WO2024185188A1 - Firing setter - Google Patents

Firing setter Download PDF

Info

Publication number
WO2024185188A1
WO2024185188A1 PCT/JP2023/037868 JP2023037868W WO2024185188A1 WO 2024185188 A1 WO2024185188 A1 WO 2024185188A1 JP 2023037868 W JP2023037868 W JP 2023037868W WO 2024185188 A1 WO2024185188 A1 WO 2024185188A1
Authority
WO
WIPO (PCT)
Prior art keywords
coating layer
platinum
samples
coating
thickness
Prior art date
Application number
PCT/JP2023/037868
Other languages
French (fr)
Japanese (ja)
Inventor
常夫 古宮山
欣哉 各務
浩臣 松葉
Original Assignee
日本碍子株式会社
エヌジーケイ・アドレック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本碍子株式会社, エヌジーケイ・アドレック株式会社 filed Critical 日本碍子株式会社
Publication of WO2024185188A1 publication Critical patent/WO2024185188A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/88Metals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D3/00Charging; Discharging; Manipulation of charge
    • F27D3/12Travelling or movable supports or containers for the charge

Definitions

  • Patent Document 1 discloses a firing setter in which a zirconia-based coating layer is provided on the surface of a ceramic substrate.
  • CaO is used as a stabilizer for the zirconia-based coating material.
  • Patent Document 1 uses a zirconia-based coating material that contains at least the fully stabilizing amount of CaO as the coating material.
  • Patent Document 1 by using Ca-stabilized zirconia as the coating material, reaction between the coating layer and the object to be fired (electronic components) is suppressed.
  • stabilized zirconia containing a stabilizer such as CaO is used to suppress the phase transition of zirconia.
  • a stabilizer such as CaO
  • repeated use of the firing setter causes the stabilizer contained in the coating layer (stabilized zirconia) to be de-dissolved, and the properties of the coating layer change.
  • the thermal expansion coefficient of the coating layer changes, and the reactivity of the coating layer with the object to be fired changes. Therefore, when a zirconia-based coating material is used, the life of the coating layer is shortened, and as a result, the life of the firing setter is shortened.
  • the purpose of this specification is to provide a firing setter having a coating layer using a material that replaces the zirconia-based coating material.
  • the firing setter disclosed in this specification may have a platinum or platinum alloy coating layer on the surface of the ceramic substrate.
  • the firing setter disclosed in this specification can be suitably used as a setter for firing a ceramic capacitor mainly composed of, for example, barium titanate (TiBaO 3 ) and ferrite (Fe 2 O 3 ).
  • This firing setter may include a ceramic substrate and a coating layer that covers the surface of the ceramic substrate.
  • the coating layer may cover not only the surface of the ceramic substrate (the surface that contacts the object to be fired, such as a ceramic capacitor), but also the back surface and/or side surface of the ceramic substrate.
  • the material of the coating layer may be platinum or a platinum alloy. Examples of platinum alloys include Pt containing at least one of Pd, Cu, Ru, Ir, Co, W, and Rh.
  • Platinum and platinum alloys can be used as coating materials for firing setters without using stabilizers. Therefore, changes in the properties of the coating layer can be suppressed compared to coating materials that require stabilizers, such as zirconia-based coating materials.
  • a coating layer of platinum or platinum alloy has low reactivity with barium titanate and the like, and its properties are less likely to change. As a result, firing setters provided with a coating layer of platinum or platinum alloy are less likely to experience changes in the properties of the coating layer and have a long lifespan.
  • the thickness of the coating layer may be 1 ⁇ m or more and 100 ⁇ m or less. If the thickness of the coating layer is 1 ⁇ m or more, the adhesion to the ceramic substrate is improved and peeling of the coating layer is suppressed. Furthermore, if the thickness of the coating layer is 100 ⁇ m or less, the temperature applied to the object to be fired can be made uniform when the object is fired (the in-plane temperature distribution can be suppressed from becoming large).
  • the thickness of the coating layer may be 5 ⁇ m or more, 10 ⁇ m or more, 15 ⁇ m or more, 20 ⁇ m or more, 25 ⁇ m or more, or 50 ⁇ m or more.
  • the thickness of the coating layer may be 50 ⁇ m or less, 25 ⁇ m or less, 20 ⁇ m or less, 15 ⁇ m or less, 10 ⁇ m or less, or 5 ⁇ m or less.
  • the surface of the coating layer may be flat or may have irregularities. If the surface of the coating layer is uneven, the baked object will not slide easily on the setter surface, and gas generated during de-bake will be more likely to escape from the coating layer.
  • the particle diameter of the material (platinum or platinum alloy) constituting the coating layer may be 0.3 ⁇ m or more and 60 ⁇ m or less. If the particle diameter of the material constituting the coating layer is 0.3 ⁇ m or more, the strength of the coating layer can be maintained high. Furthermore, if the particle diameter of the material constituting the coating layer is 0.3 ⁇ m or more, aggregation of the material during application is suppressed, and a high-quality coating layer can be obtained. If the particle diameter of the material constituting the coating layer is 60 ⁇ m or less, the adhesion of the coating layer is improved and peeling of the coating layer can be suppressed.
  • Examples of materials for the ceramic substrate include oxides such as alumina (Al 2 O 3 ), mullite (Al 2 O 3 -SiO 2 ), alumina-mullite, cordierite (MgO-Al 2 O 3 -SiO 2 ), etc.
  • Examples of non-oxide materials include sintered SiC (SSC), silicon-impregnated SiC (SiSiC), recrystallized SiC (Re-SiC), silicon nitride (Si 3 N 4 ), and SIALON (ceramics containing silicon, aluminum, oxygen, and nitrogen).
  • an intermediate layer mainly made of alumina or mullite may be provided between the ceramic substrate and the coating layer.
  • SiC refers to the above-mentioned sintered SiC, silicon-impregnated SiC, and recrystallized SiC.
  • the coating layer may completely cover the surface of the ceramic substrate or the surface of the intermediate layer, or may cover the surface of the ceramic substrate or the intermediate layer so that it is partially exposed. Platinum or platinum alloy has poor wettability, so even if the surface of the ceramic substrate or the surface of the intermediate layer is partially exposed, the components of the fired object are unlikely to penetrate into the coating layer.
  • the method for forming the coating layer is not particularly limited, but may be thermal spraying, printing, spray coating, vapor deposition, plating, etc. Also, a platinum film (platinum alloy film) may be placed on the surface of the ceramic substrate or intermediate layer, and then fired to form a coating layer. When forming a thin film (approximately 20 ⁇ m or less), the thickness of the coating layer can be well controlled by using printing, vapor deposition, plating, etc.
  • Samples with different substrate thicknesses, intermediate layer thicknesses, and coating layers were created, and the characteristics of each sample were evaluated (samples 1 to 30).
  • the substrate was SiC
  • the intermediate layer was mullite
  • the coating layer was platinum or zirconia. The conditions for each sample are shown in Figure 1.
  • samples 1-9 and 21-25 did not have an intermediate layer.
  • a specified thickness of mullite powder was first applied to the surface of the SiC substrate using a spray method, and each sample was then fired in an air atmosphere at 1200-1360°C for 2-5 hours to form an intermediate layer.
  • a platinum layer was formed on the surface of the substrate or intermediate layer
  • a zirconia layer was formed on the surface of the intermediate layer.
  • the coating layer of samples 1 to 20 and 26 to 29 was formed by printing. Specifically, platinum paste was printed on the substrate or intermediate layer using a screen printer (LZ-9601NS), and then baked at 1300°C for 3 hours.
  • the coating layer of sample 21 was formed by plating. Specifically, the substrate was immersed in a platinum solution (platinum plating solution from Plating Studio), and then plating was performed using a commercially available plating device (PROMEX).
  • the coating layer of sample 22 was formed using platinum foil. Specifically, 1 ⁇ m platinum foil was placed on the substrate surface, and then baked at 1300°C for 3 hours.
  • the coating layer of sample 23 was formed by deposition. Specifically, platinum was deposited using an ion sputtering device (JEOL JFC-1500).
  • samples 24 and 30 were formed by spraying. Specifically, platinum powder was applied to a specified thickness on the substrate surface, and each sample was fired in air at 1300°C for 3 hours. Sample 25 had a coating layer formed using a thermal spraying method. Specifically, platinum powder was thermally sprayed onto the substrate surface.
  • the ratio of the thickness of the coating layer (and intermediate layer) to the thickness of the substrate was calculated for the obtained samples 1 to 30. The results are shown in Figure 1.
  • the ratio of the thickness of the coating layer to the thickness of the substrate was calculated from the following formula (1).
  • T1 represents the thickness of the coating layer
  • T2 represents the thickness of the intermediate layer
  • T3 represents the thickness of the substrate.
  • Ratio (%) (T1+T2)/T3 ⁇ 100...(1)
  • the reaction test and the peeling test were carried out for the obtained samples 1 to 30.
  • 0.8 g of BaTiO 3 aqueous solution was applied to the central part of the sample surface (coating layer surface) in a range of 30 mm x 30 mm.
  • the sample with no reaction trace on the surface of the coating layer was designated as "A”
  • the sample with a minute reaction trace (50% or less of the area where the BaTiO 3 aqueous solution was applied)
  • the sample with a clear reaction trace (more than 51% of the area where the BaTiO 3 aqueous solution was applied) was designated as "C”.
  • the results are shown in FIG. 1.
  • the ratings "A” and “B” indicate low reactivity with BaTiO3 and high reactivity resistance with the object to be fired.
  • the samples with ratings “A” and “B” indicate that the coating layer has a long life and the firing setter has a long life.
  • the rating “C” indicates that the reactivity with BaTiO3 is high and the reactivity resistance with the object to be fired is low.
  • the sample with rating “C” indicates that the coating layer has a short life and the firing setter has a short life.
  • samples 10-20 were rated "A" in peel resistance. These results confirmed that peel resistance was particularly improved by providing an intermediate layer and adjusting the thickness of the platinum coating layer to 5 ⁇ m or more. The results for samples 26-30 also confirmed that simply providing an intermediate layer and adjusting the thickness of the coating layer to 5 ⁇ m or more did not improve peel resistance, and that it was important that the material of the coating layer was platinum.
  • samples without an intermediate layer for samples without an intermediate layer (samples 1-9, 21-25), it was confirmed that the thickness of the platinum layer does not affect the characteristics (resistance to reactivity, resistance to peeling). Specifically, it was confirmed that good characteristics were obtained in samples with a coating layer thickness of 1 ⁇ m or more and 100 ⁇ m or less. It was also confirmed that the method of forming the coating layer does not affect the characteristics (samples 21-25). In other words, it was confirmed that various methods can be used to form the coating layer. Furthermore, in this test, no effect on the characteristics due to differences in the ratio of the thickness of the coating layer to the substrate was confirmed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Furnace Charging Or Discharging (AREA)

Abstract

This firing setter has a platinum or platinum alloy coating layer provided on a surface of a ceramic base material.

Description

焼成用セッターFiring setter
 本出願は、2023年3月3日に出願された日本国特許出願第2023-032923号に基づく優先権を主張する。その出願の全ての内容は、この明細書中に参照により援用されている。本明細書は、焼成用セッターに関する技術を開示する。 This application claims priority to Japanese Patent Application No. 2023-032923, filed on March 3, 2023, the entire contents of which are incorporated herein by reference. This specification discloses technology relating to a firing setter.
 特開平10-139572号公報(以下、特許文献1と称する)に、セラミックス基材の表面にジルコニア系のコーティング層が設けられている焼成用セッターが開示されている。特許文献1では、ジルコニア系コーティング材の安定化剤としてCaOが用いられている。より具体的には、特許文献1では、コーティング材として、完全安定化量以上のCaOを含むジルコニア系コーティング材を用いている。特許文献1では、Ca安定化ジルコニアをコーティング材として用いることにより、コーティング層と被焼成物(電子部品)が反応することを抑制している。  Japanese Patent Laid-Open Publication No. 10-139572 (hereinafter referred to as Patent Document 1) discloses a firing setter in which a zirconia-based coating layer is provided on the surface of a ceramic substrate. In Patent Document 1, CaO is used as a stabilizer for the zirconia-based coating material. More specifically, Patent Document 1 uses a zirconia-based coating material that contains at least the fully stabilizing amount of CaO as the coating material. In Patent Document 1, by using Ca-stabilized zirconia as the coating material, reaction between the coating layer and the object to be fired (electronic components) is suppressed.
 特許文献1に開示されているように、ジルコニア系コーティング材では、ジルコニアの相転移を抑制するため、CaO等の安定化剤を含む安定化ジルコニアが用いられる。しかしながら、安定化ジルコニアをコーティング材として用いた場合、焼成用セッターを繰り返し使用すると、コーティング層(安定化ジルコニア)に含まれる安定化剤が脱固溶し、コーティング層の特性が変化する。例えば、コーティング層の熱膨張率が変化したり、コーティング層と被焼成物との反応性が変化したりする。そのため、ジルコニア系コーティング材を用いると、コーティング層としての寿命が短くなり、結果として焼成用セッターの寿命が短くなる。よって、焼成用セッターのコーティング層の材料として、ジルコニア系コーティング材に代わる材料を用いることが必要とされている。本明細書は、ジルコニア系コーティング材に代わる材料を用いたコーティング層を備える焼成用セッターを提供することを目的とする。 As disclosed in Patent Document 1, in zirconia-based coating materials, stabilized zirconia containing a stabilizer such as CaO is used to suppress the phase transition of zirconia. However, when stabilized zirconia is used as a coating material, repeated use of the firing setter causes the stabilizer contained in the coating layer (stabilized zirconia) to be de-dissolved, and the properties of the coating layer change. For example, the thermal expansion coefficient of the coating layer changes, and the reactivity of the coating layer with the object to be fired changes. Therefore, when a zirconia-based coating material is used, the life of the coating layer is shortened, and as a result, the life of the firing setter is shortened. Therefore, it is necessary to use a material that replaces the zirconia-based coating material as the material for the coating layer of the firing setter. The purpose of this specification is to provide a firing setter having a coating layer using a material that replaces the zirconia-based coating material.
 本明細書で開示する焼成用セッターは、セラミックス基材の表面に白金又は白金合金のコーティング層が設けられていてよい。 The firing setter disclosed in this specification may have a platinum or platinum alloy coating layer on the surface of the ceramic substrate.
実施例の結果を示す。The results of the examples are shown below.
 本明細書で開示する焼成用セッターは、例えば、チタン酸バリウム(TiBaO)、フェライト(Fe)を主成分とするセラミックスコンデンサを焼成するためのセッターとして好適に用いることができる。この焼成用セッターは、セラミックス基材と、セラミックス基材の表面を被覆するコーティング層を備えていてよい。コーティング層は、セラミックス基材の表面(セラミックスコンデンサ等の被焼成物との接触面)だけでなく、セラミックス基材の裏面及び/又は側面を被覆していてもよい。コーティング層の材料は、白金又は白金合金であってよい。なお、白金合金として、Pd、Cu、Ru、Ir、Co、W、Rhのうちの少なくとも1種が含まれるPt等が挙げられる。 The firing setter disclosed in this specification can be suitably used as a setter for firing a ceramic capacitor mainly composed of, for example, barium titanate (TiBaO 3 ) and ferrite (Fe 2 O 3 ). This firing setter may include a ceramic substrate and a coating layer that covers the surface of the ceramic substrate. The coating layer may cover not only the surface of the ceramic substrate (the surface that contacts the object to be fired, such as a ceramic capacitor), but also the back surface and/or side surface of the ceramic substrate. The material of the coating layer may be platinum or a platinum alloy. Examples of platinum alloys include Pt containing at least one of Pd, Cu, Ru, Ir, Co, W, and Rh.
 白金及び白金合金は、安定化剤等を用いることなく、焼成用セッターのコーティング材として用いることができる。そのため、ジルコニア系コーティング材等の安定化剤を必要とするコーティング材と比較して、コーティング層の特性が変化することを抑制できる。また、白金又は白金合金のコーティング層は、チタン酸バリウム等との反応性も低く、特性が変化しにくい。その結果、白金又は白金合金のコーティング層が設けられた焼成用セッターは、コーティング層の特性変化が起こりにくく、寿命が長い。 Platinum and platinum alloys can be used as coating materials for firing setters without using stabilizers. Therefore, changes in the properties of the coating layer can be suppressed compared to coating materials that require stabilizers, such as zirconia-based coating materials. In addition, a coating layer of platinum or platinum alloy has low reactivity with barium titanate and the like, and its properties are less likely to change. As a result, firing setters provided with a coating layer of platinum or platinum alloy are less likely to experience changes in the properties of the coating layer and have a long lifespan.
 コーティング層の厚みは、1μm以上100μm以下であってよい。コーティング層の厚みが1μm以上であれば、セラミックス基材との密着性が向上し、コーティング層の剥離が抑制される。また、コーティング層の厚みが100μm以下であれば、被焼成物を焼成する際、被焼成物に加わる温度を均一にすることができる(面内温度分布が大きくなることを抑制することができる)。コーティング層の厚みは、5μm以上であってもよく、10μm以上であってもよく、15μm以上であってもよく、20μm以上であってもよく、25μm以上であってもよく、50μm以上であってもよい。また、コーティング層の厚みは、50μm以下であってもよく、25μm以下であってもよく、20μm以下であってもよく、15μm以下であってもよく、10μm以下であってもよく、5μm以下であってもよい。なお、コーティング層の表面は平坦であってもよいし、凹凸が形成されていてもよい。コーティング層の表面に凹凸が形成されていると、被焼成物がセッター表面を滑りにくくなり、また、脱バイ時に発生したガスがコーティング層から抜けやすくなる。 The thickness of the coating layer may be 1 μm or more and 100 μm or less. If the thickness of the coating layer is 1 μm or more, the adhesion to the ceramic substrate is improved and peeling of the coating layer is suppressed. Furthermore, if the thickness of the coating layer is 100 μm or less, the temperature applied to the object to be fired can be made uniform when the object is fired (the in-plane temperature distribution can be suppressed from becoming large). The thickness of the coating layer may be 5 μm or more, 10 μm or more, 15 μm or more, 20 μm or more, 25 μm or more, or 50 μm or more. Furthermore, the thickness of the coating layer may be 50 μm or less, 25 μm or less, 20 μm or less, 15 μm or less, 10 μm or less, or 5 μm or less. The surface of the coating layer may be flat or may have irregularities. If the surface of the coating layer is uneven, the baked object will not slide easily on the setter surface, and gas generated during de-bake will be more likely to escape from the coating layer.
 コーティング層を構成している材料(白金又は白金合金)の粒子径は、0.3μm以上60μm以下であってよい。コーティング層を構成している材料の粒子径が0.3μm以上であれば、コーティング層の強度を高く維持することができる。また、コーティング層を構成している材料の粒子径が0.3μm以上であれば、塗工の際に材料が凝集することが抑制され、良質なコーティング層を得ることができる。コーティング層を構成している材料の粒子径が60μm以下であれば、コーティング層の密着性が向上し、コーティング層の剥離を抑制することができる。 The particle diameter of the material (platinum or platinum alloy) constituting the coating layer may be 0.3 μm or more and 60 μm or less. If the particle diameter of the material constituting the coating layer is 0.3 μm or more, the strength of the coating layer can be maintained high. Furthermore, if the particle diameter of the material constituting the coating layer is 0.3 μm or more, aggregation of the material during application is suppressed, and a high-quality coating layer can be obtained. If the particle diameter of the material constituting the coating layer is 60 μm or less, the adhesion of the coating layer is improved and peeling of the coating layer can be suppressed.
 セラミックス基材の材料として、アルミナ(Al),ムライト(Al-SiO質),アルミナ-ムライト,コーディエライト(MgO-Al-SiO質)等の酸化物が挙げられる。また、非酸化物の材料の一例として、焼結SiC(SSC),シリコン含浸SiC(SiSiC),再結晶SiC(Re-SiC),窒化ケイ素(Si),サイアロン(SIALON:ケイ素,アルミニウム,酸素,窒素を含むセラミックス)等が挙げられる。 Examples of materials for the ceramic substrate include oxides such as alumina (Al 2 O 3 ), mullite (Al 2 O 3 -SiO 2 ), alumina-mullite, cordierite (MgO-Al 2 O 3 -SiO 2 ), etc. Examples of non-oxide materials include sintered SiC (SSC), silicon-impregnated SiC (SiSiC), recrystallized SiC (Re-SiC), silicon nitride (Si 3 N 4 ), and SIALON (ceramics containing silicon, aluminum, oxygen, and nitrogen).
 セラミックス基材がSiC質の場合、セラミックス基材とコーティング層の間に、アルミナ又はムライトを主体とする中間層が設けられていてよい。なお、SiC質とは、上述した焼結SiC,シリコン含浸SiC,再結晶SiCを意味する。アルミナ又はムライトを主体とする中間層を設けることにより、SiC質基材と白金又は白金合金のコーティング層の密着性が向上する。また、アルミナ又はムライトを主体とする中間層を設けることにより、SiC質基材とコーティング層の熱膨張率の差に起因するコーティング層の剥離を抑制することもできる。なお、コーティング層は、セラミックス基材の表面又は中間層の表面を完全に被覆していてもよいし、セラミックス基材又は中間層の表面が部分的に露出するように被覆していてもよい。白金又は白金合金は濡れ性が悪いので、セラミックス基材の表面又は中間層の表面が部分的に露出していても、被焼成物の成分はコーティング層内に浸透しにくい。 When the ceramic substrate is SiC, an intermediate layer mainly made of alumina or mullite may be provided between the ceramic substrate and the coating layer. The term "SiC" refers to the above-mentioned sintered SiC, silicon-impregnated SiC, and recrystallized SiC. By providing an intermediate layer mainly made of alumina or mullite, the adhesion between the SiC substrate and the coating layer made of platinum or platinum alloy is improved. In addition, by providing an intermediate layer mainly made of alumina or mullite, peeling of the coating layer caused by the difference in thermal expansion coefficient between the SiC substrate and the coating layer can be suppressed. The coating layer may completely cover the surface of the ceramic substrate or the surface of the intermediate layer, or may cover the surface of the ceramic substrate or the intermediate layer so that it is partially exposed. Platinum or platinum alloy has poor wettability, so even if the surface of the ceramic substrate or the surface of the intermediate layer is partially exposed, the components of the fired object are unlikely to penetrate into the coating layer.
 コーティング層の形成方法は、特に限定されないが、溶射、印刷、スプレー塗布、蒸着、めっき法等を用いることができる。また、セラミックス基材又は中間層の表面に白金膜(白金合金膜)を配置し、焼成によりコーティング層を形成することもできる。なお、薄膜(20μm以下程度)を形成する場合、印刷、蒸着、メッキ法等を用いることにより、コーティング層の厚みを良好に制御することができる。 The method for forming the coating layer is not particularly limited, but may be thermal spraying, printing, spray coating, vapor deposition, plating, etc. Also, a platinum film (platinum alloy film) may be placed on the surface of the ceramic substrate or intermediate layer, and then fired to form a coating layer. When forming a thin film (approximately 20 μm or less), the thickness of the coating layer can be well controlled by using printing, vapor deposition, plating, etc.
 基材厚み、中間層厚み及びコーティング層が異なる試料を作成し、各試料の特性を評価した(試料1~30)。基材はSiCを用い、中間層はムライトを用い、コーティング層は白金又はジルコニアを用いた。各試料の条件を図1に示す。 Samples with different substrate thicknesses, intermediate layer thicknesses, and coating layers were created, and the characteristics of each sample were evaluated (samples 1 to 30). The substrate was SiC, the intermediate layer was mullite, and the coating layer was platinum or zirconia. The conditions for each sample are shown in Figure 1.
 図1に示すように、試料1~9,21~25は中間層を形成していない。その他の試料については、まず、SiC基材の表面にスプレー法を用いてムライト粉末を所定厚塗布し、各試料を大気雰囲気において1200~1360℃で2~5時間焼成し、中間層を形成した。その後、試料1~25については基材又は中間層の表面に白金層(コーティング層)を形成し、試料26~30については中間層の表面にジルコニア層(コーティング層)を形成した。 As shown in Figure 1, samples 1-9 and 21-25 did not have an intermediate layer. For the other samples, a specified thickness of mullite powder was first applied to the surface of the SiC substrate using a spray method, and each sample was then fired in an air atmosphere at 1200-1360°C for 2-5 hours to form an intermediate layer. After that, for samples 1-25, a platinum layer (coating layer) was formed on the surface of the substrate or intermediate layer, and for samples 26-30, a zirconia layer (coating layer) was formed on the surface of the intermediate layer.
 なお、試料1~20,26~29は印刷法を用いてコーティング層を形成した。具体的には、基材又は中間層上にスクリーン印刷機(LZ-9601NS)を用いて白金ペーストを印刷施工し、その後1300℃で3時間焼成した。試料21は、めっき法を用いてコーティング層を形成した。具体的には、基材を白金溶液(めっき工房白金めっき液)に浸けた後、市販のめっき装置(PROMEX)を使用し施工した。試料22は、白金箔を用いてコーティング層を形成した。具体的には、基材表面に1μmの白金箔を配置し、その後、1300℃で3時間焼成した。試料23は、蒸着法を用いてコーティング層を形成した。具体的には、イオンスパッタ装置(JEOL JFC-1500)で白金を蒸着した。試料24及び30は、スプレー法を用いてコーティング層を形成した。具体的には、基材表面に白金粉末を所定厚塗布し、各試料を大気雰囲気において1300℃で3時間焼成した。試料25は、溶射法を用いてコーティング層を形成した。具体的には、基材表面に白金粉末を溶射した。 The coating layer of samples 1 to 20 and 26 to 29 was formed by printing. Specifically, platinum paste was printed on the substrate or intermediate layer using a screen printer (LZ-9601NS), and then baked at 1300°C for 3 hours. The coating layer of sample 21 was formed by plating. Specifically, the substrate was immersed in a platinum solution (platinum plating solution from Plating Studio), and then plating was performed using a commercially available plating device (PROMEX). The coating layer of sample 22 was formed using platinum foil. Specifically, 1 μm platinum foil was placed on the substrate surface, and then baked at 1300°C for 3 hours. The coating layer of sample 23 was formed by deposition. Specifically, platinum was deposited using an ion sputtering device (JEOL JFC-1500). The coating layers of samples 24 and 30 were formed by spraying. Specifically, platinum powder was applied to a specified thickness on the substrate surface, and each sample was fired in air at 1300°C for 3 hours. Sample 25 had a coating layer formed using a thermal spraying method. Specifically, platinum powder was thermally sprayed onto the substrate surface.
 得られた試料1~30について、コーティング層(及び中間層)と、基材の厚みの比率を計算した。結果を図1に示す。なお、コーティング層と基材の厚みの比率は、下記式(1)より算出した。下記式において、T1はコーティング層の厚みを示し、T2は中間層の厚みを示し、T3は基材の厚みを示す。
   比率(%)=(T1+T2)/T3×100・・・(1)
The ratio of the thickness of the coating layer (and intermediate layer) to the thickness of the substrate was calculated for the obtained samples 1 to 30. The results are shown in Figure 1. The ratio of the thickness of the coating layer to the thickness of the substrate was calculated from the following formula (1). In the formula, T1 represents the thickness of the coating layer, T2 represents the thickness of the intermediate layer, and T3 represents the thickness of the substrate.
Ratio (%)=(T1+T2)/T3×100...(1)
 得られた試料1~30について、反応試験と剥離試験を行った。反応試験は、まず、試料表面(コーティング層表面)の中央部分の30mm×30mmの範囲に、BaTiO水溶液0.8gを塗布した。BaTiO水溶液は、質量比で、BaTiO:水=2:8のものを使用した。その後、大気雰囲気において1200℃で2時間加熱し、加熱後の外観を目視で観察した。コーティング層の表面に反応痕が確認されなかった試料を「A」、微小な反応痕が確認された試料(BaTiO水溶液を塗布した面積の50%以下)を「B」、明確に反応痕が確認された試料(BaTiO水溶液を塗布した面積の51%超)を「C」とした。結果を図1に示す。 The reaction test and the peeling test were carried out for the obtained samples 1 to 30. In the reaction test, 0.8 g of BaTiO 3 aqueous solution was applied to the central part of the sample surface (coating layer surface) in a range of 30 mm x 30 mm. The BaTiO 3 aqueous solution used had a mass ratio of BaTiO 3 : water = 2:8. Then, the sample was heated at 1200 ° C. in an air atmosphere for 2 hours, and the appearance after heating was visually observed. The sample with no reaction trace on the surface of the coating layer was designated as "A", the sample with a minute reaction trace (50% or less of the area where the BaTiO 3 aqueous solution was applied) was designated as "B", and the sample with a clear reaction trace (more than 51% of the area where the BaTiO 3 aqueous solution was applied) was designated as "C". The results are shown in FIG. 1.
 評価「A」及び「B」は、BaTiOとの反応性が低く、被焼成物に対する耐反応性が高いことを示している。すなわち、評価「A」及び「B」の試料は、コーティング層の寿命が長く、焼成用セッターの寿命が長いことを示している。一方、評価「C」は、BaTiOとの反応性が高く、被焼成物に対する耐反応性が低いことを示している。評価「C」の試料は、コーティング層の寿命が短く、焼成用セッターの寿命が短いことを示している。 The ratings "A" and "B" indicate low reactivity with BaTiO3 and high reactivity resistance with the object to be fired. In other words, the samples with ratings "A" and "B" indicate that the coating layer has a long life and the firing setter has a long life. On the other hand, the rating "C" indicates that the reactivity with BaTiO3 is high and the reactivity resistance with the object to be fired is low. The sample with rating "C" indicates that the coating layer has a short life and the firing setter has a short life.
 剥離試験は、まず、試料表面(コーティング層表面)の16箇所に30mm×20mmのガムテープを載置し、2kgの重りをガムテープ上に置き、試料表面にガムテープを貼り付けた。その後、ガムテープを剥がし、コーティング層の剥離箇所を計測した。コーティング層の剥離がなかった試料を「A」、コーティング層の剥離が1~7箇所であった試料を「B」、コーティング層の剥離が8箇所以上であった試料を「C」とした。結果を図1に示す。評価「A」及び「B」は、基材とコーティング層の密着性が高く、コーティング層の耐剥離性が高いことを示している。一方、評価「C」は、基材とコーティング層の密着性が低く、コーティング層の耐剥離性が低いことを示している。 For the peeling test, first, 30 mm x 20 mm packing tape was placed at 16 points on the sample surface (coating layer surface), and a 2 kg weight was placed on the packing tape, and the packing tape was attached to the sample surface. The packing tape was then removed, and the peeled locations of the coating layer were measured. Samples with no peeling of the coating layer were rated "A", samples with peeling of the coating layer in 1-7 places were rated "B", and samples with peeling of the coating layer in 8 places or more were rated "C". The results are shown in Figure 1. Ratings "A" and "B" indicate high adhesion between the substrate and coating layer, and high peel resistance of the coating layer. On the other hand, a rating of "C" indicates low adhesion between the substrate and coating layer, and low peel resistance of the coating layer.
 図1に示すように、コーティング層の材料が白金の試料(試料1~25)は、何れも、耐反応性「A」であった。一方、コーティング層の材料がジルコニアの試料(試料26~30)は、何れも、耐反応性「C」であった。この結果は、コーティング層の材料として白金を用いることにより、ジルコニアのコーティング層と比較して、被焼成物と焼成用セッターが反応することが抑制され、焼成用セッターの寿命が向上することを示している。 As shown in Figure 1, all of the samples (samples 1 to 25) whose coating layer was made of platinum were rated as "A" in terms of reactivity resistance. On the other hand, all of the samples (samples 26 to 30) whose coating layer was made of zirconia were rated as "C" in terms of reactivity resistance. This result shows that by using platinum as the coating layer material, the reaction between the fired object and the firing setter is suppressed compared to a zirconia coating layer, and the life of the firing setter is improved.
 また、試料1~25は何れも耐剥離性が「A」又は「B」であり、試料26~35は何れも耐剥離性が「C」であった。この結果からも、コーティング層の材料として白金を用いることにより、ジルコニアのコーティング層と比較して、焼成用セッターの寿命が向上することが確認された。 Furthermore, all of samples 1 to 25 had a peel resistance of "A" or "B," while all of samples 26 to 35 had a peel resistance of "C." This result also confirmed that the use of platinum as the coating layer material improves the lifespan of the firing setter compared to a zirconia coating layer.
 中間層が設けられている試料(試料10~20)は、試料10を除き、耐剥離性「A」であった。この結果より、中間層を設け、白金コーティング層の厚みを5μm以上に調整することにより、耐剥離性が特に向上することが確認された。なお、試料26~30の結果より、単に、中間層を設け、コーティング層の厚みを5μm以上に調整するだけでは耐剥離性は向上せず、コーティング層の材料が白金であることが重要であることも確認された。 The samples with an intermediate layer (samples 10-20), except for sample 10, were rated "A" in peel resistance. These results confirmed that peel resistance was particularly improved by providing an intermediate layer and adjusting the thickness of the platinum coating layer to 5 μm or more. The results for samples 26-30 also confirmed that simply providing an intermediate layer and adjusting the thickness of the coating layer to 5 μm or more did not improve peel resistance, and that it was important that the material of the coating layer was platinum.
 中間層を有していない試料(試料1~9,21~25)については、白金層の厚みは、特性(耐反応性、耐剥離性)に影響を及ぼさないことが確認された。具体的には、コーティング層の厚み1μm以上100μm以下の試料において、良好な特性が得られることが確認された。また、コーティング層の形成方法も特性に影響を及ぼさないことが確認された(試料21~25)。すなわち、コーティング層の形成方法として、種々の手段を取り得ることが確認された。なお、今回の試験においては、コーティング層と基材の厚みの比率の相違による特性への影響は確認されなかった。 For samples without an intermediate layer (samples 1-9, 21-25), it was confirmed that the thickness of the platinum layer does not affect the characteristics (resistance to reactivity, resistance to peeling). Specifically, it was confirmed that good characteristics were obtained in samples with a coating layer thickness of 1 μm or more and 100 μm or less. It was also confirmed that the method of forming the coating layer does not affect the characteristics (samples 21-25). In other words, it was confirmed that various methods can be used to form the coating layer. Furthermore, in this test, no effect on the characteristics due to differences in the ratio of the thickness of the coating layer to the substrate was confirmed.
 以上、本発明の具体例を詳細に説明したが、これらは例示に過ぎず、請求の範囲を限定するものではない。請求の範囲に記載の技術には、以上に例示した具体例を様々に変形、変更したものが含まれる。また、本明細書または図面に説明した技術要素は、単独であるいは各種の組合せによって技術的有用性を発揮するものであり、出願時請求項記載の組合せに限定されるものではない。また、本明細書または図面に例示した技術は複数目的を同時に達成し得るものであり、そのうちの一つの目的を達成すること自体で技術的有用性を持つものである。  Although specific examples of the present invention have been described in detail above, these are merely examples and do not limit the scope of the claims. The technology described in the claims includes various modifications and variations of the specific examples exemplified above. Furthermore, the technical elements described in this specification or drawings exert technical utility alone or in various combinations, and are not limited to the combinations described in the claims at the time of filing. Furthermore, the technology exemplified in this specification or drawings can achieve multiple objectives simultaneously, and achieving one of those objectives is itself technically useful.

Claims (3)

  1.  セラミックス基材の表面に白金又は白金合金のコーティング層が設けられている焼成用セッター。 A firing setter with a platinum or platinum alloy coating layer on the surface of a ceramic substrate.
  2.  コーティング層の厚みが1μm以上100μm以下である請求項1に記載の焼成用セッター。 The firing setter according to claim 1, wherein the thickness of the coating layer is 1 μm or more and 100 μm or less.
  3.  セラミックス基材がSiC質であり、
     セラミックス基材とコーティング層の間に、アルミナ又はムライトを主体とする中間層が設けられている請求項1又は2に記載の焼成用セッター。
    The ceramic substrate is made of SiC.
    3. The firing setter according to claim 1, further comprising an intermediate layer mainly made of alumina or mullite between the ceramic substrate and the coating layer.
PCT/JP2023/037868 2023-03-03 2023-10-19 Firing setter WO2024185188A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2023032923 2023-03-03
JP2023-032923 2023-03-03

Publications (1)

Publication Number Publication Date
WO2024185188A1 true WO2024185188A1 (en) 2024-09-12

Family

ID=92674352

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/037868 WO2024185188A1 (en) 2023-03-03 2023-10-19 Firing setter

Country Status (1)

Country Link
WO (1) WO2024185188A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63187093A (en) * 1987-01-28 1988-08-02 株式会社東芝 Baking jig
JPH06219872A (en) * 1993-01-28 1994-08-09 Kanebo Ltd Tool for firing
JPH06219869A (en) * 1993-01-28 1994-08-09 Kanebo Ltd Tool for firing
JPH06219873A (en) * 1993-01-28 1994-08-09 Kanebo Ltd Tool for firing
JP2017052657A (en) * 2015-09-07 2017-03-16 三井金属鉱業株式会社 Kiln furniture
JP2019120467A (en) * 2018-01-10 2019-07-22 日本碍子株式会社 Setter for firing

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63187093A (en) * 1987-01-28 1988-08-02 株式会社東芝 Baking jig
JPH06219872A (en) * 1993-01-28 1994-08-09 Kanebo Ltd Tool for firing
JPH06219869A (en) * 1993-01-28 1994-08-09 Kanebo Ltd Tool for firing
JPH06219873A (en) * 1993-01-28 1994-08-09 Kanebo Ltd Tool for firing
JP2017052657A (en) * 2015-09-07 2017-03-16 三井金属鉱業株式会社 Kiln furniture
JP2019120467A (en) * 2018-01-10 2019-07-22 日本碍子株式会社 Setter for firing

Similar Documents

Publication Publication Date Title
JP6948466B2 (en) Firing jig
KR100725083B1 (en) Jig for baking electronic component
JP3176219B2 (en) Electrostatic chuck
JPS61138486A (en) Planar ceramics heater
WO2024185188A1 (en) Firing setter
US6617017B2 (en) Firing jig for electronic element
JP6811200B2 (en) Baking setter
JP2008137860A (en) Ceramics burning tool material for electronic components
JP3697277B2 (en) Ceramic substrate and manufacturing method thereof
JP4136249B2 (en) Baking jig for electronic parts
JPWO2008129834A1 (en) Kiln tools for firing electronic components
JPS61243164A (en) Formation of heat resistant coating
JP4069637B2 (en) Electronic component firing jig
JP3981425B2 (en) Ceramic material firing jig
JP3819352B2 (en) Electronic component firing jig
JP2005170729A (en) Container for firing
WO2023188454A1 (en) Firing setter
JP2003020292A (en) Tool material for burning
JP3643022B2 (en) Electronic component firing jig
JPH05178673A (en) Jig for sintering electronic parts
JP2005281032A (en) Graphite tray for sintering
JP2000247752A (en) Jig for baking electronic part with suppressed reaction and peeling
JPH10139572A (en) Jig for firing of electronic parts
JP2002128583A (en) Tool for calcinating electronic part
JP2002180269A (en) Ceramic-coated member