5-ジメルカプト-3-オキサペンタン、1,8-ジメルカプト-3,6-ジオキサオクタン、2,2-ジメチルプロパン-1,3-ジチオール、3,4-ジメトキシブタン-1,2-ジチオール、2-メルカプトメチル-1,3-ジメルカプトプロパン、2-メルカプトメチル-1,4-ジメルカプトプロパン、2-(2-メルカプトエチルチオ)-1,3-ジメルカプトプロパン、1,2-ビス(2-メルカプトエチルチオ)-3-メルカプトプロパン、1,1,1-トリス(メルカプトメチル)プロパン、テトラキス(メルカプトメチル)メタン、4,8-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカン、4,7-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカン、5,7-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカン、1,1,3,3-テトラキス(メルカプトメチルチオ)プロパン、1,2,6,7-テトラメルカプト-4-チアペンタン、エチレングリコールビス(2-メルカプトアセテート)、エチレングリコールビス(3-メルカプトプロピオネート)、1,4-ブタンジオールビス(2-メルカプトアセテート)、1,4-ブタンジオールビス(3-メルカプトプロピオネート)、トリメチロールプロパントリス(2-メルカプトアセテート)、トリメチロールプロパントリス(3-メルカプトプロピオネート)、ペンタエリスリチオール、ペンタエリスリトールテトラキス(2-メルカプトアセテート)、ペンタエリスリトールテトラキス(3-メルカプトプロピオネート)、1,1-ジメルカプトシクロヘキサン、1,2-ジメルカプトシクロヘキサン、1,3-ジメルカプトシクロヘキサン、1,4-ジメルカプトシクロヘキサン、1,3-ビス(メルカプトメチル)シクロヘキサン、1,4-ビス(メルカプトメチル)シクロヘキサン、2,5-ビス(メルカプトメチル)-1,4-ジチアン、2,5-ビス(メルカプトエチル)-1,4-ジチアン、1,2-ビス(メルカプトメチル)ベンゼン、1,3-ビス(メルカプトメチル)ベンゼン、1,4-ビス(メルカプトメチル)ベンゼン、ビス(4-メルカプトフェニル)スルフィド、ビス(4-メルカプトフェニル)エーテル、2,2-ビス(4-メルカプトフェニル)プロパン、ビス(4-メルカプトメチルフェニル)スルフィド、ビス(4-メルカプトメチルフェニル)エーテル、2,2-ビス(4-メルカプトメチルフェニル)プロパン等を挙げることができるが、これらに限定されない。
 また、これらは単独で使用しても、2種以上を混合して使用してもよい。
Examples of the (c) compound include o-dimercaptobenzene, m-dimercaptobenzene, p-dimercaptobenzene, 1,3,5-trimercaptobenzene, methanedithiol, 1,2-dimercaptoethane, 2,2-dimercaptopropane, 1,3-dimercaptopropane, 1,2,3-trimercaptopropane, 1,4-dimercaptobutane, 1,6-dimercaptohexane, bis(2-mercaptoethyl)sulfide, 1,2-bis(2-mercaptoethylthio)ethane, 1,5-dimercapto-3-oxapentane, 1,8-dimercapto-3,6-dioxaoctane, 2,2-dimethylpropane-1,3-dithiol, 3,4-dimethoxybutane-1,2-dithiol, 2-mercaptomethyl-1,3-dimercaptoethane, 1,5-dimercapto-3-oxapentane, 1,8-dimercapto-3,6-dioxaoctane, 2,2-dimethylpropane-1,3-dithiol, 3,4-dimethoxybutane-1,2-dithiol, 1,5-dimercaptomethyl-2-mercaptoethane ... mercaptopropane, 2-mercaptomethyl-1,4-dimercaptopropane, 2-(2-mercaptoethylthio)-1,3-dimercaptopropane, 1,2-bis(2-mercaptoethylthio)-3-mercaptopropane, 1,1,1-tris(mercaptomethyl)propane, tetrakis(mercaptomethyl)methane, 4,8-dimercaptomethyl-1,11-dimercapto-3,6,9-trithiaundecane, 4,7-dimercaptomethyl-1,11-dimercapto-3,6,9-trithiaundecane, 5,7-dimercaptomethyl-1,11-dimercapto-3,6,9-trithiaundecane, 1,1,3,3-tetrakis(mercaptomethylthio)propane, 1,2,6,7-tetramercapto-4-thiapentane , ethylene glycol bis(2-mercaptoacetate), ethylene glycol bis(3-mercaptopropionate), 1,4-butanediol bis(2-mercaptoacetate), 1,4-butanediol bis(3-mercaptopropionate), trimethylolpropane tris(2-mercaptoacetate), trimethylolpropane tris(3-mercaptopropionate), pentaerythritol, pentaerythritol tetrakis(2-mercaptoacetate), pentaerythritol tetrakis(3-mercaptopropionate), 1,1-dimercaptocyclohexane, 1,2-dimercaptocyclohexane, 1,3-dimercaptocyclohexane, 1,4-dimercaptocyclohexane, 1,3 bis(mercaptomethyl)cyclohexane, 1,4-bis(mercaptomethyl)cyclohexane, 2,5-bis(mercaptomethyl)-1,4-dithiane, 2,5-bis(mercaptoethyl)-1,4-dithiane, 1,2-bis(mercaptomethyl)benzene, 1,3-bis(mercaptomethyl)benzene, 1,4-bis(mercaptomethyl)benzene, bis(4-mercaptophenyl)sulfide, bis(4-mercaptophenyl)ether, 2,2-bis(4-mercaptophenyl)propane, bis(4-mercaptomethylphenyl)sulfide, bis(4-mercaptomethylphenyl)ether, 2,2-bis(4-mercaptomethylphenyl)propane, and the like can be mentioned, but are not limited thereto.
These may be used alone or in combination of two or more.

 (c)化合物として好ましい化合物は、ビス(2-メルカプトエチル)スルフィド、ペンタエリスリトールテトラキス(2-メルカプトアセテート)、ペンタエリスリトールテトラキス(3-メルカプトプロピオネート)、2,5-ビス(メルカプトメチル)-1,4-ジチアン、1,2-ビス(2-メルカプトエチルチオ)-3-メルカプトプロパン、1,2,6,7-テトラメルカプト-4-チアペンタン、4,8-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカン、4,7-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカン、5,7-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカン、1,1,3,3-テトラキス(メルカプトメチルチオ)プロパン、1,3-ビス(メルカプトメチル)ベンゼン、及び1,4-ビス(メルカプトメチル)ベンゼンが挙げられる。さらに好ましい化合物の具体例としては、ビス(2-メルカプトエチル)スルフィド、ペンタエリスリトールテトラキス(3-メルカプトプロピオネート)、1,2-ビス(2-メルカプトエチルチオ)-3-メルカプトプロパン、及び1,3-ビス(メルカプトメチル)ベンゼンが挙げられる。 (c) Preferred compounds as the compound are bis(2-mercaptoethyl)sulfide, pentaerythritol tetrakis(2-mercaptoacetate), pentaerythritol tetrakis(3-mercaptopropionate), 2,5-bis(mercaptomethyl)-1,4-dithiane, 1,2-bis(2-mercaptoethylthio)-3-mercaptopropane, 1,2,6,7-tetramercapto-4-thiapentane, 4,8-dimercapto Examples of preferred compounds include bis(2-mercaptoethyl)sulfide, pentaerythritol tetrakis(3-mercaptopropionate), 1,2-bis(2-mercaptoethylthio)-3-mercaptopropane, and 1,3-bis(mercaptomethyl)benzene.

 (a)化合物と、(b)化合物と、(c)化合物との割合は任意である。好ましい組成の範囲は、((c)化合物中のSH基の数)/((a)化合物中の二重結合の数+(b)化合物中の二重結合の数)の比が10.0以下であり、より好ましくは5.0以下であり、最も好ましくは1.2以下である。上記の比が10.0を超えた場合、十分に重合せず耐熱性が低下する場合がある。 The ratio of the (a) compound, the (b) compound, and the (c) compound may be any ratio. A preferred range of the composition is a ratio of (number of SH groups in the (c) compound)/(number of double bonds in the (a) compound + number of double bonds in the (b) compound) of 10.0 or less, more preferably 5.0 or less, and most preferably 1.2 or less. If the above ratio exceeds 10.0, polymerization may not be sufficient, resulting in reduced heat resistance.

 本発明の別の実施形態において、上記(a)化合物を含む重合性組成物はそのまま熱可塑性樹脂として提供される。また、上記(a)化合物を含む重合性組成物を重合硬化して得られる樹脂が提供される。 In another embodiment of the present invention, the polymerizable composition containing the compound (a) is provided as it is as a thermoplastic resin. Also, a resin obtained by polymerizing and curing the polymerizable composition containing the compound (a) is provided.

 本発明の(a)化合物を含む重合性組成物は不飽和二重結合を含む重合性基を有するため、重合反応により硬化し、樹脂が得られる。重合反応としては、光による重合硬化反応や熱による重合硬化反応などが挙げられるが、本発明の好ましい実施形態において、短時間で重合可能である光重合硬化反応の方が好ましい。本発明の別の実施形態において、熱重合硬化反応が選択され得る。本発明の実施形態において、熱硬化反応と光硬化反応とを組み合わせてもよい。 The polymerizable composition containing the compound (a) of the present invention has a polymerizable group containing an unsaturated double bond, and therefore hardens by a polymerization reaction to obtain a resin. Examples of the polymerization reaction include a polymerization hardening reaction caused by light and a polymerization hardening reaction caused by heat. In a preferred embodiment of the present invention, a photopolymerization hardening reaction, which allows polymerization in a short time, is preferred. In another embodiment of the present invention, a thermal polymerization hardening reaction may be selected. In an embodiment of the present invention, a thermal hardening reaction and a photohardening reaction may be combined.

 本発明の(a)化合物を含む重合性組成物を重合硬化させる反応は、重合触媒の存在下又は非存在下で実施することができる。本発明の(a)化合物を含む重合性組成物を重合反応させて樹脂を得るに際して、重合反応を促進するため重合触媒の存在下で重合硬化することが好ましい。したがって、本発明の一実施形態において、本発明の重合性組成物を、重合触媒の存在下で重合硬化して得られる樹脂、ならびにその樹脂から得られる光学材料が提供される。こうして得られた樹脂や光学材料は、透明であることが好ましい。また、本発明の一実施形態において、本発明の重合性組成物を、重合触媒の存在下で紫外線又は可視光の照射により硬化させることを特徴とする硬化物、好ましくは光学材料の製造方法が提供される。 The reaction of polymerizing and curing the polymerizable composition containing the compound (a) of the present invention can be carried out in the presence or absence of a polymerization catalyst. When polymerizing the polymerizable composition containing the compound (a) of the present invention to obtain a resin, it is preferable to polymerize and cure in the presence of a polymerization catalyst to promote the polymerization reaction. Therefore, in one embodiment of the present invention, there is provided a resin obtained by polymerizing and curing the polymerizable composition of the present invention in the presence of a polymerization catalyst, as well as an optical material obtained from the resin. The resin and optical material thus obtained are preferably transparent. In one embodiment of the present invention, there is also provided a method for producing a cured product, preferably an optical material, characterized in that the polymerizable composition of the present invention is cured by irradiation with ultraviolet light or visible light in the presence of a polymerization catalyst.

 光重合反応の場合、本発明の(a)化合物を含む重合性組成物を、光線(活性エネルギー線)の照射により硬化させることにより、硬化物としての樹脂が製造される。光線としては、重合性組成物の硬化が可能であれば特に制限されないが、通常、紫外線、可視光線、放射線、電子線などが挙げられ、好ましくは紫外線又は可視光線であり、より好ましくは重合速度が速いことから紫外線である。
 光線の照射強度は特に制限されないが、通常10~100000mW/cmである。照射時間は特に制限されないが、通常1分間~数時間、好ましくは1~60分間である。照射温度は特に制限されず、室温付近で重合可能である。本発明の(a)化合物を含む重合性組成物が室温で固体の場合は、融点以上の温度まで加熱しながら光硬化を行う場合もある。
In the case of photopolymerization reaction, a polymerizable composition containing the compound (a) of the present invention is cured by irradiation with light (active energy rays) to produce a resin as a cured product. The light is not particularly limited as long as it can cure the polymerizable composition, but typically includes ultraviolet light, visible light, radiation, electron beam, etc., preferably ultraviolet light or visible light, and more preferably ultraviolet light because of its fast polymerization rate.
The irradiation intensity of the light beam is not particularly limited, but is usually 10 to 100,000 mW/ cm2 . The irradiation time is not particularly limited, but is usually 1 minute to several hours, preferably 1 to 60 minutes. The irradiation temperature is not particularly limited, and polymerization is possible at around room temperature. When the polymerizable composition containing the compound (a) of the present invention is solid at room temperature, photocuring may be performed while heating to a temperature equal to or higher than the melting point.

 重合触媒としては、特に制限はなく、反応物の種類、重合条件等に合わせて、適宜選択すればよい。光重合の場合、光(好ましくは活性エネルギー線)の照射によりラジカルを発生する化合物(光分解型ラジカル重合開始剤)が好ましく、具体例としては、ベンゾイン誘導体、ベンジル誘導体、ベンゾフェノン誘導体、アセトフェノン誘導体等が挙げられるが、これらに限定されない。その中でも市販品として、ヒドロキシシクロヘキシル-フェニルケトン(チバ・スペシャルティケミカルズの商品名イルガキュア(Irgacure)(登録商標)184)、2,2-ジメトキシ-2-フェニルアセトフェノン(イルガキュア(Irgacure)(登録商標)651)、1-[4-(2-ヒドロキシエトキシ)-フェニル]-2-ヒドロキシ-2-メチル-1-プロパン-1-オン(イルガキュア(Irgacure)(登録商標)2959)、2,4,6-トリメチルベンゾイル-ジフェニルホスフィンオキシド(イルガキュア(Irgacure)(登録商標)TPO)などが好ましく使用される。 There are no particular limitations on the polymerization catalyst, and it may be selected appropriately depending on the type of reactant, polymerization conditions, etc. In the case of photopolymerization, a compound that generates radicals when irradiated with light (preferably active energy rays) (photodecomposition type radical polymerization initiator) is preferred, and specific examples include, but are not limited to, benzoin derivatives, benzyl derivatives, benzophenone derivatives, acetophenone derivatives, etc. Among these, commercially available products such as hydroxycyclohexyl-phenyl ketone (trade name Irgacure (registered trademark) 184, manufactured by Ciba Specialty Chemicals), 2,2-dimethoxy-2-phenylacetophenone (Irgacure (registered trademark) 651), 1-[4-(2-hydroxyethoxy)-phenyl]-2-hydroxy-2-methyl-1-propan-1-one (Irgacure (registered trademark) 2959), and 2,4,6-trimethylbenzoyl-diphenylphosphine oxide (Irgacure (registered trademark) TPO) are preferably used.

 あるいは、光重合反応に用いる重合触媒として、酸化剤と還元剤との共存でラジカル(遊離基)を発生する化合物(レドックス系重合開始剤)を使用することも好ましい。具体例としては、過硫酸ナトリウム、過硫酸カリウム、過硫酸アンモニウム等の過硫酸塩;過酸化水素、t-ブチルパーオキシド、メチルエチルケトンパーオキシド等の過酸化物等から選択される酸化物と、L-アスコルビン酸、亜硫酸水素ナトリウム等から選択される還元性化合物とを組み合わせた系が挙げられる。 Alternatively, it is also preferable to use a compound (redox-type polymerization initiator) that generates radicals (free radicals) in the coexistence of an oxidizing agent and a reducing agent as a polymerization catalyst for the photopolymerization reaction. Specific examples include a system that combines an oxide selected from persulfates such as sodium persulfate, potassium persulfate, and ammonium persulfate; peroxides such as hydrogen peroxide, t-butyl peroxide, and methyl ethyl ketone peroxide, and a reducing compound selected from L-ascorbic acid, sodium hydrogen sulfite, etc.

 あるいは、光重合反応に用いる重合触媒として、可視光などの光の照射によりラジカルを発生する光レドックス触媒も好ましく使用される。具体例としては、ルテニウム(II)ポリピリジル錯体(例えば、Ru(bpz)-(PF触媒など)、イリジウム(III)フェニルピリジル錯体などの遷移金属錯体が挙げられる。 Alternatively, as a polymerization catalyst for use in a photopolymerization reaction, a photoredox catalyst that generates radicals upon irradiation with light such as visible light is also preferably used. Specific examples include transition metal complexes such as ruthenium (II) polypyridyl complexes (e.g., Ru(bpz) 3 -(PF 6 ) 2 catalyst, etc.) and iridium (III) phenylpyridyl complexes.

 熱重合反応の場合、本発明の(a)化合物を含む重合性組成物を、加熱によって重合(硬化)させることで硬化物としての樹脂が製造される。 In the case of a thermal polymerization reaction, a polymerizable composition containing the compound (a) of the present invention is polymerized (cured) by heating to produce a cured resin.

 熱重合反応に用いる重合触媒として、加熱によりラジカルを発生する化合物(熱分解型ラジカル重合開始剤)が好ましい。具体例としては、過硫酸ナトリウム、過硫酸アンモニウム、過硫酸カリウムなどの過硫酸塩;過酸化水素;t-ブチルハイドロパーオキサイドなどの有機過酸化物;2,2’-アゾビス(2-アミジノプロパン)二塩酸塩、2,2’-アゾビス[2-2(-イミダゾリン-2-イル)プロパン]二塩酸塩、2,2’-アゾビス(2-メチルプロピオニトリル)、2,2’-アゾビス(イソブチロニトリル)(AIBN)などのアゾ化合物が挙げられる。 The polymerization catalyst used in the thermal polymerization reaction is preferably a compound that generates radicals when heated (thermolyzable radical polymerization initiator). Specific examples include persulfates such as sodium persulfate, ammonium persulfate, and potassium persulfate; hydrogen peroxide; organic peroxides such as t-butyl hydroperoxide; and azo compounds such as 2,2'-azobis(2-amidinopropane) dihydrochloride, 2,2'-azobis[2-2(-imidazolin-2-yl)propane] dihydrochloride, 2,2'-azobis(2-methylpropionitrile), and 2,2'-azobis(isobutyronitrile) (AIBN).

 重合触媒は、過酸化物、アゾ化合物、レドックス系重合開始剤、及び遷移金属錯体の中から選ばれる1種以上の化合物であってもよい。重合触媒一種を単独で又は複数種を混合して使用することができる。 The polymerization catalyst may be one or more compounds selected from the group consisting of peroxides, azo compounds, redox polymerization initiators, and transition metal complexes. A single type of polymerization catalyst may be used alone, or multiple types may be used in combination.

 重合触媒の添加量は、本発明の(a)化合物を含む重合性組成物の成分、混合比及び重合硬化方法によって変化するため一概には決められないが、通常は重合性組成物の合計100質量%に対して、0.0001質量%~10質量%、好ましくは0.001質量%~5質量%、より好ましくは0.01質量%~1質量%、最も好ましくは0.01質量%~0.5質量%である。添加量が10質量%より多いと急速に重合する場合がある。添加量が0.0001質量%より少ないと十分に硬化せず耐熱性が不良となる場合がある。したがって、本発明の好ましい一実施形態において、樹脂の製造方法は、重合触媒を前記重合性組成物の総量に対して0.0001~10質量%添加し、重合硬化させる工程を含む。 The amount of polymerization catalyst added varies depending on the components of the polymerizable composition containing the compound (a) of the present invention, the mixing ratio, and the polymerization and curing method, and cannot be determined in general, but is usually 0.0001% by mass to 10% by mass, preferably 0.001% by mass to 5% by mass, more preferably 0.01% by mass to 1% by mass, and most preferably 0.01% by mass to 0.5% by mass, relative to 100% by mass of the total polymerizable composition. If the amount added is more than 10% by mass, rapid polymerization may occur. If the amount added is less than 0.0001% by mass, the composition may not be sufficiently cured, resulting in poor heat resistance. Therefore, in a preferred embodiment of the present invention, the method for producing a resin includes a step of adding 0.0001 to 10% by mass of a polymerization catalyst relative to the total amount of the polymerizable composition, and polymerizing and curing the composition.

 本発明の(a)化合物を含む重合性組成物の加熱による重合(硬化)は通常、以下のようにして行われる。即ち、硬化時間は通常1~100時間であり、硬化温度は通常-10℃~140℃である。重合は所定の重合温度で所定時間保持する工程、0.1℃~100℃/hの昇温を行う工程、0.1℃~100℃/hの降温を行う工程によって、あるいはこれらの工程を組み合わせて行う。なお、硬化時間とは昇温過程等を含めた重合硬化時間をいい、所定の重合(硬化)温度で保持する工程に加えて、所定の重合(硬化)温度へと昇温・冷却する工程を含む。 The polymerization (curing) of the polymerizable composition containing the compound (a) of the present invention by heating is usually carried out as follows. That is, the curing time is usually 1 to 100 hours, and the curing temperature is usually -10°C to 140°C. The polymerization is carried out by a process of holding the polymerizing temperature at a predetermined temperature for a predetermined time, a process of raising the temperature at a rate of 0.1°C to 100°C/h, and a process of lowering the temperature at a rate of 0.1°C to 100°C/h, or a combination of these processes. Note that the curing time refers to the polymerization and curing time including the temperature rise process, and includes the process of raising the temperature to the predetermined polymerization (curing) temperature and cooling it down in addition to the process of holding the polymerizing (curing) temperature at the predetermined polymerization (curing) temperature.

 重合硬化工程(光重合及び熱重合)は特に限定されないが、金属、セラミック、ガラス、樹脂製等の金型を用いた硬化工程であることが好適である。具体的には、本発明の(a)化合物を含む重合性組成物の各成分及び重合触媒等を混合する。これらは、全て同一容器内で同時に撹拌下に混合しても、各原料を段階的に添加混合しても、数成分を別々に混合後さらに同一容器内で再混合してもよい。また、各原料及び副原料はいかなる順序で混合してもよい。混合にあたり、設定温度、これに要する時間等は基本的には各成分が十分に混合される条件であればよい。このようにして得られた重合性組成物はモールド等の型に注型し、加熱や紫外線などの光線の照射によって重合硬化反応が進められた後、型から外される。このようにして、本発明の(a)化合物を含む重合性組成物を硬化した樹脂が得られる。重合反応(硬化工程)は、空気中、又は、窒素等の不活性ガス雰囲気下、減圧下又は加圧下のいずれの雰囲気下でも行うことができる。 The polymerization and curing process (photopolymerization and thermal polymerization) is not particularly limited, but is preferably a curing process using a metal, ceramic, glass, resin, or other mold. Specifically, the components of the polymerizable composition containing the compound (a) of the present invention and the polymerization catalyst, etc. are mixed. These may all be mixed simultaneously in the same container under stirring, each raw material may be added and mixed in stages, or several components may be mixed separately and then remixed in the same container. In addition, each raw material and auxiliary raw material may be mixed in any order. In mixing, the set temperature, the time required, etc. may basically be conditions that allow each component to be sufficiently mixed. The polymerizable composition obtained in this way is poured into a mold or other form, and the polymerization and curing reaction is advanced by heating or irradiation with light such as ultraviolet rays, and then the composition is removed from the mold. In this way, a resin is obtained by curing the polymerizable composition containing the compound (a) of the present invention. The polymerization reaction (curing process) can be carried out in air, in an inert gas atmosphere such as nitrogen, or under reduced pressure or pressure.

 硬化終了後、得られた樹脂を50~150℃の温度で10分~5時間程度アニール処理を行うことは、歪を除くために好ましい処理である。さらに得られた樹脂に対して、必要に応じてハードコート、反射防止、等の表面処理を行ってもよい。 After curing is complete, it is preferable to anneal the resulting resin at a temperature of 50 to 150°C for about 10 minutes to 5 hours in order to remove distortion. If necessary, the resulting resin may also be subjected to surface treatments such as hard coating and anti-reflection.

 本発明の樹脂を製造する際、重合性組成物に紫外線吸収剤、酸化防止剤、密着性改善剤、離型剤等の添加剤を加え、得られる樹脂の実用性をより向上させることもできる。 When producing the resin of the present invention, additives such as ultraviolet absorbers, antioxidants, adhesion improvers, and release agents can be added to the polymerizable composition to further improve the practical utility of the resulting resin.

 本発明の(a)化合物を含む重合性組成物は、上述のようにして高い屈折率、光重合硬化性、熱重合硬化性などの少なくとも一つの特性に優れた樹脂を与えることができる。このように、上記重合性組成物を硬化させて得られる樹脂(硬化物)もまた、本発明の一実施形態である。 The polymerizable composition containing the compound (a) of the present invention can provide a resin having at least one excellent property, such as a high refractive index, photopolymerization curability, or thermal polymerization curability, as described above. In this manner, the resin (cured product) obtained by curing the polymerizable composition is also one embodiment of the present invention.

 本発明の一実施形態は、本発明の(a)化合物を含む重合性組成物を重合硬化して得られる樹脂を用いて作製される成形体である。成形体は、例えば、CT (コンピューター断層撮影) やPET(陽電子放出断層撮影) 装置などによる診療を行う高度医療の現場や、原子力発電所での現場での用途がある。使用方法としては、放射線遮蔽板や遮蔽フィルターに用いることができ、例えば光学材料(部材)に直接用いることもできる。例えばカメラレンズに用いることでカメラセンサーを放射線による損傷から防ぐこともでき、放射線によるノイズをカットした画像を伝送することもできる。これらの用途としては、光学材料(部材)、機械部品材料、電気・電子部品材料、自動車部品材料、土木建築材料、成形材料等の他、塗料や接着剤の材料等の各種用途に有用である。中でも、光学材料、例えば、眼鏡レンズ、(デジタル)カメラ用撮像レンズ、光ビーム集光レンズ、光拡散用レンズ等のレンズ、LED用封止材、光学用接着剤、光伝送用接合材料、プリズム、フィルター、回折格子、ウォッチガラス、表示装置用のカバーガラス等の透明ガラスやカバーガラス等の光学用途;LCDや有機ELやPDP等の表示素子用基板、カラーフィルター用基板、タッチパネル用基板、ディスプレイバックライト、導光板、ディスプレイ保護膜、反射防止フィルム、防曇フィルム等のコーティング剤(コーティング膜)などの表示デバイス用途;光メモリ、電子ペーパーなどの記録媒体、紫外線チェッカーなどのセンサー材料、窓ガラス、サングラス、自動車用ウィンドウガラスなどの調光材料、繊維製品、化粧品素材、フォトクロミック材料、その他プリント材等の色調変化材料等が好適である。上記光学材料としては、特に、光学用接着剤、プリズム、コーティング剤であることが好適である。 One embodiment of the present invention is a molded article produced using a resin obtained by polymerizing and curing a polymerizable composition containing the compound (a) of the present invention. The molded article is useful, for example, in advanced medical settings where CT (Computed Tomography) and PET (Positron Emission Tomography) devices are used for diagnosis and treatment, and in nuclear power plants. It can be used as a radiation shielding plate or shielding filter, and can also be used directly as an optical material (component). For example, by using it in a camera lens, it is possible to protect the camera sensor from damage caused by radiation, and it is also possible to transmit images with noise caused by radiation removed. These applications include optical materials (components), machine part materials, electrical and electronic part materials, automotive part materials, civil engineering and construction materials, molding materials, etc., as well as various other applications such as paint and adhesive materials. Among them, optical materials, for example, lenses such as eyeglass lenses, (digital) camera imaging lenses, light beam condensing lenses, and light diffusing lenses, LED sealants, optical adhesives, optical transmission bonding materials, prisms, filters, diffraction gratings, watch glasses, and transparent glass and cover glass for display devices; display device applications such as substrates for display elements such as LCDs, organic ELs, and PDPs, substrates for color filters, substrates for touch panels, display backlights, light guide plates, display protective films, anti-reflection films, anti-fogging films, and other coating agents (coating films); optical memories, recording media such as electronic paper, sensor materials such as UV checkers, light control materials such as window glass, sunglasses, and automotive window glass, textile products, cosmetic materials, photochromic materials, and other color tone changing materials such as print materials are particularly suitable. As the optical materials, optical adhesives, prisms, and coating agents are particularly suitable.

 以下の実施例により本発明を具体的に説明するが、本発明はこれらに限定されるものではない。なお、得られたモノマー及び硬化物の評価は以下の方法で行った。
NMR:日本電子株式会社製(ECX-400)を用いて測定した。
IR:日本分光株式会社製Jasco FT-IR460Plusを用いて測定した。
The present invention will be described in detail with reference to the following examples, but the present invention is not limited thereto. The obtained monomers and cured products were evaluated by the following methods.
NMR: Measurement was performed using an ECX-400 manufactured by JEOL Ltd.
IR: Measurement was performed using Jasco FT-IR460Plus manufactured by JASCO Corporation.

(実施例1)
トリフェニルビスムチン(BiPh )と2-オクテニルコハク酸(cis,trans混合物)(Bi-OSA:1-1)の重縮合(典型例)
 二口試験管に下記構造式で表されるトリフェニルビスムチン(220mg、0.500mmol)と、下記構造式で表される2-オクテニルコハク酸(cis,trans混合物)(OSA)(114mg、0.500mmol)を加え、窒素雰囲気下で脱水THF(1.00mL)を加え、還流条件下で24時間反応を行った。反応終了後、溶液に対して約30~50倍量のヘキサンで沈澱精製を行い、遠心分離で白色固体として収率84.2%(390mg)で得た。実施例1で得られた白色固体の構造例を下記式(11)に示す。
 実施例1で得られた重縮合物のH-NMR(400MHz、CDCl)スペクトルの測定結果を図1に示す。
 実施例1で得られた重縮合物の13C-NMR(100MHz、CDCl)スペクトルの測定結果を図2に示す。
 実施例1で得られた重縮合物のIRスペクトル(KBr、cm-1)の測定結果を図3に示す。

Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
Example 1
Polycondensation of triphenylbismuthine (BiPh 3 ) and 2-octenylsuccinic acid (cis, trans mixture) (Bi-OSA:1-1) (typical example)
Triphenylbismuthine (220 mg, 0.500 mmol) represented by the structural formula below and 2-octenylsuccinic acid (cis, trans mixture) (OSA) (114 mg, 0.500 mmol) represented by the structural formula below were added to a two-necked test tube, and dehydrated THF (1.00 mL) was added under a nitrogen atmosphere, and the reaction was carried out under reflux conditions for 24 hours. After completion of the reaction, the solution was subjected to precipitation purification with about 30 to 50 times the amount of hexane, and centrifuged to obtain a white solid with a yield of 84.2% (390 mg). An example of the structure of the white solid obtained in Example 1 is shown in the following formula (11).
The measurement result of the 1 H-NMR (400 MHz, CDCl 3 ) spectrum of the polycondensate obtained in Example 1 is shown in FIG.
The 13 C-NMR (100 MHz, CDCl 3 ) spectrum of the polycondensate obtained in Example 1 is shown in FIG.
The IR spectrum (KBr, cm −1 ) of the polycondensate obtained in Example 1 is shown in FIG.
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025

(実施例2~4)
 トリフェニルビスムチンと2-オクテニルコハク酸との配合比や溶剤を以下の表1に示すように変えた以外は、実施例1と同様に重合した。得られた結果を以下の表1に示す。
(Examples 2 to 4)
Polymerization was carried out in the same manner as in Example 1, except that the compounding ratio of triphenylbismuthine and 2-octenylsuccinic acid and the solvent were changed as shown in the following Table 1. The obtained results are shown in the following Table 1.

Figure JPOXMLDOC01-appb-T000026
Figure JPOXMLDOC01-appb-T000026

(実施例5)
トリフェニルビスムチン(BiPh )と2-オクテニルコハク酸(cis,trans混合物)とイタコン酸[Bi(OSA-IA:9-1)]の重縮合
 二口試験管にトリフェニルビスムチン(220mg、0.500mmol)と2-オクテニルコハク酸(cis,trans-混合物)(103mg、0.450mmol)と下記構造式で表されるイタコン酸(6.50mg、0.0500mmol)を加え、窒素雰囲気下で脱水THF(1.00mL)を加え、還流条件下で24時間反応を行った。反応終了後、溶液に対して約30~50倍量のヘキサンで沈澱精製を行い、遠心分離で白色固体として収率78.0%(193mg)で得た。実施例5で得られた白色固体の構造例を下記式(12)に示す。
 実施例5で得られた重縮合物のH-NMR(400MHz、CDCl)スペクトルの測定結果を図4に示す。
 実施例5で得られた重縮合物のIRスペクトル(KBr、cm-1)の測定結果を図5に示す。

Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000030
Example 5
Polycondensation of triphenylbismuthine (BiPh 3 ), 2-octenylsuccinic acid (cis, trans mixture), and itaconic acid [Bi(OSA-IA:9-1)] Triphenylbismuthine (220 mg, 0.500 mmol), 2-octenylsuccinic acid (cis, trans mixture) (103 mg, 0.450 mmol), and itaconic acid (6.50 mg, 0.0500 mmol) represented by the following structural formula were added to a two-necked test tube, and dehydrated THF (1.00 mL) was added under a nitrogen atmosphere, and the reaction was carried out under reflux conditions for 24 hours. After the reaction was completed, the solution was subjected to precipitation purification with about 30 to 50 times the amount of hexane, and the product was centrifuged to obtain a white solid with a yield of 78.0% (193 mg). An example of the structure of the white solid obtained in Example 5 is shown in the following formula (12).
The 1 H-NMR (400 MHz, CDCl 3 ) spectrum of the polycondensate obtained in Example 5 is shown in FIG.
The IR spectrum (KBr, cm −1 ) of the polycondensate obtained in Example 5 is shown in FIG.
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000030

(実施例6)
トリフェニルビスムチン(BiPh )と2-オクテニルコハク酸(cis,trans混合物)とフェニルコハク酸[Bi(OSA-PSA:5-5)]の重縮合
 二口試験管にトリフェニルビスムチン(220mg、0.500mmol)と2-オクテニルコハク酸(cis,trans混合物)(57.1mg、0.250mmol)と下記構造式で表されるフェニルコハク酸(48.5mg、0.250mmol)を加え、窒素雰囲気下で脱水THF(1mL)を加え、還流条件下で24時間反応を行った。反応終了後、単離精製を行い、白色固体として収率77.6%(230mg)を得た。実施例6で得られた白色固体の構造例を下記式(13)に示す。
 実施例6で得られた重縮合物のIRスペクトル(KBr、cm-1)の測定結果を図6に示す。

Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000032
Example 6
Polycondensation of triphenylbismuthine (BiPh 3 ), 2-octenylsuccinic acid (cis, trans mixture), and phenylsuccinic acid [Bi(OSA-PSA:5-5)] Triphenylbismuthine (220 mg, 0.500 mmol), 2-octenylsuccinic acid (cis, trans mixture) (57.1 mg, 0.250 mmol), and phenylsuccinic acid (48.5 mg, 0.250 mmol) represented by the following structural formula were added to a two-necked test tube, and dehydrated THF (1 mL) was added under a nitrogen atmosphere, and the reaction was carried out under reflux conditions for 24 hours. After completion of the reaction, isolation and purification were carried out, and a yield of 77.6% (230 mg) was obtained as a white solid. An example of the structure of the white solid obtained in Example 6 is shown in the following formula (13).
The IR spectrum (KBr, cm −1 ) of the polycondensate obtained in Example 6 is shown in FIG.
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000032

(実施例7)
トリフェニルビスムチン(BiPh )と2-オクテニルコハク酸(cis,trans混合物)とメタクリル酸[Bi(OSA-MA:5-5)]の重縮合
 二口試験管にトリフェニルビスムチン(220mg,0.500mmol)と2-オクテニルコハク酸(cis,trans混合物)(114mg,0.500mmol)とメタクリル酸(43.0mg,0.500mmol)を加え、窒素雰囲気下で脱水THF(1.5mL)を加え、還流条件下で24時間反応を行った。反応終了後、白色固体251mgを得た。実施例7で得られた白色固体の構造例を下記式(14)に示す。
 実施例7で得られた重縮合物のIRスペクトル(KBr、cm-1)の測定結果を図7に示す。

Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-I000034
(Example 7)
Polycondensation of triphenylbismuthine (BiPh 3 ), 2-octenylsuccinic acid (cis, trans mixture), and methacrylic acid [Bi(OSA-MA:5-5)] Triphenylbismuthine (220 mg, 0.500 mmol), 2-octenylsuccinic acid (cis, trans mixture) (114 mg, 0.500 mmol), and methacrylic acid (43.0 mg, 0.500 mmol) were added to a two-necked test tube, and dehydrated THF (1.5 mL) was added under a nitrogen atmosphere, and the reaction was carried out under reflux conditions for 24 hours. After the reaction was completed, 251 mg of a white solid was obtained. An example of the structure of the white solid obtained in Example 7 is shown in the following formula (14).
The IR spectrum (KBr, cm −1 ) of the polycondensate obtained in Example 7 is shown in FIG.
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-I000034

(実施例8)
トリフェニルビスムチン(BiPh )と2-オクテニルコハク酸(cis,trans混合物)とメタクリル酸[Bi(OSA-MA:5-5)]の重縮合
 二口試験管にトリフェニルビスムチン(220mg,0.500mmol)と2-オクテニルコハク酸(cis,trans混合物)(114mg,0.500mmol)とメタクリル酸(43.0mg,0.500mmol)を加え、窒素雰囲気下で脱水THF(1.5mL)を加え、還流条件下で24時間反応を行った。反応終了後、白色固体を251mgを得た。
(Example 8)
Polycondensation of triphenylbismuthine (BiPh 3 ), 2-octenylsuccinic acid (cis, trans mixture), and methacrylic acid [Bi(OSA-MA:5-5)] Triphenylbismuthine (220 mg, 0.500 mmol), 2-octenylsuccinic acid (cis, trans mixture) (114 mg, 0.500 mmol), and methacrylic acid (43.0 mg, 0.500 mmol) were added to a two-necked test tube, and dehydrated THF (1.5 mL) was added under a nitrogen atmosphere, and the reaction was carried out under reflux conditions for 24 hours. After the reaction was completed, 251 mg of a white solid was obtained.

(実施例9)
BiPh と2-オクテニルコハク酸(cis,trans混合物)とスベリン酸[Bi(OSA-SA:7-3)]の重縮合
 二口試験管にトリフェニルビスムチン(220mg,0.500mmol)と2-オクテニルコハク酸(cis,trans混合物)(79.9mg,0.350mmol)と下記構造式で表されるスベリン酸(26.1mg,0.15mmol)を加え、窒素雰囲気下で脱水THF(1mL)を加え、還流条件下で24時間反応を行った。反応終了後、溶液に対して約30~50倍量のヘキサンで沈澱精製を行い、遠心分離で白色固体として収率72.4%(144mg)で得た。実施例9で得られた白色固体の構造例を下記式(15)に示す。
 実施例9で得られた重縮合物のH-NMR(400MHz、CDCl)スペクトルの測定結果を図8に示す。

Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000038
(Example 9)
Polycondensation of BiPh 3 , 2-octenylsuccinic acid (cis, trans mixture), and suberic acid [Bi(OSA-SA:7-3)] Triphenylbismuthine (220 mg, 0.500 mmol), 2-octenylsuccinic acid (cis, trans mixture) (79.9 mg, 0.350 mmol), and suberic acid (26.1 mg, 0.15 mmol) represented by the following structural formula were added to a two-necked test tube, and dehydrated THF (1 mL) was added under a nitrogen atmosphere, and the reaction was carried out under reflux conditions for 24 hours. After the reaction was completed, the solution was subjected to precipitation purification with about 30 to 50 times the amount of hexane, and the solution was centrifuged to obtain a white solid with a yield of 72.4% (144 mg). An example of the structure of the white solid obtained in Example 9 is shown in the following formula (15).
The 1 H-NMR (400 MHz, CDCl 3 ) spectrum of the polycondensate obtained in Example 9 is shown in FIG.
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000038

(実施例10)
Bi-OSA:1-1の熱プレス成型
 実施例1で得られたBi-OSA:1-1(250mg)を二枚のポリイミドフィルムに挟み、井元製作所プレス機(IMC-1A45)中で、150℃で15kNの圧力をかけながら1分間プレスした。このあと室温まで徐冷し、透過率が50%のフィルムを得た。
(Example 10)
The Bi -OSA :1-1 (250 mg) obtained in Example 1 was sandwiched between two polyimide films and pressed for 1 minute at 150° C. under a pressure of 15 kN in an Imoto Seisakusho press (IMC-1A45). After this, it was gradually cooled to room temperature to obtain a film with a transmittance of 50%.

 ビスマス含有フィルムのX線遮蔽性について、X線発生源(検出器)として小角X線散乱装置(SAXS : 株式会社リガク製 NANO-Viewer)を用いて評価を行った。X線透過率の評価は、以下の式で計算した。
 ・X線源:CuKα 1.54オングストローム(8.048keV)
 ・管電圧(加速電圧):40kV
 ・X線透過率(Tr)=Σ資料の透過光強度[counts]/Σダイレクト強度(サンプル無しの透過光強度)[counts]
上記で得られたBi-OSA:1-1フィルムのX線透過率は、厚さが449μm(0.0449cm)で0.012%、947μm(0.0947cm)で0.001%以下であった。この結果を表2に示す。
The X-ray shielding property of the bismuth-containing film was evaluated using a small angle X-ray scattering device (SAXS: NANO-Viewer manufactured by Rigaku Corporation) as an X-ray source (detector). The evaluation of the X-ray transmittance was calculated using the following formula.
X-ray source: CuKα 1.54 angstroms (8.048 keV)
Tube voltage (accelerating voltage): 40 kV
X-ray transmittance (Tr) = Σ transmitted light intensity of sample [counts] / Σ direct intensity (transmitted light intensity without sample) [counts]
The X-ray transmittance of the Bi-OSA:1-1 film obtained above was 0.012% at a thickness of 449 μm (0.0449 cm) and 0.001% or less at a thickness of 947 μm (0.0947 cm). The results are shown in Table 2.

(比較例1)
Poly(BiMA-co-DMAA)(BiMA仕込み量40wt%)フィルムのX線遮蔽性
 特開2022-128911に記載のBiMA含有量が最大の40wt%のPoly(BiMA-co-DMAA)を作製した。厚さ450μmのPoly(BiMA-co-DMAA)フィルムのX線遮蔽性は、同条件での測定で5%であった。この結果は実施例10より劣った。
(Comparative Example 1)
X-ray shielding property of Poly(BiMA-co-DMAA) film (BiMA content 40 wt%) Poly(BiMA-co-DMAA) with the maximum BiMA content of 40 wt%, as described in JP-A 2022-128911, was produced. The X-ray shielding property of a 450 μm thick Poly(BiMA-co-DMAA) film measured under the same conditions was 5%. This result was inferior to that of Example 10.

Figure JPOXMLDOC01-appb-T000039
Figure JPOXMLDOC01-appb-T000039

Claims (10)

 下記式(1)で表される化合物(a)を含む、重合性組成物。
Figure JPOXMLDOC01-appb-C000001
(式(1)中、X~Xは同一または異なって、下記式(2)で表される構造またはフェニル基を表し、X~Xの少なくとも1つは式(2)で表される構造を表す。式(1)のビスマス原子について、式(2)で表される構造と結合している場合は、式(2)の酸素原子と結合する。式(2)の酸素原子は同一のビスマス原子と結合して環状構造を形成するか、あるいは他のビスマス原子と結合して鎖状構造を形成する。)
Figure JPOXMLDOC01-appb-C000002
(式(2)中、Zは炭化水素基を表す)。
A polymerizable composition comprising a compound (a) represented by the following formula (1):
Figure JPOXMLDOC01-appb-C000001
(In formula (1), X 1 to X 3 are the same or different and represent a structure represented by formula (2) below or a phenyl group, and at least one of X 1 to X 3 represents a structure represented by formula (2). When a bismuth atom in formula (1) is bonded to a structure represented by formula (2), it is bonded to an oxygen atom in formula (2). The oxygen atom in formula (2) is bonded to the same bismuth atom to form a cyclic structure, or is bonded to another bismuth atom to form a chain structure.)
Figure JPOXMLDOC01-appb-C000002
(In formula (2), Z represents a hydrocarbon group).
 前記式(2)で表される構造が、下記式(3)で表される構造を表す、請求項1に記載の重合性組成物。
Figure JPOXMLDOC01-appb-C000003
(式(3)中、nは0~10の整数を表す。Rは水素原子または炭化水素基を表す。)
The polymerizable composition according to claim 1 , wherein the structure represented by formula (2) represents a structure represented by the following formula (3):
Figure JPOXMLDOC01-appb-C000003
(In formula (3), n represents an integer of 0 to 10. R 1 represents a hydrogen atom or a hydrocarbon group.)
 式(3)におけるRが、下記式(4)で表される置換基を表す、請求項1または2に記載の重合性組成物。
Figure JPOXMLDOC01-appb-C000004
(式(4)中、mは0~3の整数を表す。Rは炭素数1~10の炭化水素基を表す。)
The polymerizable composition according to claim 1 or 2, wherein R 1 in formula (3) represents a substituent represented by the following formula (4):
Figure JPOXMLDOC01-appb-C000004
(In formula (4), m represents an integer of 0 to 3. R2 represents a hydrocarbon group having 1 to 10 carbon atoms.)
 さらに、(b)アクリロイル基、メタクリロイル基、アリル基、及びビニル基からなる群より選択される少なくとも1つの基を有する化合物を含有する、請求項1~3のいずれかに記載の重合性組成物。 The polymerizable composition according to any one of claims 1 to 3, further comprising (b) a compound having at least one group selected from the group consisting of an acryloyl group, a methacryloyl group, an allyl group, and a vinyl group.  さらに、(c)チオール基を1分子中に2個以上有する化合物を含有する、請求項1~4のいずれかに記載の重合性組成物。 The polymerizable composition according to any one of claims 1 to 4, further comprising (c) a compound having two or more thiol groups in one molecule.  前記式(3)で表される構造が、下記式(5)または式(6)で表される構造の少なくとも一つである、請求項2に記載の重合性組成物。
Figure JPOXMLDOC01-appb-C000005
(式(5)中、Rは炭素数1~10の炭化水素基を表す。)
Figure JPOXMLDOC01-appb-C000006
The polymerizable composition according to claim 2 , wherein the structure represented by formula (3) is at least one of structures represented by the following formula (5) or formula (6):
Figure JPOXMLDOC01-appb-C000005
(In formula (5), R2 represents a hydrocarbon group having 1 to 10 carbon atoms.)
Figure JPOXMLDOC01-appb-C000006
 前記(b)アクリロイル基、メタクリロイル基、アリル基、及びビニル基からなる群より選択される少なくとも1つの基を有する化合物が、メチル(メタ)アクリレート、ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、ベンジル(メタ)アクリレート、グリシジル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、ブタンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、ヘキサンジオールジ(メタ)アクリレート、ノナンジオールジ(メタ)アクリレート、グリセリンジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ビスフェノールAのエチレンオキサイド付加物ジ(メタ)アクリレート、イソボニル(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、アリル(メタ)アクリレート、2-カルボキシエチル(メタ)アクリレート、ジメチル(メタ)アクリルアミド、フェニルビニルスルフィド、フェニルビニルスルホキシド、4-メチル-5-ビニルイミダゾール、及び1-ビニルイミダゾールからなる群より選ばれる1種以上の化合物である、請求項4に記載の重合性組成物。 The compound (b) having at least one group selected from the group consisting of an acryloyl group, a methacryloyl group, an allyl group, and a vinyl group is methyl (meth)acrylate, butyl (meth)acrylate, isobutyl (meth)acrylate, 2-hydroxyethyl (meth)acrylate, benzyl (meth)acrylate, glycidyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, cyclohexyl (meth)acrylate, ethylene glycol di(meth)acrylate, diethylene glycol di(meth)acrylate, triethylene glycol di(meth)acrylate, polyethylene glycol di(meth)acrylate, butanediol di(meth)acrylate, neopentyl glycol di(meth)acrylate, hexanediol di(meth)acrylate, The polymerizable composition according to claim 4, which is one or more compounds selected from the group consisting of nonanediol di(meth)acrylate, glycerin di(meth)acrylate, trimethylolpropane tri(meth)acrylate, pentaerythritol tri(meth)acrylate, pentaerythritol tetra(meth)acrylate, dipentaerythritol hexa(meth)acrylate, ethylene oxide adduct di(meth)acrylate of bisphenol A, isobornyl (meth)acrylate, tetrahydrofurfuryl (meth)acrylate, allyl (meth)acrylate, 2-carboxyethyl (meth)acrylate, dimethyl (meth)acrylamide, phenyl vinyl sulfide, phenyl vinyl sulfoxide, 4-methyl-5-vinylimidazole, and 1-vinylimidazole.  請求項1~7のいずれかに記載の重合性組成物を重合硬化してなる樹脂。 A resin obtained by polymerizing and curing the polymerizable composition according to any one of claims 1 to 7.  請求項8に記載の樹脂を含む光学材料。 An optical material comprising the resin according to claim 8.  請求項8に記載の樹脂を含む色調変化材料。  A color-changing material comprising the resin according to claim 8.
PCT/JP2024/015663 2023-05-01 2024-04-22 Polymerizable composition, resin obtained by polymerizing and curing same, and optical material comprising said resin WO2024228342A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2023-075480 2023-05-01
JP2023075480 2023-05-01

Publications (1)

Publication Number Publication Date
WO2024228342A1 true WO2024228342A1 (en) 2024-11-07

Family

ID=93332995

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2024/015663 WO2024228342A1 (en) 2023-05-01 2024-04-22 Polymerizable composition, resin obtained by polymerizing and curing same, and optical material comprising said resin

Country Status (2)

Country Link
TW (1) TW202448912A (en)
WO (1) WO2024228342A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006062255A1 (en) * 2004-12-10 2006-06-15 Otsuka Chemical Co., Ltd. Organic bismuth compound, method for producing same, living radical polymerization initiator, method for producing polymer using same, and polymer
WO2008108500A1 (en) * 2007-03-07 2008-09-12 Otsuka Chemical Co., Ltd. Living radical polymerization promoter
CN102276445A (en) * 2011-06-22 2011-12-14 于学敏 Colloidal bismuth tartrate compound, medicaments thereof, preparation method thereof and application thereof
CN108250244A (en) * 2018-01-19 2018-07-06 于学敏 COLLOIDAL BISMUTH TARTRATE-β-macrolide compounds and preparation method thereof, its pharmaceutical composition and their purposes
WO2020196140A1 (en) * 2019-03-28 2020-10-01 三菱瓦斯化学株式会社 Polymerizable composition for optical materials
JP2021172797A (en) * 2020-04-30 2021-11-01 三菱瓦斯化学株式会社 Polymerizable composition, and optical material and color-changing material that are obtained therefrom
JP2022128911A (en) * 2021-02-24 2022-09-05 三菱瓦斯化学株式会社 Polymerizable composition and resin obtained by polymerizing and curing the same
JP2022128912A (en) * 2021-02-24 2022-09-05 三菱瓦斯化学株式会社 Polymerizable composition and resin obtained by polymerizing and curing the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006062255A1 (en) * 2004-12-10 2006-06-15 Otsuka Chemical Co., Ltd. Organic bismuth compound, method for producing same, living radical polymerization initiator, method for producing polymer using same, and polymer
WO2008108500A1 (en) * 2007-03-07 2008-09-12 Otsuka Chemical Co., Ltd. Living radical polymerization promoter
CN102276445A (en) * 2011-06-22 2011-12-14 于学敏 Colloidal bismuth tartrate compound, medicaments thereof, preparation method thereof and application thereof
CN108250244A (en) * 2018-01-19 2018-07-06 于学敏 COLLOIDAL BISMUTH TARTRATE-β-macrolide compounds and preparation method thereof, its pharmaceutical composition and their purposes
WO2020196140A1 (en) * 2019-03-28 2020-10-01 三菱瓦斯化学株式会社 Polymerizable composition for optical materials
JP2021172797A (en) * 2020-04-30 2021-11-01 三菱瓦斯化学株式会社 Polymerizable composition, and optical material and color-changing material that are obtained therefrom
JP2022128911A (en) * 2021-02-24 2022-09-05 三菱瓦斯化学株式会社 Polymerizable composition and resin obtained by polymerizing and curing the same
JP2022128912A (en) * 2021-02-24 2022-09-05 三菱瓦斯化学株式会社 Polymerizable composition and resin obtained by polymerizing and curing the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
WATANABE SEIGO, TAKAYAMA TERU, NISHIO HIROMICHI, MATSUSHIMA KANTA, TANAKA YOKO, SAITO SEIYA, SUN YUSHUN, OYAIZU KENICHI: "Synthesis of colorless and high-refractive-index sulfoxide-containing polymers by the oxidation of poly(phenylene sulfide) derivatives", POLYMER CHEMISTRY, ROYAL SOCIETY OF CHEMISTRY, CAMBRIDGE, vol. 13, no. 12, 22 March 2022 (2022-03-22), Cambridge , pages 1705 - 1711, XP093230549, ISSN: 1759-9954, DOI: 10.1039/D1PY01654G *

Also Published As

Publication number Publication date
TW202448912A (en) 2024-12-16

Similar Documents

Publication Publication Date Title
JP7676807B2 (en) Polymerizable composition and resin obtained by polymerizing and curing the same
JP5301164B2 (en) Curable composition containing a thiol compound
US8748503B2 (en) Macro-photoinitiators and curable compositions thereof
TWI405785B (en) Liquid crystal sealant,liquid crystal display panel and fabricating method thereof using the same
JP5279703B2 (en) Light and / or thermosetting copolymer, curable resin composition, and cured product
KR102549487B1 (en) Photocurable composition for imprint
JP7545023B2 (en) Polymerizable composition, and optical material and color-changing material obtained therefrom
EP1548039B1 (en) Photopolymerizable composition and use thereof
WO2012147708A1 (en) Curable composition and adhesive for optics
JP7521524B2 (en) Polymerizable composition for optical materials
JP2019142849A (en) Polyfunctional propargyl compound and optical composition comprising the same
JP2019001785A (en) Novel tetrathiaspiro compound, optical composition containing the same, and method for producing the same
JP2019026755A (en) Optical material composition
JP4774648B2 (en) Polymerizable composition for optical element and optical element using the same
WO2024228342A1 (en) Polymerizable composition, resin obtained by polymerizing and curing same, and optical material comprising said resin
JP2022128912A (en) Polymerizable composition and resin obtained by polymerizing and curing the same
WO2017183549A1 (en) Novel tetrathiaspiro compound, optical composition including same, and method for producing same
KR101141094B1 (en) Actinic energy ray curable composition for optical material
JP2021038354A (en) Resin composition for optical material
WO2012147710A1 (en) Curable composition and adhesive for optical applications
KR20180044076A (en) Light-Curable Cohesive and Adhesive Composition
WO2025089145A1 (en) Polymerizable composition and resin obtained by polymerizing and curing same
US20230331688A1 (en) Diepoxy compound, curable composition, cured product, and optical member
US10072113B2 (en) Composition, curable composition, production method therefor, and cured product
JP2012233118A (en) Curable composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 24800073

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2025518129

Country of ref document: JP