JP4774648B2 - Polymerizable composition for optical element and optical element using the same - Google Patents

Polymerizable composition for optical element and optical element using the same Download PDF

Info

Publication number
JP4774648B2
JP4774648B2 JP2001232290A JP2001232290A JP4774648B2 JP 4774648 B2 JP4774648 B2 JP 4774648B2 JP 2001232290 A JP2001232290 A JP 2001232290A JP 2001232290 A JP2001232290 A JP 2001232290A JP 4774648 B2 JP4774648 B2 JP 4774648B2
Authority
JP
Japan
Prior art keywords
optical element
polymerizable composition
compound
component
polymerizable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001232290A
Other languages
Japanese (ja)
Other versions
JP2003040940A (en
Inventor
巌 服部
俊之 清成
ラホビッツ アルター
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
DIC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DIC Corp filed Critical DIC Corp
Priority to JP2001232290A priority Critical patent/JP4774648B2/en
Publication of JP2003040940A publication Critical patent/JP2003040940A/en
Application granted granted Critical
Publication of JP4774648B2 publication Critical patent/JP4774648B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ビデオカメラ、スチルカメラ、顕微鏡等に用いられる高屈折率の光学素子用重合性組成物及びこれを用いた光学素子に関する。
【0002】
【従来の技術】
光学機器の小型軽量化、高性能化に伴い、微細で複雑な凹凸表面形状を有する光学素子や、超高精度の平面あるいは非球面の表面形状をしたレンズ、プリズム、鏡の必要性が高まっている。
このような光学素子を作るのに用いられる樹脂組成物としては、ポリカーボネート樹脂、ポリスチレン樹脂及びアクリル樹脂等の汎用プラスチック樹脂や、紫外線や電子線等の活性エネルギー線照射で硬化する活性エネルギー線硬化型樹脂がある。
【0003】
汎用プラスチック樹脂の光学素子成形方法は、溶融したプラスチックを鋳型に流し込み冷却するという射出成形法等が用いられている。しかしながら、この製造方法では、熱歪み等の影響により光学的に歪みのない均一な光学素子を得ることが難しく、また、冷却時に発生するソリで成形精度10nm以下という超高精度の平面あるいは非球面の表面形状をしたレンズを作ることが難しい。
これに対し、紫外線や電子線等の活性エネルギー線の照射による方法は、実質的に加熱手段を必要としないため、冷却しながらエネルギー線照射により硬化するという方法も可能であり、熱歪みの蓄積を避けられる。そのため、硬化物内部に熱歪みに起因する光学的な歪みは発生せず、また、冷却時のソリも無く超高精度の平面あるいは非球面の表面形状をしたレンズを作ることが可能である。
【0004】
紫外線や電子線等の活性エネルギー線照射による光学素子用樹脂組成物と光学素子については、特公平6−93043号公報にある、特定のウレタン変性ポリエステル(メタ)アクリレートオリゴマーと3官能(メタ)アクリレートと単官能(メタ)アクリレートとを含有する活性エネルギー線硬化型樹脂組成物をガラス等の基材上に紫外線等の活性エネルギー線で硬化させた硬化樹脂層を設けてなる光学素子が知られている。
【0005】
【発明が解決しようとする課題】
しかし、これら樹脂組成物の硬化物の屈折率は、1.48〜1.57の範囲にあり、1.60以上の高屈折率にすることが難しいという課題があった。このように硬化物が高屈折率でない場合には、レンズ等の焦点距離を短くするために、レンズ肉厚を厚くしなければならず、軽いというプラスチック製品の特徴を生かせず、レンズによって占められる空間体積が大きくなるので、光学部品の軽量化や小型化が出来にくいという問題点がある。
【0006】
したがって、本発明は、屈折率が高く、超高精度の平面あるいは非球面の表面形状をした光学素子及びこれを得るための光学素子用重合性組成物を提供することを目的とする。
【0007】
【課題を解決するための手段】
本発明者らは、上記の問題点を解決するために鋭意検討した結果、特定のカルバゾール誘導体及び1分子中に2個以上の重合性ビニル基を有する化合物を含有する光学素子用重合性組成物を光学素子に応用したところ、屈折率が1.60以上、特に1.65以上と高く、超高精度の平面あるいは非球面の表面形状が得られるとともに、耐熱性、表面硬度、耐薬品性及び透明性にも優れた光学素子が得られることを見出し本発明に至った。
【0008】
すなわち、本発明は、(A)下記一般式(1)で示される化合物、及び
(B)1分子中に2個以上の重合性ビニル基を有する化合物
を含有することを特徴とする光学素子用重合性組成物を提供するものである。
【0009】
【化2】

Figure 0004774648
【0010】
(式中、R1は、水素又はメチル基を表し、X1は、水素原子又はNO2基を表し、X2及びX3は、同一又は異なって、水素原子、ハロゲン原子、CH3、CHO、CH2OH又はC(Ph)3基(式中、Phは、フェニル基を表す)を表す。)
【0011】
本発明はまた、(B)1分子中に2個以上の重合性ビニル基を有する化合物が、ビスフェノールA骨格又はフルオレン骨格を有する化合物である光学素子用重合性組成物を硬化させてなり、屈折率が1.60以上であることを特徴とする光学素子を提供するものである。
【0012】
【発明の実施の形態】
以下、本発明の詳細な説明を行う。
一般式(1)で示される化合物((A)成分)、例えば9−アクリロイルカルバゾールは、その合成法やブチルリチウムを触媒とした重合法がすでに知られている(Makromol. Chem. 78, 47-57(1964)(Eng))。また、(A)成分に類似のカルバゾール誘導体が光導電性化合物として有用であることも知られている(特開平2−265904号公報)。しかしながら、(A)成分と1分子中に2個以上の重合性ビニル基を有する化合物(B)成分を用いて調製した光学素子が、高い屈折率を有し、超高精度の平面あるいは非球面の表面形状に成形が容易であるとともに、耐熱性、表面硬度、耐薬品性及び透明性にも優れたものであることは、全く知られていなかった。
【0013】
上記一般式(1)で示される化合物((A)成分)は、カルバゾール又はその誘導体にアクリル基又はメタクリル基を導入した化合物である。これら化合物は、ラジカル重合可能な組成物の主成分として使用される。R1、X1、X2及びX3は、上記した通りであるが、このうち、製造が容易で、光学素子に適用したときに高い屈折率、超高精度の表面形状が得られる等の観点から、いずれもが水素原子であることが好ましい。
【0014】
上記した化合物は、通常、室温で固体であるため、光学用素子を製造する場合、融点53℃以上に加熱して溶融して製造する方法や、重合性モノマーでこれを溶解し製造する方法がある。
【0015】
(B)成分は、1分子中に2個以上の重合性ビニル基を有する化合物であり、例えば1,6−ヘキサンジオールジ(メタ)アクリレート、ビスフェノールAのエチレンオキシド付加物のジ(メタ)アクリレート、ビスフェノールAのプロピレンオキシド付加物のジ(メタ)アクリレート等の2官能重合性モノマー;例えばトリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート等の多官能重合性モノマー;次の一般式(2)
【0016】
【化3】
Figure 0004774648
【0017】
(式中、R2及びR3は水素原子又はメチル基を表し、m及びnはそれぞれ独立に0〜5の整数を表す。)で表される2個の重合性ビニル基とフルオレン骨格とを有する化合物等の使用が可能である。このうち、ビスフェノールA骨格又はフルオレン骨格を有するものが好ましい。
【0018】
また、(B)成分として、プラスチックレンズ等の光学素子の耐衝撃性を向上させるために、構造単位の繰り返し数が2〜20程度のオリゴマー鎖を有する重合性オリゴマーを適量添加することもできる。具体例としては特に限定されないが、例えば、エポキシ基と(メタ)アクリル酸との反応より合成されるエポキシアクリレート;ジイソシアネート、ヒドロキシ(メタ)アクリレート、ポリオールより合成されるウレタンアクリレート;ポリエステル骨格にある水酸基にアクリル酸を縮合してアクリレート基を導入したポリエステルアクリレート等が使用可能である。
【0019】
(C)成分は、光、熱等によって容易に分解して、重合を開始しうる活性なラジカルを発生する物質であり、このうち、光重合開始剤が好ましい。例えばヒドロパーオキシド、過硫酸塩、ジアルキルパーオキシド、ジアシルパーオキシド等の過酸化物;アゾ化合物;酸化剤と還元剤とを組み合わせたレドックス開始剤;混合開始剤;金属アルキル、アルキルパーオキシ金属等の有機金属化合物等が挙げられ、これらを1種もしくは2種以上を混合して使用することができる。より具体的には、光重合開始剤としては、例えば4-ジメチルアミノ安息香酸、4-ジメチルアミノ安息香酸エステル、アルコキシアセトフェノン、ベンジルジメチルケタール、ベンゾフェノンおよびベンゾフェノン誘導体、ベンゾイル安息香酸アルキル、ビス(4-ジアルキルアミノフェニル)ケトン、ベンジルおよびベンジル誘導体、ベンゾインおよびベンゾイン誘導体、ベンゾインアルキルエーテル、2-ヒドロキシ-2-メチルプロピオフェノン、1-ヒドロキシシクロヘキシルフェニルケトン、チオキサントンおよびチオキサントン誘導体、2,4,6 -トリメチルベンゾイルジフェニルフォスフィンオキシド等が挙げられる。
【0020】
(D)成分は、一般式(1)で表される化合物以外の化合物であって、1分子中に1個の重合性ビニル基を有する化合物である。具体的には、アミノ基や水酸基を含む化合物に(メタ)アクリル酸がエステル化反応で結合した構造の化合物等が挙げられ、例えば、フェノキシエチル(メタ)アクリレート、ベンジル(メタ)アクリレート、及びN−ビニルピロリドン、N−ビニルピリジン、N−ビニルカプロラクタム、ビニルカルバゾール等の単官能重合性モノマー等の使用が可能である。
【0021】
さらに、本発明の光学素子用重合性組成物には、上記(A)、(B)、(C)及び(D)以外に、ヒドロキノン、メトキノン等の重合禁止剤、ヒンダードフェノール系等の酸化防止剤、ヒンダードアミン系等の黄変防止剤、燐酸エステル系等の脱色剤、シリコーンオイルやフッ素化合物等の消泡剤、離型剤、レベリング剤、着色染料等を添加しても構わない。フッ素化合物は、樹脂と型及び基材との界面にブリードし、型と樹脂の間に極薄い離型剤からなる離型層を形成する。この離型層は、樹脂との反応性がなく、樹脂の表面張力を著しく低下させる働きを持ち、高エネルギー表面を持つ金型に対する樹脂の密着性を低下させる。また、離型層の強度自体も低いため、重合した樹脂層は、離型層と樹脂層の間又は離型剤層内で剥離が発生し、容易に型から剥がすことができる。このような層は、WBL(弱い境界層)とよばれ、離型性を高めるのに極めて効果的である。
【0022】
本発明の光学素子用重合性組成物は、▲1▼(A)成分及び(B)成分を含有するものであるが、さらに具体的には、▲2▼(A)成分、(B)成分、(C)成分を含有する場合、▲3▼(A)成分、(B)成分、(D)成分を含有する場合、▲4▼(A)成分、(B)成分、(C)成分、(D)成分を含有する場合が好ましい。
【0023】
本発明の光学素子用重合性組成物の各成分の含有量は、(A)成分が10〜95 重量%、特に20〜90重量%が好ましく、(B)成分が5〜90重量%、特に10〜80重量%が好ましい。また、(C)成分を併用する場合は、(A)成分と(B)成分との合計量に対して0.3〜15重量%、特に0.5〜10重量%が好ましく、(D)成分を併用する場合は、(A)成分に対して5〜90重量%、特に10〜80重量%が好ましい。
【0024】
本発明の光学素子用重合性組成物は、(A)成分及び(B)成分、及び必要に応じて(C)成分、(D)成分、その他の成分を混合することにより調製することができる。
【0025】
本発明の光学素子は、かかる光学素子用重合性組成物をラジカル重合反応により硬化させてなるものであり、屈折率を1.60以上、さらに1.65以上とすることも可能であり、屈折率が非常に高い。このように、高い屈折率を有することにより、レンズが占める体積を小さくすることができ、光学部品の小型化、軽量化を図ることができる。
【0026】
本発明の光学素子の製造方法としては、例えばまず、所望する形状をもつガラス、セラミック、金属、プラスチック、鉱物結晶等からなる材質の金型上に本発明の光学素子用重合性組成物を所定量流し込み、適切な間隙を介して基材を重ねる。基材と金型からなる該間隙に泡や空隙の無いように該光学素子用重合性組成物を保持した後、活性エネルギー線を樹脂の硬化に必要な線量で照射して該樹脂組成物を硬化させた後、脱型するという方法が挙げられる。もちろん、基材上に本発明の光学素子用重合性組成物を滴下し、この上に金型を重ねる方法でもよい。また、型を用いずスピンコート等で基材上に本発明の光学素子用重合性組成物を塗布し、硬化させる方法をとってもよい。本発明で用いる基材としては、例えば平板状あるいは予め賦形型されたガラス、セラミック、金属、プラスチック、鉱物結晶等が挙げられ、このうちガラス、プラスチックが特に好ましい。これは、複合型光学素子を特にレンズとした場合に、基材をガラスレンズ又はプラスチックレンズとし、これに屈折作用の大部分を受け持たせれば、光学素子用重合性組成物を重合させて得られる樹脂層は、収差の補正にのみ使うことができ、環境変化に対して影響の少ない性能の安定した複合型レンズとすることができるからである。
このように、本発明の光学素子は、基材の表面に所望の形状に設けることができる。
本発明で用いる活性エネルギー線としては、例えばマイクロ波、遠赤外線、可視光線、紫外線、電子線、放射線(β線、γ線)等が挙げられ、なかでも紫外線が好ましい。
また、本発明の光学素子は、熱重合によって製造することもでき、特に眼鏡用レンズ等の製造に適している。
【0027】
該光学素子用重合性組成物を紫外線を用いて硬化させるときは、金型あるいは基材のいずれかをガラス、石英、ポリカーボネート、ポリメチルメタアクリレート、ポリエチレンテレフタレート、ポリ4−メチル−1−ペンテン等の紫外線を透過する透明物質を使用する必要がある。また、シランカップリング剤、チタネートカップリング剤、硝酸等の酸化剤やアルカリにより基材表面を処理して基材と本発明の光学素子用重合性組成物との接着性を向上させる方法や、金型を離型剤で処理して脱型を容易にする方法をとってもよい。
さらに上記方法によって得られた光学素子の樹脂硬化物表面上に酸化チタン、酸化ジルコニウム、酸化珪素、酸化アルミニウム、フッ化マグネシウム等の金属の酸化物又はフッ化物等を加熱あるいは無加熱条件で真空蒸着させ、反射防止膜を設けてもよい。
なお、紫外線を用いる場合、紫外線の光源としては、メタルハライドランプ、高圧水銀灯、ブラックライト等が使用される。
【0028】
このようにして得られた本発明の光学素子は、1.60以上の高い屈折率を有しており、特に屈折率が1.65以上のものも得ることも可能となり、光学素子として特に好適である。
【0029】
【実施例】
以下に実施例及び比較例を掲げ、本発明を更に詳しく説明する。
【0030】
合成例1
撹拌機、温度計、還流冷却管を備えたフラスコに、カルバゾール(分子量 167.21)8.3g(0.05モル)と トルエン120mlを仕込み撹拌溶解した。これに、トルエン15mlに溶解させたβ−クロロプロピオニルクロライド12.8g(0.1モル)を約10分間かけ滴下した。滴下終了後、室温で撹拌還流しながら18時間かけて反応させた。その後、反応液中のトルエンを減圧除去し、黄色固体を得た。この黄色固体を700〜800mlのメタノールで再結晶し、白色固体の(9-(β-クロロプロピオニル)カルバゾール、分子量257.72)を得た。
次に、撹拌機、温度計、還流冷却管を備えたフラスコに、上記合成で得た9-(β-クロロプロピオニル)カルバゾール29.6g、沃化ナトリウム19.05g、酢酸ナトリウム17.2gとエタノール800mlを仕込み、室温で撹拌還流しながら2時間反応させた。その後、反応液中の溶媒の約半分を減圧除去したのち、500mlの水を加え撹拌し、混合液を分液ロートで分離し、黄色液体を得た。この黄色液体にn-ペンタン約800mlを加え沸騰溶解させたのち、−78℃に冷却して結晶化した固体をろ過し、白色固体を得た。この白色固体をn-ペンタンを用い繰り返し再結晶し、目的の白色固体(9−アクリレートカルバゾール)を得た。
【0031】
実施例1
合成例1で得た9−アクリレートカルバゾール70g、ビスフェノールAエポキシジアクリレート30g、光開始剤としてルシリンTPO(BASF社製)2gを混合し、光学レンズ用紫外線硬化型樹脂原料組成物を作成した。
【0032】
硬化物シートの作成:実施例1で得た光学レンズ用紫外線硬化型樹脂原料組成物をそれぞれ清浄で平滑なガラス板状にアプリケーターを用いて塗布し、メタルハライド灯のコンベア式紫外線照射装置を用い、窒素雰囲気下で1000mJ/cm2の紫外線を照射して硬化物の平板を作成した。
【0033】
この平板は、可視光線透過率は90%であり、屈折率(589.3mmのD線)は1.65と高かった。また、この平板は、TMAによるTgは100℃であり、耐熱性試験(200℃、2時間)において、黄変色がなく、表面硬度は、鉛筆硬度2Hであった。さらに、この平板は、アセトン、トルエン等の耐薬品性にも優れていた。
【0034】
実施例2
実施例1において、ビスフェノールAエポキシジアクリレートに代えて、大阪ガスケミカル社製のBPEFA(一般式(2)において、R2が水素原子、m及びnが0の化合物)を用いた以外は、実施例1と同様にして光学素子用重合性組成物を調製し、硬化物を作製し、評価した。その結果、この平板は、可視光線透過率は88%であり、屈折率(589.3mmのD線)は1.66と高かった。また、この平板は、TMAによるTgは100℃であり、耐熱性試験(200℃、2時間)において、黄変色がなく、表面硬度は、鉛筆硬度2Hであった。さらに、この平板は、アセトン、トルエン等の耐薬品性にも優れていた。
【0035】
比較例1
特公平6−93043号公報の実施例にある、製造例1のウレタン変性ポリエステル(メタ)アクリレートオリゴマー(I)50gとトリス(2−ヒドロキシエチル)イソシアヌレートのトリアクリレート20gとベンジルアクリレート30gと光重合開始剤として1−ヒドロキシシクロヘキシルフェニルケトン1gを混合し、光学レンズ用紫外線硬化型樹脂原料組成物を作成した。この紫外線硬化型樹脂原料組成物を実施例1同様に塗布、硬化して平板を作成した。
【0036】
この平板は、可視光線透過率は90%、屈折率(589.3mmのD線)は1.520であった。TMAによるTgは80℃であった。
【0037】
【発明の効果】
本発明の光学素子用重合性組成物を用いて得られた光学素子は、屈折率が1.60以上、特に1.65以上の高屈折率である。さらに、基材、特にガラスやプラスチックの表面に所望の形状に形成することができる。また、かかる光学素子は、耐熱性、表面硬度、耐薬品性にも優れている。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a polymerizable composition for an optical element having a high refractive index used for a video camera, a still camera, a microscope and the like, and an optical element using the same.
[0002]
[Prior art]
As optical devices become smaller and lighter and have higher performance, there is a growing need for optical elements with fine and complex irregular surface shapes, and lenses, prisms, and mirrors with ultra-high precision flat or aspheric surface shapes. Yes.
Resin compositions used to make such optical elements include general-purpose plastic resins such as polycarbonate resins, polystyrene resins and acrylic resins, and active energy ray curable types that are cured by irradiation with active energy rays such as ultraviolet rays and electron beams. There is resin.
[0003]
As an optical element molding method of general-purpose plastic resin, an injection molding method in which molten plastic is poured into a mold and cooled is used. However, with this manufacturing method, it is difficult to obtain a uniform optical element that is optically free from distortion due to the effects of thermal distortion, etc., and a flat or aspherical surface with a molding accuracy of 10 nm or less due to warpage generated during cooling. It is difficult to make a lens with the surface shape.
On the other hand, the method of irradiation with active energy rays such as ultraviolet rays and electron beams does not substantially require a heating means, so that it can be cured by irradiation with energy rays while cooling, and thermal strain is accumulated. Can be avoided. Therefore, optical distortion due to thermal distortion does not occur inside the cured product, and it is possible to make a lens with a highly accurate planar or aspherical surface shape without warping during cooling.
[0004]
Regarding the resin composition for optical elements and the optical element by irradiation with active energy rays such as ultraviolet rays and electron beams, the specific urethane-modified polyester (meth) acrylate oligomer and trifunctional (meth) acrylate disclosed in JP-B-6-93043 are disclosed. An optical element comprising a cured resin layer obtained by curing an active energy ray-curable resin composition containing a monofunctional (meth) acrylate with a UV or other active energy ray on a substrate such as glass is known. Yes.
[0005]
[Problems to be solved by the invention]
However, the refractive index of the cured product of these resin compositions is in the range of 1.48 to 1.57, and there is a problem that it is difficult to obtain a high refractive index of 1.60 or more. In this way, when the cured product is not a high refractive index, in order to shorten the focal length of the lens or the like, the lens thickness must be increased, and it is occupied by the lens without taking advantage of the characteristics of a plastic product that is light. Since the space volume becomes large, there is a problem that it is difficult to reduce the weight and size of the optical component.
[0006]
Accordingly, an object of the present invention is to provide an optical element having a high refractive index and an ultrahigh precision planar or aspherical surface shape, and a polymerizable composition for an optical element for obtaining the optical element.
[0007]
[Means for Solving the Problems]
As a result of intensive studies to solve the above-mentioned problems, the present inventors have found that the polymerizable composition for an optical element contains a specific carbazole derivative and a compound having two or more polymerizable vinyl groups in one molecule. Is applied to an optical element, the refractive index is 1.60 or more, particularly 1.65 or more, and an ultra-high-precision planar or aspherical surface shape is obtained, as well as heat resistance, surface hardness, chemical resistance and The inventors have found that an optical element excellent in transparency can be obtained, and have reached the present invention.
[0008]
That is, the present invention includes (A) a compound represented by the following general formula (1) and (B) a compound having two or more polymerizable vinyl groups in one molecule. A polymerizable composition is provided.
[0009]
[Chemical 2]
Figure 0004774648
[0010]
(Wherein R 1 represents hydrogen or a methyl group, X 1 represents a hydrogen atom or a NO 2 group, and X 2 and X 3 are the same or different and represent a hydrogen atom, a halogen atom, CH 3 or CHO. CH 2 OH or a C (Ph) 3 group (wherein Ph represents a phenyl group)
[0011]
In the present invention, (B) a compound having two or more polymerizable vinyl groups in one molecule is obtained by curing a polymerizable composition for an optical element in which a compound having a bisphenol A skeleton or a fluorene skeleton is used. An optical element having a ratio of 1.60 or more is provided.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail.
As for the compound represented by the general formula (1) (component (A)), for example, 9-acryloylcarbazole, a synthesis method and a polymerization method using butyl lithium as a catalyst are already known (Makromol. Chem. 78, 47-). 57 (1964) (Eng)). It is also known that a carbazole derivative similar to the component (A) is useful as a photoconductive compound (Japanese Patent Laid-Open No. 2-265904). However, the optical element prepared by using the component (A) and the compound (B) component having two or more polymerizable vinyl groups in one molecule has a high refractive index and an ultrahigh precision flat surface or aspherical surface. It has not been known at all that it is easy to mold into the surface shape of the material and has excellent heat resistance, surface hardness, chemical resistance and transparency.
[0013]
The compound represented by the general formula (1) (component (A)) is a compound in which an acryl group or a methacryl group is introduced into carbazole or a derivative thereof. These compounds are used as a main component of a radically polymerizable composition. R 1 , X 1 , X 2 and X 3 are as described above. Of these, manufacturing is easy, and when applied to an optical element, a high refractive index and an ultra-high precision surface shape can be obtained. From the viewpoint, both are preferably hydrogen atoms.
[0014]
Since the above-mentioned compounds are usually solid at room temperature, when manufacturing an optical element, there are a method of heating and melting to a melting point of 53 ° C. or higher, and a method of dissolving and manufacturing this with a polymerizable monomer. is there.
[0015]
The component (B) is a compound having two or more polymerizable vinyl groups in one molecule, such as 1,6-hexanediol di (meth) acrylate, di (meth) acrylate of bisphenol A ethylene oxide adduct, Bifunctional polymerizable monomers such as di (meth) acrylate of propylene oxide adduct of bisphenol A; for example, trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol Polyfunctional polymerizable monomers such as hexa (meth) acrylate; the following general formula (2)
[0016]
[Chemical 3]
Figure 0004774648
[0017]
(Wherein R 2 and R 3 represent a hydrogen atom or a methyl group, and m and n each independently represents an integer of 0 to 5) and a polymerizable vinyl group and a fluorene skeleton represented by It is possible to use a compound having the same. Of these, those having a bisphenol A skeleton or a fluorene skeleton are preferred.
[0018]
Moreover, in order to improve the impact resistance of an optical element such as a plastic lens, an appropriate amount of a polymerizable oligomer having an oligomer chain having a structural unit repetition number of about 2 to 20 can be added as the component (B). Although it does not specifically limit as a specific example, For example, the epoxy acrylate synthesize | combined by reaction of an epoxy group and (meth) acrylic acid; Urethane acrylate synthesize | combined from diisocyanate, hydroxy (meth) acrylate, and polyol; The hydroxyl group in polyester frame | skeleton Polyester acrylate in which acrylic acid is condensed to introduce an acrylate group can be used.
[0019]
The component (C) is a substance that is easily decomposed by light, heat or the like to generate an active radical capable of initiating polymerization, and among these, a photopolymerization initiator is preferable. For example, peroxides such as hydroperoxides, persulfates, dialkyl peroxides, diacyl peroxides; azo compounds; redox initiators combining oxidants and reducing agents; mixed initiators; metal alkyls, alkyl peroxy metals, etc. These may be used alone or in combination of two or more. More specifically, examples of the photopolymerization initiator include 4-dimethylaminobenzoic acid, 4-dimethylaminobenzoic acid ester, alkoxyacetophenone, benzyldimethyl ketal, benzophenone and benzophenone derivatives, alkyl benzoylbenzoate, bis (4- Dialkylaminophenyl) ketone, benzyl and benzyl derivatives, benzoin and benzoin derivatives, benzoin alkyl ethers, 2-hydroxy-2-methylpropiophenone, 1-hydroxycyclohexyl phenyl ketone, thioxanthone and thioxanthone derivatives, 2,4,6-trimethyl Examples include benzoyldiphenylphosphine oxide.
[0020]
The component (D) is a compound other than the compound represented by the general formula (1), and is a compound having one polymerizable vinyl group in one molecule. Specific examples include compounds having a structure in which (meth) acrylic acid is bonded to a compound containing an amino group or a hydroxyl group by an esterification reaction, such as phenoxyethyl (meth) acrylate, benzyl (meth) acrylate, and N -Monofunctional polymerizable monomers such as vinylpyrrolidone, N-vinylpyridine, N-vinylcaprolactam, and vinylcarbazole can be used.
[0021]
Furthermore, in the polymerizable composition for an optical element of the present invention, in addition to the above (A), (B), (C) and (D), polymerization inhibitors such as hydroquinone and methoquinone, oxidation of hindered phenols, etc. An inhibitor, a hindered amine-based yellowing inhibitor, a phosphate ester-based decoloring agent, a defoaming agent such as silicone oil or a fluorine compound, a release agent, a leveling agent, a coloring dye, or the like may be added. The fluorine compound bleeds at the interface between the resin and the mold and the substrate, and forms a release layer made of an extremely thin release agent between the mold and the resin. This release layer has no reactivity with the resin, has a function of significantly reducing the surface tension of the resin, and reduces the adhesion of the resin to a mold having a high energy surface. Further, since the strength of the release layer itself is low, the polymerized resin layer peels off between the release layer and the resin layer or in the release agent layer, and can be easily peeled off from the mold. Such a layer is called WBL (Weak Boundary Layer) and is extremely effective in improving the releasability.
[0022]
The polymerizable composition for optical elements of the present invention comprises (1) component (A) and component (B), and more specifically, (2) component (A) and component (B). In the case of containing (C) component, (3) (A) component, (B) component and (D) component are contained, (4) (A) component, (B) component, (C) component, (D) The case where a component is contained is preferable.
[0023]
The content of each component of the polymerizable composition for an optical element of the present invention is such that the component (A) is 10 to 95% by weight, particularly 20 to 90% by weight, and the component (B) is 5 to 90% by weight. 10-80 weight% is preferable. Moreover, when using together (C) component, 0.3 to 15 weight% with respect to the total amount of (A) component and (B) component, especially 0.5 to 10 weight% is preferable, (D) When using a component together, 5 to 90 weight% with respect to (A) component, especially 10 to 80 weight% is preferable.
[0024]
The polymerizable composition for an optical element of the present invention can be prepared by mixing the component (A) and the component (B) and, if necessary, the component (C), the component (D), and other components. .
[0025]
The optical element of the present invention is obtained by curing such a polymerizable composition for an optical element by a radical polymerization reaction, and can have a refractive index of 1.60 or more, further 1.65 or more. The rate is very high. Thus, by having a high refractive index, the volume occupied by the lens can be reduced, and the optical component can be reduced in size and weight.
[0026]
As a method for producing the optical element of the present invention, for example, first, the polymerizable composition for an optical element of the present invention is placed on a mold made of glass, ceramic, metal, plastic, mineral crystal or the like having a desired shape. Pour a fixed amount and stack the substrates through the appropriate gap. After holding the polymerizable composition for an optical element so that there are no bubbles or voids in the gap between the base material and the mold, the active energy rays are irradiated at a dose necessary for curing the resin to apply the resin composition. A method of demolding after curing is mentioned. Of course, a method of dropping the polymerizable composition for an optical element of the present invention on a substrate and stacking a mold thereon may be used. Moreover, the method of apply | coating the polymeric composition for optical elements of this invention on a base material by spin coat etc. without using a type | mold, and making it harden | cure may be taken. Examples of the substrate used in the present invention include flat plate or pre-shaped glass, ceramic, metal, plastic, mineral crystal and the like, among which glass and plastic are particularly preferable. This can be obtained by polymerizing a polymerizable composition for an optical element if the substrate is a glass lens or a plastic lens, and the refractive function is mostly handled when the composite optical element is a lens. This is because the obtained resin layer can be used only for correcting aberrations and can be a stable compound lens having a performance with little influence on environmental changes.
Thus, the optical element of the present invention can be provided in a desired shape on the surface of the substrate.
Examples of the active energy ray used in the present invention include microwaves, far infrared rays, visible rays, ultraviolet rays, electron beams, radiation (β rays, γ rays), and ultraviolet rays are preferable.
The optical element of the present invention can also be produced by thermal polymerization, and is particularly suitable for production of spectacle lenses and the like.
[0027]
When the polymerizable composition for an optical element is cured using ultraviolet rays, either a mold or a substrate is made of glass, quartz, polycarbonate, polymethyl methacrylate, polyethylene terephthalate, poly-4-methyl-1-pentene, etc. It is necessary to use a transparent material that transmits UV rays. In addition, a method of improving the adhesion between the substrate and the polymerizable composition for an optical element of the present invention by treating the substrate surface with an oxidizing agent or alkali such as silane coupling agent, titanate coupling agent, nitric acid, A method may be used in which the mold is treated with a release agent to facilitate demolding.
Furthermore, a metal oxide such as titanium oxide, zirconium oxide, silicon oxide, aluminum oxide, magnesium fluoride, or fluoride is vacuum deposited on the surface of the cured resin of the optical element obtained by the above method, with or without heating. And an antireflection film may be provided.
When ultraviolet rays are used, a metal halide lamp, a high-pressure mercury lamp, a black light, or the like is used as the ultraviolet light source.
[0028]
The optical element of the present invention thus obtained has a high refractive index of 1.60 or more, and it is particularly possible to obtain a refractive index of 1.65 or more, which is particularly suitable as an optical element. It is.
[0029]
【Example】
Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples.
[0030]
Synthesis example 1
In a flask equipped with a stirrer, a thermometer, and a reflux condenser, 8.3 g (0.05 mol) of carbazole (molecular weight 167.21) and 120 ml of toluene were charged and dissolved with stirring. To this was added dropwise 12.8 g (0.1 mol) of β-chloropropionyl chloride dissolved in 15 ml of toluene over about 10 minutes. After completion of the dropwise addition, the reaction was allowed to take place for 18 hours while stirring and refluxing at room temperature. Thereafter, toluene in the reaction solution was removed under reduced pressure to obtain a yellow solid. This yellow solid was recrystallized from 700 to 800 ml of methanol to obtain (9- (β-chloropropionyl) carbazole, molecular weight 257.72) as a white solid.
Next, 29.6 g of 9- (β-chloropropionyl) carbazole obtained by the above synthesis, 19.05 g of sodium iodide, 17.2 g of sodium acetate and ethanol were added to a flask equipped with a stirrer, a thermometer and a reflux condenser. 800 ml was charged and reacted for 2 hours while stirring and refluxing at room temperature. Thereafter, about half of the solvent in the reaction solution was removed under reduced pressure, 500 ml of water was added and stirred, and the mixture was separated with a separatory funnel to obtain a yellow liquid. About 800 ml of n-pentane was added to this yellow liquid and dissolved by boiling, and then the solid crystallized by cooling to -78 ° C. was filtered to obtain a white solid. This white solid was repeatedly recrystallized using n-pentane to obtain the desired white solid (9-acrylate carbazole).
[0031]
Example 1
70 g of 9-acrylate carbazole obtained in Synthesis Example 1, 30 g of bisphenol A epoxy diacrylate, and 2 g of lucillin TPO (manufactured by BASF) as a photoinitiator were mixed to prepare an ultraviolet curable resin raw material composition for an optical lens.
[0032]
Preparation of cured product sheet: UV curable resin raw material composition for optical lens obtained in Example 1 was applied to each clean and smooth glass plate using an applicator, and a metal halide lamp conveyor type ultraviolet irradiation device was used. A flat plate of a cured product was prepared by irradiating with 1000 mJ / cm 2 of ultraviolet light in a nitrogen atmosphere.
[0033]
This flat plate had a visible light transmittance of 90% and a refractive index (589.3 mm D-line) as high as 1.65. Further, this flat plate had a Tg of 100 ° C. by TMA, no yellow discoloration in the heat resistance test (200 ° C., 2 hours), and the surface hardness was pencil hardness 2H. Furthermore, this flat plate was excellent in chemical resistance such as acetone and toluene.
[0034]
Example 2
In Example 1, instead of bisphenol A epoxy diacrylate, BPEFA manufactured by Osaka Gas Chemical Co. (a compound in which R 2 is a hydrogen atom, m and n are 0 in general formula (2)) was used. A polymerizable composition for an optical element was prepared in the same manner as in Example 1, and a cured product was produced and evaluated. As a result, this flat plate had a visible light transmittance of 88%, and a refractive index (589.3 mm D-line) as high as 1.66. Further, this flat plate had a Tg of 100 ° C. by TMA, no yellow discoloration in the heat resistance test (200 ° C., 2 hours), and the surface hardness was pencil hardness 2H. Furthermore, this flat plate was excellent in chemical resistance such as acetone and toluene.
[0035]
Comparative Example 1
Photopolymerization with 50 g of urethane-modified polyester (meth) acrylate oligomer (I) of Production Example 1, 20 g of triacrylate of tris (2-hydroxyethyl) isocyanurate and 30 g of benzyl acrylate in Examples of JP-B-6-93043 As an initiator, 1 g of 1-hydroxycyclohexyl phenyl ketone was mixed to prepare an ultraviolet curable resin raw material composition for an optical lens. This ultraviolet curable resin raw material composition was applied and cured in the same manner as in Example 1 to prepare a flat plate.
[0036]
This flat plate had a visible light transmittance of 90% and a refractive index (D-line of 589.3 mm) of 1.520. The Tg by TMA was 80 ° C.
[0037]
【The invention's effect】
The optical element obtained using the polymerizable composition for an optical element of the present invention has a refractive index of 1.60 or higher, particularly 1.65 or higher. Furthermore, it can be formed in a desired shape on the surface of a substrate, particularly glass or plastic. Such an optical element is also excellent in heat resistance, surface hardness, and chemical resistance.

Claims (8)

(A)下記一般式(1)で示される化合物、及び(B)1分子中に2個以上の重合性ビニル基を有する化合物を含有することを特徴とする光学素子用重合性組成物。
Figure 0004774648
(式中、R1は、水素又はメチル基を表し、X1は、水素原子又はNO2基を表し、X2及びX3は、同一又は異なって、水素原子、ハロゲン原子、CH3、CHO、CH2OH又はC(Ph)3基(式中、Phは、フェニル基を表す)を表す。)
(A) A polymerizable composition for an optical element comprising a compound represented by the following general formula (1) and (B) a compound having two or more polymerizable vinyl groups in one molecule.
Figure 0004774648
(Wherein R 1 represents hydrogen or a methyl group, X 1 represents a hydrogen atom or a NO 2 group, and X 2 and X 3 are the same or different and represent a hydrogen atom, a halogen atom, CH 3 or CHO. CH 2 OH or a C (Ph) 3 group (wherein Ph represents a phenyl group)
さらに、(C)重合開始剤を含有する請求項1に記載の光学素子用重合性組成物。  The polymerizable composition for an optical element according to claim 1, further comprising (C) a polymerization initiator. 重合開始剤が光重合開始剤である請求項2に記載の光学素子用重合性組成物。  The polymerizable composition for an optical element according to claim 2, wherein the polymerization initiator is a photopolymerization initiator. さらに、(D)一般式(1)で示される化合物以外の化合物であって、1分子中に1個の重合性ビニル基を有する化合物を含有する請求項1又は2に記載の光学素子用重合性組成物。  Furthermore, (D) Polymer other than the compound shown by General formula (1), Comprising: The polymerization for optical elements of Claim 1 or 2 containing the compound which has one polymerizable vinyl group in 1 molecule. Sex composition. (B)1分子中に2個以上の重合性ビニル基を有する化合物が、ビスフェノールA骨格又はフルオレン骨格を有する化合物である請求項1〜4のいずれか1項に記載の光学素子用重合性組成物。  (B) The polymerizable composition for an optical element according to any one of claims 1 to 4, wherein the compound having two or more polymerizable vinyl groups in one molecule is a compound having a bisphenol A skeleton or a fluorene skeleton. object. 請求項5に記載の光学素子用重合性組成物を硬化させてなり、屈折率が1.60以上であることを特徴とする光学素子。An optical element obtained by curing the polymerizable composition for an optical element according to claim 5 and having a refractive index of 1.60 or more. 基材の表面に所望の形状に設けられている請求項6に記載の光学素子。The optical element according to claim 6, wherein the optical element is provided in a desired shape on the surface of the substrate. 基材がガラス又はプラスチックである請求項7に記載の光学素子。The optical element according to claim 7, wherein the substrate is glass or plastic.
JP2001232290A 2001-07-31 2001-07-31 Polymerizable composition for optical element and optical element using the same Expired - Lifetime JP4774648B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001232290A JP4774648B2 (en) 2001-07-31 2001-07-31 Polymerizable composition for optical element and optical element using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001232290A JP4774648B2 (en) 2001-07-31 2001-07-31 Polymerizable composition for optical element and optical element using the same

Publications (2)

Publication Number Publication Date
JP2003040940A JP2003040940A (en) 2003-02-13
JP4774648B2 true JP4774648B2 (en) 2011-09-14

Family

ID=19064232

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001232290A Expired - Lifetime JP4774648B2 (en) 2001-07-31 2001-07-31 Polymerizable composition for optical element and optical element using the same

Country Status (1)

Country Link
JP (1) JP4774648B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006126820A (en) * 2004-09-30 2006-05-18 Dainippon Printing Co Ltd Composition for alignment layer, method of manufacturing alignment layer, and optical element
JP2007277467A (en) * 2006-04-10 2007-10-25 Sony Chemical & Information Device Corp Curable resin composition
JP4853630B2 (en) * 2006-04-10 2012-01-11 ソニーケミカル&インフォメーションデバイス株式会社 Curable resin composition
JP4767836B2 (en) * 2006-12-25 2011-09-07 オリンパス株式会社 Optical resin composition and optical element using the same
JP2009227724A (en) * 2008-03-19 2009-10-08 Olympus Corp Material composition for optics and optical element using the same
JPWO2010137501A1 (en) * 2009-05-25 2012-11-15 日本化薬株式会社 Energy ray curable resin composition for optical lens sheet and cured product thereof
WO2012053377A1 (en) * 2010-10-18 2012-04-26 株式会社ダイセル High refractive index resin composition and cured resin
JP5890323B2 (en) * 2011-01-13 2016-03-22 丸善石油化学株式会社 Resin composition for optical imprint, pattern forming method, and etching mask
WO2013047524A1 (en) * 2011-09-27 2013-04-04 丸善石油化学株式会社 Optical element material and method for producing same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5340539B2 (en) * 1973-06-27 1978-10-27
JPS52132843A (en) * 1976-04-30 1977-11-07 Fuji Photo Film Co Ltd Preparation of developing agent for electrostatic latent image
US5170192A (en) * 1990-11-29 1992-12-08 Pilkington Visioncare, Inc. Oxygen permeable bifocal contact lenses and their manufacture
JP4122661B2 (en) * 1999-10-22 2008-07-23 Jsr株式会社 Photocurable resin composition and plastic sheet

Also Published As

Publication number Publication date
JP2003040940A (en) 2003-02-13

Similar Documents

Publication Publication Date Title
KR101779531B1 (en) Curable resin composition, cured article thereof, and optical material
JP6546986B2 (en) Curable composition, cured product, optical member, lens and compound
JP5576622B2 (en) Photosensitive resin composition
JP5898551B2 (en) Semi-cured product, cured product and production method thereof, optical component, cured resin composition
JP3540115B2 (en) Resin composition and member obtained by curing the same with active energy rays
JP4774648B2 (en) Polymerizable composition for optical element and optical element using the same
JP2001302744A (en) Actinic-ray curing composition
JP4530565B2 (en) Monoacrylate fluorene compound, composition containing the compound, and cured product thereof
JP2013076097A (en) Curable resin composition and optical member
WO2015022965A1 (en) Polymerizable composition containing reactive silicone compound
JP5607898B2 (en) Photosensitive resin composition
WO2004011511A1 (en) Photopolymerizable composition and use thereof
JPH05287050A (en) High refractive index optical material and its production
JP2007314758A (en) Curable resin composition and optical member
JP5502791B2 (en) Curable resin composition, cured product and optical material
WO2004104059A1 (en) Curing resin composition, optical component and optical waveguide
JP5698566B2 (en) Silicone resin composition and molded body thereof
JP2021038354A (en) Resin composition for optical material
TW201302814A (en) Soluble polyfunctional (meth) acrylic ester copolymer having alicyclic structure, curable resin composition and cured product
JP3397448B2 (en) UV-curable transmissive screen resin composition and cured product thereof
TW202039608A (en) Photocurable silicone resin composition, silicone resin molded body obtained by curing same and method for manufacturing said molded body
JP2003322706A (en) Laminated microlens array
JP3901821B2 (en) Low birefringence optical member, resin composition for molding the same, and method for producing optical member
JP4164389B2 (en) Photopolymerizable composition and use thereof
JP2000281627A (en) Acrylic acid ester derivative and its use

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080411

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100809

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110308

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110509

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110531

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110613

R150 Certificate of patent or registration of utility model

Ref document number: 4774648

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140708

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term