WO2024186195A1 - Autonomous closed-circuit system for producing hydroelectric power - Google Patents

Autonomous closed-circuit system for producing hydroelectric power Download PDF

Info

Publication number
WO2024186195A1
WO2024186195A1 PCT/MA2024/050007 MA2024050007W WO2024186195A1 WO 2024186195 A1 WO2024186195 A1 WO 2024186195A1 MA 2024050007 W MA2024050007 W MA 2024050007W WO 2024186195 A1 WO2024186195 A1 WO 2024186195A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
cylinder
reservoir
tower
tank
Prior art date
Application number
PCT/MA2024/050007
Other languages
French (fr)
Inventor
En Nasry HICHAM
Original Assignee
Hicham En Nasry
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hicham En Nasry filed Critical Hicham En Nasry
Publication of WO2024186195A1 publication Critical patent/WO2024186195A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B13/00Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates
    • F03B13/06Stations or aggregates of water-storage type, e.g. comprising a turbine and a pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B17/00Other machines or engines
    • F03B17/005Installations wherein the liquid circulates in a closed loop ; Alleged perpetua mobilia of this or similar kind
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/42Storage of energy
    • F05B2260/422Storage of energy in the form of potential energy, e.g. pressurized or pumped fluid

Definitions

  • the present invention relates to the field of the production of electrical energy.
  • it relates to a system for producing electrical energy from an artificial dam in a closed circuit.
  • the solution described in patent TW201303148A1 concerns a hydraulic cycle electricity generation system, which comprises a first reservoir, a module for generating electricity by the force of water, a second reservoir and at least one water drawing assembly.
  • the water falls from the first reservoir to act on the electricity generation module in order to generate electricity, then is stored in the second reservoir.
  • the water drawing assembly draws water from the second tank to the first tank, so that water circulates between the first tank, the power generation module and the second tank, so as to achieve the purpose of reusing water for power generation.
  • the current project represents a renewable energy production station by a closed circuit hydraulic system comprising a lower reservoir, an upper reservoir, an electricity generator and a pumping system.
  • Water from the lower tank is pumped to the upper tank via a pair of pistons that operate synchronously by two solenoid valves to alternately open one of the two pistons to pump water back to the upper tank while the other fills.
  • Each of the two pistons is actuated by two hydraulic cylinders that cooperate with the piston by a lever system to multiply the pressure force.
  • the entire system is controlled by an electrical circuit to ensure coordination between the various solenoid valves and the pressure cylinders.
  • FIG. 1 shows a schematic diagram of the hydroelectric power plant system.
  • FIG. 1 shows the system for pumping water to the top of the water tower.
  • the closed circuit hydroelectricity production system of the present invention comprises a lower reservoir (12), an upper reservoir (11) initially filled with water to enable the system to generate the electricity necessary to operate the action system of the jacks of a system for pumping water from the lower basin to the upper basin at the first start-up of the system.
  • Said system also comprises a hydroelectric generator (14) connected to a turbine (13).
  • the lower tank (12) comprises a system for pumping water to the upper tank (11) consisting of two cylinders (6) submerged in said lower tank (12), each cylinder cooperates with a system of solenoid valves (8) to synchronize its action with the other cylinder alternately by means of a hydraulic cylinder (4) for each piston (5) combined with a lever mechanism (1,2,3) to amplify the pressure force necessary to actuate said cylinders (6),
  • the jacks (4) used to operate the cylinders (6) are powered by part of the electricity produced by the generator (14).
  • the reservoir (11) is initially filled with water by an external energy source to allow the system to start up.
  • the supply of this initial energy is necessary for the operation of the system in a closed circuit.
  • each cylinder (6) comprises two openings, an opening (16) located outside the basin (12) to allow air to escape, and another opening (17) located in the water tank (12) for rapid filling by gravity of the inside of the cylinder (6). Thanks to this mechanism, energy savings are achieved, ensuring the autonomy of the system. The synchronization of the operation of the openings (16) and (17) is ensured by solenoid valves (7).
  • the power plant as described in FIG. 1, comprises a lower water tank (12), an upper water tank (11), means (9) for conveying water from (12) to (11), and means
  • the lower tank (12) comprises a system for pumping water to the upper tank (11), said pumping system consists of two cylinders (6) submerged in said lower tank, each cylinder cooperates with a pair of solenoid valves (16, 17) to synchronize its action with the other cylinder alternately by means of a hydraulic cylinder (4) for each piston (5).
  • the action of said cylinders (5) is combined with a lever mechanism (1,2,3) to amplify the pressure force to actuate said cylinders (6).
  • the circulation of water from the lower tank (12) to the upper tank (11) is done by a pair of two cylinder pumps (6) which operate synchronously by means of solenoid valves (8).
  • the water circuit is controlled by the solenoid valve assembly (8) to synchronize the admission of water by one of the two cylinders and the discharge by the other.
  • An advantage of the system is that the filling of the cylinders (6) is done by gravity via the openings (16) and (17).
  • the opening (16) located outside the basin allows air to escape from inside the cylinder (6) when water enters through the opening (17) located in the water tank (12) to fill the cylinder (6) in action.
  • the two cylinders (6) are actuated by a pair of hydraulic cylinders (4) which cooperate with each cylinder via a lever mechanism (1,2,3) to amplify the mechanical energy. This operation will save the energy required to operate the plant and thus optimize its energy balance.
  • the cylinders are located in the water of the lower tank (12) which makes it possible to make the duration of the filling and discharge cycle of each cylinder very short in addition to the effect of having two cylinders which operate synchronously to ensure the filling of the upper tank (11) without interruption.
  • the conical geometry at the level of the tower of the upper reservoir as well as its height facilitate the flow of water. to the turbine.
  • we have built a tall tower containing a reservoir at the top 110 meters long from the base (20) to the top and in the middle (or next to) the tower is a channel (9) to draw water from the lower water basin (or reservoir).
  • the lower reservoir (12) is located at a depth of 6 meters below the base, and there are two passage channels in the middle of two large pistons to pump the water and push it to the top of the tower, two jacks (6) made up of the two large pistons with a diameter of 3 meters, and it contains two openings, one to suck water into the piston and the other to remove air from the piston, and each opening has an automatic valve.
  • the two pistons are connected on the side of the tower to a channel of one meter in diameter and 118 meters in length.
  • the channel (118 m) is above the tower by one meter, and extends to the bottom of the base of the tower by 7 meters.
  • the two small pistons are connected to a hydraulic system that allows rotation between them.
  • the electric generator is driven in rotation by a wheel (turbine) in the form of a Pelton wheel with the action of water flowing from a channel (18) at the foot of the water tower.
  • the electric generator produces high electrical energy, a small part of which is used to operate the hydraulic system of the two small pistons which operate the two jacks.
  • the height of the water tower is 110 meters from the base of the tower to the highest point of the upper reservoir.
  • the length of the channel accompanying the tower is 118 meters, starting from the bottom of the water basin to the top of the upper water tank 1 meter.
  • the volumetric capacity of the large cylinder is 21.19 cubic meters.
  • the jack (4) is able to lift a quantity of water of 113 tons to the top of the tower.
  • the height of the tower is 110 meters
  • the net capacity of the plant is 2,687 MW.
  • the total consumption to operate the system is 550kw.
  • the consumption is only 140kw.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)

Abstract

The present invention relates to a system for renewable energy generated by hydraulic propulsion via a closed circuit. The system comprises: an upper water tank which is integrated into a high tower for producing a high pressure, which helps to force water from the bottom of the tower in order to rotate a hydroelectric generator which is integrated into a hydraulic turbine; a lower tank; and a water pumping unit made up of two actuators which can be submerged in the basin and which take turns to pump the water from the basin to the top of the tower according to Pascal's principle and the law of first class levers, which results in the generation of a high pressure in order to operate the turbine of the electric generator connected to a channel at the bottom of the water tower, and thus the potential energy is preserved.

Description

Système autonome de production de l’énergie hydroélectrique en circuit fermé. Autonomous closed-circuit hydroelectric energy production system.
Domaine technique Technical field
[0001] La présente invention concerne le domaine de la production de l’énergie électrique. En particulier, elle concerne un système de production de l’énergie électrique à partir d’un barrage artificiel en circuit fermé. [0001] The present invention relates to the field of the production of electrical energy. In particular, it relates to a system for producing electrical energy from an artificial dam in a closed circuit.
Technique antérieure Prior art
[0002] La production de l’hydroélectricité est une technique très connue à travers l’édification de barrages utilisant les cours d’eau pour transformer l’énergie mécanique de l’eau en électricité via des systèmes de turbines. [0002] The production of hydroelectricity is a well-known technique through the construction of dams using watercourses to transform the mechanical energy of water into electricity via turbine systems.
[0003] La contrainte de ce type de système est la dépendance courante d’eau. Pour faire face à cette contrainte, plusieurs solutions ont vu le jour comme les barrages artificiels. A titre d’exemple, la solution décrite dans le brevet TW201303148A1 concerne un système de génération d'électricité à cycle hydraulique, qui comprend un premier réservoir, un module de génération d'électricité par la force de l'eau, un second réservoir et au moins un ensemble de puisage d'eau. L'eau tombe du premier réservoir pour agir sur le module de génération d'électricité afin de générer de l'électricité, puis est stockée dans le second réservoir. L'ensemble de puisage d'eau aspire l'eau du second réservoir vers le premier réservoir, de sorte que l'eau circule entre le premier réservoir, le module de production d'électricité et le second réservoir, de manière à atteindre l'objectif de réutilisation de l'eau pour la production d'électricité. [0003] The constraint of this type of system is the current dependence on water. To deal with this constraint, several solutions have emerged such as artificial dams. For example, the solution described in patent TW201303148A1 concerns a hydraulic cycle electricity generation system, which comprises a first reservoir, a module for generating electricity by the force of water, a second reservoir and at least one water drawing assembly. The water falls from the first reservoir to act on the electricity generation module in order to generate electricity, then is stored in the second reservoir. The water drawing assembly draws water from the second tank to the first tank, so that water circulates between the first tank, the power generation module and the second tank, so as to achieve the purpose of reusing water for power generation.
[0004] Toutefois cette solution présente un inconvénient en termes de rendement car la pompe (local de stockage) est située entre la cuve supérieure et la cuve inférieure. Cette position nécessite de l'énergie et du temps pour retirer l'eau du réservoir inférieur et le pomper vers le réservoir supérieur. [0004] However, this solution has a disadvantage in terms of efficiency because the pump (storage room) is located between the upper tank and the lower tank. This position requires energy and time to remove water from the lower tank and pump it to the upper tank.
[0005] Aussi le processus consistant à puiser de l'eau dans le local de stockage puis à la refouler vers le réservoir supérieur fait une différence dans le temps, et en pratique cela réduit le niveau du réservoir supérieur. [0005] Also the process of drawing water from the storage room and then pumping it back to the upper tank makes a difference in time, and in practice this reduces the level of the upper tank.
[0006] D’où l’intérêt de la présente invention qui propose un dispositif de production de l’électricité hydraulique en circuit fermé avec un rendement meilleur. [0006] Hence the interest of the present invention which proposes a device for producing hydraulic electricity in a closed circuit with better efficiency.
Exposé de l'invention Disclosure of the invention
[0007] Le projet actuel représente une station de production d'énergie renouvelable par un système hydraulique en circuit fermé comprenant un réservoir inférieur, un réservoir supérieur, une génératrice d’électricité et système de pompage. [0008] L’eau du réservoir inférieur est pompée vers le réservoir supérieur via un couple de pistons qui fonctionnent de manière synchrone grâce à deux électrovannes pour ouvrir de manière alternée un des deux pistons pour refouler l’eau vers le réservoir supérieur tandis que l’autre se rempli. Chacun des deux pistons est actionné grâce à deux vérins hydrauliques qui coopère avec le piston par un système de levier pour multiplier la force de pression. [0007] The current project represents a renewable energy production station by a closed circuit hydraulic system comprising a lower reservoir, an upper reservoir, an electricity generator and a pumping system. [0008] Water from the lower tank is pumped to the upper tank via a pair of pistons that operate synchronously by two solenoid valves to alternately open one of the two pistons to pump water back to the upper tank while the other fills. Each of the two pistons is actuated by two hydraulic cylinders that cooperate with the piston by a lever system to multiply the pressure force.
[0009] L’ensemble du système est commandé par un circuit électrique pour assurer la coordination entre les différentes électrovannes et les vérins de pression. [0009] The entire system is controlled by an electrical circuit to ensure coordination between the various solenoid valves and the pressure cylinders.
Description sommaire des dessins Brief description of the drawings
[0010] D’autres caractéristiques et avantages de l'invention apparaîtront mieux dans la description détaillée qui suit et se réfère aux dessins annexés, donnés uniquement à titre d'exemple, et dans lesquels : [0010] Other features and advantages of the invention will appear better in the detailed description which follows and refers to the attached drawings, given solely by way of example, and in which:
- la figure 1 représente schéma de principe du système de centrale hydroélectrique. - Figure 1 shows a schematic diagram of the hydroelectric power plant system.
- la figure 2 représente le système de pompage de l’eau vers le haut du château d’eau. - Figure 2 shows the system for pumping water to the top of the water tower.
- la figure 3 est le détail du circuit de pompage de l’eau vers le réservoir supérieur. Description de l’invention : - Figure 3 is the detail of the water pumping circuit to the upper tank. Description of the invention:
Le système de production de l’hydroélectricité en circuit fermé de la présente invention comprend un réservoir inférieur (12), un réservoir supérieur (11) Initialement rempli d’eau pour permettre au système de générer l’électricité nécessaire pour fonctionner le système d’action des vérins d’un système de pompage de l’eau du bassin inférieur vers le bassin supérieur au premier démarrage du système. Ledit système comprend aussi une génératrice hydroélectrique (14) reliée à une turbine (13). The closed circuit hydroelectricity production system of the present invention comprises a lower reservoir (12), an upper reservoir (11) initially filled with water to enable the system to generate the electricity necessary to operate the action system of the jacks of a system for pumping water from the lower basin to the upper basin at the first start-up of the system. Said system also comprises a hydroelectric generator (14) connected to a turbine (13).
Le réservoir inférieur (12) comprend un système de pompage de l’eau vers le réservoir supérieur (11) constitué de deux vérins (6) submergé dans ledit réservoir inférieur (12), chaque vérin coopère avec un système d’électrovannes (8) pour synchroniser son action avec l’autre vérin de manière alternative grâce à un vérins hydraulique (4) pour chaque piston (5) combiné avec un mécanisme de levier (1,2,3) pour amplifier l’effort de pression nécessaire pour actionner lesdits vérins (6), The lower tank (12) comprises a system for pumping water to the upper tank (11) consisting of two cylinders (6) submerged in said lower tank (12), each cylinder cooperates with a system of solenoid valves (8) to synchronize its action with the other cylinder alternately by means of a hydraulic cylinder (4) for each piston (5) combined with a lever mechanism (1,2,3) to amplify the pressure force necessary to actuate said cylinders (6),
Les vérins (4) servant pour actionner les vérins (6) sont alimentés par une partie de l’électricité produite par la génératrice (14). The jacks (4) used to operate the cylinders (6) are powered by part of the electricity produced by the generator (14).
Selon un aspect du système de production de l’hydroélectricité le réservoir (11) est rempli d’eau au départ par une source d’énergie externe pour permettre le démarrage du système. L’apport de cette énergie initiale est nécessaire pour le fonctionnement du système en circuit fermé. According to one aspect of the hydroelectricity production system, the reservoir (11) is initially filled with water by an external energy source to allow the system to start up. The supply of this initial energy is necessary for the operation of the system in a closed circuit.
Selon un autre aspect, chaque vérin (6) comprend deux ouvertures, une ouverture (16) située à l’extérieur du bassin (12) pour laisser échapper l’air, et une autre ouverture (17) situé dans l’eau du réservoir (12) pour le remplissage rapide et par gravité de l’intérieur du vérin (6). Grâce à ce mécanisme, une économie d’énergie est réalisée permettant d’assurer l’autonomie du système. La synchronisation du fonctionnement des ouvertures (16) et (17) est assurée par des électrovannes (7). According to another aspect, each cylinder (6) comprises two openings, an opening (16) located outside the basin (12) to allow air to escape, and another opening (17) located in the water tank (12) for rapid filling by gravity of the inside of the cylinder (6). Thanks to this mechanism, energy savings are achieved, ensuring the autonomy of the system. The synchronization of the operation of the openings (16) and (17) is ensured by solenoid valves (7).
La combinaison du mécanisme d’action des vérins et celui de remplissage permet un fonctionnement optimal du système et une économie d’énergie pouvant atteindre 95% (voir exemple de réalisation suivant) The combination of the action mechanism of the cylinders and the filling mechanism allows optimal operation of the system and energy savings of up to 95% (see following example of implementation)
Manière(s) de réaliser l'invention Way(s) of carrying out the invention
[0011] La centrale électrique telle que décrite par la figure 1, comprend un réservoir d’eau inférieur (12), un réservoir supérieur d’eau (11), des moyens (9) d’acheminement de l’eau de (12) vers (11) , et des moyens[0011] The power plant as described in FIG. 1, comprises a lower water tank (12), an upper water tank (11), means (9) for conveying water from (12) to (11), and means
(18) d’acheminement de l’eau de (11) vers (12) à travers l’ouverture(18) for conveying water from (11) to (12) through the opening
(19). L’eau circulant à travers (18) coopère avec une turbine (13) pour faire fonctionner une génératrice d’électricité (14). (19). Water flowing through (18) cooperates with a turbine (13) to operate an electricity generator (14).
[0012] Le réservoir inférieur (12) comprend un système de pompage de l’eau vers le réservoir supérieur (11), ledit système de pompage est constitué de deux vérins (6) submergés dans ledit réservoir inférieur, chaque vérin coopère avec un couple d’électrovannes (16, 17) pour synchroniser son action avec l’autre vérin de manière alternative grâce à un vérins hydraulique (4) pour chaque piston (5). L’action desdits vérins (5) est combinée avec un mécanisme de levier (1,2,3) pour amplifier l’effort de pression pour actionner lesdits vérins (6). [0013] La circulation d’eau du réservoir inférieur (12) vers le réservoir supérieur (11) se fait grâce à un couple de deux pompes à vérins (6) qui fonctionnent de manière synchrone grâce à des électrovannes (8) . [0012] The lower tank (12) comprises a system for pumping water to the upper tank (11), said pumping system consists of two cylinders (6) submerged in said lower tank, each cylinder cooperates with a pair of solenoid valves (16, 17) to synchronize its action with the other cylinder alternately by means of a hydraulic cylinder (4) for each piston (5). The action of said cylinders (5) is combined with a lever mechanism (1,2,3) to amplify the pressure force to actuate said cylinders (6). [0013] The circulation of water from the lower tank (12) to the upper tank (11) is done by a pair of two cylinder pumps (6) which operate synchronously by means of solenoid valves (8).
[0014] Le circuit d’eau est commandé par l’ensemble d’électrovannes (8) pour synchroniser l’admission de l’eau par un des deux vérins et le refoulement par l’autre. Un avantage du système est que le remplissage des vérins (6) se fait par gravité via les ouvertures (16) et (17). L’ouverture (16) situé à l’extérieur du bassin permet à l’air de s’échapper de l’intérieur du vérin (6) lorsque l’eau pénètre par l’ouverture (17) située dans l’eau du réservoir (12) pour remplir le vérin (6) en action. [0014] The water circuit is controlled by the solenoid valve assembly (8) to synchronize the admission of water by one of the two cylinders and the discharge by the other. An advantage of the system is that the filling of the cylinders (6) is done by gravity via the openings (16) and (17). The opening (16) located outside the basin allows air to escape from inside the cylinder (6) when water enters through the opening (17) located in the water tank (12) to fill the cylinder (6) in action.
[0015] Les deux vérins (6) sont actionnés grâce à un couple de vérins hydrauliques (4) qui coopère avec chaque vérin via un mécanisme de levier ( 1,2,3) pour amplifier l’énergie mécanique. Cette opération va permettre d’économiser l’énergie nécessaire pour faire fonctionner la centrale et ainsi optimiser son bilan énergétique. [0015] The two cylinders (6) are actuated by a pair of hydraulic cylinders (4) which cooperate with each cylinder via a lever mechanism (1,2,3) to amplify the mechanical energy. This operation will save the energy required to operate the plant and thus optimize its energy balance.
[0016] Selon un aspect de l’invention, les vérins sont situés dans l’eau du réservoir inférieur (12) ce qui permet de rendre la durée du cycle de remplissage et refoulement de chaque vérin très court en plus de l’effet d’avoir deux vérins qui fonctionnent de manière synchrone pour assurer le remplissage du réservoir supérieur (11) sans interruption. [0016] According to one aspect of the invention, the cylinders are located in the water of the lower tank (12) which makes it possible to make the duration of the filling and discharge cycle of each cylinder very short in addition to the effect of having two cylinders which operate synchronously to ensure the filling of the upper tank (11) without interruption.
[0017] Selon un autre aspect, la géométrie conique au niveau de la tour du réservoir supérieur ainsi que sa hauteur facilitent l'écoulement de l'eau vers la turbine. A titre d’exemple, nous avons construit une haute tour contenant un réservoir au sommet, de 110 mètres de long à partir de la base (20) jusqu’au sommet et au milieu (ou à côté) de la tour se trouve un canal (9) pour puiser l'eau du bassin d'eau (ou réservoir) inférieur. Le réservoir inférieur (12) est situé à une profondeur de 6 mètres sous la base, et il y a deux canaux de passage au milieu de deux gros pistons pour pomper l'eau et la pousser vers le haut de la tour, deux vérin(6) constitué des deux gros pistons à un diamètre de 3 mètres, et il contient deux ouvertures, une pour aspirer l'eau dans le piston et l'autre Pour retirer l’air du piston, et chacun ouverture a une vanne automatique. [0017] According to another aspect, the conical geometry at the level of the tower of the upper reservoir as well as its height facilitate the flow of water. to the turbine. As an example, we have built a tall tower containing a reservoir at the top, 110 meters long from the base (20) to the top and in the middle (or next to) the tower is a channel (9) to draw water from the lower water basin (or reservoir). The lower reservoir (12) is located at a depth of 6 meters below the base, and there are two passage channels in the middle of two large pistons to pump the water and push it to the top of the tower, two jacks (6) made up of the two large pistons with a diameter of 3 meters, and it contains two openings, one to suck water into the piston and the other to remove air from the piston, and each opening has an automatic valve.
[0018] Les deux pistons sont reliés du côté de la tour à un canal de un mètre de diamètre et 118 mètres de longueur. D'autre part, avec deux petits pistons fonctionnant avec un système hydraulique. Le canal (118 m) est au-dessus de la tour d'un mètre, et se prolonge jusqu'au bas de la base de la tour de 7 mètres. Les deux petits pistons sont reliés à un système hydraulique qui permet la rotation entre eux. [0018] The two pistons are connected on the side of the tower to a channel of one meter in diameter and 118 meters in length. On the other hand, with two small pistons operating with a hydraulic system. The channel (118 m) is above the tower by one meter, and extends to the bottom of the base of the tower by 7 meters. The two small pistons are connected to a hydraulic system that allows rotation between them.
[0019] Comme la poussée et la traction sont inversées, ce qui maintient la stabilité à la hausse de l'eau du bassin inférieur, et son système dépend d'un moteur électrique qui est alimenté par le générateur hydroélectrique directement relié à un canal (18) se trouvant au fond du château d'eau. [0019] As the push and pull are reversed, which maintains the upward stability of the water in the lower basin, and its system depends on an electric motor which is powered by the hydroelectric generator directly connected to a channel (18) located at the bottom of the water tower.
[0020] Le générateur électrique est entraîné en rotation par une roue (turbine) en forme de roue de Pelton avec une action de l’eau s'écoulant d'un canal (18) au pied du château d'eau. Le générateur électrique produit une énergie électrique élevée, une petite partie de celle-ci est utilisée pour faire fonctionner le système hydraulique des deux petits pistons qui actionnent les deux vérins. [0020] The electric generator is driven in rotation by a wheel (turbine) in the form of a Pelton wheel with the action of water flowing from a channel (18) at the foot of the water tower. The electric generator produces high electrical energy, a small part of which is used to operate the hydraulic system of the two small pistons which operate the two jacks.
[0021] Selon un modèle de réalisation, la hauteur du château d'eau est de 110 mètres de la base de la tour au point le plus haut réservoir supérieur.[0021] According to one embodiment, the height of the water tower is 110 meters from the base of the tower to the highest point of the upper reservoir.
La longueur du canal accompagnant la tour est de 118 mètres, en partant du fond du bassin d'eau Au sommet du réservoir d'eau supérieur de 1 mètre. The length of the channel accompanying the tower is 118 meters, starting from the bottom of the water basin to the top of the upper water tank 1 meter.
- Capacité volumétrique de ce canal une fois rempli est de 92,63 mètres cubes. - Volumetric capacity of this channel once filled is 92.63 cubic meters.
- Le poids de cette masse d'eau est de 92,63 tonnes. - The weight of this mass of water is 92.63 tons.
La capacité volumétrique du gros cylindre est de 21,19 mètres cubes.The volumetric capacity of the large cylinder is 21.19 cubic meters.
- La capacité volumétrique totale du canal et du gros cylindre : 113,82 mètres cubes. - The total volumetric capacity of the channel and the large cylinder: 113.82 cubic meters.
Il faut donc remonter cette quantité d'eau du bassin (12) vers le réservoir (ll)pour convertir son énergie potentielle en énergie électrique; selon le principe de Pascal:
Figure imgf000010_0001
It is therefore necessary to pump this quantity of water from the basin (12) to the reservoir (ll) to convert its potential energy into electrical energy; according to Pascal's principle:
Figure imgf000010_0001
Donc une petite force affecte une grande force, et donc le vérin (4) est capable de soulever une quantité d'eau de 113 tonnes jusqu'oa summet de la tour. So a small force affects a large force, and so the jack (4) is able to lift a quantity of water of 113 tons to the top of the tower.
Nous le prouvons comme suit: Nous disposons de la capacité volumétrique du canal et du chambre de stockage: v = 7rr2h We prove this as follows: We have the volumetric capacity of the channel and the storage chamber: v = 7rr 2 h
= ( 3.14* 0.52*118) + (3.14*1.52*3) = (3.14*0.5 2 *118) + (3.14*1.5 2 *3)
= (92.63m3+ 21.19m3) = 113.82m3 = 113820L= (92.63m 3 + 21.19m 3 ) = 113.82m 3 = 113820L
= 113820 KG = 113820 KG
On calcule la force due au poids: F= m x g = 113820kg x 9.81 We calculate the force due to the weight: F = m x g = 113820kg x 9.81
= 1116574.2N = 1116574.2N
Caractéristiques du vérin hydraulique : Features of the hydraulic cylinder:
F = P x A F = P x A
F= 1116574.2 N F= 1116574.2 N
P= 25000000 N
Figure imgf000011_0001
P= 25000000 N
Figure imgf000011_0001
La section du vérin hydraulique est: A= - = - = 0.044 m The section of the hydraulic cylinder is: A= - = - = 0.044 m
P 25000000Pa P 25000000Pa
I4 x A I4 x 0.044I4 x A I4 x 0.044
Donc le diamètre du vérin hydraulique: D= - = - =
Figure imgf000011_0002
So the diameter of the hydraulic cylinder: D= - = - =
Figure imgf000011_0002
O.236m O.236m
D= 236mm D= 236mm
Caractéristiques de la pompe du système hydraulique : Hydraulic system pump characteristics:
Q= A x V et V = 0,5 m/s Q = A x V and V = 0.5 m/s
Q= 0.044m2 x 0.5 m/s Q= 0.044m 2 x 0.5 m/ s
Q= 0.022m3/s Q= 0.022m 3 / s
Caractéristiques du moteur électrique pour faire fonctionner le système : Characteristics of the electric motor to operate the system:
P.E = P x Q = 25000000Pa x 0.022 m3/s = 550 KW Calcul de la capacité électrique de cette station :
Figure imgf000012_0001
PE = P x Q = 25000000Pa x 0.022 m 3 / s = 550 KW Calculation of the electrical capacity of this station:
Figure imgf000012_0001
- Nous avons un gros cylindre d'une longueur de 3 mètres et d'une capacité de 3 et d’un volume de 21.19 mètre cube. - We have a large cylinder with a length of 3 meters and a capacity of 3 and a volume of 21.19 cubic meters.
La vitesse du petit piston V = 0,5 m/s. The speed of the small piston V = 0.5 m/s.
Alors : 3/0.5= 6 et 21.19/6= 3.53 m3/s So: 3/0.5= 6 and 21.19/6= 3.53 m 3 / s
La hauteur de la tour est de 110 mètres The height of the tower is 110 meters
3,53 m3/s *110m* (9.81m/s2*1000kg/m3*0.85) = 3237, 83kw = 3,237MW 3237-550= 2687KW 3.53 m 3 / s *110m* (9.81m/s 2 *1000kg/m 3 *0.85) = 3237, 83kw = 3.237MW 3237-550= 2687KW
Soit la capacité nette de la centrale 2,687MW The net capacity of the plant is 2,687 MW.
[0022] En plus de ce qui a précédé, la caractéristique qui ne se trouve dans aucune invention similaire antérieure est la loi des leviers de 1er degré, qui augmente plusieurs fois la force de poussée des pistons. [0022] In addition to the above, the feature which is not found in any previous similar invention is the law of 1st degree levers, which increases several times the thrust force of the pistons.
Sans utiliser cette fonction, la consommation totale pour faire fonctionner le système est 550kw. Avec l'ajout de la nouvelle technologie, la consommation n'est que de 140 kw. Without using this function, the total consumption to operate the system is 550kw. With the addition of the new technology, the consumption is only 140kw.
[0023] Cette caractéristique rendra la production efficace en ce qui concerne l'électricité consommée, au fur et à mesure qu'elle est consommée[0023] This feature will make production efficient with respect to electricity consumed, as it is consumed.
[0024] Le système n'est que de 5 % et l'efficacité de ce système peut atteindre 95 %), grâce à la technologie [0024] The system is only 5% and the efficiency of this system can reach 95%), thanks to the technology
Innovant, (3237-140) / 3237 = 95%. Innovative, (3237-140) / 3237 = 95%.

Claims

Revendications Claims
1. Système de production de l’hydroélectricité en circuit fermé comprenant un réservoir inférieur (12), un réservoir supérieur (11) initialement rempli d’eau, un système de pompage (6) et une génératrice hydroélectrique (14), caractérisé en ce que : 1. Closed circuit hydroelectricity production system comprising a lower reservoir (12), an upper reservoir (11) initially filled with water, a pumping system (6) and a hydroelectric generator (14), characterized in that:
- le réservoir inférieur (12) comprend un système de pompage de l’eau vers le réservoir supérieur (11) constitué de deux vérins (6) submergé dans ledit réservoir inférieur (12), chaque vérin coopère avec un système d’électrovannes (8) pour synchroniser son action avec l’autre vérin de manière alternative grâce à un vérins hydraulique (4) pour chaque piston (5) combiné avec un mécanisme de levier (1,2,3) pour amplifier l’effort de pression nécessaire pour actionner lesdits vérins (6), - the lower tank (12) comprises a system for pumping water to the upper tank (11) consisting of two cylinders (6) submerged in said lower tank (12), each cylinder cooperates with a system of solenoid valves (8) to synchronize its action with the other cylinder alternately by means of a hydraulic cylinder (4) for each piston (5) combined with a lever mechanism (1,2,3) to amplify the pressure force necessary to actuate said cylinders (6),
- les vérins (4) servant pour actionner les vérins (6) sont alimentés par une partie de l’électricité produite par la génératrice (14). - the jacks (4) used to operate the jacks (6) are powered by part of the electricity produced by the generator (14).
2. Système de production de l’hydroélectricité selon la revendication 1, caractérisé en ce que le réservoir (11) est rempli d’eau par une source d’énergie externe pour permettre le démarrage du système. 2. Hydroelectricity production system according to claim 1, characterized in that the reservoir (11) is filled with water by an external energy source to allow the system to start.
3. Système de production de l’hydroélectricité selon la revendication 2, caractérisé en ce que chaque vérin (6) comprend deux ouvertures, une ouverture (16) située à l’extérieur du bassin (12) pour laisser échapper l’air, et une autre ouverture (17) situé dans l’eau du réservoir (12) pour le remplissage rapide de l’intérieur du vérin (6). 3. Hydroelectricity production system according to claim 2, characterized in that each cylinder (6) comprises two openings, an opening (16) located outside the basin (12) to let the air escape, and another opening (17) located in the water of the reservoir (12) for the rapid filling of the interior of the cylinder (6).
4. Système de production de l’hydroélectricité selon la revendication 3, caractérisé en ce que les ouvertures (16) et (17) sont commandées par des électrovannes (7). 4. Hydroelectricity production system according to claim 3, characterized in that the openings (16) and (17) are controlled by solenoid valves (7).
5. Système de production de l’hydroélectricité selon les revendications 1 à 4, caractérisé en ce que le rendement énergétique de l’installation hydroélectrique avoisine 95%. 5. Hydroelectricity production system according to claims 1 to 4, characterized in that the energy efficiency of the hydroelectric installation is around 95%.
PCT/MA2024/050007 2023-03-06 2024-03-05 Autonomous closed-circuit system for producing hydroelectric power WO2024186195A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
MA59657 2023-03-06
MA59657 2023-03-06

Publications (1)

Publication Number Publication Date
WO2024186195A1 true WO2024186195A1 (en) 2024-09-12

Family

ID=90719295

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/MA2024/050007 WO2024186195A1 (en) 2023-03-06 2024-03-05 Autonomous closed-circuit system for producing hydroelectric power

Country Status (1)

Country Link
WO (1) WO2024186195A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1481134A (en) * 1922-06-26 1924-01-15 James G Hampton Hydraulic pump
TW201303148A (en) 2011-07-08 2013-01-16 Chao-Tien Chen Water cycling electricity generation system
EP2687722A1 (en) * 2012-07-18 2014-01-22 Neda Al-Anezi A dynamic fluid pump
EP3276159A1 (en) * 2016-07-29 2018-01-31 Cariou, Alain Installation for generating electricity

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1481134A (en) * 1922-06-26 1924-01-15 James G Hampton Hydraulic pump
TW201303148A (en) 2011-07-08 2013-01-16 Chao-Tien Chen Water cycling electricity generation system
EP2687722A1 (en) * 2012-07-18 2014-01-22 Neda Al-Anezi A dynamic fluid pump
EP3276159A1 (en) * 2016-07-29 2018-01-31 Cariou, Alain Installation for generating electricity

Similar Documents

Publication Publication Date Title
EP2140135B1 (en) Device and method for collecting the kinetic energy of a naturally moving fluid
EP3303825B1 (en) Device and method for converting and storing electric energy in the form of compressed air
EP2935807B1 (en) Concentrating thermodynamic solar or conventional thermal power plant
EP3276159B1 (en) Installation for generating electricity
FR3007804A1 (en) HYBRID DEVICE FOR GENERATING ELECTRIC ENERGY
WO2024186195A1 (en) Autonomous closed-circuit system for producing hydroelectric power
EP2392817A1 (en) System for generating electric energy making use of water currents
FR2894256A1 (en) Stand-alone portable installation for the production of hydrogen utilizing a renewable natural energy source
CA3210779A1 (en) Pelton hydraulic turbine and installation
FR2983246A1 (en) Installation for storing energy in form of e.g. electric power energy, has gas turbine with simple cycle associated with electrical energy generator and supplied with electrical energy by combustion air heated from heat exchanger
EP4001634B1 (en) Liquid column generator
WO2016166476A1 (en) Super graal power production system
FR3119404A1 (en) Hydrogen storage and release process in an offshore gravity structure and associated gravity structure
WO2008114074A1 (en) Network of hydroelectric plants supplied from water tables by renewable energies for storing same
FR2462585A1 (en) Combined pump and turbine electrical generator - has closed loop of three vertically spaced reservoirs and vacuum pumps driven by pressurised water in upper reservoir
WO2016189251A1 (en) Mechanical energy converter system for producing hydrogen and oxygen
FR2994226A1 (en) ENERGY PRODUCTION INSTALLATION
FR3064033A1 (en) DEVICE FOR PRODUCING HYDROELECTRIC ENERGY
WO2008114072A1 (en) Network of hydroelectric plants supplied with sea water by renewable energies for storing same
WO2019002750A1 (en) Power turbine device involving a fall of water brought about by the use of a venturi tube, and hydraulic energy production facility employing such a power turbine device
WO2018138141A1 (en) Aero-hydraulic motor system
FR2640325A2 (en) Hydraulic technique for applying hydrostatic thrust to the direct raising of water and, indirectly, of load, based on the wheel and the lever
BE374414A (en)
EP3875750A1 (en) Method and system for continuous generation of electricity from tides
WO2013098494A1 (en) Hydraulic turbine intended, in particular, for a tidal power plant