WO2024180629A1 - Charged particle beam apparatus and alignment marker detection method - Google Patents

Charged particle beam apparatus and alignment marker detection method Download PDF

Info

Publication number
WO2024180629A1
WO2024180629A1 PCT/JP2023/007130 JP2023007130W WO2024180629A1 WO 2024180629 A1 WO2024180629 A1 WO 2024180629A1 JP 2023007130 W JP2023007130 W JP 2023007130W WO 2024180629 A1 WO2024180629 A1 WO 2024180629A1
Authority
WO
WIPO (PCT)
Prior art keywords
marker
sample
charged particle
particle beam
alignment
Prior art date
Application number
PCT/JP2023/007130
Other languages
French (fr)
Japanese (ja)
Inventor
憶土 池田
大二 切畑
宗史 設楽
大海 三瀬
Original Assignee
株式会社日立ハイテク
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立ハイテク filed Critical 株式会社日立ハイテク
Priority to PCT/JP2023/007130 priority Critical patent/WO2024180629A1/en
Publication of WO2024180629A1 publication Critical patent/WO2024180629A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/22Optical, image processing or photographic arrangements associated with the tube
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B15/00Measuring arrangements characterised by the use of electromagnetic waves or particle radiation, e.g. by the use of microwaves, X-rays, gamma rays or electrons
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/68Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for positioning, orientation or alignment

Definitions

  • the present invention relates to a charged particle beam device that generates an observation image of a sample by irradiating the sample with a charged particle beam, and in particular to a method for detecting an alignment marker used to align the sample.
  • Charged particle beam devices are devices that detect secondary particles such as secondary electrons emitted from a sample by irradiating it with a charged particle beam such as an electron beam, and generate an observation image of the sample. They are used, for example, to closely observe foreign objects and defects on the surface of a sample detected under an optical microscope. In addition, alignment markers are created on the sample or sample holder as reference points for identifying the positions of foreign objects, etc. detected under an optical microscope under the charged particle beam device.
  • an alignment marker that is located at the center of the field of view under an optical microscope may be shifted from the center of the field of view under a charged particle beam device.
  • Patent Document 1 discloses that multiple sub-markers, each having a different planar shape from the alignment marker, are arranged around the alignment marker in all directions, up, down, left, right, and diagonally, when viewed in a plane. In other words, by detecting the sub-markers arranged around the alignment marker, even alignment markers that are out of the field of view can be detected in a relatively short time.
  • Patent Document 1 since it is not possible to appropriately set the direction in which the field of view is moved after detecting the sub-marker, the alignment marker is detected by lowering the observation magnification and enlarging the field of view. Changing the observation magnification requires time to adjust the focus.
  • the present invention aims to provide a charged particle beam device and an alignment marker detection method that can detect alignment markers without changing the observation magnification.
  • the present invention provides a charged particle beam device comprising a sample holder for holding a sample, a charged particle beam source for irradiating the sample with a charged particle beam, a detector for detecting secondary particles emitted from the sample and outputting a detection signal, and a control unit for generating an observation image of the sample based on the detection signal and controlling each unit, characterized in that the sample is provided with an alignment marker that is a reference point for identifying a position on the sample, and a guide marker having a shape that indicates the direction in which the alignment marker is located, and the control unit detects the guide marker from the observation image and moves the field of view in the direction indicated by the guide marker.
  • the present invention also provides a method for detecting an alignment marker, which is a reference point for identifying a position on a sample based on an observation image generated by irradiating a charged particle beam onto a sample held in a sample holder, and is characterized by comprising a detection step of detecting a guide marker having a shape indicating the direction in which the alignment marker is located from the observation image, and a movement step of moving the field of view in the direction indicated by the guide marker.
  • the present invention provides a charged particle beam device and an alignment marker detection method that can detect alignment markers without changing the observation magnification.
  • FIG. 1 is a diagram showing an example of an overall configuration of a charged particle beam device according to a first embodiment.
  • Diagram explaining alignment markers Diagram explaining guide markers Diagram explaining the placement of guide markers Diagram explaining the initial guide marker
  • FIG. 13 is a diagram showing an example of a process flow for creating each marker.
  • FIG. 1 is a diagram showing an example of a process flow for detecting alignment markers.
  • Diagram explaining template images Diagram explaining the movement of the visual field
  • FIG. 13 is a diagram showing an example of a process flow for creating a link marker.
  • FIG. 1 is a diagram showing an example of a process flow for sequentially detecting a plurality of alignment markers.
  • a charged particle beam device is a device that irradiates a sample with a charged particle beam such as an electron beam, detects secondary particles such as secondary electrons, backscattered electrons, Auger electrons, and X-ray photons emitted from the sample, and generates an observation image of the sample.
  • a scanning electron microscope which detects secondary electrons emitted from a sample, will be described as an example of a charged particle beam device.
  • the scanning electron microscope includes an electron source 101, a focusing lens 102, a deflector 103, an objective lens 104, a sample stage 106, a detector 107, a control unit 111, an input unit 112, and a display unit 113. Each unit will be described below.
  • the electron source 101 is a device that generates an electron beam to be irradiated onto the sample 100 by emitting and accelerating electrons.
  • the electron beam generated by the electron source 101 travels along the optical axis and is focused by the focusing lens 102, deflected by the deflector 103, and then focused by the objective lens 104.
  • the electron beam is deflected by the deflector 103 to scan the surface of the sample 100 two-dimensionally.
  • the sample stage 106 is a device on which the sample holder 105 that holds the sample 100 is placed and which moves the sample holder 105 in the horizontal and vertical directions.
  • the sample holder 105 and the sample stage 106 function as a sample holding unit that holds the sample 100.
  • the detector 107 is a device that detects secondary electrons emitted from the surface of the sample 100 scanned with the electron beam, and transmits a detection signal to the control unit 111.
  • the control unit 111 is a device that controls the electron source 101, focusing lens 102, deflector 103, objective lens 104, and sample stage 106, and is, for example, a general-purpose computer.
  • the control unit 111 includes a processor such as a CPU (Central Processing Unit) and memories such as a RAM (Random Access Memory) and a ROM (Read Only Memory).
  • the control unit 111 also executes processes such as generating an observation image of the sample 100 based on a detection signal sent from the detector 107, and calculating a new image using multiple observation images.
  • the processing in the control unit 111 may be realized by the processor executing a program expanded in the memory. Note that a part of the control unit 111 may be configured by hardware such as a dedicated circuit board.
  • the control unit 111 is connected to an input unit 112 and a display unit 113.
  • the input unit 112 is a device that allows an operator to input imaging conditions for the observation image, and is, for example, a keyboard, mouse, or touch panel.
  • the display unit 113 is a device that displays the imaging conditions and the observation image, and is, for example, a liquid crystal display or touch panel.
  • Charged particle beam devices such as scanning electron microscopes are suitable for detailed observation of the sample 100, and are used, for example, when observing in detail foreign objects or defects on the surface of a sample detected under an optical microscope.
  • alignment markers are created on the sample 100, sample holder 105, and sample stage 106 as reference points for identifying the positions of foreign objects, etc. detected under an optical microscope under the charged particle beam device.
  • FIG. 2 illustrates an alignment marker 201 created on the surface of the sample 100 at a distance D1 from the holder center 200, which is the center of the sample holder 105.
  • the alignment marker 201 is created, for example, as an indentation made by a Vickers cone under an optical microscope, or as an ion beam mark made by a FIB-SEM (Focused Ion Beam).
  • FIB-SEM Fluorescence Beam
  • FIG. 3 illustrates four trapezoidal guide markers 300 created at a distance D2 from the alignment marker 201.
  • the guide markers 300 in FIG. 3 point in a direction from the bottom to the top of the trapezoid, and the alignment marker 201 exists in the direction indicated by the guide markers 300.
  • the shape of the guide markers 300 is not limited to a trapezoid, and may be a shape that points in a certain direction, such as an isosceles triangle or an arrow shape.
  • the guide markers 300 are created, for example, as impressions made by a Vickers cone under an optical microscope, or as ion beam impressions made by an FIB-SEM.
  • the alignment marker 201 can be detected by moving the field of view in the direction indicated by the guide marker 300.
  • ⁇ m 2sin -1 (L/(D2+ ⁇ ))... (Formula 1)
  • 2L is the length of the short side of the field of view 401
  • is the error in the distance D2.
  • the error ⁇ includes errors related to the arrangement of the alignment marker 201 and the guide marker 300, errors related to the measurement of the distance, and the sample. At least one of the errors is included that is related to the movement of the stage 106.
  • the maximum error line 402, shown as a dotted circle, has a radius of D2+ ⁇ .
  • FIG. 5 illustrates an initial guide marker 500 having a trapezoidal shape created near the holder center 200, which is the center of the sample holder 105.
  • the initial guide marker 500 in FIG. 5 points in the direction from the lower base to the upper base of the trapezoid, similar to the guide marker 300, and the guide marker 300 and alignment marker 201 are present in the direction indicated by the initial guide marker 500.
  • the shape of the initial guide marker 500 is not limited to a trapezoid, and may be an isosceles triangle or an arrow shape.
  • the initial guide marker 500 is also created as an impression made by a Vickers cone or an ion beam impression made by an FIB-SEM.
  • the initial guide marker 500 is preferably positioned within the field of view 401 when the sample 100 is placed in the charged particle beam device.
  • the initial guide marker 500 is preferably positioned within a distance L from the holder center 200 that is half the short side of the field of view 401 at the observation magnification when observing the alignment marker 201.
  • the initial guide marker 500 positioned within the distance L from the holder center 200 is detected by the field of view 401 when the sample 100 is placed in the charged particle beam device.
  • the alignment marker 201 is created under a first observation device different from the charged particle beam device used for detailed observation.
  • the alignment marker 201 is created on at least one of the sample 100, the sample holder 105, and the sample stage 106 as a reference point for identifying a position on the sample 100.
  • the first observation device is, for example, an optical microscope. Note that the first observation device is not limited to an optical microscope, and may be any surface shape measuring device that performs shape measurement using a reflected signal from a probe, for example, a scanning white light interferometer (CSI) or an EDS for an electron microscope.
  • CSI scanning white light interferometer
  • EDS electron microscope
  • guide markers 300 are created around alignment marker 201.
  • Guide marker 300 is created so that alignment marker 201 exists in the direction indicated by guide marker 300.
  • it is preferable that the central angle ⁇ formed by two adjacent guide markers 300 in alignment marker 201 is within a value calculated by (Equation 1).
  • a distance D1 between the alignment marker 201 and the holder center 200, which is the HOME position, is measured.
  • the measured value of the distance D1 is stored in the storage device of the control unit 111.
  • the first observation device is used to measure the distance D2 between the alignment marker 201 and the guide marker 300.
  • the value of the measured distance D2 is stored in the storage device of the control unit 111.
  • an initial guide marker 500 is created near the holder center 200.
  • the initial guide marker 500 is created so that the alignment marker 201 and the guide marker 300 are present in the direction indicated by the initial guide marker 500.
  • the distance between the initial guide marker 500 and the holder center 200 is preferably within a distance L that is half the short side of the field of view 401 at the observation magnification when observing the alignment marker 201.
  • alignment markers 201, guide markers 300, and initial guide markers 500 are created on the sample 100, sample holder 105, and sample stage 106.
  • Guide markers 300 and initial guide markers 500 are used to detect alignment marker 201.
  • the control unit 111 detects the initial guide marker 500 from the observation image.
  • the detection of the initial guide marker 500 uses a template matching method or a feature point detection method.
  • the control unit 111 sets the movement direction of the field of view 401 based on the shape of the initial guide marker 500 detected in S701.
  • the movement direction is set by rotating a template image 800 that has the same shape as the initial guide marker 500 and points in the positive direction of the x-axis as shown in Fig. 8 and comparing it with the detected initial guide marker 500.
  • the correlation value of the pixel value with the initial guide marker 500 is calculated every time the template image 800 is rotated by a predetermined angle, for example, 0.5 degrees, and the movement direction is set from the rotation angle at which the correlation value is maximized.
  • the control unit 111 moves the field of view 401 in the movement direction set in S702.
  • the movement of the field of view 401 is performed by moving the sample stage 106 or changing the electron beam irradiation field by the deflector 103.
  • Fig. 9 shows an example of the field of view 401 that is moved based on the shape of the initial guide marker 500.
  • the field of view 401 is moved in the direction of the white arrow, which is the direction indicated by the initial guide marker 500 detected in the field of view 401.
  • a predetermined value for example, the distance L that is half the short side of the field of view 401, is set as the movement distance of the field of view 401.
  • the control unit 111 determines whether or not the guide marker 300 has been detected in the field of view 401 after the movement.
  • the guide marker 300 is detected using a template matching method or a feature point detection method, as in the case of the initial guide marker 500. If the guide marker 300 has been detected, the process proceeds to S705. If the guide marker 300 has not been detected, the process returns to S703. That is, the movement of the field of view 401 in S703 is repeated until the guide marker 300 is detected in S704. If the movement limit of the field of view 401 is reached without the guide marker 300 being detected, the field of view 401 may be returned to the holder center 200, which is the HOME position, and the process may be resumed from S701, or an error message may be displayed.
  • the movement of the field of view 401 in S703 may also be based on the distance D1 between the alignment marker 201 and the holder center 200, which is measured in S603 of FIG. 6 and stored in the storage device of the control unit 111.
  • D1 the distance between the alignment marker 201 and the holder center 200
  • an error message is displayed and the process flow is terminated.
  • the control unit 111 sets the movement direction of the field of view 401 based on the shape of the guide marker 300 detected in S704.
  • the control unit 111 moves the field of view 401 in the movement direction set in S705.
  • a predetermined value for example, the distance L that is half the short side of the field of view 401, is set as the movement distance of the field of view 401.
  • the control unit 111 determines whether or not the alignment marker 201 has been detected in the field of view 401 after the movement.
  • a template matching method or a feature point detection method is used, as in the case of the initial guide marker 500.
  • a method with higher detection accuracy such as point detection using a differential image, may also be used. If the alignment marker 201 has been detected, the process flow ends, and if it has not been detected, the process returns to S706. That is, the movement of the field of view 401 in S706 is repeated until the alignment marker 201 is detected in S707. Note that if the movement limit of the field of view 401 is reached without the alignment marker 201 being detected, an error message is displayed and the process flow ends.
  • the movement of the field of view 401 in S706 may be based on the distance D2 between the alignment marker 201 and the guide marker 300, which was measured in S604 of FIG. 6 and stored in the storage device of the control unit 111.
  • the field of view 401 is moved based on the distance D2
  • the alignment marker 201 cannot be detected in S707, an error message is displayed and the process flow is terminated.
  • the distance D2 may be indicated by the shape of the guide marker 300.
  • Figure 10 illustrates a short-distance guide marker 1001 that indicates a short distance and a long-distance guide marker 1002 that indicates a long distance. Both guide markers are trapezoidal with a base of the same length B, but the height of the long-distance guide marker 1002 is 2H, which is twice the height H of the short-distance guide marker 1001. In other words, with the two guide markers illustrated in Figure 10, distance is indicated by the ratio of the base to the height.
  • the process flow described using FIG. 7 allows the alignment marker 201 to be detected without changing the observation magnification.
  • the alignment marker 201 can be detected in a shorter time, improving the throughput of detailed observation of foreign objects and defects on the sample surface detected under the first observation device.
  • Example 1 it was described that the alignment marker 201 is detected by moving the field of view 401 in the direction indicated by the guide markers 300 arranged around the alignment marker 201.
  • Example 2 a link marker, which is a guide marker for sequentially detecting multiple alignment markers 201, is described. Note that since some of the configurations and functions described in Example 1 can be applied to Example 2, the same reference numerals are used for similar configurations and functions, and descriptions thereof are omitted.
  • FIG. 11 illustrates a trapezoidal link marker 1100 created near each of three alignment markers 201.
  • the link marker 1100 in FIG. 11 points in the direction from the bottom to the top of the trapezoid, and the alignment marker 201 exists in the direction indicated by the link marker 1100.
  • the shape of the link marker 1100 is not limited to a trapezoid, and may be an isosceles triangle or an arrow shape.
  • the link marker 1100 is created as an indentation made by a Vickers cone or an ion beam mark made by a FIB-SEM.
  • link marker 1100-1 which is created near alignment marker 201-1, points to alignment marker 201-2.
  • Link marker 1100-2 near alignment marker 201-2 points to alignment marker 201-3, and link marker 1100-3 near alignment marker 201-3 points to alignment marker 201-1.
  • link markers 1100 are created so that all alignment markers 201 can be detected by starting from one alignment marker 201 and its neighboring link marker 1100 and sequentially detecting the alignment markers 201 pointed to by link marker 1100.
  • the link marker 1100 is positioned within the field of view when observing the alignment marker 201.
  • the link marker 1100 is positioned within a distance L that is half the short side of the field of view 401 from the alignment marker 201.
  • the link marker 1100 positioned within the distance L from the alignment marker 201 is detected by the field of view 401 when observing the alignment marker 201.
  • a plurality of alignment markers 201 are created under a first observation device different from the charged particle beam device used for detailed observation.
  • the plurality of alignment markers 201 are created on at least one of the sample 100, the sample holder 105, and the sample stage 106.
  • the first observation device is, for example, an optical microscope, a scanning white light interferometer (CSI), or an EDS for an electron microscope.
  • a link marker 1100 is created near the alignment marker 201.
  • Link marker 1100-1 near alignment marker 201-1 is created so as to point to alignment marker 201-2.
  • Link marker 1100-2 near alignment marker 201-2 is created so as to point to alignment marker 201-3, and link marker 1100-3 is created so as to point to alignment marker 201-1.
  • the number of alignment markers 201 and link markers 1100 is not limited to three. When the number of alignment markers 201 and link markers 1100 is N, link marker 1100-N points to alignment marker 201-1.
  • the distance between the alignment marker 201 pointed to by the link marker 1100 and the link marker 1100 is measured.
  • the measured distance value is stored in a storage device of the control unit 111.
  • CSI scanning white light interferometer
  • EDS electron microscope
  • multiple alignment markers 201 and link markers 1100 arranged in the vicinity of each are created on the sample 100, sample holder 105, and sample stage 106.
  • the link markers 1100 are used to sequentially detect the multiple alignment markers 201.
  • the control unit 111 detects the alignment markers 201 and the link markers 1100 arranged in the vicinity thereof from the observation image.
  • the movement of the field of view 401 from the holder center 200, which is the HOME position, may be the same as in S701 in Fig. 7, or may be manual.
  • a template matching method or a feature point detection method is used to detect the alignment markers 201 and the link markers 1100.
  • the link markers 1100 are arranged so that all the alignment markers 201 can be detected by following the direction indicated by the link markers 1100, the markers detected in S1301 may be other than the link marker 1100-1.
  • the control unit 111 sets the movement direction of the field of view 401 based on the shape of the link marker 1100 detected in S1301.
  • the control unit 111 moves the field of view 401 in the movement direction set in S1302.
  • a predetermined value for example, the distance L that is half the short side of the field of view 401, is set as the movement distance of the field of view 401.
  • the control unit 111 determines whether or not the next alignment marker 201 and link marker 1100 have been detected in the field of view 401 after the movement. If the next alignment marker 201 and link marker 1100 have been detected, the process proceeds to S1305, and if they have not been detected, the process returns to S1303. That is, the movement of the field of view 401 in S1303 is repeated until the next alignment marker 201 and link marker 1100 are detected in S1304. Note that if the movement limit of the field of view 401 is reached without the next alignment marker 201 and link marker 1100 being detected, an error message is displayed and the process flow ends.
  • the movement of the field of view 401 in S1303 may be based on the distance between the alignment marker 201 pointed to by the link marker 1100, which is measured in S1203 of FIG. 12 and stored in the memory device of the control unit 111, and the link marker 1100. Even when the field of view 401 is moved based on the distance read from the memory device, if the next alignment marker 201 and link marker 1100 cannot be detected in S1304, an error message is displayed and the process flow is terminated.
  • the control unit 111 determines whether the alignment marker 201 detected in S1304 is the same as the alignment marker 201 detected in S1301. If they are the same, the process flow ends, and if they are not the same, the process returns to S1302, and the movement direction of the field of view 401 is set based on the shape of the link marker 1100 detected in S1304. That is, sequential detection of the multiple alignment markers 201 is repeated until the alignment marker 201 detected in S1304 is the same as the alignment marker 201 detected initially.
  • multiple alignment markers 201 are detected sequentially while following the direction indicated by the link marker 1100.
  • sequentially detecting multiple alignment markers 201 it is possible to improve the throughput of detailed observation of foreign objects and defects on the sample surface detected under the first observation device.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

To detect an alignment marker without changing an observation magnification, this charged particle beam apparatus comprises: a sample holder that holds a sample; a charged particle beam source that irradiates the sample with a charged particle beam; a detector that detects secondary particles emitted from the sample and outputs detection signals; and a control unit that generates an observation image of the sample on the basis of the detection signals and controls each component. The charged particle beam apparatus is characterized in that: the sample is provided with an alignment marker serving as a reference point for identifying a position on the sample, and a guide marker having a shape indicating a direction in which the alignment marker is located; and the control unit detects the guide marker from the observation image and moves a field of view in the direction indicated by the guide marker.

Description

荷電粒子線装置とアライメントマーカーの検出方法Charged particle beam device and alignment marker detection method
 本発明は、荷電粒子線を試料に照射することによって試料の観察像を生成する荷電粒子線装置に関し、特に試料の位置合わせに用いられるアライメントマーカーの検出方法に関する。 The present invention relates to a charged particle beam device that generates an observation image of a sample by irradiating the sample with a charged particle beam, and in particular to a method for detecting an alignment marker used to align the sample.
 荷電粒子線装置は、電子線のような荷電粒子線を照射することによって試料から放出される二次電子等の二次粒子を検出して試料の観察像を生成する装置であり、例えば光学顕微鏡下で検出された試料表面の異物や欠陥を詳細に観察するときに用いられる。また光学顕微鏡下で検出された異物等の位置を荷電粒子線装置下で特定するための参照点として、アライメントマーカーが試料や試料ホルダに作成される。 Charged particle beam devices are devices that detect secondary particles such as secondary electrons emitted from a sample by irradiating it with a charged particle beam such as an electron beam, and generate an observation image of the sample. They are used, for example, to closely observe foreign objects and defects on the surface of a sample detected under an optical microscope. In addition, alignment markers are created on the sample or sample holder as reference points for identifying the positions of foreign objects, etc. detected under an optical microscope under the charged particle beam device.
 ところで光学顕微鏡と荷電粒子線装置は光軸が完全には一致しないので、光学顕微鏡下では視野中心に位置するアライメントマーカーが荷電粒子線装置下では視野中心からずれる場合がある。特に荷電粒子線装置の視野から外れたアライメントマーカーの検出には時間を要する。 However, since the optical axes of an optical microscope and a charged particle beam device do not completely coincide, an alignment marker that is located at the center of the field of view under an optical microscope may be shifted from the center of the field of view under a charged particle beam device. In particular, it takes time to detect an alignment marker that is out of the field of view of a charged particle beam device.
 特許文献1には、アライメントマーカーの周囲に、アライメントマーカーとは異なる平面形状を有する複数のサブマーカーが平面視において上下左右と斜めの全方向に配置されることが開示される。すなわち、アライメントマーカーの周囲に配置されるサブマーカーを検出することにより、視野から外れたアライメントマーカーであっても比較的短時間で検出することができる。 Patent Document 1 discloses that multiple sub-markers, each having a different planar shape from the alignment marker, are arranged around the alignment marker in all directions, up, down, left, right, and diagonally, when viewed in a plane. In other words, by detecting the sub-markers arranged around the alignment marker, even alignment markers that are out of the field of view can be detected in a relatively short time.
特開2006-135104号公報JP 2006-135104 A
 しかしながら、特許文献1では、サブマーカーを検出した後、視野を移動させる方向を適切に設定できないため、観察倍率を下げて視野を拡大することによってアライメントマーカーを検出している。観察倍率を変えるとフォーカスの調整に時間を要する。 However, in Patent Document 1, since it is not possible to appropriately set the direction in which the field of view is moved after detecting the sub-marker, the alignment marker is detected by lowering the observation magnification and enlarging the field of view. Changing the observation magnification requires time to adjust the focus.
 そこで本発明は、観察倍率を変えることなくアライメントマーカーを検出することが可能な荷電粒子線装置及びアライメントマーカーの検出方法を提供することを目的とする。 The present invention aims to provide a charged particle beam device and an alignment marker detection method that can detect alignment markers without changing the observation magnification.
 上記目的を達成するために本発明は、試料を保持する試料保持部と、前記試料に荷電粒子線を照射する荷電粒子線源と、前記試料から放出される二次粒子を検出して検出信号を出力する検出器と、前記検出信号に基づいて前記試料の観察像を生成するとともに各部を制御する制御部を備える荷電粒子線装置であって、前記試料には、前記試料の上の位置を特定するための参照点であるアライメントマーカーと、前記アライメントマーカーが存在する方向を示す形状を有するガイドマーカーとが設けられ、前記制御部は、前記観察像から前記ガイドマーカーを検出し、前記ガイドマーカーが示す方向に視野を移動させることを特徴とする。 In order to achieve the above object, the present invention provides a charged particle beam device comprising a sample holder for holding a sample, a charged particle beam source for irradiating the sample with a charged particle beam, a detector for detecting secondary particles emitted from the sample and outputting a detection signal, and a control unit for generating an observation image of the sample based on the detection signal and controlling each unit, characterized in that the sample is provided with an alignment marker that is a reference point for identifying a position on the sample, and a guide marker having a shape that indicates the direction in which the alignment marker is located, and the control unit detects the guide marker from the observation image and moves the field of view in the direction indicated by the guide marker.
 また本発明は、試料保持部に保持される試料に荷電粒子線を照射することによって生成される観察像に基づいて、前記試料の上の位置を特定するための参照点であるアライメントマーカーを検出するアライメントマーカーの検出方法であって、前記アライメントマーカーが存在する方向を示す形状を有するガイドマーカーを前記観察像から検出する検出ステップと、前記ガイドマーカーが示す方向に視野を移動させる移動ステップを備えることを特徴とする。 The present invention also provides a method for detecting an alignment marker, which is a reference point for identifying a position on a sample based on an observation image generated by irradiating a charged particle beam onto a sample held in a sample holder, and is characterized by comprising a detection step of detecting a guide marker having a shape indicating the direction in which the alignment marker is located from the observation image, and a movement step of moving the field of view in the direction indicated by the guide marker.
 本発明によれば、観察倍率を変えることなくアライメントマーカーを検出することが可能な荷電粒子線装置及びアライメントマーカーの検出方法を提供することができる。 The present invention provides a charged particle beam device and an alignment marker detection method that can detect alignment markers without changing the observation magnification.
実施例1の荷電粒子線装置の全体構成の一例を示す図FIG. 1 is a diagram showing an example of an overall configuration of a charged particle beam device according to a first embodiment. アライメントマーカーについて説明する図Diagram explaining alignment markers ガイドマーカーについて説明する図Diagram explaining guide markers ガイドマーカーの配置について説明する図Diagram explaining the placement of guide markers イニシャルガイドマーカーについて説明する図Diagram explaining the initial guide marker 各マーカーを作成する処理の流れの一例を示す図FIG. 13 is a diagram showing an example of a process flow for creating each marker. アライメントマーカーを検出する処理の流れの一例を示す図FIG. 1 is a diagram showing an example of a process flow for detecting alignment markers. テンプレート画像について説明する図Diagram explaining template images 視野の移動について説明する図Diagram explaining the movement of the visual field 距離を示すガイドマーカーについて説明する図A diagram explaining guide markers that indicate distance リンクマーカーについて説明する図Diagram explaining link markers リンクマーカーを作成する処理の流れの一例を示す図FIG. 13 is a diagram showing an example of a process flow for creating a link marker. 複数のアライメントマーカーを順次検出する処理の流れの一例を示す図FIG. 1 is a diagram showing an example of a process flow for sequentially detecting a plurality of alignment markers.
 以下、添付図面に従って本発明に係る荷電粒子線装置の実施例について説明する。荷電粒子線装置は、電子線のような荷電粒子線を試料に照射し、試料から放出される二次電子や反射電子、オージェ電子、X線光子などの二次粒子を検出して試料の観察像を生成する装置である。以下では、荷電粒子線装置の一例として、試料から放出される二次電子を検出する走査電子顕微鏡(SEM;Scanning Electron Microscope)について説明する。 Below, an embodiment of a charged particle beam device according to the present invention will be described with reference to the attached drawings. A charged particle beam device is a device that irradiates a sample with a charged particle beam such as an electron beam, detects secondary particles such as secondary electrons, backscattered electrons, Auger electrons, and X-ray photons emitted from the sample, and generates an observation image of the sample. Below, a scanning electron microscope (SEM), which detects secondary electrons emitted from a sample, will be described as an example of a charged particle beam device.
 図1を用いて実施例1の走査電子顕微鏡の全体構成について説明する。走査電子顕微鏡は、電子源101、集束レンズ102、偏向器103、対物レンズ104、試料台106、検出器107、制御部111、入力部112、表示部113を備える。以下、各部について説明する。 The overall configuration of the scanning electron microscope of Example 1 will be described with reference to FIG. 1. The scanning electron microscope includes an electron source 101, a focusing lens 102, a deflector 103, an objective lens 104, a sample stage 106, a detector 107, a control unit 111, an input unit 112, and a display unit 113. Each unit will be described below.
 電子源101は電子を放出して加速することにより、試料100に照射される電子線を生成する装置である。電子源101で生成された電子線は、光軸にそって進み、集束レンズ102によって集束された後、偏向器103によって偏向され、対物レンズ104によって集束される。偏向器103での偏向により、電子線は試料100の表面を二次元的に走査する。 The electron source 101 is a device that generates an electron beam to be irradiated onto the sample 100 by emitting and accelerating electrons. The electron beam generated by the electron source 101 travels along the optical axis and is focused by the focusing lens 102, deflected by the deflector 103, and then focused by the objective lens 104. The electron beam is deflected by the deflector 103 to scan the surface of the sample 100 two-dimensionally.
 試料台106は、試料100を把持する試料ホルダ105が載置されるとともに、水平方向及び鉛直方向に試料ホルダ105を移動させる装置である。なお試料ホルダ105と試料台106は、試料100を保持する試料保持部として機能する。 The sample stage 106 is a device on which the sample holder 105 that holds the sample 100 is placed and which moves the sample holder 105 in the horizontal and vertical directions. The sample holder 105 and the sample stage 106 function as a sample holding unit that holds the sample 100.
 検出器107は、電子線で走査される試料100の表面から放出される二次電子を検出する装置であり、検出信号を制御部111へ送信する。 The detector 107 is a device that detects secondary electrons emitted from the surface of the sample 100 scanned with the electron beam, and transmits a detection signal to the control unit 111.
 制御部111は、電子源101や集束レンズ102、偏向器103、対物レンズ104、試料台106を制御する装置であり、例えば汎用のコンピュータである。制御部111は、CPU(Central Processing Unit)等のプロセッサとRAM(Random Access Memory)やROM(Read Only Memory)等のメモリを備える。また制御部111は、検出器107から送信される検出信号に基づいて試料100の観察像を生成したり、複数の観察像を用いて新たな画像を算出したりする処理を実行する。制御部111での処理は、メモリに展開されるプログラムをプロセッサが実行することによって実現されても良い。なお、制御部111の一部は、専用の回路基板等のハードウェアによって構成されても良い。 The control unit 111 is a device that controls the electron source 101, focusing lens 102, deflector 103, objective lens 104, and sample stage 106, and is, for example, a general-purpose computer. The control unit 111 includes a processor such as a CPU (Central Processing Unit) and memories such as a RAM (Random Access Memory) and a ROM (Read Only Memory). The control unit 111 also executes processes such as generating an observation image of the sample 100 based on a detection signal sent from the detector 107, and calculating a new image using multiple observation images. The processing in the control unit 111 may be realized by the processor executing a program expanded in the memory. Note that a part of the control unit 111 may be configured by hardware such as a dedicated circuit board.
 制御部111には、入力部112と表示部113が接続される。入力部112は、観察像の撮像条件を操作者が入力するための装置であり、例えばキーボードやマウス、タッチパネルである。表示部113は、撮像条件や観察像を表示するための装置であり、例えば液晶ディスプレイやタッチパネルである。 The control unit 111 is connected to an input unit 112 and a display unit 113. The input unit 112 is a device that allows an operator to input imaging conditions for the observation image, and is, for example, a keyboard, mouse, or touch panel. The display unit 113 is a device that displays the imaging conditions and the observation image, and is, for example, a liquid crystal display or touch panel.
 走査電子顕微鏡のような荷電粒子線装置は試料100の詳細観察に適しており、例えば光学顕微鏡下で検出された試料表面の異物や欠陥を詳細に観察するときに用いられる。また光学顕微鏡下で検出された異物等の位置を荷電粒子線装置下で特定するための参照点として、アライメントマーカーが試料100や試料ホルダ105、試料台106に作成される。 Charged particle beam devices such as scanning electron microscopes are suitable for detailed observation of the sample 100, and are used, for example, when observing in detail foreign objects or defects on the surface of a sample detected under an optical microscope. In addition, alignment markers are created on the sample 100, sample holder 105, and sample stage 106 as reference points for identifying the positions of foreign objects, etc. detected under an optical microscope under the charged particle beam device.
 図2を用いてアライメントマーカーについて説明する。図2には、試料100の表面であって、試料ホルダ105の中心であるホルダ中心200から距離D1の位置に作成されたアライメントマーカー201が例示される。アライメントマーカー201は、例えば光学顕微鏡下においてビッカースコーンによる圧痕として作成されたり、FIB-SEM(Focused Ion Beam )によるイオンビーム痕として作成されたりする。試料表面の異物や欠陥の詳細観察のスループットを向上させるには、試料100の上の位置を特定するための参照点であるアライメントマーカー201を、観察倍率を変えることなく短時間で検出することが望ましい。そこで実施例1では、アライメントマーカー201が存在する方向を示す形状を有するガイドマーカーを試料100や試料ホルダ105、試料台106に作成する。 The alignment marker will be described with reference to FIG. 2. FIG. 2 illustrates an alignment marker 201 created on the surface of the sample 100 at a distance D1 from the holder center 200, which is the center of the sample holder 105. The alignment marker 201 is created, for example, as an indentation made by a Vickers cone under an optical microscope, or as an ion beam mark made by a FIB-SEM (Focused Ion Beam). To improve the throughput of detailed observation of foreign objects and defects on the sample surface, it is desirable to detect the alignment marker 201, which is a reference point for identifying a position on the sample 100, in a short time without changing the observation magnification. Therefore, in the first embodiment, a guide marker having a shape indicating the direction in which the alignment marker 201 exists, is created on the sample 100, the sample holder 105, and the sample stage 106.
 図3を用いてガイドマーカーについて説明する。図3には、アライメントマーカー201から距離D2の位置に作成された台形形状を有する4つのガイドマーカー300が例示される。図3のガイドマーカー300は台形の下底から上底へ向かう方向を指し示しており、ガイドマーカー300が指し示す方向にアライメントマーカー201が存在する。なおガイドマーカー300の形状は台形に限定されず、ある一つの方向を指し示す形状、例えば二等辺三角形や矢印形状であっても良い。ガイドマーカー300は、アライメントマーカー201と同様に、例えば光学顕微鏡下においてビッカースコーンによる圧痕として作成されたり、FIB-SEMによるイオンビーム痕として作成されたりする。 The guide markers will be explained using FIG. 3. FIG. 3 illustrates four trapezoidal guide markers 300 created at a distance D2 from the alignment marker 201. The guide markers 300 in FIG. 3 point in a direction from the bottom to the top of the trapezoid, and the alignment marker 201 exists in the direction indicated by the guide markers 300. Note that the shape of the guide markers 300 is not limited to a trapezoid, and may be a shape that points in a certain direction, such as an isosceles triangle or an arrow shape. Like the alignment markers 201, the guide markers 300 are created, for example, as impressions made by a Vickers cone under an optical microscope, or as ion beam impressions made by an FIB-SEM.
 図3に例示されるようなガイドマーカー300がアライメントマーカー201の周囲に配置されることにより、荷電粒子線装置の視野から外れるアライメントマーカー201であっても、比較的短時間で検出することができる。すなわちガイドマーカー300を検出することにより、ガイドマーカー300が指し示す方向に視野を移動させればアライメントマーカー201を検出することができる。なお観察倍率を変えることなくガイドマーカー300を検出するために、荷電粒子線装置によってアライメントマーカー201を観察するときの観察倍率での視野の中に少なくとも一つのガイドマーカー300が配置されることが好ましい。 By arranging guide markers 300 around the alignment marker 201 as illustrated in FIG. 3, even alignment markers 201 that are outside the field of view of the charged particle beam device can be detected in a relatively short time. In other words, by detecting the guide marker 300, the alignment marker 201 can be detected by moving the field of view in the direction indicated by the guide marker 300. Note that in order to detect the guide marker 300 without changing the observation magnification, it is preferable that at least one guide marker 300 is arranged within the field of view at the observation magnification when observing the alignment marker 201 with the charged particle beam device.
 図4を用いてガイドマーカー300の好ましい配置について説明する。アライメントマーカーの中心400から距離D2の位置に配置される2つのガイドマーカー300が、アライメントマーカー201を観察するときの観察倍率での視野401の短辺の両端内に位置するとき、2つのガイドマーカー300の中心角θはθm≧θを満たすように設定される。なおθmは次式となる。 The preferred arrangement of the guide markers 300 will be explained using Figure 4. When two guide markers 300, which are placed at a distance D2 from the center 400 of the alignment marker, are located within both ends of the short side of the field of view 401 at the observation magnification when observing the alignment marker 201, the central angle θ of the two guide markers 300 is set to satisfy θm ≧ θ. Note that θm is expressed by the following formula.
  θm=2sin-1(L/(D2+Δ))  … (式1)
ここで2Lは視野401の短辺の長さ、Δは距離D2の誤差である。なお誤差Δには、アライメントマーカー201やガイドマーカー300の配置にかかわる誤差や、距離の計測にかかわる誤差、試料台106の移動にかかわる誤差の少なくとも一つが含まれる。点線の円で示される最大誤差ライン402はD2+Δの半径を有する。
θm=2sin -1 (L/(D2+Δ))... (Formula 1)
Here, 2L is the length of the short side of the field of view 401, and Δ is the error in the distance D2. The error Δ includes errors related to the arrangement of the alignment marker 201 and the guide marker 300, errors related to the measurement of the distance, and the sample. At least one of the errors is included that is related to the movement of the stage 106. The maximum error line 402, shown as a dotted circle, has a radius of D2+Δ.
 すなわち2つのガイドマーカー300の中心角θが(式1)の値以下であるとき、視野401の中に少なくとも一つのガイドマーカー300が含まれるので、観察倍率を変えることなくガイドマーカー300を検出でき、ガイドマーカー300が指し示す方向に視野401を移動させることができる。なお、試料ホルダ105に把持される試料100を荷電粒子線装置に入れたときの視野401はホルダ中心200の近傍であるので、ガイドマーカー300やアライメントマーカー201を指し示すイニシャルガイドマーカーがホルダ中心200の近傍に配置されることが好ましい。 In other words, when the central angle θ of the two guide markers 300 is equal to or less than the value of (Equation 1), at least one guide marker 300 is included in the field of view 401, so the guide marker 300 can be detected without changing the observation magnification, and the field of view 401 can be moved in the direction indicated by the guide marker 300. Note that, since the field of view 401 when the sample 100 held by the sample holder 105 is placed in the charged particle beam device is near the holder center 200, it is preferable that the initial guide marker pointing to the guide marker 300 or alignment marker 201 be positioned near the holder center 200.
 図5を用いてイニシャルガイドマーカーについて説明する。図5には、試料ホルダ105の中心であるホルダ中心200の近傍に作成された台形形状を有するイニシャルガイドマーカー500が例示される。図5のイニシャルガイドマーカー500は、ガイドマーカー300と同様に、台形の下底から上底へ向かう方向を指し示しており、イニシャルガイドマーカー500が指し示す方向にガイドマーカー300やアライメントマーカー201が存在する。イニシャルガイドマーカー500の形状も、台形に限られず、二等辺三角形や矢印形状であっても良い。またイニシャルガイドマーカー500も、ビッカースコーンによる圧痕やFIB-SEMによるイオンビーム痕として作成される。 The initial guide marker will be described with reference to FIG. 5. FIG. 5 illustrates an initial guide marker 500 having a trapezoidal shape created near the holder center 200, which is the center of the sample holder 105. The initial guide marker 500 in FIG. 5 points in the direction from the lower base to the upper base of the trapezoid, similar to the guide marker 300, and the guide marker 300 and alignment marker 201 are present in the direction indicated by the initial guide marker 500. The shape of the initial guide marker 500 is not limited to a trapezoid, and may be an isosceles triangle or an arrow shape. The initial guide marker 500 is also created as an impression made by a Vickers cone or an ion beam impression made by an FIB-SEM.
 イニシャルガイドマーカー500は、試料100を荷電粒子線装置に入れたときの視野401の中に配置されることが好ましい。すなわち、ホルダ中心200から、アライメントマーカー201を観察するときの観察倍率での視野401の短辺の半分の距離L以内にイニシャルガイドマーカー500が配置されることが好ましい。ホルダ中心200から距離L以内に配置されるイニシャルガイドマーカー500は、試料100を荷電粒子線装置に入れたときの視野401によって検出される。 The initial guide marker 500 is preferably positioned within the field of view 401 when the sample 100 is placed in the charged particle beam device. In other words, the initial guide marker 500 is preferably positioned within a distance L from the holder center 200 that is half the short side of the field of view 401 at the observation magnification when observing the alignment marker 201. The initial guide marker 500 positioned within the distance L from the holder center 200 is detected by the field of view 401 when the sample 100 is placed in the charged particle beam device.
 図6を用いて各マーカーを作成する処理の流れの一例についてステップ毎に説明する。 Using Figure 6, we will explain an example of the process flow for creating each marker, step by step.
 (S601)
 詳細観察に使用される荷電粒子線装置とは異なる第一の観察装置の下で、アライメントマーカー201が作成される。アライメントマーカー201は、試料100の上の位置を特定するための参照点として、試料100と試料ホルダ105、試料台106の少なくとも一つに作成される。第一の観察装置は、例えば光学顕微鏡である。なお第一の観察装置は、光学顕微鏡に限定されず、プローブの反射信号によって形状計測を行う表面形状計測装置であれば良く、例えば走査型白色干渉顕微鏡(CSI)や電子顕微鏡用EDSであっても良い。
(S601)
The alignment marker 201 is created under a first observation device different from the charged particle beam device used for detailed observation. The alignment marker 201 is created on at least one of the sample 100, the sample holder 105, and the sample stage 106 as a reference point for identifying a position on the sample 100. The first observation device is, for example, an optical microscope. Note that the first observation device is not limited to an optical microscope, and may be any surface shape measuring device that performs shape measurement using a reflected signal from a probe, for example, a scanning white light interferometer (CSI) or an EDS for an electron microscope.
 (S602)
 第一の観察装置の下で、アライメントマーカー201の周囲にガイドマーカー300が作成される。ガイドマーカー300が指し示す方向にアライメントマーカー201が存在するように、ガイドマーカー300は作成される。また隣接する2つのガイドマーカー300がアライメントマーカー201において形成する中心角θは、(式1)によって算出される値以内であることが好ましい。
(S602)
Under the first observation device, guide markers 300 are created around alignment marker 201. Guide marker 300 is created so that alignment marker 201 exists in the direction indicated by guide marker 300. In addition, it is preferable that the central angle θ formed by two adjacent guide markers 300 in alignment marker 201 is within a value calculated by (Equation 1).
 (S603)
 第一の観察装置を用いて、アライメントマーカー201とHOME位置であるホルダ中心200との距離D1が計測される。計測された距離D1の値は、制御部111の記憶装置に記憶される。
(S603)
Using the first observation device, a distance D1 between the alignment marker 201 and the holder center 200, which is the HOME position, is measured. The measured value of the distance D1 is stored in the storage device of the control unit 111.
 (S604)
 第一の観察装置を用いて、アライメントマーカー201とガイドマーカー300との距離D2が計測される。計測された距離D2の値は、制御部111の記憶装置に記憶される。
(S604)
The first observation device is used to measure the distance D2 between the alignment marker 201 and the guide marker 300. The value of the measured distance D2 is stored in the storage device of the control unit 111.
 (S605)
 第一の観察装置の下で、ホルダ中心200の近傍にイニシャルガイドマーカー500が作成される。イニシャルガイドマーカー500が指し示す方向にアライメントマーカー201やガイドマーカー300が存在するように、イニシャルガイドマーカー500は作成される。またイニシャルガイドマーカー500とホルダ中心200との距離は、アライメントマーカー201を観察するときの観察倍率での視野401の短辺の半分の距離L以内であることが好ましい。
(S605)
Under the first observation device, an initial guide marker 500 is created near the holder center 200. The initial guide marker 500 is created so that the alignment marker 201 and the guide marker 300 are present in the direction indicated by the initial guide marker 500. In addition, the distance between the initial guide marker 500 and the holder center 200 is preferably within a distance L that is half the short side of the field of view 401 at the observation magnification when observing the alignment marker 201.
 図6を用いて説明した処理の流れにより、アライメントマーカー201やガイドマーカー300、イニシャルガイドマーカー500が試料100や試料ホルダ105、試料台106に作成される。ガイドマーカー300やイニシャルガイドマーカー500は、アライメントマーカー201の検出に用いられる。 By the process flow described using FIG. 6, alignment markers 201, guide markers 300, and initial guide markers 500 are created on the sample 100, sample holder 105, and sample stage 106. Guide markers 300 and initial guide markers 500 are used to detect alignment marker 201.
 図7を用いてアライメントマーカー201を検出する処理の流れの一例についてステップ毎に説明する。 Using Figure 7, an example of the process flow for detecting the alignment marker 201 will be explained step by step.
 (S701)
 制御部111は、観察像の中からイニシャルガイドマーカー500を検出する。イニシャルガイドマーカー500の検出には、テンプレートマッチング手法や特徴点検出の手法が用いられる。
(S701)
The control unit 111 detects the initial guide marker 500 from the observation image. The detection of the initial guide marker 500 uses a template matching method or a feature point detection method.
 (S702)
 制御部111は、S701にて検出されたイニシャルガイドマーカー500の形状に基づいて視野401の移動方向を設定する。例えば、イニシャルガイドマーカー500と同じ形状を有し、図8に示されるようにx軸の正の方向を指し示すテンプレート画像800を回転させながら、検出されたイニシャルガイドマーカー500と照合することにより移動方向が設定される。より具体的には、テンプレート画像800を所定角度、例えば0.5度回転させる毎にイニシャルガイドマーカー500との画素値の相関値が算出され、相関値が最大となる回転角から移動方向が設定される。
(S702)
The control unit 111 sets the movement direction of the field of view 401 based on the shape of the initial guide marker 500 detected in S701. For example, the movement direction is set by rotating a template image 800 that has the same shape as the initial guide marker 500 and points in the positive direction of the x-axis as shown in Fig. 8 and comparing it with the detected initial guide marker 500. More specifically, the correlation value of the pixel value with the initial guide marker 500 is calculated every time the template image 800 is rotated by a predetermined angle, for example, 0.5 degrees, and the movement direction is set from the rotation angle at which the correlation value is maximized.
 (S703)
 制御部111は、S702にて設定された移動方向に視野401を移動させる。視野401の移動は、試料台106の移動や偏向器103による電子線照射野の変更によってなされる。図9に、イニシャルガイドマーカー500の形状に基づいて移動させられる視野401の一例を示す。図9では、視野401の中で検出されたイニシャルガイドマーカー500が指し示す方向である白矢印の方向に視野401が移動させられる。視野401の移動距離には、予め定められた値、例えば視野401の短辺の半分の距離Lが設定される。
(S703)
The control unit 111 moves the field of view 401 in the movement direction set in S702. The movement of the field of view 401 is performed by moving the sample stage 106 or changing the electron beam irradiation field by the deflector 103. Fig. 9 shows an example of the field of view 401 that is moved based on the shape of the initial guide marker 500. In Fig. 9, the field of view 401 is moved in the direction of the white arrow, which is the direction indicated by the initial guide marker 500 detected in the field of view 401. A predetermined value, for example, the distance L that is half the short side of the field of view 401, is set as the movement distance of the field of view 401.
 (S704)
 制御部111は、移動後の視野401においてガイドマーカー300を検出できたか否かを判定する。ガイドマーカー300の検出には、イニシャルガイドマーカー500と同様に、テンプレートマッチング手法や特徴点検出の手法が用いられる。ガイドマーカー300を検出できていればS705へ処理が進められ、検出できていなければS703へ処理が戻される。すなわちS704においてガイドマーカー300が検出されるまで、S703での視野401の移動が繰り返される。なおガイドマーカー300が検出されないまま、視野401の移動限界に達した場合は、視野401をHOME位置であるホルダ中心200に戻してS701から処理を再開させたり、エラーメッセージを表示させたりしても良い。
(S704)
The control unit 111 determines whether or not the guide marker 300 has been detected in the field of view 401 after the movement. The guide marker 300 is detected using a template matching method or a feature point detection method, as in the case of the initial guide marker 500. If the guide marker 300 has been detected, the process proceeds to S705. If the guide marker 300 has not been detected, the process returns to S703. That is, the movement of the field of view 401 in S703 is repeated until the guide marker 300 is detected in S704. If the movement limit of the field of view 401 is reached without the guide marker 300 being detected, the field of view 401 may be returned to the holder center 200, which is the HOME position, and the process may be resumed from S701, or an error message may be displayed.
 またS703での視野401の移動は、図6のS603にて計測され、制御部111の記憶装置に記憶されたアライメントマーカー201とホルダ中心200との距離D1に基づいてなされても良い。距離D1に基づいて視野401を移動させる場合、S704においてガイドマーカー300を検出できなければ、エラーメッセージを表示させるとともに処理の流れを終了させる。 The movement of the field of view 401 in S703 may also be based on the distance D1 between the alignment marker 201 and the holder center 200, which is measured in S603 of FIG. 6 and stored in the storage device of the control unit 111. When moving the field of view 401 based on the distance D1, if the guide marker 300 cannot be detected in S704, an error message is displayed and the process flow is terminated.
 (S705)
 制御部111は、S704にて検出されたガイドマーカー300の形状に基づいて視野401の移動方向を設定する。
(S705)
The control unit 111 sets the movement direction of the field of view 401 based on the shape of the guide marker 300 detected in S704.
 (S706)
 制御部111は、S705にて設定された移動方向に視野401を移動させる。視野401の移動距離には、予め定められた値、例えば視野401の短辺の半分の距離Lが設定される。
(S706)
The control unit 111 moves the field of view 401 in the movement direction set in S705. A predetermined value, for example, the distance L that is half the short side of the field of view 401, is set as the movement distance of the field of view 401.
 (S707)
 制御部111は、移動後の視野401においてアライメントマーカー201を検出できたか否かを判定する。アライメントマーカー201の検出には、イニシャルガイドマーカー500と同様に、テンプレートマッチング手法や特徴点検出の手法が用いられる。また微分画像を用いた点検出のような検出精度がより高い手法が用いられても良い。アライメントマーカー201を検出できていれば処理の流れは終了となり、検出できていなければS706へ処理が戻される。すなわちS707においてアライメントマーカー201が検出されるまで、S706での視野401の移動が繰り返される。なおアライメントマーカー201が検出されないまま視野401の移動限界に達した場合は、エラーメッセージを表示させるとともに処理の流れを終了させる。
(S707)
The control unit 111 determines whether or not the alignment marker 201 has been detected in the field of view 401 after the movement. To detect the alignment marker 201, a template matching method or a feature point detection method is used, as in the case of the initial guide marker 500. A method with higher detection accuracy, such as point detection using a differential image, may also be used. If the alignment marker 201 has been detected, the process flow ends, and if it has not been detected, the process returns to S706. That is, the movement of the field of view 401 in S706 is repeated until the alignment marker 201 is detected in S707. Note that if the movement limit of the field of view 401 is reached without the alignment marker 201 being detected, an error message is displayed and the process flow ends.
 またS706での視野401の移動は、図6のS604にて計測され、制御部111の記憶装置に記憶されたアライメントマーカー201とガイドマーカー300との距離D2に基づいてなされても良い。距離D2に基づいて視野401を移動させる場合、S707においてアライメントマーカー201を検出できなければ、エラーメッセージを表示させるとともに処理の流れを終了させる。なお距離D2はガイドマーカー300の形状によって示されても良い。 The movement of the field of view 401 in S706 may be based on the distance D2 between the alignment marker 201 and the guide marker 300, which was measured in S604 of FIG. 6 and stored in the storage device of the control unit 111. When the field of view 401 is moved based on the distance D2, if the alignment marker 201 cannot be detected in S707, an error message is displayed and the process flow is terminated. Note that the distance D2 may be indicated by the shape of the guide marker 300.
 図10を用いて距離を示すガイドマーカーの一例について説明する。図10には、短い距離を示す短距離ガイドマーカー1001と長い距離を示す長距離ガイドマーカー1002が例示される。2つのガイドマーカーはともに同じ長さBの下底を有する台形形状であるものの、長距離ガイドマーカー1002の高さは2Hであり、短距離ガイドマーカー1001の高さHの2倍である。すなわち図10に例示される2つのガイドマーカーでは、下底と高さとの比によって距離が示される。なお、距離を示すガイドマーカーを作成する場合には、ガイドマーカーの作成に先立って、ガイドマーカーとアライメントマーカー201との距離を設定しておく必要がある。 An example of a guide marker that indicates distance will be described using Figure 10. Figure 10 illustrates a short-distance guide marker 1001 that indicates a short distance and a long-distance guide marker 1002 that indicates a long distance. Both guide markers are trapezoidal with a base of the same length B, but the height of the long-distance guide marker 1002 is 2H, which is twice the height H of the short-distance guide marker 1001. In other words, with the two guide markers illustrated in Figure 10, distance is indicated by the ratio of the base to the height. When creating a guide marker that indicates distance, it is necessary to set the distance between the guide marker and the alignment marker 201 prior to creating the guide marker.
 図7を用いて説明した処理の流れにより、観察倍率を変えることなくアライメントマーカー201を検出することができる。すなわち、より短時間でアライメントマーカー201を検出することができるので、第一の観察装置の下で検出された試料表面の異物や欠陥の詳細観察のスループットを向上できる。 The process flow described using FIG. 7 allows the alignment marker 201 to be detected without changing the observation magnification. In other words, the alignment marker 201 can be detected in a shorter time, improving the throughput of detailed observation of foreign objects and defects on the sample surface detected under the first observation device.
 実施例1では、アライメントマーカー201の周囲に配置されるガイドマーカー300が指し示す方向に視野401を移動させることにより、アライメントマーカー201を検出することについて説明した。実施例2では、複数のアライメントマーカー201を順次検出するためのガイドマーカーであるリンクマーカーについて説明する。なお実施例2には、実施例1で説明した構成や機能の一部を適用できるので、同様の構成、機能については同じ符号を用いて説明を省略する。 In Example 1, it was described that the alignment marker 201 is detected by moving the field of view 401 in the direction indicated by the guide markers 300 arranged around the alignment marker 201. In Example 2, a link marker, which is a guide marker for sequentially detecting multiple alignment markers 201, is described. Note that since some of the configurations and functions described in Example 1 can be applied to Example 2, the same reference numerals are used for similar configurations and functions, and descriptions thereof are omitted.
 図11を用いて、リンクマーカーについて説明する。図11には、3つのアライメントマーカー201のそれぞれの近傍に作成された台形形状を有するリンクマーカー1100が例示される。図11のリンクマーカー1100は、ガイドマーカー300と同様に、台形の下底から上底へ向かう方向を指し示しており、リンクマーカー1100が指し示す方向にアライメントマーカー201が存在する。リンクマーカー1100の形状も、台形に限られず、二等辺三角形や矢印形状であっても良い。またリンクマーカー1100も、ガイドマーカー300と同様に、ビッカースコーンによる圧痕やFIB-SEMによるイオンビーム痕として作成される。 The link marker will be described with reference to FIG. 11. FIG. 11 illustrates a trapezoidal link marker 1100 created near each of three alignment markers 201. Like the guide marker 300, the link marker 1100 in FIG. 11 points in the direction from the bottom to the top of the trapezoid, and the alignment marker 201 exists in the direction indicated by the link marker 1100. The shape of the link marker 1100 is not limited to a trapezoid, and may be an isosceles triangle or an arrow shape. Like the guide marker 300, the link marker 1100 is created as an indentation made by a Vickers cone or an ion beam mark made by a FIB-SEM.
 なおアライメントマーカー201-1の近傍に作成されるリンクマーカー1100-1はアライメントマーカー201-2を指し示す。またアライメントマーカー201-2の近傍のリンクマーカー1100-2はアライメントマーカー201-3を、アライメントマーカー201-3の近傍のリンクマーカー1100-3はアライメントマーカー201-1をそれぞれ指し示す。このように1つのアライメントマーカー201とその近傍のリンクマーカー1100を起点とし、リンクマーカー1100が指し示すアライメントマーカー201を順次検出することにより、全てのアライメントマーカー201が検出できるようにリンクマーカー1100は作成される。 Note that link marker 1100-1, which is created near alignment marker 201-1, points to alignment marker 201-2. Link marker 1100-2 near alignment marker 201-2 points to alignment marker 201-3, and link marker 1100-3 near alignment marker 201-3 points to alignment marker 201-1. In this way, link markers 1100 are created so that all alignment markers 201 can be detected by starting from one alignment marker 201 and its neighboring link marker 1100 and sequentially detecting the alignment markers 201 pointed to by link marker 1100.
 またリンクマーカー1100は、アライメントマーカー201を観察するときの視野の中に配置されることが好ましい。すなわち、アライメントマーカー201から、視野401の短辺の半分の距離L以内にリンクマーカー1100が配置されることが好ましい。アライメントマーカー201から距離L以内に配置されるリンクマーカー1100は、アライメントマーカー201を観察するときの視野401によって検出される。 It is also preferable that the link marker 1100 is positioned within the field of view when observing the alignment marker 201. In other words, it is preferable that the link marker 1100 is positioned within a distance L that is half the short side of the field of view 401 from the alignment marker 201. The link marker 1100 positioned within the distance L from the alignment marker 201 is detected by the field of view 401 when observing the alignment marker 201.
 図12を用いてリンクマーカー1100を作成する処理の流れの一例についてステップ毎に説明する。 Using Figure 12, an example of the process flow for creating a link marker 1100 will be explained step by step.
 (S1201)
 詳細観察に使用される荷電粒子線装置とは異なる第一の観察装置の下で、複数のアライメントマーカー201が作成される。複数のアライメントマーカー201は、試料100と試料ホルダ105、試料台106の少なくとも一つに作成される。第一の観察装置は、例えば光学顕微鏡や走査型白色干渉顕微鏡(CSI)、電子顕微鏡用EDSである。
(S1201)
A plurality of alignment markers 201 are created under a first observation device different from the charged particle beam device used for detailed observation. The plurality of alignment markers 201 are created on at least one of the sample 100, the sample holder 105, and the sample stage 106. The first observation device is, for example, an optical microscope, a scanning white light interferometer (CSI), or an EDS for an electron microscope.
 (S1202)
 第一の観察装置の下で、アライメントマーカー201の近傍にリンクマーカー1100が作成される。アライメントマーカー201-1の近傍のリンクマーカー1100-1は、アライメントマーカー201-2を指し示すように作成される。またアライメントマーカー201-2の近傍のリンクマーカー1100-2はアライメントマーカー201-3を、リンクマーカー1100-3はアライメントマーカー201-1をそれぞれ指し示すように作成される。なおアライメントマーカー201とリンクマーカー1100の数は3つに限定されない。アライメントマーカー201とリンクマーカー1100の数がNであるとき、リンクマーカー1100-Nがアライメントマーカー201-1を指し示す。
(S1202)
Under the first observation device, a link marker 1100 is created near the alignment marker 201. Link marker 1100-1 near alignment marker 201-1 is created so as to point to alignment marker 201-2. Link marker 1100-2 near alignment marker 201-2 is created so as to point to alignment marker 201-3, and link marker 1100-3 is created so as to point to alignment marker 201-1. Note that the number of alignment markers 201 and link markers 1100 is not limited to three. When the number of alignment markers 201 and link markers 1100 is N, link marker 1100-N points to alignment marker 201-1.
 (S1203)
 第一の観察装置を用いて、リンクマーカー1100が指し示すアライメントマーカー201とリンクマーカー1100との距離が計測される。計測された距離の値は、制御部111の記憶装置に記憶される。なお距離の計測には、試料表面の深さも計測する表面形状計測装置である走査型白色干渉顕微鏡(CSI)や電子顕微鏡用EDSが用いられることが好ましい。表面形状計測装置を用いることにより、アライメントマーカー201やリンクマーカー1100のエッジをより正確に検出できるので計測される距離の値の精度が向上する。
(S1203)
Using the first observation device, the distance between the alignment marker 201 pointed to by the link marker 1100 and the link marker 1100 is measured. The measured distance value is stored in a storage device of the control unit 111. Note that, for measuring the distance, it is preferable to use a scanning white light interferometer (CSI) or an EDS for electron microscope, which is a surface shape measuring device that also measures the depth of the sample surface. By using a surface shape measuring device, the edges of the alignment marker 201 or the link marker 1100 can be detected more accurately, improving the accuracy of the measured distance value.
 図12を用いて説明した処理の流れにより、複数のアライメントマーカー201とそれぞれの近傍に配置されるリンクマーカー1100が試料100や試料ホルダ105、試料台106に作成される。リンクマーカー1100は、複数のアライメントマーカー201の順次検出に用いられる。 By the process flow described using FIG. 12, multiple alignment markers 201 and link markers 1100 arranged in the vicinity of each are created on the sample 100, sample holder 105, and sample stage 106. The link markers 1100 are used to sequentially detect the multiple alignment markers 201.
 図13を用いて複数のアライメントマーカー201を順次検出する処理の流れの一例についてステップ毎に説明する。 Using Figure 13, an example of the process flow for sequentially detecting multiple alignment markers 201 will be explained step by step.
 (S1301)
 制御部111は、観察像の中からアライメントマーカー201とその近傍に配置されるリンクマーカー1100を検出する。なおHOME位置であるホルダ中心200からの視野401の移動は、図7のS701と同様であっても良いし、手動によるものであっても良い。アライメントマーカー201とリンクマーカー1100の検出には、テンプレートマッチング手法や特徴点検出の手法が用いられる。またリンクマーカー1100が指し示す方向をたどることにより全てのアライメントマーカー201を検出できるようにリンクマーカー1100が配置されているので、S1301で検出されるのはリンクマーカー1100-1以外であっても良い。
(S1301)
The control unit 111 detects the alignment markers 201 and the link markers 1100 arranged in the vicinity thereof from the observation image. The movement of the field of view 401 from the holder center 200, which is the HOME position, may be the same as in S701 in Fig. 7, or may be manual. A template matching method or a feature point detection method is used to detect the alignment markers 201 and the link markers 1100. In addition, since the link markers 1100 are arranged so that all the alignment markers 201 can be detected by following the direction indicated by the link markers 1100, the markers detected in S1301 may be other than the link marker 1100-1.
 (S1302)
 制御部111は、S1301にて検出されたリンクマーカー1100の形状に基づいて視野401の移動方向を設定する。
(S1302)
The control unit 111 sets the movement direction of the field of view 401 based on the shape of the link marker 1100 detected in S1301.
 (S1303)
 制御部111は、S1302にて設定された移動方向に視野401を移動させる。視野401の移動距離には、予め定められた値、例えば視野401の短辺の半分の距離Lが設定される。
(S1303)
The control unit 111 moves the field of view 401 in the movement direction set in S1302. A predetermined value, for example, the distance L that is half the short side of the field of view 401, is set as the movement distance of the field of view 401.
 (S1304)
 制御部111は、移動後の視野401において次のアライメントマーカー201とリンクマーカー1100を検出できたか否かを判定する。次のアライメントマーカー201とリンクマーカー1100を検出できていればS1305へ処理が進められ、検出できていなければS1303へ処理が戻される。すなわちS1304において次のアライメントマーカー201とリンクマーカー1100が検出されるまで、S1303での視野401の移動が繰り返される。なお次のアライメントマーカー201とリンクマーカー1100が検出されないまま、視野401の移動限界に達した場合は、エラーメッセージを表示させるとともに処理の流れを終了させる。
(S1304)
The control unit 111 determines whether or not the next alignment marker 201 and link marker 1100 have been detected in the field of view 401 after the movement. If the next alignment marker 201 and link marker 1100 have been detected, the process proceeds to S1305, and if they have not been detected, the process returns to S1303. That is, the movement of the field of view 401 in S1303 is repeated until the next alignment marker 201 and link marker 1100 are detected in S1304. Note that if the movement limit of the field of view 401 is reached without the next alignment marker 201 and link marker 1100 being detected, an error message is displayed and the process flow ends.
 S1303での視野401の移動は、図12のS1203にて計測され、制御部111の記憶装置に記憶されたリンクマーカー1100が指し示すアライメントマーカー201とリンクマーカー1100との距離に基づいてなされても良い。記憶装置から読み出される距離に基づいて視野401を移動させる場合も、S1304において次のアライメントマーカー201とリンクマーカー1100を検出できなければ、エラーメッセージを表示させるとともに処理の流れを終了させる。 The movement of the field of view 401 in S1303 may be based on the distance between the alignment marker 201 pointed to by the link marker 1100, which is measured in S1203 of FIG. 12 and stored in the memory device of the control unit 111, and the link marker 1100. Even when the field of view 401 is moved based on the distance read from the memory device, if the next alignment marker 201 and link marker 1100 cannot be detected in S1304, an error message is displayed and the process flow is terminated.
 (S1305)
 制御部111は、S1304にて検出されたアライメントマーカー201が、S1301にて検出されたアライメントマーカー201と同じであるか否かを判定する。同じであれば処理の流れは終了となり、同じでなければS1302へ処理が戻され、S1304にて検出されたリンクマーカー1100の形状に基づいて視野401の移動方向が設定される。すなわちS1304において検出されるアライメントマーカー201が最初に検出されたアライメントマーカー201と同じになるまで、複数のアライメントマーカー201の順次検出が繰り返される。
(S1305)
The control unit 111 determines whether the alignment marker 201 detected in S1304 is the same as the alignment marker 201 detected in S1301. If they are the same, the process flow ends, and if they are not the same, the process returns to S1302, and the movement direction of the field of view 401 is set based on the shape of the link marker 1100 detected in S1304. That is, sequential detection of the multiple alignment markers 201 is repeated until the alignment marker 201 detected in S1304 is the same as the alignment marker 201 detected initially.
 図13を用いて説明した処理の流れにより、リンクマーカー1100が指し示す方向をたどりながら複数のアライメントマーカー201が順次検出される。複数のアライメントマーカー201の順次検出により、第一の観察装置の下で検出された試料表面の異物や欠陥の詳細観察のスループットを向上できる。 By the process flow described using FIG. 13, multiple alignment markers 201 are detected sequentially while following the direction indicated by the link marker 1100. By sequentially detecting multiple alignment markers 201, it is possible to improve the throughput of detailed observation of foreign objects and defects on the sample surface detected under the first observation device.
 以上、本発明の複数の実施例について説明した。本発明は上記実施例に限定されるものではなく、発明の要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記実施例に開示されている複数の構成要素を適宜組み合わせても良い。さらに、上記実施例に示される全構成要素からいくつかの構成要素を削除しても良い。 Above, several embodiments of the present invention have been described. The present invention is not limited to the above embodiments, and the components can be modified and embodied without departing from the gist of the invention. Furthermore, the multiple components disclosed in the above embodiments may be combined as appropriate. Furthermore, some components may be deleted from all the components shown in the above embodiments.
100…試料、101…電子源、102…集束レンズ、103…偏向器、104…対物レンズ、105…試料ホルダ、106…試料台、107…検出器、111…制御部、112…入力部、113…表示部、200…ホルダ中心、201…アライメントマーカー、300…ガイドマーカー、400…アライメントマーカーの中心、401…視野、402…最大誤差ライン、500…イニシャルガイドマーカー、800…テンプレート画像、1001…短距離ガイドマーカー、1002…長距離ガイドマーカー、1100…リンクマーカー。 100...sample, 101...electron source, 102...focusing lens, 103...deflector, 104...objective lens, 105...sample holder, 106...sample stage, 107...detector, 111...control unit, 112...input unit, 113...display unit, 200...holder center, 201...alignment marker, 300...guide marker, 400...center of alignment marker, 401...field of view, 402...maximum error line, 500...initial guide marker, 800...template image, 1001...short distance guide marker, 1002...long distance guide marker, 1100...link marker.

Claims (9)

  1.  試料を保持する試料保持部と、
     前記試料に荷電粒子線を照射する荷電粒子線源と、
     前記試料から放出される二次粒子を検出して検出信号を出力する検出器と、
     前記検出信号に基づいて前記試料の観察像を生成するとともに各部を制御する制御部を備える荷電粒子線装置であって、
     前記試料には、前記試料の上の位置を特定するための参照点であるアライメントマーカーと、前記アライメントマーカーが存在する方向を示す形状を有するガイドマーカーとが設けられ、
     前記制御部は、前記観察像から前記ガイドマーカーを検出し、前記ガイドマーカーが示す方向に視野を移動させることを特徴とする荷電粒子線装置。
    A sample holder for holding a sample;
    a charged particle beam source for irradiating the sample with a charged particle beam;
    a detector that detects secondary particles emitted from the sample and outputs a detection signal;
    a control unit that generates an observation image of the sample based on the detection signal and controls each unit,
    The sample is provided with an alignment marker that is a reference point for identifying a position on the sample, and a guide marker having a shape that indicates a direction in which the alignment marker is present;
    The charged particle beam device according to claim 1, wherein the control unit detects the guide marker from the observation image and moves a field of view in a direction indicated by the guide marker.
  2.  請求項1に記載の荷電粒子線装置であって、
     前記ガイドマーカーは、前記アライメントマーカーを観察するときの観察倍率での視野の中に少なくとも一つが配置されることを特徴とする荷電粒子線装置。
    The charged particle beam device according to claim 1 ,
    A charged particle beam device, characterized in that at least one of the guide markers is arranged within a field of view at an observation magnification when observing the alignment marker.
  3.  請求項2に記載の荷電粒子線装置であって、
     隣接する2つの前記ガイドマーカーが前記アライメントマーカーにおいて形成する中心角θは、前記視野の短辺が2L、前記ガイドマーカーと前記アライメントマーカーとの距離がD2、D2の誤差がΔであるとき、θ≦2sin-1(L/(D2+Δ))を満たすことを特徴とする荷電粒子線装置。
    The charged particle beam device according to claim 2,
    A charged particle beam device characterized in that the central angle θ formed by two adjacent guide markers in the alignment marker satisfies θ≦2 sin -1 (L/(D2 + Δ)) when the short side of the field of view is 2L, the distance between the guide marker and the alignment marker is D2, and the error of D2 is Δ.
  4.  請求項1に記載の荷電粒子線装置であって、
     前記試料保持部の中心近傍に、前記アライメントマーカーが存在する方向を示す形状を有するイニシャルガイドマーカーがさらに設けられ、
     前記制御部は、前記観察像から前記イニシャルガイドマーカーを検出し、前記イニシャルガイドマーカーが示す方向に視野を移動させることを特徴とする荷電粒子線装置。
    The charged particle beam device according to claim 1 ,
    an initial guide marker having a shape indicating a direction in which the alignment marker is present is further provided near the center of the sample holder;
    The control unit detects the initial guide marker from the observation image and moves a field of view in a direction indicated by the initial guide marker.
  5.  請求項1に記載の荷電粒子線装置であって、
     前記試料には、前記アライメントマーカーが複数設けられるとともに、第一のアライメントマーカーの近傍に、第二のアライメントマーカーが存在する方向を示す形状を有するリンクマーカーがさらに設けられ、
     前記制御部は、前記観察像から前記リンクマーカーを検出し、前記リンクマーカーが示す方向に視野を移動させることを特徴とする荷電粒子線装置。
    The charged particle beam device according to claim 1 ,
    The sample is provided with a plurality of the alignment markers, and further provided with a link marker near a first alignment marker, the link marker having a shape indicating a direction in which a second alignment marker is present;
    The charged particle beam device according to claim 1, wherein the control unit detects the link marker from the observation image and moves a field of view in a direction indicated by the link marker.
  6.  請求項5に記載の荷電粒子線装置であって、
     前記制御部は、荷電粒子線装置とは異なる観察装置によって予め計測される、前記第一のアライメントマーカーと前記第二のアライメントマーカーとの距離に基づいて、視野を移動させることを特徴とする荷電粒子線装置。
    The charged particle beam device according to claim 5,
    The control unit moves the field of view based on the distance between the first alignment marker and the second alignment marker, which is measured in advance by an observation device different from the charged particle beam device.
  7.  請求項6に記載の荷電粒子線装置であって、
     前記観察装置は、試料表面の観察像とともに試料表面の深さを計測する表面形状計測装置であることを特徴とする荷電粒子線装置。
    The charged particle beam device according to claim 6,
    The charged particle beam device is characterized in that the observation device is a surface shape measurement device that measures the depth of the sample surface as well as an observation image of the sample surface.
  8.  請求項1に記載の荷電粒子線装置であって、
     前記ガイドマーカーは、前記アライメントマーカーまでの距離を示す形状をさらに有し、
     前記制御部は、前記ガイドマーカーが示す距離に基づいて視野を移動させることを特徴とする荷電粒子線装置。
    The charged particle beam device according to claim 1 ,
    The guide marker further has a shape indicating a distance to the alignment marker,
    The charged particle beam device according to claim 1, wherein the control unit moves a field of view based on the distance indicated by the guide marker.
  9.  試料保持部に保持される試料に荷電粒子線を照射することによって生成される観察像に基づいて、前記試料の上の位置を特定するための参照点であるアライメントマーカーを検出するアライメントマーカーの検出方法であって、
     前記アライメントマーカーが存在する方向を示す形状を有するガイドマーカーを前記観察像から検出する検出ステップと、
     前記ガイドマーカーが示す方向に視野を移動させる移動ステップを備えることを特徴とするアライメントマーカーの検出方法。
    1. A method for detecting an alignment marker, which is a reference point for identifying a position on a sample, based on an observation image generated by irradiating a charged particle beam onto a sample held in a sample holder, comprising:
    a detection step of detecting a guide marker having a shape indicating a direction in which the alignment marker is present from the observation image;
    A method for detecting an alignment marker, comprising a moving step of moving a field of view in a direction indicated by the guide marker.
PCT/JP2023/007130 2023-02-27 2023-02-27 Charged particle beam apparatus and alignment marker detection method WO2024180629A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2023/007130 WO2024180629A1 (en) 2023-02-27 2023-02-27 Charged particle beam apparatus and alignment marker detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2023/007130 WO2024180629A1 (en) 2023-02-27 2023-02-27 Charged particle beam apparatus and alignment marker detection method

Publications (1)

Publication Number Publication Date
WO2024180629A1 true WO2024180629A1 (en) 2024-09-06

Family

ID=92589361

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/007130 WO2024180629A1 (en) 2023-02-27 2023-02-27 Charged particle beam apparatus and alignment marker detection method

Country Status (1)

Country Link
WO (1) WO2024180629A1 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01310552A (en) * 1988-06-09 1989-12-14 Mitsubishi Electric Corp Semiconductor substrate
JPH02112223A (en) * 1988-10-21 1990-04-24 Olympus Optical Co Ltd Alignment mark
JPH096016A (en) * 1995-06-22 1997-01-10 Dainippon Screen Mfg Co Ltd Substrate and its aligning method
JP2006135104A (en) * 2004-11-05 2006-05-25 Matsushita Electric Ind Co Ltd Alignment mark and its detection method
JP2007012698A (en) * 2005-06-28 2007-01-18 Sharp Corp Substrate with alignment mark, alignment method, program and recording medium
JP2012146581A (en) * 2011-01-14 2012-08-02 Hitachi High-Technologies Corp Charged particle beam device
JP2014203917A (en) * 2013-04-03 2014-10-27 株式会社ディスコ Plate-like material
JP2015075347A (en) * 2013-10-07 2015-04-20 株式会社ディスコ Alignment method
JP2018066798A (en) * 2016-10-18 2018-04-26 株式会社フジクラ Alignment mark, alignment mark pair and alignment method
WO2020080508A1 (en) * 2018-10-19 2020-04-23 株式会社日立ハイテクノロジーズ Alignment system and position adjusting seal

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01310552A (en) * 1988-06-09 1989-12-14 Mitsubishi Electric Corp Semiconductor substrate
JPH02112223A (en) * 1988-10-21 1990-04-24 Olympus Optical Co Ltd Alignment mark
JPH096016A (en) * 1995-06-22 1997-01-10 Dainippon Screen Mfg Co Ltd Substrate and its aligning method
JP2006135104A (en) * 2004-11-05 2006-05-25 Matsushita Electric Ind Co Ltd Alignment mark and its detection method
JP2007012698A (en) * 2005-06-28 2007-01-18 Sharp Corp Substrate with alignment mark, alignment method, program and recording medium
JP2012146581A (en) * 2011-01-14 2012-08-02 Hitachi High-Technologies Corp Charged particle beam device
JP2014203917A (en) * 2013-04-03 2014-10-27 株式会社ディスコ Plate-like material
JP2015075347A (en) * 2013-10-07 2015-04-20 株式会社ディスコ Alignment method
JP2018066798A (en) * 2016-10-18 2018-04-26 株式会社フジクラ Alignment mark, alignment mark pair and alignment method
WO2020080508A1 (en) * 2018-10-19 2020-04-23 株式会社日立ハイテクノロジーズ Alignment system and position adjusting seal

Similar Documents

Publication Publication Date Title
KR100382026B1 (en) Scanning Electron Microscope
KR101438068B1 (en) High electron energy based overlay error measurement methods and systems
JP3944373B2 (en) Sample length measuring method and scanning microscope
JP5357889B2 (en) Charged particle beam equipment
JP5302595B2 (en) Inclination observation method and observation apparatus
KR20020061641A (en) Method and system for the examination of specimen using a charged particle beam
JP5606791B2 (en) Charged particle beam equipment
KR20120138695A (en) Pattern measurement apparatus and pattern measurement method
US20140312224A1 (en) Pattern inspection method and pattern inspection apparatus
JP2019075286A (en) Electron microscope and adjustment method of sample tilt angle
US20130120551A1 (en) Pattern Dimension Measurement Method, Pattern Dimension Measurement Device, Program for Causing Computer to Execute Pattern Dimension Measurement Method, and Recording Medium Having Same Recorded Thereon
JP5663591B2 (en) Scanning electron microscope
WO2024180629A1 (en) Charged particle beam apparatus and alignment marker detection method
JPH04132909A (en) Size measuring apparatus with electron beam
JP3494068B2 (en) Charged particle beam equipment
JP2716997B2 (en) Cross-sectional shape measurement method, cross-sectional shape comparison inspection method and their devices
JPH0727549A (en) Scanning electron microscope with length measuring function
JP2006172919A (en) Scanning electron microscope having three-dimensional shape analysis function
EP3142139B1 (en) Charged particle beam system and measuring method
JP4431624B2 (en) Charged particle beam adjustment method and charged particle beam apparatus
JP2006308460A (en) Apparatus and method for inspecting substrate and method for manufacturing semiconductor device
JP2023007094A (en) scanning electron microscope
JP7323574B2 (en) Charged particle beam device and image acquisition method
JP2009037985A (en) Line/space determination method, and line/space determination device
JPH06138196A (en) Electromagnetic field distribution measuring device using convergence electron rays

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23925187

Country of ref document: EP

Kind code of ref document: A1