WO2024185156A1 - High frequency heating cooker - Google Patents

High frequency heating cooker Download PDF

Info

Publication number
WO2024185156A1
WO2024185156A1 PCT/JP2023/023855 JP2023023855W WO2024185156A1 WO 2024185156 A1 WO2024185156 A1 WO 2024185156A1 JP 2023023855 W JP2023023855 W JP 2023023855W WO 2024185156 A1 WO2024185156 A1 WO 2024185156A1
Authority
WO
WIPO (PCT)
Prior art keywords
heating
temperature
heated
unit
table plate
Prior art date
Application number
PCT/JP2023/023855
Other languages
French (fr)
Japanese (ja)
Inventor
恵 安島
香織 竹中
友秀 松井
Original Assignee
日立グローバルライフソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立グローバルライフソリューションズ株式会社 filed Critical 日立グローバルライフソリューションズ株式会社
Publication of WO2024185156A1 publication Critical patent/WO2024185156A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24CDOMESTIC STOVES OR RANGES ; DETAILS OF DOMESTIC STOVES OR RANGES, OF GENERAL APPLICATION
    • F24C7/00Stoves or ranges heated by electric energy
    • F24C7/02Stoves or ranges heated by electric energy using microwaves
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/66Circuits
    • H05B6/68Circuits for monitoring or control

Definitions

  • the present invention relates to a high-frequency cooking device that uses microwaves to heat and cook food.
  • Patent Document 1 discloses a high-frequency cooking device that "enables the heating of the object to an appropriate temperature regardless of the storage state, amount, or initial surface temperature of the object," and that "includes a heating means for heating the object to be heated, a table plate on which the object to be heated is placed in the heating chamber, a weight sensor that supports the table plate and measures the weight of the object to be heated, a temperature sensor that detects the temperature of the non-heated object, and a control means that controls the heating means based on the detection values of the weight sensor and the temperature sensor so as to reach the finishing temperature, and the control means detects the temperature rise of the object to be heated with the temperature sensor, determines whether the object to be heated is frozen or not as a storage state according to the detected temperature rise, calculates a heating time according to the storage state of the object to be heated, and heats the object to be heated.”
  • the high-frequency cooking device of Patent Document 1 determines whether the object is frozen or not based on the temperature rise of the object detected by a non-contact temperature sensor (infrared sensor), and calculates the cooking time according to the result of the determination, thereby appropriately cooking the object (see Figures 13 to 15 of the same document).
  • a non-contact temperature sensor infrared sensor
  • Patent Document 1 does not anticipate a situation in which one food is cooked immediately after another, and there are cases in which the latter food cannot be cooked properly. This problem will be specifically explained using the example of a situation in which rice is heated immediately after a side dish is heated.
  • the temperature of the table plate where the side dish is placed also rises when the side dish is heated, so when the side dish is removed after cooking is finished, there will be a part of the table plate top that is hotter than room temperature. If rice is then placed in a position different from where the side dish was placed and cooking begins, the temperature sensor (infrared sensor) in Patent Document 1 cannot determine whether the high-temperature part of the table plate top is the food to be cooked (the object to be heated). Therefore, the high-frequency heating device in Patent Document 1 may mistake the high-temperature part of the table plate top (the part where the side dish was placed until just before) for the object to be heated and calculate an inappropriate rice heating time based on the temperature change there, which may cause the rice to be heated improperly.
  • the temperature sensor infrared sensor
  • the present invention aims to provide a high-frequency cooking device that can calculate the appropriate heating time for the current heated object when cooking multiple heated objects consecutively, even if the temperature of the place where the heated object is placed has risen during the previous heating.
  • the high frequency heating cooker of the present invention has been made to achieve the above object, and comprises a heating chamber housing a table plate, a microwave heating unit for heating an object placed on the table plate, an infrared sensor for detecting the temperature at multiple points on the top surface of the table plate, an outside temperature sensor for detecting the temperature outside the heating chamber, a recording unit for recording the previous heating operation, a timer for measuring the elapsed time from the end of the previous heating operation to the start of the current heating operation, and a control unit for controlling the microwave heating unit, and when the previous heating operation recorded in the recording unit was microwave heating, the measured time of the timer is shorter than a predetermined time, and the maximum temperature of the temperature of the top surface of the table plate detected by the infrared sensor is higher than the predetermined temperature, the control unit classifies the state of the object to be heated as frozen or not based on the initial temperature of the object to be heated detected by the infrared sensor, calculates the heating time according to the classified state, and controls the microwave heating unit.
  • the high-frequency cooking device of the present invention can calculate the appropriate heating time for multiple objects to be heated this time when cooking multiple objects in succession, even if the temperature of the object's placement, etc., has risen during the previous heating.
  • FIG. 1 is a front perspective view of a cooking device according to an embodiment
  • FIG. 2 is a rear perspective view of the cooking device according to the embodiment with the outer frame removed.
  • FIG. 3 an explanatory diagram of the operation of the infrared sensor when heating cold rice in a bowl
  • FIG. 4 is a flowchart illustrating control of a cooking device according to an embodiment.
  • FIG. 2 is a control block diagram of a cooking device according to an embodiment.
  • FIG. 4 is a diagram for explaining a heating time of a cooking device according to an embodiment.
  • FIGS. 1 to 3 show the main parts of this embodiment, with FIG. 1 being a perspective view of the cooking device body as seen from the front side, FIG. 2 being a perspective view of the cooking device body as seen from the rear side with the outer frame removed, and FIG. 3 being a cross-sectional view taken along line A-A in FIG. 1.
  • Door 2 opens and closes to put food in and take it out of the heating chamber 28. Closing door 2 seals the heating chamber 28, preventing the leakage of microwaves used to heat food and sealing in the heater heat and superheated steam, allowing for efficient heating.
  • the handle 9 is attached to the door 2 and makes it easy to open and close the door 2, and is shaped to be easy to grip with the hand.
  • the glass window 3 is attached to the door 2 so that the state of the food being cooked can be checked, and is made of glass that can withstand high temperatures caused by heaters, etc.
  • the input unit 71 is provided on the operation panel 4 on the lower front side of the door 2, and is composed of an operation unit 6 for inputting the heating unit (such as microwave heating or heater heating), the heating time, and the heating temperature, and a display unit 5 for displaying the contents inputted from the operation unit 6 and the progress of cooking.
  • an operation unit 6 for inputting the heating unit (such as microwave heating or heater heating), the heating time, and the heating temperature
  • a display unit 5 for displaying the contents inputted from the operation unit 6 and the progress of cooking.
  • the outer frame 7 is a cabinet that covers the top and left and right sides of the cooking device's main body 1.
  • the water tank 42 is a container that stores the water needed to make heated steam.
  • the rear panel 10 forms the rear surface of the cabinet, and has an external exhaust duct 18 attached to the top. Steam emitted from food and cooling air (waste heat) 39 after cooling the internal parts of the main body 1 are exhausted from the external exhaust port 8 of the external exhaust duct 18.
  • the machine chamber 20 is provided in the space between the bottom surface 28a of the heating chamber and the bottom plate 21 of the main body 1, and on the bottom plate 21 are mounted a magnetron 33 for heating food, a waveguide 47 connected to the magnetron 33, a control board 23 on which a control unit 23a, a recording unit 100, a timer 101 (see Figure 7), and other various components described below, and a fan unit 15 for cooling these various components.
  • the bottom surface 28a of the heating chamber is recessed in approximately the center, within which the rotating antenna 26 is installed, and microwave energy radiated from the magnetron 33 flows into the underside of the rotating antenna 26 through the waveguide 47 and the aperture 47a through which the output shaft 46a of the rotating antenna 26 passes, and is diffused by the rotating antenna 26 before being radiated into the heating chamber 28.
  • the output shaft 46a of the rotating antenna 26 is connected to the rotating antenna drive unit 46.
  • the fan unit 15 is composed of a cooling fan attached to a cooling motor attached to the bottom plate 21.
  • the cooling air 39 generated by this fan unit 15 cools the magnetron 33, which generates heat, the inverter circuit (not shown), the rear weight sensor 25c, the left weight sensor 25b, and the like in the machine room 20. It also flows between the outside of the heating chamber 28 and the outer frame 7, and between the hot air case 11a and the rear plate 10 as described above, and is discharged from the external exhaust port 8 of the external exhaust duct 18 while cooling the outer frame 7 and the rear plate 10.
  • a duct 16a for cooling the hot air motor 13 described later and a duct 16b for cooling the infrared unit 50 housed in the infrared case 48 described later are provided, and the cooling air 39 that has cooled the infrared unit 50 is discharged from the opposite side of the exhaust duct 28e that disposes of the exhaust heat (such as water vapor) in the heating chamber 28, and then discharged outside from the external exhaust duct 18.
  • the exhaust heat such as water vapor
  • the microwave heating unit 330 ( Figure 7) consists of a magnetron 33 and an inverter circuit (not shown) and is controlled by the control unit 23a.
  • a hot air unit 11 is attached to the rear of the heating chamber 28, and a hot air fan 32 is attached inside the hot air unit 11 to efficiently circulate the air inside the heating chamber 28.
  • the rear wall surface 28b of the heating chamber is provided with hot air intake holes 31 and hot air outlet holes 30 that serve as air passages.
  • the hot air fan 32 rotates when driven by a hot air motor 13 attached to the outside of the hot air case 11a, and heats the air circulating through the hot air heater 14.
  • the hot air unit 11 also has a hot air case 11a at the rear of the inner wall surface 28b of the heating chamber, a hot air fan 32 between the inner wall surface 28b of the heating chamber and the hot air case 11a, and a hot air heater 14 positioned on its outer periphery.
  • a hot air motor 13 is attached to the rear of the hot air case 11a, and the motor shaft is connected to the hot air fan 32 through a hole provided in the hot air case 11a.
  • the hot air motor 13 rises in temperature due to heat from the heating chamber 28 and the hot air heater 14, so to prevent this, it is surrounded by a hot air motor cover 17, and the duct 16a is formed in an approximately cylindrical shape and positioned between the hot air case 11a and the rear panel 10.
  • the upper end opening of the duct 16a is connected to the underside of the hot air motor cover 17, and the lower end opening is connected to the outlet of the fan device 15, so that part of the cooling air 39 from the fan device 15 is taken into the hot air motor cover 17.
  • a grill heating unit 12 consisting of a heater is attached to the underside of the heating chamber top surface 28c of the heating chamber 28.
  • the grill heating unit 12 is formed into a flat shape by wrapping a heater wire around a mica plate and pressing it against the underside of the top surface of the heating chamber 28 to fix it in place. It heats the top surface of the heating chamber 28 and grills the food inside the heating chamber 28 by radiant heat.
  • an infrared unit 50 (described later) is provided at the rear of the heating chamber top surface 28c of the heating chamber 28, and is covered with an infrared case 48 to cool the infrared unit 50.
  • the duct 16b is formed in a roughly cylindrical shape and is positioned between the hot air case 11a and the rear panel 10, with the upper end opening of the duct 16b connected to the side of the infrared case 48 and the lower end opening connected to the top surface of the hot air motor cover 17, and takes in some of the cooling air 39 from the fan device 15.
  • An internal temperature sensor 80 that detects the ambient temperature of the heating chamber 28 (hereinafter referred to as the "internal temperature Ti") is provided at the rear left side of the heating chamber top surface 28c of the heating chamber 28.
  • the bottom surface 28a of the heating chamber is provided with multiple weight sensors 25, such as a left weight sensor 25b and a right weight sensor (not shown) on the front left and right, and a rear weight sensor 25c in the center of the rear side, on which the table plate 24 is placed.
  • weight sensors 25 such as a left weight sensor 25b and a right weight sensor (not shown) on the front left and right, and a rear weight sensor 25c in the center of the rear side, on which the table plate 24 is placed.
  • the table plate 24 is for placing food on and is made of a heat-resistant material that is suitable for both heater and microwave heating, and is also highly permeable to microwaves.
  • the boiler 43 is attached to the outer surface of the hot air case 11a of the hot air unit 11, and the saturated water vapor is directed into the hot air unit 11.
  • the saturated water vapor ejected into the hot air unit 11 is heated by the hot air heater 14 and becomes superheated water vapor.
  • the pump section 87 pumps water from the water tank 42 up to the boiler 43, and is composed of a pump and a motor that drives the pump.
  • the heating parts include the range heating part 330, the hot air heater 14, the hot air motor 13, the grill heating part 12, the boiler 43, etc.
  • Figure 4 is an explanatory diagram of the operation of the infrared sensor when rice is placed in a bowl and heated using the cross-sectional view shown in Figure 3
  • Figure 5 is an explanatory enlarged view of the infrared sensor.
  • the rotation axis 51 denotes a motor, which is attached so that its rotation axis 51a is parallel to the inner wall surface 28b of the heating chamber.
  • the rotation axis 51a rotates (drives) a cylindrical unit case 54, which will be described later, which rotates a board 53 carrying an infrared sensor 52 housed in the unit case 54, and the lens portion 52a of the infrared sensor 52 rotates and moves within a range from the inner side of the bottom surface 28a of the heating chamber (the inner wall surface 28b side of the heating chamber) to the heating chamber opening 28d, allowing the temperature to be detected.
  • the motor 51 uses a stepping motor, and the rotation axis 51a can be rotated forward or backward and at any desired rotation angle under the control of a control unit 23a provided on the control board 23.
  • Infrared sensor 52 detects the temperature of table plate 24 and heated object 60c without contact.
  • infrared sensor 52 is configured by arranging eight infrared detection elements (e.g. thermopiles) in a row on substrate 53 in the direction of rotation axis 51a. Therefore, infrared sensor 52 of this embodiment can simultaneously detect the temperature of eight locations on table plate 24.
  • infrared sensor 52 of this embodiment can detect the temperature of the entire table plate 24 by rotating substrate 53 on which the group of infrared detection elements is mounted, around rotation axis 51a.
  • the circuit board 53 is a cylindrical unit case, with the circuit board 53 located at the maximum diameter and a window 54a through which the lens 52a of the infrared sensor 52 can be seen.
  • the shutter 55 is a shutter made of a metal plate.
  • the shutter 55 closes the observation window 44a, which will be described later, when the infrared sensor 52 is not in use.
  • the shutter 55 is arranged to form an air passage 55c with gaps along the outer periphery of the unit case 54 so that cooling air can flow around the outer periphery of the unit case 54, and openings 55a and 55b are provided in the air passage 55c as an entrance and exit for the cooling air 39 to flow.
  • Reference numeral 56 denotes a positioning protrusion
  • the control unit 23a controls the rotation of the motor 51 so that the detection point of the infrared sensor 52 is aligned with the reference position (detection point a in FIG. 4)
  • the reference position of the detection point of the infrared sensor 52 can be corrected by making the rotation shaft 51a slip with the positioning protrusion 56 abutting against a stopper (not shown) provided on the infrared case 48 when the observation window 44a is closed by the shutter 55, and the reference position controlled by the control unit 23a and the position of the detection point a which is the reference position detected by the infrared sensor 52 can be corrected.
  • Reference numeral 44 denotes an arc-shaped observation unit protruding inwardly of the heating chamber 28, and the rotation center of the rotation shaft 51a, the center of the cylindrical unit case 54, the center of the arc of the shutter 55 which is provided along the outer periphery of the unit case 54 and bent into an arc, and the center positions of the arc-shaped observation unit 44 are all in the same position.
  • Reference numeral 44a denotes an observation window provided in the observation unit 44, and opens a range which is the field of view detected by the infrared sensor 52.
  • the convex portion 49 is a convex portion that separates the infrared case 48 and the infrared unit 50 from the heating chamber top surface 28c. By having only the convex portion 49 come into contact with the heating chamber top surface 28c, the temperature of the heating chamber top surface 28c heated by heaters such as the grill heating section 12 and the hot air unit 11 during heating is less likely to be transmitted to the infrared unit 50.
  • the 102 is an outside temperature sensor arranged on the substrate 53 inside the infrared unit 50, which detects the outside temperature To outside the heating chamber 28.
  • the outside temperature To measured before the first heating starts is approximately equal to the room temperature outside the cooking device, and the outside temperature To measured before the second or subsequent heating starts is higher than the room temperature outside the cooking device but lower than the inside temperature Ti.
  • the measurement method of the infrared sensor 52 of the control unit 23a mounted on the control board 23 is explained with reference to FIG. 4.
  • Figure 4 is a diagram explaining the operation of the infrared sensor when rice is placed in a bowl and heated. As shown in Figure 4, the surface of the heated object 60c can be directly detected at detection point f.
  • the infrared sensor 52 measures eight points at a time, and is rotated 14 times by three degrees by the motor 51 from the reference position (detection point a in Figure 4) to the end position (detection point h in Figure 4), measuring a total of 15 rows, detecting the temperature of 120 points (8 points in the left-right direction x 15 rows in the front-back direction). The infrared sensor 52 then returns directly to the reference position without taking any measurements from the end position to the reference position.
  • the temperature is detected by moving the infrared sensor 52 from the reference position to the end position by 3 degrees 14 times, measuring in 15 rows, and then repeating the process of returning from the end position to the reference position. The processing of the measured temperature will be described later.
  • the control unit 23a controls the rotating shaft 51a of the motor 51 to rotate to the reference position.
  • the unit case 54 rotates, and the lens part 52a of the infrared sensor 52 also rotates to a position where it can detect the detection point a at the reference position (see Figure 4).
  • the detection of the temperature of the heated object 60c progresses from the reference position (detection point a) described above to detection point b and detection point c on the table plate 24, and as the unit case 54 rotates further, the temperature of the outside of the bowl (container 60) is detected in the height direction, and the temperature is detected from detection point d to detection point e.
  • the detection point reaches the top of the opening of the bowl (container 60)
  • the temperature of the surface of the heated object 60c is detected at detection point f
  • the temperature of the inside of the bowl (container 60) is detected at detection point g
  • the temperature of the table plate 24 is detected at detection point h.
  • the temperature detection range from detection point a to detection point h is detected on one side of the forward path of the rotation of the unit case 54, and once the temperature detection is completed to the end point, no measurements or temperature detection is performed on the return path, and the temperature detection is repeated again from detection point a to detection point h in sequence after returning to the reference position.
  • the number of temperature detections can be changed as desired, and the aforementioned detection points a to h are illustrative examples, measuring 15 columns of data as described above.
  • the motor 51 stops rotating while the temperature is being detected, and then resumes rotating after the temperature is detected. To detect the temperature accurately, it is better to measure with the rotation stopped.
  • the rotation of the unit case 54 is stopped and detected, then rotated at a fixed angle after detection, stopped and detected, then rotated at a fixed angle after detection, and this process is repeated to measure the temperature distribution in a grid pattern.
  • the temperature is measured at fixed positions at equal angles, and the entire surface of the table plate 24 is measured evenly.
  • the infrared sensor 52 is located approximately in the center in the left-right direction of the heating chamber top surface 28c inside an imaginary line extending perpendicularly from the four sides of the table plate 24 placed on the heating chamber bottom surface 28a to the heating chamber top surface 28c.
  • the field of view of the infrared sensor 52, detection points a and h, is approximately set to a range for detecting the temperature of the front and rear flange portions of the table plate 24, and the sensors on both sides of the aligned multiple elements of the infrared sensor 52 are approximately set to a range for detecting the temperature of the left and right flange portions of the table plate 24. This makes it possible to accurately detect the temperature of the heated object 60c placed approximately in the center of the table plate 24. Also, it is better to rotate the infrared sensor 52 in the direction with a wider temperature measurement range in order to detect the temperature of the heated object 60c placed in the container 60.
  • the temperature of the heated object 60c in the bowl can be detected at detection point b, which is approximately below the infrared sensor 52.
  • the infrared sensor 52 is located approximately in the center of the heating chamber 28 in the left-right direction, so the infrared sensors on both sides of the eight elements aligned in a row in the infrared sensor 52 can detect the temperature of the heated object 60c.
  • the weight information from the weight sensor 25 and the temperature distribution information detected by the infrared sensor 52 show that the weight information is light and the temperature distribution shows a wide range of temperature rise, it can be determined that the heated object 60c is thin and wide.
  • a method for detecting the temperature of the heated object 60c placed in the container 60 has been described in detail, but even if the heated object 60c is a large block-shaped lump without using a container, the temperature of the side height direction and the top surface of the block-shaped heated object 60c can be detected, making it possible to detect the temperature distribution of the heated object 60c in detail.
  • step S1 the user opens the door 2 of the heating chamber 28, places the container 60 containing the object to be heated 60c on the table plate 24, and then closes the door 2. Then, the user selects an auto menu using the input unit 71.
  • step S2 the user adjusts the cooking finish using the input unit 71. Specifically, from the finish adjustment K prepared in advance, the user selects one of “strong,” “slightly strong,” “medium,” “slightly weak,” or “weak.”
  • the finish adjustment K “medium” results in a finish at the standard temperature
  • strong results in a finish with a higher finish temperature
  • weak results in a finish with a lower finish temperature.
  • step S3 the user presses the start button on the input unit 71.
  • step S4 the weight sensor 25 detects the total weight W of the object to be heated 60c and the container 60 placed on the table plate 24.
  • step S6 the control unit 23a determines whether the internal temperature Ti is higher than a predetermined temperature. If the internal temperature Ti is higher than the predetermined temperature, the control unit 23a transitions to the high temperature internal mode and heats the object to be heated 60c. On the other hand, if the internal temperature Ti is not higher than the predetermined temperature, the control unit 23a proceeds to step S7.
  • the high temperature inside mode is a mode in which microwave heating is performed without using the infrared sensor 52, because when the temperature of the heating chamber 28 is high, such as immediately after oven cooking, the infrared sensor 52 cannot accurately detect the temperature of the heated object 60c. Therefore, in this mode, the user is prompted to select via the input unit 71 whether the stored state of the heated object 60c is room temperature/refrigerated or frozen, and based on this selection result and the detected weight W, the total heating time is calculated based on the results of a prior check of the heating time required to heat the heated object 60c to the input temperature, and then heating is performed.
  • step S7 the infrared sensor 52 detects the temperature of each part of the top surface of the table plate.
  • step S8 the control unit 23a determines whether the previous heating operation recorded in the recording unit 100 was microwave heating. If the previous heating operation was microwave heating, the process proceeds to step S10; if not, the process proceeds to step S9.
  • step S9 the control unit 23a first detects the lowest temperature of the temperature of the top surface of the table plate measured by the infrared sensor 52 as the initial temperature Ts of the heated object 60c.
  • the control unit 23a classifies the storage state of the heated object 60c into "frozen,” “refrigerated,” or “room temperature” based on the initial temperature Ts. After that, heating and cooking are performed in the normal heating mode according to the classified state of the heated object 60c.
  • the normal heating mode is a heating mode that is selected when the infrared sensor 52 can correctly detect the temperature of the heated object 60c, and heating is terminated when the temperature of the heated object 60c reaches the desired cooking end temperature, as in conventional heating control.
  • step S10 the timer 101 detects the time that has elapsed since the end of the previous heating operation until the user presses the start button (step S3), i.e., the time that has elapsed since the end of the previous heating operation until the start of the current heating operation.
  • step S11 the control unit 23a judges whether the length of time detected in step S10 is shorter than a predetermined time. If the time since the previous heating ended is a long time, for example, several hours, it is judged that there are no traces on the table plate of other heated objects having been cooked in the microwave immediately prior to this microwave cooking, and the process proceeds to step S9. On the other hand, if the time since the previous heating ended is a short time, for example, several minutes, it is judged that there may be traces on the table plate of other heated objects having been cooked in the microwave immediately prior, and the process proceeds to step S12.
  • step S12 the control unit 23a determines whether the maximum temperature of the temperatures of the top surface of the table plate measured by the infrared sensor 52 is higher than the temperature outside the cabinet To measured by the outside temperature sensor 102 plus a predetermined temperature. If the maximum temperature is high, it is determined that there are traces of the table plate having been previously cooked in the microwave with another heated object, and the process proceeds to step S13; if not, the process proceeds to step S9. If the top surface of the table plate is determined to be locally high in this step, it can be estimated that another microwave cooking was performed immediately before the current microwave cooking, and as a result, the top surface of the table plate has become locally high in temperature due to the heat of the previously heated heated object.
  • step S13 first, the control unit 23a detects the minimum temperature among the temperatures of the top surface of the table plate measured by the infrared sensor 52 as the initial temperature Ts of the object to be heated 60c. Next, the control unit 23a classifies the storage state of the object to be heated 60c into either "frozen” or “not frozen” depending on whether the initial temperature Ts is equal to or lower than a predetermined temperature (e.g., -10°C). Thereafter, cooking is carried out in the high temperature placement mode according to the state of the classified object 60c to be heated.
  • a predetermined temperature e.g., -10°C
  • the high temperature placement mode is a heating mode in which, when there is evidence that another heated object 60c had been cooked in the microwave immediately prior to this microwave cooking (the table plate is locally hot) and these evidences may cause the infrared sensor 52 to misinterpret the temperature of the heated object 60c, the microwave heating time is calculated to heat the heated object 60c to an appropriate temperature according to the weight W detected in step S4 and the storage state determined in step S13.
  • the total heating time is the sum of the sensing time t1 in the first stage and the microwave heating time t2 in the second stage.
  • the sensing time t1 in the first stage is the period for performing the sensing process, during which the weight W and storage state of the heated object 60c are obtained.
  • the microwave heating time t2 in the second stage is calculated using one of the formulas below, based on the weight W and storage state of the heated object 60c obtained by sensing.
  • k1 is a coefficient according to the setting of finish adjustment K, for example, 1.5 for the "strong” setting, 1.2 for the "slightly strong” setting, 1 for the "medium” setting, 0.8 for the "slightly weak” setting, and 0.5 for the "weak” setting.
  • k2 to k5 are predetermined positive numbers, and are set to values that always make t2a in formula 1 and t2b in formula 2 positive when the initial temperature Ts of the heated object is equal to or lower than the cooking completion temperature.
  • the microwave heating time t2 required to heat the heated object 60c to the appropriate temperature can be calculated, and the heated object 60c can be heated to the appropriate temperature by using the microwave heating time t2.
  • the objects to be heated this time can be heated to an appropriate temperature even if the temperature of the place where the objects to be heated are placed has risen during the previous heating.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Electric Ovens (AREA)

Abstract

Provided is a high frequency heating cooker which, when continuously cooking a plurality of objects to be heated by heating, is capable of calculating an appropriate heating time for the current object to be heated, even if the temperature of a placement location, or the like, of the objects to be heated has risen during the previous heating. The high frequency heating cooker comprises an oven heating unit, an infrared sensor for detecting temperatures at a plurality of places on an upper surface of a table plate, an out-of-compartment temperature sensor, a recording unit for recording a previous heating operation, a timer for measuring an elapsed time from the end of the previous heating operation to the start of the current heating operation, and a control unit for controlling the oven heating unit, wherein, if the previous heating operation was oven heating, the time measured by the timer is shorter than a predetermined time, and the maximum temperature among the temperatures of the upper surface of the table plate is higher than a predetermined temperature, the control unit classifies the state of the object to be heated as frozen or not frozen on the basis of the initial temperature of the object to be heated, detected by the infrared sensor, calculates a heating time corresponding to the classified state, and controls the oven heating unit.

Description

高周波加熱調理器High frequency cooking equipment
 本発明は、マイクロ波を利用して食品を加熱調理する高周波加熱調理器に関する。 The present invention relates to a high-frequency cooking device that uses microwaves to heat and cook food.
 従来の高周波加熱調理器の中には、加熱室に入れた食品の保存状態等に基づいて、マイクロ波による加熱調理時間を設定するものがある。例えば、特許文献1の要約書には、「被加熱物の保存状態、量、初期表面温度に関わらず、被加熱物を適温に加熱する事を可能とする」高周波加熱調理器として、「被加熱物を加熱する加熱手段と、前記加熱室で前記被加熱物が載置されるテーブルプレートと、該テーブルプレートを支持し前記被加熱物の重量を測定する重量センサと、前記非加熱物に係る温度を検出する温度センサと、仕上がり温度となるように、前記重量センサと前記温度センサの検出値に基づいて前記加熱手段を制御する制御手段と、を備え、該制御手段は、前記被加熱物を加熱している時の温度上昇を前記温度センサにて検出し、検出した温度上昇に応じて前記被加熱物が冷凍状態であるか否かを保存状態として判定し、前記被加熱物の保存状態に合わせた加熱時間を算出し、被加熱物を加熱する」ものが開示されている。また、同文献の請求項5には「前記温度センサは、赤外線センサである」と記載されている。 Some conventional high-frequency cooking devices set the microwave cooking time based on the storage state of the food placed in the heating chamber. For example, the abstract of Patent Document 1 discloses a high-frequency cooking device that "enables the heating of the object to an appropriate temperature regardless of the storage state, amount, or initial surface temperature of the object," and that "includes a heating means for heating the object to be heated, a table plate on which the object to be heated is placed in the heating chamber, a weight sensor that supports the table plate and measures the weight of the object to be heated, a temperature sensor that detects the temperature of the non-heated object, and a control means that controls the heating means based on the detection values of the weight sensor and the temperature sensor so as to reach the finishing temperature, and the control means detects the temperature rise of the object to be heated with the temperature sensor, determines whether the object to be heated is frozen or not as a storage state according to the detected temperature rise, calculates a heating time according to the storage state of the object to be heated, and heats the object to be heated." Claim 5 of the same document also states that "the temperature sensor is an infrared sensor."
 このように、特許文献1の高周波加熱調理器では、非接触の温度センサ(赤外線センサ)が検出した被加熱物の温度上昇に基づき、被加熱物が冷凍状態であるか否かを判定し、その判定結果に合わせた加熱調理時間を算出することで、被加熱物を適切に加熱調理している(同文献の図13~15参照)。 In this way, the high-frequency cooking device of Patent Document 1 determines whether the object is frozen or not based on the temperature rise of the object detected by a non-contact temperature sensor (infrared sensor), and calculates the cooking time according to the result of the determination, thereby appropriately cooking the object (see Figures 13 to 15 of the same document).
特開2019-211171号公報JP 2019-211171 A
 しかしながら、特許文献1の高周波加熱装置は、ある食品を加熱調理した直後に別の食品を連続して加熱調理する状況を想定しておらず、後者の食品を適切に加熱調理できない場合があった。おかずの加熱に続けてごはんを加熱する状況を例に、この問題を具体的に説明する。 However, the high-frequency heating device in Patent Document 1 does not anticipate a situation in which one food is cooked immediately after another, and there are cases in which the latter food cannot be cooked properly. This problem will be specifically explained using the example of a situation in which rice is heated immediately after a side dish is heated.
 この場合、おかず加熱時におかずを載置した部分のテーブルプレートの温度も上昇するため、調理終了後におかずを取り出すと、テーブルプレート上面には室温よりも高温の部分が存在することになる。その後、おかず載置場所と異なる位置にごはんを載置して加熱調理を開始すると、特許文献1の温度センサ(赤外線センサ)では、テーブルプレート上面の高温部が調理対象の食品(被加熱物)であるか否かを判別することができない。そのため、特許文献1の高周波加熱装置では、テーブルプレート上面の高温部(直前までおかずが載置されていた場所)を被加熱物と誤解し、そこでの温度変化に基づいて、不適切なごはん加熱時間を算出する可能性があり、ごはんの加熱不良を惹起する虞があった。 In this case, the temperature of the table plate where the side dish is placed also rises when the side dish is heated, so when the side dish is removed after cooking is finished, there will be a part of the table plate top that is hotter than room temperature. If rice is then placed in a position different from where the side dish was placed and cooking begins, the temperature sensor (infrared sensor) in Patent Document 1 cannot determine whether the high-temperature part of the table plate top is the food to be cooked (the object to be heated). Therefore, the high-frequency heating device in Patent Document 1 may mistake the high-temperature part of the table plate top (the part where the side dish was placed until just before) for the object to be heated and calculate an inappropriate rice heating time based on the temperature change there, which may cause the rice to be heated improperly.
 そこで、本発明は、複数の被加熱物を連続して加熱調理する場合、前回の加熱時に被加熱物の載置場所等の温度が上昇していても、今回の被加熱物の適切な加熱時間を算出することができる高周波加熱調理器を提供することにある。 The present invention aims to provide a high-frequency cooking device that can calculate the appropriate heating time for the current heated object when cooking multiple heated objects consecutively, even if the temperature of the place where the heated object is placed has risen during the previous heating.
 本発明の高周波加熱調理器は、上記目的を達成するためになされたものであり、テーブルプレートを収納した加熱室と、前記テーブルプレートに載置した被加熱物を加熱するレンジ加熱部と、前記テーブルプレートの上面の複数個所の温度を検出する赤外線センサと、前記加熱室の庫外温度を検出する庫外温度センサと、前回加熱動作を記録する記録部と、前回加熱動作終了時から今回加熱動作開始時までの経過時間を測定するタイマーと、前記レンジ加熱部を制御する制御部と、を備え、該制御部は、前記記録部に記録された前回加熱動作がレンジ加熱であり、前記タイマーの計測時間が所定時間よりも短時間であり、かつ、前記赤外線センサが検出した前記テーブルプレートの上面の温度のうち最大温度が所定温度よりも高温であったときに、前記赤外線センサが検出した前記被加熱物の初期温度に基づいて、前記被加熱物の状態が冷凍であるか否かを分類し、分類した状態に応じた加熱時間を算出して、前記レンジ加熱部を制御する。 The high frequency heating cooker of the present invention has been made to achieve the above object, and comprises a heating chamber housing a table plate, a microwave heating unit for heating an object placed on the table plate, an infrared sensor for detecting the temperature at multiple points on the top surface of the table plate, an outside temperature sensor for detecting the temperature outside the heating chamber, a recording unit for recording the previous heating operation, a timer for measuring the elapsed time from the end of the previous heating operation to the start of the current heating operation, and a control unit for controlling the microwave heating unit, and when the previous heating operation recorded in the recording unit was microwave heating, the measured time of the timer is shorter than a predetermined time, and the maximum temperature of the temperature of the top surface of the table plate detected by the infrared sensor is higher than the predetermined temperature, the control unit classifies the state of the object to be heated as frozen or not based on the initial temperature of the object to be heated detected by the infrared sensor, calculates the heating time according to the classified state, and controls the microwave heating unit.
 本発明の高周波加熱調理器によれば、複数の被加熱物を連続して加熱調理する場合、前回の加熱時に被加熱物の載置場所等の温度が上昇していても、今回の被加熱物の適切な加熱時間を算出することができる。 The high-frequency cooking device of the present invention can calculate the appropriate heating time for multiple objects to be heated this time when cooking multiple objects in succession, even if the temperature of the object's placement, etc., has risen during the previous heating.
一実施例に係る加熱調理器の前方斜視図。1 is a front perspective view of a cooking device according to an embodiment; 一実施例に係る加熱調理器の外枠を外した後方斜視図。FIG. 2 is a rear perspective view of the cooking device according to the embodiment with the outer frame removed. 図1のA-A断面図AA cross-sectional view of FIG. 図3において、茶わんに入れた冷ごはんを加熱する場合の赤外線センサの動作説明図In FIG. 3, an explanatory diagram of the operation of the infrared sensor when heating cold rice in a bowl 赤外線センサの拡大断面図。FIG. 一実施例に係る加熱調理器の制御を説明するフローチャート。4 is a flowchart illustrating control of a cooking device according to an embodiment. 一実施例に係る加熱調理器の制御ブロック図。FIG. 2 is a control block diagram of a cooking device according to an embodiment. 一実施例に係る加熱調理器の加熱時間を説明する図。FIG. 4 is a diagram for explaining a heating time of a cooking device according to an embodiment.
 以下、本発明の実施例を添付図面に従って説明する。 The following describes an embodiment of the present invention with reference to the attached drawings.
 図1から図3は、本実施例の主要部分を示すもので、図1は加熱調理器本体を前面側から見た斜視図、図2は同本体の外枠を除いた状態で後方側から見た斜視図、図3は図1のA-A断面図である。 FIGS. 1 to 3 show the main parts of this embodiment, with FIG. 1 being a perspective view of the cooking device body as seen from the front side, FIG. 2 being a perspective view of the cooking device body as seen from the rear side with the outer frame removed, and FIG. 3 being a cross-sectional view taken along line A-A in FIG. 1.
 図において、加熱調理器の本体1は、加熱室28の中に加熱する食品を入れ、マイクロ波やヒータの熱、過熱水蒸気を使用して食品を加熱調理する。 In the figure, the main body 1 of the cooking device has food to be heated placed in the heating chamber 28, and the food is cooked using microwaves, heater heat, or superheated steam.
 ドア2は、加熱室28の内部に食品を出し入れするために開閉するもので、ドア2を閉めることで加熱室28を密閉状態にし、食品を加熱する時に使用するマイクロ波の漏洩を防止し、ヒータの熱や過熱水蒸気を封じ込め、効率良く加熱することを可能とする。 Door 2 opens and closes to put food in and take it out of the heating chamber 28. Closing door 2 seals the heating chamber 28, preventing the leakage of microwaves used to heat food and sealing in the heater heat and superheated steam, allowing for efficient heating.
 取っ手9は、ドア2に取り付けられ、ドア2の開閉を容易にするもので、手で握りやすい形状になっている。 The handle 9 is attached to the door 2 and makes it easy to open and close the door 2, and is shaped to be easy to grip with the hand.
 ガラス窓3は、調理中の食品の状態が確認できるようにドア2に取り付けられており、ヒータ等の発熱による高温に耐えるガラスを使用している。 The glass window 3 is attached to the door 2 so that the state of the food being cooked can be checked, and is made of glass that can withstand high temperatures caused by heaters, etc.
 入力部71は、ドア2の前面下側の操作パネル4に設けられ、マイクロ波加熱やヒータ加熱等の加熱部や加熱する時間等と加熱温度の入力するための操作部6と、操作部6から入力された内容や調理の進行状態を表示する表示部5とで構成されている。 The input unit 71 is provided on the operation panel 4 on the lower front side of the door 2, and is composed of an operation unit 6 for inputting the heating unit (such as microwave heating or heater heating), the heating time, and the heating temperature, and a display unit 5 for displaying the contents inputted from the operation unit 6 and the progress of cooking.
 外枠7は、加熱調理器の本体1の上面と左右側面を覆うキャビネットである。 The outer frame 7 is a cabinet that covers the top and left and right sides of the cooking device's main body 1.
 水タンク42は、加熱水蒸気を作るのに必要な水を溜めておく容器である。 The water tank 42 is a container that stores the water needed to make heated steam.
 後板10は、前記したキャビネットの後面を形成するものであり、上部に外部排気ダクト18が取り付けられ、食品から排出した蒸気や本体1の内部の部品を冷却した後の冷却風(廃熱)39を外部排気ダクト18の外部排気口8から排出する。 The rear panel 10 forms the rear surface of the cabinet, and has an external exhaust duct 18 attached to the top. Steam emitted from food and cooling air (waste heat) 39 after cooling the internal parts of the main body 1 are exhausted from the external exhaust port 8 of the external exhaust duct 18.
 機械室20は、加熱室底面28aと本体1の底板21との間の空間部に設けられ、底板21上には食品を加熱するためのマグネトロン33、マグネトロン33に接続された導波管47、制御部23a・記録部100・タイマー101(図7参照)等を実装した制御基板23、その他後述する各種部品、これらの各種部品を冷却するファン装置15等が取り付けられている。 The machine chamber 20 is provided in the space between the bottom surface 28a of the heating chamber and the bottom plate 21 of the main body 1, and on the bottom plate 21 are mounted a magnetron 33 for heating food, a waveguide 47 connected to the magnetron 33, a control board 23 on which a control unit 23a, a recording unit 100, a timer 101 (see Figure 7), and other various components described below, and a fan unit 15 for cooling these various components.
 加熱室底面28aは、略中央部が凹状に窪んでおり、その中に回転アンテナ26が設置され、マグネトロン33より放射されるマイクロ波エネルギーが導波管47、回転アンテナ26の出力軸46aが貫通する開孔部47aを通して回転アンテナ26の下面に流入し、該回転アンテナ26で拡散されて加熱室28内に放射される。回転アンテナ26の出力軸46aは回転アンテナ駆動部46に連結されている。 The bottom surface 28a of the heating chamber is recessed in approximately the center, within which the rotating antenna 26 is installed, and microwave energy radiated from the magnetron 33 flows into the underside of the rotating antenna 26 through the waveguide 47 and the aperture 47a through which the output shaft 46a of the rotating antenna 26 passes, and is diffused by the rotating antenna 26 before being radiated into the heating chamber 28. The output shaft 46a of the rotating antenna 26 is connected to the rotating antenna drive unit 46.
 ファン装置15は、底板21に取り付けた冷却モータに取り付けられた冷却ファンとで構成する。このファン装置15によって発生する冷却風39は、機械室20内の自己発熱するマグネトロン33やインバータ回路(図示無し)、奥側重量センサ25c,左側重量センサ25bなどを冷却する。また、加熱室28の外側と外枠7の間および前記したように熱風ケース11aと後板10の間を流れ、外枠7と後板10を冷却しながら外部排気ダクト18の外部排気口8より排出される。さらに、後述する熱風モータ13を冷却するためのダクト16aと、後述する赤外線ケース48内に収められた赤外線ユニット50を冷却するためのダクト16bが設けられ、赤外線ユニット50を冷却した冷却風39は、加熱室28内の排熱(水蒸気など)を廃棄する排気ダクト28eの反対側から排出された後外部排気ダクト18より外に排出される。 The fan unit 15 is composed of a cooling fan attached to a cooling motor attached to the bottom plate 21. The cooling air 39 generated by this fan unit 15 cools the magnetron 33, which generates heat, the inverter circuit (not shown), the rear weight sensor 25c, the left weight sensor 25b, and the like in the machine room 20. It also flows between the outside of the heating chamber 28 and the outer frame 7, and between the hot air case 11a and the rear plate 10 as described above, and is discharged from the external exhaust port 8 of the external exhaust duct 18 while cooling the outer frame 7 and the rear plate 10. In addition, a duct 16a for cooling the hot air motor 13 described later and a duct 16b for cooling the infrared unit 50 housed in the infrared case 48 described later are provided, and the cooling air 39 that has cooled the infrared unit 50 is discharged from the opposite side of the exhaust duct 28e that disposes of the exhaust heat (such as water vapor) in the heating chamber 28, and then discharged outside from the external exhaust duct 18.
 レンジ加熱部330(図7)はマグネトロン33とインバータ回路(図示せず)よりなり制御部23aによって制御される。 The microwave heating unit 330 (Figure 7) consists of a magnetron 33 and an inverter circuit (not shown) and is controlled by the control unit 23a.
 加熱室28の後部には、熱風ユニット11が取り付けられ、該熱風ユニット11内には加熱室28内の空気を効率良く循環させる熱風ファン32が取り付けられ、加熱室後部壁面28bには空気の通り道となる熱風吸気孔31と熱風吹出し孔30が設けられている。 A hot air unit 11 is attached to the rear of the heating chamber 28, and a hot air fan 32 is attached inside the hot air unit 11 to efficiently circulate the air inside the heating chamber 28. The rear wall surface 28b of the heating chamber is provided with hot air intake holes 31 and hot air outlet holes 30 that serve as air passages.
 熱風ファン32は、熱風ケース11aの外側に取り付けられた熱風モータ13の駆動により回転し、熱風ヒータ14で循環する空気を加熱する。 The hot air fan 32 rotates when driven by a hot air motor 13 attached to the outside of the hot air case 11a, and heats the air circulating through the hot air heater 14.
 また、熱風ユニット11は、加熱室奥壁面28bの後部側に熱風ケース11aを設け、加熱室奥壁面28bと熱風ケース11aとの間に熱風ファン32とその外周側に位置するように熱風ヒータ14を設け、熱風ケース11aの後側に熱風モータ13を取り付け、そのモータ軸を熱風ケース11aに設けた穴を通して熱風ファン32と連結している。 The hot air unit 11 also has a hot air case 11a at the rear of the inner wall surface 28b of the heating chamber, a hot air fan 32 between the inner wall surface 28b of the heating chamber and the hot air case 11a, and a hot air heater 14 positioned on its outer periphery. A hot air motor 13 is attached to the rear of the hot air case 11a, and the motor shaft is connected to the hot air fan 32 through a hole provided in the hot air case 11a.
 熱風モータ13は、加熱室28や熱風ヒータ14からの熱によって温度上昇するため、それを防ぐために、熱風モータカバー17によって囲い、略筒状に形成されてダクト16aを熱風ケース11aと後板10との間に位置し、ダクト16aの上端開口部を熱風モータカバー17の下面に接続し、下端開口部をファン装置15の吹出し口に接続し、ファン装置15からの冷却風39の一部を熱風モータカバー17内に取り入れるようにしている。 The hot air motor 13 rises in temperature due to heat from the heating chamber 28 and the hot air heater 14, so to prevent this, it is surrounded by a hot air motor cover 17, and the duct 16a is formed in an approximately cylindrical shape and positioned between the hot air case 11a and the rear panel 10. The upper end opening of the duct 16a is connected to the underside of the hot air motor cover 17, and the lower end opening is connected to the outlet of the fan device 15, so that part of the cooling air 39 from the fan device 15 is taken into the hot air motor cover 17.
 加熱室28の加熱室天面28cの裏側には、ヒータよりなるグリル加熱部12が取り付けられている。グリル加熱部12は、マイカ板にヒータ線を巻き付けて平面状に形成し、加熱室28の天面裏側に押し付けて固定し、加熱室28の天面を加熱して加熱室28内の食品を輻射熱によって焼くものである。 A grill heating unit 12 consisting of a heater is attached to the underside of the heating chamber top surface 28c of the heating chamber 28. The grill heating unit 12 is formed into a flat shape by wrapping a heater wire around a mica plate and pressing it against the underside of the top surface of the heating chamber 28 to fix it in place. It heats the top surface of the heating chamber 28 and grills the food inside the heating chamber 28 by radiant heat.
 また、加熱室28の加熱室天面28cの奥側には後述する赤外線ユニット50が設けられ、赤外線ユニット50を冷却するために赤外線ケース48にて覆い、略筒状に形成されてダクト16bを熱風ケース11aと後板10との間に位置し、ダクト16bの上端開口部を赤外線ケース48の側面に接続し、下端開口部を熱風モータカバー17上面と接続し、ファン装置15からの冷却風39の一部を取り入れるようにしている。 Furthermore, an infrared unit 50 (described later) is provided at the rear of the heating chamber top surface 28c of the heating chamber 28, and is covered with an infrared case 48 to cool the infrared unit 50. The duct 16b is formed in a roughly cylindrical shape and is positioned between the hot air case 11a and the rear panel 10, with the upper end opening of the duct 16b connected to the side of the infrared case 48 and the lower end opening connected to the top surface of the hot air motor cover 17, and takes in some of the cooling air 39 from the fan device 15.
 加熱室28の加熱室天面28cの左奥側には、加熱室28の雰囲気温度(以下、「庫内温度Ti」と称する)を検出する庫内温度センサ80(サーミスタ)を設けている。 An internal temperature sensor 80 (thermistor) that detects the ambient temperature of the heating chamber 28 (hereinafter referred to as the "internal temperature Ti") is provided at the rear left side of the heating chamber top surface 28c of the heating chamber 28.
 また、加熱室底面28aには、複数個の重量センサ25、例えば前側左右に左側重量センサ25b、右側重量センサ(図示せず)、後側中央に奥側重量センサ25cが設けられ、その上にテーブルプレート24が載置されている。 The bottom surface 28a of the heating chamber is provided with multiple weight sensors 25, such as a left weight sensor 25b and a right weight sensor (not shown) on the front left and right, and a rear weight sensor 25c in the center of the rear side, on which the table plate 24 is placed.
 テーブルプレート24は、食品を載置するためのもので、ヒータ加熱とマイクロ波加熱の両方に使用できるように耐熱性を有し、かつ、マイクロ波の透過性が良い材料で成形されている。 The table plate 24 is for placing food on and is made of a heat-resistant material that is suitable for both heater and microwave heating, and is also highly permeable to microwaves.
 ボイラー43は、熱風ユニット11の熱風ケース11aの外側面に取り付けられ、飽和水蒸気を熱風ユニット11内に臨ませ、熱風ユニット11内に噴出した飽和水蒸気は熱風ヒータ14によって加熱され過熱水蒸気となる。 The boiler 43 is attached to the outer surface of the hot air case 11a of the hot air unit 11, and the saturated water vapor is directed into the hot air unit 11. The saturated water vapor ejected into the hot air unit 11 is heated by the hot air heater 14 and becomes superheated water vapor.
 ポンプ部87は、水タンク42の水をボイラー43まで汲み上げるもので、ポンプとポンプを駆動するモータで構成される。 The pump section 87 pumps water from the water tank 42 up to the boiler 43, and is composed of a pump and a motor that drives the pump.
 加熱部はレンジ加熱部330、熱風ヒータ14、熱風モータ13、グリル加熱部12、ボイラー43などである。 The heating parts include the range heating part 330, the hot air heater 14, the hot air motor 13, the grill heating part 12, the boiler 43, etc.
 次に、図4~図5を用いて加熱室28の上方に設けられた非接触で被加熱物の温度を検出する赤外線センサ52について詳細を説明する。 Next, we will use Figures 4 and 5 to provide a detailed explanation of the infrared sensor 52 that is installed above the heating chamber 28 and detects the temperature of the object to be heated in a non-contact manner.
 図4は図3で示す断面図を使用して茶わんにごはんを入れて加熱する場合の赤外線センサの動作説明図、図5は、赤外線センサの説明用の拡大図である。 Figure 4 is an explanatory diagram of the operation of the infrared sensor when rice is placed in a bowl and heated using the cross-sectional view shown in Figure 3, and Figure 5 is an explanatory enlarged view of the infrared sensor.
 51はモータで、モータ51の向きは、回転軸51aと加熱室奥壁面28bと並行となるように取り付けられている。そして、回転軸51aが後述する筒状のユニットケース54を回転(駆動)させることで、ユニットケース54に収めた赤外線センサ52を搭載した基板53を回転させて赤外線センサ52のレンズ部52aの向きを加熱室底面28aの奥側(加熱室奥壁面28b側)から加熱室開口部28dまでの範囲を回転移動して温度を検出できるようにしている。モータ51はステッピングモータを使用し制御基板23に設けられた制御部23aの制御によって回転軸51aを正転、逆転、また回転角度を好みに動作可能となっている。 51 denotes a motor, which is attached so that its rotation axis 51a is parallel to the inner wall surface 28b of the heating chamber. The rotation axis 51a rotates (drives) a cylindrical unit case 54, which will be described later, which rotates a board 53 carrying an infrared sensor 52 housed in the unit case 54, and the lens portion 52a of the infrared sensor 52 rotates and moves within a range from the inner side of the bottom surface 28a of the heating chamber (the inner wall surface 28b side of the heating chamber) to the heating chamber opening 28d, allowing the temperature to be detected. The motor 51 uses a stepping motor, and the rotation axis 51a can be rotated forward or backward and at any desired rotation angle under the control of a control unit 23a provided on the control board 23.
 52は赤外線センサで、テーブルプレート24や被加熱物60cの温度を非接触で検出する。本実施例では、基板53上に8個の赤外線検出素子(例えばサーモパイル)を回転軸51aの方向に一列に並べて赤外線センサ52を構成している。そのため、本実施例の赤外線センサ52は、テーブルプレート24上の8個所の温度を同時に検出することができる。また、本実施例の赤外線センサ52は、赤外線検出素子群を設置した基板53を回転軸51a周りに回転させることで、テーブルプレート24の全域の温度を検出できるようにしている。 Infrared sensor 52 detects the temperature of table plate 24 and heated object 60c without contact. In this embodiment, infrared sensor 52 is configured by arranging eight infrared detection elements (e.g. thermopiles) in a row on substrate 53 in the direction of rotation axis 51a. Therefore, infrared sensor 52 of this embodiment can simultaneously detect the temperature of eight locations on table plate 24. In addition, infrared sensor 52 of this embodiment can detect the temperature of the entire table plate 24 by rotating substrate 53 on which the group of infrared detection elements is mounted, around rotation axis 51a.
 54は筒状のユニットケースで、最大径部に基板53を配置し赤外線センサ52のレンズ部52aを臨ませる窓部54aを設けている。 54 is a cylindrical unit case, with the circuit board 53 located at the maximum diameter and a window 54a through which the lens 52a of the infrared sensor 52 can be seen.
 55は金属板から成るシャッタである。シャッタ55は、赤外線センサ52を使用しない時に後述する観測窓44aを閉じるものである。また加熱室28の温度がユニットケース54に伝わるのを防止するために、ユニットケース54の外周に冷却風を流せるようにユニットケース54の外周に沿って隙間を設けた風路55cを形成するようにシャッタ55を配置し、風路55cに冷却風39流す出入り口となる開口55aと開口55bを設けている。 55 is a shutter made of a metal plate. The shutter 55 closes the observation window 44a, which will be described later, when the infrared sensor 52 is not in use. In order to prevent the temperature of the heating chamber 28 from being transmitted to the unit case 54, the shutter 55 is arranged to form an air passage 55c with gaps along the outer periphery of the unit case 54 so that cooling air can flow around the outer periphery of the unit case 54, and openings 55a and 55b are provided in the air passage 55c as an entrance and exit for the cooling air 39 to flow.
 56は位置決め凸部で、赤外線センサ52の検知点を基準位置(図4の検知点a)に合わせるように制御部23aがモータ51の回転を制御した時、赤外線センサ52の検知点の基準位置を補正できるように、シャッタ55によって観測窓44aを閉じた時に、位置決め凸部56が赤外線ケース48に設けられたストッパ(図示せず)に当接させた状態で回転軸51aをスリップさせることで、制御部23aの制御する基準位置と赤外線センサ52の検知する基準位置となる検知点aの位置を補正することができる
 44は加熱室28の内方向に突出した円弧状の観測部で、回転軸51aの回転中心と筒状のユニットケース54の中心とユニットケース54の外周に沿って設けられて円弧状に曲げられたシャッタ55の円弧の中心と円弧状の観測部44の各中心位置は全て同一位置となっている。44aは観測部44に設けた観測窓で、赤外線センサ52の検出する視野範囲となる範囲を開口している。
Reference numeral 56 denotes a positioning protrusion, and when the control unit 23a controls the rotation of the motor 51 so that the detection point of the infrared sensor 52 is aligned with the reference position (detection point a in FIG. 4), the reference position of the detection point of the infrared sensor 52 can be corrected by making the rotation shaft 51a slip with the positioning protrusion 56 abutting against a stopper (not shown) provided on the infrared case 48 when the observation window 44a is closed by the shutter 55, and the reference position controlled by the control unit 23a and the position of the detection point a which is the reference position detected by the infrared sensor 52 can be corrected. Reference numeral 44 denotes an arc-shaped observation unit protruding inwardly of the heating chamber 28, and the rotation center of the rotation shaft 51a, the center of the cylindrical unit case 54, the center of the arc of the shutter 55 which is provided along the outer periphery of the unit case 54 and bent into an arc, and the center positions of the arc-shaped observation unit 44 are all in the same position. Reference numeral 44a denotes an observation window provided in the observation unit 44, and opens a range which is the field of view detected by the infrared sensor 52.
 観測部44を加熱室28の内側に突出させることで、最低限の狭い観測窓開口範囲で広範囲の温度検知が可能となる。 By protruding the observation section 44 into the inside of the heating chamber 28, it is possible to detect temperatures over a wide range with a minimum narrow observation window opening range.
 49は凸部であり、加熱室天面28cから赤外線ケース48と赤外線ユニット50を離すもので、加熱室天面28cとの接触を凸部49のみとすることで加熱時にグリル加熱部12や熱風ユニット11などのヒータによって加熱された加熱室天面28cの温度が赤外線ユニット50に伝わりにくいようにしている。 49 is a convex portion that separates the infrared case 48 and the infrared unit 50 from the heating chamber top surface 28c. By having only the convex portion 49 come into contact with the heating chamber top surface 28c, the temperature of the heating chamber top surface 28c heated by heaters such as the grill heating section 12 and the hot air unit 11 during heating is less likely to be transmitted to the infrared unit 50.
 102は赤外線ユニット50内の基板53に配置した庫外温度センサであり、加熱室28の外側の庫外温度Toを検知する。なお、複数の被加熱物を連続して加熱する場合、初回の加熱開始前に測定された庫外温度Toは、加熱調理器外部の室温とほぼ等しく、2回目以降の加熱開始前に測定された庫外温度Toは、加熱調理器外部の室温より高温になっているものの、庫内温度Tiよりは低温である。 102 is an outside temperature sensor arranged on the substrate 53 inside the infrared unit 50, which detects the outside temperature To outside the heating chamber 28. When multiple heated objects are heated continuously, the outside temperature To measured before the first heating starts is approximately equal to the room temperature outside the cooking device, and the outside temperature To measured before the second or subsequent heating starts is higher than the room temperature outside the cooking device but lower than the inside temperature Ti.
 制御基板23に搭載された制御部23aの赤外線センサ52の測定要領について図4により説明する。 The measurement method of the infrared sensor 52 of the control unit 23a mounted on the control board 23 is explained with reference to FIG. 4.
 図4は、茶わんにごはんを入れて加熱する場合の赤外線センサの動作を説明する図である。図4のように、検知点fにおいて被加熱物60cの表面を直接検出する事ができる。 Figure 4 is a diagram explaining the operation of the infrared sensor when rice is placed in a bowl and heated. As shown in Figure 4, the surface of the heated object 60c can be directly detected at detection point f.
 赤外線センサ52は、一度の測定で8点を測定するセンサをモータ51で基準位置(図4、検知点a)から終点位置(図4、検知点h)まで赤外線センサ52を3度ずつ14回、回転移動させて計15列の測定が行われ、左右方向8点×前後方向15列の120か所の温度を検出する。そして終点位置から基準位置までは赤外線センサ52は測定せずに直接基準位置に戻る。 The infrared sensor 52 measures eight points at a time, and is rotated 14 times by three degrees by the motor 51 from the reference position (detection point a in Figure 4) to the end position (detection point h in Figure 4), measuring a total of 15 rows, detecting the temperature of 120 points (8 points in the left-right direction x 15 rows in the front-back direction).The infrared sensor 52 then returns directly to the reference position without taking any measurements from the end position to the reference position.
 温度検知は、基準位置から終点位置まで赤外線センサ52を3度ずつ14回移動させて15列で測定し、終点位置から基準位置までは戻ることを繰り返す。測定した温度の処理は後述する。 The temperature is detected by moving the infrared sensor 52 from the reference position to the end position by 3 degrees 14 times, measuring in 15 rows, and then repeating the process of returning from the end position to the reference position. The processing of the measured temperature will be described later.
 次に赤外線センサ52の回転移動について説明する。 Next, we will explain the rotational movement of the infrared sensor 52.
 図4のように被加熱物(ごはん)60cが入った茶碗を熱室底面28aに設けられているテーブルプレート24に載置して加熱を開始すると、制御部23aはモータ51の回転軸51aを基準位置に回転するように制御する。回転軸51aが基準位置へと回転することでユニットケース54を回転し、赤外線センサ52のレンズ部52aの向きも基準位置の検知点aを検知できる位置に回転(図4参照)する。 As shown in Figure 4, when a bowl containing the object to be heated (rice) 60c is placed on the table plate 24 provided on the bottom surface 28a of the heat chamber and heating is started, the control unit 23a controls the rotating shaft 51a of the motor 51 to rotate to the reference position. When the rotating shaft 51a rotates to the reference position, the unit case 54 rotates, and the lens part 52a of the infrared sensor 52 also rotates to a position where it can detect the detection point a at the reference position (see Figure 4).
 ユニットケース54を回転することで、被加熱物60cの温度の検出は前述した基準位置(検知点a)からテーブルプレート24の検知点b、検知点cへと進み、さらにユニットケース54が回転すると茶わん(容器60)の外側の温度を高さ方向に検知し、検知点dから検知点eの温度を検知する。検知点が茶わん(容器60)の開口部の頂点に達した後は、被加熱物60cの表面の温度を検知点fで検知し、次に茶わん(容器60)の内側の温度を検知点gで検知し、次にテーブルプレート24の温度を検知点hで検知する。 By rotating the unit case 54, the detection of the temperature of the heated object 60c progresses from the reference position (detection point a) described above to detection point b and detection point c on the table plate 24, and as the unit case 54 rotates further, the temperature of the outside of the bowl (container 60) is detected in the height direction, and the temperature is detected from detection point d to detection point e. After the detection point reaches the top of the opening of the bowl (container 60), the temperature of the surface of the heated object 60c is detected at detection point f, then the temperature of the inside of the bowl (container 60) is detected at detection point g, and then the temperature of the table plate 24 is detected at detection point h.
 検知点a~検知点hの温度検知範囲の温度の検知は、ユニットケース54を回転する往路の片方で行い、一度終点まで温度検知を行った後、復路は途中で測定せず温度の検知をしないで、再度基準位置に戻ってから再び検知点a~検知点hと順次行う。 The temperature detection range from detection point a to detection point h is detected on one side of the forward path of the rotation of the unit case 54, and once the temperature detection is completed to the end point, no measurements or temperature detection is performed on the return path, and the temperature detection is repeated again from detection point a to detection point h in sequence after returning to the reference position.
 温度の検知数は好みに変えられ、前述した検知点a~検知点hは、説明上の例で、前記したように15列のデータを測定する。 The number of temperature detections can be changed as desired, and the aforementioned detection points a to h are illustrative examples, measuring 15 columns of data as described above.
 また、温度の検知は、温度を検知している間はモータ51の回転を止めて検知し、検知した後に回転を行う。正確に温度を検知するため回転を止めて測定する方が良い。 In addition, the motor 51 stops rotating while the temperature is being detected, and then resumes rotating after the temperature is detected. To detect the temperature accurately, it is better to measure with the rotation stopped.
 例えば、加熱初めは、ユニットケース54の回転を止めて検知し、検知した後に一定角度で回転を行い、回転を止めて検知し、検知した後に一定角度で回転を行うことをくりかえしてマス目状に温度分布を測定する。そうすることで、等角度で一定位置の温度を測定することによりテーブルプレート24の全面をまんべんなく測定するものである。 For example, at the beginning of heating, the rotation of the unit case 54 is stopped and detected, then rotated at a fixed angle after detection, stopped and detected, then rotated at a fixed angle after detection, and this process is repeated to measure the temperature distribution in a grid pattern. By doing so, the temperature is measured at fixed positions at equal angles, and the entire surface of the table plate 24 is measured evenly.
 赤外線センサ52は、加熱室底面28aに載置されたテーブルプレート24の四辺から加熱室天面28cに垂直に伸ばした仮想線の内側の加熱室天面28cの左右方向の略中央に設けられている。 The infrared sensor 52 is located approximately in the center in the left-right direction of the heating chamber top surface 28c inside an imaginary line extending perpendicularly from the four sides of the table plate 24 placed on the heating chamber bottom surface 28a to the heating chamber top surface 28c.
 そして、赤外線センサ52の視野は、検知点aと検知点hはテーブルプレート24の前後のフランジ部の温度を検知する範囲に略定め、赤外線センサ52の整列した複数素子の両側のセンサはテーブルプレート24の左右のフランジ部の温度を検知する範囲に略定められている。こうすることで、テーブルプレート24の略中央に載置された被加熱物60cの温度を正確に検出する事が可能となる。また赤外線センサ52の回転は、温度の測定範囲が広い方に回転させる方が、容器60に入れられた被加熱物60cの温度を検知するのに良い。 The field of view of the infrared sensor 52, detection points a and h, is approximately set to a range for detecting the temperature of the front and rear flange portions of the table plate 24, and the sensors on both sides of the aligned multiple elements of the infrared sensor 52 are approximately set to a range for detecting the temperature of the left and right flange portions of the table plate 24. This makes it possible to accurately detect the temperature of the heated object 60c placed approximately in the center of the table plate 24. Also, it is better to rotate the infrared sensor 52 in the direction with a wider temperature measurement range in order to detect the temperature of the heated object 60c placed in the container 60.
 このような設定で、容器60をテーブルプレート24の奥側に載置した時は、赤外線センサ52の略下側の検知点bで茶わん内の被加熱物60cの温度を検知可能となり、容器60をテーブルプレート24の左右の一方側に載置したときは、赤外線センサ52は加熱室28の左右横方向の略中央に設けられているため、赤外線センサ52内に設けられている一列に整列した8素子の両側の赤外線センサによって被加熱物60cの温度の検出が可能となる。 With this setting, when the container 60 is placed at the back of the table plate 24, the temperature of the heated object 60c in the bowl can be detected at detection point b, which is approximately below the infrared sensor 52. When the container 60 is placed on one of the left and right sides of the table plate 24, the infrared sensor 52 is located approximately in the center of the heating chamber 28 in the left-right direction, so the infrared sensors on both sides of the eight elements aligned in a row in the infrared sensor 52 can detect the temperature of the heated object 60c.
 さらに、重量センサ25による重量情報と赤外線センサ52による検知した温度分布情報から重量情報が軽く温度分布の温度上昇が広範囲に認められるときは、被加熱物60cが薄くて広いものと判断できる。 Furthermore, when the weight information from the weight sensor 25 and the temperature distribution information detected by the infrared sensor 52 show that the weight information is light and the temperature distribution shows a wide range of temperature rise, it can be determined that the heated object 60c is thin and wide.
 本実施例では、容器60に入れた被加熱物60cの温度検知の方法を詳細説明したが、容器を使用しない被加熱物60cがブロック状の大きな塊の場合でも、ブロック状の被加熱物60cの側面の高さ方向と上面の温度を検知できるため、被加熱物60cの温度分布を詳細に検知することが可能となる。 In this embodiment, a method for detecting the temperature of the heated object 60c placed in the container 60 has been described in detail, but even if the heated object 60c is a large block-shaped lump without using a container, the temperature of the side height direction and the top surface of the block-shaped heated object 60c can be detected, making it possible to detect the temperature distribution of the heated object 60c in detail.
 <レンジ加熱制御のフローチャート>
 次に、図6のフローチャートを用いて、本実施例の加熱調理器による、レンジ加熱制御を説明する。
<Flowchart of Microwave Heating Control>
Next, the range heating control by the cooking device of this embodiment will be described with reference to the flow chart of FIG.
 初めに、工程S1では、ユーザは、加熱室28のドア2を開け、被加熱物60cを入れた容器60をテーブルプレート24に載置した後、ドア2を閉める。そして、入力部71を用いてオートメニューを選択する。 First, in step S1, the user opens the door 2 of the heating chamber 28, places the container 60 containing the object to be heated 60c on the table plate 24, and then closes the door 2. Then, the user selects an auto menu using the input unit 71.
 次に、工程S2では、ユーザは、入力部71を用いて、調理の仕上がりを調節する。具体的には、予め用意された仕上がり調節Kから、「強」、「やや強」、「中」、「やや弱」、「弱」のいずれかを選択する。ここで、仕上がり調節Kの「中」は標準の温度で仕上がりであり、「強」は仕上がり温度をより高くした仕上がりであり、「弱」は仕上がり温度をより低くした仕上がりである。 Next, in step S2, the user adjusts the cooking finish using the input unit 71. Specifically, from the finish adjustment K prepared in advance, the user selects one of "strong," "slightly strong," "medium," "slightly weak," or "weak." Here, the finish adjustment K "medium" results in a finish at the standard temperature, "strong" results in a finish with a higher finish temperature, and "weak" results in a finish with a lower finish temperature.
 工程S3では、ユーザは、入力部71のスタートボタンを入力する。 In step S3, the user presses the start button on the input unit 71.
 工程S4では、重量センサ25は、テーブルプレート24に載置された、被加熱物60cと容器60の合計の重量Wを検出する。 In step S4, the weight sensor 25 detects the total weight W of the object to be heated 60c and the container 60 placed on the table plate 24.
 工程S5では、庫内温度センサ80は庫内温度Tiを検出する。 In step S5, the internal temperature sensor 80 detects the internal temperature Ti.
 工程S6では、制御部23aは、庫内温度Tiが所定の温度より高いかを判定する。そして、庫内温度Tiが所定の温度より高い場合は、庫内高温モードに移行して被加熱物60cを加熱する。一方、そうでない場合は、工程S7に進む。 In step S6, the control unit 23a determines whether the internal temperature Ti is higher than a predetermined temperature. If the internal temperature Ti is higher than the predetermined temperature, the control unit 23a transitions to the high temperature internal mode and heats the object to be heated 60c. On the other hand, if the internal temperature Ti is not higher than the predetermined temperature, the control unit 23a proceeds to step S7.
 ここで、庫内高温モードとは、オーブン調理の直後のように加熱室28の温度が高い場合、赤外線センサ52が被加熱物60cの温度を正確に検出できなくなるため、赤外線センサ52を使用せずにレンジ加熱を行うモードである。そのため、このモードでは、ユーザに、入力部71で被加熱物60cの保存状態が常温/冷蔵か冷凍かを選択させ、この選択結果と、検出した重量Wを基に、入力された温度に被加熱物60cが加熱できる程度の加熱時間を事前に確認した結果に基づいて総加熱時間として算出し加熱する。 Here, the high temperature inside mode is a mode in which microwave heating is performed without using the infrared sensor 52, because when the temperature of the heating chamber 28 is high, such as immediately after oven cooking, the infrared sensor 52 cannot accurately detect the temperature of the heated object 60c. Therefore, in this mode, the user is prompted to select via the input unit 71 whether the stored state of the heated object 60c is room temperature/refrigerated or frozen, and based on this selection result and the detected weight W, the total heating time is calculated based on the results of a prior check of the heating time required to heat the heated object 60c to the input temperature, and then heating is performed.
 工程S7では、赤外線センサ52は、テーブルプレート上面の各部の温度を検出する。 In step S7, the infrared sensor 52 detects the temperature of each part of the top surface of the table plate.
 工程S8では、制御部23aは、記録部100に記録された前回加熱動作がレンジ加熱であるかを判定する。そして、前回加熱動作がレンジ加熱であれば工程S10に進み、そうでなければ工程S9に進む。 In step S8, the control unit 23a determines whether the previous heating operation recorded in the recording unit 100 was microwave heating. If the previous heating operation was microwave heating, the process proceeds to step S10; if not, the process proceeds to step S9.
 工程S9では、制御部23aは、まず、赤外線センサ52が測定したテーブルプレート上面の温度のうち最低温度を被加熱物60cの初期温度Tsとして検出する。次に、制御部23aは、その初期温度Tsに基づいて、被加熱物60cの保存状態を、「冷凍」、「冷蔵」、「常温」の何れかに分類する。その後、分類された被加熱物60cの状態に応じて、通常加熱モードでの加熱調理が実行される。なお、通常加熱モードは、赤外線センサ52で被加熱物60cの温度を正しく検出可能な場合に選択される加熱モードであり、従来の加熱制御と同様に、被加熱物60cの温度が所望の調理終了温度に到達した時点で加熱を終了するものである。 In step S9, the control unit 23a first detects the lowest temperature of the temperature of the top surface of the table plate measured by the infrared sensor 52 as the initial temperature Ts of the heated object 60c. Next, the control unit 23a classifies the storage state of the heated object 60c into "frozen," "refrigerated," or "room temperature" based on the initial temperature Ts. After that, heating and cooking are performed in the normal heating mode according to the classified state of the heated object 60c. Note that the normal heating mode is a heating mode that is selected when the infrared sensor 52 can correctly detect the temperature of the heated object 60c, and heating is terminated when the temperature of the heated object 60c reaches the desired cooking end temperature, as in conventional heating control.
 工程S10では、タイマー101は、前回の加熱動作終了時からユーザがスタートボタン入力(工程S3)するまでの経過時間、すなわち、前回加熱終了時から今回加熱開始時までの経過時間を検出する。 In step S10, the timer 101 detects the time that has elapsed since the end of the previous heating operation until the user presses the start button (step S3), i.e., the time that has elapsed since the end of the previous heating operation until the start of the current heating operation.
 工程S11では、制御部23aは、工程S10で検出された時間の長さが所定時間より短時間であるかを判定する。前回加熱終了からの経過時間が例えば数時間など、長時間であれば、テーブルプレートには、今回のレンジ加熱調理の直前に他の被加熱物をレンジ加熱調理していた痕跡はないと判定し、工程S9へと進む。一方、前回加熱終了からの経過時間が例えば数分など、短時間であれば、テーブルプレートには、直前に他の被加熱物をレンジ加熱調理していた痕跡が存在する可能性があると判定し、工程S12に進む。 In step S11, the control unit 23a judges whether the length of time detected in step S10 is shorter than a predetermined time. If the time since the previous heating ended is a long time, for example, several hours, it is judged that there are no traces on the table plate of other heated objects having been cooked in the microwave immediately prior to this microwave cooking, and the process proceeds to step S9. On the other hand, if the time since the previous heating ended is a short time, for example, several minutes, it is judged that there may be traces on the table plate of other heated objects having been cooked in the microwave immediately prior, and the process proceeds to step S12.
 工程S12では、制御部23aは、赤外線センサ52が測定したテーブルプレート上面の温度のうち最大温度が、庫外温度センサ102が測定した庫外温度Toに所定の温度を加算した温度よりも高温であるかを判定する。そして、最大温度が高温であれば、テーブルプレートには、直前に他の被加熱物をレンジ加熱調理していた痕跡があると判定し、工程S13に進み、そうでなければ、工程S9に進む。なお、本工程でテーブルプレート上面が局所的に高温と判定された場合、現在のレンジ加熱調理の直前に他のレンジ加熱調理が実行された結果、前回加熱された被加熱物の熱によってテーブルプレート上面が局所的に高温になっていると推定することができる。 In step S12, the control unit 23a determines whether the maximum temperature of the temperatures of the top surface of the table plate measured by the infrared sensor 52 is higher than the temperature outside the cabinet To measured by the outside temperature sensor 102 plus a predetermined temperature. If the maximum temperature is high, it is determined that there are traces of the table plate having been previously cooked in the microwave with another heated object, and the process proceeds to step S13; if not, the process proceeds to step S9. If the top surface of the table plate is determined to be locally high in this step, it can be estimated that another microwave cooking was performed immediately before the current microwave cooking, and as a result, the top surface of the table plate has become locally high in temperature due to the heat of the previously heated heated object.
 工程S13では、まず、制御部23aは、赤外線センサ52が測定したテーブルプレート上面の温度のうち最低温度を、被加熱物60cの初期温度Tsとして検出する。次に、制御部23aは、その初期温度Tsが所定温度(例えば、-10℃)以下であるか否かに応じて、被加熱物60cの保存状態を、「冷凍」か「冷凍以外」のどちらかに分類する。
その後、分類された被加熱物60cの状態に応じて、載置場所高温モードでの加熱調理が実行される。
In step S13, first, the control unit 23a detects the minimum temperature among the temperatures of the top surface of the table plate measured by the infrared sensor 52 as the initial temperature Ts of the object to be heated 60c. Next, the control unit 23a classifies the storage state of the object to be heated 60c into either "frozen" or "not frozen" depending on whether the initial temperature Ts is equal to or lower than a predetermined temperature (e.g., -10°C).
Thereafter, cooking is carried out in the high temperature placement mode according to the state of the classified object 60c to be heated.
 載置場所高温モードは、今回のレンジ加熱調理の直前に他の被加熱物をレンジ加熱調理していた痕跡があり(テーブルプレートが局所的に高温である状態)、その痕跡のために、赤外線センサ52では被加熱物60cの温度を誤解する可能性がある場合に、工程S4で検出した重量Wと、工程S13で判別した保存状態に応じて、被加熱物60cを適切な温度に加熱できる程度のレンジ加熱時間を算出して加熱する加熱モードである。 The high temperature placement mode is a heating mode in which, when there is evidence that another heated object 60c had been cooked in the microwave immediately prior to this microwave cooking (the table plate is locally hot) and these evidences may cause the infrared sensor 52 to misinterpret the temperature of the heated object 60c, the microwave heating time is calculated to heat the heated object 60c to an appropriate temperature according to the weight W detected in step S4 and the storage state determined in step S13.
 ここで、図8を用いて、載置場所高温モードが選択された場合のレンジ加熱を説明する。載置場所高温モードが選択された場合の総加熱時間は、前段のセンシング時間t1と、後段のレンジ加熱時間t2の和である。前段のセンシング時間t1は、センシング処理を実行するための期間であり、被加熱物60cの重量Wや保存状態が求められる。一方、後段のレンジ加熱時間t2は、センシングで求めた被加熱物60cの重量Wと保存状態に基づいて、下記の何れかの式で算出される。 Here, using Figure 8, microwave heating when the high temperature placement mode is selected is explained. When the high temperature placement mode is selected, the total heating time is the sum of the sensing time t1 in the first stage and the microwave heating time t2 in the second stage. The sensing time t1 in the first stage is the period for performing the sensing process, during which the weight W and storage state of the heated object 60c are obtained. Meanwhile, the microwave heating time t2 in the second stage is calculated using one of the formulas below, based on the weight W and storage state of the heated object 60c obtained by sensing.
 <被加熱物が冷凍である場合>
 t2a=k×(k-k×Ts)×W ・・・(式1)
 <被加熱物が冷凍以外(冷蔵、常温)の場合>
 t2b=k×(k-k×Ts)×W ・・・(式2)
 ここで、kは、仕上がり調節Kの設定に応じた係数であり、例えば、「強」設定の場合は1.5、「やや強」設定の場合は1.2、「中」設定の場合は1、「やや弱」設定の場合は0.8、「弱」設定の場合は0.5である。また、k~kは所定の正数であり、被加熱物の初期温度Tsが調理完了温度以下である場合に、式1のt2a、式2のt2bが常に正値となる値が設定される。
<When the object to be heated is frozen>
t2a= k1 ×( k2 - k3 ×Ts)×W...(Formula 1)
<If the item to be heated is not frozen (refrigerated, room temperature)>
t2b=k 1 × (k 4 - k 5 ×Ts) × W (Formula 2)
Here, k1 is a coefficient according to the setting of finish adjustment K, for example, 1.5 for the "strong" setting, 1.2 for the "slightly strong" setting, 1 for the "medium" setting, 0.8 for the "slightly weak" setting, and 0.5 for the "weak" setting. Also, k2 to k5 are predetermined positive numbers, and are set to values that always make t2a in formula 1 and t2b in formula 2 positive when the initial temperature Ts of the heated object is equal to or lower than the cooking completion temperature.
 これにより、被加熱物60cの保存状態を「冷凍」か「冷凍以外」かに分類できさえすれば、直前のレンジ加熱の痕跡によって被加熱物60cの温度を正確に測定できない場合であっても、被加熱物60cを適温に加熱するために必要とされるレンジ加熱時間t2を算出することができ、そのレンジ加熱時間t2を用いることで被加熱物60cを適温に加熱することができる。 As a result, as long as the storage state of the heated object 60c can be classified as "frozen" or "not frozen," even if the temperature of the heated object 60c cannot be accurately measured due to traces of previous microwave heating, the microwave heating time t2 required to heat the heated object 60c to the appropriate temperature can be calculated, and the heated object 60c can be heated to the appropriate temperature by using the microwave heating time t2.
 以上で説明したように、本実施例の高周波加熱調理器によれば、複数の被加熱物を連続して加熱調理する場合、前回の加熱時に被加熱物の載置場所等の温度が上昇していても、今回の被加熱物を適温に加熱することができる。 As described above, with the high-frequency cooking device of this embodiment, when multiple objects to be heated are successively cooked, the objects to be heated this time can be heated to an appropriate temperature even if the temperature of the place where the objects to be heated are placed has risen during the previous heating.
1 加熱調理器の本体、
23a 制御部、
24 テーブルプレート、
25 重量センサ、
28 加熱室、
33 マグネトロン、
52 赤外線センサ、
60 容器、
60c 被加熱物、
71 入力部、
80 庫内温度センサ、
100 記録部
101 タイマー
102 庫外温度センサ、
Ti 庫内温度、
To 庫外温度、
Ts 被加熱物の初期温度
1. The main body of the cooking device,
23a control unit,
24 table plate,
25 weight sensor,
28 heating chamber,
33 magnetron,
52 infrared sensor,
60 containers,
60c object to be heated,
71 input unit,
80 Internal temperature sensor,
100 Recording unit 101 Timer 102 Outside temperature sensor
Ti: temperature inside the chamber;
To outside temperature,
Ts Initial temperature of the heated object

Claims (2)

  1.  テーブルプレートを収納した加熱室と、
     前記テーブルプレートに載置した被加熱物を加熱するレンジ加熱部と、
     前記テーブルプレートの上面の複数個所の温度を検出する赤外線センサと、
     前記加熱室の庫外温度を検出する庫外温度センサと、
     前回加熱動作を記録する記録部と、
     前回加熱動作終了時から今回加熱動作開始時までの経過時間を測定するタイマーと、
     前記レンジ加熱部を制御する制御部と、を備え、
     該制御部は、
     前記記録部に記録された前回加熱動作がレンジ加熱であり、前記タイマーの計測時間が所定時間よりも短時間であり、かつ、前記赤外線センサが検出した前記テーブルプレートの上面の温度のうち最大温度が所定温度よりも高温であったときに、
     前記赤外線センサが検出した前記被加熱物の初期温度に基づいて、前記被加熱物の状態が冷凍であるか否かを分類し、分類した状態に応じた加熱時間を算出して、前記レンジ加熱部を制御することを特徴とする高周波加熱調理器。
    a heating chamber housing a table plate;
    A range heating unit that heats an object to be heated placed on the table plate;
    an infrared sensor for detecting the temperature at a plurality of points on the top surface of the table plate;
    An outside temperature sensor for detecting an outside temperature of the heating chamber;
    A recording unit for recording the previous heating operation;
    A timer that measures the elapsed time from the end of the previous heating operation to the start of the current heating operation;
    A control unit that controls the range heating unit,
    The control unit
    When the previous heating operation recorded in the recording unit was a microwave oven heating operation, the time measured by the timer is shorter than a predetermined time, and the maximum temperature of the temperature of the top surface of the table plate detected by the infrared sensor is higher than a predetermined temperature,
    A high-frequency heating cooker characterized in that the state of the heated object is classified as frozen or not based on the initial temperature of the heated object detected by the infrared sensor, a heating time according to the classified state is calculated, and the range heating section is controlled.
  2.  請求項1に記載の高周波加熱調理器において、
     さらに、前記被加熱物の重量を検出する重量センサを備え、
     前記制御部は、前記重量に応じた加熱時間を算出して、前記レンジ加熱部を制御することを特徴とする高周波加熱調理器。
    The high frequency heating cooker according to claim 1,
    Further, a weight sensor is provided to detect the weight of the object to be heated,
    The high frequency heating cooker, wherein the control unit calculates a heating time according to the weight and controls the microwave heating unit.
PCT/JP2023/023855 2023-03-08 2023-06-27 High frequency heating cooker WO2024185156A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2023-035175 2023-03-08
JP2023035175A JP2024126646A (en) 2023-03-08 2023-03-08 High Frequency Cooker

Publications (1)

Publication Number Publication Date
WO2024185156A1 true WO2024185156A1 (en) 2024-09-12

Family

ID=92674580

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/023855 WO2024185156A1 (en) 2023-03-08 2023-06-27 High frequency heating cooker

Country Status (2)

Country Link
JP (1) JP2024126646A (en)
WO (1) WO2024185156A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01179824A (en) * 1988-01-05 1989-07-17 Toshiba Corp Cooking device
JPH0814576A (en) * 1994-06-28 1996-01-19 Sanyo Electric Co Ltd Heat cooking appliance
JPH09329340A (en) * 1996-06-11 1997-12-22 Toshiba Corp Microwave oven
US5744786A (en) * 1995-05-16 1998-04-28 Lg Electronics Inc. Automatic cooking apparatus having turntable and infrared temperature sensor
JP2002048345A (en) * 2000-07-31 2002-02-15 Sanyo Electric Co Ltd Microwave oven
JP2004060923A (en) * 2002-07-25 2004-02-26 Toshiba Corp Microwave oven
JP2017009178A (en) * 2015-06-22 2017-01-12 日立アプライアンス株式会社 Heating cooker

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01179824A (en) * 1988-01-05 1989-07-17 Toshiba Corp Cooking device
JPH0814576A (en) * 1994-06-28 1996-01-19 Sanyo Electric Co Ltd Heat cooking appliance
US5744786A (en) * 1995-05-16 1998-04-28 Lg Electronics Inc. Automatic cooking apparatus having turntable and infrared temperature sensor
JPH09329340A (en) * 1996-06-11 1997-12-22 Toshiba Corp Microwave oven
JP2002048345A (en) * 2000-07-31 2002-02-15 Sanyo Electric Co Ltd Microwave oven
JP2004060923A (en) * 2002-07-25 2004-02-26 Toshiba Corp Microwave oven
JP2017009178A (en) * 2015-06-22 2017-01-12 日立アプライアンス株式会社 Heating cooker

Also Published As

Publication number Publication date
JP2024126646A (en) 2024-09-20

Similar Documents

Publication Publication Date Title
JP6637584B2 (en) Cooker
US7067777B2 (en) Combined toaster and microwave oven and control method thereof
WO2024185156A1 (en) High frequency heating cooker
JP6488247B2 (en) Cooker
JP6823152B2 (en) Cooker
JP6554439B2 (en) High frequency heating cooker
JPH11173559A (en) Microwave oven
WO2023199559A1 (en) High-frequency heating cooker
JP6905957B2 (en) High frequency cooker
JP2024033456A (en) heating cooker
JP6491937B2 (en) Cooker
JP2010112634A (en) Heating cooker
JP6818793B2 (en) Cooker
JP6506718B2 (en) High frequency heating cooker
JP7398407B2 (en) Cooking device and cooking method
JP2017003149A (en) Heating cooker
JP7411604B2 (en) Cooking device and cooking method
TWI711792B (en) Heating conditioner
JP7345512B2 (en) heating cooker
JP6824136B2 (en) Cooker
JP2018194270A (en) Heating cooker
WO2024195150A1 (en) Heating cooker
JP6581538B2 (en) Induction heating cooker
KR101061118B1 (en) Cooking apparatus using color difference meter and its cooking control method
JP2019178795A (en) High frequency heating cooker