WO2024180821A1 - Substrate processing method and substrate processing device - Google Patents
Substrate processing method and substrate processing device Download PDFInfo
- Publication number
- WO2024180821A1 WO2024180821A1 PCT/JP2023/040219 JP2023040219W WO2024180821A1 WO 2024180821 A1 WO2024180821 A1 WO 2024180821A1 JP 2023040219 W JP2023040219 W JP 2023040219W WO 2024180821 A1 WO2024180821 A1 WO 2024180821A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- substrate
- ozone gas
- sulfuric acid
- main surface
- water vapor
- Prior art date
Links
- 239000000758 substrate Substances 0.000 title claims abstract description 377
- 238000012545 processing Methods 0.000 title claims abstract description 131
- 238000003672 processing method Methods 0.000 title claims description 23
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 claims abstract description 419
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 claims abstract description 201
- 239000012530 fluid Substances 0.000 claims abstract description 154
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 131
- 238000000034 method Methods 0.000 claims abstract description 59
- 239000007789 gas Substances 0.000 claims description 176
- 239000007788 liquid Substances 0.000 claims description 99
- 230000008569 process Effects 0.000 claims description 47
- FHHJDRFHHWUPDG-UHFFFAOYSA-N peroxysulfuric acid Chemical compound OOS(O)(=O)=O FHHJDRFHHWUPDG-UHFFFAOYSA-N 0.000 claims description 31
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 claims description 19
- 238000002156 mixing Methods 0.000 claims description 17
- 238000010790 dilution Methods 0.000 claims description 15
- 239000012895 dilution Substances 0.000 claims description 15
- 230000005587 bubbling Effects 0.000 claims description 13
- 239000000203 mixture Substances 0.000 claims description 9
- 238000007599 discharging Methods 0.000 claims description 4
- 238000010438 heat treatment Methods 0.000 description 61
- 230000007246 mechanism Effects 0.000 description 39
- 239000000126 substance Substances 0.000 description 37
- 239000003960 organic solvent Substances 0.000 description 30
- 230000032258 transport Effects 0.000 description 27
- 230000008929 regeneration Effects 0.000 description 13
- 238000011069 regeneration method Methods 0.000 description 13
- 238000000354 decomposition reaction Methods 0.000 description 12
- 239000000243 solution Substances 0.000 description 12
- 238000010586 diagram Methods 0.000 description 10
- 101100441413 Caenorhabditis elegans cup-15 gene Proteins 0.000 description 7
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 7
- 239000008367 deionised water Substances 0.000 description 7
- 229910021641 deionized water Inorganic materials 0.000 description 7
- 230000002093 peripheral effect Effects 0.000 description 7
- 238000011084 recovery Methods 0.000 description 7
- LZCLXQDLBQLTDK-UHFFFAOYSA-N ethyl 2-hydroxypropanoate Chemical compound CCOC(=O)C(C)O LZCLXQDLBQLTDK-UHFFFAOYSA-N 0.000 description 6
- 238000003860 storage Methods 0.000 description 6
- 238000001035 drying Methods 0.000 description 5
- 239000001301 oxygen Substances 0.000 description 5
- 229910052760 oxygen Inorganic materials 0.000 description 5
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 4
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 4
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 4
- 230000009471 action Effects 0.000 description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 4
- LYCAIKOWRPUZTN-UHFFFAOYSA-N ethylene glycol Natural products OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 4
- -1 ethylene glycol monoalkyl ethers Chemical class 0.000 description 4
- WGTYBPLFGIVFAS-UHFFFAOYSA-M tetramethylammonium hydroxide Chemical compound [OH-].C[N+](C)(C)C WGTYBPLFGIVFAS-UHFFFAOYSA-M 0.000 description 4
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- 229940116333 ethyl lactate Drugs 0.000 description 3
- QOSATHPSBFQAML-UHFFFAOYSA-N hydrogen peroxide;hydrate Chemical compound O.OO QOSATHPSBFQAML-UHFFFAOYSA-N 0.000 description 3
- 230000001172 regenerating effect Effects 0.000 description 3
- DAFQZPUISLXFBF-UHFFFAOYSA-N tetraoxathiolane 5,5-dioxide Chemical compound O=S1(=O)OOOO1 DAFQZPUISLXFBF-UHFFFAOYSA-N 0.000 description 3
- 239000002699 waste material Substances 0.000 description 3
- JOLQKTGDSGKSKJ-UHFFFAOYSA-N 1-ethoxypropan-2-ol Chemical compound CCOCC(C)O JOLQKTGDSGKSKJ-UHFFFAOYSA-N 0.000 description 2
- ARXJGSRGQADJSQ-UHFFFAOYSA-N 1-methoxypropan-2-ol Chemical compound COCC(C)O ARXJGSRGQADJSQ-UHFFFAOYSA-N 0.000 description 2
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 235000011114 ammonium hydroxide Nutrition 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 230000004888 barrier function Effects 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 238000009835 boiling Methods 0.000 description 2
- JHIVVAPYMSGYDF-UHFFFAOYSA-N cyclohexanone Chemical compound O=C1CCCCC1 JHIVVAPYMSGYDF-UHFFFAOYSA-N 0.000 description 2
- 229910001873 dinitrogen Inorganic materials 0.000 description 2
- XLLIQLLCWZCATF-UHFFFAOYSA-N ethylene glycol monomethyl ether acetate Natural products COCCOC(C)=O XLLIQLLCWZCATF-UHFFFAOYSA-N 0.000 description 2
- CATSNJVOTSVZJV-UHFFFAOYSA-N heptan-2-one Chemical compound CCCCCC(C)=O CATSNJVOTSVZJV-UHFFFAOYSA-N 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- DNIAPMSPPWPWGF-UHFFFAOYSA-N monopropylene glycol Natural products CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 235000012431 wafers Nutrition 0.000 description 2
- XNWFRZJHXBZDAG-UHFFFAOYSA-N 2-METHOXYETHANOL Chemical compound COCCO XNWFRZJHXBZDAG-UHFFFAOYSA-N 0.000 description 1
- ZNQVEEAIQZEUHB-UHFFFAOYSA-N 2-ethoxyethanol Chemical compound CCOCCO ZNQVEEAIQZEUHB-UHFFFAOYSA-N 0.000 description 1
- SVONRAPFKPVNKG-UHFFFAOYSA-N 2-ethoxyethyl acetate Chemical compound CCOCCOC(C)=O SVONRAPFKPVNKG-UHFFFAOYSA-N 0.000 description 1
- LPEKGGXMPWTOCB-UHFFFAOYSA-N 8beta-(2,3-epoxy-2-methylbutyryloxy)-14-acetoxytithifolin Natural products COC(=O)C(C)O LPEKGGXMPWTOCB-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 1
- SWXQKHHHCFXQJF-UHFFFAOYSA-N azane;hydrogen peroxide Chemical compound [NH4+].[O-]O SWXQKHHHCFXQJF-UHFFFAOYSA-N 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- ODQWQRRAPPTVAG-GZTJUZNOSA-N doxepin Chemical compound C1OC2=CC=CC=C2C(=C/CCN(C)C)/C2=CC=CC=C21 ODQWQRRAPPTVAG-GZTJUZNOSA-N 0.000 description 1
- 238000001312 dry etching Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000005401 electroluminescence Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 239000000383 hazardous chemical Substances 0.000 description 1
- DKAGJZJALZXOOV-UHFFFAOYSA-N hydrate;hydrochloride Chemical compound O.Cl DKAGJZJALZXOOV-UHFFFAOYSA-N 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- CABDFQZZWFMZOD-UHFFFAOYSA-N hydrogen peroxide;hydrochloride Chemical compound Cl.OO CABDFQZZWFMZOD-UHFFFAOYSA-N 0.000 description 1
- 238000005468 ion implantation Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 150000003903 lactic acid esters Chemical class 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 229940057867 methyl lactate Drugs 0.000 description 1
- QPJSUIGXIBEQAC-UHFFFAOYSA-N n-(2,4-dichloro-5-propan-2-yloxyphenyl)acetamide Chemical compound CC(C)OC1=CC(NC(C)=O)=C(Cl)C=C1Cl QPJSUIGXIBEQAC-UHFFFAOYSA-N 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 229920002120 photoresistant polymer Polymers 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000007261 regionalization Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 238000001039 wet etching Methods 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/26—Processing photosensitive materials; Apparatus therefor
- G03F7/42—Stripping or agents therefor
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/027—Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/302—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
- H01L21/304—Mechanical treatment, e.g. grinding, polishing, cutting
Definitions
- Substrates to be processed include, for example, semiconductor wafers, substrates for FPDs (Flat Panel Displays) such as liquid crystal displays and organic EL (Electroluminescence) displays, substrates for optical disks, substrates for magnetic disks, substrates for magneto-optical disks, substrates for photomasks, ceramic substrates, substrates for solar cells, etc.
- FPDs Full Panel Displays
- organic EL Electrode-EL
- resist photoresist
- a known wet process for removing used resist from a substrate is one that uses a mixture of sulfuric acid and hydrogen peroxide (SPM). Specifically, as described in Patent Document 1, sulfuric acid and hydrogen peroxide are mixed to generate SPM, which is then supplied to the surface of the substrate to remove the resist on the substrate.
- SPM sulfuric acid and hydrogen peroxide
- one embodiment of the present invention provides a substrate processing method and substrate processing apparatus that can efficiently remove resist films on substrates while reducing the amount of chemical solution used.
- a method for treating a substrate having a resist film formed on a main surface thereof comprising the steps of: a nozzle arrangement step of arranging a multi-fluid nozzle toward a main surface of the substrate; a supply step of supplying water vapor, ozone gas, and sulfuric acid to the multiple fluid nozzle; a mixed fluid supplying step of supplying a mixed fluid of water vapor, ozone gas, and sulfuric acid from the multiple fluid nozzle toward the main surface of the substrate to remove the resist film from the main surface of the substrate;
- a method for processing a substrate comprising:
- a mixed fluid of water vapor, ozone gas, and sulfuric acid (typically sulfuric acid heated to a temperature higher than room temperature) is supplied to the main surface of the substrate, and the mixed fluid removes the resist film from the main surface of the substrate.
- Heat of dilution is generated when the sulfuric acid comes into contact with the water vapor, and the heat of dilution causes ozone to decompose at the interface of the heated sulfuric acid, generating Caro's acid (peroxomonosulfuric acid).
- Caro's acid peroxomonosulfuric acid
- the supplying step includes a wet ozone gas supplying step of supplying wet ozone gas, which is a mixture of water vapor and ozone gas, to the multiple fluid nozzle.
- wet ozone gas can be produced in a simple manner by bubbling ozone gas through water (typically deionized water).
- wet ozone gas can be generated by mixing water vapor with ozone gas.
- ozone gas decomposes at approximately 130°C, it is preferable to mix it with water vapor at a temperature that can avoid decomposition.
- the boiling point of water is lower than the decomposition temperature of ozone gas, so temperature control to avoid decomposition of ozone gas is not necessary.
- the water through which the ozone gas is bubbled may be heated. Bubbling in the heated water can encourage the generation of water vapor, producing moist ozone gas containing a moderate amount of water vapor that can be pumped to the multiple-fluid nozzle.
- the wet ozone gas supplying step includes a step of bubbling ozone gas supplied from an ozone gas supply source in water in a closed space to generate wet ozone gas in the closed space, and pressure-feeding the wet ozone gas from the closed space to the multiple fluid nozzle.
- wet ozone gas By supplying ozone gas into water contained in a closed space and bubbling it, wet ozone gas can be generated and pumped out, and fluid mixing can be performed in a multiple fluid nozzle with a simple configuration.
- the resist on the substrate can be broken down and efficiently removed.
- the Caro's acid supplied to the main surface of the substrate becomes hotter than the sulfuric acid. This promotes the decomposition of the resist on the substrate, allowing the resist film to be removed efficiently.
- the Caro's acid in the mixed fluid acts on the resist film without being diluted. This allows the resist decomposition reaction by Caro's acid to occur efficiently, enabling highly efficient resist removal.
- the method further includes a substrate rotation step of rotating the substrate about a rotation axis passing through the main surface, 9.
- the substrate processing method according to any one of items 1 to 8, wherein the mixed fluid supplying step is performed in parallel with the substrate rotating step, and includes a scanning step of discharging the mixed fluid from the multiple-fluid nozzle while moving a landing point of the mixed fluid on the main surface from an outer periphery of the substrate toward the rotation axis.
- the liquid on the main surface of the substrate flows toward the outer periphery due to centrifugal force. Therefore, by starting the scanning of the main surface of the substrate with the mixed fluid discharged from the multi-fluid nozzle from the outer edge of the substrate, the mixed fluid is supplied to a surface that is essentially free of liquid film. As a result, the Caro's acid in the mixed fluid acts on the resist film on the main surface of the substrate without being diluted, achieving highly efficient resist removal.
- a substrate holding unit that holds a substrate; a multi-fluid nozzle arranged to face a main surface of a substrate held by the substrate holding unit; a water vapor/ozone supply unit for supplying water vapor and ozone gas to the multiple fluid nozzle; a sulfuric acid supply unit for supplying sulfuric acid (typically sulfuric acid heated above room temperature) to the multi-fluid nozzle; a substrate processing apparatus configured to supply a mixed fluid of water vapor, ozone gas, and sulfuric acid from the multiple fluid nozzle toward a main surface of a substrate held by the substrate holding unit.
- the substrate processing apparatus wherein the water vapor/ozone supply unit includes a wet ozone gas generation unit that generates the wet ozone gas by bubbling ozone gas in water.
- the wet ozone gas generation unit includes a sealed container that forms a closed space and an ozone gas supply unit that supplies ozone gas into the water stored in the sealed container, and pressure-feeds the wet ozone gas toward the multiple fluid nozzle.
- FIG. 1 is a schematic plan view for explaining an example of the configuration of a substrate processing apparatus according to an embodiment of the present invention.
- FIG. 2 is a schematic diagram for explaining the configuration of a processing unit provided in the substrate processing apparatus.
- FIG. 3 shows an example of the configuration of a supply system for supplying a mixed fluid of water vapor, ozone gas, and sulfuric acid.
- FIG. 4 is a block diagram for explaining the electrical configuration of the substrate processing apparatus.
- FIG. 5 is a flow chart for explaining an example of the substrate processing.
- FIG. 6A is a schematic diagram for explaining the state of a substrate and its surroundings during substrate processing, showing a nozzle arrangement step.
- FIG. 6B is a schematic diagram for explaining the state of the substrate and its surroundings during substrate processing, showing a mixed fluid supplying step.
- FIG. 6C is a schematic diagram for explaining the state of the substrate and its surroundings during substrate processing, showing a rinsing step.
- FIG. 7 shows an example of the scanning process (step S52 in FIG. 5).
- FIG. 8 is a diagram for explaining the configuration of a mixed fluid supply system in another embodiment of the present invention.
- FIG. 1 is a schematic plan view for explaining an example of the configuration of a substrate processing apparatus 1 according to one embodiment of the present invention.
- the substrate processing apparatus 1 is a single-wafer type apparatus that processes substrates W one by one.
- the substrate W has a disk shape.
- the substrate W is a substrate W such as a silicon wafer, and has a pair of main surfaces.
- the substrate processing apparatus 1 includes a plurality of processing units 2 for processing substrates W, a load port LP (container holding unit) on which a carrier C (container) is placed that contains a plurality of substrates W to be processed in the processing units 2, transport robots (first transport robot IR and second transport robot CR) that transport the substrates W between the load port LP and the processing units 2, and a controller 3 that controls each component provided in the substrate processing apparatus 1.
- the first transport robot IR transports substrates W between the carrier C and the second transport robot CR.
- the second transport robot CR transports substrates W between the first transport robot IR and the processing unit 2.
- Each transport robot is, for example, a multi-joint arm robot.
- the multiple processing units 2 are arranged on both sides of the transport path TR along which the substrate W is transported by the second transport robot CR, and are stacked vertically.
- the multiple processing units 2 have, for example, the same configuration.
- the multiple processing units 2 form four processing towers TW arranged at four horizontally spaced positions.
- Each processing tower TW includes multiple processing units 2 stacked vertically.
- the four processing towers TW are arranged, two on each side, of the transport path TR extending from the load port LP toward the second transport robot CR.
- the substrate processing apparatus 1 includes a plurality of fluid boxes 4 that house valves, piping, etc., and a storage box 5 that houses tanks for storing sulfuric acid, chemicals, rinsing liquids, organic solvents, or these raw materials.
- the processing units 2 and fluid boxes 4 are arranged inside a frame 6 that is roughly rectangular in plan view.
- the processing unit 2 has a chamber 7 that houses the substrate W during substrate processing.
- the chamber 7 includes an entrance (not shown) through which the second transport robot CR loads the substrate W into the chamber 7 and loads the substrate W out of the chamber 7, and a shutter unit (not shown) that opens and closes the entrance.
- Processing liquids supplied to the substrate W in the chamber 7 include sulfuric acid, chemical liquids, rinse liquids, organic solvents, etc., which will be described in detail later.
- FIG. 2 is a schematic diagram for explaining the configuration of the processing unit 2.
- the processing unit 2 includes a spin chuck 8 that rotates the substrate W about a rotation axis A1 while holding the substrate W in a predetermined processing posture, and a number of nozzles (a first mobile nozzle 9, a second mobile nozzle 10, and a third mobile nozzle 11) that eject a processing liquid toward the substrate W.
- the processing unit 2 further includes a substrate heating member 14 that heats the substrate W held on the spin chuck 8, and a processing cup 15 that receives processing liquid that splashes from the substrate W held on the spin chuck 8.
- the spin chuck 8, multiple moving nozzles, substrate heating member 14, and processing cup 15 are disposed within chamber 7.
- the rotation axis A1 passes through the center of the substrate W and is perpendicular to each main surface of the substrate W held in the processing posture.
- the processing posture is, for example, the posture of the substrate W shown in FIG. 2, which is a horizontal posture in which the main surface of the substrate W is in a horizontal plane, but is not limited to a horizontal posture.
- the processing posture may be a posture in which the main surface of the substrate W is inclined relative to the horizontal plane, unlike that shown in FIG. 2.
- the rotation axis A1 extends vertically.
- the spin chuck 8 is an example of a substrate holding member (substrate holding unit, substrate holder) that holds the substrate W in a processing position, and is also an example of a rotating holding member that rotates the substrate W around the rotation axis A1 while holding the substrate W in a processing position.
- the spin chuck 8 includes a spin base 21 having a disk shape along the horizontal direction, a plurality of gripping pins 20 that grip the substrate W above the spin base 21 and grip the peripheral portion of the substrate W above the spin base 21, a rotation shaft 22 that is connected to the spin base 21 and extends in the vertical direction, and a rotation drive mechanism 23 that rotates the rotation shaft 22 around its central axis (rotation axis A1).
- the spin base 21 is an example of a disk-shaped base.
- the multiple gripping pins 20 are arranged on the upper surface of the spin base 21 at intervals in the circumferential direction of the spin base 21.
- the rotation drive mechanism 23 includes an actuator such as an electric motor. The rotation drive mechanism 23 rotates the rotation shaft 22, thereby rotating the spin base 21 and the multiple gripping pins 20 around the rotation axis A1. As a result, the substrate W is rotated around the rotation axis A1 together with the spin base 21 and the multiple gripping pins 20.
- the multiple gripping pins 20 are movable between a closed position in which they contact the peripheral edge of the substrate W to grip the substrate W, and an open position in which they release their grip on the substrate W.
- the multiple gripping pins 20 are moved by an opening/closing mechanism (not shown).
- the opening and closing mechanism includes, for example, a link mechanism and an actuator that applies a driving force to the link mechanism.
- the multiple mobile nozzles include a first mobile nozzle 9 that ejects a mixed fluid of water vapor, ozone gas, and sulfuric acid toward the top surface (upper main surface) of the substrate W held on the spin chuck 8, a second mobile nozzle 10 that selectively ejects a continuous flow of chemical liquid and a continuous flow of rinsing liquid toward the top surface of the substrate W held on the spin chuck 8, and a third mobile nozzle 11 that ejects an organic solvent toward the top surface of the substrate W held on the spin chuck 8.
- the first moving nozzle 9 is an example of a multiple fluid nozzle that supplies a mixed fluid of water vapor, ozone gas, and sulfuric acid toward the main surface (top surface) of the substrate W held by the spin chuck 8.
- the second moving nozzle 10 is an example of a chemical liquid nozzle that ejects a chemical liquid toward the main surface (top surface) of the substrate W held by the spin chuck 8, and is an example of a rinsing liquid nozzle that ejects a rinsing liquid toward the main surface (top surface) of the substrate W held by the spin chuck 8.
- the third moving nozzle 11 is an example of an organic solvent nozzle that ejects an organic solvent toward the main surface (top surface) of the substrate W held by the spin chuck 8.
- the multiple moving nozzles are each moved horizontally by multiple nozzle driving mechanisms (first nozzle driving mechanism 25, second nozzle driving mechanism 26, and third nozzle driving mechanism 27).
- Each nozzle driving mechanism can move the corresponding mobile nozzle between a central position and a retracted position.
- the central position is a position where the mobile nozzle faces the central region of the top surface of the substrate W.
- the central region of the top surface of the substrate W is a region on the top surface of the substrate W that includes the center of rotation (central portion) and the area surrounding the center of rotation.
- the retracted position is a position where the mobile nozzle does not face the top surface of the substrate W, and is a position outside the processing cup 15.
- Each nozzle drive mechanism includes an arm (first arm 25a, second arm 26a, and third arm 27a) that supports the corresponding moving nozzle, and an arm drive mechanism (first arm drive mechanism 25b, second arm drive mechanism 26b, and third arm drive mechanism 27b) that moves the corresponding arm in the horizontal direction.
- Each arm drive mechanism includes an actuator such as an electric motor or an air cylinder.
- the moving nozzle may be a rotating nozzle that rotates around a predetermined axis of rotation, or a linear nozzle that moves linearly in the direction in which the corresponding arm extends.
- the moving nozzle may also be configured to be able to move vertically.
- the treatment unit 2 further includes a sulfuric acid supply unit 16 that supplies sulfuric acid to the first moving nozzle 9, and a water vapor/ozone supply unit 13 that supplies water vapor and ozone gas to the first moving nozzle 9.
- the sulfuric acid supply unit 16 includes a sulfuric acid pipe 40, a sulfuric acid valve 50A, and a sulfuric acid flow rate control valve 50B.
- the sulfuric acid piping 40 is connected to the first moving nozzle 9 and guides the sulfuric acid to the first moving nozzle 9.
- the sulfuric acid valve 50A and the sulfuric acid flow rate control valve 50B are provided in the sulfuric acid piping 40.
- the sulfuric acid valve 50A being provided in the sulfuric acid pipe 40 may mean that the sulfuric acid valve 50A is interposed in the sulfuric acid pipe 40. The same applies to the other valves described below.
- the sulfuric acid valve 50A opens and closes the flow path in the sulfuric acid pipe 40.
- the sulfuric acid flow control valve 50B adjusts the flow rate of sulfuric acid flowing through the flow path in the sulfuric acid pipe 40.
- sulfuric acid valve 50A is opened, sulfuric acid is supplied to the first moving nozzle 9 at a flow rate adjusted by the sulfuric acid flow control valve 50B.
- sulfuric acid valve 50A includes a valve body with a valve seat inside, a valve element that opens and closes the valve seat, and an actuator that moves the valve element between an open position and a closed position.
- the other valves have a similar configuration.
- the water vapor/ozone supply unit 13 is a wet ozone gas supply unit that supplies wet ozone gas, which is a mixed gas of water vapor and ozone gas, to the first moving nozzle 9.
- the water vapor/ozone supply unit 13 has a wet ozone gas pipe 45 connected to the first moving nozzle 9.
- the first moving nozzle 9 is configured as a two-fluid nozzle.
- a mixed fluid is generated by mixing sulfuric acid supplied from the sulfuric acid supply unit 16 and wet ozone gas supplied from the water vapor/ozone supply unit 13 in the two-fluid nozzle that constitutes the first moving nozzle 9.
- the mixed fluid is ejected toward the upper surface of the substrate W held by the spin chuck 8.
- the configuration of the water vapor/ozone supply unit 13 will be described later.
- the chemical solution discharged from the second moving nozzle 10 may be, for example, an APM solution (ammonia-hydrogen peroxide mixture, more specifically, so-called SC1).
- a chemical solution containing hydrofluoric acid (HF), dilute hydrofluoric acid (DHF), buffered hydrofluoric acid (BHF), hydrochloric acid (HCl), HPM solution (hydrochloric acid-hydrogen peroxide mixture), ammonia water, TMAH solution (tetramethylammonium hydroxide solution), or hydrogen peroxide water (H 2 O 2 ) may be discharged from the second moving nozzle 10.
- the rinse liquid discharged from the second moving nozzle 10 is, for example, water such as deionized water (DIW).
- DIW deionized water
- the rinse liquid is not limited to deionized water, and may be deionized water, carbonated water, electrolytic ionized water, hydrochloric acid water with a dilute concentration (for example, 1 ppm or more and 100 ppm or less), ammonia water with a dilute concentration (for example, 1 ppm or more and 100 ppm or less), reduced water (hydrogen water), or a mixture containing at least two of these.
- the second moving nozzle 10 is connected to a common pipe 41 that guides fluid to the second moving nozzle 10.
- a chemical liquid pipe 42 that supplies a chemical liquid to the common pipe 41 and a rinsing liquid pipe 43 that supplies a rinsing liquid to the common pipe 41 are connected to the common pipe 41.
- the common pipe 41 may be connected to the chemical liquid pipe 42 and the rinsing liquid pipe 43 via a mixing valve (not shown).
- the common pipe 41 is provided with a common valve 51 that opens and closes the common pipe 41.
- the chemical pipe 42 is provided with a chemical valve 52A that opens and closes the chemical pipe 42, and a chemical flow rate adjustment valve 52B that adjusts the flow rate of the chemical in the chemical pipe 42.
- the rinsing liquid pipe 43 is provided with a rinsing liquid valve 53A that opens and closes the rinsing liquid pipe 43, and a rinsing liquid flow rate adjustment valve 53B that adjusts the flow rate of the rinsing liquid in the rinsing liquid pipe 43.
- the organic solvent discharged from the third moving nozzle 11 contains at least one of the following: alcohols such as ethanol (EtOH) and isopropanol (IPA); ethylene glycol monoalkyl ethers such as ethylene glycol monomethyl ether and ethylene glycol monoethyl ether; ethylene glycol monoalkyl ether acetates such as ethylene glycol monomethyl ether acetate and ethylene glycol monoethyl ether acetate; propylene glycol monoalkyl ethers such as propylene glycol monomethyl ether (PGME) and propylene glycol monoethyl ether (PGEE); lactate esters such as methyl lactate and ethyl lactate (EL); aromatic hydrocarbons such as toluene and xylene; and ketones such as methyl ethyl ketone, 2-heptanone, and cyclohexanone.
- alcohols such as ethanol (EtOH) and isopropanol (IPA)
- An organic solvent pipe 44 that guides the organic solvent to the third moving nozzle 11 is connected to the third moving nozzle 11.
- the organic solvent pipe 44 is provided with an organic solvent valve 54A that opens and closes the organic solvent pipe 44, and an organic solvent flow rate adjustment valve 54B that adjusts the flow rate of the organic solvent in the organic solvent pipe 44.
- the processing cup 15 includes a plurality of guards 28 (three in FIG. 2) that receive processing liquid splashed outward from the substrate W held by the spin chuck 8, a plurality of cups 29 (three in FIG. 2) that each receive processing liquid guided downward by the plurality of guards 28, and a cylindrical outer wall member 30 that surrounds the plurality of guards 28 and the plurality of cups 29.
- Each guard 28 has a cylindrical shape surrounding the spin chuck 8 in a plan view.
- the upper end of each guard 28 is inclined inward toward the center of the guard 28.
- Each cup 29 has the shape of an annular groove that opens upward.
- the multiple guards 28 and the multiple cups 29 are arranged coaxially.
- the multiple guards 28 are individually raised and lowered by a guard lifting drive mechanism (not shown).
- the guard lifting drive mechanism includes, for example, multiple actuators that drive the multiple guards 28 to raise and lower.
- the multiple actuators include at least one of an electric motor and an air cylinder.
- the processing unit 2 includes a blower unit 31, such as an FFU (fan filter unit), that sends an inert gas from outside the chamber 7 into the chamber 7, and an exhaust pipe 32 that exhausts the air from inside the chamber 7.
- the blower unit 31 is disposed on the upper wall 7a of the chamber 7.
- the exhaust pipe 32 is connected to the outer wall member 30.
- the inert gas sent to the chamber 7 by the blower unit 31 may be, for example, nitrogen gas, a rare gas, or a mixture of these.
- the rare gas is, for example, argon gas.
- the exhaust pipe 32 is connected to an exhaust duct (not shown).
- the atmosphere in the exhaust duct is sucked in by a suction device (not shown).
- the atmosphere in the chamber 7 is exhausted to the exhaust duct via the exhaust pipe 32.
- the suction device includes a suction pump that sucks the exhaust duct.
- the suction device is installed in the exhaust duct or connected to the exhaust duct.
- the exhaust duct and the suction device are provided in a clean room in which the substrate processing apparatus 1 is installed or in a facility associated with the clean room.
- the exhaust duct and the suction device may be part of the substrate processing apparatus 1.
- An ozone remover 33 (ozone detoxifier) is provided between the exhaust pipe 32 and the exhaust duct, or in the exhaust pipe 32.
- the ozone gas contained in the atmosphere exhausted from the chamber 7 is decomposed as it passes through the ozone remover 33.
- the processing liquid supplied to the substrate W splashes off the periphery of the substrate W and is received by one of the guards 28.
- the processing liquid received by the guard 28 is guided to the corresponding cup 29 and is collected or discarded through the drainage pipe 35 corresponding to each cup 29.
- the substrate heating member 14 has the form of a disk-shaped hot plate that heats the substrate W from below.
- the substrate heating member 14 is disposed between the upper surface of the spin base 21 and the lower surface of the substrate W.
- the substrate heating member 14 has a heating surface 14a that faces the lower surface of the substrate W from below.
- the substrate heating member 14 includes a plate body 60 and a heater 61.
- the plate body 60 is slightly smaller than the substrate W in a plan view.
- the upper surface of the plate body 60 constitutes the heating surface 14a.
- the heater 61 may be a resistor built into the plate body 60.
- the heating surface 14a is heated by passing electricity through the heater 61.
- the heater 61 is configured to heat the substrate W at a temperature range above room temperature (for example, a temperature of 5°C or higher and 25°C or lower) and, for example, below 400°C.
- the processing unit 2 further includes a temperature sensor 62 that detects the temperature of the substrate heating member 14.
- the temperature sensor 62 is built into the plate body 60, but the arrangement of the temperature sensor 62 is not particularly limited.
- the temperature sensor 62 may be attached to the plate body 60 from the outside, for example.
- the heater 61 is connected to a current supply unit 63 via a power supply line 64.
- the temperature of the heater 61 is adjusted by adjusting the current supplied from the current supply unit 63 to the heater 61.
- the current supplied from the current supply unit 63 to the heater 61 is adjusted based on the temperature detected by the temperature sensor 62.
- a heater lift shaft 65 is connected to the underside of the substrate heating member 14.
- the heater lift shaft 65 is inserted into a through hole 21a formed in the center of the spin base 21 and into the internal space of the rotation shaft 22.
- the processing unit 2 further includes a heater drive mechanism 66 that drives the movement of the substrate heating member 14 in the vertical direction.
- the heater drive mechanism 66 includes, for example, a heater actuator (not shown) that drives the movement of the heater lift shaft 65 in the vertical direction.
- the heater actuator includes, for example, at least one of an electric motor and an air cylinder.
- the heater drive mechanism 66 moves the substrate heating member 14 in the vertical direction via the heater lift shaft 65.
- the substrate heating member 14 is movable in the vertical direction between the lower surface of the substrate W and the upper surface of the spin base 21.
- the substrate heating member 14 When the substrate heating member 14 rises, it can receive the substrate W from the multiple gripping pins 20 that are positioned in the open position.
- the substrate heating member 14 can heat the substrate W by being positioned at a contact position where the heating surface 14a is in contact with the underside of the substrate W, or at a proximity position where the heating surface 14a is in close proximity to the underside of the substrate W but not in contact with it.
- a position where the substrate heating member 14 is sufficiently retracted from the underside of the substrate W so that the heating of the substrate W by the substrate heating member 14 is alleviated is called a retracted position.
- the fact that the heating of the substrate W is sufficiently alleviated can be said to be another way of saying that the heating of the substrate W is stopped.
- the amount of heat transferred from the substrate heating member 14 to the substrate W when the substrate heating member 14 is located in the retracted position is smaller than the amount of heat transferred from the substrate heating member 14 to the substrate W when the substrate heating member 14 is located in the close position.
- the contact position and close position are also called heating positions.
- the retracted position is also called the heating relaxation position or heating stop position.
- FIG. 3 shows an example of the configuration of a supply system for supplying a mixed fluid of water vapor, ozone gas, and sulfuric acid.
- the mixed fluid supply system includes a sulfuric acid supply unit 16, a water vapor/ozone supply unit 13, and a first moving nozzle 9 consisting of a multiple-fluid nozzle (a two-fluid nozzle in this example).
- the sulfuric acid supply unit 16 includes a sulfuric acid pipe 40 that flows sulfuric acid from a sulfuric acid tank 55, which is a sulfuric acid supply source, to the first moving nozzle 9, a sulfuric acid valve 50A that is installed in the sulfuric acid pipe 40, and a sulfuric acid flow rate control valve 50B that is also installed in the sulfuric acid pipe 40. It is preferable that the sulfuric acid flow rate control valve 50B adjusts the flow rate of sulfuric acid in the sulfuric acid pipe 40 to 1 liter/minute or less. Furthermore, in this example, the sulfuric acid supply unit 16 includes a filter 50C, a pump 50D, and a heater unit 50E that are installed in the sulfuric acid pipe 40.
- the pump 50D pumps sulfuric acid from the sulfuric acid tank 55 and sends it from the sulfuric acid pipe 40 to the first moving nozzle 9.
- the filter 50C removes foreign matter in the sulfuric acid flowing through the sulfuric acid pipe 40.
- the heater unit 50E heats the sulfuric acid that is supplied to the first moving nozzle 9 through the sulfuric acid pipe 40.
- the heater unit 50E heats the sulfuric acid so that the temperature of the sulfuric acid when it reaches the first moving nozzle 9 is 120°C or higher and 190°C or lower.
- the sulfuric acid supplied by the sulfuric acid supply unit 16 is, strictly speaking, a sulfuric acid-containing liquid, typically a sulfuric acid aqueous solution of a predetermined concentration, containing sulfuric acid (H 2 SO 4 ) and water (H 2 O).
- the sulfuric acid aqueous solution is, for example, dilute sulfuric acid or concentrated sulfuric acid.
- the sulfuric acid-containing liquid may be an aqueous sulfuric acid solution prepared by mixing sulfuric acid with water such as deionized water.
- the sulfuric acid-containing liquid may contain substances other than sulfuric acid and water, but in this embodiment, at least hydrogen peroxide water is not contained.
- sulfuric acid means the sulfuric acid-containing liquid as described above.
- the water vapor/ozone supply unit 13 includes a wet ozone gas generation unit 56 that generates wet ozone gas by bubbling ozone gas in water, and a wet ozone gas pipe 45 that supplies the wet ozone gas generated by the wet ozone gas generation unit 56 to the first moving nozzle 9.
- the wet ozone gas generation unit 56 includes an airtight container 57 that forms an enclosed space, and an ozone gas supply unit 58 that supplies ozone gas into water (e.g., deionized water) stored in the airtight container 57.
- the wet ozone gas generation unit 56 further includes a heater unit 59 that heats the water stored in the airtight container 57.
- the heater unit 59 may be configured to heat the airtight container 57.
- the ozone gas supply unit 58 includes an ozone gas pipe 70 that distributes ozone gas from an ozone gas supply source to the sealed container 57, an ozone gas valve 70A (on/off valve) provided in the ozone gas pipe 70, and an ozone gas flow rate adjustment valve 70B provided in the ozone gas pipe 70.
- the ozone gas pipe 70 may further be provided with a filter 70C for removing foreign matter. The tip of the ozone gas pipe 70 is placed in the water stored in the sealed container 57.
- ozone gas valve 70A When the ozone gas valve 70A is opened, ozone gas flows through the ozone gas pipe 70 at a flow rate (for example, 1 to 2 liters/min) regulated by the ozone gas flow rate control valve 70B, and is released into the water stored in the sealed container 57. This allows the ozone gas to bubble in the water. As a result, water vapor is mixed with the ozone gas to generate wet ozone gas (wet ozone gas generation process).
- the inlet of the wet ozone gas pipe 45 opens in the sealed container 57 and is disposed in a closed space above the water level of the water stored in the sealed container 57.
- the wet ozone gas generated in the sealed container 57 is guided through the wet ozone gas pipe 45 to the first moving nozzle 9.
- the air pressure in the sealed container 57 increases, and the wet ozone gas can be pressure-fed from the sealed container 57 to the first moving nozzle 9 via the wet ozone gas pipe 45.
- the water in the sealed container 57 is heated by the heater unit 59, and the water temperature is kept higher than room temperature (for example, room temperature to 80°C), which promotes evaporation of the water, and thus produces wet ozone gas in which water vapor is mixed with ozone gas at an appropriate ratio. It is preferable to keep the temperature of the water stored in the sealed container 57 below 100°C to prevent decomposition of the ozone gas.
- the first moving nozzle 9 may be configured as, for example, an external mixing type two-fluid nozzle. More specifically, the first moving nozzle 9 has a nozzle housing 90 and a first passage 91 and a second passage 92 formed in the nozzle housing 90. The first passage 91 is connected to the sulfuric acid pipe 40, and the second passage 92 is connected to the wet ozone gas pipe 45. At the tip of the nozzle housing, a first outlet 91a for discharging a fluid (sulfuric acid in this example) that has flowed through the first passage 91 and a second outlet 92a for discharging a fluid (wet ozone gas in this example) that has flowed through the second passage 92 are opened.
- the mixed fluid 100 is typically a fluid in which wet ozone gas and sulfuric acid droplets are mixed. This mixed fluid 100 is supplied from the first moving nozzle 9 to the upper surface of the substrate W.
- an internal mixing type two-fluid nozzle that mixes fluids within the nozzle housing may also be used as the first moving nozzle 9.
- the sulfuric acid tank 55 can be supplied with unused sulfuric acid (new liquid) by opening the new liquid valve 71A provided on the new liquid piping 71, or regenerated sulfuric acid can be supplied from the sulfuric acid recovery/regeneration unit 80.
- the sulfuric acid recovery/regeneration unit 80 recovers used sulfuric acid from the drainage piping 35 (recovery line) connected to the cup 29 corresponding to the guard 28 that receives the liquid discharged from the substrate W during processing with the mixed fluid in the processing cup 15 (see FIG. 2), and regenerates the sulfuric acid for reuse.
- the sulfuric acid recovery/regeneration unit 80 can be configured to heat the recovered sulfuric acid and evaporate the water in the sulfuric acid to restore it to a target concentration.
- the sulfuric acid recovery/regeneration unit 80 includes a regeneration tank 81 that stores the sulfuric acid to be regenerated, a heater unit 82 that heats the sulfuric acid in the regeneration tank 81, and a regenerated sulfuric acid piping 83 that supplies the regenerated sulfuric acid from the regeneration tank 81 to the sulfuric acid tank 55.
- a regenerated sulfuric acid valve 83A, a pump 83B, and a filter 83C are arranged in the regenerated sulfuric acid piping 83.
- the regenerated sulfuric acid valve 83A When the regenerated sulfuric acid valve 83A is opened, the regenerated sulfuric acid pumped out of the regeneration tank 81 by the pump 83B and from which foreign matter has been removed by the filter 83C is supplied to the sulfuric acid tank 55. In this way, the amount of sulfuric acid used can be reduced by regenerating and reusing the sulfuric acid.
- a waste pipe 36 branches off from the drain pipe 35 (recovery line).
- a valve 37 provided on the drain pipe 35 between the branch point of the waste pipe 36 and the regeneration tank 81, and a valve 38 provided on the waste pipe 36 it is possible to select whether the liquid collected in the cup 29 is recovered for regeneration or discarded. For example, depending on the processing status on the substrate W, the liquid may be discarded when there is a large amount of foreign matter in the liquid, and recovered in the regeneration tank 81 when there is a small amount of foreign matter in the liquid.
- FIG. 4 is a block diagram for explaining the electrical configuration of the substrate processing apparatus 1.
- the controller 3 is a computer including a computer main body 3a and a peripheral device 3d connected to the computer main body 3a.
- the computer main body 3a includes a processor (CPU) 3b that executes various commands and a memory 3c that stores information.
- CPU processor
- the peripheral device 3d includes an auxiliary storage device 3e that stores information such as programs, a reading device 3f that reads information from removable media (not shown), and a communication device 3g that communicates with other devices such as a host computer (not shown).
- the controller 3 is connected to an input device 3A, a display device 3B, and an alarm device 3C.
- the input device 3A is operated when an operator such as a user or maintenance personnel inputs information to the substrate processing apparatus 1.
- the information is displayed on the screen of the display device 3B.
- the input device 3A may be any one of a keyboard, a pointing device, and a touch panel, or may be a device other than these.
- the substrate processing apparatus 1 may be provided with a touch panel display that serves both as the input device 3A and the display device 3B.
- the alarm device 3C issues an alarm using one or more of light, sound, characters, and figures. If the input device 3A is a touch panel display, the input device 3A may also serve as the alarm device 3C.
- the auxiliary storage device 3e is a non-volatile memory that retains memory even when power is not supplied.
- the auxiliary storage device 3e is, for example, a magnetic storage device such as a hard disk drive.
- the auxiliary storage device 3e stores multiple recipes.
- a recipe is information that specifies the processing content, processing conditions, and processing procedure of the substrate W.
- the multiple recipes differ from each other in at least one of the processing content, processing conditions, and processing procedure of the substrate W.
- the controller 3 controls each component of the substrate processing apparatus 1 so that the substrate W is processed according to a recipe specified by an external device such as a host computer.
- Controlled objects of the controller 3 include the first transport robot IR, the second transport robot CR, the rotation drive mechanism 23, the first nozzle drive mechanism 25, the second nozzle drive mechanism 26, the third nozzle drive mechanism 27, the heater drive mechanism 66, the power supply unit 63, the blower unit 31, the temperature sensor 62, the pumps 50D, 83B, the heater units 50E, 59, 82, the sulfuric acid valve 50A, the sulfuric acid flow rate control valve 50B, the common valve 51, the chemical solution valve 52A, the chemical solution flow rate control valve 52B, the rinse solution valve 53A, the rinse solution flow rate control valve 53B, the organic solvent valve 54A, the organic solvent flow rate control valve 54B, the ozone gas valve 70A, the ozone gas flow rate control valve 70B, the regenerated sulfuric acid valve 83A, and the valves 37, 38.
- controller 3 controlling the substrate processing apparatus 1.
- the controller 3 is programmed to perform the following steps.
- FIG. 5 is a flow chart for explaining an example of substrate processing performed by the substrate processing apparatus 1.
- FIGS. 6A to 6C are schematic diagrams for explaining the state of the substrate W and its surroundings when the substrate processing is being performed.
- a resist film is formed on at least one of the pair of main surfaces of the substrate W used in the substrate processing.
- the resist film is typically an organic material film, and may be a resist film after being used as a mask for a pattern formation process (dry etching or wet etching), an ion implantation process, or the like.
- a substrate loading process (step S1), a substrate heating process (step S2), a nozzle arrangement process (step S3), a supply process (step S4; wet ozone gas supply process, sulfuric acid supply process), a mixed fluid supply process (step S5), a first rinsing process (step S6), a chemical supply process (step S7), a second rinsing process (step S8), an organic solvent supply process (step S9), a spin drying process (step S10), and a substrate removal process (step S11) are performed.
- An unprocessed substrate W is carried into the processing unit 2 from the carrier C by the second transport robot CR (see FIG. 1) and handed over to the spin chuck 8 (substrate carrying process: step S1). As a result, the substrate W is held horizontally by the spin chuck 8 (substrate holding process). At this time, the substrate W is held by the spin chuck 8 so that the main surface on which the resist film is formed faces up. Before processing, the main surface of the substrate W (the main surface on which the resist film is formed) is a dry surface with no liquid film present. The substrate W continues to be held by the spin chuck 8 until the spin dry process (step S10) is completed.
- the rotation drive mechanism 23 starts rotating the substrate W (substrate rotation process).
- an airflow from above to below is constantly formed in the internal space 7c of the chamber 7, and the airflow passes through the inside of the processing cup 15 and flows into the exhaust pipe 32.
- a substrate heating step (step S2) is performed to heat the substrate W.
- the current supply unit 63 supplies current to the heater 61, and the temperature of the heater 61 begins to rise.
- the heater drive mechanism 66 moves the substrate heating member 14 from the retreated position to the proximal position. As shown in FIG. 6A, the temperature of the heater 61 begins to rise, and the substrate heating member 14 is positioned in the proximal position, thereby beginning heating of the substrate W (substrate heating start step: step S21).
- a nozzle arrangement process (step S3) is performed in which the first nozzle drive mechanism 25 moves the first moving nozzle 9 to a processing position.
- the processing position is a position where the first moving nozzle 9 faces the main surface of the substrate W (the main surface on which the resist film is formed) and can supply the mixed fluid 100 to the main surface of the substrate W.
- the ozone gas valve 70A and the sulfuric acid valve 50A are opened with the first moving nozzle 9 positioned at the processing position, thereby starting the supply of wet ozone gas and sulfuric acid to the first moving nozzle 9 (wet ozone gas supply start step: step S41; sulfuric acid supply start step: S42).
- a mixed fluid 100 of wet ozone gas and sulfuric acid is discharged from the first moving nozzle 9, and the supply of the mixed fluid 100 to the upper surface of the substrate W is started (mixed fluid supply start step: step S51).
- the first nozzle driving mechanism 25 moves the first moving nozzle 9 to move the landing point of the mixed fluid on the upper surface of the substrate W in the radial direction of the substrate W (scan step: step S52). Since the substrate W is rotating around the rotation axis A1, the mixed fluid 100 discharged from the first moving nozzle 9 scans the entire upper surface of the substrate W.
- the first nozzle driving mechanism 25 retracts the first moving nozzle 9 (step S54). Meanwhile, the heater driving mechanism 66 moves the substrate heating member 14 from the close position to the retracted position. By placing the substrate heating member 14 in the retracted position (the position shown in FIG. 6C), the heating of the substrate W is stopped (substrate heating stopping step: step S22). This ends the substrate heating step (step S2).
- the mixed fluid 100 By scanning the upper surface of the substrate W with a mixed fluid 100 of wet ozone gas and sulfuric acid, the mixed fluid 100 can be supplied to the entire upper surface of the substrate W. The action of this mixed fluid 100 breaks down the resist on the main surface of the substrate W, and the resist film is removed (peeled off) from the main surface of the substrate W. Then, the liquid components (mainly sulfuric acid) in the mixed fluid 100 flow outward along the upper surface of the substrate W in the direction of the rotation radius due to the centrifugal force associated with the rotation of the substrate W, thereby removing at least a portion of the resist film peeled off from the main surface of the substrate W outside the substrate W.
- a mixed fluid 100 of wet ozone gas and sulfuric acid the mixed fluid 100 can be supplied to the entire upper surface of the substrate W. The action of this mixed fluid 100 breaks down the resist on the main surface of the substrate W, and the resist film is removed (peeled off) from the main surface of the substrate W. Then, the liquid components (
- the sulfuric acid and the water vapor in the wet ozone gas come into contact with each other, generating heat of dilution, and the ozone in the wet ozone gas decomposes at the interface of the sulfuric acid heated by the heat of dilution.
- This generates Caro's acid (peroxomonosulfuric acid).
- the heat of dilution can be efficiently used to decompose the ozone gas and generate Caro's acid, and the Caro's acid immediately after generation can be supplied to the main surface of the substrate W.
- the Caro's acid is heated by the heat of dilution, and the Caro's acid is supplied to the main surface of the substrate W at a higher temperature than the sulfuric acid before mixing.
- the resist can be efficiently decomposed by the high-temperature Caro's acid immediately after generation.
- the substrate heating process (step S2) is performed in parallel, so that the resist film can be removed even more efficiently.
- a first rinsing process is performed to clean the top surface of the substrate W by supplying a top surface rinsing liquid for the substrate W.
- the second nozzle driving mechanism 26 moves the second moving nozzle 10 to the processing position.
- the processing position is, for example, the central position.
- the common valve 51 and the rinsing liquid valve 53A are opened.
- rinsing liquid is ejected from the second moving nozzle 10, and the supply of rinsing liquid to the upper surface of the substrate W begins (rinsing liquid supply start process, rinsing liquid supply process).
- the rinsing liquid that has landed on the upper surface of the substrate W moves toward the peripheral portion of the upper surface of the substrate W, and the rinsing liquid spreads over the entire upper surface of the substrate W.
- the common valve 51 and the rinsing liquid valve 53A are closed. This stops the supply of rinsing liquid to the upper surface of the substrate W (rinsing liquid supply stopping process). This ends the first rinsing process.
- the first rinsing process drains sulfuric acid from the upper surface of the substrate W.
- the resist film that has been peeled off from the upper surface of the substrate W is washed away together with the sulfuric acid and is removed from the upper surface of the substrate W to the outside of the substrate W.
- a chemical liquid supplying process (step S7) is performed to supply a chemical liquid to the upper surface of the substrate W.
- the common valve 51 and the chemical liquid valve 52A are opened while the second moving nozzle 10 is positioned at the processing position. This stops the ejection of the rinsing liquid, and furthermore, a continuous flow of chemical liquid is ejected (supplied) from the second moving nozzle 10 toward the upper surface of the substrate W (chemical liquid ejecting process, chemical liquid supplying process). This causes the upper surface of the substrate W to be treated with the chemical liquid. This removes any residue remaining on the upper surface of the substrate W.
- a second rinse process (step S8) is performed in which a rinse liquid is supplied to the upper surface of the substrate W to clean the upper surface of the substrate W.
- the chemical valve 52A is closed and the rinse liquid valve 53A is opened.
- an organic solvent supplying step (step S9) is performed to supply organic solvent to the upper surface of the substrate W. Specifically, the ejection of rinsing liquid from the second moving nozzle 10 is stopped, and the second moving nozzle 10 is retracted. Then, the third nozzle driving mechanism 27 positions the third moving nozzle 11 facing the upper surface of the substrate W, and the organic solvent valve 54A is opened. As a result, a continuous flow of organic solvent is ejected (supplied) from the third moving nozzle 11 toward the upper surface of the substrate W (organic solvent ejecting step, organic solvent supplying step). As a result, the rinsing liquid on the upper surface of the substrate W is replaced with the organic solvent.
- the organic solvent used in substrate processing is preferably more volatile than the rinse liquid. If so, then by replacing the rinse liquid with the organic solvent, the substrate W can be dried well in the subsequent spin drying process (step S10).
- the organic solvent used in substrate processing is preferably lower in surface tension than the rinse liquid. If so, then in the case where an uneven pattern is formed on the top surface of the substrate W, the surface tension acting on the uneven pattern when the top surface of the substrate W is dried can be reduced, and collapse of the uneven pattern can be suppressed.
- a spin-dry process (step S10) is performed in which the substrate W is rotated at high speed to dry the upper surface of the substrate W.
- the organic solvent valve 54A is closed to stop the supply of organic solvent to the upper surface of the substrate W.
- the rotation drive mechanism 23 accelerates the rotation of the substrate W, causing the substrate W to rotate at high speed (for example, 1500 rpm).
- high speed for example, 1500 rpm.
- the rotation drive mechanism 23 stops the rotation of the substrate W. Then, the second transport robot CR enters the processing unit 2, receives the processed substrate W from the spin chuck 8, and removes it from the processing unit 2 (substrate removal process: step S11). The substrate W is passed from the second transport robot CR to the first transport robot IR, which stores it in the carrier C.
- the initial position of the first moving nozzle 9 when starting to discharge the mixed fluid 100 is a position where the landing point 100a of the mixed fluid 100 is located on the outer periphery of the substrate W.
- the first moving nozzle 9 starts to move, so that the landing point 100a of the mixed fluid 100 moves from the outer periphery of the substrate W toward the center of rotation (axis of rotation A1).
- the first moving nozzle 9 may be moved so that the landing point of the mixed fluid 100 repeatedly moves back and forth between the outer periphery of the substrate W and the center of rotation (axis of rotation A1).
- the scanning range is shown to be approximately the radius of the substrate W, but the scanning range may be approximately the diameter of the substrate W.
- the initial landing point of the mixed fluid 100 is set on the outer periphery of the substrate W, and as the landing point 100a moves toward the center of rotation (rotation axis A1), the mixed fluid 100 lands on a liquid film-free (substantially dry) surface on the substrate W.
- the Caro's acid in the mixed fluid 100 acts on the resist film without being diluted, allowing the resist decomposition reaction to occur efficiently. This enables highly efficient resist removal.
- a mixed fluid 100 of water vapor, ozone gas, and sulfuric acid is supplied to the main surface of the substrate W, and the mixed fluid 100 removes the resist film from the main surface of the substrate W.
- Heat of dilution is generated when the sulfuric acid comes into contact with the water vapor, and the ozone is decomposed at the interface of the sulfuric acid heated by the heat of dilution to generate Caro's acid (peroxomonosulfuric acid).
- Caro's acid peroxomonosulfuric acid
- the action of this Caro's acid decomposes the resist, and the resist film can be efficiently removed (peeled off) from the main surface of the substrate W.
- the resist removal process using the mixed fluid 100 does not require (use) costly hydrogen peroxide water, making it possible to realize a resist removal process that is inexpensive and has high stripping performance. Furthermore, the sulfuric acid in the mixed fluid 100 flows down from the substrate W as liquid, so it can be recovered and reused. And because the amount of water in the sulfuric acid that flows down from the substrate W is small, the technical and cost barriers to regenerating the recovered sulfuric acid to the target concentration are not high. Therefore, because sulfuric acid is easy to reuse, the amount of sulfuric acid used can be reduced. In this way, the resist film on the substrate W can be efficiently removed while reducing the amount of chemical used.
- ozone gas is bubbled in water to generate wet ozone gas in which water vapor and ozone gas are mixed in advance. Therefore, wet ozone gas and sulfuric acid can be mixed in the first moving nozzle 9 consisting of a two-fluid nozzle to generate a mixed fluid 100.
- wet ozone gas and sulfuric acid come into contact with each other in the first moving nozzle 9 (two-fluid nozzle)
- heat of dilution is generated by the moisture (water vapor) in the wet ozone gas, and ozone can be brought into contact with the interface of the sulfuric acid heated by the heat of dilution.
- Caro's acid can be efficiently generated, and the Caro's acid immediately after generation can be supplied to the main surface of the substrate to react with the resist film.
- Generating wet ozone gas by bubbling ozone gas in water is a relatively simple method, and has the advantage of being able to mix three fluids, namely water vapor, ozone gas, and sulfuric acid, using a two-fluid nozzle.
- wet ozone gas can be generated and pumped by supplying ozone gas into the water in the sealed container 57 that forms a closed space and bubbling it.
- This allows fluid mixing in the first moving nozzle 9 (multiple fluid nozzle) with a simple configuration.
- By heating the water in the sealed container 57 it is possible to promote the generation of water vapor by bubbling, so that wet ozone gas containing a moderate amount of water vapor can be generated and pumped to the first moving nozzle 9.
- the main surface of the substrate W presents a dry surface free of any liquid film. Therefore, when the mixed fluid 100 is supplied, the Caro's acid in the mixed fluid 100 acts on the resist film without being diluted. Therefore, the resist decomposition reaction by the Caro's acid occurs efficiently, making it possible to remove the resist with high efficiency.
- step S52 in FIG. 5 in which the first moving nozzle 9 is scanned while rotating the substrate W around the rotation axis A1, the landing point 100a of the mixed fluid 100 is moved from the outer periphery of the substrate W toward the rotation axis A1 while the mixed fluid 100 is discharged from the first moving nozzle 9.
- the liquid on the main surface of the substrate W flows toward the outer periphery due to centrifugal force.
- the mixed fluid 100 is supplied to a dry surface that is substantially free of a liquid film.
- the Caro's acid in the mixed fluid 100 acts on the resist film on the substrate main surface without being diluted, thereby achieving highly efficient resist removal.
- the resist film on the main surface of the substrate W can be removed without contacting the sulfuric acid with hydrogen peroxide. Since the hydrogen peroxide does not come into contact with the sulfuric acid, it is possible to avoid mixing a large amount of moisture into the sulfuric acid. This reduces the process for removing the moisture in the sulfuric acid, making it easier to regenerate and reuse the sulfuric acid, and therefore reducing the amount of sulfuric acid used.
- FIG. 8 is a diagram for explaining the configuration of another embodiment of the present invention.
- a three-fluid nozzle is used as the first moving nozzle 9.
- the first moving nozzle 9 consisting of a three-fluid nozzle is supplied with sulfuric acid (preferably heated sulfuric acid) from a sulfuric acid supply unit 16, ozone gas from an ozone gas supply unit 13A, and water vapor from a water vapor supply unit 13B.
- the ozone gas supply unit 13A and the water vapor supply unit 13B are preferably configured to pressure-feed the ozone gas and water vapor, respectively, to the first moving nozzle 9.
- the three-fluid nozzle constituting the first moving nozzle 9 is configured to mix sulfuric acid, ozone gas, and water vapor to generate a mixed fluid 100, and to eject the mixed fluid 100 toward the main surface of the substrate W.
- the ozone gas and water vapor are mixed (internal mixing) in the second passage 92 of the nozzle housing 90 and ejected from the second outlet 92a.
- the sulfuric acid passes through the first passage 91 in the nozzle housing 90 and is ejected from the first outlet 91a.
- the sulfuric acid and the mixed gas of ozone gas and water vapor collide and mix (external mixing) outside the nozzle housing 90 near the outlets 91a, 92a, thereby forming the mixed fluid 100.
- a three-fluid nozzle may be used in which three separate flow paths for sulfuric acid, ozone gas, and water vapor are formed in the nozzle housing, and the sulfuric acid, ozone gas, and water vapor come into contact with each other and are mixed inside or outside the nozzle housing.
- the water vapor supply unit 13B preferably supplies heated water vapor to the first moving nozzle 9.
- the water vapor supply unit 13B preferably supplies water vapor that is higher than room temperature and not higher than 100°C (for example, about 80°C) to the first moving nozzle 9. This prevents ozone from being decomposed when the water vapor comes into contact with ozone gas, and allows high-temperature Caro's acid to be generated when the water vapor and ozone come into contact with sulfuric acid.
- the processing liquid is configured to be ejected from multiple movable nozzles.
- the processing liquid may be ejected from a fixed nozzle whose position in the horizontal direction is fixed, or all processing liquid may be ejected from a single nozzle.
- the sulfuric acid is heated by the heater unit 50E disposed in the sulfuric acid piping 40.
- the sulfuric acid may be heated in the sulfuric acid tank 55.
- a circulation pipe for circulating the sulfuric acid in the sulfuric acid tank 55 may be provided, and a heater unit may be disposed in the circulation pipe to heat the sulfuric acid.
- the heating of the substrate W is not limited to heating by the substrate heating member 14.
- the substrate heating member may include an infrared lamp facing the upper surface of the substrate W, or may include a heater facing the upper surface of the substrate W.
- the substrate heating member may include a heating fluid nozzle that supplies a heating fluid such as nitrogen gas or hot water to the lower surface of the substrate W.
- the substrate heating member may be configured to heat the plate body 60 by circulating a heating fluid within the plate body 60. When a heating fluid is used, the temperature of the substrate W is adjusted by adjusting the opening of a valve that controls the flow rate of the heating fluid.
- the substrate heating member 14 is not an essential component of this invention, and the substrate heating member 14 and the substrate heating process (step S2) may be omitted.
- the substrate processing apparatus 1 may be provided with a cooling plate (not shown) for cooling the substrate W. After the substrate heating stopping step (step S22), the substrate W may be cooled to room temperature by the cooling plate.
- the spin chuck 8 is a gripping-type spin chuck that grips the periphery of the substrate W with a plurality of gripping pins 20, but the spin chuck 8 is not limited to a gripping-type spin chuck.
- the spin chuck 8 may be a vacuum suction-type spin chuck that adsorbs the substrate W to the spin base 21.
- the controller 3 controls the entire substrate processing apparatus 1.
- the controllers that control each component of the substrate processing apparatus 1 may be distributed to multiple locations.
- the controller 3 does not need to directly control each component, and the signal output from the controller 3 may be received by a slave controller that controls each component of the substrate processing apparatus 1.
- the substrate processing apparatus 1 includes a transport robot (first transport robot IR and second transport robot CR), multiple processing units 2, and a controller 3.
- the substrate processing apparatus 1 may be configured with a single processing unit 2 and controller 3 and may not include a transport robot.
- the substrate processing apparatus 1 may be configured with only a single processing unit 2.
- the processing unit 2 may be an example of a substrate processing apparatus.
- Substrate processing apparatus 2 Processing unit 3: Controller 7: Chamber 8: Spin chuck 9: First moving nozzle 10: Second moving nozzle 11: Third moving nozzle 13: Water vapor/ozone supply unit 13A: Ozone gas supply unit 13B: Water vapor supply unit 15: Processing cup 16: Sulfuric acid supply unit 23: Rotation drive mechanism 28: Guard 29: Cup 35: Drainage pipe 40: Sulfuric acid pipe 45: Wet ozone gas pipe 50A: Sulfuric acid valve 50B: Sulfuric acid flow rate control valve 50C: Filter 50D: Pump 50E: Heater unit 55: Sulfuric acid tank 56: Wet ozone gas generation unit 57: Sealed container 58: Ozone gas supply unit 59: Heater unit 70: Ozone gas pipe 70A: Ozone gas valve 70B: Ozone gas flow rate control valve 70C: Filter 71 : New liquid piping 71A : New liquid valve 80 : Sulfuric acid recovery/regeneration unit 81 : Regeneration tank 82
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Cleaning Or Drying Semiconductors (AREA)
- Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
Abstract
Provided is a method for processing a substrate on a main surface of which a resist film has been formed. This method comprises: a nozzle disposition step for disposing a plurality of fluid nozzles so as to face the main surface of the substrate; a supply step for supplying water vapor, ozone gas, and sulfuric acid to the plurality of fluid nozzles; and a mixed fluid supply step for supplying a mixed fluid of the water vapor, the ozone gas, and the sulfuric acid from the plurality of fluid nozzles toward the main surface of the substrate, thereby removing the resist film from the main surface of the substrate. The supply step may comprise a wet ozone gas supply step for supplying wet ozone gas in which water vapor and ozone gas are mixed with each other to the plurality of fluid nozzles.
Description
この出願は、2023年2月27日提出の日本国特許出願2023-028824号に基づく優先権を主張しており、この出願の全内容はここに引用により組み込まれるものとする。
This application claims priority to Japanese Patent Application No. 2023-028824, filed on February 27, 2023, the entire contents of which are incorporated herein by reference.
この発明は、基板を処理する基板処理方法および基板処理装置に関する。処理の対象となる基板には、たとえば、半導体ウエハ、液晶表示装置および有機EL(Electroluminescence)表示装置等のFPD(Flat Panel Display)用の基板、光ディスク用基板、磁気ディスク用基板、光磁気ディスク用基板、フォトマスク用基板、セラミック基板、太陽電池用基板等が含まれる。
This invention relates to a substrate processing method and substrate processing apparatus for processing substrates. Substrates to be processed include, for example, semiconductor wafers, substrates for FPDs (Flat Panel Displays) such as liquid crystal displays and organic EL (Electroluminescence) displays, substrates for optical disks, substrates for magnetic disks, substrates for magneto-optical disks, substrates for photomasks, ceramic substrates, substrates for solar cells, etc.
半導体装置の製造工程では、基板上でのパターンの形成や活性領域へのイオン注入のためのマスクとしてレジスト(フォトレジスト)が用いられる。使用後のレジストを基板から除去するためのウェット処理として、硫酸過酸化水素水混合液(SPM)を用いる処理が知られている。具体的には、特許文献1に記載されているように、硫酸と過酸化水素水とを混合してSPMを生成し、そのSPMを基板の表面に供給することにより、基板上のレジストが除去される。
In the manufacturing process of semiconductor devices, resist (photoresist) is used as a mask for forming patterns on a substrate and implanting ions into active regions. A known wet process for removing used resist from a substrate is one that uses a mixture of sulfuric acid and hydrogen peroxide (SPM). Specifically, as described in Patent Document 1, sulfuric acid and hydrogen peroxide are mixed to generate SPM, which is then supplied to the surface of the substrate to remove the resist on the substrate.
硫酸および過酸化水素水は、いずれも高価な薬液であるため、使用量を削減できれば基板処理コストを削減できる。加えて、硫酸は環境負荷の高い薬液であるため、環境負荷低減の観点からも使用量の削減が求められている。使用後のSPMを回収して硫酸を再生し、その再生した硫酸を再利用するための研究も行われている。しかし、過酸化水素水と混合して生成されるSPMには大量の水分が含まれる。そのため、SPMから水分を蒸発させて目標濃度の硫酸を得るには、技術上およびコスト上の課題を克服する必要がある。
Both sulfuric acid and hydrogen peroxide are expensive chemicals, so reducing their usage would reduce substrate processing costs. In addition, sulfuric acid is an environmentally hazardous chemical, so reducing its usage is also required from the perspective of reducing the environmental impact. Research is also being conducted to recover used SPM, regenerate sulfuric acid, and reuse the regenerated sulfuric acid. However, the SPM produced by mixing SPM with hydrogen peroxide contains a large amount of water. Therefore, in order to evaporate the water from the SPM and obtain sulfuric acid of the target concentration, it is necessary to overcome technical and cost challenges.
そこで、この発明の一実施形態は、薬液の使用量を削減しながら、基板上のレジスト膜を効率良く除去できる基板処理方法および基板処理装置を提供する。
Therefore, one embodiment of the present invention provides a substrate processing method and substrate processing apparatus that can efficiently remove resist films on substrates while reducing the amount of chemical solution used.
この発明の一実施形態は、次に例示的に列記する特徴を有する基板処理方法および基板処理装置を提供する。
One embodiment of the present invention provides a substrate processing method and substrate processing apparatus having the following exemplary features:
1.主面にレジスト膜が形成された基板を処理する方法であって、
複数流体ノズルを前記基板の主面に向けて配置するノズル配置工程と、
前記複数流体ノズルに水蒸気、オゾンガスおよび硫酸を供給する供給工程と、
前記複数流体ノズルから、水蒸気、オゾンガスおよび硫酸の混合流体を前記基板の主面に向けて供給して、前記レジスト膜を前記基板の主面から除去する混合流体供給工程と、
を含む、基板処理方法。 1. A method for treating a substrate having a resist film formed on a main surface thereof, comprising the steps of:
a nozzle arrangement step of arranging a multi-fluid nozzle toward a main surface of the substrate;
a supply step of supplying water vapor, ozone gas, and sulfuric acid to the multiple fluid nozzle;
a mixed fluid supplying step of supplying a mixed fluid of water vapor, ozone gas, and sulfuric acid from the multiple fluid nozzle toward the main surface of the substrate to remove the resist film from the main surface of the substrate;
A method for processing a substrate, comprising:
複数流体ノズルを前記基板の主面に向けて配置するノズル配置工程と、
前記複数流体ノズルに水蒸気、オゾンガスおよび硫酸を供給する供給工程と、
前記複数流体ノズルから、水蒸気、オゾンガスおよび硫酸の混合流体を前記基板の主面に向けて供給して、前記レジスト膜を前記基板の主面から除去する混合流体供給工程と、
を含む、基板処理方法。 1. A method for treating a substrate having a resist film formed on a main surface thereof, comprising the steps of:
a nozzle arrangement step of arranging a multi-fluid nozzle toward a main surface of the substrate;
a supply step of supplying water vapor, ozone gas, and sulfuric acid to the multiple fluid nozzle;
a mixed fluid supplying step of supplying a mixed fluid of water vapor, ozone gas, and sulfuric acid from the multiple fluid nozzle toward the main surface of the substrate to remove the resist film from the main surface of the substrate;
A method for processing a substrate, comprising:
この方法によれば、水蒸気、オゾンガスおよび硫酸(典型的には室温よりも高温に加熱された硫酸)の混合流体が基板の主面に供給され、その混合流体によって、基板の主面からレジスト膜が除去される。硫酸と水蒸気が接触することにより希釈熱が発生し、その希釈熱によって加熱された硫酸の界面でオゾンが分解することにより、カロ酸(ペルオキソ一硫酸)が発生する。このカロ酸(とくに活性酸素)の働きによってレジストが分解され、レジスト膜を基板の主面から効率良く除去(剥離)することができる。
In this method, a mixed fluid of water vapor, ozone gas, and sulfuric acid (typically sulfuric acid heated to a temperature higher than room temperature) is supplied to the main surface of the substrate, and the mixed fluid removes the resist film from the main surface of the substrate. Heat of dilution is generated when the sulfuric acid comes into contact with the water vapor, and the heat of dilution causes ozone to decompose at the interface of the heated sulfuric acid, generating Caro's acid (peroxomonosulfuric acid). The action of this Caro's acid (particularly active oxygen) breaks down the resist, allowing the resist film to be efficiently removed (peeled off) from the main surface of the substrate.
コストの高い過酸化水素水を必要としない(用いない)プロセスであるので、安価で剥離性能の高いプロセスを実現できる。また、混合流体に含まれる硫酸は、基板から液体となって流下するので、これを回収して再利用することができる。回収される硫酸中の水分量は少ないので、回収した硫酸から目標濃度の硫酸を再生させるための技術上およびコスト上の障壁は高くない。よって、硫酸の再利用がしやすいプロセスであるので、硫酸の使用量を削減することが可能となる。こうして、薬液使用量を削減しながら基板上のレジスト膜を効率良く除去できる基板処理を実現できる。
As this is a process that does not require (use) costly hydrogen peroxide, it is possible to realize a process that is inexpensive and has high stripping performance. In addition, the sulfuric acid contained in the mixed fluid flows down from the substrate as liquid, and this can be recovered and reused. Because the water content in the recovered sulfuric acid is small, the technical and cost barriers to regenerating sulfuric acid of the target concentration from the recovered sulfuric acid are not high. Therefore, because this is a process that makes it easy to reuse sulfuric acid, it is possible to reduce the amount of sulfuric acid used. In this way, it is possible to realize substrate processing that can efficiently remove resist films on substrates while reducing the amount of chemicals used.
2.前記供給工程は、前記複数流体ノズルに、水蒸気およびオゾンガスが混合した湿潤オゾンガスを供給する湿潤オゾンガス供給工程を含む、項1に記載の基板処理方法。
2. The substrate processing method described in item 1, wherein the supplying step includes a wet ozone gas supplying step of supplying wet ozone gas, which is a mixture of water vapor and ozone gas, to the multiple fluid nozzle.
複数流体ノズルにおいて湿潤オゾンガスと硫酸とが接触することにより、湿潤オゾンガス中の水分(水蒸気)による希釈熱が発生し、その希釈熱により加熱された硫酸の界面にオゾンを接触させることができる。よって、カロ酸を効率的に生成でき、生成直後のカロ酸を基板の主面に供給してレジスト膜と反応させることができる。それにより、効率的なレジスト除去処理を達成できる。
When the wet ozone gas comes into contact with sulfuric acid in the multiple fluid nozzle, heat of dilution is generated by the moisture (water vapor) in the wet ozone gas, and the ozone can be brought into contact with the interface of the sulfuric acid heated by the heat of dilution. This allows Caro's acid to be efficiently generated, and the Caro's acid immediately after generation can be supplied to the main surface of the substrate to react with the resist film. This allows for efficient resist removal processing.
3.前記湿潤オゾンガス供給工程は、水中でオゾンガスをバブリングして湿潤オゾンガスを生成する湿潤オゾンガス生成工程を含む、項2に記載の基板処理方法。
3. The substrate processing method according to item 2, wherein the wet ozone gas supply process includes a wet ozone gas generation process in which ozone gas is bubbled in water to generate wet ozone gas.
水中(典型的には脱イオン水の中)でのオゾンガスのバブリングによって、簡単な方法で湿潤オゾンガスを生成できる。
Wet ozone gas can be produced in a simple manner by bubbling ozone gas through water (typically deionized water).
このほか、水蒸気とオゾンガスとを混合することによって湿潤オゾンガスを生成することもできる。ただし、オゾンガスは約130℃で分解するので、分解を回避できる温度の水蒸気と混合することが好ましい。水中でのバブリングによって湿潤オゾンガスを発生させるときには、水の沸点がオゾンガスの分解温度よりも低いので、オゾンガスの分解回避のための温度管理は必要ではない。
In addition, wet ozone gas can be generated by mixing water vapor with ozone gas. However, since ozone gas decomposes at approximately 130°C, it is preferable to mix it with water vapor at a temperature that can avoid decomposition. When generating wet ozone gas by bubbling in water, the boiling point of water is lower than the decomposition temperature of ozone gas, so temperature control to avoid decomposition of ozone gas is not necessary.
オゾンガスがバブリングされる水は加熱されてもよい。加熱された水中でのバブリングによって水蒸気の発生を促すことができるので、水蒸気を適度に含む湿潤オゾンガスを生成して、複数流体ノズルへと圧送できる。
The water through which the ozone gas is bubbled may be heated. Bubbling in the heated water can encourage the generation of water vapor, producing moist ozone gas containing a moderate amount of water vapor that can be pumped to the multiple-fluid nozzle.
4.前記湿潤オゾンガス供給工程は、閉鎖空間内の水中で、オゾンガス供給源から供給されるオゾンガスをバブリングして前記閉鎖空間内に湿潤オゾンガスを生成させ、前記閉鎖空間から前記複数流体ノズルに前記湿潤オゾンガスを圧送する工程を含む、項2に記載の基板処理方法。
4. The substrate processing method described in item 2, wherein the wet ozone gas supplying step includes a step of bubbling ozone gas supplied from an ozone gas supply source in water in a closed space to generate wet ozone gas in the closed space, and pressure-feeding the wet ozone gas from the closed space to the multiple fluid nozzle.
閉鎖空間内に収容された水中にオゾンガスを供給してバブリングすることで、湿潤オゾンガスの生成およびその圧送を行うことができ、簡単な構成で、複数流体ノズルでの流体混合を行うことができる。
By supplying ozone gas into water contained in a closed space and bubbling it, wet ozone gas can be generated and pumped out, and fluid mixing can be performed in a multiple fluid nozzle with a simple configuration.
5.前記混合流体供給工程は、前記オゾンガスと前記硫酸との混合によって生じるカロ酸を含む前記混合流体を前記基板の主面に向けて供給する、項1~4のいずれか一項に記載の基板処理方法。
5. The substrate processing method according to any one of claims 1 to 4, wherein the mixed fluid supply step supplies the mixed fluid containing Caro's acid produced by mixing the ozone gas and the sulfuric acid toward the main surface of the substrate.
カロ酸を含む混合流体が基板の主面に供給されることにより、基板上のレジストを分解して効率的に除去できる。
By supplying a mixed fluid containing Caro's acid to the main surface of the substrate, the resist on the substrate can be broken down and efficiently removed.
6.前記混合流体供給工程は、前記水蒸気と前記硫酸との接触によって生じる希釈熱によって、前記硫酸よりも高温の前記カロ酸を含む前記混合流体を前記基板の主面に向けて供給する、項5に記載の基板処理方法。
6. The substrate processing method according to item 5, wherein the mixed fluid supply step supplies the mixed fluid containing the Caro's acid, which is hotter than the sulfuric acid, toward the main surface of the substrate by heat of dilution generated by contact between the water vapor and the sulfuric acid.
水蒸気と硫酸との混合によって生じる希釈熱のために、基板の主面に供給されるカロ酸は硫酸よりも高温になる。それにより、基板上のレジストの分解を促すことができるので、レジスト膜を効率的に除去できる。
Due to the heat of dilution generated by mixing water vapor and sulfuric acid, the Caro's acid supplied to the main surface of the substrate becomes hotter than the sulfuric acid. This promotes the decomposition of the resist on the substrate, allowing the resist film to be removed efficiently.
7.前記複数流体ノズルに供給される水蒸気は、100℃以下である、項1~6のいずれか一項に記載の基板処理方法。
7. The substrate processing method according to any one of claims 1 to 6, wherein the water vapor supplied to the multiple fluid nozzle is at or below 100°C.
水蒸気の温度がオゾンの分解温度よりも低い100℃以下であることにより、オゾンが硫酸に接触する前に分解することを抑制できる。それにより、オゾンガスが硫酸と接触したときにカロ酸を効率良く生成できるので、高いレジスト除去性能を実現できる。
By keeping the temperature of the water vapor at 100°C or less, which is lower than the decomposition temperature of ozone, it is possible to prevent the ozone from decomposing before coming into contact with sulfuric acid. This allows Caro's acid to be generated efficiently when the ozone gas comes into contact with sulfuric acid, achieving high resist removal performance.
8.前記混合流体供給工程によって前記混合流体が供給される前の前記基板の主面は、液膜の無い乾燥表面を呈している、項1~7のいずれか一項に記載の基板処理方法。
8. The substrate processing method according to any one of claims 1 to 7, wherein the main surface of the substrate is a dry surface without a liquid film before the mixed fluid is supplied in the mixed fluid supplying step.
液膜のない乾燥状態の主面に混合流体が供給されることにより、混合流体中のカロ酸が希釈されることなくレジスト膜に作用する。そのため、カロ酸によるレジスト分解反応が効率的に生じるので、高効率なレジスト除去が可能になる。
By supplying the mixed fluid to a dry main surface with no liquid film, the Caro's acid in the mixed fluid acts on the resist film without being diluted. This allows the resist decomposition reaction by Caro's acid to occur efficiently, enabling highly efficient resist removal.
9.前記基板を前記主面を通る回転軸線まわりに回転する基板回転工程をさらに含み、
前記混合流体供給工程は、前記基板回転工程と並行して実行され、前記複数流体ノズルから前記混合流体を吐出しながら、前記基板の外周縁から前記回転軸線に向けて前記混合流体の前記主面上における着地点を移動させるスキャン工程を含む、項1~8のいずれか一項に記載の基板処理方法。 9. The method further includes a substrate rotation step of rotating the substrate about a rotation axis passing through the main surface,
9. The substrate processing method according to any one ofitems 1 to 8, wherein the mixed fluid supplying step is performed in parallel with the substrate rotating step, and includes a scanning step of discharging the mixed fluid from the multiple-fluid nozzle while moving a landing point of the mixed fluid on the main surface from an outer periphery of the substrate toward the rotation axis.
前記混合流体供給工程は、前記基板回転工程と並行して実行され、前記複数流体ノズルから前記混合流体を吐出しながら、前記基板の外周縁から前記回転軸線に向けて前記混合流体の前記主面上における着地点を移動させるスキャン工程を含む、項1~8のいずれか一項に記載の基板処理方法。 9. The method further includes a substrate rotation step of rotating the substrate about a rotation axis passing through the main surface,
9. The substrate processing method according to any one of
基板の回転によって、基板の主面上の液体は遠心力によって外周側へと流れる。そこで、複数流体ノズルから吐出される混合流体による基板主面のスキャンを基板の外周縁から始めることによって、実質的に液膜の無い表面に混合流体が供給される。それにより、混合流体中のカロ酸が希釈されることなく基板主面のレジスト膜に作用するので、高効率なレジスト除去を実現できる。
When the substrate rotates, the liquid on the main surface of the substrate flows toward the outer periphery due to centrifugal force. Therefore, by starting the scanning of the main surface of the substrate with the mixed fluid discharged from the multi-fluid nozzle from the outer edge of the substrate, the mixed fluid is supplied to a surface that is essentially free of liquid film. As a result, the Caro's acid in the mixed fluid acts on the resist film on the main surface of the substrate without being diluted, achieving highly efficient resist removal.
10.前記硫酸に過酸化水素水を接触させることなく、前記基板の主面の前記レジスト膜を除去する、項1~9のいずれか一項に記載の基板処理方法。
10. The substrate processing method according to any one of claims 1 to 9, wherein the resist film on the main surface of the substrate is removed without contacting the sulfuric acid with hydrogen peroxide solution.
硫酸に対する過酸化水素水の接触がないことにより、硫酸に多量の水分が混合することを回避できる。それにより、硫酸中の水分を除去するための処理を軽減できるので、硫酸を再生して再利用しやすくなり、それに応じて硫酸の使用量を削減できる。
Since there is no contact between the sulfuric acid and hydrogen peroxide, it is possible to avoid mixing a large amount of water into the sulfuric acid. This reduces the amount of processing required to remove the water from the sulfuric acid, making it easier to regenerate and reuse the sulfuric acid, and therefore reducing the amount of sulfuric acid used.
11.基板を保持する基板保持ユニットと、
前記基板保持ユニットに保持される基板の主面に向けて配置される複数流体ノズルと、
前記複数流体ノズルに水蒸気およびオゾンガスを供給する水蒸気/オゾン供給ユニットと、
前記複数流体ノズルに硫酸(典型的には室温よりも加熱された硫酸)を供給する硫酸供給ユニットと、を含み、
前記複数流体ノズルから、水蒸気、オゾンガスおよび硫酸の混合流体を前記基板保持ユニットに保持された基板の主面に向けて供給するように構成された、基板処理装置。 11. A substrate holding unit that holds a substrate;
a multi-fluid nozzle arranged to face a main surface of a substrate held by the substrate holding unit;
a water vapor/ozone supply unit for supplying water vapor and ozone gas to the multiple fluid nozzle;
a sulfuric acid supply unit for supplying sulfuric acid (typically sulfuric acid heated above room temperature) to the multi-fluid nozzle;
a substrate processing apparatus configured to supply a mixed fluid of water vapor, ozone gas, and sulfuric acid from the multiple fluid nozzle toward a main surface of a substrate held by the substrate holding unit.
前記基板保持ユニットに保持される基板の主面に向けて配置される複数流体ノズルと、
前記複数流体ノズルに水蒸気およびオゾンガスを供給する水蒸気/オゾン供給ユニットと、
前記複数流体ノズルに硫酸(典型的には室温よりも加熱された硫酸)を供給する硫酸供給ユニットと、を含み、
前記複数流体ノズルから、水蒸気、オゾンガスおよび硫酸の混合流体を前記基板保持ユニットに保持された基板の主面に向けて供給するように構成された、基板処理装置。 11. A substrate holding unit that holds a substrate;
a multi-fluid nozzle arranged to face a main surface of a substrate held by the substrate holding unit;
a water vapor/ozone supply unit for supplying water vapor and ozone gas to the multiple fluid nozzle;
a sulfuric acid supply unit for supplying sulfuric acid (typically sulfuric acid heated above room temperature) to the multi-fluid nozzle;
a substrate processing apparatus configured to supply a mixed fluid of water vapor, ozone gas, and sulfuric acid from the multiple fluid nozzle toward a main surface of a substrate held by the substrate holding unit.
12.前記水蒸気/オゾン供給ユニットは、水蒸気およびオゾンガスの混合ガスである湿潤オゾンガスを供給する、項11に記載の基板処理装置。
12. The substrate processing apparatus according to item 11, wherein the water vapor/ozone supply unit supplies wet ozone gas, which is a mixed gas of water vapor and ozone gas.
13.前記水蒸気/オゾン供給ユニットは、水中でオゾンガスをバブリングさせて前記湿潤オゾンガスを生成する湿潤オゾンガス生成ユニットを含む、項12に記載の基板処理装置。
13. The substrate processing apparatus according to item 12, wherein the water vapor/ozone supply unit includes a wet ozone gas generation unit that generates the wet ozone gas by bubbling ozone gas in water.
14.前記湿潤オゾンガス生成ユニットは、閉鎖空間を形成する密閉容器と、前記密閉容器中に貯留される水中にオゾンガスを供給するオゾンガス供給ユニットとを含み、前記複数流体ノズルに向けて前記湿潤オゾンガスを圧送する、項13に記載の基板処理装置。
14. The substrate processing apparatus described in item 13, wherein the wet ozone gas generation unit includes a sealed container that forms a closed space and an ozone gas supply unit that supplies ozone gas into the water stored in the sealed container, and pressure-feeds the wet ozone gas toward the multiple fluid nozzle.
15.項11~項14に記載した特徴に、さらに前述の基板処理方法に関して述べた特徴の一つ以上が組み合わされてもよい。
15. The features described in paragraphs 11 to 14 may be combined with one or more of the features described above with respect to the substrate processing method.
本発明における上述の、またはさらに他の目的、特徴および効果は、添付図面を参照して次に述べる実施形態の説明により明らかにされる。
The above and other objects, features and advantages of the present invention will become apparent from the following description of the embodiments with reference to the accompanying drawings.
図1は、この発明の一実施形態に係る基板処理装置1の構成例を説明するための図解的な平面図である。基板処理装置1は、基板Wを一枚ずつ処理する枚葉式の装置である。この実施形態では、基板Wは、円板状を有する。基板Wは、シリコンウエハ等の基板Wであり、一対の主面を有する。
FIG. 1 is a schematic plan view for explaining an example of the configuration of a substrate processing apparatus 1 according to one embodiment of the present invention. The substrate processing apparatus 1 is a single-wafer type apparatus that processes substrates W one by one. In this embodiment, the substrate W has a disk shape. The substrate W is a substrate W such as a silicon wafer, and has a pair of main surfaces.
基板処理装置1は、基板Wを処理する複数の処理ユニット2と、処理ユニット2で処理される複数枚の基板Wを収容するキャリアC(収容器)が載置されるロードポートLP(収容器保持ユニット)と、ロードポートLPと処理ユニット2との間で基板Wを搬送する搬送ロボット(第1搬送ロボットIRおよび第2搬送ロボットCR)と、基板処理装置1に備えられる各部材を制御するコントローラ3とを含む。
The substrate processing apparatus 1 includes a plurality of processing units 2 for processing substrates W, a load port LP (container holding unit) on which a carrier C (container) is placed that contains a plurality of substrates W to be processed in the processing units 2, transport robots (first transport robot IR and second transport robot CR) that transport the substrates W between the load port LP and the processing units 2, and a controller 3 that controls each component provided in the substrate processing apparatus 1.
第1搬送ロボットIRは、キャリアCと第2搬送ロボットCRとの間で基板Wを搬送する。第2搬送ロボットCRは、第1搬送ロボットIRと処理ユニット2との間で基板Wを搬送する。各搬送ロボットは、たとえば、多関節アームロボットである。
The first transport robot IR transports substrates W between the carrier C and the second transport robot CR. The second transport robot CR transports substrates W between the first transport robot IR and the processing unit 2. Each transport robot is, for example, a multi-joint arm robot.
複数の処理ユニット2は、第2搬送ロボットCRによって基板Wが搬送される搬送経路TRに沿って搬送経路TRの両側に配列され、かつ、上下方向に積層されて配列されている。複数の処理ユニット2は、たとえば、同様の構成を有している。複数の処理ユニット2は、水平に離れた4つの位置にそれぞれ配置された4つの処理タワーTWを形成している。各処理タワーTWは、上下方向に積層された複数の処理ユニット2を含む。4つの処理タワーTWは、ロードポートLPから第2搬送ロボットCRに向かって延びる搬送経路TRの両側に2つずつ配置されている。
The multiple processing units 2 are arranged on both sides of the transport path TR along which the substrate W is transported by the second transport robot CR, and are stacked vertically. The multiple processing units 2 have, for example, the same configuration. The multiple processing units 2 form four processing towers TW arranged at four horizontally spaced positions. Each processing tower TW includes multiple processing units 2 stacked vertically. The four processing towers TW are arranged, two on each side, of the transport path TR extending from the load port LP toward the second transport robot CR.
基板処理装置1は、バルブや配管等を収容する複数の流体ボックス4と、硫酸、薬液、リンス液、有機溶剤、または、これらの原料を貯留するタンクを収容する貯留ボックス5とを含む。処理ユニット2および流体ボックス4は、平面視略四角形状のフレーム6の内側に配置されている。
The substrate processing apparatus 1 includes a plurality of fluid boxes 4 that house valves, piping, etc., and a storage box 5 that houses tanks for storing sulfuric acid, chemicals, rinsing liquids, organic solvents, or these raw materials. The processing units 2 and fluid boxes 4 are arranged inside a frame 6 that is roughly rectangular in plan view.
処理ユニット2は、基板処理の際に基板Wを収容するチャンバ7を有する。チャンバ7は、第2搬送ロボットCRによって、チャンバ7内に基板Wを搬入したりチャンバ7から基板Wを搬出したりするための出入口(図示せず)と、出入口を開閉するシャッタユニット(図示せず)とを含む。チャンバ7内で基板Wに供給される処理液としては、詳しくは後述するが、硫酸、薬液、リンス液、有機溶剤等が挙げられる。
The processing unit 2 has a chamber 7 that houses the substrate W during substrate processing. The chamber 7 includes an entrance (not shown) through which the second transport robot CR loads the substrate W into the chamber 7 and loads the substrate W out of the chamber 7, and a shutter unit (not shown) that opens and closes the entrance. Processing liquids supplied to the substrate W in the chamber 7 include sulfuric acid, chemical liquids, rinse liquids, organic solvents, etc., which will be described in detail later.
図2は、処理ユニット2の構成を説明するための模式図である。処理ユニット2は、基板Wを所定の処理姿勢に基板Wを保持しながら、回転軸線A1まわりに基板Wを回転させるスピンチャック8と、基板Wに向けて処理液を吐出する複数のノズル(第1移動ノズル9、第2移動ノズル10、第3移動ノズル11)とを含む。
FIG. 2 is a schematic diagram for explaining the configuration of the processing unit 2. The processing unit 2 includes a spin chuck 8 that rotates the substrate W about a rotation axis A1 while holding the substrate W in a predetermined processing posture, and a number of nozzles (a first mobile nozzle 9, a second mobile nozzle 10, and a third mobile nozzle 11) that eject a processing liquid toward the substrate W.
処理ユニット2は、スピンチャック8に保持されている基板Wを加熱する基板加熱部材14と、スピンチャック8に保持されている基板Wから飛散する処理液を受ける処理カップ15とをさらに含む。
The processing unit 2 further includes a substrate heating member 14 that heats the substrate W held on the spin chuck 8, and a processing cup 15 that receives processing liquid that splashes from the substrate W held on the spin chuck 8.
スピンチャック8、複数の移動ノズル、基板加熱部材14、および処理カップ15は、チャンバ7内に配置されている。
The spin chuck 8, multiple moving nozzles, substrate heating member 14, and processing cup 15 are disposed within chamber 7.
回転軸線A1は、基板Wの中心部を通り、処理姿勢に保持されている基板Wの各主面に対して直交する。処理姿勢は、たとえば、図2に示す基板Wの姿勢であり、基板Wの主面が水平面となる水平姿勢であるが、水平姿勢に限られない。すなわち、処理姿勢は、図2とは異なり、基板Wの主面が水平面に対して傾斜する姿勢であってもよい。処理姿勢が水平姿勢である場合、回転軸線A1は、鉛直に延びる。
The rotation axis A1 passes through the center of the substrate W and is perpendicular to each main surface of the substrate W held in the processing posture. The processing posture is, for example, the posture of the substrate W shown in FIG. 2, which is a horizontal posture in which the main surface of the substrate W is in a horizontal plane, but is not limited to a horizontal posture. In other words, the processing posture may be a posture in which the main surface of the substrate W is inclined relative to the horizontal plane, unlike that shown in FIG. 2. When the processing posture is a horizontal posture, the rotation axis A1 extends vertically.
スピンチャック8は、基板Wを処理姿勢に保持する基板保持部材(基板保持ユニット、基板ホルダ)の一例であり、基板Wを処理姿勢に保持しながら回転軸線A1のまわりに基板Wを回転させる回転保持部材の一例でもある。
The spin chuck 8 is an example of a substrate holding member (substrate holding unit, substrate holder) that holds the substrate W in a processing position, and is also an example of a rotating holding member that rotates the substrate W around the rotation axis A1 while holding the substrate W in a processing position.
スピンチャック8は、水平方向に沿う円板形状を有するスピンベース21と、スピンベース21の上方で基板Wを把持しスピンベース21よりも上方で基板Wの周縁部を把持する複数の把持ピン20と、スピンベース21に連結され鉛直方向に延びる回転軸22と、回転軸22をその中心軸線(回転軸線A1)のまわりに回転させる回転駆動機構23とを含む。スピンベース21は、円板状のベースの一例である。
The spin chuck 8 includes a spin base 21 having a disk shape along the horizontal direction, a plurality of gripping pins 20 that grip the substrate W above the spin base 21 and grip the peripheral portion of the substrate W above the spin base 21, a rotation shaft 22 that is connected to the spin base 21 and extends in the vertical direction, and a rotation drive mechanism 23 that rotates the rotation shaft 22 around its central axis (rotation axis A1). The spin base 21 is an example of a disk-shaped base.
複数の把持ピン20は、スピンベース21の周方向に間隔を空けてスピンベース21の上面に配置されている。回転駆動機構23は、たとえば、電動モータ等のアクチュエータを含む。回転駆動機構23は、回転軸22を回転させることでスピンベース21および複数の把持ピン20が回転軸線A1のまわりに回転される。これにより、基板Wは、スピンベース21および複数の把持ピン20とともに回転軸線A1のまわりに回転される。
The multiple gripping pins 20 are arranged on the upper surface of the spin base 21 at intervals in the circumferential direction of the spin base 21. The rotation drive mechanism 23 includes an actuator such as an electric motor. The rotation drive mechanism 23 rotates the rotation shaft 22, thereby rotating the spin base 21 and the multiple gripping pins 20 around the rotation axis A1. As a result, the substrate W is rotated around the rotation axis A1 together with the spin base 21 and the multiple gripping pins 20.
複数の把持ピン20は、基板Wの周縁部に接触して基板Wを把持する閉位置と、基板Wに対する把持を解除する開位置との間で移動可能である。複数の把持ピン20は、開閉機構(図示せず)によって移動される。
The multiple gripping pins 20 are movable between a closed position in which they contact the peripheral edge of the substrate W to grip the substrate W, and an open position in which they release their grip on the substrate W. The multiple gripping pins 20 are moved by an opening/closing mechanism (not shown).
複数の把持ピン20は、閉位置に位置するとき、基板Wの周縁部を把持して基板Wを水平に保持する。複数の把持ピン20は、開位置に位置するとき、基板Wに対する把持を解除する一方で、基板Wの周縁部を下方から支持する。開閉機構は、たとえば、リンク機構と、リンク機構に駆動力を付与するアクチュエータとを含む。
When the multiple gripping pins 20 are in the closed position, they grip the peripheral edge of the substrate W and hold the substrate W horizontally. When the multiple gripping pins 20 are in the open position, they release their grip on the substrate W while supporting the peripheral edge of the substrate W from below. The opening and closing mechanism includes, for example, a link mechanism and an actuator that applies a driving force to the link mechanism.
複数の移動ノズルは、スピンチャック8に保持されている基板Wの上面(上側の主面)に向けて、水蒸気、オゾンガスおよび硫酸の混合流体を吐出する第1移動ノズル9と、スピンチャック8に保持されている基板Wの上面に向けて、薬液の連続流およびリンス液の連続流を選択的に吐出する第2移動ノズル10と、スピンチャック8に保持されている基板Wの上面に向けて有機溶剤を吐出する第3移動ノズル11とを含む。
The multiple mobile nozzles include a first mobile nozzle 9 that ejects a mixed fluid of water vapor, ozone gas, and sulfuric acid toward the top surface (upper main surface) of the substrate W held on the spin chuck 8, a second mobile nozzle 10 that selectively ejects a continuous flow of chemical liquid and a continuous flow of rinsing liquid toward the top surface of the substrate W held on the spin chuck 8, and a third mobile nozzle 11 that ejects an organic solvent toward the top surface of the substrate W held on the spin chuck 8.
第1移動ノズル9は、スピンチャック8に保持されている基板Wの主面(上面)に向けて、水蒸気、オゾンガスおよび硫酸の混合流体を供給する複数流体ノズルの一例である。第2移動ノズル10は、スピンチャック8に保持されている基板Wの主面(上面)に向けて薬液を吐出する薬液ノズルの一例であり、かつスピンチャック8に保持されている基板Wの主面(上面)に向けてリンス液を吐出するリンス液ノズルの一例である。第3移動ノズル11は、スピンチャック8に保持されている基板Wの主面(上面)に向けて有機溶剤を吐出する有機溶剤ノズルの一例である。
The first moving nozzle 9 is an example of a multiple fluid nozzle that supplies a mixed fluid of water vapor, ozone gas, and sulfuric acid toward the main surface (top surface) of the substrate W held by the spin chuck 8. The second moving nozzle 10 is an example of a chemical liquid nozzle that ejects a chemical liquid toward the main surface (top surface) of the substrate W held by the spin chuck 8, and is an example of a rinsing liquid nozzle that ejects a rinsing liquid toward the main surface (top surface) of the substrate W held by the spin chuck 8. The third moving nozzle 11 is an example of an organic solvent nozzle that ejects an organic solvent toward the main surface (top surface) of the substrate W held by the spin chuck 8.
複数の移動ノズルは、複数のノズル駆動機構(第1ノズル駆動機構25、第2ノズル駆動機構26および第3ノズル駆動機構27)によって水平方向にそれぞれ移動される。
The multiple moving nozzles are each moved horizontally by multiple nozzle driving mechanisms (first nozzle driving mechanism 25, second nozzle driving mechanism 26, and third nozzle driving mechanism 27).
各ノズル駆動機構は、対応する移動ノズルを、中央位置と退避位置との間で移動させることができる。中央位置は、移動ノズルが基板Wの上面の中央領域に対向する位置である。基板Wの上面の中央領域とは、基板Wの上面において回転中心(中央部)と回転中心の周囲の部分とを含む領域のことである。退避位置は、移動ノズルが基板Wの上面に対向しない位置であり、処理カップ15の外側の位置である。
Each nozzle driving mechanism can move the corresponding mobile nozzle between a central position and a retracted position. The central position is a position where the mobile nozzle faces the central region of the top surface of the substrate W. The central region of the top surface of the substrate W is a region on the top surface of the substrate W that includes the center of rotation (central portion) and the area surrounding the center of rotation. The retracted position is a position where the mobile nozzle does not face the top surface of the substrate W, and is a position outside the processing cup 15.
各ノズル駆動機構は、対応する移動ノズルを支持するアーム(第1アーム25a、第2アーム26aおよび第3アーム27a)と、対応するアームを水平方向に移動させるアーム駆動機構(第1アーム駆動機構25b、第2アーム駆動機構26bおよび第3アーム駆動機構27b)とを含む。各アーム駆動機構は、電動モータ、エアシリンダ等のアクチュエータを含む。
Each nozzle drive mechanism includes an arm (first arm 25a, second arm 26a, and third arm 27a) that supports the corresponding moving nozzle, and an arm drive mechanism (first arm drive mechanism 25b, second arm drive mechanism 26b, and third arm drive mechanism 27b) that moves the corresponding arm in the horizontal direction. Each arm drive mechanism includes an actuator such as an electric motor or an air cylinder.
移動ノズルは、所定の回動軸線まわりに回動する回動式ノズルであってもよいし、対応するアームが延びる方向に直線的に移動する直動式ノズルであってもよい。移動ノズルは、鉛直方向にも移動できるように構成されていてもよい。
The moving nozzle may be a rotating nozzle that rotates around a predetermined axis of rotation, or a linear nozzle that moves linearly in the direction in which the corresponding arm extends. The moving nozzle may also be configured to be able to move vertically.
処理ユニット2は、第1移動ノズル9に硫酸を供給する硫酸供給ユニット16と、第1移動ノズル9に水蒸気およびオゾンガスを供給する水蒸気/オゾン供給ユニット13とをさらに含む。硫酸供給ユニット16は、硫酸配管40、硫酸バルブ50Aおよび硫酸流量調整バルブ50Bを含む。
The treatment unit 2 further includes a sulfuric acid supply unit 16 that supplies sulfuric acid to the first moving nozzle 9, and a water vapor/ozone supply unit 13 that supplies water vapor and ozone gas to the first moving nozzle 9. The sulfuric acid supply unit 16 includes a sulfuric acid pipe 40, a sulfuric acid valve 50A, and a sulfuric acid flow rate control valve 50B.
硫酸配管40は、第1移動ノズル9に接続され、第1移動ノズル9に硫酸を案内する。硫酸バルブ50Aおよび硫酸流量調整バルブ50Bは、硫酸配管40に設けられている。
The sulfuric acid piping 40 is connected to the first moving nozzle 9 and guides the sulfuric acid to the first moving nozzle 9. The sulfuric acid valve 50A and the sulfuric acid flow rate control valve 50B are provided in the sulfuric acid piping 40.
硫酸バルブ50Aが硫酸配管40に設けられる、とは、硫酸バルブ50Aが硫酸配管40に介装されることを意味してもよい。以下で説明する他のバルブにおいても同様である。
The sulfuric acid valve 50A being provided in the sulfuric acid pipe 40 may mean that the sulfuric acid valve 50A is interposed in the sulfuric acid pipe 40. The same applies to the other valves described below.
硫酸バルブ50Aは、硫酸配管40内の流路を開閉する。硫酸流量調整バルブ50Bは、硫酸配管40内の流路を流れる硫酸の流量を調整する。硫酸バルブ50Aが開かれると、硫酸流量調整バルブ50Bによって調整された流量で、第1移動ノズル9へと硫酸が供給される。
The sulfuric acid valve 50A opens and closes the flow path in the sulfuric acid pipe 40. The sulfuric acid flow control valve 50B adjusts the flow rate of sulfuric acid flowing through the flow path in the sulfuric acid pipe 40. When the sulfuric acid valve 50A is opened, sulfuric acid is supplied to the first moving nozzle 9 at a flow rate adjusted by the sulfuric acid flow control valve 50B.
図示はしないが、硫酸バルブ50Aは、弁座が内部に設けられたバルブボディと、弁座を開閉する弁体と、開位置と閉位置との間で弁体を移動させるアクチュエータとを含む。他のバルブについても同様の構成を有している。
Although not shown, sulfuric acid valve 50A includes a valve body with a valve seat inside, a valve element that opens and closes the valve seat, and an actuator that moves the valve element between an open position and a closed position. The other valves have a similar configuration.
水蒸気/オゾン供給ユニット13は、この実施形態では、水蒸気およびオゾンガスの混合ガスである湿潤オゾンガスを第1移動ノズル9に供給する湿潤オゾンガス供給ユニットである。水蒸気/オゾン供給ユニット13は、第1移動ノズル9に結合された湿潤オゾンガス配管45を有している。第1移動ノズル9は、この実施形態では、二流体ノズルで構成されている。硫酸供給ユニット16から供給される硫酸と水蒸気/オゾン供給ユニット13から供給される湿潤オゾンガスとが、第1移動ノズル9を構成する二流体ノズルにおいて混合されることによって混合流体が生成される。その混合流体が、スピンチャック8に保持された基板Wの上面に向けて吐出される。水蒸気/オゾン供給ユニット13の構成は後述する。
In this embodiment, the water vapor/ozone supply unit 13 is a wet ozone gas supply unit that supplies wet ozone gas, which is a mixed gas of water vapor and ozone gas, to the first moving nozzle 9. The water vapor/ozone supply unit 13 has a wet ozone gas pipe 45 connected to the first moving nozzle 9. In this embodiment, the first moving nozzle 9 is configured as a two-fluid nozzle. A mixed fluid is generated by mixing sulfuric acid supplied from the sulfuric acid supply unit 16 and wet ozone gas supplied from the water vapor/ozone supply unit 13 in the two-fluid nozzle that constitutes the first moving nozzle 9. The mixed fluid is ejected toward the upper surface of the substrate W held by the spin chuck 8. The configuration of the water vapor/ozone supply unit 13 will be described later.
第2移動ノズル10から吐出される薬液は、たとえば、APM液(ammonia-hydrogen peroxide mixture:アンモニア過酸化水素混合液。より具体的にはいわゆるSC1)であってもよい。その他、フッ酸(HF)、希フッ酸(DHF)、バッファードフッ酸(BHF)、塩酸(HCl)、HPM液(hydrochloric acid-hydrogen peroxide mixture:塩酸過酸化水素水混合液)、アンモニア水、TMAH液(Tetramethylammonium hydroxide solution:水酸化テトラメチルアンモニウム溶液)、または、過酸化水素水(H2O2)を含有する薬液が第2移動ノズル10から吐出されてもよい。
The chemical solution discharged from the second moving nozzle 10 may be, for example, an APM solution (ammonia-hydrogen peroxide mixture, more specifically, so-called SC1). In addition, a chemical solution containing hydrofluoric acid (HF), dilute hydrofluoric acid (DHF), buffered hydrofluoric acid (BHF), hydrochloric acid (HCl), HPM solution (hydrochloric acid-hydrogen peroxide mixture), ammonia water, TMAH solution (tetramethylammonium hydroxide solution), or hydrogen peroxide water (H 2 O 2 ) may be discharged from the second moving nozzle 10.
第2移動ノズル10から吐出されるリンス液は、たとえば、脱イオン水(DIW)等の水である。ただし、リンス液は、脱イオン水に限られず、脱イオン水、炭酸水、電解イオン水、希釈濃度(たとえば、1ppm以上で、かつ、100ppm以下)の塩酸水、希釈濃度(たとえば、1ppm以上で、かつ、100ppm以下)のアンモニア水、もしくは、還元水(水素水)、または、これらのうちの少なくとも2種類を含有する混合液であってもよい。
The rinse liquid discharged from the second moving nozzle 10 is, for example, water such as deionized water (DIW). However, the rinse liquid is not limited to deionized water, and may be deionized water, carbonated water, electrolytic ionized water, hydrochloric acid water with a dilute concentration (for example, 1 ppm or more and 100 ppm or less), ammonia water with a dilute concentration (for example, 1 ppm or more and 100 ppm or less), reduced water (hydrogen water), or a mixture containing at least two of these.
第2移動ノズル10は、第2移動ノズル10に流体を案内する共通配管41に接続されている。共通配管41には、共通配管41に薬液を供給する薬液配管42と、共通配管41にリンス液を供給するリンス液配管43とが接続されている。共通配管41は、ミキシングバルブ(図示せず)を介して薬液配管42およびリンス液配管43と接続されていてもよい。
The second moving nozzle 10 is connected to a common pipe 41 that guides fluid to the second moving nozzle 10. A chemical liquid pipe 42 that supplies a chemical liquid to the common pipe 41 and a rinsing liquid pipe 43 that supplies a rinsing liquid to the common pipe 41 are connected to the common pipe 41. The common pipe 41 may be connected to the chemical liquid pipe 42 and the rinsing liquid pipe 43 via a mixing valve (not shown).
共通配管41には、共通配管41を開閉する共通バルブ51が設けられている。薬液配管42には、薬液配管42を開閉する薬液バルブ52Aと、薬液配管42内の薬液の流量を調整する薬液流量調整バルブ52Bとが設けられている。リンス液配管43には、リンス液配管43を開閉するリンス液バルブ53Aと、リンス液配管43内のリンス液の流量を調整するリンス液流量調整バルブ53Bとが設けられている。
The common pipe 41 is provided with a common valve 51 that opens and closes the common pipe 41. The chemical pipe 42 is provided with a chemical valve 52A that opens and closes the chemical pipe 42, and a chemical flow rate adjustment valve 52B that adjusts the flow rate of the chemical in the chemical pipe 42. The rinsing liquid pipe 43 is provided with a rinsing liquid valve 53A that opens and closes the rinsing liquid pipe 43, and a rinsing liquid flow rate adjustment valve 53B that adjusts the flow rate of the rinsing liquid in the rinsing liquid pipe 43.
薬液バルブ52Aおよび共通バルブ51が開かれると、第2移動ノズル10から薬液の連続流が吐出される。リンス液バルブ53Aおよび共通バルブ51が開かれると、第2移動ノズル10からリンス液の連続流が吐出される。
When the chemical liquid valve 52A and the common valve 51 are opened, a continuous flow of chemical liquid is discharged from the second moving nozzle 10. When the rinse liquid valve 53A and the common valve 51 are opened, a continuous flow of rinse liquid is discharged from the second moving nozzle 10.
第3移動ノズル11から吐出される有機溶剤は、エタノール(EtOH)、イソプロパノール(IPA)等のアルコール類、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル等のエチレングリコールモノアルキルエーテル類、エチレングリコールモノメチルエーテルアセテート、エチレングリコールモノエチルエーテルアセテート等のエチレングリコールモノアルキルエーテルアセテート類、プロピレングリコールモノメチルエーテル(PGME)、プロピレングリコールモノエチルエーテル(PGEE)等のプロピレングリコールモノアルキルエーテル類、乳酸メチル、乳酸エチル(EL)等の乳酸エステル類、トルエン、キシレン等の芳香族炭化水素類、メチルエチルケトン、2-ヘプタノン、シクロヘキサノン等のケトン類のうち少なくとも一種類を含有する。
The organic solvent discharged from the third moving nozzle 11 contains at least one of the following: alcohols such as ethanol (EtOH) and isopropanol (IPA); ethylene glycol monoalkyl ethers such as ethylene glycol monomethyl ether and ethylene glycol monoethyl ether; ethylene glycol monoalkyl ether acetates such as ethylene glycol monomethyl ether acetate and ethylene glycol monoethyl ether acetate; propylene glycol monoalkyl ethers such as propylene glycol monomethyl ether (PGME) and propylene glycol monoethyl ether (PGEE); lactate esters such as methyl lactate and ethyl lactate (EL); aromatic hydrocarbons such as toluene and xylene; and ketones such as methyl ethyl ketone, 2-heptanone, and cyclohexanone.
第3移動ノズル11には、第3移動ノズル11に有機溶剤を案内する有機溶剤配管44が接続されている。有機溶剤配管44には、有機溶剤配管44を開閉する有機溶剤バルブ54Aと、有機溶剤配管44内の有機溶剤の流量を調整する有機溶剤流量調整バルブ54Bとが設けられている。
An organic solvent pipe 44 that guides the organic solvent to the third moving nozzle 11 is connected to the third moving nozzle 11. The organic solvent pipe 44 is provided with an organic solvent valve 54A that opens and closes the organic solvent pipe 44, and an organic solvent flow rate adjustment valve 54B that adjusts the flow rate of the organic solvent in the organic solvent pipe 44.
処理カップ15は、スピンチャック8に保持された基板Wから外方に飛散する処理液を受け止める複数(図2では3つ)のガード28と、複数のガード28によって下方に案内された処理液をそれぞれ受け止める複数(図2では3つ)のカップ29と、複数のガード28および複数のカップ29を取り囲む円筒状の外壁部材30とを含む。
The processing cup 15 includes a plurality of guards 28 (three in FIG. 2) that receive processing liquid splashed outward from the substrate W held by the spin chuck 8, a plurality of cups 29 (three in FIG. 2) that each receive processing liquid guided downward by the plurality of guards 28, and a cylindrical outer wall member 30 that surrounds the plurality of guards 28 and the plurality of cups 29.
各ガード28は、平面視でスピンチャック8を取り囲む筒状の形態を有している。各ガード28の上端部は、ガード28の中心側に向かうように内方に傾斜している。各カップ29は、上向きに開放された環状溝の形態を有している。複数のガード28および複数のカップ29は、同軸上に配置されている。
Each guard 28 has a cylindrical shape surrounding the spin chuck 8 in a plan view. The upper end of each guard 28 is inclined inward toward the center of the guard 28. Each cup 29 has the shape of an annular groove that opens upward. The multiple guards 28 and the multiple cups 29 are arranged coaxially.
複数のガード28は、ガード昇降駆動機構(図示せず)によって個別に昇降される。ガード昇降駆動機構は、たとえば、複数のガード28をそれぞれ昇降駆動する複数のアクチュエータを含む。複数のアクチュエータは、電動モータおよびエアシリンダの少なくとも一方を含む。
The multiple guards 28 are individually raised and lowered by a guard lifting drive mechanism (not shown). The guard lifting drive mechanism includes, for example, multiple actuators that drive the multiple guards 28 to raise and lower. The multiple actuators include at least one of an electric motor and an air cylinder.
処理ユニット2は、チャンバ7外からチャンバ7内に不活性ガスを送るFFU(ファンフィルタユニット)等の送風ユニット31と、チャンバ7内を排気する排出配管32とを含む。送風ユニット31は、チャンバ7の上壁7aに配置されている。排出配管32は、外壁部材30に接続されている。送風ユニット31によってチャンバ7に送られる不活性ガスは、たとえば、窒素ガス、希ガス、またはこれらの混合ガスであってもよい。希ガスは、たとえば、アルゴンガスである。
The processing unit 2 includes a blower unit 31, such as an FFU (fan filter unit), that sends an inert gas from outside the chamber 7 into the chamber 7, and an exhaust pipe 32 that exhausts the air from inside the chamber 7. The blower unit 31 is disposed on the upper wall 7a of the chamber 7. The exhaust pipe 32 is connected to the outer wall member 30. The inert gas sent to the chamber 7 by the blower unit 31 may be, for example, nitrogen gas, a rare gas, or a mixture of these. The rare gas is, for example, argon gas.
排出配管32は、排気ダクト(図示せず)に接続されている。排気ダクト内の雰囲気は吸引装置(図示せず)によって吸引される。チャンバ7内の雰囲気は、排出配管32を介して排気ダクトに排気される。吸引装置は、排気ダクトを吸引する吸引ポンプ等を含む。吸引装置は、排気ダクトに介装され、または、排気ダクトに連結される。排出ダクトおよび吸引装置は、基板処理装置1が設置されるクリーンルームまたはクリーンルームに付随する設備内に設けられている。排気ダクトおよび吸引装置は、基板処理装置1の一部であってもよい。
The exhaust pipe 32 is connected to an exhaust duct (not shown). The atmosphere in the exhaust duct is sucked in by a suction device (not shown). The atmosphere in the chamber 7 is exhausted to the exhaust duct via the exhaust pipe 32. The suction device includes a suction pump that sucks the exhaust duct. The suction device is installed in the exhaust duct or connected to the exhaust duct. The exhaust duct and the suction device are provided in a clean room in which the substrate processing apparatus 1 is installed or in a facility associated with the clean room. The exhaust duct and the suction device may be part of the substrate processing apparatus 1.
排出配管32と排気ダクトとの間、または、排出配管32には、オゾン除去装置33(オゾン除害器)が設けられている。チャンバ7から排出される雰囲気に含まれるオゾンガスは、オゾン除去装置33を通過する際に分解される。
An ozone remover 33 (ozone detoxifier) is provided between the exhaust pipe 32 and the exhaust duct, or in the exhaust pipe 32. The ozone gas contained in the atmosphere exhausted from the chamber 7 is decomposed as it passes through the ozone remover 33.
送風ユニット31および排出配管32の作用によって、チャンバ7の内部空間7cには、上方から下方に向かう気流が形成される。気流は、処理カップ15の内部を通って、排出配管32に流入する。
By the action of the blower unit 31 and the exhaust pipe 32, an air current moving from top to bottom is formed in the internal space 7c of the chamber 7. The air current passes through the inside of the processing cup 15 and flows into the exhaust pipe 32.
基板Wに供給された処理液は、基板Wの周縁部から飛散していずれかのガード28によって受けられる。ガード28によって受けられた処理液は、対応するカップ29に案内され、各カップ29に対応する排液配管35を通って回収または廃棄される。
The processing liquid supplied to the substrate W splashes off the periphery of the substrate W and is received by one of the guards 28. The processing liquid received by the guard 28 is guided to the corresponding cup 29 and is collected or discarded through the drainage pipe 35 corresponding to each cup 29.
基板加熱部材14は、基板Wを下方から加熱する円板状のホットプレートの形態を有している。基板加熱部材14は、スピンベース21の上面と基板Wの下面との間に配置されている。基板加熱部材14は、基板Wの下面に下方から対向する加熱面14aを有する。
The substrate heating member 14 has the form of a disk-shaped hot plate that heats the substrate W from below. The substrate heating member 14 is disposed between the upper surface of the spin base 21 and the lower surface of the substrate W. The substrate heating member 14 has a heating surface 14a that faces the lower surface of the substrate W from below.
基板加熱部材14は、プレート本体60およびヒータ61を含む。プレート本体60は、平面視において、基板Wよりも僅かに小さい。プレート本体60の上面が加熱面14aを構成している。ヒータ61は、プレート本体60に内蔵されている抵抗体であってもよい。ヒータ61に通電することによって、加熱面14aが加熱される。
The substrate heating member 14 includes a plate body 60 and a heater 61. The plate body 60 is slightly smaller than the substrate W in a plan view. The upper surface of the plate body 60 constitutes the heating surface 14a. The heater 61 may be a resistor built into the plate body 60. The heating surface 14a is heated by passing electricity through the heater 61.
ヒータ61は、基板Wを常温(たとえば、5℃以上で、かつ、25℃以下の温度)以上で、かつ、たとえば400℃以下の温度範囲で基板Wを加熱できるように構成されている。
The heater 61 is configured to heat the substrate W at a temperature range above room temperature (for example, a temperature of 5°C or higher and 25°C or lower) and, for example, below 400°C.
処理ユニット2は、基板加熱部材14の温度を検出する温度センサ62をさらに含む。温度センサ62は、図2に示す例では、プレート本体60に内蔵されているが、温度センサ62の配置については特に限定されない。温度センサ62は、たとえば、プレート本体60に外部から取り付けられていてもよい。
The processing unit 2 further includes a temperature sensor 62 that detects the temperature of the substrate heating member 14. In the example shown in FIG. 2, the temperature sensor 62 is built into the plate body 60, but the arrangement of the temperature sensor 62 is not particularly limited. The temperature sensor 62 may be attached to the plate body 60 from the outside, for example.
ヒータ61には、給電線64を介して通電ユニット63が接続されている。通電ユニット63からヒータ61に供給される電流が調整されることによって、ヒータ61の温度が調整される。たとえば、通電ユニット63からヒータ61に供給される電流は、温度センサ62の検出温度に基づいて調整される。
The heater 61 is connected to a current supply unit 63 via a power supply line 64. The temperature of the heater 61 is adjusted by adjusting the current supplied from the current supply unit 63 to the heater 61. For example, the current supplied from the current supply unit 63 to the heater 61 is adjusted based on the temperature detected by the temperature sensor 62.
基板加熱部材14の下面には、ヒータ昇降軸65が接続されている。ヒータ昇降軸65は、スピンベース21の中央部に形成された貫通孔21aと、回転軸22の内部空間とに挿入される。
A heater lift shaft 65 is connected to the underside of the substrate heating member 14. The heater lift shaft 65 is inserted into a through hole 21a formed in the center of the spin base 21 and into the internal space of the rotation shaft 22.
処理ユニット2は、上下方向における基板加熱部材14の移動を駆動するヒータ駆動機構66をさらに含む。ヒータ駆動機構66は、たとえば、上下方向におけるヒータ昇降軸65の移動を駆動するヒータアクチュエータ(図示せず)を含む。ヒータアクチュエータは、たとえば、電動モータおよびエアシリンダの少なくとも一方を含む。ヒータ駆動機構66は、ヒータ昇降軸65を介して基板加熱部材14を上下方向に移動させる。基板加熱部材14は、基板Wの下面とスピンベース21の上面との間で上下方向に移動可能である。
The processing unit 2 further includes a heater drive mechanism 66 that drives the movement of the substrate heating member 14 in the vertical direction. The heater drive mechanism 66 includes, for example, a heater actuator (not shown) that drives the movement of the heater lift shaft 65 in the vertical direction. The heater actuator includes, for example, at least one of an electric motor and an air cylinder. The heater drive mechanism 66 moves the substrate heating member 14 in the vertical direction via the heater lift shaft 65. The substrate heating member 14 is movable in the vertical direction between the lower surface of the substrate W and the upper surface of the spin base 21.
基板加熱部材14は、上昇する際に、開位置に位置する複数の把持ピン20から基板Wを受け取ることが可能である。基板加熱部材14は、加熱面14aが基板Wの下面に接触する接触位置、または、基板Wの下面に非接触で近接する近接位置に配置されることによって、基板Wを加熱することができる。基板加熱部材14による基板Wの加熱が緩和される程度に基板Wの下面から充分に退避する位置を退避位置という。基板Wに対する加熱が充分に緩和されることを、基板Wに対する加熱が停止されると言い換えることができる。
When the substrate heating member 14 rises, it can receive the substrate W from the multiple gripping pins 20 that are positioned in the open position. The substrate heating member 14 can heat the substrate W by being positioned at a contact position where the heating surface 14a is in contact with the underside of the substrate W, or at a proximity position where the heating surface 14a is in close proximity to the underside of the substrate W but not in contact with it. A position where the substrate heating member 14 is sufficiently retracted from the underside of the substrate W so that the heating of the substrate W by the substrate heating member 14 is alleviated is called a retracted position. The fact that the heating of the substrate W is sufficiently alleviated can be said to be another way of saying that the heating of the substrate W is stopped.
基板加熱部材14を退避位置に配置しているときに基板加熱部材14から基板Wに伝達される熱量は、基板加熱部材14を近接位置に配置しているときに基板加熱部材14から基板Wに伝達される熱量よりも小さい。接触位置および近接位置は、加熱位置ともいう。退避位置は、加熱緩和位置ともいい、加熱停止位置ともいう。
The amount of heat transferred from the substrate heating member 14 to the substrate W when the substrate heating member 14 is located in the retracted position is smaller than the amount of heat transferred from the substrate heating member 14 to the substrate W when the substrate heating member 14 is located in the close position. The contact position and close position are also called heating positions. The retracted position is also called the heating relaxation position or heating stop position.
図3は、水蒸気、オゾンガスおよび硫酸の混合流体を供給するための供給系の構成例を示す。混合流体の供給系は、この例では、硫酸供給ユニット16と、水蒸気/オゾン供給ユニット13と、複数流体ノズル(この例では2流体ノズル)からなる第1移動ノズル9とを含む。
FIG. 3 shows an example of the configuration of a supply system for supplying a mixed fluid of water vapor, ozone gas, and sulfuric acid. In this example, the mixed fluid supply system includes a sulfuric acid supply unit 16, a water vapor/ozone supply unit 13, and a first moving nozzle 9 consisting of a multiple-fluid nozzle (a two-fluid nozzle in this example).
硫酸供給ユニット16は、硫酸供給源である硫酸タンク55から第1移動ノズル9へと硫酸を流通させる硫酸配管40と、硫酸配管40に介装された硫酸バルブ50Aと、同じく硫酸配管40に介装された硫酸流量調整バルブ50Bとを含む。硫酸流量調整バルブ50Bは、硫酸配管40における硫酸の流量を1リットル/分以下に調整することが好ましい。さらに、この例では、硫酸供給ユニット16は、硫酸配管40に設けられたフィルタ50C、ポンプ50Dおよびヒータユニット50Eを含む。ポンプ50Dは、硫酸タンク55から硫酸を汲み出して硫酸配管40から第1移動ノズル9へと送出する。フィルタ50Cは、硫酸配管40を流通する硫酸中の異物を除去する。ヒータユニット50Eは、硫酸配管40を通って第1移動ノズル9に供給される硫酸を加熱する。ヒータユニット50Eは、たとえば、第1移動ノズル9に到達するときの硫酸の温度が120℃以上190℃以下となるように、硫酸を加熱する。
The sulfuric acid supply unit 16 includes a sulfuric acid pipe 40 that flows sulfuric acid from a sulfuric acid tank 55, which is a sulfuric acid supply source, to the first moving nozzle 9, a sulfuric acid valve 50A that is installed in the sulfuric acid pipe 40, and a sulfuric acid flow rate control valve 50B that is also installed in the sulfuric acid pipe 40. It is preferable that the sulfuric acid flow rate control valve 50B adjusts the flow rate of sulfuric acid in the sulfuric acid pipe 40 to 1 liter/minute or less. Furthermore, in this example, the sulfuric acid supply unit 16 includes a filter 50C, a pump 50D, and a heater unit 50E that are installed in the sulfuric acid pipe 40. The pump 50D pumps sulfuric acid from the sulfuric acid tank 55 and sends it from the sulfuric acid pipe 40 to the first moving nozzle 9. The filter 50C removes foreign matter in the sulfuric acid flowing through the sulfuric acid pipe 40. The heater unit 50E heats the sulfuric acid that is supplied to the first moving nozzle 9 through the sulfuric acid pipe 40. The heater unit 50E heats the sulfuric acid so that the temperature of the sulfuric acid when it reaches the first moving nozzle 9 is 120°C or higher and 190°C or lower.
硫酸供給ユニット16によって供給される硫酸は、厳密には硫酸含有液であり、典型的には、所定濃度の硫酸水溶液であって、硫酸(H2SO4)と水(H2O)とが含有されている。硫酸水溶液は、たとえば、希硫酸または濃硫酸である。硫酸含有液は、硫酸と脱イオン水等の水とを混合することによって調整された硫酸水溶液であってもよい。硫酸含有液には、硫酸および水以外の物質が含有されていてもよいが、この実施形態においては、少なくとも過酸化水素水は含有されていない。この明細書において、「硫酸」とは、上記のような硫酸含有液を意味する。
The sulfuric acid supplied by the sulfuric acid supply unit 16 is, strictly speaking, a sulfuric acid-containing liquid, typically a sulfuric acid aqueous solution of a predetermined concentration, containing sulfuric acid (H 2 SO 4 ) and water (H 2 O). The sulfuric acid aqueous solution is, for example, dilute sulfuric acid or concentrated sulfuric acid. The sulfuric acid-containing liquid may be an aqueous sulfuric acid solution prepared by mixing sulfuric acid with water such as deionized water. The sulfuric acid-containing liquid may contain substances other than sulfuric acid and water, but in this embodiment, at least hydrogen peroxide water is not contained. In this specification, "sulfuric acid" means the sulfuric acid-containing liquid as described above.
水蒸気/オゾン供給ユニット13は、水中でオゾンガスをバブリングさせて湿潤オゾンガスを生成する湿潤オゾンガス生成ユニット56と、湿潤オゾンガス生成ユニット56によって生成された湿潤オゾンガスを第1移動ノズル9に供給する湿潤オゾンガス配管45とを含む。湿潤オゾンガス生成ユニット56は、閉鎖空間を形成する密閉容器57と、密閉容器57中に貯留される水(たとえば脱イオン水)の中にオゾンガスを供給するオゾンガス供給ユニット58とを含む。湿潤オゾンガス生成ユニット56は、この実施形態では、さらに密閉容器57内に貯留される水を加熱するヒータユニット59を含む。ヒータユニット59は、密閉容器57を加熱するように構成されていてもよい。オゾンガス供給ユニット58は、オゾンガス供給源から密閉容器57へとオゾンガスを流通させるオゾンガス配管70と、オゾンガス配管70に設けられたオゾンガスバルブ70A(開閉バルブ)と、オゾンガス配管70に設けられたオゾンガス流量調整バルブ70Bとを含む。オゾンガス配管70には、さらに、異物を除去するためのフィルタ70Cが設けられていてもよい。オゾンガス配管70の先端は、密閉容器57内に貯留される水中に配置される。
The water vapor/ozone supply unit 13 includes a wet ozone gas generation unit 56 that generates wet ozone gas by bubbling ozone gas in water, and a wet ozone gas pipe 45 that supplies the wet ozone gas generated by the wet ozone gas generation unit 56 to the first moving nozzle 9. The wet ozone gas generation unit 56 includes an airtight container 57 that forms an enclosed space, and an ozone gas supply unit 58 that supplies ozone gas into water (e.g., deionized water) stored in the airtight container 57. In this embodiment, the wet ozone gas generation unit 56 further includes a heater unit 59 that heats the water stored in the airtight container 57. The heater unit 59 may be configured to heat the airtight container 57. The ozone gas supply unit 58 includes an ozone gas pipe 70 that distributes ozone gas from an ozone gas supply source to the sealed container 57, an ozone gas valve 70A (on/off valve) provided in the ozone gas pipe 70, and an ozone gas flow rate adjustment valve 70B provided in the ozone gas pipe 70. The ozone gas pipe 70 may further be provided with a filter 70C for removing foreign matter. The tip of the ozone gas pipe 70 is placed in the water stored in the sealed container 57.
オゾンガスバルブ70Aを開くと、オゾンガス流量調整バルブ70Bによって規制される流量(たとえば、1~2リットル/分)でオゾンガスがオゾンガス配管70を通って流れ、密閉容器57に貯留された水中で放出される。それにより、水中でオゾンガスをバブリングさせることができる。これにより、オゾンガスに水蒸気が混合されて湿潤オゾンガスが生成される(湿潤オゾンガス生成工程)。湿潤オゾンガス配管45の入口は、密閉容器57内において開口し、密閉容器57に貯留された水の水位よりも上の閉鎖空間内に配置されている。したがって、密閉容器57内で生成された湿潤オゾンガスは、湿潤オゾンガス配管45を通って、第1移動ノズル9へと導かれる。オゾンガス供給ユニット58から密閉容器57へのオゾンガスの供給を継続することにより、密閉容器57内の気圧が高くなるので、密閉容器57から湿潤オゾンガス配管45を介して、第1移動ノズル9へと湿潤オゾンガスを圧送することができる。
When the ozone gas valve 70A is opened, ozone gas flows through the ozone gas pipe 70 at a flow rate (for example, 1 to 2 liters/min) regulated by the ozone gas flow rate control valve 70B, and is released into the water stored in the sealed container 57. This allows the ozone gas to bubble in the water. As a result, water vapor is mixed with the ozone gas to generate wet ozone gas (wet ozone gas generation process). The inlet of the wet ozone gas pipe 45 opens in the sealed container 57 and is disposed in a closed space above the water level of the water stored in the sealed container 57. Therefore, the wet ozone gas generated in the sealed container 57 is guided through the wet ozone gas pipe 45 to the first moving nozzle 9. By continuing to supply ozone gas from the ozone gas supply unit 58 to the sealed container 57, the air pressure in the sealed container 57 increases, and the wet ozone gas can be pressure-fed from the sealed container 57 to the first moving nozzle 9 via the wet ozone gas pipe 45.
ヒータユニット59によって密閉容器57中の水を加熱し、水温を室温よりも高く(たとえば室温~80℃)としておくことにより、水の蒸発を促すことができるので、オゾンガスに対して適正な混合比で水蒸気を混合させた湿潤オゾンガスを生成できる。密閉容器57内に貯留される水の温度は、100℃以下として、オゾンガスの分解が生じないようにすることが好ましい。
The water in the sealed container 57 is heated by the heater unit 59, and the water temperature is kept higher than room temperature (for example, room temperature to 80°C), which promotes evaporation of the water, and thus produces wet ozone gas in which water vapor is mixed with ozone gas at an appropriate ratio. It is preferable to keep the temperature of the water stored in the sealed container 57 below 100°C to prevent decomposition of the ozone gas.
第1移動ノズル9は、たとえば外部混合型の2流体ノズルで構成されていてもよい。より具体的には、第1移動ノズル9は、ノズルハウジング90と、ノズルハウジング90内に形成された第1通路91および第2通路92とを有する。第1通路91は硫酸配管40に結合されており、第2通路92は湿潤オゾンガス配管45に結合されている。ノズルハウジングの先端部には、第1通路91を流通した流体(この例では硫酸)を吐出する第1吐出口91aと、第2通路92を流通した流体(この例では湿潤オゾンガス)を吐出する第2吐出口92aとが開口している。第1吐出口91aおよび第2吐出口92aから吐出される流体は、それらの吐出口91a,92aの近傍のノズルハウジング90外で衝突して混合し、混合流体100を生成する。混合流体100は、典型的には、湿潤オゾンガスと硫酸の液滴とが混合した流体である。この混合流体100が、第1移動ノズル9から基板Wの上面へと供給される。
The first moving nozzle 9 may be configured as, for example, an external mixing type two-fluid nozzle. More specifically, the first moving nozzle 9 has a nozzle housing 90 and a first passage 91 and a second passage 92 formed in the nozzle housing 90. The first passage 91 is connected to the sulfuric acid pipe 40, and the second passage 92 is connected to the wet ozone gas pipe 45. At the tip of the nozzle housing, a first outlet 91a for discharging a fluid (sulfuric acid in this example) that has flowed through the first passage 91 and a second outlet 92a for discharging a fluid (wet ozone gas in this example) that has flowed through the second passage 92 are opened. The fluids discharged from the first outlet 91a and the second outlet 92a collide and mix outside the nozzle housing 90 near the outlets 91a and 92a, generating a mixed fluid 100. The mixed fluid 100 is typically a fluid in which wet ozone gas and sulfuric acid droplets are mixed. This mixed fluid 100 is supplied from the first moving nozzle 9 to the upper surface of the substrate W.
むろん、ノズルハウジング内で流体を混合させる内部混合型の2流体ノズルを第1移動ノズル9として用いてもよい。
Of course, an internal mixing type two-fluid nozzle that mixes fluids within the nozzle housing may also be used as the first moving nozzle 9.
硫酸タンク55には、新液配管71に設けられた新液バルブ71Aを開いて未使用の硫酸(新液)を供給できるほか、硫酸回収/再生ユニット80から、再生処理された硫酸が供給されてもよい。硫酸回収/再生ユニット80は、処理カップ15(図2参照)において、混合流体による処理の際に基板Wから排出される液を受けるガード28に対応したカップ29に接続された排液配管35(回収ライン)から使用済みの硫酸を回収し、その硫酸を再利用のために再生する。たとえば、硫酸回収/再生ユニット80は、回収した硫酸を加熱し、その硫酸中の水分を蒸発させることによって目標濃度まで回復させるように構成されていてもよい。
The sulfuric acid tank 55 can be supplied with unused sulfuric acid (new liquid) by opening the new liquid valve 71A provided on the new liquid piping 71, or regenerated sulfuric acid can be supplied from the sulfuric acid recovery/regeneration unit 80. The sulfuric acid recovery/regeneration unit 80 recovers used sulfuric acid from the drainage piping 35 (recovery line) connected to the cup 29 corresponding to the guard 28 that receives the liquid discharged from the substrate W during processing with the mixed fluid in the processing cup 15 (see FIG. 2), and regenerates the sulfuric acid for reuse. For example, the sulfuric acid recovery/regeneration unit 80 can be configured to heat the recovered sulfuric acid and evaporate the water in the sulfuric acid to restore it to a target concentration.
具体的には、硫酸回収/再生ユニット80は、再生対象の硫酸を貯留する再生タンク81と、再生タンク81内の硫酸を加熱するヒータユニット82と、再生タンク81から硫酸タンク55へと再生処理された硫酸を供給する再生硫酸配管83とを含む。再生硫酸配管83には、再生硫酸バルブ83A、ポンプ83Bおよびフィルタ83Cが配置されている。再生硫酸バルブ83Aを開くと、ポンプ83Bによって再生タンク81から汲み出され、かつフィルタ83Cで異物が除去された再生硫酸が、硫酸タンク55に供給される。こうして、硫酸を再生して再利用することにより、硫酸の使用量を削減できる。
Specifically, the sulfuric acid recovery/regeneration unit 80 includes a regeneration tank 81 that stores the sulfuric acid to be regenerated, a heater unit 82 that heats the sulfuric acid in the regeneration tank 81, and a regenerated sulfuric acid piping 83 that supplies the regenerated sulfuric acid from the regeneration tank 81 to the sulfuric acid tank 55. A regenerated sulfuric acid valve 83A, a pump 83B, and a filter 83C are arranged in the regenerated sulfuric acid piping 83. When the regenerated sulfuric acid valve 83A is opened, the regenerated sulfuric acid pumped out of the regeneration tank 81 by the pump 83B and from which foreign matter has been removed by the filter 83C is supplied to the sulfuric acid tank 55. In this way, the amount of sulfuric acid used can be reduced by regenerating and reusing the sulfuric acid.
この例では、排液配管35(回収ライン)からは、廃棄配管36が分岐している。廃棄配管36の分岐部と再生タンク81との間で排液配管35に設けられたバルブ37と、廃棄配管36に設けられたバルブ38とを開閉することによって、カップ29に集められた液を再生のために回収するか、または廃棄するかを選択できる。たとえば、基板W上の処理の状況に応じて、液中の異物が多いときには液を廃棄し、液中の異物が少ないときには液を再生タンク81に回収してもよい。
In this example, a waste pipe 36 branches off from the drain pipe 35 (recovery line). By opening and closing a valve 37 provided on the drain pipe 35 between the branch point of the waste pipe 36 and the regeneration tank 81, and a valve 38 provided on the waste pipe 36, it is possible to select whether the liquid collected in the cup 29 is recovered for regeneration or discarded. For example, depending on the processing status on the substrate W, the liquid may be discarded when there is a large amount of foreign matter in the liquid, and recovered in the regeneration tank 81 when there is a small amount of foreign matter in the liquid.
図4は、基板処理装置1の電気的構成を説明するためのブロック図である。コントローラ3は、コンピュータ本体3aと、コンピュータ本体3aに接続された周辺装置3dとを含む、コンピュータである。コンピュータ本体3aは、各種の命令を実行するプロセッサ(CPU)3bと、情報を記憶するメモリ3cとを含む。
FIG. 4 is a block diagram for explaining the electrical configuration of the substrate processing apparatus 1. The controller 3 is a computer including a computer main body 3a and a peripheral device 3d connected to the computer main body 3a. The computer main body 3a includes a processor (CPU) 3b that executes various commands and a memory 3c that stores information.
周辺装置3dは、プログラム等の情報を記憶する補助記憶装置3eと、リムーバブルメディア(図示せず)から情報を読み取る読取装置3fと、ホストコンピュータ(図示せず)等の他の装置と通信する通信装置3gとを含む。
The peripheral device 3d includes an auxiliary storage device 3e that stores information such as programs, a reading device 3f that reads information from removable media (not shown), and a communication device 3g that communicates with other devices such as a host computer (not shown).
コントローラ3は、入力装置3A、表示装置3B、および警報装置3Cに接続されている。入力装置3Aは、ユーザやメンテナンス担当者等の操作者が基板処理装置1に情報を入力するときに操作される。情報は、表示装置3Bの画面に表示される。入力装置3Aは、キーボード、ポインティングデバイス、およびタッチパネルのいずれかであってもよいし、これら以外の装置であってもよい。入力装置3Aおよび表示装置3Bを兼ねるタッチパネルディスプレイが基板処理装置1に設けられていてもよい。警報装置3Cは、光、音、文字、および図形のうちの1つ以上を用いて警報を発する。入力装置3Aがタッチパネルディスプレイの場合、入力装置3Aが、警報装置3Cを兼ねていてもよい。
The controller 3 is connected to an input device 3A, a display device 3B, and an alarm device 3C. The input device 3A is operated when an operator such as a user or maintenance personnel inputs information to the substrate processing apparatus 1. The information is displayed on the screen of the display device 3B. The input device 3A may be any one of a keyboard, a pointing device, and a touch panel, or may be a device other than these. The substrate processing apparatus 1 may be provided with a touch panel display that serves both as the input device 3A and the display device 3B. The alarm device 3C issues an alarm using one or more of light, sound, characters, and figures. If the input device 3A is a touch panel display, the input device 3A may also serve as the alarm device 3C.
補助記憶装置3eは、電力が供給されていなくても記憶を保持する不揮発性メモリである。補助記憶装置3eは、たとえば、ハードディスクドライブ等の磁気記憶装置である。
The auxiliary storage device 3e is a non-volatile memory that retains memory even when power is not supplied. The auxiliary storage device 3e is, for example, a magnetic storage device such as a hard disk drive.
補助記憶装置3eは、複数のレシピを記憶している。レシピは、基板Wの処理内容、処理条件、および処理手順を規定する情報である。複数のレシピは、基板Wの処理内容、処理条件、および処理手順の少なくとも一つにおいて互いに異なる。
The auxiliary storage device 3e stores multiple recipes. A recipe is information that specifies the processing content, processing conditions, and processing procedure of the substrate W. The multiple recipes differ from each other in at least one of the processing content, processing conditions, and processing procedure of the substrate W.
コントローラ3は、ホストコンピュータ等の外部装置によって指定されたレシピに従って基板Wが処理されるように、基板処理装置1に備えられる各部材を制御する。
The controller 3 controls each component of the substrate processing apparatus 1 so that the substrate W is processed according to a recipe specified by an external device such as a host computer.
コントローラ3の制御対象としては、第1搬送ロボットIR、第2搬送ロボットCR、回転駆動機構23、第1ノズル駆動機構25、第2ノズル駆動機構26、第3ノズル駆動機構27、ヒータ駆動機構66、通電ユニット63、送風ユニット31、温度センサ62、ポンプ50D,83B、ヒータユニット50E,59,82、硫酸バルブ50A、硫酸流量調整バルブ50B、共通バルブ51、薬液バルブ52A、薬液流量調整バルブ52B、リンス液バルブ53A、リンス液流量調整バルブ53B、有機溶剤バルブ54A、有機溶剤流量調整バルブ54B、オゾンガスバルブ70A、オゾンガス流量調整バルブ70B、再生硫酸バルブ83A、バルブ37,38等が挙げられる。
Controlled objects of the controller 3 include the first transport robot IR, the second transport robot CR, the rotation drive mechanism 23, the first nozzle drive mechanism 25, the second nozzle drive mechanism 26, the third nozzle drive mechanism 27, the heater drive mechanism 66, the power supply unit 63, the blower unit 31, the temperature sensor 62, the pumps 50D, 83B, the heater units 50E, 59, 82, the sulfuric acid valve 50A, the sulfuric acid flow rate control valve 50B, the common valve 51, the chemical solution valve 52A, the chemical solution flow rate control valve 52B, the rinse solution valve 53A, the rinse solution flow rate control valve 53B, the organic solvent valve 54A, the organic solvent flow rate control valve 54B, the ozone gas valve 70A, the ozone gas flow rate control valve 70B, the regenerated sulfuric acid valve 83A, and the valves 37, 38.
また、図4には、代表的な部材が図示されているが、図示されていない部材についてコントローラ3によって制御されないことを意味するものではなく、コントローラ3は、基板処理装置1に備えられる各部材を適切に制御することができる。
Although representative components are illustrated in FIG. 4, this does not mean that components not illustrated are not controlled by the controller 3, and the controller 3 can appropriately control each component provided in the substrate processing apparatus 1.
以下の各工程は、コントローラ3が基板処理装置1を制御することにより実行される。言い換えると、コントローラ3は、以下の各工程を実行するようにプログラムされている。
The following steps are performed by the controller 3 controlling the substrate processing apparatus 1. In other words, the controller 3 is programmed to perform the following steps.
図5は、基板処理装置1によって実行される基板処理の一例を説明するためのフローチャートである。図6A~図6Cは、基板処理が行われているときの基板Wおよびその周辺の様子を説明するための模式図である。基板処理に用いられる基板Wの一対の主面のうちの少なくとも一方には、レジスト膜が形成されている。レジスト膜は、典型的には有機材料膜であり、パターン形成処理(ドライエッチングまたはウェットエッチング)やイオン注入処理などのマスクとして使用された後のレジスト膜であってもよい。
FIG. 5 is a flow chart for explaining an example of substrate processing performed by the substrate processing apparatus 1. FIGS. 6A to 6C are schematic diagrams for explaining the state of the substrate W and its surroundings when the substrate processing is being performed. A resist film is formed on at least one of the pair of main surfaces of the substrate W used in the substrate processing. The resist film is typically an organic material film, and may be a resist film after being used as a mask for a pattern formation process (dry etching or wet etching), an ion implantation process, or the like.
基板処理装置1による基板処理では、たとえば、基板搬入工程(ステップS1)、基板加熱工程(ステップS2)、ノズル配置工程(ステップS3)、供給工程(ステップS4。湿潤オゾンガス供給工程、硫酸供給工程)、混合流体供給工程(ステップS5)、第1リンス工程(ステップS6)、薬液供給工程(ステップS7)、第2リンス工程(ステップS8)、有機溶剤供給工程(ステップS9)、スピンドライ工程(ステップS10)および基板搬出工程(ステップS11)が実行される。
In substrate processing by the substrate processing apparatus 1, for example, a substrate loading process (step S1), a substrate heating process (step S2), a nozzle arrangement process (step S3), a supply process (step S4; wet ozone gas supply process, sulfuric acid supply process), a mixed fluid supply process (step S5), a first rinsing process (step S6), a chemical supply process (step S7), a second rinsing process (step S8), an organic solvent supply process (step S9), a spin drying process (step S10), and a substrate removal process (step S11) are performed.
未処理の基板Wは、第2搬送ロボットCR(図1を参照)によってキャリアCから処理ユニット2に搬入され、スピンチャック8に渡される(基板搬入工程:ステップS1)。これにより、基板Wは、スピンチャック8によって水平に保持される(基板保持工程)。このとき、基板Wは、レジスト膜が形成されている主面が上面となるようにスピンチャック8に保持される。処理前の基板Wの主面(レジスト膜が形成されている主面)は、液膜が存在していない乾燥表面を呈している。基板Wは、スピンドライ工程(ステップS10)が終了するまで、スピンチャック8によって保持され続ける。
An unprocessed substrate W is carried into the processing unit 2 from the carrier C by the second transport robot CR (see FIG. 1) and handed over to the spin chuck 8 (substrate carrying process: step S1). As a result, the substrate W is held horizontally by the spin chuck 8 (substrate holding process). At this time, the substrate W is held by the spin chuck 8 so that the main surface on which the resist film is formed faces up. Before processing, the main surface of the substrate W (the main surface on which the resist film is formed) is a dry surface with no liquid film present. The substrate W continues to be held by the spin chuck 8 until the spin dry process (step S10) is completed.
スピンチャック8に基板Wが保持されている状態で、回転駆動機構23が基板Wの回転を開始する(基板回転工程)。また、基板処理の実行中において、チャンバ7の内部空間7cには、上方から下方に向かう気流が常時形成されており、気流は、処理カップ15の内部を通って、排出配管32に流入している。
With the substrate W held by the spin chuck 8, the rotation drive mechanism 23 starts rotating the substrate W (substrate rotation process). During substrate processing, an airflow from above to below is constantly formed in the internal space 7c of the chamber 7, and the airflow passes through the inside of the processing cup 15 and flows into the exhaust pipe 32.
第2搬送ロボットCRがチャンバ7から退避した後、基板Wを加熱する基板加熱工程(ステップS2)が実行される。具体的には、通電ユニット63によってヒータ61に電流が供給されて、ヒータ61の温度上昇が開始される。そして、ヒータ駆動機構66が、基板加熱部材14を退避位置から近接位置に移動させる。図6Aに示すように、ヒータ61の温度上昇が開始され、基板加熱部材14が近接位置に配置されることによって、基板Wの加熱が開始される(基板加熱開始工程:ステップS21)。
After the second transport robot CR retreats from the chamber 7, a substrate heating step (step S2) is performed to heat the substrate W. Specifically, the current supply unit 63 supplies current to the heater 61, and the temperature of the heater 61 begins to rise. Then, the heater drive mechanism 66 moves the substrate heating member 14 from the retreated position to the proximal position. As shown in FIG. 6A, the temperature of the heater 61 begins to rise, and the substrate heating member 14 is positioned in the proximal position, thereby beginning heating of the substrate W (substrate heating start step: step S21).
一方、第1ノズル駆動機構25が、第1移動ノズル9を処理位置に移動させるノズル配置工程(ステップS3)が実行される。処理位置は、第1移動ノズル9が基板Wの主面(レジスト膜が形成された主面)に対向し、混合流体100を基板Wの主面に供給できる位置である。
Meanwhile, a nozzle arrangement process (step S3) is performed in which the first nozzle drive mechanism 25 moves the first moving nozzle 9 to a processing position. The processing position is a position where the first moving nozzle 9 faces the main surface of the substrate W (the main surface on which the resist film is formed) and can supply the mixed fluid 100 to the main surface of the substrate W.
温度センサ62の検出温度が処理温度範囲に達すると、第1移動ノズル9が処理位置に位置する状態で、オゾンガスバルブ70Aおよび硫酸バルブ50Aが開かれ、それによって、湿潤オゾンガスおよび硫酸の第1移動ノズル9への供給が開始される(湿潤オゾンガス供給開始工程:ステップS41。硫酸供給開始工程:S42)。これにより、図6Bに示すように、第1移動ノズル9から湿潤オゾンガスと硫酸との混合流体100が吐出され、基板Wの上面への混合流体100の供給が開始される(混合流体供給開始工程:ステップS51)。一方、第1ノズル駆動機構25は第1移動ノズル9を移動させ、基板Wの上面における混合流体の着地点を基板Wの半径方向に移動させる(スキャン工程:ステップS52)。基板Wは回転軸線A1まわりに回転しているので、第1移動ノズル9から吐出される混合流体100は、基板Wの上面の全域をスキャンする。
When the temperature detected by the temperature sensor 62 reaches the processing temperature range, the ozone gas valve 70A and the sulfuric acid valve 50A are opened with the first moving nozzle 9 positioned at the processing position, thereby starting the supply of wet ozone gas and sulfuric acid to the first moving nozzle 9 (wet ozone gas supply start step: step S41; sulfuric acid supply start step: S42). As a result, as shown in FIG. 6B, a mixed fluid 100 of wet ozone gas and sulfuric acid is discharged from the first moving nozzle 9, and the supply of the mixed fluid 100 to the upper surface of the substrate W is started (mixed fluid supply start step: step S51). Meanwhile, the first nozzle driving mechanism 25 moves the first moving nozzle 9 to move the landing point of the mixed fluid on the upper surface of the substrate W in the radial direction of the substrate W (scan step: step S52). Since the substrate W is rotating around the rotation axis A1, the mixed fluid 100 discharged from the first moving nozzle 9 scans the entire upper surface of the substrate W.
混合流体100の供給が開始された後、所定の時間が経過すると、オゾンガスバルブ70Aおよび硫酸バルブ50Aが閉じられ、第1移動ノズル9への湿潤オゾンガスおよび硫酸の供給が停止される(湿潤オゾンガス供給停止工程:ステップS43。硫酸供給停止工程:S44)。これにより、基板Wの上面への混合流体100の供給が停止される(混合流体供給停止工程:ステップS53)。
After the supply of the mixed fluid 100 has started, when a predetermined time has elapsed, the ozone gas valve 70A and the sulfuric acid valve 50A are closed, and the supply of wet ozone gas and sulfuric acid to the first moving nozzle 9 is stopped (wet ozone gas supply stopping step: step S43; sulfuric acid supply stopping step: S44). This stops the supply of the mixed fluid 100 to the upper surface of the substrate W (mixed fluid supply stopping step: step S53).
混合流体100の吐出が停止された後、第1ノズル駆動機構25が第1移動ノズル9を退避させる(ステップS54)。一方、ヒータ駆動機構66が、基板加熱部材14を近接位置から退避位置に移動させる。基板加熱部材14を退避位置(図6Cに示す位置)に配置されることによって、基板Wの加熱が停止される(基板加熱停止工程:ステップS22)。これにより、基板加熱工程(ステップS2)が終了する。
After the ejection of the mixed fluid 100 has stopped, the first nozzle driving mechanism 25 retracts the first moving nozzle 9 (step S54). Meanwhile, the heater driving mechanism 66 moves the substrate heating member 14 from the close position to the retracted position. By placing the substrate heating member 14 in the retracted position (the position shown in FIG. 6C), the heating of the substrate W is stopped (substrate heating stopping step: step S22). This ends the substrate heating step (step S2).
湿潤オゾンガスと硫酸との混合流体100によって基板Wの上面をスキャンすることによって、基板Wの上面全域に混合流体100を供給できる。この混合流体100の働きによって、基板Wの主面のレジストが分解され、レジスト膜が基板Wの主面から除去(剥離)される。そして、混合流体100中の液成分(主として硫酸)が基板Wの回転に伴う遠心力によって基板Wの上面に沿って回転半径外方へと流れ、それにより、基板Wの主面から剥離したレジスト膜の少なくとも一部が基板Wの外へと排除される。
By scanning the upper surface of the substrate W with a mixed fluid 100 of wet ozone gas and sulfuric acid, the mixed fluid 100 can be supplied to the entire upper surface of the substrate W. The action of this mixed fluid 100 breaks down the resist on the main surface of the substrate W, and the resist film is removed (peeled off) from the main surface of the substrate W. Then, the liquid components (mainly sulfuric acid) in the mixed fluid 100 flow outward along the upper surface of the substrate W in the direction of the rotation radius due to the centrifugal force associated with the rotation of the substrate W, thereby removing at least a portion of the resist film peeled off from the main surface of the substrate W outside the substrate W.
第1移動ノズル9においては、硫酸と湿潤オゾンガス中の水蒸気とが接触することにより希釈熱が発生し、その希釈熱によって加熱された硫酸の界面で湿潤オゾンガス中のオゾンが分解する。それによって、カロ酸(ペルオキソ一硫酸)が発生する。このカロ酸(とくに活性酸素)を含む混合流体100が基板Wの上面に供給されることにより、レジストが分解され、レジスト膜を基板Wの主面から効率良く除去(剥離)することができる。しかも、基板Wに供給される直前に硫酸と水蒸気とが接触するので、希釈熱を効率的に利用してオゾンガスを分解してカロ酸を生成でき、しかも生成直後のカロ酸を基板Wの主面に供給できる。そのうえ、希釈熱によってカロ酸が加熱され、カロ酸は混合前の硫酸よりも高温の状態で基板Wの主面に供給される。こうして、生成直後の高温のカロ酸によってレジストを効率的に分解することができる。さらに、この実施形態では、基板加熱工程(ステップS2)が並行して実行されるので、一層効率的にレジスト膜を除去することができる。
In the first moving nozzle 9, the sulfuric acid and the water vapor in the wet ozone gas come into contact with each other, generating heat of dilution, and the ozone in the wet ozone gas decomposes at the interface of the sulfuric acid heated by the heat of dilution. This generates Caro's acid (peroxomonosulfuric acid). By supplying the mixed fluid 100 containing this Caro's acid (particularly active oxygen) to the upper surface of the substrate W, the resist is decomposed, and the resist film can be efficiently removed (peeled off) from the main surface of the substrate W. Moreover, since the sulfuric acid and the water vapor come into contact with each other just before being supplied to the substrate W, the heat of dilution can be efficiently used to decompose the ozone gas and generate Caro's acid, and the Caro's acid immediately after generation can be supplied to the main surface of the substrate W. Moreover, the Caro's acid is heated by the heat of dilution, and the Caro's acid is supplied to the main surface of the substrate W at a higher temperature than the sulfuric acid before mixing. In this way, the resist can be efficiently decomposed by the high-temperature Caro's acid immediately after generation. Furthermore, in this embodiment, the substrate heating process (step S2) is performed in parallel, so that the resist film can be removed even more efficiently.
基板加熱工程(ステップS2)および混合流体供給工程(ステップS5)の後、基板Wの上面リンス液を供給することによって、基板Wの上面を洗浄する第1リンス工程(ステップS6)が実行される。
After the substrate heating process (step S2) and the mixed fluid supply process (step S5), a first rinsing process (step S6) is performed to clean the top surface of the substrate W by supplying a top surface rinsing liquid for the substrate W.
具体的には、第2ノズル駆動機構26が、第2移動ノズル10を処理位置に移動させる。処理位置は、たとえば、中央位置である。第2移動ノズル10が処理位置に位置する状態で、共通バルブ51およびリンス液バルブ53Aが開かれる。これにより、図6Cに示すように、第2移動ノズル10からリンス液が吐出され、基板Wの上面へのリンス液の供給が開始される(リンス液供給開始工程、リンス液供給工程)。基板Wの上面上に着液したリンス液は、基板Wの上面の周縁部に向かって移動し、基板Wの上面の全体にリンス液が広がる。
Specifically, the second nozzle driving mechanism 26 moves the second moving nozzle 10 to the processing position. The processing position is, for example, the central position. With the second moving nozzle 10 positioned at the processing position, the common valve 51 and the rinsing liquid valve 53A are opened. As a result, as shown in FIG. 6C, rinsing liquid is ejected from the second moving nozzle 10, and the supply of rinsing liquid to the upper surface of the substrate W begins (rinsing liquid supply start process, rinsing liquid supply process). The rinsing liquid that has landed on the upper surface of the substrate W moves toward the peripheral portion of the upper surface of the substrate W, and the rinsing liquid spreads over the entire upper surface of the substrate W.
リンス液の供給が開始された後、所定の時間が経過すると、共通バルブ51およびリンス液バルブ53Aが閉じられる。これにより、基板Wの上面へのリンス液の供給が停止される(リンス液供給停止工程)。これにより、第1リンス工程が終了する。第1リンス工程によって、基板Wの上面から硫酸が排出される。硫酸とともに、基板Wの上面から剥離されたレジスト膜が洗い流され、基板Wの上面から基板W外へと排除される。
After the supply of rinsing liquid has started and a predetermined time has elapsed, the common valve 51 and the rinsing liquid valve 53A are closed. This stops the supply of rinsing liquid to the upper surface of the substrate W (rinsing liquid supply stopping process). This ends the first rinsing process. The first rinsing process drains sulfuric acid from the upper surface of the substrate W. The resist film that has been peeled off from the upper surface of the substrate W is washed away together with the sulfuric acid and is removed from the upper surface of the substrate W to the outside of the substrate W.
基板Wの上面へのリンス液の供給が停止された後、基板Wの上面に薬液を供給する薬液供給工程(ステップS7)が実行される。具体的には、第2移動ノズル10が処理位置に位置する状態で共通バルブ51および薬液バルブ52Aが開かれる。これにより、リンス液の吐出が停止され、さらに、第2移動ノズル10から基板Wの上面に向けて、薬液の連続流が吐出(供給)される(薬液吐出工程、薬液供給工程)。これにより、基板Wの上面が薬液によって処理される。これにより、基板Wの上面に残っている残渣が除去される。
After the supply of rinsing liquid to the upper surface of the substrate W is stopped, a chemical liquid supplying process (step S7) is performed to supply a chemical liquid to the upper surface of the substrate W. Specifically, the common valve 51 and the chemical liquid valve 52A are opened while the second moving nozzle 10 is positioned at the processing position. This stops the ejection of the rinsing liquid, and furthermore, a continuous flow of chemical liquid is ejected (supplied) from the second moving nozzle 10 toward the upper surface of the substrate W (chemical liquid ejecting process, chemical liquid supplying process). This causes the upper surface of the substrate W to be treated with the chemical liquid. This removes any residue remaining on the upper surface of the substrate W.
薬液供給工程(ステップS7)の後、基板Wの上面にリンス液を供給して基板Wの上面を洗浄する第2リンス工程(ステップS8)が実行される。具体的には、第2移動ノズル10が基板Wの上面に対向し、かつ、共通バルブ51が開かれている状態に維持しながら、薬液バルブ52Aが閉じられてリンス液バルブ53Aが開かれる。これにより、第2移動ノズル10からの薬液の吐出が停止され、さらに、第2移動ノズル10から基板Wの上面に向けてリンス液の連続流が吐出(供給)される(リンス液吐出工程、リンス液供給工程)。これにより、基板Wの上面の薬液がリンス液とともに基板W外に排出されて、基板Wの上面が洗浄される。
After the chemical supply process (step S7), a second rinse process (step S8) is performed in which a rinse liquid is supplied to the upper surface of the substrate W to clean the upper surface of the substrate W. Specifically, while the second moving nozzle 10 faces the upper surface of the substrate W and the common valve 51 is maintained in an open state, the chemical valve 52A is closed and the rinse liquid valve 53A is opened. This stops the discharge of the chemical liquid from the second moving nozzle 10, and furthermore, a continuous flow of the rinse liquid is discharged (supplied) from the second moving nozzle 10 toward the upper surface of the substrate W (rinsing liquid discharge process, rinsing liquid supply process). This causes the chemical liquid on the upper surface of the substrate W to be discharged outside the substrate W together with the rinse liquid, and the upper surface of the substrate W is cleaned.
第2リンス工程(ステップS8)の後、基板Wの上面に有機溶剤を供給する有機溶剤供給工程(ステップS9)が実行される。具体的には、第2移動ノズル10からのリンス液の吐出を停止し、かつ、第2移動ノズル10を退避させる。そして、第3ノズル駆動機構27が第3移動ノズル11を基板Wの上面に対向させて有機溶剤バルブ54Aが開かれる。これにより、第3移動ノズル11から基板Wの上面に向けて、有機溶剤の連続流が吐出(供給)される(有機溶剤吐出工程、有機溶剤供給工程)。これにより、基板Wの上面のリンス液が有機溶剤によって置換される。
After the second rinsing step (step S8), an organic solvent supplying step (step S9) is performed to supply organic solvent to the upper surface of the substrate W. Specifically, the ejection of rinsing liquid from the second moving nozzle 10 is stopped, and the second moving nozzle 10 is retracted. Then, the third nozzle driving mechanism 27 positions the third moving nozzle 11 facing the upper surface of the substrate W, and the organic solvent valve 54A is opened. As a result, a continuous flow of organic solvent is ejected (supplied) from the third moving nozzle 11 toward the upper surface of the substrate W (organic solvent ejecting step, organic solvent supplying step). As a result, the rinsing liquid on the upper surface of the substrate W is replaced with the organic solvent.
基板処理に用いられる有機溶剤はリンス液よりも揮発性が高いことが好ましい。そうであれば、リンス液を有機溶剤で置換することで、その後のスピンドライ工程(ステップS10)において基板Wを良好に乾燥させることができる。基板処理に用いられる有機溶剤はリンス液よりも表面張力が低いことが好ましい。そうであれば、基板Wの上面に凹凸パターンが形成されている場合には、基板Wの上面を乾燥させる際に凹凸パターンに作用する表面張力を低減でき、凹凸パターンの倒壊を抑制できる。
The organic solvent used in substrate processing is preferably more volatile than the rinse liquid. If so, then by replacing the rinse liquid with the organic solvent, the substrate W can be dried well in the subsequent spin drying process (step S10). The organic solvent used in substrate processing is preferably lower in surface tension than the rinse liquid. If so, then in the case where an uneven pattern is formed on the top surface of the substrate W, the surface tension acting on the uneven pattern when the top surface of the substrate W is dried can be reduced, and collapse of the uneven pattern can be suppressed.
次に、基板Wを高速回転させて基板Wの上面を乾燥させるスピンドライ工程(ステップS10)が実行される。具体的には、有機溶剤バルブ54Aを閉じて基板Wの上面への有機溶剤の供給を停止させる。そして、回転駆動機構23が基板Wの回転を加速し、基板Wを高速回転(たとえば、1500rpm)させる。それによって、大きな遠心力が基板Wに付着しているリンス液に作用し、有機溶剤が基板Wの周囲に振り切られる。
Next, a spin-dry process (step S10) is performed in which the substrate W is rotated at high speed to dry the upper surface of the substrate W. Specifically, the organic solvent valve 54A is closed to stop the supply of organic solvent to the upper surface of the substrate W. Then, the rotation drive mechanism 23 accelerates the rotation of the substrate W, causing the substrate W to rotate at high speed (for example, 1500 rpm). As a result, a large centrifugal force acts on the rinsing liquid adhering to the substrate W, and the organic solvent is shaken off around the substrate W.
スピンドライ工程(ステップS10)の後、回転駆動機構23が基板Wの回転を停止させる。その後、第2搬送ロボットCRが、処理ユニット2に進入して、スピンチャック8から処理済みの基板Wを受け取って、処理ユニット2外へと搬出する(基板搬出工程:ステップS11)。その基板Wは、第2搬送ロボットCRから第1搬送ロボットIRへと渡され、第1搬送ロボットIRによって、キャリアCに収納される。
After the spin dry process (step S10), the rotation drive mechanism 23 stops the rotation of the substrate W. Then, the second transport robot CR enters the processing unit 2, receives the processed substrate W from the spin chuck 8, and removes it from the processing unit 2 (substrate removal process: step S11). The substrate W is passed from the second transport robot CR to the first transport robot IR, which stores it in the carrier C.
図7は、スキャン工程(図5のステップS52)の一例を示す。この例では、混合流体100の吐出を開始するときの第1移動ノズル9の初期位置は、基板Wの外周縁に混合流体100の着地点100aが配置される位置である。混合流体100の供給が開始されると、第1移動ノズル9が移動し始め、それによって、混合流体100の着地点100aは、基板Wの外周縁から回転中心(回転軸線A1)に向かって移動する。その後は、必要に応じて、混合流体100の着地点が基板Wの外周縁と回転中心(回転軸線A1)との間で繰り返し往復するように第1移動ノズル9が移動されてもよい。図7には、基板Wのほぼ半径の範囲をスキャン範囲として示すが、基板Wのほぼ直径に渡る範囲をスキャン範囲としてもよい。
7 shows an example of the scanning process (step S52 in FIG. 5). In this example, the initial position of the first moving nozzle 9 when starting to discharge the mixed fluid 100 is a position where the landing point 100a of the mixed fluid 100 is located on the outer periphery of the substrate W. When the supply of the mixed fluid 100 starts, the first moving nozzle 9 starts to move, so that the landing point 100a of the mixed fluid 100 moves from the outer periphery of the substrate W toward the center of rotation (axis of rotation A1). Thereafter, if necessary, the first moving nozzle 9 may be moved so that the landing point of the mixed fluid 100 repeatedly moves back and forth between the outer periphery of the substrate W and the center of rotation (axis of rotation A1). In FIG. 7, the scanning range is shown to be approximately the radius of the substrate W, but the scanning range may be approximately the diameter of the substrate W.
混合流体100の初期着地点が基板Wの外周縁に設定され、その着地点100aが回転中心(回転軸線A1)に向かって移動することにより、混合流体100は、基板W上の液膜のない(実質的に乾燥した)表面に着地する。そのため、混合流体100中のカロ酸が希釈されることなくレジスト膜に作用するので、レジスト分解反応を効率的に生じさせることができる。それにより、高効率なレジスト除去が可能になる。
The initial landing point of the mixed fluid 100 is set on the outer periphery of the substrate W, and as the landing point 100a moves toward the center of rotation (rotation axis A1), the mixed fluid 100 lands on a liquid film-free (substantially dry) surface on the substrate W. As a result, the Caro's acid in the mixed fluid 100 acts on the resist film without being diluted, allowing the resist decomposition reaction to occur efficiently. This enables highly efficient resist removal.
以上のように、この実施形態によれば、水蒸気、オゾンガスおよび硫酸の混合流体100が基板Wの主面に供給され、その混合流体100によって、基板Wの主面からレジスト膜が除去される。硫酸と水蒸気が接触することにより希釈熱が発生し、その希釈熱によって加熱された硫酸の界面でオゾンが分解することにより、カロ酸(ペルオキソ一硫酸)が発生する。このカロ酸(とくに活性酸素)の働きによってレジストが分解され、レジスト膜を基板Wの主面から効率良く除去(剥離)することができる。
As described above, according to this embodiment, a mixed fluid 100 of water vapor, ozone gas, and sulfuric acid is supplied to the main surface of the substrate W, and the mixed fluid 100 removes the resist film from the main surface of the substrate W. Heat of dilution is generated when the sulfuric acid comes into contact with the water vapor, and the ozone is decomposed at the interface of the sulfuric acid heated by the heat of dilution to generate Caro's acid (peroxomonosulfuric acid). The action of this Caro's acid (particularly active oxygen) decomposes the resist, and the resist film can be efficiently removed (peeled off) from the main surface of the substrate W.
混合流体100によるレジスト除去工程では、コストの高い過酸化水素水を必要としない(用いない)ので、安価で剥離性能の高いレジスト除去プロセスを実現できる。また、混合流体100中の硫酸は、基板Wから液体となって流下するので、これを回収して再利用することができる。そして、基板Wから流下する硫酸中の水分量は少ないので、回収した硫酸を目標濃度に再生させるための技術上およびコスト上の障壁は高くない。よって、硫酸を再利用しやすいので、硫酸の使用量を削減できる。こうして、薬液使用量を削減しながら基板W上のレジスト膜を効率良く除去できる。
The resist removal process using the mixed fluid 100 does not require (use) costly hydrogen peroxide water, making it possible to realize a resist removal process that is inexpensive and has high stripping performance. Furthermore, the sulfuric acid in the mixed fluid 100 flows down from the substrate W as liquid, so it can be recovered and reused. And because the amount of water in the sulfuric acid that flows down from the substrate W is small, the technical and cost barriers to regenerating the recovered sulfuric acid to the target concentration are not high. Therefore, because sulfuric acid is easy to reuse, the amount of sulfuric acid used can be reduced. In this way, the resist film on the substrate W can be efficiently removed while reducing the amount of chemical used.
この実施形態では、オゾンガスを水中でバブリングさせることで、予め水蒸気およびオゾンガスが混合された湿潤オゾンガスが生成される。したがって、湿潤オゾンガスおよび硫酸を2流体ノズルからなる第1移動ノズル9で混合させて、混合流体100を生成できる。第1移動ノズル9(2流体ノズル)において湿潤オゾンガスと硫酸とが接触することにより、湿潤オゾンガス中の水分(水蒸気)による希釈熱が発生し、その希釈熱により加熱された硫酸の界面にオゾンを接触させることができる。よって、カロ酸を効率的に生成でき、生成直後のカロ酸を基板の主面に供給してレジスト膜と反応させることができる。それにより、効率的なレジスト除去処理を達成できる。水中でのオゾンガスのバブリングによる湿潤オゾンガスの生成は比較的簡単な方法であり、しかも2流体ノズルを用いて、水蒸気、オゾンガスおよび硫酸、すなわち3つの流体を混合できる利点もある。
In this embodiment, ozone gas is bubbled in water to generate wet ozone gas in which water vapor and ozone gas are mixed in advance. Therefore, wet ozone gas and sulfuric acid can be mixed in the first moving nozzle 9 consisting of a two-fluid nozzle to generate a mixed fluid 100. When wet ozone gas and sulfuric acid come into contact with each other in the first moving nozzle 9 (two-fluid nozzle), heat of dilution is generated by the moisture (water vapor) in the wet ozone gas, and ozone can be brought into contact with the interface of the sulfuric acid heated by the heat of dilution. Therefore, Caro's acid can be efficiently generated, and the Caro's acid immediately after generation can be supplied to the main surface of the substrate to react with the resist film. This allows efficient resist removal processing to be achieved. Generating wet ozone gas by bubbling ozone gas in water is a relatively simple method, and has the advantage of being able to mix three fluids, namely water vapor, ozone gas, and sulfuric acid, using a two-fluid nozzle.
硫酸を予め加熱(たとえば120℃~190℃)しておき、かつオゾンガスをバブリングさせる水を加熱しておくことで、湿潤オゾンガスが硫酸に接触すると、硫酸の界面はオゾンの分解温度(約130℃)を確実に超える。それにより、活性酸素(酸素ラジカル)を多量に含むカロ酸を効率的に生成することができる。水中でのバブリングによって湿潤オゾンガスを生成する場合、水の沸点はオゾンガスの分解温度よりも低いので、オゾンガスの分解回避のための厳密な温度管理は必要ではない。
By heating the sulfuric acid in advance (for example, to 120°C to 190°C) and by heating the water through which the ozone gas is to be bubbled, when the wet ozone gas comes into contact with the sulfuric acid, the interface of the sulfuric acid will definitely exceed the decomposition temperature of ozone (about 130°C). This makes it possible to efficiently produce Caro's acid, which contains a large amount of active oxygen (oxygen radicals). When wet ozone gas is produced by bubbling in water, strict temperature control is not required to avoid the decomposition of the ozone gas, since the boiling point of water is lower than the decomposition temperature of ozone gas.
また、この実施形態では、閉鎖空間を形成する密閉容器57内の水中にオゾンガスを供給してバブリングを行う構成によって、湿潤オゾンガスの生成およびその圧送を行うことができる。それにより、簡単な構成で、第1移動ノズル9(複数流体ノズル)での流体混合を行うことができる。密閉容器57内の水を加熱しておくことにより、バブリングによる水蒸気の発生を促すことができるので、水蒸気を適度に含む湿潤オゾンガスを生成して、第1移動ノズル9へと圧送できる。
In addition, in this embodiment, wet ozone gas can be generated and pumped by supplying ozone gas into the water in the sealed container 57 that forms a closed space and bubbling it. This allows fluid mixing in the first moving nozzle 9 (multiple fluid nozzle) with a simple configuration. By heating the water in the sealed container 57, it is possible to promote the generation of water vapor by bubbling, so that wet ozone gas containing a moderate amount of water vapor can be generated and pumped to the first moving nozzle 9.
また、この実施形態では、少なくとも混合流体100の供給開始直後の基板Wの主面は、液膜のない乾燥表面を呈している。したがって、混合流体100が供給されることにより、混合流体100中のカロ酸が希釈されることなくレジスト膜に作用する。そのため、カロ酸によるレジスト分解反応が効率的に生じるので、高効率なレジスト除去が可能になる。
In addition, in this embodiment, at least immediately after the supply of the mixed fluid 100 begins, the main surface of the substrate W presents a dry surface free of any liquid film. Therefore, when the mixed fluid 100 is supplied, the Caro's acid in the mixed fluid 100 acts on the resist film without being diluted. Therefore, the resist decomposition reaction by the Caro's acid occurs efficiently, making it possible to remove the resist with high efficiency.
とくに、この実施形態では、基板Wを回転軸線A1まわりに回転しながら第1移動ノズル9をスキャンさせるスキャン工程(図5のステップS52)において、第1移動ノズル9から混合流体100を吐出させながら、基板Wの外周縁から回転軸線A1に向けて混合流体100の着地点100aを移動させる。基板Wの回転によって、基板Wの主面上の液体は遠心力によって外周側へと流れる。そこで、複数流体ノズルである第1移動ノズル9から吐出される混合流体100による基板主面のスキャンを基板Wの外周縁から始めることによって、実質的に液膜の無い乾燥表面に混合流体100が供給される。それにより、混合流体100中のカロ酸が希釈されることなく基板主面のレジスト膜に作用するので、高効率なレジスト除去を実現できる。
In particular, in this embodiment, in the scanning step (step S52 in FIG. 5) in which the first moving nozzle 9 is scanned while rotating the substrate W around the rotation axis A1, the landing point 100a of the mixed fluid 100 is moved from the outer periphery of the substrate W toward the rotation axis A1 while the mixed fluid 100 is discharged from the first moving nozzle 9. As the substrate W rotates, the liquid on the main surface of the substrate W flows toward the outer periphery due to centrifugal force. Therefore, by starting the scanning of the substrate main surface with the mixed fluid 100 discharged from the first moving nozzle 9, which is a multiple-fluid nozzle, from the outer periphery of the substrate W, the mixed fluid 100 is supplied to a dry surface that is substantially free of a liquid film. As a result, the Caro's acid in the mixed fluid 100 acts on the resist film on the substrate main surface without being diluted, thereby achieving highly efficient resist removal.
また、この実施形態では、硫酸に過酸化水素水を接触させることなく、基板Wの主面のレジスト膜を除去できる。硫酸に対する過酸化水素水の接触がないことにより、硫酸に多量の水分が混合することを回避できる。それにより、硫酸中の水分を除去するための処理を軽減できるので、硫酸を再生して再利用しやすくなり、それに応じて硫酸の使用量を削減できる。
In addition, in this embodiment, the resist film on the main surface of the substrate W can be removed without contacting the sulfuric acid with hydrogen peroxide. Since the hydrogen peroxide does not come into contact with the sulfuric acid, it is possible to avoid mixing a large amount of moisture into the sulfuric acid. This reduces the process for removing the moisture in the sulfuric acid, making it easier to regenerate and reuse the sulfuric acid, and therefore reducing the amount of sulfuric acid used.
図8は、この発明の他の実施形態の構成を説明するための図である。この実施形態では、第1移動ノズル9として、3流体ノズルが用いられる。3流体ノズルからなる第1移動ノズル9には、硫酸供給ユニット16から硫酸(好ましくは加熱された硫酸)が供給され、オゾンガス供給ユニット13Aからオゾンガスが供給され、水蒸気供給ユニット13Bから水蒸気が供給される。オゾンガス供給ユニット13Aおよび水蒸気供給ユニット13Bは、オゾンガスおよび水蒸気をそれぞれ第1移動ノズル9に圧送するように構成されていることが好ましい。
FIG. 8 is a diagram for explaining the configuration of another embodiment of the present invention. In this embodiment, a three-fluid nozzle is used as the first moving nozzle 9. The first moving nozzle 9 consisting of a three-fluid nozzle is supplied with sulfuric acid (preferably heated sulfuric acid) from a sulfuric acid supply unit 16, ozone gas from an ozone gas supply unit 13A, and water vapor from a water vapor supply unit 13B. The ozone gas supply unit 13A and the water vapor supply unit 13B are preferably configured to pressure-feed the ozone gas and water vapor, respectively, to the first moving nozzle 9.
第1移動ノズル9を構成する3流体ノズルは、硫酸、オゾンガスおよび水蒸気を混合して混合流体100を生成し、その混合流体100を基板Wの主面に向けて吐出するように構成されている。この例では、オゾンガスおよび水蒸気がノズルハウジング90の第2通路92内で混合(内部混合)して第2吐出口92aから吐出される。一方、硫酸はノズルハウジング90内の第1通路91を通り、第1吐出口91aから吐出される。そして、硫酸と、オゾンガスおよび水蒸気の混合ガスとが、吐出口91a,92aの近傍のノズルハウジング90外で衝突して混合(外部混合)され、それによって、混合流体100が形成される。
The three-fluid nozzle constituting the first moving nozzle 9 is configured to mix sulfuric acid, ozone gas, and water vapor to generate a mixed fluid 100, and to eject the mixed fluid 100 toward the main surface of the substrate W. In this example, the ozone gas and water vapor are mixed (internal mixing) in the second passage 92 of the nozzle housing 90 and ejected from the second outlet 92a. Meanwhile, the sulfuric acid passes through the first passage 91 in the nozzle housing 90 and is ejected from the first outlet 91a. Then, the sulfuric acid and the mixed gas of ozone gas and water vapor collide and mix (external mixing) outside the nozzle housing 90 near the outlets 91a, 92a, thereby forming the mixed fluid 100.
むろん、この構成は、一例であり、硫酸、オゾンガスおよび水蒸気のための3つの分離した流路がノズルハウジング内に形成され、硫酸、オゾンガスおよび水蒸気がノズルハウジング内またはノズルハウジング外で接触して混合される構成の3流体ノズルを用いてもよい。
Of course, this configuration is just one example, and a three-fluid nozzle may be used in which three separate flow paths for sulfuric acid, ozone gas, and water vapor are formed in the nozzle housing, and the sulfuric acid, ozone gas, and water vapor come into contact with each other and are mixed inside or outside the nozzle housing.
水蒸気供給ユニット13Bは、加熱された水蒸気を第1移動ノズル9に供給することが好ましい。たとえば、水蒸気供給ユニット13Bは、室温よりも高く100℃以下(たとえば80℃程度)の水蒸気を第1移動ノズル9に供給することが好ましい。これにより、水蒸気がオゾンガスに接したときにオゾンの分解が生じず、かつ水蒸気およびオゾンが硫酸に接したときに高温のカロ酸を生成させることができる。
The water vapor supply unit 13B preferably supplies heated water vapor to the first moving nozzle 9. For example, the water vapor supply unit 13B preferably supplies water vapor that is higher than room temperature and not higher than 100°C (for example, about 80°C) to the first moving nozzle 9. This prevents ozone from being decomposed when the water vapor comes into contact with ozone gas, and allows high-temperature Caro's acid to be generated when the water vapor and ozone come into contact with sulfuric acid.
この発明は、以上に説明した実施形態に限定されるものではなく、以下に例示的に列記するように、さらに他の形態で実施することができる。
This invention is not limited to the embodiments described above, but can be embodied in other forms, as listed below as examples.
上述の各実施形態では、複数の移動ノズルから処理液が吐出されるように構成されている。しかしながら、上述の実施形態とは異なり、水平方向における位置が固定された固定ノズルから処理液が吐出されてもよいし、全ての処理液が単一のノズルから吐出されるように構成されていてもよい。
In each of the above-described embodiments, the processing liquid is configured to be ejected from multiple movable nozzles. However, unlike the above-described embodiments, the processing liquid may be ejected from a fixed nozzle whose position in the horizontal direction is fixed, or all processing liquid may be ejected from a single nozzle.
前述の実施形態では、硫酸配管40に配置したヒータユニット50Eによって硫酸を加熱している。しかし、硫酸の加熱は、硫酸タンク55において行ってもよい。また、硫酸タンク55内の硫酸を循環させる循環配管を設け、循環配管にヒータユニットを配置して硫酸を加熱してもよい。
In the above-described embodiment, the sulfuric acid is heated by the heater unit 50E disposed in the sulfuric acid piping 40. However, the sulfuric acid may be heated in the sulfuric acid tank 55. Also, a circulation pipe for circulating the sulfuric acid in the sulfuric acid tank 55 may be provided, and a heater unit may be disposed in the circulation pipe to heat the sulfuric acid.
基板Wの加熱は、基板加熱部材14による加熱に限られない。具体的には、基板加熱部材は、基板Wの上面に対向する赤外線ランプを含んでいてもよいし、基板Wの上面に対向するヒータを含んでいてもよい。あるいは、基板加熱部材は、基板Wの下面に窒素ガスまたは温水等の加熱流体を供給する加熱流体ノズルを含んでいてもよい。基板加熱部材は、プレート本体60内に加熱流体を流通させることでプレート本体60を加熱するように構成されていてもよい。加熱流体を用いる場合、基板Wの温度の調整は、加熱流体の流量を制御するバルブの開度の調整によって行われる。基板加熱部材14は、この発明において必須の構成ではなく、基板加熱部材14および基板加熱工程(ステップS2)を省いてもよい。
The heating of the substrate W is not limited to heating by the substrate heating member 14. Specifically, the substrate heating member may include an infrared lamp facing the upper surface of the substrate W, or may include a heater facing the upper surface of the substrate W. Alternatively, the substrate heating member may include a heating fluid nozzle that supplies a heating fluid such as nitrogen gas or hot water to the lower surface of the substrate W. The substrate heating member may be configured to heat the plate body 60 by circulating a heating fluid within the plate body 60. When a heating fluid is used, the temperature of the substrate W is adjusted by adjusting the opening of a valve that controls the flow rate of the heating fluid. The substrate heating member 14 is not an essential component of this invention, and the substrate heating member 14 and the substrate heating process (step S2) may be omitted.
基板処理装置1には、基板Wを冷却するクーリングプレート(図示せず)が設けられていてもよい。基板Wは、基板加熱停止工程(ステップS22)の後、クーリングプレートによって常温にまで冷却されてもよい。
The substrate processing apparatus 1 may be provided with a cooling plate (not shown) for cooling the substrate W. After the substrate heating stopping step (step S22), the substrate W may be cooled to room temperature by the cooling plate.
上述の各実施形態では、スピンチャック8は、基板Wの周縁を複数の把持ピン20で把持する把持式のスピンチャックであるが、スピンチャック8は、把持式のスピンチャックに限られない。たとえば、スピンチャック8は、スピンベース21に基板Wを吸着させる真空吸着式のスピンチャックであってもよい。
In each of the above-described embodiments, the spin chuck 8 is a gripping-type spin chuck that grips the periphery of the substrate W with a plurality of gripping pins 20, but the spin chuck 8 is not limited to a gripping-type spin chuck. For example, the spin chuck 8 may be a vacuum suction-type spin chuck that adsorbs the substrate W to the spin base 21.
上述の各実施形態では、コントローラ3が基板処理装置1の全体を制御する。しかしながら、基板処理装置1の各部材を制御するコントローラは、複数箇所に分散されていてもよい。また、コントローラ3は、各部材を直接制御する必要はなく、コントローラ3から出力される信号は、基板処理装置1の各部材を制御するスレーブコントローラに受信されてもよい。
In each of the above-described embodiments, the controller 3 controls the entire substrate processing apparatus 1. However, the controllers that control each component of the substrate processing apparatus 1 may be distributed to multiple locations. Furthermore, the controller 3 does not need to directly control each component, and the signal output from the controller 3 may be received by a slave controller that controls each component of the substrate processing apparatus 1.
また、上述の実施形態では、基板処理装置1が、搬送ロボット(第1搬送ロボットIRおよび第2搬送ロボットCR)と、複数の処理ユニット2と、コントローラ3とを備えている。しかしながら、基板処理装置1は、単一の処理ユニット2とコントローラ3とによって構成されており、搬送ロボットを含んでいなくてもよい。あるいは、基板処理装置1は、単一の処理ユニット2のみによって構成されていてもよい。言い換えると、処理ユニット2が基板処理装置の一例であってもよい。
In the above-described embodiment, the substrate processing apparatus 1 includes a transport robot (first transport robot IR and second transport robot CR), multiple processing units 2, and a controller 3. However, the substrate processing apparatus 1 may be configured with a single processing unit 2 and controller 3 and may not include a transport robot. Alternatively, the substrate processing apparatus 1 may be configured with only a single processing unit 2. In other words, the processing unit 2 may be an example of a substrate processing apparatus.
本発明の実施形態について詳細に説明してきたが、これらは本発明の技術的内容を明らかにするために用いられた具体例に過ぎず、本発明はこれらの具体例に限定して解釈されるべきではなく、本発明の範囲は添付の請求の範囲によってのみ限定される。
Although the embodiments of the present invention have been described in detail, these are merely examples used to clarify the technical content of the present invention, and the present invention should not be interpreted as being limited to these examples, and the scope of the present invention is limited only by the scope of the attached claims.
1 :基板処理装置
2 :処理ユニット
3 :コントローラ
7 :チャンバ
8 :スピンチャック
9 :第1移動ノズル
10 :第2移動ノズル
11 :第3移動ノズル
13 :水蒸気/オゾン供給ユニット
13A :オゾンガス供給ユニット
13B :水蒸気供給ユニット
15 :処理カップ
16 :硫酸供給ユニット
23 :回転駆動機構
28 :ガード
29 :カップ
35 :排液配管
40 :硫酸配管
45 :湿潤オゾンガス配管
50A :硫酸バルブ
50B :硫酸流量調整バルブ
50C :フィルタ
50D :ポンプ
50E :ヒータユニット
55 :硫酸タンク
56 :湿潤オゾンガス生成ユニット
57 :密閉容器
58 :オゾンガス供給ユニット
59 :ヒータユニット
70 :オゾンガス配管
70A :オゾンガスバルブ
70B :オゾンガス流量調整バルブ
70C :フィルタ
71 :新液配管
71A :新液バルブ
80 :硫酸回収/再生ユニット
81 :再生タンク
82 :ヒータユニット
83 :再生硫酸配管
83A :再生硫酸バルブ
83B :ポンプ
83C :フィルタ
90 :ノズルハウジング
91 :第1通路
91a :第1吐出口
92 :第2通路
92a :第2吐出口
100 :混合流体
100a :着地点
A1 :回転軸線 1: Substrate processing apparatus 2: Processing unit 3: Controller 7: Chamber 8: Spin chuck 9: First moving nozzle 10: Second moving nozzle 11: Third moving nozzle 13: Water vapor/ozone supply unit 13A: Ozone gas supply unit 13B: Water vapor supply unit 15: Processing cup 16: Sulfuric acid supply unit 23: Rotation drive mechanism 28: Guard 29: Cup 35: Drainage pipe 40: Sulfuric acid pipe 45: Wet ozone gas pipe 50A: Sulfuric acid valve 50B: Sulfuric acid flow rate control valve 50C: Filter 50D: Pump 50E: Heater unit 55: Sulfuric acid tank 56: Wet ozone gas generation unit 57: Sealed container 58: Ozone gas supply unit 59: Heater unit 70: Ozone gas pipe 70A: Ozone gas valve 70B: Ozone gas flow rate control valve 70C: Filter 71 : New liquid piping 71A : New liquid valve 80 : Sulfuric acid recovery/regeneration unit 81 : Regeneration tank 82 : Heater unit 83 : Regenerated sulfuric acid piping 83A : Regenerated sulfuric acid valve 83B : Pump 83C : Filter 90 : Nozzle housing 91 : First passage 91a : First discharge port 92 : Second passage 92a : Second discharge port 100 : Mixed fluid 100a : Landing point A1 : Rotation axis
2 :処理ユニット
3 :コントローラ
7 :チャンバ
8 :スピンチャック
9 :第1移動ノズル
10 :第2移動ノズル
11 :第3移動ノズル
13 :水蒸気/オゾン供給ユニット
13A :オゾンガス供給ユニット
13B :水蒸気供給ユニット
15 :処理カップ
16 :硫酸供給ユニット
23 :回転駆動機構
28 :ガード
29 :カップ
35 :排液配管
40 :硫酸配管
45 :湿潤オゾンガス配管
50A :硫酸バルブ
50B :硫酸流量調整バルブ
50C :フィルタ
50D :ポンプ
50E :ヒータユニット
55 :硫酸タンク
56 :湿潤オゾンガス生成ユニット
57 :密閉容器
58 :オゾンガス供給ユニット
59 :ヒータユニット
70 :オゾンガス配管
70A :オゾンガスバルブ
70B :オゾンガス流量調整バルブ
70C :フィルタ
71 :新液配管
71A :新液バルブ
80 :硫酸回収/再生ユニット
81 :再生タンク
82 :ヒータユニット
83 :再生硫酸配管
83A :再生硫酸バルブ
83B :ポンプ
83C :フィルタ
90 :ノズルハウジング
91 :第1通路
91a :第1吐出口
92 :第2通路
92a :第2吐出口
100 :混合流体
100a :着地点
A1 :回転軸線 1: Substrate processing apparatus 2: Processing unit 3: Controller 7: Chamber 8: Spin chuck 9: First moving nozzle 10: Second moving nozzle 11: Third moving nozzle 13: Water vapor/
Claims (14)
- 主面にレジスト膜が形成された基板を処理する方法であって、
複数流体ノズルを前記基板の主面に向けて配置するノズル配置工程と、
前記複数流体ノズルに水蒸気、オゾンガスおよび硫酸を供給する供給工程と、
前記複数流体ノズルから、水蒸気、オゾンガスおよび硫酸の混合流体を前記基板の主面に向けて供給して、前記レジスト膜を前記基板の主面から除去する混合流体供給工程と、
を含む、基板処理方法。 A method for treating a substrate having a resist film formed on a main surface thereof, comprising the steps of:
a nozzle arrangement step of arranging a multi-fluid nozzle toward a main surface of the substrate;
a supply step of supplying water vapor, ozone gas, and sulfuric acid to the multiple fluid nozzle;
a mixed fluid supplying step of supplying a mixed fluid of water vapor, ozone gas, and sulfuric acid from the multiple fluid nozzle toward the main surface of the substrate to remove the resist film from the main surface of the substrate;
A method for processing a substrate, comprising: - 前記供給工程は、前記複数流体ノズルに、水蒸気およびオゾンガスが混合した湿潤オゾンガスを供給する湿潤オゾンガス供給工程を含む、請求項1に記載の基板処理方法。 The substrate processing method according to claim 1, wherein the supplying step includes a wet ozone gas supplying step of supplying wet ozone gas, which is a mixture of water vapor and ozone gas, to the multiple fluid nozzle.
- 前記湿潤オゾンガス供給工程は、水中でオゾンガスをバブリングして湿潤オゾンガスを生成する湿潤オゾンガス生成工程を含む、請求項2に記載の基板処理方法。 The substrate processing method according to claim 2, wherein the wet ozone gas supply process includes a wet ozone gas generation process in which ozone gas is bubbled in water to generate wet ozone gas.
- 前記湿潤オゾンガス供給工程は、閉鎖空間内の水中で、オゾンガス供給源から供給されるオゾンガスをバブリングして前記閉鎖空間内に湿潤オゾンガスを生成させ、前記閉鎖空間から前記複数流体ノズルに前記湿潤オゾンガスを圧送する工程を含む、請求項2に記載の基板処理方法。 The substrate processing method according to claim 2, wherein the wet ozone gas supplying step includes a step of bubbling ozone gas supplied from an ozone gas supply source in water in a closed space to generate wet ozone gas in the closed space, and pressure-feeding the wet ozone gas from the closed space to the multiple fluid nozzle.
- 前記混合流体供給工程は、前記オゾンガスと前記硫酸との混合によって生じるカロ酸を含む前記混合流体を前記基板の主面に向けて供給する、請求項1~4のいずれか一項に記載の基板処理方法。 The substrate processing method according to any one of claims 1 to 4, wherein the mixed fluid supplying step supplies the mixed fluid containing Caro's acid produced by mixing the ozone gas and the sulfuric acid toward the main surface of the substrate.
- 前記混合流体供給工程は、前記水蒸気と前記硫酸との接触によって生じる希釈熱によって、前記硫酸よりも高温の前記カロ酸を含む前記混合流体を前記基板の主面に向けて供給する、請求項5に記載の基板処理方法。 The substrate processing method according to claim 5, wherein the mixed fluid supply step supplies the mixed fluid containing the Caro's acid, which is hotter than the sulfuric acid, toward the main surface of the substrate by heat of dilution generated by contact between the water vapor and the sulfuric acid.
- 前記複数流体ノズルに供給される水蒸気は、100℃以下である、請求項1~6のいずれか一項に記載の基板処理方法。 The substrate processing method according to any one of claims 1 to 6, wherein the water vapor supplied to the multiple fluid nozzle is at or below 100°C.
- 前記混合流体供給工程によって前記混合流体が供給される前の前記基板の主面は、液膜の無い乾燥表面を呈している、請求項1~7のいずれか一項に記載の基板処理方法。 The substrate processing method according to any one of claims 1 to 7, wherein the main surface of the substrate is a dry surface without a liquid film before the mixed fluid is supplied in the mixed fluid supplying step.
- 前記基板を前記主面を通る回転軸線まわりに回転する基板回転工程をさらに含み、
前記混合流体供給工程は、前記基板回転工程と並行して実行され、前記複数流体ノズルから前記混合流体を吐出しながら、前記基板の外周縁から前記回転軸線に向けて前記混合流体の前記主面上における着地点を移動させるスキャン工程を含む、請求項1~8のいずれか一項に記載の基板処理方法。 The method further includes a substrate rotation step of rotating the substrate about a rotation axis passing through the main surface,
9. The substrate processing method according to claim 1, wherein the mixed fluid supplying step is performed in parallel with the substrate rotating step, and includes a scanning step of moving a landing point of the mixed fluid on the main surface from an outer circumferential edge of the substrate toward the rotation axis while discharging the mixed fluid from the multiple-fluid nozzle. - 前記硫酸に過酸化水素水を接触させることなく、前記基板の主面の前記レジスト膜を除去する、請求項1~9のいずれか一項に記載の基板処理方法。 The substrate processing method according to any one of claims 1 to 9, wherein the resist film on the main surface of the substrate is removed without contacting the sulfuric acid with hydrogen peroxide.
- 基板を保持する基板保持ユニットと、
前記基板保持ユニットに保持される基板の主面に向けて配置される複数流体ノズルと、
前記複数流体ノズルに水蒸気およびオゾンガスを供給する水蒸気/オゾン供給ユニットと、
前記複数流体ノズルに硫酸を供給する硫酸供給ユニットと、を含み、
前記複数流体ノズルから、水蒸気、オゾンガスおよび硫酸の混合流体を前記基板保持ユニットに保持された基板の主面に向けて供給するように構成された、基板処理装置。 a substrate holding unit for holding a substrate;
a multi-fluid nozzle arranged to face a main surface of a substrate held by the substrate holding unit;
a water vapor/ozone supply unit for supplying water vapor and ozone gas to the multiple fluid nozzle;
a sulfuric acid supply unit for supplying sulfuric acid to the multiple fluid nozzle;
a substrate processing apparatus configured to supply a mixed fluid of water vapor, ozone gas, and sulfuric acid from the multiple fluid nozzle toward a main surface of a substrate held by the substrate holding unit. - 前記水蒸気/オゾン供給ユニットは、水蒸気およびオゾンガスの混合ガスである湿潤オゾンガスを供給する、請求項11に記載の基板処理装置。 The substrate processing apparatus of claim 11, wherein the water vapor/ozone supply unit supplies wet ozone gas, which is a mixed gas of water vapor and ozone gas.
- 前記水蒸気/オゾン供給ユニットは、水中でオゾンガスをバブリングさせて前記湿潤オゾンガスを生成する湿潤オゾンガス生成ユニットを含む、請求項12に記載の基板処理装置。 The substrate processing apparatus of claim 12, wherein the water vapor/ozone supply unit includes a wet ozone gas generation unit that generates the wet ozone gas by bubbling ozone gas in water.
- 前記湿潤オゾンガス生成ユニットは、閉鎖空間を形成する密閉容器と、前記密閉容器中に貯留される水中にオゾンガスを供給するオゾンガス供給ユニットとを含み、前記複数流体ノズルに向けて前記湿潤オゾンガスを圧送する、請求項13に記載の基板処理装置。 The substrate processing apparatus according to claim 13, wherein the wet ozone gas generating unit includes a sealed container that forms a closed space, and an ozone gas supply unit that supplies ozone gas into the water stored in the sealed container, and pressure-feeds the wet ozone gas toward the multiple fluid nozzle.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2023-028824 | 2023-02-27 | ||
JP2023028824 | 2023-02-27 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024180821A1 true WO2024180821A1 (en) | 2024-09-06 |
Family
ID=92589551
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2023/040219 WO2024180821A1 (en) | 2023-02-27 | 2023-11-08 | Substrate processing method and substrate processing device |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2024121794A (en) |
WO (1) | WO2024180821A1 (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004327610A (en) * | 2003-04-23 | 2004-11-18 | Mitsubishi Electric Corp | Method for removing photoresist of semiconductor wafer |
JP2009170554A (en) * | 2008-01-11 | 2009-07-30 | Panasonic Corp | Production process of semiconductor device |
JP2010087416A (en) * | 2008-10-02 | 2010-04-15 | Sumitomo Electric Ind Ltd | Optical transmitting module |
JP2014036101A (en) * | 2012-08-08 | 2014-02-24 | Dainippon Screen Mfg Co Ltd | Substrate processing apparatus and substrate processing method |
-
2023
- 2023-11-08 WO PCT/JP2023/040219 patent/WO2024180821A1/en unknown
-
2024
- 2024-02-02 JP JP2024014602A patent/JP2024121794A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004327610A (en) * | 2003-04-23 | 2004-11-18 | Mitsubishi Electric Corp | Method for removing photoresist of semiconductor wafer |
JP2009170554A (en) * | 2008-01-11 | 2009-07-30 | Panasonic Corp | Production process of semiconductor device |
JP2010087416A (en) * | 2008-10-02 | 2010-04-15 | Sumitomo Electric Ind Ltd | Optical transmitting module |
JP2014036101A (en) * | 2012-08-08 | 2014-02-24 | Dainippon Screen Mfg Co Ltd | Substrate processing apparatus and substrate processing method |
Also Published As
Publication number | Publication date |
---|---|
JP2024121794A (en) | 2024-09-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110364431B (en) | Substrate processing method and substrate processing apparatus | |
US7806989B2 (en) | Substrate processing method and substrate processing apparatus | |
JP4811877B2 (en) | Substrate processing method, substrate processing apparatus, and computer-readable recording medium | |
CN110364453B (en) | Substrate processing method and substrate processing apparatus | |
KR20150037543A (en) | Substrate treatment device and substrate treatment method | |
WO2019138694A1 (en) | Substrate processing method and substrate processing device | |
WO2020021903A1 (en) | Substrate processing method and substrate processing device | |
CN108713239B (en) | Substrate processing method and substrate processing apparatus | |
US20230069633A1 (en) | Substrate processing method and substrate processing apparatus | |
WO2024180821A1 (en) | Substrate processing method and substrate processing device | |
JP7182880B2 (en) | Substrate processing method and substrate processing apparatus | |
JP4459774B2 (en) | Substrate processing method, substrate processing apparatus, and computer program | |
JP2008209542A (en) | Method for stripping resist and resist stripping device | |
TW202435305A (en) | Substrate processing method and substrate processing apparatus | |
WO2024210065A1 (en) | Substrate processing method | |
CN113169061B (en) | Substrate processing method and substrate processing apparatus | |
JP7182879B2 (en) | Substrate processing method and substrate processing apparatus | |
JP2024149120A (en) | Substrate processing method | |
WO2024090473A1 (en) | Substrate-processing device and substrate-processing method | |
WO2024190118A1 (en) | Substrate treatment method and substrate treatment device | |
JP2019169647A (en) | Substrate processing method and substrate processing device | |
WO2024090475A1 (en) | Substrate treatment device, substrate treatment process, and chamber cleaning method | |
JP2024078250A (en) | Substrate processing method and substrate processing apparatus |