WO2024179003A1 - 光发射模组、光设备及系统 - Google Patents

光发射模组、光设备及系统 Download PDF

Info

Publication number
WO2024179003A1
WO2024179003A1 PCT/CN2023/126566 CN2023126566W WO2024179003A1 WO 2024179003 A1 WO2024179003 A1 WO 2024179003A1 CN 2023126566 W CN2023126566 W CN 2023126566W WO 2024179003 A1 WO2024179003 A1 WO 2024179003A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
module
cross
optical cross
optical signal
Prior art date
Application number
PCT/CN2023/126566
Other languages
English (en)
French (fr)
Inventor
操时宜
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2024179003A1 publication Critical patent/WO2024179003A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/40Transceivers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/572Wavelength control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems

Definitions

  • the present application relates to the field of optical technology, and in particular to an optical emission module, an optical device and a system.
  • Optical devices that can transmit and receive optical signals have been widely used.
  • Optical devices use optical transmitter modules to send optical signals.
  • the light source module in the optical transmitter module is used to output optical signals.
  • the optical transmitter in the light source module usually includes: a light source and a signal modulation unit, wherein the light source is used to send an optical carrier to the signal modulation unit, and the signal modulation unit can modulate the optical carrier emitted by the light source into an optical signal and then output the optical transmitter module.
  • the frequency range of the optical carrier that can be emitted by the light source is relatively narrow, so that the frequency range of the optical signal output by the optical transmission module is also relatively narrow, and the performance of the optical device is relatively poor.
  • the present application provides an optical transmission module, an optical device and a system, which can solve the problem of poor performance of optical devices.
  • the technical solution is as follows:
  • the present application provides an optical transmission module, which includes: at least one optical transmitter, a first optical cross module, at least one conversion module, and a second optical cross module; wherein the second optical cross module has X input ports and J output ports; J ⁇ 1, and the J output ports are connected to J optical fibers in a one-to-one correspondence.
  • the X input ports are ports in the second optical cross module for communicating with the first optical cross module, and the second optical cross module may also have other input ports in addition to the X input ports, that is, the second optical cross module has more than X input ports.
  • the second optical cross-connect module may include: J line WSSs; each line WSS has at least one input port and one output port of the second optical cross-connect module, and the J line WSSs have X input ports and J output ports of the second optical cross-connect module.
  • the second optical cross-connect module includes: a third optical cross-connect unit and J line WSSs; the third optical cross-connect unit has J transit output ports and one input port of the second optical cross-connect module, the J transit output ports are connected to the J line WSSs in a one-to-one correspondence, the line WSSs have one output port of the second optical cross-connect module, and the J line WSSs have J output ports of the second optical cross-connect module.
  • the optical transmitter is used to transmit an optical signal to the first optical cross module;
  • the first optical cross module is used to: when the nominal center frequency of the optical signal needs to be adjusted, control the optical signal to be transmitted along a path passing through a conversion module to an input port in a second optical cross module; and when the nominal center frequency of the optical signal does not need to be adjusted, control the optical signal to be transmitted along a path not passing through a conversion module to an input port of the second optical cross module; the conversion module is used to adjust the nominal center frequency of the optical signal passing through.
  • the path passing through the conversion module may pass through one conversion module or multiple conversion modules, and the path not passing through the conversion module does not pass through any conversion module in the at least one conversion module mentioned above.
  • the optical signal emitted by the optical transmitter may be directly transmitted to the second optical cross-connect module without passing through the conversion module, or it may be transmitted to the second optical cross-connect module after passing through the conversion module.
  • the first optical cross-connect module can determine whether it is necessary to adjust the nominal center frequency of the received optical signal based on the configuration information, and then determine the path for the optical signal to be transmitted to the second optical cross-connect module.
  • the optical transmission module provided by the present application can not only output the optical signal emitted by the optical transmitter, but also output the optical signal after the nominal center frequency of the optical signal is adjusted.
  • the nominal center frequencies of the two optical signals are different, so the frequency range of the light that can be output by the optical transmission module is larger, which improves the performance of the optical transmission module.
  • the performance of the optical transmission module and the optical device in which it is located is improved.
  • the first optical cross-connect module to control the optical signal to be transmitted along the path passing through the conversion module to the inlet port in the second optical cross-connect module.
  • the first optical cross-connect module is used to: when the nominal center frequency of the optical signal needs to be adjusted, transmit the optical signal to the conversion module; the conversion module is used to: after adjusting the nominal center frequency of the optical signal from the first optical cross-connect module, transmit it to the first optical cross-connect module; the first optical cross-connect module is also used to: transmit the optical signal from the conversion module to the input port of the second optical cross-connect module.
  • the optical signal will not pass through the conversion module. Replace the module.
  • the first optical cross-connect module is used to: transmit the optical signal to the conversion module when the nominal center frequency of the optical signal needs to be adjusted; the conversion module is used to: transmit the optical signal from the first optical cross-connect module to the input port of the second optical cross-connect module after adjusting the nominal center frequency.
  • the optical signal does not pass through the first optical cross-connect module.
  • the at least one optical transmitter includes multiple optical transmitters; the first optical cross module can be used to: when it is necessary to adjust the nominal center frequency of multiple optical signals emitted by multiple optical transmitters, control the multiple optical signals to be transmitted along the path passing through the same conversion module to the input port of the second optical cross module; in this case, the conversion module can adjust the nominal center frequency of the multiple optical signals.
  • a conversion module can adjust the nominal center frequency of optical signals emitted by multiple optical transmitters, so the present application supports the situation where there is no need to set a conversion module for each optical transmitter. Therefore, the present application supports the use of fewer conversion modules, and the cost of the optical transmission module is lower.
  • At least one conversion module includes A conversion modules.
  • A can be 1 or an integer greater than 1.
  • the number of optical transmitters is K, and K can be greater than or equal to 1.
  • the number of conversion modules A can be less than or equal to the number of optical transmitters K.
  • a ⁇ K if the number of optical transmitters K is large, there is no need to set a conversion module for each optical transmitter, and the adjustment of the nominal center frequency of the optical signal emitted by each optical transmitter can also be achieved. Since there is no need to set a conversion module for each optical transmitter, the number of conversion modules used in the present application is relatively small, and the cost of the optical transmitter module is relatively low.
  • a ⁇ 2X When twice the number X of the input ports of the second optical cross module is less than the number K of optical transmitters, A may be equal to 2X. In this case, the number A of conversion modules is small, and the nominal center frequency of optical signals emitted by more optical transmitters can be adjusted by fewer conversion modules. When twice the number X of the input ports of the second optical cross module is greater than or equal to the number K of optical transmitters, A may be equal to K and less than 2X. In this case, the number A of conversion modules is also small.
  • A may be further less than or equal to X.
  • A may be equal to X.
  • the number A of the conversion modules is small, and the nominal center frequency of the optical signals emitted by more optical transmitters can be adjusted by fewer conversion modules.
  • the number X of the input ports of the second optical cross module is greater than or equal to the number K of the optical transmitters, A may be equal to K and less than X. At this time, the number A of the conversion modules is also small.
  • A can be further less than or equal to X/2 and rounded up.
  • A when X/2 is rounded up and less than the number of optical transmitters K, A can be equal to X/2 and rounded up. At this time, the number of conversion modules A is small, and the nominal center frequency of optical signals emitted by more optical transmitters can be adjusted by fewer conversion modules.
  • X/2 is rounded up and greater than or equal to the number of optical transmitters K
  • A can be equal to K and less than X/2 and rounded up. At this time, the number of conversion modules A is also small.
  • a conversion modules include: X first conversion modules and X second conversion modules;
  • the first optical cross module includes: a first optical cross unit and a second optical cross unit;
  • K optical transmitters include: G first optical transmitters and H second optical transmitters, the first optical transmitter is used to transmit an optical signal with a nominal center frequency within a first frequency range to the first optical cross unit, and the second optical transmitter is used to transmit an optical signal with a nominal center frequency within a second frequency range to the second optical cross unit, G ⁇ 1, H ⁇ 1;
  • the first optical cross unit is used to: when it is necessary to adjust the nominal center frequency of the received optical signal, control the optical signal to be transmitted to the inlet port of the second optical cross module after passing through the first conversion module; the optical signal transmitted to different optical fibers passes through the first conversion module
  • the blocks are different;
  • the second optical cross-unit is used for: when it is necessary to adjust the nominal center frequency of the received optical signal, controlling the optical signal to be transmitted to the input port of the second optical cross-module after passing through the
  • the optical signal emitted by the first optical transmitter can be adjusted for nominal center frequency through the first conversion module
  • the optical signal emitted by the second optical transmitter can be adjusted for nominal center frequency through the second conversion module.
  • the nominal center frequency of the optical signal emitted by the second optical transmitter can be adjusted by the second conversion module.
  • the optical transmission module requires the frequency of the optical signal emitted by the first optical transmitter to become a frequency within the second frequency range
  • the nominal center frequency of the optical signal emitted by the first optical transmitter can be adjusted by the first conversion module.
  • the nominal center frequency of the optical signal adjusted by the first conversion module can be different from the nominal center frequency of the optical signal emitted by the first transmitter; the nominal center frequency of the optical signal adjusted by the second conversion module can be different from the nominal center frequency of the optical signal emitted by the second transmitter. It can be seen that by adjusting the nominal center frequency by the first conversion module or the second conversion module, the frequency range of the optical signal output by the optical transmission module can be increased.
  • the optical transmission module may also include: X combining modules; the first optical cross unit has G first input ports connected to the G first optical transmitters in a one-to-one correspondence, and the second optical cross unit has H first input ports connected to the H second optical transmitters in a one-to-one correspondence; the first optical cross unit and the second optical cross unit also have X first output ports, X second input ports and X second output ports; the X first output ports are connected to the input ends of the X combining modules in a one-to-one correspondence, and the output ends of the X combining modules are connected to the X input ports of the second optical cross module in a one-to-one correspondence; the X second output ports of the first optical cross unit are connected to the X second input ports of the second optical cross unit in a one-to-one correspondence through the X first conversion modules; the X second output ports of the second optical cross unit are connected to the X second input ports of the first optical cross unit in a one-to-one correspondence through the X second
  • the optical cross unit can output the optical signal from the first output port of the optical cross unit when there is no need to adjust the nominal center frequency of the optical signal, so that the optical signal is transmitted to the target optical fiber after passing through the combining module and the second optical cross module in sequence along a path that does not pass through the first conversion module and the second conversion module.
  • the optical cross unit can also output the optical signal from the second output port when it is necessary to adjust the nominal center frequency of the optical signal, so that after passing through the conversion module connected to the optical cross unit, the optical signal is transmitted to the target optical fiber after passing through the second input port of the optical cross unit, the first output port of the optical cross unit, the combining module and the second optical cross module in sequence.
  • the connection relationship between the conversion module, the first optical cross module and the combining module may also be different from the above connection relationship.
  • the optical transmission module also includes: X combining modules; the first optical cross unit has G input ports connected to the G first optical transmitters in a one-to-one correspondence, and the second optical cross unit has H input ports connected to the H second optical transmitters in a one-to-one correspondence; the first optical cross unit and the second optical cross unit also have X first output ports and X second output ports; the X first output ports are connected to the input ends of the X combining modules in a one-to-one correspondence, and the output ends of the X combining modules are connected to the X input ports of the second optical cross module in a one-to-one correspondence; the X second output ports of the first optical cross unit are connected to the input ends of the X combining modules in a one-to-one correspondence through the X first conversion modules; the X second output ports of
  • the optical cross unit can output the optical signal from the first output port when there is no need to adjust the nominal center frequency of the optical signal, so that the optical signal is transmitted to the target optical fiber after passing through the combining module and the second optical cross module in sequence along a path that does not pass through the first conversion module and the second conversion module.
  • the optical cross unit can also output the optical signal from the second output port when it is necessary to adjust the nominal center frequency of the optical signal, so that the optical signal is transmitted to the target optical fiber after passing through the combining module and the second optical cross module in sequence after passing through the conversion module.
  • a conversion modules include: X conversion modules; the first optical cross module is used to: when the nominal center frequency of the optical signal needs to be adjusted, control the optical signal to be transmitted to the input port of the second optical cross module after passing through the conversion module.
  • the first optical cross-connect module has K first input ports, X first output ports, X second input ports and X second output ports; the K first input ports are connected one-to-one with the K optical transmitters, the X first output ports are connected one-to-one with the X input ports of the second optical cross-connect module, and the X second input ports are connected one-to-one with the X second output ports through the X conversion modules.
  • the first optical cross module can output the optical signal from the first output port of the first optical cross module when there is no need to adjust the nominal center frequency of the optical signal, so that the optical signal is transmitted to the target optical fiber among the J second optical fibers after passing through the second optical cross module along a path that does not pass through the conversion module.
  • the first optical cross module can also output the optical signal from the second output port when there is a need to adjust the nominal center frequency of the optical signal, so that the optical signal is transmitted to the target optical fiber among the J second optical fibers after passing through the second optical cross module.
  • the optical fiber is transmitted to the target optical fiber among the J second optical fibers through the second input port of the first optical cross module, the first output port of the optical cross unit and the second optical cross module.
  • the X second output ports of the first optical cross module may also be connected to the X second input ports of the first optical cross module in a one-to-one correspondence without passing through the X conversion modules.
  • the optical transmission module also includes X combiner modules; the first optical cross module has K input ports, X first output ports and X second output ports; the K input ports are connected to the K optical transmitters in a one-to-one correspondence, the X first output ports are connected to the input ends of the X combiner modules in a one-to-one correspondence, the X second output ports are connected to the input ends of the X combiner modules in a one-to-one correspondence through the X conversion modules, and the output ends of the X combiner modules are connected to the X input ports of the second optical cross module in a one-to-one correspondence.
  • the first optical cross module can output the optical signal from the first output port of the first optical cross module when there is no need to adjust the nominal center frequency of the optical signal, so that the optical signal is transmitted to the target optical fiber among the J second optical fibers after passing through the second optical cross module along a path that does not pass through the conversion module.
  • the first optical cross module can also output the optical signal from the second output port when it is necessary to adjust the nominal center frequency of the optical signal, so that the optical signal is transmitted to the target optical fiber after passing through the conversion module and then the second optical cross module.
  • the K optical transmitters include: G first optical transmitters and H second optical transmitters, the first optical transmitters are used to transmit optical signals with a nominal center frequency within a first frequency range, and the second optical transmitters are used to transmit optical signals with a nominal center frequency within a second frequency range, G ⁇ 1, H ⁇ 1;
  • the first optical cross module includes: a first optical cross unit and a second optical cross unit, and the optical transmission module also includes: X first combining modules and X second combining modules;
  • the first optical cross unit has G input ports connected to the G first optical transmitters in a one-to-one correspondence, and the second optical cross unit has H input ports connected to the H second optical transmitters in a one-to-one correspondence;
  • the first optical cross unit and the second optical cross unit also have X first output ports and X second output ports;
  • the optical cross unit can output the optical signal from the first output port of the optical cross unit when there is no need to adjust the nominal center frequency of the optical signal, so that the optical signal is transmitted to the target optical fiber after passing through the first combining module and the second optical cross module along a path that does not pass through the conversion module.
  • the optical cross unit can also output the optical signal from the second output port when it is necessary to adjust the nominal center frequency of the optical signal, so that the optical signal is transmitted to the target optical fiber after passing through the conversion module, the first combining module and the second optical cross module in sequence.
  • the nominal center frequency of the optical signals emitted by the first optical transmitter and the second optical transmitter can be adjusted by the conversion module.
  • the nominal center frequency of the optical signal emitted by the second optical transmitter can be adjusted by the conversion module.
  • the nominal center frequency of the optical signal emitted by the first optical transmitter can be adjusted by the conversion module. It can be seen that by adjusting the nominal center frequency by the conversion module, the frequency range of the optical signal output by the optical transmission module can be increased.
  • a conversion modules include: an X/2 rounded up conversion module.
  • X/2 is rounded up to X/2
  • X/2 is rounded up to (X+1)/2.
  • K optical transmitters include: G first optical transmitters and H second optical transmitters.
  • the first optical transmitter is used to transmit an optical signal with a nominal center frequency within a first frequency range
  • the second optical transmitter is used to transmit an optical signal with a nominal center frequency within a second frequency range, G ⁇ 1, H ⁇ 1
  • the conversion module is used to: switch the nominal center frequency of the optical signal passing through between the first frequency range and the second frequency range
  • the nominal center frequency of the optical signal passing through the conversion module is different from the nominal center frequency of the optical signal emitted by the first optical transmitter and the second optical transmitter.
  • the first optical cross-module can control the optical signal to be transmitted to the second optical cross-module after passing through the conversion module when it is necessary to adjust the nominal center frequency of the optical signal, thereby adjusting the nominal center frequency of the optical signal on the conversion module.
  • the first optical cross-connect module has K first input ports, A second input ports, X first output ports, and A second output ports; the K first input ports are connected to the K optical transmitters in a one-to-one correspondence, the X first output ports are connected to the X input ports of the second optical cross-connect module in a one-to-one correspondence, and the A second output ports are connected to the A second input ports in a one-to-one correspondence through A conversion modules.
  • One-to-one connection One-to-one connection.
  • the first optical cross module can output the optical signal from the first output port of the first optical cross module when there is no need to adjust the nominal center frequency of the optical signal, so that the optical signal is transmitted to the target optical fiber after passing through the second optical cross module along a path that does not pass through the conversion module.
  • the first optical cross module can also output the optical signal from the second output port when it is necessary to adjust the nominal center frequency of the optical signal, so that the optical signal is transmitted to the target optical fiber after passing through the conversion module, the second input port of the first optical cross module, the first output port of the optical cross unit, and the second optical cross module.
  • the first optical cross-connect module may also have other implementable modes.
  • the first optical cross module includes: a first optical cross unit and a second optical cross unit; the optical transmitter module also includes: X first combining modules, A second combining modules and A branching modules; the first optical cross unit has G first input ports connected to the G first optical transmitters in a one-to-one correspondence, and the second optical cross unit has H first input ports connected to the H second optical transmitters in a one-to-one correspondence; the first optical cross unit and the second optical cross unit also have X first output ports, A second input ports and A second output ports; the X first output ports are connected to the X second optical transmitters in a one-to-one correspondence.
  • the input end of a combining module is connected in a one-to-one correspondence, the output ends of the X first combining modules are connected in a one-to-one correspondence with the X input ports of the second optical cross-connect module; the A second output ports are connected in a one-to-one correspondence with the input ends of the A second combining modules, and the output ends of the A second combining modules are connected in a one-to-one correspondence with the input ends of the A branching modules through the A conversion modules; the output ends of the A branching modules are connected in a one-to-one correspondence with the A second input ports; the conversion module is used to: switch the nominal center frequency of the passing optical signal between the first frequency range and the second frequency range.
  • the optical cross unit can output the optical signal from the first output port of the optical cross unit when there is no need to adjust the nominal center frequency of the optical signal, so that the optical signal is transmitted to the target optical fiber after passing through the first combining module and the second optical cross module along a path that does not pass through the conversion module.
  • the optical cross unit can also output the optical signal from any second output port when it is necessary to adjust the nominal center frequency of the optical signal, so that the optical signal is transmitted to the target optical fiber after passing through the second combining module and the conversion module, and then passing through the branching module, the second input port of the optical cross unit, the first output port of the optical cross unit, the first combining module and the second optical cross module in sequence.
  • the nominal center frequency of the optical signals emitted by the first optical transmitter and the second optical transmitter can be adjusted through the conversion module.
  • the nominal center frequency of the optical signal emitted by the second optical transmitter can be adjusted through the conversion module.
  • the nominal center frequency of the optical signal emitted by the first optical transmitter can be adjusted through the conversion module. It can be seen that by adjusting the nominal center frequency through the conversion module, the frequency range of the optical signal output by the optical transmission module can be increased.
  • the first optical cross-connect module includes: a target WSS, an auxiliary WSS and K branching units, and the target WSS and the auxiliary WSS each have K input ends and 1 output end;
  • the optical transmission module also includes: a combining module; the input ends of the K branching units are connected one-to-one with the K optical transmitters, and the output ends of the K branching units are connected one-to-one with the K input ends; the output end of the target WSS is connected to the input end of the combining module, and the output end of the auxiliary WSS is connected to the input end of the combining module through the conversion module; the output end of the combining module is connected to the input port of the second optical cross-connect module; the target WSS is used to control the optical signal to be output from the output end of the target WSS when there is no need to adjust the nominal center frequency of the received optical signal; the auxiliary WSS is used to control the optical signal to be output from the output end of the auxiliary WSS when it is
  • the optical signal emitted by the optical transmitter can be transmitted to the connected branching unit.
  • the branching unit will divide the optical signal into two optical signals, and then transmit the two optical signals to the target WSS and the auxiliary WSS respectively.
  • the target WSS will output the received optical signal to the combining module, so that the optical signal is transmitted to the target optical fiber in the J second optical fibers after passing through the second optical cross module.
  • the auxiliary WSS can receive one optical signal, the auxiliary WSS will not output the optical signal.
  • the auxiliary WSS when the nominal center frequency of the optical signal needs to be adjusted, the auxiliary WSS will output the received optical signal to the conversion module, so that the optical signal is transmitted to the target optical fiber in the J second optical fibers after passing through the conversion module, the combining module and the second optical cross module in sequence.
  • the target WSS when the nominal center frequency of the optical signal needs to be adjusted, although the target WSS can receive one optical signal, the target WSS will not output the optical signal.
  • the first optical cross-connect module includes: a target combining unit, an auxiliary combining unit, and K optical switches, wherein the target combining unit and the auxiliary combining unit each have K input ends and 1 output end;
  • the optical transmission module also includes a combining module; K optical transmitters are connected to the K input ends one by one through the K optical switches respectively; the output end of the target combining unit is connected to the input end of the combining module, and the output end of the auxiliary combining unit is connected to the input end of the combining module through the conversion module; the output end of the combining module is connected to the input port of the second optical cross module;
  • the optical switch is used to: when the nominal center frequency of the optical signal from the connected optical transmitter needs to be adjusted, connect the connected optical transmitter to the auxiliary combining unit; when the nominal center frequency of the optical signal from the connected optical transmitter does not need to be adjusted, connect the connected optical transmitter to the target combining unit.
  • the optical signal emitted by the optical transmitter can be transmitted to the connected optical switch.
  • the optical switch will connect the optical transmitter to the auxiliary combining unit (at this time, the optical transmitter is not connected to the target combining unit), so that after the optical signal is transmitted to the auxiliary combining unit, it passes through the conversion module, the combining module and the second optical cross module in sequence and is transmitted to the target optical fiber among the J second optical fibers.
  • the optical switch when it is not necessary to adjust the nominal center frequency of the optical signal, the optical switch will connect the optical transmitter to the target combining unit, so that after the optical signal is transmitted to the target combining unit, it passes through the combining module and the second optical cross module in sequence and is transmitted to the target optical fiber among the J second optical fibers.
  • the first optical cross module and the second optical cross module can be directly connected.
  • the first optical cross module can directly transmit the optical signal to the second optical cross module.
  • the optical signal does not need to pass through the combiner module. Therefore, the insertion loss of the optical signal is less.
  • the number of input ports and output ports of the first optical cross-connect module varies. In some of the implementations, the number of input ports and output ports of the first optical cross-connect module is small. Therefore, the complexity of the first optical cross-connect module is low and the cost is low.
  • the K optical transmitters may be of the same type and support optical signals in the same frequency range.
  • the G first optical transmitters may be of the same type and support optical signals in the first frequency range
  • the H second optical transmitters may be of the same type and support optical signals in the second frequency range.
  • the present application provides an optical device, which includes: an optical transmission module described in any design in the first aspect; the optical device also includes: an optical receiving module for receiving an optical signal.
  • the present application provides an optical communication system, comprising: a plurality of optical devices, at least one of the optical devices being the optical device described in the second aspect.
  • FIG1 is a schematic diagram of the structure of an optical device provided by the present application.
  • FIG2 is a schematic diagram of the structure of another optical device provided by the present application.
  • FIG3 is a schematic diagram of the structure of the first MCS in FIG2 provided by the present application.
  • FIG4 is a schematic diagram of the structure of the second MCS in FIG2 provided by the present application.
  • FIG5 is a schematic diagram of the structure of another optical device provided by the present application.
  • FIG6 is a schematic diagram of the structure of a light emitting module provided in an embodiment of the present application.
  • FIG7 is a schematic diagram of the structure of another light emitting module provided in an embodiment of the present application.
  • FIG8 is a schematic diagram of the structure of another light emitting module provided in an embodiment of the present application.
  • FIG9 is a schematic diagram of the structure of another light emitting module provided in an embodiment of the present application.
  • FIG10 is a schematic diagram of the structure of another optical emission module provided in an embodiment of the present application.
  • FIG11 is a schematic diagram of the structure of another light emitting module provided in an embodiment of the present application.
  • FIG12 is a schematic diagram of the structure of another light emitting module provided in an embodiment of the present application.
  • FIG13 is a schematic diagram of the structure of another light emitting module provided in an embodiment of the present application.
  • FIG14 is a schematic diagram of the structure of another light emitting module provided in an embodiment of the present application.
  • FIG15 is a schematic diagram of the structure of another light emitting module provided in an embodiment of the present application.
  • FIG16 is a schematic diagram of the structure of another light emitting module provided in an embodiment of the present application.
  • FIG17 is a schematic diagram of the structure of another light emitting module provided in an embodiment of the present application.
  • FIG18 is a schematic diagram of the structure of another light emitting module provided in an embodiment of the present application.
  • FIG19 is a schematic diagram of the structure of another light emitting module provided in an embodiment of the present application.
  • FIG20 is a schematic diagram of the structure of another light emitting module provided in an embodiment of the present application.
  • FIG21 is a schematic diagram of the structure of another light emitting module provided in an embodiment of the present application.
  • FIG. 22 is a schematic diagram of the structure of another optical emission module provided in an embodiment of the present application.
  • An optical system also called a fiber optic system
  • An optical system includes multiple optical devices, and optical signals can be transmitted between multiple optical devices through optical fibers. Multiple optical devices in an optical system can communicate with each other using optical signals.
  • the optical system can use any optical communication technology, such as dense wavelength division multiplexing (DWDM) technology, coarse wavelength division multiplexing (CWDM), etc.
  • DWDM dense wavelength division multiplexing
  • CWDM coarse wavelength division multiplexing
  • multiple optical devices in an optical system may not communicate using optical signals.
  • one optical device sends an optical signal for sensing to another optical device, while the other optical device does not send an optical signal to the one optical device.
  • This embodiment of the present application does not limit this.
  • the optical device may be a single device, multiple devices, or a part of a single device (such as an interface board in a device), which is not limited in the embodiments of the present application.
  • the optical device in the DWDM system may be an optical terminal multiplexer (OTM), a reconfigurable optical add/drop multiplexer (ROADM), etc.
  • the optical device includes an optical transmission module and a processing module, the processing module is connected to the optical transmission module, the processing module is used to control the optical transmission module to send an optical signal, and the optical transmission module includes at least one optical transmitter (Tx) for sending an optical signal.
  • the optical device may also include an optical receiving module, the processing module is also connected to the optical receiving module, the processing module may also be used to control the optical receiving module to receive an optical signal, and the optical receiving module includes at least one optical receiver (Rx) for receiving an optical signal.
  • the optical transmission module and the optical receiving module may support CD characteristics or CDC characteristics.
  • each optical receiver in the optical receiving module can receive an optical signal of any wavelength in the working band; when the optical transmitting module supports the colorless feature, each optical transmitter in the optical transmitting module can send an optical signal of any wavelength in the working band.
  • each optical receiver in the optical receiving module can receive optical signals in any direction/latitude of each line direction/dimension.
  • each optical transmitter can transmit optical signals to any direction/dimension of each line direction/dimension.
  • any m line directions/dimensions (m ⁇ 2) in multiple line directions/dimensions can simultaneously send optical signals of the same or different wavelengths to m optical receivers (each optical receiver only receives one optical signal).
  • any m optical transmitters can simultaneously send optical signals of the same or different wavelengths to any m directions/dimensions in each line direction/dimension.
  • each optical receiver when the optical receiving module supports the CD feature, each optical receiver can receive optical signals of any wavelength in any line direction/dimension; when the optical transmitting module supports the CD feature, each optical receiver can send optical signals of any wavelength to any line direction/dimension.
  • m optical receivers When the optical receiving module supports the CDC feature, m optical receivers can simultaneously receive optical signals of the same or different wavelengths in m line directions/dimensions; when the optical transmitting module supports the CDC feature, m optical transmitters can simultaneously send optical signals of the same or different wavelengths to m line directions/dimensions.
  • Frequency is generally used to define the channel spacing, spectrum position, etc. of light, such as the nominal center frequency, frequency band, etc. The definition of frequency is more accurate, while the concepts of wavelength and band are more intuitive. Both types of names and definitions are used, and even mixed.
  • optical device supporting CD characteristics.
  • the optical transmitting module and the optical receiving module in the optical device may both support CD characteristics.
  • the optical transmitting module supports CD characteristics;
  • the optical receiving module supports CD characteristics.
  • the optical receiving module in the optical device includes: J first wavelength selective switches (WSS), a second WSS, a third WSS, and K optical receivers (denoted as Rx-1 to Rx-K).
  • Each first WSS has 1 input port and N output ports, denoted as 1*N, and the first WSS can be replaced by a splitter;
  • the second WSS has J input ports and 1 output port, denoted as J*1;
  • the third WSS has 1 input port and K output ports, denoted as 1*K; K ⁇ 1, and FIG1 takes K greater than 1 as an example.
  • the K output ports of the third WSS are connected to the K optical receivers in a one-to-one correspondence
  • the 1 input port of the third WSS is connected to the 1 output port of the second WSS
  • the J input ports of the second WSS are connected to the J output ports of the J first WSS in a one-to-one correspondence
  • the J input ports of the J first WSS are connected to the J output ports of the J first WSS in a one-to-one correspondence
  • the input port is connected to J first optical fibers in a one-to-one correspondence. These J first optical fibers correspond to J first line directions/dimensions.
  • the first WSS is used to divide the optical signal input from 1 input port into N optical signals and transmit them to N output ports respectively.
  • the nominal central wavelengths of these N optical signals can be the same or different.
  • the second WSS is used to converge the optical signals input from J input ports into one optical signal and output it from 1 output port.
  • the third WSS can transmit the optical signal input from 1 input port to any of the K output ports.
  • an optical signal of any wavelength in any first line direction dimension in the J first line directions/dimensions (an optical signal of any wavelength transmitted on any first optical fiber in the J first optical fibers) will be transmitted to a first WSS, and then transmitted to a second WSS by the first WSS.
  • the second WSS can transmit the optical signal to a third WSS, and then transmitted to any optical receiver among the K optical receivers by the third WSS.
  • each optical receiver can receive an optical signal of any wavelength in any line direction, so that the optical receiving module supports the CD feature.
  • the optical transmission module in the optical device includes: K optical transmitters (expressed as Tx-1 to Tx-K), the fourth WSS, the fifth WSS, and J sixth WSSs.
  • the fourth WSS has K input ports and 1 output port, expressed as K*1, and the fourth WSS can also be a coupler;
  • the fifth WSS has 1 input port and J output ports, expressed as 1*J, and the fifth WSS can also be a splitter;
  • the sixth WSS has N input ports and 1 output port, expressed as N*1.
  • the K input ports of the fourth WSS are connected to the K optical transmitters in a one-to-one correspondence, and the 1 output port of the fourth WSS is connected to the 1 input port of the fifth WSS; the J output ports of the fifth WSS are connected to the J input ports of the J sixth WSSs in a one-to-one correspondence, and the J output ports of the J sixth WSSs are connected to the J second optical fibers in a one-to-one correspondence. These J second optical fibers correspond to J second line directions/dimensions.
  • the fourth WSS can combine the optical signals input from the K input ports into one optical signal and transmit it to one output port.
  • the fifth WSS is used to divide the optical signal input from one input port into J optical signals and transmit them to J output ports respectively.
  • the nominal center wavelengths of these J optical signals can be the same or different.
  • the sixth WSS is used to combine the optical signals input from N input ports into one optical signal and output it from one output port.
  • an optical signal of any wavelength emitted by any optical transmitter among the K optical transmitters will be transmitted to the fourth WSS, and then transmitted to the fifth WSS by the fourth WSS.
  • the fifth WSS can transmit the optical signal to any sixth WSS among the J sixth WSSs, and then transmitted to the second optical fiber by the sixth WSS.
  • each optical transmitter can send an optical signal of any wavelength to any line direction, so that the optical transmission module supports the CD feature.
  • each first WSS can also be connected to J sixth WSSs. Therefore, the N output ports of each first WSS include: J output ports connected to J sixth WSSs, and 1 output port connected to the second WSS.
  • the N input ports of each sixth WSS include: J input ports connected to J first WSSs, and 1 input port connected to the fifth WSS.
  • An optical signal of any wavelength on any first optical fiber may also not be transmitted to the optical receiver, but transmitted to the second optical fiber through the sixth WSS in the optical transmission module.
  • optical transmitting module and the optical receiving module in the optical device may both support the CDC feature.
  • the optical transmitting module supports the CDC feature;
  • the optical receiving module supports the CDC feature.
  • the optical receiving module in the optical device includes: J first WSSs, a first multi-cast switch (MCS) and K optical receivers (denoted as Rx-1 to Rx-K).
  • Each first WSS has 1 input port and N output ports, denoted as 1*N, and the first WSS can also be replaced by a splitter;
  • the first MCS has J input ports and K output ports, denoted as K*J, and the first MCS can also be replaced by an add/drop wavelength selective switching (adWSS).
  • the K output ports of the first MCS are connected to the K optical receivers in a one-to-one correspondence
  • the J input ports of the first MCS are connected to the J output ports of the J first WSSs in a one-to-one correspondence
  • the J input ports of the J first WSSs are connected to the J first optical fibers in a one-to-one correspondence.
  • the J first optical fibers correspond to the J first line directions/dimensions.
  • the first WSS is used to divide the optical signal input from one input port into N optical signals and transmit them to the N output ports respectively.
  • the nominal central wavelengths of the N optical signals can be the same or different.
  • the first MCS can transmit m optical signals from the J input ports to m output ports among the K output ports respectively.
  • optical signals of the same or different wavelengths in any m first line directions/dimensions among the J first line directions/dimensions will be transmitted to the m first WSSs in the optical receiving module. Afterwards, they are transmitted to the first MCS by the m first WSSs.
  • the first MCS can transmit these optical signals to any m optical receivers among the K optical receivers. In this way, it is possible to realize that m optical receivers simultaneously receive optical signals of the same or different wavelengths in m line directions, so that the optical receiving module supports the CDC feature.
  • the optical transmission module in the optical device includes: K optical transmitters (expressed as Tx-1 to Tx-K), a second MCS, and J second WSSs.
  • the second MCS has K input ports and J output ports, expressed as K*J, and the second MCS can be replaced by adWSS; each second WSS has N input ports and 1 output port, expressed as N*1.
  • the K input ports of the second MCS are connected to the K optical transmitters in a one-to-one correspondence
  • the J output ports of the second MCS are connected to the J input ports of the J second WSSs in a one-to-one correspondence
  • the J output ports of the J second WSSs are connected to the J second optical fibers in a one-to-one correspondence.
  • the J second optical fibers correspond to the J second line directions/dimensions.
  • the second MCS can transmit optical signals input from any m of the K input ports to any m of the J output ports.
  • the second WSS is used to aggregate optical signals input from N input ports into one optical signal and output it from one output port.
  • optical signals of the same or different wavelengths emitted by any m optical transmitters among the K optical transmitters will be transmitted to the second MCS, and then transmitted by the second MCS to any m second WSSs among the J second WSSs, and then transmitted by these second WSSs to the second optical fiber.
  • m optical transmitters can send optical signals of the same or different wavelengths to m line directions at the same time, so that the optical transmitter module supports the CDC feature.
  • each first WSS can also be connected to J second WSSs. Therefore, the N output ports of each first WSS include: J output ports connected to J second WSSs, and 1 output port connected to the first MCS.
  • the N input ports of each second WSS include: J input ports connected to J first WSSs, and 1 input port connected to the second MCS.
  • An optical signal of any wavelength on any first optical fiber can also be transmitted to the second optical fiber through the second WSS instead of being transmitted to the optical receiver.
  • the structure of the first MCS can be shown in FIG3 .
  • the first MCS can be composed of J splitters and K optical switches (Switch), each splitter has 1 input port and K output ports (expressed as 1*K), and each optical switch has J input ports and 1 output port (expressed as J*1).
  • the J input ports of the J splitters are connected to the J first WSSs in a one-to-one correspondence, and the K output ports of each splitter are connected to the K input ports of the K optical switches in a one-to-one correspondence.
  • Each splitter divides the optical signal transmitted by the corresponding first WSS into K paths and sends them to the K optical switches respectively.
  • the K output ports of the K optical switches are connected to the K optical receivers in a one-to-one correspondence.
  • Each optical switch can receive the optical signals transmitted by the J splitters, and selects an optical signal transmitted by the J splitters from the optical signals transmitted by the J splitters to transmit to a connected optical receiver.
  • the second MCS can transmit the optical signals input by any m input ports among the J input ports to any m output ports among the K output ports.
  • the structure of the second MCS can be shown in FIG4 .
  • the second MCS can be composed of J combiners and K splitters, each combiner has K input ports and 1 output port (expressed as K*1), and each splitter has 1 input port and J output ports (expressed as 1*J).
  • the K input ports of the K splitters are connected to the K optical transmitters in a one-to-one correspondence, and the J output ports of each splitter are connected to the J combiners in a one-to-one correspondence.
  • Each splitter can divide the optical signal transmitted by the correspondingly connected optical transmitter into J paths and transmit them to the J combiners respectively.
  • the J output ports of the J combiners are connected to the J second WSSs in a one-to-one correspondence, and each combiner can receive the optical signals transmitted by the K splitters, and combine these optical signals into one path and transmit them to a connected second WSS.
  • the second MCS can transmit the optical signals input by any m of the K input ports to any m of the J output ports.
  • Both the first MCS and the second MCS can be replaced by adWSS.
  • the function of adWSS is similar to that of MCS, and will not be described in detail in the embodiment of the present application.
  • the optical signal transmitted between the ports may be a single-wavelength optical signal or a multi-wavelength optical signal, which is not limited in the embodiments of the present application.
  • the optical device has a working band
  • the optical signals targeted by the above functions of each device in the optical device are optical signals within the working band, and each device supports optical signals within the working band.
  • the working band can be any band.
  • the working band is C band, L band or C+L band.
  • the wavelength range of the general C band is 1530-1565 nanometers (nm)
  • the wavelength range of the general L band is 1565-1625nm
  • the wavelength range of the C+L band is generally 1530-1625nm.
  • the C-band and the L-band can also be adjusted.
  • the wavelength range of approximately 1530 nanometers to 1625 nanometers can be divided into two bands with equal frequency widths.
  • the band with a smaller wavelength can be the C-band (which can be called an extended C-band)
  • the band with a larger wavelength can be the L-band (which can be called an extended L-band).
  • the working band of optical equipment may be further extended to the S band, so the working band of optical equipment may be the S band, C band, L band, C+L band, S+C+L band, etc.
  • the wavelength range of the general S band is 1460-1530nm. It is understandable that the wavelength range of the S band may also be adjusted. For example, the wavelength range of approximately 1460 nanometers to 1625 nanometers may be divided into three bands with equal frequency widths. Among these three bands, the band with the smallest wavelength may be the S band (which may be called the extended S band), the band with the second smallest wavelength may be the C band (which may be called the extended C band), and the band with the largest wavelength may be the L band (which may be called the extended L band).
  • each device in the optical device supports the control of the optical signal in the working band. It is understandable that the working band can also be divided into multiple bands, and the structure supporting the working band in the optical device can also be divided into multiple structures supporting the multiple bands respectively.
  • the working band is C+L band and is divided into C band and L band.
  • the optical receiver in FIG2 can be divided into two groups.
  • a group of optical receivers includes G optical receivers (expressed as Rx-1 to Rx-G), and the other group of optical receivers includes H optical receivers (expressed as Rx-1 to Rx-H) as an example.
  • the two groups of optical receivers support C band and L band respectively, and each group of optical receivers can receive optical signals of a band supported by it.
  • the optical receiving module includes two first MCSs, and the two first MCSs correspond to the two groups of optical receivers one by one.
  • Each first MCS is connected between J first WSSs and a group of optical receivers corresponding to the first MCS, so as to realize the crossover of optical signals between the J first WSSs and the group of optical receivers.
  • the first MCS connected to the above G optical receivers has J input ports and G output ports.
  • the first MCS connected to the above H optical receivers has J input ports and H output ports.
  • the optical receiving module further includes J splitters, which correspond one-to-one to the J first WSSs, each splitter has one input port and two output ports, and each first WSS is connected to the above two first MCSs through the corresponding splitter.
  • the optical transmitters in Figure 2 can be divided into two groups.
  • one group of optical transmitters includes G optical transmitters (expressed as Tx-1 to Tx-G), and the other group of optical transmitters includes H optical transmitters (expressed as Tx-1 to Tx-H) as an example.
  • the two groups of optical transmitters support C band and L band respectively, and each group of optical transmitters can transmit optical signals of a band it supports.
  • the optical transmission module includes two second MCSs, and the two second MCSs correspond to the two groups of optical transmitters one by one. Each second MCS is connected between J second WSSs and a corresponding group of optical transmitters to realize the crossover of optical signals between the J second WSSs and the group of optical transmitters.
  • the second MCS connected to the above G optical transmitters has G input ports and J output ports.
  • the second MCS connected to the above H optical transmitters has H input ports and J output ports.
  • the optical transmission module further includes J combiners, which correspond one-to-one to the J second WSSs. Each combiner has two input ports and one output port. Each second WSS is connected to the two second MCSs via the corresponding combiner.
  • the frequency range of the optical signal output by the optical transmission module described above is limited by the frequency range of the optical signal emitted by the optical transmitter, resulting in a narrow frequency range of the optical signal output by the optical transmission module (the wavelength range is also narrow), which makes the frequency range of the optical signal emitted by the optical device narrower, the performance of the optical device poor, and the performance of the optical communication system poor.
  • an embodiment of the present application provides an optical transmission module, which can use a conversion module to adjust the frequency of an optical signal emitted by an optical transmitter to increase the frequency range of the optical signal output by the optical transmission module, so that the frequency range of the optical signal emitted by the optical device where the optical transmission module is located can also be increased. Therefore, the performance of the optical device is better, and the performance of the optical communication system is also better.
  • the optical transmission module can also support CD or CDC characteristics, and is suitable for optical devices that support CD or CDC characteristics.
  • FIG6 is a schematic diagram of the structure of an optical transmission module provided in an embodiment of the present application.
  • the optical transmission module includes: at least one optical transmitter 601, a first optical cross-connect module 602 (which may be referred to as an optical cross-connect (OXC) module), at least one conversion module 603 and a second optical cross-connect module 604.
  • OXC optical cross-connect
  • FIG6 takes an optical transmitter 601 and a conversion module 603 as an example.
  • the second optical cross module 604 has X input ports and J output ports, and the J output ports are connected to J optical fibers in a one-to-one correspondence, where J ⁇ 1.
  • the second optical cross module 604 may also have other ports besides the X input ports and the J output ports, which is not limited in the present embodiment.
  • the second optical cross-connect module 604 may include: J line WSSs (not shown in FIG. 6, refer to the J second WSSs in FIG. 2 and FIG. 5); each line WSS has at least one input port and one output port of the second optical cross-connect module, and the J line WSSs have X input ports and J output ports of the second optical cross-connect module.
  • the one input port of the line WSS is an input port for receiving an optical signal emitted by the optical transmitter 601, and the line WSS may also have other input ports in addition to the one input port, which is not limited in the embodiment of the present application.
  • the second optical cross module 604 includes: a third optical cross unit and J line WSSs (not shown in FIG. 6, the third optical cross unit can refer to the fifth WSS in FIG. 1, and the J line WSSs can refer to the J sixth WSSs in FIG. 1); the third optical cross unit has J transit output ports and one input port of the second optical cross module, the J transit output ports are connected to the J line WSSs in a one-to-one correspondence, the line WSS has one output port of the second optical cross module, and the J line WSSs have J output ports of the second optical cross module.
  • the one input port of the line WSS is an input port for receiving the optical signal emitted by the optical transmitter 601, and the line WSS may also have other input ports except the one input port, which is not limited in the embodiment of the present application.
  • the optical transmitter 601 is used to send out an optical signal.
  • the nominal center frequency of the optical signal sent out by the optical transmitter 601 may be fixed or adjustable, which is not limited in the embodiment of the present application.
  • the first optical cross module 602 can realize the crossover of optical signals between the various ports of the first optical cross module at the optical layer, and then realize the optical crossover of optical signals between the optical transmitter 601 and the second optical cross module 604.
  • the optical crossover may pass through the conversion module 603 or not.
  • the first optical cross module 602 can select whether the optical crossover passes through the conversion module 603 as needed.
  • the second optical cross-connect module 604 is connected to J optical fibers (similar to the J second optical fibers in the above embodiment) and is used to transmit optical signals to the optical fibers.
  • the optical transmitter 601 is used to transmit an optical signal to the first optical cross module 602; the first optical cross module 602 is used to: when it is necessary to adjust the nominal center frequency of the optical signal, control the optical signal to be transmitted along a path passing through the conversion module 603 to the input port of the second optical cross module 604; the first optical cross module 602 is also used to: when it is not necessary to adjust the nominal center frequency of the optical signal, control the optical signal to be transmitted along a path not passing through the conversion module 603 to the input port of the second optical cross module.
  • the path passing through the conversion module may pass through one conversion module or multiple conversion modules, and the path not passing through the conversion module does not pass through any conversion module of the at least one conversion module mentioned above.
  • the paths passed by the optical signals emitted by different optical transmitters 601 may be the same or different, and the embodiments of the present application are not limited to this.
  • the conversion module 603 is used to adjust the nominal center frequency of the optical signal passing through. Since there is a corresponding relationship between frequency and wavelength, it can also be considered that the conversion module 603 is used to adjust the nominal center wavelength of the optical signal passing through. In this case, the conversion module 603 can be called a wavelength converter (WC) module.
  • the first optical cross module 602 controls the optical signal to pass through the conversion module 603 and then transmit it to the second optical cross module 604, so that the nominal center frequency of the optical signal can be adjusted on the conversion module 603, thereby realizing the change of the nominal center frequency of the optical signal.
  • the second optical cross-connect module 604 is used to transmit the optical signal received by the input port from the output port to the target optical fiber to which the optical signal is to be transmitted.
  • the optical signal may be an optical signal that has passed through the conversion module 603 or an optical signal that has not passed through the conversion module 603.
  • the optical signal emitted by the optical transmitter 601 is transmitted to the first optical cross module 602, it may be directly transmitted to the second optical cross module 604 without passing through the conversion module 603, or it may be transmitted to the second optical cross module 604 after passing through the conversion module 603.
  • the first optical cross module 602 can determine whether it is necessary to adjust the nominal center frequency of the received optical signal according to the configuration information, and then determine the path for the optical signal to be transmitted to the second optical cross module 604.
  • the nominal center frequency of the optical signal passing through the conversion module 603 is different from the nominal center frequency of the optical signal emitted by the optical transmitter, thereby changing the frequency range of the optical signal output by the optical transmission module.
  • the optical transmission module provided in the embodiment of the present application can not only output the optical signal emitted by the optical transmitter, but also output the optical signal after the nominal center frequency of the optical signal is adjusted.
  • the nominal center frequencies of the two optical signals are different, so the frequency range of the light that can be output by the optical transmission module is larger, which improves the performance of the optical transmission module.
  • the performance of the optical transmission module and the optical device in which it is located is improved.
  • the above conversion module can use any method to adjust the nominal center frequency of the optical signal.
  • the conversion module can adjust the nominal center frequency of the optical signal at the optical layer. During this process, the conversion module processes the optical signal in the optical domain, and the conversion module does not convert the optical signal into an electrical signal. For example, the conversion module can adjust the nominal center frequency of the optical signal at the optical layer based on the pump light. The nominal center frequency of the optical signal emitted by the optical transmitter and/or the nominal center frequency of the pump light can be adjusted.
  • the conversion module can adjust the nominal center frequency of the optical signal at the optical layer and the electrical layer. In this process, the conversion module can adjust the nominal center frequency through optical-electrical-optical conversion.
  • first optical cross-connect module 602 controlling the optical signal to be transmitted along the path passing through the conversion module 603 to the inlet port in the second optical cross-connect module 604 .
  • the first optical cross module 602 is used to: when the nominal center frequency of the optical signal needs to be adjusted, transmit the optical signal to the conversion module 603; the conversion module 603 is used to: after adjusting the nominal center frequency of the optical signal from the first optical cross module 602, transmit it back to the first optical cross module 602; the first optical cross module 603 is also used to: transmit the optical signal from the conversion module 603 to the input port of the second optical cross module 604. In the process of the first optical cross module 602 transmitting the optical signal from the conversion module 603 to the input port of the second optical cross module 604, the optical signal will not pass through the conversion module 603.
  • the first optical cross module 602 is used to: transmit the optical signal to the conversion module 603 when the nominal center frequency of the optical signal needs to be adjusted; the conversion module 603 is used to: transmit the optical signal from the first optical cross module 602 to the input port of the second optical cross module 604 after adjusting the nominal center frequency.
  • the optical signal does not pass through the first optical cross module 60.
  • the first optical cross module 602 may be used to: when it is necessary to adjust the nominal center frequency of multiple optical signals emitted by multiple optical transmitters 601, control the multiple optical signals 601 to be transmitted along the path passing through the same conversion module 603 to the input port of the second optical cross module 604 (the paths passed by different optical signals may be the same or different).
  • the conversion module 603 is used to: adjust the nominal center frequency of the multiple optical signals passing through. It can be seen that a conversion module 603 is capable of adjusting the nominal center frequency of optical signals emitted by multiple optical transmitters 601, so the present application supports the situation where there is no need to set a conversion module 603 for each optical transmitter 601.
  • the present application supports the use of fewer conversion modules 603, the structure of the optical transmission module is simpler and the cost is lower.
  • the number of conversion modules 603 in the present application can also be greater than or equal to the number of optical transmitters 601, and the present application does not limit this.
  • the number of conversion modules 603 is A, and the at least one conversion module 603 includes A conversion modules 603.
  • A can be 1 or an integer greater than 1.
  • the first optical cross module 602 can select a conversion module 603 from the A conversion modules as needed as the conversion module 603 that the optical signal needs to pass through.
  • the first optical cross module 602 can also switch the selected conversion module 603 between the A conversion modules 603 as needed.
  • the number of optical transmitters 601 is K, and K may be greater than or equal to 1.
  • the number A of conversion modules 603 may be less than or equal to the number K of optical transmitters 601.
  • a ⁇ K if the number K of optical transmitters 601 is large, it is not necessary to set a conversion module 603 for each optical transmitter 601, and the adjustment of the nominal center frequency of the optical signal emitted by each optical transmitter 601 can also be achieved. Since there is no need to set a conversion module 603 for each optical transmitter 601, the number of conversion modules 603 used in the present application is small, and the cost of the optical transmission module is low.
  • the wavelength range of the optical signal output by the optical transmission module can also be improved by improving the performance of the optical transmitter.
  • the cost of improving the performance of the optical transmitter is high. Assuming that the solution to improve the performance of the optical transmitter will increase the cost of the optical transmission module by 100%, the cost increase of the solution of adding a conversion module to the optical transmission module provided in the present application is about 10%. It can be seen that compared with the solution to improve the performance of the optical transmitter, the cost of adding a conversion module in the present application is lower.
  • the number A of conversion modules 603 may also be greater than K, and this embodiment of the present application does not limit this.
  • the nominal center frequency of the optical signal passing through any conversion module 603 is different from the nominal center frequency of the optical signal emitted by the K optical transmitters 601.
  • the frequency range of the optical signal output by the optical transmission module can be improved.
  • frequency ranges 1 and 2 can be independent of each other or partially overlap.
  • frequency ranges 1 and 2 can be any two frequency ranges in the frequency range corresponding to the C band, the frequency range corresponding to the L band, and the frequency range corresponding to the S band.
  • a ⁇ 2X When twice the number X of the input ports of the second optical cross module 604 is less than the number K of the optical transmitters 601, A may be equal to 2X. In this case, the number A of the conversion modules 603 is small, and the nominal center frequency of the optical signals emitted by more optical transmitters 601 can be adjusted by fewer conversion modules 603. When twice the number X of the input ports of the second optical cross module 604 is greater than or equal to the number K of the optical transmitters 601, A may be equal to K and less than 2X. In this case, the number A of the conversion modules 603 is also small.
  • A may be further less than or equal to X.
  • A may be equal to X.
  • the number A of the conversion modules 603 is small, and the nominal center frequency of the optical signals emitted by more optical transmitters 601 can be adjusted by fewer conversion modules 603.
  • A may be equal to K and less than X. At this time, the number A of the conversion modules 603 is also small.
  • A may be further less than or equal to X/2 and rounded up.
  • A when X/2 is rounded up and less than the number K of optical transmitters 601, A may be equal to X/2 and rounded up.
  • the number A of conversion modules 603 is small, and the nominal center frequency of optical signals emitted by more optical transmitters 601 can be adjusted by fewer conversion modules 603.
  • X/2 is rounded up and greater than or equal to the number K of optical transmitters 601
  • A may be equal to K and less than X/2 and rounded up. At this time, the number A of conversion modules 603 is also small.
  • optical transmission module provided in the embodiment of the present application can also support the characteristics of CD or CDC, and the number A of the corresponding conversion modules 603 and the connection relationship between the conversion module 603 and other modules can be set according to the characteristics of CD or CDC.
  • a conversion modules may include: X first conversion modules and X second conversion modules.
  • the first conversion module is used to: adjust the nominal center frequency of the passing optical signal to within the second frequency range;
  • the second conversion module is used to: adjust the nominal center frequency of the passing optical signal to within the first frequency range.
  • the X first conversion modules correspond one-to-one to the X input ports of the second optical cross module (not marked in FIG7)
  • the X second conversion modules correspond one-to-one to the X input ports of the second optical cross module.
  • the first optical cross-connect module includes: a first optical cross-connect unit and a second optical cross-connect unit, and both the first optical cross-connect unit and the second optical cross-connect unit can be MCS or adWSS.
  • the first optical cross-connect unit is used to: when the nominal center frequency of the received optical signal needs to be adjusted, control the optical signal to be transmitted to the input port of the second optical cross-connect module after passing through the first conversion module;
  • the second optical cross-connect unit is used to: when the nominal center frequency of the received optical signal needs to be adjusted, control the optical signal to be transmitted to the input port of the second optical cross-connect module after passing through the second conversion module.
  • the optical signals transmitted to different optical fibers pass through different first conversion modules; and the optical signals transmitted to different optical fibers pass through different second conversion modules.
  • the K optical transmitters include: G first optical transmitters (expressed as Tx-1 to Tx-G) and H second optical transmitters (expressed as Tx-1 to Tx-H).
  • the first optical transmitter is used to transmit an optical signal with a nominal center frequency within a first frequency range to the first optical cross unit
  • the second optical transmitter is used to transmit an optical signal with a nominal center frequency within a second frequency range to the second optical cross unit, G ⁇ 1, H ⁇ 1.
  • the first frequency range and the second frequency range can be any frequency ranges, for example, in the first frequency range and the second frequency range, one frequency range is a frequency range corresponding to the C band, and the other frequency range is a frequency range corresponding to the L band.
  • the nominal center frequency of the optical signal emitted by the first optical transmitter can be adjusted by the first conversion module
  • the nominal center frequency of the optical signal emitted by the second optical transmitter can be adjusted by the second conversion module.
  • the nominal center frequency of the optical signal adjusted by the first conversion module can be different from the nominal center frequency of the optical signal emitted by the first transmitter; the nominal center frequency of the optical signal adjusted by the second conversion module can be different from the nominal center frequency of the optical signal emitted by the second transmitter. It can be seen that by adjusting the nominal center frequency by the first conversion module or the second conversion module, the frequency range of the optical signal output by the optical transmission module can be increased.
  • the first optical transmitter, the first optical cross unit and the first conversion module all support optical signals within a first frequency range
  • the second optical transmitter, the second optical cross unit and the second conversion module all support optical signals within a second frequency range
  • the first optical cross unit has G first input ports connected to the G first optical transmitters in a one-to-one correspondence
  • the second optical cross unit has H first input ports connected to the H second optical transmitters in a one-to-one correspondence.
  • the first optical transmitter can send an optical signal to the first optical cross unit from the correspondingly connected first input port
  • the second optical transmitter can also send an optical signal to the second optical cross unit from the correspondingly connected first input port.
  • the first optical cross unit and the second optical cross unit also have X first output ports, X second input ports and X second output ports.
  • the second optical cross unit has H+J input ports and 2J output ports (which can be expressed as (H+J)*2J in FIG. 7). wherein the H+J input ports include H first input ports and J second input ports, and the 2J output ports include J first output ports and J second output ports.
  • the optical transmission module may further include: X combining modules ( FIG7 takes J combining modules as an example); the combining module may be a combiner or other device having the function of combining multiple optical signals into one optical signal.
  • Each combining module has two input ends and one output end, which is represented as 2*1 in FIG7 .
  • the X first output ports of the optical cross unit are connected to the input ends of the X combining modules in a one-to-one correspondence, and the output ends of the X combining modules are connected to the X input ports of the second optical cross module in a one-to-one correspondence.
  • the X second output ports of the first optical cross unit are connected to the X second input ports of the second optical cross unit in a one-to-one correspondence through the X first conversion modules; the X second output ports of the second optical cross unit are connected to the X second input ports of the first optical cross unit in a one-to-one correspondence through the X second conversion modules.
  • the optical cross unit can output the optical signal from the first output port of the optical cross unit when there is no need to adjust the nominal center frequency of the optical signal, so that the optical signal is transmitted to the target optical fiber after passing through the combining module and the second optical cross module in sequence along a path that does not pass through the first conversion module and the second conversion module.
  • the optical cross unit can also output the optical signal from the second output port when it is necessary to adjust the nominal center frequency of the optical signal, so that after passing through the conversion module connected to the optical cross unit, the optical signal is transmitted to the target optical fiber after passing through the second input port of the optical cross unit, the first output port of the optical cross unit, the combining module and the second optical cross module in sequence.
  • the optical transmitter module can support the CDC feature.
  • the connection relationship between the conversion module, the first optical cross-connect module and the combining module may also be different from that shown in FIG. 7 .
  • the first optical cross unit has G input ports connected to the G first optical transmitters in a one-to-one correspondence
  • the second optical cross unit has H input ports connected to the H second optical transmitters in a one-to-one correspondence
  • the first optical cross unit and the second optical cross unit also have There are X first outgoing ports and X second outgoing ports.
  • the second optical cross unit has H input ports and 2J outgoing ports (which can be expressed as H*2J in FIG8).
  • the 2J outgoing ports include J first outgoing ports and J second outgoing ports.
  • Each combining module in FIG8 has 4 input terminals and 1 output terminal, which is represented as 4*1 in FIG8.
  • the X first output ports of each optical cross unit in the first optical cross unit and the second optical cross unit are connected to the input terminals of the X combining modules in a one-to-one correspondence, and the output terminals of the X combining modules are connected to the X input ports of the second optical cross module in a one-to-one correspondence;
  • the X second output ports of the first optical cross unit are connected to the input terminals of the X combining modules in a one-to-one correspondence through the X first conversion modules;
  • the X second output ports of the second optical cross unit are connected to the input terminals of the X combining modules in a one-to-one correspondence through the X second conversion modules.
  • the optical cross unit can output the optical signal from the first output port when there is no need to adjust the nominal center frequency of the optical signal, so that the optical signal is transmitted to the target optical fiber after passing through the combining module and the second optical cross module in sequence along a path that does not pass through the first conversion module and the second conversion module.
  • the optical cross unit can also output the optical signal from the second output port when it is necessary to adjust the nominal center frequency of the optical signal, so that the optical signal is transmitted to the target optical fiber after passing through the combining module and the second optical cross module in sequence after passing through the conversion module.
  • the first optical transmitter, the first optical cross unit and the first conversion module all support optical signals within a first frequency range
  • the second optical transmitter, the second optical cross unit and the second conversion module all support optical signals within a second frequency range
  • the optical transmitter module can also support the CDC feature.
  • the optical transmission module may also support the CD characteristic, and X may also be equal to 1.
  • the structure shown in FIG. 7 may be changed to the structure shown in FIG. 9
  • the structure shown in FIG. 8 may be changed to the structure shown in FIG. 10 .
  • the first optical cross unit and the second optical cross unit in FIG. 9 and FIG. 10 may both be MCS or adWSS.
  • the structure shown in FIG. 9 may refer to the relevant introduction of the structure shown in FIG. 7
  • the structure shown in FIG. 10 may refer to the relevant introduction of the structure shown in FIG. 8 , and the embodiments of the present application will not be described in detail here.
  • a conversion modules include: X conversion modules; the first optical cross module is used to: when it is necessary to adjust the nominal center frequency of the optical signal sent by the optical transmitter, control the optical signal to be transmitted to the input port of the second optical cross module after passing through the conversion module.
  • the ports of the first optical cross-connect module can be expressed as (K+J)*2J in FIG11.
  • the first optical cross-connect module can be an MCS or an adWSS.
  • the K first input ports of the first optical cross module are connected to the K optical transmitters (Tx-1 to Tx-K) in one-to-one correspondence; the X first output ports of the first optical cross module are connected to the X input ports of the second optical cross module (each belonging to the J second WSSs) in one-to-one correspondence; the X second input ports of the first optical cross module are connected to the X second output ports of the first optical cross module in one-to-one correspondence through the X conversion modules.
  • the first optical cross module can output the optical signal from the first output port of the first optical cross module when there is no need to adjust the nominal center frequency of the optical signal, so that the optical signal is transmitted to the target optical fiber among the J second optical fibers after passing through the second optical cross module along a path that does not pass through the conversion module.
  • the first optical cross module can also output the optical signal from the second output port when it is necessary to adjust the nominal center frequency of the optical signal, so that the optical signal is transmitted to the target optical fiber among the J second optical fibers after passing through the conversion module, the second input port of the first optical cross module, the first output port of the optical cross unit, and the second optical cross module.
  • the optical transmitter and the conversion module can both support optical signals within a first frequency range, and the first optical cross-connect module can support optical signals within the first frequency range and a second frequency range.
  • the conversion module is used to adjust the nominal center frequency of the optical signal within the first frequency range to the second frequency range.
  • the optical transmitter module can support the CDC feature.
  • the X second egress ports of the first optical cross-connect module in FIG. 11 may also be connected to the X second ingress ports of the first optical cross-connect module in a one-to-one correspondence without passing through the X conversion modules.
  • the optical transmission module further includes X combining modules (FIG12 takes J combining modules as an example); the first optical cross module has K input ports, X first output ports and X second output ports, but does not have the above-mentioned X second input ports.
  • the first optical cross module has a total of K input ports and 2X output ports.
  • the K input ports are connected to the K optical transmitters in a one-to-one correspondence
  • the X first output ports are connected to the input ends of the X combining modules in a one-to-one correspondence
  • the X second output ports are connected to the input ends of the X combining modules in a one-to-one correspondence through the X conversion modules
  • the output ends of the X combining modules are connected to the X input ports of the second optical cross module in a one-to-one correspondence (each belonging to the J second WSSs).
  • the first optical cross module can output the optical signal from the first output port of the first optical cross module when there is no need to adjust the nominal center frequency of the optical signal, so that the optical signal is transmitted to the target optical fiber among the J second optical fibers after passing through the second optical cross module along a path that does not pass through the conversion module.
  • the first optical cross module can also output the optical signal from the second output port when it is necessary to adjust the nominal center frequency of the optical signal, so that the optical signal is transmitted to the target optical fiber after passing through the conversion module and then the second optical cross module.
  • the optical transmitter and the conversion module can both support optical signals within a first frequency range, and the first optical cross-connect module can support optical signals within the first frequency range and a second frequency range.
  • the conversion module is used to adjust the nominal center frequency of the optical signal within the first frequency range to the second frequency range.
  • the optical transmitter module can also support the CDC feature.
  • connection mode shown in FIG. 12 may also be applicable to a case where the optical transmitter is divided into two groups of optical transmitters, and the nominal center frequency ranges of the optical signals emitted by the two groups of optical transmitters are different.
  • K optical transmitters include: G first optical transmitters and H second optical transmitters, the first optical transmitter is used to transmit an optical signal with a nominal center frequency within a first frequency range, and the second optical transmitter is used to transmit an optical signal with a nominal center frequency within a second frequency range, G ⁇ 1, H ⁇ 1;
  • the first optical cross module includes: a first optical cross unit and a second optical cross unit, and the optical transmission module also includes: X first combining modules and X second combining modules;
  • the first optical cross unit and the second optical cross unit can both be MCS or adWSS, and the first combining module and the second combining module can both be combiners or other devices having the function of combining multiple optical signals into one optical signal.
  • the first optical cross unit has G input ports connected to the G first optical transmitters in a one-to-one correspondence
  • the second optical cross unit has H input ports connected to the H second optical transmitters in a one-to-one correspondence.
  • the first optical cross unit and the second optical cross unit also have X first output ports and X second output ports.
  • the X first output ports of each optical cross unit are connected to the input ends of the X first combining modules in a one-to-one correspondence, and the output ends of the X first combining modules are connected to the X input ports of the second optical cross module in a one-to-one correspondence;
  • the X second output ports of each optical cross unit are connected to the input ends of the X second combining modules in a one-to-one correspondence, and the output ends of the X second combining modules are connected to the input ends of the X first combining modules in a one-to-one correspondence through X conversion modules.
  • the conversion module is used to: switch the nominal center frequency of the optical signal passing through between the first frequency range and the second frequency range; and the nominal center frequency of the optical signal passing through any conversion module is different from the nominal center frequency of the optical signal emitted by any optical transmitter.
  • the optical cross unit can output the optical signal from the first output port of the optical cross unit when there is no need to adjust the nominal center frequency of the optical signal, so that the optical signal is transmitted to the target optical fiber after passing through the first combining module and the second optical cross module along a path that does not pass through the conversion module.
  • the optical cross unit can also output the optical signal from the second output port when it is necessary to adjust the nominal center frequency of the optical signal, so that the optical signal is transmitted to the target optical fiber after passing through the conversion module, the first combining module and the second optical cross module in sequence.
  • the optical signals emitted by the first optical transmitter and the second optical transmitter can both have their nominal center frequencies adjusted by the conversion module.
  • the nominal center frequency of the optical signal emitted by the second optical transmitter can be adjusted by the conversion module.
  • the nominal center frequency of the optical signal emitted by the first optical transmitter can be adjusted by the conversion module. It can be seen that by adjusting the nominal center frequency by the conversion module, the frequency range of the optical signal output by the optical transmission module can be increased.
  • the first optical transmitter and the first optical cross unit can both support optical signals within the first frequency range
  • the second optical transmitter and the second optical cross unit can both support optical signals within the second frequency range.
  • the conversion module supports optical signals within the first frequency range and within the second frequency range.
  • the optical transmitter module can also support the CDC feature.
  • the optical transmission module may also support the CD characteristic, and X may also be equal to 1.
  • the structure shown in FIG11 may be changed to the structure shown in FIG14
  • the structure shown in FIG12 may be changed to the structure shown in FIG15
  • the structure shown in FIG13 may be changed to the structure shown in FIG16.
  • the first optical cross-connect module may be an MCS or an adWSS.
  • the structure shown in FIG14 may refer to the relevant introduction of the structure shown in FIG11
  • the structure shown in FIG15 may refer to the relevant introduction of the structure shown in FIG12
  • the structure shown in FIG16 may refer to the relevant introduction of the structure shown in FIG13.
  • A X/2 rounded up.
  • the A conversion modules include: X/2 rounded up conversion module. When X is an even number, X/2 rounded up is X/2, and when X is an odd number, X/2 rounded up is (X+1)/2.
  • the K optical transmitters include: G first optical transmitters and H second optical transmitters.
  • the first optical transmitter is used to transmit an optical signal with a nominal center frequency within a first frequency range
  • the second optical transmitter is used to transmit an optical signal with a nominal center frequency within a second frequency range, G ⁇ 1, H ⁇ 1
  • the conversion module is used to: switch the nominal center frequency of the optical signal passing through between the first frequency range and the second frequency range
  • the nominal center frequency of the optical signal passing through any conversion module is different from the nominal center frequency of the optical signal emitted by any first optical transmitter and any second optical transmitter.
  • the first optical cross-module can control the optical signal to be transmitted to the second optical cross-module after passing through the conversion module when the nominal center frequency of the optical signal needs to be adjusted, thereby adjusting the nominal center frequency of the optical signal on the conversion module.
  • the first optical cross module has K first input ports, A second input ports, X first output ports, and A second output ports. Therefore, the first optical cross module has a total of K+A (i.e., G+H+A) input ports, and J+A output ports, and the ports of the first optical cross module can be expressed as (G+H+A)*(J+A).
  • the K first input ports are connected to the K optical transmitters (including G first optical transmitters and H second optical transmitters) in a one-to-one correspondence
  • the X first output ports are connected to the X input ports of the second optical cross module in a one-to-one correspondence
  • the A second output ports are connected to the A second input ports in a one-to-one correspondence through A conversion modules.
  • the first optical cross module can output the optical signal from the first output port of the first optical cross module when there is no need to adjust the nominal center frequency of the optical signal, so that the optical signal is transmitted to the target optical fiber after passing through the second optical cross module along a path that does not pass through the conversion module.
  • the first optical cross module can also output the optical signal from the second output port when it is necessary to adjust the nominal center frequency of the optical signal, so that the optical signal is transmitted to the target optical fiber after passing through the conversion module, the second input port of the first optical cross module, the first output port of the optical cross unit, and the second optical cross module.
  • the first optical transmitter supports optical signals within a first frequency range
  • the second optical transmitter supports optical signals within a second frequency range
  • the first optical cross-connect module and the conversion module support optical signals within the first frequency range and within the second frequency range.
  • the optical transmitter module can support the CDC feature.
  • the first optical cross-connect module may also have other implementable modes.
  • the first optical cross module includes: a first optical cross unit and a second optical cross unit; the optical transmission module also includes: X first combining modules, A second combining modules and A branching modules.
  • the first optical cross unit and the second optical cross unit can both be MCS or adWSS, the first combining module and the second combining module can both be combiners or other devices having the function of combining multiple optical signals into one optical signal, and the branching module can be a splitter or other device having the function of dividing one optical signal into multiple optical signals.
  • the first optical cross unit has G first input ports connected to the G first optical transmitters in one-to-one correspondence, and the second optical cross unit has H first input ports connected to the H second optical transmitters in one-to-one correspondence; the first optical cross unit and the second optical cross unit also have X first output ports, A second input ports and A second output ports. Therefore, the first optical cross unit has a total of G+A input ports and J+A output ports, and the ports of the first optical cross unit can be expressed as (G+A)*(J+A).
  • the second optical cross unit has a total of H+A input ports and J+A output ports, and the ports of the first optical cross unit can be expressed as (H+A)*(J+A).
  • the X first output ports are connected to the input ends of the X first combining modules in a one-to-one correspondence, and the output ends of the X first combining modules are connected to the X input ports of the second optical cross module in a one-to-one correspondence;
  • the A second output ports are connected to the input ends of the A second combining modules in a one-to-one correspondence, and the output ends of the A second combining modules are connected to the input ends of the A branching modules in a one-to-one correspondence through the A conversion modules;
  • the output ends of the A branching modules are connected to the A second input ports in a one-to-one correspondence.
  • the conversion module is used to switch the nominal center frequency of the optical signal passing through between the first frequency range and the second frequency range.
  • the optical cross unit can output the optical signal from the first output port of the optical cross unit when there is no need to adjust the nominal center frequency of the optical signal, so that the optical signal is transmitted to the target optical fiber after passing through the first combining module and the second optical cross module along a path that does not pass through the conversion module.
  • the optical cross unit can also output the optical signal from any second output port when it is necessary to adjust the nominal center frequency of the optical signal, so that the optical signal is transmitted to the target optical fiber after passing through the second combining module and the conversion module, and then passing through the branching module, the second input port of the optical cross unit, the first output port of the optical cross unit, the first combining module and the second optical cross module in sequence.
  • the optical signals emitted by the first optical transmitter and the second optical transmitter can both have their nominal center frequencies adjusted by the conversion module.
  • the nominal center frequency of the optical signal emitted by the second optical transmitter can be adjusted by the conversion module.
  • the nominal center frequency of the optical signal emitted by the first optical transmitter can be adjusted by the conversion module. It can be seen that by adjusting the nominal center frequency by the conversion module, the frequency range of the optical signal output by the optical transmission module can be increased.
  • the first optical transmitter supports optical signals within a first frequency range
  • the second optical transmitter supports optical signals within a second frequency range
  • the first optical cross unit, the second optical cross unit and the conversion module support optical signals within the first frequency range and the second frequency range.
  • the optical transmitter module can also support the CDC feature.
  • the optical transmission module may also support the CD feature, and X may also be equal to 1.
  • the structure shown in Figure 17 may be changed to the structure shown in Figure 19, and the structure shown in Figure 18 may be changed to the structure shown in Figure 20.
  • the first optical cross-connect module may be an MCS or an adWSS.
  • the structure shown in Figure 19 may refer to the relevant introduction of the structure shown in Figure 17, and the structure shown in Figure 20 may refer to the relevant introduction of the structure shown in Figure 18. The embodiments of the present application will not be described in detail here.
  • the first optical cross-connect module may include: a target WSS, an auxiliary WSS and K branching units; the optical transmission module also includes: a combining module.
  • the combining module may be a combiner or other device having the function of combining multiple optical signals into one optical signal.
  • the target WSS and the auxiliary WSS each have K input ends and 1 output end, the input ends of the K branching units are connected one-to-one with the K optical transmitters, and the output ends of the K branching units are connected one-to-one with the K input ends. Therefore, each branching unit has one input end and two output ends.
  • the output end of the target WSS is connected to the input end of the combining module, and the output end of the auxiliary WSS is connected to the input end of the combining module through the conversion module; the output end of the combining module is connected to the input port of the second optical cross-connect module.
  • the target WSS is used to control the optical signal to be output from the output end of the target WSS when there is no need to adjust the nominal center frequency of the received optical signal; the auxiliary WSS is used to control the optical signal to be output from the output end of the auxiliary WSS when the nominal center frequency of the received optical signal needs to be adjusted.
  • the optical signal emitted by the optical transmitter can be transmitted to the connected branching unit.
  • the branching unit will divide the optical signal into two optical signals, and then transmit the two optical signals to the target WSS and the auxiliary WSS respectively.
  • the target WSS will output the received optical signal to the combining module, so that the optical signal is transmitted to the target optical fiber in the J second optical fibers after passing through the second optical cross module.
  • the auxiliary WSS can receive one optical signal, the auxiliary WSS will not output the optical signal.
  • the auxiliary WSS when the nominal center frequency of the optical signal needs to be adjusted, the auxiliary WSS will output the received optical signal to the conversion module, so that the optical signal is transmitted to the target optical fiber in the J second optical fibers after passing through the conversion module, the combining module and the second optical cross module in sequence.
  • the target WSS when the nominal center frequency of the optical signal needs to be adjusted, although the target WSS can receive one optical signal, the target WSS will not output the optical signal.
  • the optical transmitter, the target WSS, the auxiliary WSS, and the conversion module all support optical signals within the same frequency range.
  • a portion of the optical transmitters support optical signals within the first frequency range
  • another portion of the optical transmitters support optical signals within the second frequency range
  • the target WSS, the auxiliary WSS, and the conversion module all support optical signals within the first frequency range and the second frequency range.
  • the target WSS and the auxiliary WSS can support optical signals within the same frequency range as the WSS in the second optical cross-connect module, and these WSSs can use the same WSS.
  • the optical transmitter module can support the CD characteristic.
  • the first optical cross-connect module may include: a target combining unit, an auxiliary combining unit, and K optical switches, and the optical transmission module also includes a combining module.
  • the target combining unit and the auxiliary combining unit each have K input ends and 1 output end; for each combining unit in the target combining unit and the auxiliary combining unit, K optical transmitters are respectively connected to the K input ends of the combining module through K optical switches in a one-to-one correspondence; the output end of the target combining unit is connected to the input end of the combining module, and the output end of the auxiliary combining unit is connected to the input end of the combining module through a conversion module; the output end of the combining module is connected to the input port of the second optical cross-connect module.
  • the optical switch is used to: when the nominal center frequency of the optical signal from the connected optical transmitter needs to be adjusted, connect the connected optical transmitter to the auxiliary combining unit; when the nominal center frequency of the optical signal from the connected optical transmitter does not need to be adjusted, connect the connected optical transmitter to the target combining unit.
  • the optical signal emitted by the optical transmitter can be transmitted to the connected optical switch.
  • the optical switch will connect the optical transmitter to the auxiliary combining unit (at this time, the optical transmitter is not connected to the target combining unit), so that after the optical signal is transmitted to the auxiliary combining unit, it passes through the conversion module, the combining module and the second optical cross module in sequence and is transmitted to the target optical fiber among the J second optical fibers.
  • the optical switch when it is not necessary to adjust the nominal center frequency of the optical signal, the optical switch will connect the optical transmitter to the target combining unit, so that after the optical signal is transmitted to the target combining unit, it passes through the combining module and the second optical cross module in sequence and is transmitted to the target optical fiber among the J second optical fibers.
  • the optical transmitter, the target combining unit, the auxiliary combining unit, and the conversion module all support optical signals within the same frequency range.
  • the optical transmitter module can support the CD characteristic.
  • the optical transmission module supports the CDC feature
  • the second optical cross-connect module includes J second WSSs (see the relevant introduction in Figure 5 for details, the second WSS can be called line WSS).
  • the introduction of the CDC feature of the optical transmission module in Figures 7, 8, 11, 12, 13, 17 and 18 can refer to the relevant CDC feature introduction in Figures 2 and 5, and the embodiments of the present application will not be repeated here.
  • the optical transmission module supports the CD characteristic
  • the second optical cross module includes a fifth WSS and J sixth WSSs (see the relevant introduction in Figure 1 for details).
  • the fifth WSS can be a third optical cross unit, and the third optical cross unit can also be a splitter instead of a WSS; the sixth WSS can be called a line WSS.
  • the introduction of the CDC characteristics of the optical transmission module in Figures 9, 10, 14, 15, 16, 19, 20, 21 and 22 can refer to the introduction of the relevant CD characteristics in Figure 1, and the embodiments of the present application will not be repeated here.
  • Figures 7 to 22 also show an optical receiving module in the optical device where the optical transmitting module is located. It can be understood that the optical receiving module in the optical device may also have a structure different from that shown in these figures, and the embodiments of the present application do not limit the structure of the optical receiving module in the optical device.
  • the first optical cross-module and the second optical cross-module can be directly connected.
  • the first optical cross-module can directly transmit the optical signal to the second optical cross-module.
  • the optical signal does not need to pass through the combiner module. Therefore, the insertion loss of the optical signal is less.
  • the number of input ports and output ports of the first optical cross module varies.
  • the number of input ports and output ports of the first optical cross module is relatively small. Therefore, the complexity of the first optical cross module is lower and the cost is lower.
  • the K optical transmitters in Figures 11, 12, 14, 15, 21, and 22 can all be the same type of optical transmitters, supporting optical signals within the same frequency range.
  • the G first optical transmitters in Figures 7, 8, 9, 10, 13, 16, 17, 18, 19, and 20 can all be the same type of optical transmitters, supporting optical signals within the first frequency range;
  • the H second optical transmitters in Figures 7, 8, 9, 10, 13, 16, 17, 18, 19, and 20 can all be the same type of optical transmitters, supporting optical signals within the second frequency range.
  • the above different embodiments can be reasonably selected according to factors such as the size of J, the size of X, the size of K, the requirements for the frequency range of the optical signal output by the optical transmission module, etc.
  • the first optical cross module has a first input port connected to K optical transmitters, a first output port connected to the second optical cross module, and a second output port connected to the input port of the conversion module.
  • the conversion module has an output port connected to the second optical cross module, or the conversion module has an output port connected to the second input port of the first optical cross module.
  • the first optical cross module can send an optical signal emitted by an optical transmitter received by any first input port from the first output port to the second optical cross module according to the configuration information, or send the optical signal to the second output port and then send it to the first optical cross module after passing through the second input port and the first output port.
  • Second optical cross-connect module The optical signal sent to the input port of the second optical cross-connect module will be sent by the second optical cross-connect module from the output port to the target optical fiber to which the optical signal is to be transmitted.
  • the embodiments of the present application also provide an optical device, which includes any optical transmission module provided in the embodiments of the present application and an optical receiving module for receiving optical signals.
  • An embodiment of the present application further provides an optical system, comprising a plurality of optical devices, wherein at least one optical device is the optical device provided in the embodiment of the present application.
  • first and second etc. are used for descriptive purposes only and should not be understood as indicating or implying relative importance.
  • the term “at least one” refers to one or more, and “plurality” refers to two or more, unless otherwise expressly limited.
  • the term “and/or” in this application is merely a description of the association relationship between associated objects, indicating that three relationships may exist. For example, A and/or B can represent: A exists alone, A and B exist at the same time, and B exists alone.
  • the character "/" in this article generally indicates that the previously associated objects are in an "or” relationship.
  • module embodiments described above are only schematic, for example, the division of the units and modules is only a logical function division, and there may be other division methods in actual implementation, such as multiple units or modules can be combined or integrated into another system, or some features can be ignored or not executed.
  • the units or modules described as separate components may or may not be physically separated, and the components shown as units or modules may or may not be physical units or modules, that is, they may be located in one place or distributed in multiple places. Some or all of the units or modules may be selected according to actual needs to implement the solution of this embodiment.
  • the functional units in the various embodiments of the present application may be integrated together, or the modules or units may be independent of each other, or two or more units or modules may be integrated together.
  • the above integrated structure may be implemented in the form of hardware or in the form of hardware plus software functional units.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optical Communication System (AREA)

Abstract

一种光发射模组、光设备及系统,属于光技术领域。光发射模组包括:至少一个光发射机、第一光交叉模块、至少一个转换模块和第二光交叉模块;第二光交叉模块连接J根光纤。光发射机用于向第一光交叉模块发射光信号;第一光交叉模块用于在需要调整该光信号的标称中心频率时,控制该光信号沿经过所述转换模块的路径传输至第二光交叉模块的入端口;在无需调整该光信号的标称中心频率时,控制该光信号沿不经过所述转换模块的路径传输至第二光交叉模块的入端口;转换模块用于调整经过的该光信号的标称中心频率。本申请解决了光设备的性能较差的问题,本申请用于提升光设备发出的光信号的频率范围。

Description

光发射模组、光设备及系统
本申请要求于2023年02月28日提交的申请号为202310228941.X、发明名称为“光发射模组、光设备及系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及光技术领域,特别涉及一种光发射模组、光设备及系统。
背景技术
随着光技术的发展,能够收发光信号的光设备得到了广泛的应用。光设备利用光发射模组发送光信号。
光发射模组中的光源模块用于输出光信号。光源模块中的光发射机通常包括:光源和信号调制单元,其中,光源用于向信号调制单元发送光载波,信号调制单元可以将光源发出的光载波调制成光信号后输出光发射模组。
但是,目前光源能够发出的光载波的频率的范围较窄,使得光发射模组输出的光信号的频率范围也较窄,光设备的性能较差。
发明内容
本申请提供了一种光发射模组、光设备及系统,可以解决光设备的性能较差的问题,所述技术方案如下:
第一方面,本申请提供了一种光发射模组,该光发射模组包括:至少一个光发射机、第一光交叉模块、至少一个转换模块和第二光交叉模块;其中,第二光交叉模块具有X个入端口和J个出端口;J≥1,J个出端口一一对应的连接J根光纤。该X个入端口为第二光交叉模块中用于与第一光交叉模块通信的端口,第二光交叉模块可能还具有除该X个入端口之外的其他入端口,即第二光交叉模块的入端口不止X个。
X=1或X≥J。示例地,在X≥J时,第二光交叉模块可以包括:J个线路WSS;每个线路WSS具有第二光交叉模块的至少一个入端口和一个出端口,J个线路WSS具有第二光交叉模块的X个入端口和J个出端口。在X=1时,第二光交叉模块包括:第三光交叉单元和J个线路WSS;第三光交叉单元具有J个中转出端口和第二光交叉模块的一个入端口,J个中转出端口与J个线路WSS一一对应连接,线路WSS具有第二光交叉模块的一个出端口,J个线路WSS具有第二光交叉模块的J个出端口。
在该光发射模组中,光发射机用于向第一光交叉模块发射光信号;第一光交叉模块用于:在需要调整该光信号的标称中心频率时,控制该光信号沿经过转换模块的路径传输至第二光交叉模块中的入端口;以及,在无需调整该光信号的标称中心频率时,控制该光信号沿不经过转换模块的路径传输至第二光交叉模块的入端口;转换模块用于调整经过的光信号的标称中心频率。经过转换模块的路径可以经过一个转换模块或多个转换模块,不经过转换模块的路径不经过上述至少一个转换模块中的任一转换模块。
可见,光发射机发出的光信号在传输至第一光交叉模块后,可能不经过转换模块而直接传输至第二光交叉模块,也可能在经过转换模块之后传输至第二光交叉模块。第一光交叉模块可以根据配置信息,确定是否需要调整接收到的光信号的标称中心频率,进而确定该光信号传输至第二光交叉模块的路径。
综上所述,本申请提供的光发射模组不仅能够输出光发射机发出的光信号,还能够输出对该光信号进行标称中心频率调整后的光信号。这两种光信号的标称中心频率不同,所以,使得光发射模组可以输出的光的频率范围较大,提升光发射模组的性能。提升了光发射模组及其所在的光设备的性能。
第一光交叉模块控制光信号沿经过转换模块的路径传输至第二光交叉模块中的入端口有多种可实现方式。
示例地,在一种可实现方式中,第一光交叉模块用于:在需要调整光信号的标称中心频率时,将光信号传输至转换模块;转换模块用于:将来自第一光交叉模块的光信号经过标称中心频率的调整后,传输至第一光交叉模块;第一光交叉模块还用于:将来自转换模块的光信号传输至第二光交叉模块的入端口。在第一光交叉模块将来自转换模块的光信号传输至第二光交叉模块的入端口的过程中,该光信号不会经过转 换模块。
又示例地,在另一种可实现方式中,第一光交叉模块用于:在需要调整光信号的标称中心频率时,将光信号传输至转换模块;转换模块用于:将来自第一光交叉模块的光信号经过标称中心频率的调整后,传输至第二光交叉模块的入端口。在转换模块将来自第一光交叉模块的光信号经过标称中心频率的调整后,传输至第二光交叉模块的入端口的过程中,该光信号不会经过第一光交叉模块。
可选地,所述至少一个光发射机包括多个光发射机;第一光交叉模块可以用于:在需要调整多个光发射机发射的多个光信号的标称中心频率时,控制该多个光信号沿经过同一转换模块的路径传输至第二光交叉模块的入端口;这种情况下,该转换模块能够调整该多个光信号的标称中心频率。可见,一个转换模块能够对多个光发射机发出的光信号进行标称中心频率的调整,所以,本申请支持无需为每个光发射机设置一个转换模块的情况,因此,本申请支持采用较少的转换模块,光发射模组的成本较低。
本申请中至少一个转换模块包括A个转换模块。A可以是1,也可以是大于1的整数。本申请中光发射机的数量为K,K可以大于或等于1。转换模块的数量A可以小于或等于光发射机的数量K。在A<K时,若光发射机的数量K较大,则无需为每个光发射机设置一个转换模块,也能够实现对各个光发射机发出的光信号的标称中心频率的调整。由于无需为每个光发射机设置转换模块,因此,本申请采用的转换模块的数量较少,光发射模组的成本较低。
可选地,A≤2X。在第二光交叉模块的入端口的数量X的2倍小于光发射机的数量K时,A可以等于2X,此时转换模块的数量A较小,能够通过较少的转换模块实现对较多光发射机发出的光信号的标称中心频率的调整。在第二光交叉模块的入端口的数量X的2倍大于或等于光发射机的数量K时,A可以等于K且小于2X,此时,转换模块的数量A也较少。
在A≤2X的情况下,A可以进一步地小于或等于X。比如,在第二光交叉模块的入端口的数量X小于光发射机的数量K时,A可以等于X,此时转换模块的数量A较小,能够通过较少的转换模块实现对较多光发射机发出的光信号的标称中心频率的调整。在第二光交叉模块的入端口的数量X大于或等于光发射机的数量K时,A可以等于K且小于X,此时,转换模块的数量A也较少。
在A≤X的情况下,A可以进一步地小于或等于X/2向上取整。比如,在X/2向上取整小于光发射机的数量K时,A可以等于X/2向上取整,此时转换模块的数量A较小,能够通过较少的转换模块实现对较多光发射机发出的光信号的标称中心频率的调整。在X/2向上取整大于或等于光发射机的数量K时,A可以等于K且小于X/2向上取整,此时,转换模块的数量A也较少。
另外,本申请提供的光发射模组也可以支持波长无关且方向无关(colorless、directionless,CD)或波长无关、方向无关且竞争无关(colorless、directionless、contentionless,CDC)的特性,相应地转换模块的数量A以及转换模块与其他模块的连接关系可以根据CD或CDC的特性进行设置。以下将分别以A=2X、X和X/2向上取整这三种情况为例进行进一步地讲解。在光发射模组具有CD特性时,X=1;在光发射模组具有CDC特性时,X≥J。
(1)A=2X。
示例地,A个转换模块包括:X个第一转换模块和X个第二转换模块;所述第一光交叉模块包括:第一光交叉单元和第二光交叉单元;K个光发射机包括:G个第一光发射机和H个第二光发射机,所述第一光发射机用于向所述第一光交叉单元发射标称中心频率在第一频率范围内的光信号,所述第二光发射机用于向所述第二光交叉单元发射标称中心频率在第二频率范围内的光信号,G≥1,H≥1;所述第一光交叉单元用于:在需要调整接收到的所述光信号的标称中心频率时,控制所述光信号在经过所述第一转换模块后,传输至所述第二光交叉模块的入端口;用于传输至不同所述光纤的所述光信号经过的所述第一转换模块不同;所述第二光交叉单元用于:在需要调整接收到的所述光信号的标称中心频率时,控制所述光信号在经过所述第二转换模块后,传输至所述第二光交叉模块的入端口;用于传输至不同所述光纤的所述光信号经过的所述第二转换模块不同;所述第一转换模块用于:将经过的光信号的标称中心频率调整至所述第二频率范围内;经过所述第一转换模块的光信号的标称中心频率与所述第二光发射机发出的光信号的标称中心频率不同;所述第二转换模块用于:将经过的光信号的标称中心频率调整至所述第一频率范围内;经过所述第二转换模块的光信号的标称中心频率与所述第一光发射机发出的光信号的标称中心频率不同。
可以看出,第一光发射机发出的光信号可以通过第一转换模块进行标称中心频率的调整,第二光发射机发出的光信号可以通过第二转换模块进行标称中心频率的调整。在光发射模组需要第二光发射机发出的 光信号的频率变为第一频率范围内的频率时,可以通过第二转换模块对第二光发射机发出的光信号的标称中心频率进行调整。在光发射模组需要第一光发射机发出的光信号的频率变为第二频率范围内的频率时,可以通过第一转换模块对第一光发射机发出的光信号的标称中心频率进行调整。并且,经过第一转换模块调整后的光信号的标称中心频率可以与第一发射机发出的光信号的标称中心频率不同;经过第二转换模块调整后的光信号的标称中心频率可以与第二发射机发出的光信号的标称中心频率不同。可见,通过第一转换模块或第二转换模块对标称中心频率的调整,能够增多光发射模组输出的光信号的频率范围。
这种情况下,光发射模组还可以包括:X个合路模块;所述第一光交叉单元具有与所述G个第一光发射机一一对应连接的G个第一入端口,所述第二光交叉单元具有与所述H个第二光发射机一一对应连接的H个第一入端口;所述第一光交叉单元和所述第二光交叉单元还均具有X个第一出端口、X个第二入端口和X个第二出端口;所述X个第一出端口与所述X个合路模块的输入端一一对应连接,所述X个合路模块的输出端与所述第二光交叉模块的X个入端口一一对应连接;所述第一光交叉单元的所述X个第二出端口分别通过所述X个第一转换模块与所述第二光交叉单元的所述X个第二入端口一一对应连接;所述第二光交叉单元的所述X个第二出端口分别通过所述X个第二转换模块与所述第一光交叉单元的所述X个第二入端口一一对应连接。
对于任意光发射机发出的光信号,该光信号在传输至该光发射机连接的光交叉单元后,该光交叉单元可以在无需调整该光信号的标称中心频率时,将该光信号从该光交叉单元的第一出端口输出,进而使得该光信号沿不经过第一转换模块和第二转换模块的路径,依次经过合路模块和第二光交叉模块后传输至目标光纤。该光交叉单元还可以在需要调整该光信号的标称中心频率时,将该光信号从第二出端口输出,进而使得该光信号在经过该光交叉单元连接的转换模块后,依次经过该光交叉单元的第二入端口、该光交叉单元的第一出端口、合路模块和第二光交叉模块后传输至目标光纤。
可选地,在光发射模组包括X个合路模块的情况下,转换模块、第一光交叉模块以及合路模块之间的连接关系还可以与上述连接关系不同。比如,所述光发射模组还包括:X个合路模块;所述第一光交叉单元具有与所述G个第一光发射机一一对应连接的G个入端口,所述第二光交叉单元具有与所述H个第二光发射机一一对应连接的H个入端口;所述第一光交叉单元和所述第二光交叉单元还均具有X个第一出端口和X个第二出端口;所述X个第一出端口与所述X个合路模块的输入端一一对应连接,所述X个合路模块的输出端与所述第二光交叉模块的X个入端口一一对应连接;所述第一光交叉单元的所述X个第二出端口分别通过所述X个第一转换模块与所述X个合路模块的输入端一一对应连接;所述第二光交叉单元的所述X个第二出端口分别通过所述X个第二转换模块与所述X个合路模块的输入端一一对应连接。
对于任意光发射机发出的光信号,该光信号在传输至该光交叉单元后,该光交叉单元可以在无需调整该光信号的标称中心频率时,将该光信号从第一出端口输出,进而使得该光信号沿不经过第一转换模块和第二转换模块的路径,依次经过合路模块和第二光交叉模块后传输至目标光纤。该光交叉单元还可以在需要调整该光信号的标称中心频率时,将该光信号从第二出端口输出,进而使得该光信号在经过转换模块后,依次经过合路模块和第二光交叉模块后传输至目标光纤。
(2)A=X。
在A=X时,A个转换模块包括:X个转换模块;所述第一光交叉模块用于:在需要调整所述光信号的标称中心频率时,控制所述光信号在经过转换模块后传输至所述第二光交叉模块的入端口。并且,用于传输至不同所述光纤的所述光信号经过的所述转换模块不同。可见,在A=X时,可以根据光信号需要传输至的光纤,控制该光信号经过相应地转换模块。
示例地,所述第一光交叉模块具有K个第一入端口、X个第一出端口、X个第二入端口和X个第二出端口;所述K个第一入端口与K个光发射机一一对应连接,所述X个第一出端口与所述第二光交叉模块的X个入端口一一对应连接,所述X个第二入端口分别通过所述X个转换模块与所述X个第二出端口一一对应连接。
对于任意光发射机发出的光信号,该光信号在传输至第一光交叉模块后,该第一光交叉模块可以在无需调整该光信号的标称中心频率时,将该光信号从该第一光交叉模块的第一出端口输出,进而使得该光信号沿不经过转换模块的路径,经过第二光交叉模块后传输至J根第二光纤中的目标光纤。该第一光交叉模块还可以在需要调整该光信号的标称中心频率时,将该光信号从第二出端口输出,进而使得该光信号在经 过转换模块后,再经过该第一光交叉模块的第二入端口、该光交叉单元的第一出端口和第二光交叉模块后传输至J根第二光纤中的目标光纤。
可以理解的是,第一光交叉模块的X个第二出端口也可以不通过X个转换模块与第一光交叉模块的X个第二入端口一一对应连接。比如,所述光发射模组还包括X个合路模块;所述第一光交叉模块具有K个入端口、X个第一出端口和X个第二出端口;所述K个入端口与K个光发射机一一对应连接,所述X个第一出端口与所述X个合路模块的输入端一一对应连接,所述X个第二出端口分别通过所述X个转换模块与所述X个合路模块的输入端一一对应连接,所述X个合路模块的输出端与所述第二光交叉模块的X个入端口一一对应连接。
对于任意光发射机发出的光信号,该光信号在传输至第一光交叉模块后,该第一光交叉模块可以在无需调整该光信号的标称中心频率时,将该光信号从该第一光交叉模块的第一出端口输出,进而使得该光信号沿不经过转换模块的路径,经过第二光交叉模块后传输至J根第二光纤中的目标光纤。该第一光交叉模块还可以在需要调整该光信号的标称中心频率时,将该光信号从第二出端口输出,进而使得该光信号在经过转换模块后,再经过第二光交叉模块后传输至目标光纤。
进一步地,A=X的情况也可以适用于光发射机分为两组光发射机的情况,且两组光发射机发出的光信号的标称中心频率的范围不同。比如,K个光发射机包括:G个第一光发射机和H个第二光发射机,所述第一光发射机用于发射标称中心频率在第一频率范围内的光信号,所述第二光发射机用于发射标称中心频率在第二频率范围内的光信号,G≥1,H≥1;所述第一光交叉模块包括:第一光交叉单元和第二光交叉单元,所述光发射模组还包括:X个第一合路模块和X个第二合路模块;所述第一光交叉单元具有与所述G个第一光发射机一一对应连接的G个入端口,所述第二光交叉单元具有与所述H个第二光发射机一一对应连接的H个入端口;所述第一光交叉单元和所述第二光交叉单元还均具有X个第一出端口和X个第二出端口;所述X个第一出端口与所述X个第一合路模块的输入端一一对应连接,所述X个第一合路模块的输出端与所述第二光交叉模块的X个入端口一一对应连接;所述X个第二出端口与所述X个第二合路模块的输入端一一对应连接,所述X个第二合路模块的输出端分别通过所述X个转换模块与所述X个第一合路模块的输入端一一对应连接;所述转换模块用于:将经过的光信号的标称中心频率在所述第一频率范围和所述第二频率范围之间切换;经过所述转换模块的光信号的标称中心频率与所述光发射机发出的光信号的标称中心频率不同。
对于任意光发射机发出的光信号,该光信号在传输至连接的光交叉单元后,该光交叉单元可以在无需调整该光信号的标称中心频率时,将该光信号从该光交叉单元的第一出端口输出,进而使得该光信号沿不经过转换模块的路径,经过第一合路模块和第二光交叉模块后传输至目标光纤。该光交叉单元还可以在需要调整该光信号的标称中心频率时,将该光信号从第二出端口输出,进而使得该光信号在经过转换模块后,再依次经过第一合路模块和第二光交叉模块后传输至目标光纤。第一光发射机和第二光发射机发出的光信号均可以通过转换模块进行标称中心频率的调整。在光发射模组需要输出第一频率范围内的光信号时,可以通过转换模块对第二光发射机发出的光信号的标称中心频率进行调整。在光发射模组需要输出第二频率范围内的光信号时,可以通过转换模块对第一光发射机发出的光信号的标称中心频率进行调整。可见,通过转换模块对标称中心频率的调整,能够增多光发射模组输出的光信号的频率范围。
(3)A=X/2的向上取整。此时,A个转换模块包括:X/2的向上取整个转换模块。当X为偶数时,X/2的向上取整为X/2,当X为奇数时,X/2的向上取整为(X+1)/2。这种情况适用于K个光发射机包括:G个第一光发射机和H个第二光发射机的情况。第一光发射机用于发射标称中心频率在第一频率范围内的光信号,第二光发射机用于发射标称中心频率在第二频率范围内的光信号,G≥1,H≥1;转换模块用于:将经过的光信号的标称中心频率在第一频率范围和第二频率范围之间切换;并且经过所述转换模块的光信号的标称中心频率与所述第一光发射机和第二光发射机发出的光信号的标称中心频率均不同。对于任意光发射机发出的光信号,该光信号在传输至第一光交叉模块后,该第一光交叉模块可以在需要调整该光信号的标称中心频率时,控制该光信号在经过转换模块后传输至第二光交叉模块,进而使得该光信号在该转换模块上进行标称中心频率的调整。
示例地,所述第一光交叉模块具有K个第一入端口、A个第二入端口、X个第一出端口和A个第二出端口;所述K个第一入端口与所述K个光发射机一一对应连接,所述X个第一出端口与所述第二光交叉模块的X个入端口一一对应连接,所述A个第二出端口分别通过A个转换模块与所述A个第二入端口一 一对应连接。
对于任意光发射机发出的光信号,该光信号在传输至第一光交叉模块后,该第一光交叉模块可以在无需调整该光信号的标称中心频率时,将该光信号从该第一光交叉模块的第一出端口输出,进而使得该光信号沿不经过转换模块的路径,经过第二光交叉模块后传输至目标光纤。该第一光交叉模块还可以在需要调整该光信号的标称中心频率时,将该光信号从第二出端口输出,进而使得该光信号在经过转换模块后,再经过该第一光交叉模块的第二入端口、该光交叉单元的第一出端口和第二光交叉模块后传输至目标光纤。
可以理解的是,在A=X/2的向上取整时,第一光交叉模块还可以有其他可实现方式。
比如,所述第一光交叉模块包括:第一光交叉单元和第二光交叉单元;所述光发射模组还包括:X个第一合路模块、A个第二合路模块和A个分路模块;所述第一光交叉单元具有与所述G个第一光发射机一一对应连接的G个第一入端口,所述第二光交叉单元具有与所述H个第二光发射机一一对应连接的H个第一入端口;所述第一光交叉单元和所述第二光交叉单元还均具有X个第一出端口、A个第二入端口和A个第二出端口;所述X个第一出端口与所述X个第一合路模块的输入端一一对应连接,所述X个第一合路模块的输出端与所述第二光交叉模块的X个入端口一一对应连接;所述A个第二出端口与所述A个第二合路模块的输入端一一对应连接,所述A个第二合路模块的输出端通过所述A个转换模块与所述A个分路模块的输入端一一对应连接;所述A个分路模块的输出端与所述A个第二入端口一一对应连接;所述转换模块用于:将经过的光信号的标称中心频率在所述第一频率范围和所述第二频率范围之间切换。
对于任意光发射机发出的光信号,该光信号在传输至连接的光交叉单元后,该光交叉单元可以在无需调整该光信号的标称中心频率时,将该光信号从该光交叉单元的第一出端口输出,进而使得该光信号沿不经过转换模块的路径,经过第一合路模块和第二光交叉模块后传输至目标光纤。该光交叉单元还可以在需要调整该光信号的标称中心频率时,将该光信号从任第二出端口输出,进而使得该光信号在经过第二合路模块和转换模块后,再依次经过分路模块、光交叉单元的第二入端口、该光交叉单元的第一出端口、第一合路模块和第二光交叉模块后传输至目标光纤。
另外,第一光发射机和第二光发射机发出的光信号均可以通过转换模块进行标称中心频率的调整。在光发射模组需要输出第一频率范围内的光信号时,可以通过转换模块对第二光发射机发出的光信号的标称中心频率进行调整。在光发射模组需要输出第二频率范围内的光信号时,可以通过转换模块对第一光发射机发出的光信号的标称中心频率进行调整。可见,通过转换模块对标称中心频率的调整,能够增多光发射模组输出的光信号的频率范围。
以上分别以A=2X、X以及X/2的向上取整为例,对支持CD或CDC特性的光发射模组进行了介绍。可以理解的是,在光发射模组支持CD特性,且X=A=1的情况下,光发射模组还可以有其他可实现方式。
示例地,在X=A=1时,所述第一光交叉模块包括:目标WSS、辅助WSS和K个分路单元,所述目标WSS和所述辅助WSS均具有K个输入端和1个输出端;所述光发射模组还包括:合路模块;所述K个分路单元的输入端与K个光发射机一一对应连接,所述K个分路单元的输出端与所述K个输入端一一对应连接;所述目标WSS的输出端与所述合路模块的输入端连接,所述辅助WSS的输出端经过所述转换模块与所述合路模块的输入端连接;所述合路模块的输出端连接所述第二光交叉模块的入端口;所述目标WSS用于在无需调整接收到的所述光信号的标称中心频率时,控制所述光信号从所述目标WSS的输出端输出;所述辅助WSS用于在需要调整接收到的所述光信号的标称中心频率时,控制所述光信号从所述辅助WSS的输出端输出。
对于任意一个光发射机,该光发射机发出的光信号能够传输至连接的分路单元。该分路单元会将该光信号分为两路光信号后,将这两路光信号分别传输至目标WSS和辅助WSS。一方面,在无需调整该光信号的标称中心频率时,目标WSS会将接收到的一路光信号输出至合路模块,以使该光信号经过第二光交叉模块之后传输至J根第二光纤中的目标光纤。在无需调整该光信号的标称中心频率时,辅助WSS虽然能够接收到一路光信号,但辅助WSS并不会输出该路光信号。另一方面,在需要调整该光信号的标称中心频率时,辅助WSS会将接收到的一路光信号输出至转换模块,以使该光信号在依次经过转换模块、合路模块和第二光交叉模块之后传输至J根第二光纤中的目标光纤。在需要调整该光信号的标称中心频率时,目标WSS虽然能够接收到一路光信号,但目标WSS并不会输出该路光信号。
又示例地,在X=A=1时,所述第一光交叉模块包括:目标合路单元、辅助合路单元以及K个光开关,所述目标合路单元和所述辅助合路单元均具有K个输入端和1个输出端;所述光发射模组还包括合路模块; K个光发射机通过所述K个光开关分别与所述K个输入端一一对应连接;所述目标合路单元的输出端与所述合路模块的输入端连接,所述辅助合路单元的输出端经过所述转换模块与所述合路模块的输入端连接;所述合路模块的输出端与所述第二光交叉模块的入端口连接;所述光开关用于:在需要调整来自连接的所述光发射机的所述光信号的标称中心频率时,将连接的所述光发射机连接至所述辅助合路单元;在无需调整来自连接的所述光发射机的所述光信号的标称中心频率时,将连接的所述光发射机连接至所述目标合路单元。
对于任意一个光发射机,该光发射机发出的光信号能够传输至连接的光开关。一方面,在需要调整该光信号的标称中心频率时,该光开关会将该光发射机连接至辅助合路单元(此时该光发射机并未连接至目标合路单元),以使该光信号传输至辅助合路单元后,依次经过转换模块、合路模块和第二光交叉模块后传输至J根第二光纤中的目标光纤。另一方面,在无需调整该光信号的标称中心频率时,该光开关会将该光发射机连接至目标合路单元,以使该光信号传输至目标合路单元后,依次经过合路模块和第二光交叉模块后传输至J根第二光纤中的目标光纤。
在光发射模组的上述多种可实现方式中,一些可实现方式中第一光交叉模块与第二光交叉模块能够直连,在无需调整光信号的标称中心频率时,第一光交叉模块可以将该光信号直接传输至第二光交叉模块,该光信号无需经过合路模块,因此,光信号的插损较少。
在上述多种可实现方式中,第一光交叉模块的入端口和出端口的数量多种多样,在其中一些可实现方式中,第一光交叉模块的入端口和出端口的个数均较少,因此,第一光交叉模块的复杂度较低,成本较低。
在上述多种可实现方式中,K个光发射机可以是同一种光发射机,支持相同频率范围的光信号。或者,K个光发射机中,G个第一光发射机可以是同一种光发射机,支持第一频率范围内的光信号,且H个第二光发射机可以是同一种光发射机,支持第二频率范围内的光信号。
第二方面,本申请提供了一种光设备,所述光设备包括:第一方面中任一设计所述的光发射模组;所述光设备还包括:用于接收光信号的光接收模组。
第三方面,本申请提供了一种光通信系统,包括:多个光设备,至少一个所述光设备为第二方面所述的光设备。
附图说明
图1为本申请提供的一种光设备的结构示意图;
图2为本申请提供的另一种光设备的结构示意图;
图3为本申请提供的一种图2中第一MCS的结构示意图;
图4为本申请提供的一种图2中第二MCS的结构示意图;
图5为本申请提供的另一种光设备的结构示意图;
图6为本申请实施例提供的一种光发射模组的结构示意图;
图7为本申请实施例提供的另一种光发射模组的结构示意图;
图8为本申请实施例提供的另一种光发射模组的结构示意图;
图9为本申请实施例提供的另一种光发射模组的结构示意图;
图10为本申请实施例提供的另一种光发射模组的结构示意图;
图11为本申请实施例提供的另一种光发射模组的结构示意图;
图12为本申请实施例提供的另一种光发射模组的结构示意图;
图13为本申请实施例提供的另一种光发射模组的结构示意图;
图14为本申请实施例提供的另一种光发射模组的结构示意图;
图15为本申请实施例提供的另一种光发射模组的结构示意图;
图16为本申请实施例提供的另一种光发射模组的结构示意图;
图17为本申请实施例提供的另一种光发射模组的结构示意图;
图18为本申请实施例提供的另一种光发射模组的结构示意图;
图19为本申请实施例提供的另一种光发射模组的结构示意图;
图20为本申请实施例提供的另一种光发射模组的结构示意图;
图21为本申请实施例提供的另一种光发射模组的结构示意图;
图22为本申请实施例提供的另一种光发射模组的结构示意图。
具体实施方式
为使本申请的原理和技术方案更加清楚,下面将结合附图对本申请实施方式作进一步的详细描述。
光系统(也称光纤系统)包括多个光设备,多个光设备之间可以通过光纤传输光信号。光系统中的多个光设备之间可以利用光信号通信,这种情况下,光系统可以采用任一种光通信技术,比如,密集波分复用(dense wavelength division multiplexing,DWDM)技术、粗波分复用(coarse wavelength division multiplexing)等。
当然,光系统中的多个光设备也可以不利用光信号通信,比如,一个光设备向另一个光设备发送用于感知的光信号,而该另一个光设备不向该一个光设备发送光信号,本申请实施例对此不作限定。
光设备可以是单个设备,也可以是多个设备,也可以是单个设备中的一部分(比如设备中的接口板等),本申请实施例对此不作限定。以光系统为DWDM系统为例,DWDM系统中的光设备可以是光终端复用器(optical terminal multiplexer,OTM)、可重构光分插复用器(reconfigurable optical add/drop multiplexer,ROADM)等。
光设备包括光发射模组和处理模组,处理模组与光发射模组连接,处理模组用于控制光发射模组发送光信号,光发射模组包括用于发送光信号的至少一个光发射机(Tx)。可选地,光设备也可以包括光接收模组,处理模组与光接收模组也连接,处理模组还可以用于控制光接收模组接收光信号,光接收模组包括用于接收光信号的至少一个光接收机(Rx)。光发射模组和光接收模组可以支持CD特性或CDC特性。
光接收模组支持波长无关(colorless)特性时,光接收模组中的每个光接收机都可以接收工作波段中的任何一个波长的光信号;光发射模组支持波长无关特性时,光发射模组中的每个光发射机都可以发送工作波段中的任何一个波长的光信号。
光接收模组支持方向无关(directionless)特性时,光接收模组中的每个光接收机都可以接收各个线路方向/维度中任意一个线路方向/纬度的光信号。光发射模组支持方向无关特性时,每个光发射机都可以将光信号传输至各个线路方向/维度中的任何一个线路方向/维度。
光接收模组支持竞争无关(contentionless)特性时,多个线路方向/维度中任何m个线路方向/维度(m≥2)都可以同时将相同或不同波长的光信号送到m个光接收机中(每个光接收机只接收一路光信号)。光发射模组支持竞争无关特性时,任何m个光发射机都可以同时将相同或不同波长的光信号送到各个线路方向/维度中任何m个方向/维度。
可见,在光接收模组支持CD特性时,每个光接收机可以接收任意线路方向/维度的任意波长的光信号;在光发射模组支持CD特性时,每个光接收机可以向任意线路方向/维度发送任意波长的光信号。在光接收模组支持CDC特性时,m个光接收机可以同时接收m个线路方向/维度的相同或不同波长的光信号;在光发射模组支持CDC特性时,m个光发射机可以同时向m个线路方向/维度发送相同或不同波长的光信号。
可以理解的是,频率和波长可通过公式c/n=λf计算,其中c表示光速,n表示光传输的介质(如光纤)的折射率,λ就是光的波长,f表示光的频率。所以,上述内容中的波长可以替换为频率,波段可以替换为频段。一般用频率来定义光的通道间隔、频谱位置等,例如标称中心频率、频段等,频率的定义更准确,而波长、波段等概念更直观,两类名称和定义都会使用、甚至混杂使用。
以下将分别对支持CD特性和支持CDC特性的光设备进行介绍。
(1)支持CD特性的光设备。该光设备中的光发射模组和光接收模组可以均支持CD特性。在该光设备中具有光发射模组,且不包括光接收模组时,光发射模组支持CD特性;在该光设备中具有光接收模组,且不包括光发射模组时,光接收模组支持CD特性。
示例地,如图1所示,光设备中的光接收模组包括:J个第一波长选择开关(wavelength selective switching,WSS)、第二WSS、第三WSS以及K个光接收机(表示为Rx-1至Rx-K)。其中,每个第一WSS具有1个入端口和N个出端口,表示为1*N,该第一WSS可以替换为分路器(splitter);第二WSS具有J个入端口和1个出端口,表示为J*1;第三WSS具有1个入端口和K个出端口,表示为1*K;K≥1,图1中以K大于1为例。
第三WSS的K个出端口与K个光接收机一一对应连接,第三WSS的1个入端口与第二WSS的1个出端口连接,第二WSS的J个入端口与J个第一WSS的J个出端口一一对应连接,J个第一WSS的J个 入端口与J根第一光纤一一对应连接。这J根第一光纤对应J个第一线路方向/维度。第一WSS用于将从1个入端口输入的光信号,分成N份光信号后分别传输至N个出端口,这N份光信号的标称中心波长可以相同也可以不同。第二WSS用于将J个入端口输入的光信号汇聚为一个光信号后,从1个出端口输出。第三WSS可以将1个入端口输入的光信号传输至K个出端口中的任一出端口。
在光接收模组工作时,J个第一线路方向/维度中任一第一线路方向维度上任意波长的光信号(J根第一光纤中任一第一光纤上传输的任意波长的光信号)会传输至一个第一WSS,之后,被该第一WSS传输至第二WSS中。第二WSS可以将该光信号传输至第三WSS,再被该第三WSS传输至K个光接收机中的任一光接收机。这样一来,便可以实现每个光接收机可以接收任意线路方向的任意波长的光信号,使得光接收模组支持CD特性。
请继续参考图1,光设备中的光发射模组包括:K个光发射机(表示为Tx-1至Tx-K)、第四WSS、第五WSS以及J个第六WSS。其中,第四WSS具有K个入端口和1个出端口,表示为K*1,第四WSS也可以是合路器(coupler);第五WSS具有1个入端口和J个出端口,表示为1*J,第五WSS也可以是分路器;第六WSS具有N个入端口和1个出端口,表示为N*1。
第四WSS的K个入端口与K个光发射机一一对应连接,第四WSS的1个出端口与第五WSS的1个入端口连接;第五WSS的J个出端口与J个第六WSS的J个入端口一一对应连接,J个第六WSS的J个出端口与J根第二光纤一一对应连接。这J根第二光纤对应J个第二线路方向/维度。第四WSS可以将K个入端口输入的光信号合为1路光信号后传输至1个出端口。第五WSS用于将从1个入端口输入的光信号,分成J份光信号后分别传输至J个出端口,这J份光信号的标称中心波长可以相同也可以不同。第六WSS用于将N个入端口输入的光信号汇聚为一个光信号后,从1个出端口输出。
在光发射模组工作时,K个光发射机中任意光发射机发射的任意波长的光信号会传输至第四WSS,之后再被该第四WSS传输至第五WSS。该第五WSS可以将该光信号传输至J个第六WSS中的任一第六WSS,之后再被该第六WSS传输至第二光纤。这样一来,便可以实现每个光发射机可以向任意线路方向发送任意波长的光信号,使得光发射模组支持CD特性。
另外,每个第一WSS还可以与J个第六WSS均连接。因此,每个第一WSS的N个出端口包括:与J个第六WSS连接的J个出端口,以及与第二WSS连接的1个出端口。每个第六WSS的N个入端口包括:与J个第一WSS连接的J个入端口,以及与第五WSS连接的1个入端口。任一第一光纤上任意波长的光信号也可以不传输至光接收机,而是通过光发射模组中的第六WSS传输至第二光纤。
(2)支持CDC特性的光设备。该光设备中的光发射模组和光接收模组可以均支持CDC特性。在该光设备中具有光发射模组,且不包括光接收模组时,光发射模组支持CDC特性;在该光设备中具有光接收模组,且不包括光发射模组时,光接收模组支持CDC特性。
示例地,如图2所示,光设备中的光接收模组包括:J个第一WSS、第一多通道广播功能光开关(multi-cast switch,MCS)以及K个光接收机(表示为Rx-1至Rx-K)。每个第一WSS具有1个入端口和N个出端口,表示为1*N,第一WSS也可以替换为分路器;第一MCS具有J个入端口和K个出端口,表示为K*J,第一MCS也可以替换为分/插光波长选择开关(add/drop wavelength selective switching,adWSS)。
第一MCS的K个出端口与K个光接收机一一对应连接,第一MCS的J个入端口与J个第一WSS的J个出端口一一对应连接,J个第一WSS的J个入端口与J根第一光纤一一对应连接。这J根第一光纤对应J个第一线路方向/维度。第一WSS用于将从1个入端口输入的光信号,分成N份光信号后分别传输至N个出端口,这N份光信号的标称中心波长可以相同也可以不同。第一MCS可以将J个入端口输入的光信号中的m个光信号分别传输至K个出端口中的m个出端口。
在光接收模组工作时,J个第一线路方向/维度中任意m个第一线路方向/维度上相同或不同波长的光信号(J根第一光纤中任意m根第一光纤上传输的任意波长的光信号)会传输至光接收模组中的m个第一WSS。之后,被该m个第一WSS传输至第一MCS中。第一MCS可以将这些光信号传输至K个光接收机中的任意m个光接收机。这样一来,便可以实现m个光接收机同时接收m个线路方向的相同或不同波长的光信号,使得光接收模组支持CDC特性。
请继续参考图2,光设备中的光发射模组包括:K个光发射机(表示为Tx-1至Tx-K)、第二MCS以及J个第二WSS。其中,第二MCS具有K个入端口和J个出端口,表示为K*J,第二MCS可以替换为adWSS;每个第二WSS具有N个入端口和1个出端口,表示为N*1。
第二MCS的K个入端口与K个光发射机一一对应连接,第二MCS的J个出端口与J个第二WSS的J个入端口一一对应连接,J个第二WSS的J个出端口与J根第二光纤一一对应连接。这J根第二光纤对应J个第二线路方向/维度。第二MCS可以将K个入端口中任意m个入端口输入的光信号传输至J个出端口中的任意m个出端口。第二WSS用于将N个入端口输入的光信号汇聚为一个光信号后,从1个出端口输出。
在光发射模组工作时,K个光发射机中任意m个光发射机发射的相同或不同波长的光信号会传输至第二MCS,之后再被第二MCS传输至J个第二WSS中的任意m个第二WSS,之后再被这些第二WSS传输至第二光纤。这样一来,便可以实现m个光发射机可以同时向m个线路方向发送相同或不同波长的光信号,使得光发射模组支持CDC特性。
另外,每个第一WSS还可以与J个第二WSS均连接。因此,每个第一WSS的N个出端口包括:与J个第二WSS连接的J个出端口,以及与第一MCS连接的1个出端口。每个第二WSS的N个入端口包括:与J个第一WSS连接的J个入端口,以及与第二MCS连接的1个入端口。任一第一光纤上任意波长的光信号也可以不传输至光接收机,而是通过第二WSS传输至第二光纤。
第一MCS的结构可以如图3所示,该第一MCS可以由J个分路器和K个光开关(Switch)构成,每个分路器具有1个入端口和K个出端口(表示为1*K),每个光开关具有J个入端口和1个出端口(表示为J*1)。J个分路器的J个入端口与J个第一WSS一一对应连接,每个分路器的K个出端口与K个光开关的K个入端口一一对应连接。每个分路器将对应连接的第一WSS输送的光信号分成K路后,分别送到K个光开关。K个光开关的K个出端口与K个光接收机一一对应连接,每个光开关能够接收到J个分路器输送的光信号,并从J个分路器输送的光信号中选择1个分路器输送的光信号传输至连接的一个光接收机。这样一来,便使得第二MCS能够将J个入端口中任意m个入端口输入的光信号传输至K个出端口中的任意m个出端口。
第二MCS的结构可以如图4所示,第二MCS可以由J个合路器和K个分路器构成,每个合路器具有K个入端口和1个出端口(表示为K*1),每个分路器具有1个入端口和J个出端口(表示为1*J)。K个分路器的K个入端口与K个光发射机一一对应连接,每个分路器的J个出端口与J个合路器一一对应连接。每个分路器能够将对应连接的光发射机输送的光信号分为J路后,分别输送至J个合路器。J个合路器的J个出端口与J个第二WSS一一对应连接,每个合路器能够接收到K个分路器输送的光信号,并将这些光信号合为一路后输送至连接的一个第二WSS。这样一来,便使得第二MCS能够将K个入端口中任意m个入端口输入的光信号传输至J个出端口中的任意m个出端口。
第一MCS和第二MCS均可以替换为adWSS,adWSS的功能与MCS的功能类似,本申请实施例在此不做赘述。
在上述实施例中,端口之间传输的光信号可以是单波长光信号也可以是多波长光信号,本申请实施例对此不作限定。
进一步地,光设备具有工作波段,光设备中的各个器件(如上述WSS、MCS等)的上述功能所针对的光信号为该工作波段内的光信号,该各个器件支持该工作波段内的光信号。该工作波段可以是任意波段。
比如,工作波段为C波段、L波段或者C+L波段。一般的C波段的波长范围为1530~1565纳米(nm),一般的L波段的波长范围为1565~1625nm,C+L波段的波长范围一般为1530~1625nm。
可以理解的是,C波段和L波段也可以存在调整,比如,将大致在1530纳米~1625纳米的波长范围分成频率宽度相等的两个波段,这两个波段中,波长较小的波段可以是C波段(可以称为扩展C波段),波长较大的波段可以是L波段(可以称为扩展L波段)。
将来光设备的工作波段可能会进一步扩展到S波段,所以光设备的工作波段可以是S波段、C波段、L波段、C+L波段、S+C+L波段等。一般的S波段的波长范围为1460~1530nm,可以理解的是,S波段的波长范围也可以调整,比如,将大致在1460纳米~1625纳米的波长范围分成频率宽度相等的三个波段,这三个波段中,波长最小的波段可以是S波段(可以称为扩展S波段),波长第二小的波段可以是C波段(可以称为扩展C波段),波长最大的波段可以是L波段(可以称为扩展L波段)。
前述实施例中以光设备中的每个器件均支持对该工作波段内的光信号的控制为例。可以理解的是,该工作波段也可以分成多个波段,光设备中支持该工作波段的结构还可以分为分别支持该多个波段的多个结构。
比如,以工作波段为C+L波段分为C波段和L波段为例。如图5所示,图2中的光接收机可以分为两组,图5中以一组光接收机包括G个光接收机(表示为Rx-1至Rx-G),另一组光接收机包括H个光接收机(表示为Rx-1至Rx-H)为例。两组光接收机分别支持C波段和L波段,每组光接收机能够接收其支持的一个波段的光信号。相应地,光接收模组包括两个第一MCS,两个第一MCS与两组光接收机一一对应,每个第一MCS连接在J个第一WSS与该第一MCS对应的一组光接收机之间,用于实现该J个第一WSS与该一组光接收机之间光信号的交叉。上述G个光接收机连接的第一MCS具有J个入端口和G个出端口。上述H个光接收机连接的第一MCS具有J个入端口和H个出端口。另外,光接收模组还包括J个分路器,该J个分路器与J个第一WSS一一对应,每个分路器具有1个入端口和2个出端口,每个第一WSS通过对应的分路器连接上述两个第一MCS。
请继续参考图5,图2中的光发射机可以分为两组,图5中以一组光发射机包括G个光发射机(表示为Tx-1至Tx-G),另一组光发射机包括H个光发射机(表示为Tx-1至Tx-H)为例。两组光发射机分别支持C波段和L波段,每组光发射机能够发射其支持的一个波段的光信号。相应地,光发射模组包括两个第二MCS,两个第二MCS与两组光发射机一一对应,每个第二MCS连接在J个第二WSS与对应的一组光发射机之间,用于实现该J个第二WSS与该一组光发射机之间光信号的交叉。上述G个光发射机连接的第二MCS具有G个入端口和J个出端口。上述H个光发射机连接的第二MCS具有H个入端口和J个出端口。另外,光发射模组还包括J个合路器,该J个合路器与J个第二WSS一一对应,每个合路器具有2个入端口和1个出端口,每个第二WSS通过对应的合路器连接上述两个第二MCS。
但是,上述内容介绍的光发射模组输出的光信号的频率范围受光发射机发出的光信号的频率范围的限制,导致光发射模组输出的光信号的频率范围较窄(波长范围也较窄),使得光设备发出的光信号的频率范围也较窄,光设备的性能较差,光通信系统的性能也较差。
基于此,本申请实施例提供了一种光发射模组,该光发射模组可以利用转换模块对光发射机发出的光信号的频率进行调整,以提升光发射模组输出的光信号的频率范围,使得该光发射模组所在的光设备发出的光信号的频率范围也能提升。因此,光设备的性能较好,光通信系统的性能也较好。并且,该光发射模组也可以支持CD或CDC特性,适用于支持CD或CDC特性的光设备。
示例地,图6为本申请实施例提供的一种光发射模组的结构示意图,如图6所示,该光发射模组包括:至少一个光发射机601、第一光交叉模块602(可以称为光交叉连接(optical cross-connect,OXC)模块)、至少一个转换模块603和第二光交叉模块604。图6中以一个光发射机601和一个转换模块603为例。
第二光交叉模块604具有X个入端口和J个出端口,该J个出端口一一对应的连接J根光纤,J≥1。第二光交叉模块604还可以具有除X个入端口和J个出端口之外的其他端口,本申请实施例对此不作限定。
X=1或X≥J,图6中以X=J=2为例。
在X≥J时,第二光交叉模块604可以包括:J个线路WSS(图6中未示出,可以参考图2和图5中的J个第二WSS);每个线路WSS具有第二光交叉模块的至少一个入端口和一个出端口,J个线路WSS具有第二光交叉模块的X个入端口和J个出端口。可以理解的是,线路WSS的该一个入端口为用于接收光发射机601发出的光信号的入端口,该线路WSS还可以具有除该一个入端口之外的其他入端口,本申请实施例对此不作限定。
在X=1时,第二光交叉模块604包括:第三光交叉单元和J个线路WSS(图6中也未示出,第三光交叉单元可以参考图1中的第五WSS,J个线路WSS可以参考图1中的J个第六WSS);第三光交叉单元具有J个中转出端口和第二光交叉模块的一个入端口,J个中转出端口与J个线路WSS一一对应连接,线路WSS具有第二光交叉模块的一个出端口,J个线路WSS具有第二光交叉模块的J个出端口。可以理解的是,线路WSS的该一个入端口为用于接收光发射机601发出的光信号的入端口,该线路WSS还可以具有除该一个入端口之外的其他入端口,本申请实施例对此不作限定。
光发射机601用于发出光信号。光发射机601发出的光信号的标称中心频率可以是固定的,也可以是可调的,本申请实施例对此不作限定。
第一光交叉模块602能够在光层实现光信号在第一光交叉模块的各个端口之间的交叉,进而实现光信号在光发射机601和第二光交叉模块604之间进行光交叉。该光交叉可以经过转换模块603,也可以不经过转换模块603。第一光交叉模块602可以根据需要选择该光交叉是否经过转换模块603。
第二光交叉模块604连接至J根光纤(类似上述实施例中的J根第二光纤),用于将光信号传输至光纤。
示例地,光发射机601用于向第一光交叉模块602发射光信号;第一光交叉模块602用于:在需要调整上述光信号的标称中心频率时,控制该光信号沿经过转换模块603的路径传输至第二光交叉模块604的入端口;第一光交叉模块602还用于:在无需调整该光信号的标称中心频率时,控制该光信号沿不经过转换模块603的路径传输至第二光交叉模块的入端口。经过转换模块的路径可以经过一个转换模块或多个转换模块,不经过转换模块的路径不经过上述至少一个转换模块中的任一转换模块。不同光发射机601发出的光信号经过的路径可以相同也可以不同,本申请实施例对此不作限定。
转换模块603用于调整经过的光信号的标称中心频率,由于频率与波长存在对应关系,因此,也可以认为转换模块603用于调整经过的光信号的标称中心波长,此时转换模块603可以称为波长转换(wavelength convertor,WC)模块。在需要调整上述光信号的标称中心频率时,第一光交叉模块602控制该光信号经过转换模块603后传输至第二光交叉模块604,能够使得该光信号的标称中心频率在该转换模块603上调整,实现光信号的标称中心频率的改变。
第二光交叉模块604用于将入端口接收到的光信号从出端口传输至该光信号用于传输至的目标光纤。该光信号可以是经过转换模块603的光信号,也可以是未经过转换模块603的光信号。
可见,光发射机601发出的光信号在传输至第一光交叉模块602后,可能不经过转换模块603而直接传输至第二光交叉模块604,也可能在经过转换模块603之后传输至第二光交叉模块604。第一光交叉模块602可以根据配置信息,确定是否需要调整接收到的光信号的标称中心频率,进而确定该光信号传输至第二光交叉模块604的路径。经过转换模块603的光信号的标称中心频率与光发射机发出的光信号的标称中心频率不同,从而改变光发射模组输出的光信号的频率范围。
综上所述,本申请实施例提供的光发射模组不仅能够输出光发射机发出的光信号,还能够输出对该光信号进行标称中心频率调整后的光信号。这两种光信号的标称中心频率不同,所以,使得光发射模组可以输出的光的频率范围较大,提升光发射模组的性能。提升了光发射模组及其所在的光设备的性能。
上述转换模块可以采用任一种方式实现光信号的标称中心频率的调整。
比如,转换模块可以在光层实现光信号的标称中心频率的调整,在这一过程中,转换模块对光信号进行光域的处理,且转换模块不会将该光信号转换为电信号。示例地,转换模块可以基于泵浦光,在光层对光信号的标称中心频率进行调整。光发射机发出的光信号的标称中心频率和/或泵浦光的标称中心频率可以调整。
又比如,转换模块可以在光层和电层实现光信号的标称中心频率的调整,在这一过程中,转换模块可以通过光-电-光的转换,实现标称中心频率的调整。
第一光交叉模块602控制光信号沿经过转换模块603的路径传输至第二光交叉模块604中的入端口有多种可实现方式。
示例地,在一种可实现方式中,第一光交叉模块602用于:在需要调整光信号的标称中心频率时,将该光信号传输至转换模块603;转换模块603用于:将来自第一光交叉模块602的光信号经过标称中心频率的调整后,再传输回第一光交叉模块602;第一光交叉模块603还用于:将来自转换模块603的光信号传输至第二光交叉模块604的入端口。在第一光交叉模块602将来自转换模块603的光信号传输至第二光交叉模块604的入端口的过程中,该光信号不会经过转换模块603。
又示例地,在另一种可实现方式中,第一光交叉模块602用于:在需要调整光信号的标称中心频率时,将光信号传输至转换模块603;转换模块603用于:将来自第一光交叉模块602的光信号经过标称中心频率的调整后,传输至第二光交叉模块604的入端口。在转换模块603将来自第一光交叉模块60的光信号经过标称中心频率的调整后,传输至第二光交叉模块604的入端口的过程中,该光信号不会经过第一光交叉模块60。
可选地,光发射机601可以有多个;第一光交叉模块602可以用于:在需要调整多个光发射机601发射的多个光信号的标称中心频率时,控制该多个光信号601沿经过同一转换模块603的路径传输至第二光交叉模块604的入端口(不同光信号经过的路径可以相同也可以不同)。这种情况下,转换模块603用于:调整经过的该多个光信号的标称中心频率。可见,一个转换模块603能够对多个光发射机601发出的光信号进行标称中心频率的调整,所以,本申请支持无需为每个光发射机601设置一个转换模块603的情况, 因此,本申请支持采用较少的转换模块603,光发射模组的结构较简单,成本较低。当然,在这种情况下,本申请中转换模块603的数量也可以大于或等于光发射机601的数量,本申请对此不作限定。
本申请实施例中转换模块603的数量为A,上述至少一个转换模块603包括A个转换模块603。A可以是1,也可以是大于1的整数。在A>1时,若需要调整光信号的标称中心频率,那么第一光交叉模块602可以根据需要在A个转换模块中选择一个转换模块603,作为光信号需要经过的转换模块603。当A>1时,第一光交叉模块602还可以根据需要将选择的转换模块603在A个转换模块603之间切换。
本申请实施例中光发射机601的数量为K,K可以大于或等于1。转换模块603的数量A可以小于或等于光发射机601的数量K。在A<K时,若光发射机601的数量K较大,则无需为每个光发射机601设置一个转换模块603,也能够实现对各个光发射机601发出的光信号的标称中心频率的调整。由于无需为每个光发射机601设置转换模块603,因此,本申请采用的转换模块603的数量较少,光发射模组的成本较低。另外,在光发射模组不采用转换模块的情况下,也可以通过提升光发射机的性能,提升光发射模组输出的光信号的波长范围。但是,提升光发射机的性能的成本较高,假设提升光发射机的性能的方案会使得光发射模组的成本增长100%,那么本申请提供的光发射模组增加转换模块的方案的成本增长为10%左右。可见,相比提升光发射机的性能的方案,本申请中增加转换模块的方案的成本较低。
可以理解的是,转换模块603的数量A也可以大于K,本申请实施例对此不作限定。
在K大于1时,经过任意转换模块603的光信号的标称中心频率与K个光发射机601发出的光信号的标称中心频率均不同。这样一来,便可以提升光发射模组输出的光信号的频率范围。示例地,假设K个光发射机601发出的光信号的标称中心频率组成频率范围1,A个转换模块603输出的光信号的标称中心频率组成频率范围2,那么频率范围1和2可以相互独立或者部分重叠。比如,频率范围1和2可以是C波段对应的频率范围、L波段对应的频率范围以及S波段对应的频率范围中任意两个频率范围。
可选地,A≤2X。在第二光交叉模块604的入端口的数量X的2倍小于光发射机601的数量K时,A可以等于2X,此时转换模块603的数量A较小,能够通过较少的转换模块603实现对较多光发射机601发出的光信号的标称中心频率的调整。在第二光交叉模块604的入端口的数量X的2倍大于或等于光发射机601的数量K时,A可以等于K且小于2X,此时,转换模块603的数量A也较少。
在A≤2X的情况下,A可以进一步地小于或等于X。比如,在第二光交叉模块604的入端口的数量X小于光发射机601的数量K时,A可以等于X,此时转换模块603的数量A较小,能够通过较少的转换模块603实现对较多光发射机601发出的光信号的标称中心频率的调整。在第二光交叉模块604的入端口的数量X大于或等于光发射机601的数量K时,A可以等于K且小于X,此时,转换模块603的数量A也较少。
在A≤X的情况下,A可以进一步地小于或等于X/2向上取整。比如,在X/2向上取整小于光发射机601的数量K时,A可以等于X/2向上取整,此时转换模块603的数量A较小,能够通过较少的转换模块603实现对较多光发射机601发出的光信号的标称中心频率的调整。在X/2向上取整大于或等于光发射机601的数量K时,A可以等于K且小于X/2向上取整,此时,转换模块603的数量A也较少。
另外,本申请实施例提供的光发射模组也可以支持CD或CDC的特性,相应的转换模块603的数量A以及转换模块603与其他模块的连接关系可以根据CD或CDC的特性进行设置。以下将分别以A=2X、X和X/2向上取整这三种情况为例进行进一步的讲解。
(1)A=2X。
示例地,如图7所示,在A=2X时,A个转换模块可以包括:X个第一转换模块和X个第二转换模块。图7中以光发射模组支持CDC特性,且X=J为例。第一转换模块用于:将经过的光信号的标称中心频率调整至第二频率范围内;第二转换模块用于:将经过的光信号的标称中心频率调整至第一频率范围内。X个第一转换模块与第二光交叉模块的X个入端口(图7中未标出)一一对应,X个第二转换模块与第二光交叉模块的X个入端口一一对应。
第一光交叉模块包括:第一光交叉单元和第二光交叉单元,第一光交叉单元和第二光交叉单元均可以是MCS或adWSS。第一光交叉单元用于:在需要调整接收到的光信号的标称中心频率时,控制光信号在经过第一转换模块后,传输至第二光交叉模块的入端口;第二光交叉单元用于:在需要调整接收到的光信号的标称中心频率时,控制光信号在经过第二转换模块后,传输至第二光交叉模块的入端口。其中,用于 传输至不同所述光纤的所述光信号经过的所述第一转换模块不同;用于传输至不同所述光纤的所述光信号经过的所述第二转换模块不同。
K个光发射机包括:G个第一光发射机(表示为Tx-1至Tx-G)和H个第二光发射机(表示为Tx-1至Tx-H)。第一光发射机用于向第一光交叉单元发射标称中心频率在第一频率范围内的光信号,第二光发射机用于向第二光交叉单元发射标称中心频率在第二频率范围内的光信号,G≥1,H≥1。第一频率范围和第二频率范围可以是任意的频率范围,比如,第一频率范围和第二频率范围中,一个频率范围为C波段对应的频率范围,另一个频率范围为L波段对应的频率范围。
可以看出,第一光发射机发出的光信号可以通过第一转换模块进行标称中心频率的调整,第二光发射机发出的光信号可以通过第二转换模块进行标称中心频率的调整。在光发射模组需要第二光发射机发出的光信号的频率变为第一频率范围内的频率时,可以通过第二转换模块对第二光发射机发出的光信号的标称中心频率进行调整。在光发射模组需要第一光发射机发出的光信号的频率变为第二频率范围内的频率时,可以通过第一转换模块对第一光发射机发出的光信号的标称中心频率进行调整。并且,经过第一转换模块调整后的光信号的标称中心频率可以与第一发射机发出的光信号的标称中心频率不同;经过第二转换模块调整后的光信号的标称中心频率可以与第二发射机发出的光信号的标称中心频率不同。可见,通过第一转换模块或第二转换模块对标称中心频率的调整,能够增多光发射模组输出的光信号的频率范围。
在图7所示的示例中,第一光发射机、第一光交叉单元和第一转换模块均支持第一频率范围内的光信号,第二光发射机、第二光交叉单元和第二转换模块均支持第二频率范围内的光信号。
进一步地,第一光交叉单元具有与G个第一光发射机一一对应连接的G个第一入端口,第二光交叉单元具有与H个第二光发射机一一对应连接的H个第一入端口。第一光发射机可以从对应连接的第一入端口向第一光交叉单元发送光信号,第二光发射机也可以从对应连接的第一入端口向第二光交叉单元发送光信号。
第一光交叉单元和第二光交叉单元还均具有X个第一出端口、X个第二入端口和X个第二出端口。本申请中以X=J为例,因此,第一光交叉单元具有G+J个入端口和2J个出端口(可以表示为图7中的(G+J)*2J),其中,G+J个入端口包括G个第一入端口和J个第二入端口,2J个出端口包括J个第一出端口和J个第二出端口。类似的,第二光交叉单元具有H+J个入端口和2J个出端口(可以表示为图7中的(H+J)*2J)。其中,H+J个入端口包括H个第一入端口和J个第二入端口,2J个出端口包括J个第一出端口和J个第二出端口。
如图7所示,光发射模组还可以包括:X个合路模块(图7中以J个合路模块为例);合路模块可以是合路器或者其他具有将多路光信号合为一路光信号的功能的器件。每个合路模块具有2个输入端和1个输出端,表示为图7中的2*1。对于第一光交叉单元和第二光交叉单元中的每个光交叉单元,该光交叉单元的X个第一出端口与X个合路模块的输入端一一对应连接,X个合路模块的输出端与第二光交叉模块的X个入端口一一对应连接。
另外,第一光交叉单元的X个第二出端口分别通过X个第一转换模块与第二光交叉单元的X个第二入端口一一对应连接;第二光交叉单元的X个第二出端口分别通过X个第二转换模块与第一光交叉单元的X个第二入端口一一对应连接。
对于任意光发射机发出的光信号,该光信号在传输至该光发射机连接的光交叉单元后,该光交叉单元可以在无需调整该光信号的标称中心频率时,将该光信号从该光交叉单元的第一出端口输出,进而使得该光信号沿不经过第一转换模块和第二转换模块的路径,依次经过合路模块和第二光交叉模块后传输至目标光纤。该光交叉单元还可以在需要调整该光信号的标称中心频率时,将该光信号从第二出端口输出,进而使得该光信号在经过该光交叉单元连接的转换模块后,依次经过该光交叉单元的第二入端口、该光交叉单元的第一出端口、合路模块和第二光交叉模块后传输至目标光纤。
图7中通过光发射机、光交叉单元、转换模块、合路模块和第二光交叉模块的合理连接,能够使得该光发射模组支持CDC的特性。
可选地,在光发射模组包括X个合路模块的情况下,转换模块、第一光交叉模块以及合路模块之间的连接关系还可以与图7所示的不同。
比如,如图8所示,第一光交叉单元具有与G个第一光发射机一一对应连接的G个入端口,第二光交叉单元具有与H个第二光发射机一一对应连接的H个入端口;第一光交叉单元和第二光交叉单元还均 具有X个第一出端口和X个第二出端口。图8中以X=J为例,因此,第一光交叉单元具有G个入端口和2J个出端口(可以表示为图8中的G*2J)。类似的,第二光交叉单元具有H个入端口和2J个出端口(可以表示为图8中的H*2J)。2J个出端口包括J个第一出端口和J个第二出端口。
图8中的每个合路模块具有4个输入端和1个输出端,表示为图8中的4*1。第一光交叉单元和第二光交叉单元中每个光交叉单元的X个第一出端口与X个合路模块的输入端一一对应连接,X个合路模块的输出端与第二光交叉模块的X个入端口一一对应连接;第一光交叉单元的X个第二出端口分别通过X个第一转换模块与X个合路模块的输入端一一对应连接;第二光交叉单元的X个第二出端口分别通过X个第二转换模块与X个合路模块的输入端一一对应连接。
对于任意光发射机发出的光信号,该光信号在传输至该光交叉单元后,该光交叉单元可以在无需调整该光信号的标称中心频率时,将该光信号从第一出端口输出,进而使得该光信号沿不经过第一转换模块和第二转换模块的路径,依次经过合路模块和第二光交叉模块后传输至目标光纤。该光交叉单元还可以在需要调整该光信号的标称中心频率时,将该光信号从第二出端口输出,进而使得该光信号在经过转换模块后,依次经过合路模块和第二光交叉模块后传输至目标光纤。
在图8所示的示例中,第一光发射机、第一光交叉单元和第一转换模块均支持第一频率范围内的光信号,第二光发射机、第二光交叉单元和第二转换模块均支持第二频率范围内的光信号。
图8中通过光发射机、光交叉单元、转换模块、合路模块和第二光交叉模块的合理连接,也能够使得该光发射模组支持CDC的特性。
图7和图8中均以光发射模组支持CDC特性,且X=J为例。可选地,光发射模组也可以支持CD特性,且X也可以等于1,此时,图7所示的结构可以变为图9所示的结构,图8所示的结构可以变为图10所示的结构。并且,图9和图10中的第一光交叉单元和第二光交叉单元均可以是MCS或adWSS。图9所示的结构可以参考图7所示的结构的相关介绍,图10所示的结构可以参考图8所示的结构的相关介绍,本申请实施例在此不做赘述。
(2)A=X。
在A=X时,A个转换模块包括:X个转换模块;第一光交叉模块用于:在需要调整光发射机发送的光信号的标称中心频率时,控制该光信号在经过转换模块后传输至第二光交叉模块的入端口。并且,用于传输至不同光纤的光信号经过的转换模块不同。可见,在A=X时,可以根据光信号需要传输至的光纤,控制该光信号经过相应地转换模块。
示例地,如图11所示,第一光交叉模块具有K个第一入端口、X个第一出端口(图11中以X=J为例)、X个第二入端口和X个第二出端口。图11中以光发射模组支持CDC特性,且X=J为例,因此,图11中的第一光交叉模块具有K个第一入端口、J个第一出端口、J个第二入端口和J个第二出端口。可见,第一光交叉模块共具有K+X个入端口和2X个出端口,在X=J时,第一光交叉模块的端口可以表示为图11中的(K+J)*2J。第一光交叉模块可以是MCS或adWSS。
第一光交叉模块的K个第一入端口与K个光发射机(Tx-1至Tx-K)一一对应连接;第一光交叉模块的X个第一出端口与第二光交叉模块的X个入端口(分别属于J个第二WSS)一一对应连接;第一光交叉模块的X个第二入端口分别通过X个转换模块与第一光交叉模块的X个第二出端口一一对应连接。
对于任意光发射机发出的光信号,该光信号在传输至第一光交叉模块后,该第一光交叉模块可以在无需调整该光信号的标称中心频率时,将该光信号从该第一光交叉模块的第一出端口输出,进而使得该光信号沿不经过转换模块的路径,经过第二光交叉模块后传输至J根第二光纤中的目标光纤。该第一光交叉模块还可以在需要调整该光信号的标称中心频率时,将该光信号从第二出端口输出,进而使得该光信号在经过转换模块后,再经过该第一光交叉模块的第二入端口、该光交叉单元的第一出端口和第二光交叉模块后传输至J根第二光纤中的目标光纤。
在图11所示的示例中,光发射机和转换模块可以均支持第一频率范围内的光信号,第一光交叉模块可以支持该第一频率范围和第二频率范围内的光信号。转换模块用于将第一频率范围内的光信号的标称中心频率调整至第二频率范围。
图11中通过光发射机、第一光交叉模块、转换模块和第二光交叉模块的合理连接,能够使得该光发射模组支持CDC的特性。
可以理解的是,图11中第一光交叉模块的X个第二出端口也可以不通过X个转换模块与第一光交叉模块的X个第二入端口一一对应连接。
比如,如图12所示,光发射模组还包括X个合路模块(图12中以J个合路模块为例);第一光交叉模块具有K个入端口、X个第一出端口和X个第二出端口,并不具有上述X个第二入端口。这种情况下,第一光交叉模块共具有K个入端口,以及2X个出端口,图12中以X=J为例,因此,第一光交叉模块的端口可以表示为K*2J。K个入端口与K个光发射机一一对应连接,X个第一出端口与X个合路模块的输入端一一对应连接,X个第二出端口分别通过X个转换模块与X个合路模块的输入端一一对应连接,X个合路模块的输出端与第二光交叉模块的X个入端口(分别属于J个第二WSS)一一对应连接。
对于任意光发射机发出的光信号,该光信号在传输至第一光交叉模块后,该第一光交叉模块可以在无需调整该光信号的标称中心频率时,将该光信号从该第一光交叉模块的第一出端口输出,进而使得该光信号沿不经过转换模块的路径,经过第二光交叉模块后传输至J根第二光纤中的目标光纤。该第一光交叉模块还可以在需要调整该光信号的标称中心频率时,将该光信号从第二出端口输出,进而使得该光信号在经过转换模块后,再经过第二光交叉模块后传输至目标光纤。
在图12所示的示例中,光发射机和转换模块可以均支持第一频率范围内的光信号,第一光交叉模块可以支持该第一频率范围和第二频率范围内的光信号。转换模块用于将第一频率范围内的光信号的标称中心频率调整至第二频率范围。
图12中通过光发射机、第一光交叉模块、转换模块、合路模块和第二光交叉模块的合理连接,也能够使得该光发射模组支持CDC的特性。
进一步地,图12所示的连接方式也可以适用于光发射机分为两组光发射机的情况,且两组光发射机发出的光信号的标称中心频率的范围不同。
比如,如图13所示,K个光发射机包括:G个第一光发射机和H个第二光发射机,第一光发射机用于发射标称中心频率在第一频率范围内的光信号,第二光发射机用于发射标称中心频率在第二频率范围内的光信号,G≥1,H≥1;第一光交叉模块包括:第一光交叉单元和第二光交叉单元,光发射模组还包括:X个第一合路模块和X个第二合路模块;图13中以光发射模组支持CDC特性,且X=J为例。第一光交叉单元和第二光交叉单元均可以是MCS或adWSS,第一合路模块和第二合路模块均可以是合路器或者其他具有将多路光信号合为一路光信号的功能的器件。
第一光交叉单元具有与G个第一光发射机一一对应连接的G个入端口,第二光交叉单元具有与H个第二光发射机一一对应连接的H个入端口。第一光交叉单元和第二光交叉单元还均具有X个第一出端口和X个第二出端口。每个光交叉单元的X个第一出端口与X个第一合路模块的输入端一一对应连接,X个第一合路模块的输出端与第二光交叉模块的X个入端口一一对应连接;每个光交叉单元的X个第二出端口与X个第二合路模块的输入端一一对应连接,X个第二合路模块的输出端分别通过X个转换模块与X个第一合路模块的输入端一一对应连接。在图13中,转换模块用于:将经过的光信号的标称中心频率在第一频率范围和第二频率范围之间切换;并且,经过任一转换模块的光信号的标称中心频率与任一光发射机发出的光信号的标称中心频率不同。
对于任意光发射机发出的光信号,该光信号在传输至连接的光交叉单元后,该光交叉单元可以在无需调整该光信号的标称中心频率时,将该光信号从该光交叉单元的第一出端口输出,进而使得该光信号沿不经过转换模块的路径,经过第一合路模块和第二光交叉模块后传输至目标光纤。该光交叉单元还可以在需要调整该光信号的标称中心频率时,将该光信号从第二出端口输出,进而使得该光信号在经过转换模块后,再依次经过第一合路模块和第二光交叉模块后传输至目标光纤。
第一光发射机和第二光发射机发出的光信号均可以通过转换模块进行标称中心频率的调整。在光发射模组需要输出第一频率范围内的光信号时,可以通过转换模块对第二光发射机发出的光信号的标称中心频率进行调整。在光发射模组需要输出第二频率范围内的光信号时,可以通过转换模块对第一光发射机发出的光信号的标称中心频率进行调整。可见,通过转换模块对标称中心频率的调整,能够增多光发射模组输出的光信号的频率范围。
在图13所示的示例中,第一光发射机和第一光交叉单元可以均支持第一频率范围内的光信号,第二光发射机和第二光交叉单元均支持第二频率范围内的光信号。转换模块支持第一频率范围和第二频率范围内的光信号。
图13中通过光发射机、第一光交叉模块、转换模块、合路模块和第二光交叉模块的合理连接,也能够使得该光发射模组支持CDC特性。
图11、图12和图13中均以光发射模组支持CDC特性,且X=J为例。可选地,光发射模组也可以支持CD特性,且X也可以等于1,此时,图11所示的结构可以变为如图14所示的结构,图12所示的结构可以变为如图15所示的结构,图13所示的结构可以变为如图16所示的结构。在图14、15和16中,第一光交叉模块可以是MCS或adWSS。图14所示的结构可以参考图11所示的结构的相关介绍,图15所示的结构可以参考图12所示的结构的相关介绍,图16所示的结构可以参考图13所示的结构的相关介绍,本申请实施例在此不做赘述。
(3)A=X/2的向上取整。此时,A个转换模块包括:X/2的向上取整个转换模块。当X为偶数时,X/2的向上取整为X/2,当X为奇数时,X/2的向上取整为(X+1)/2。
这种情况适用于K个光发射机包括:G个第一光发射机和H个第二光发射机的情况。第一光发射机用于发射标称中心频率在第一频率范围内的光信号,第二光发射机用于发射标称中心频率在第二频率范围内的光信号,G≥1,H≥1;转换模块用于:将经过的光信号的标称中心频率在第一频率范围和第二频率范围之间切换;并且经过任一转换模块的光信号的标称中心频率与任一第一光发射机和任一第二光发射机发出的光信号的标称中心频率均不同。对于任意光发射机发出的光信号,该光信号在传输至第一光交叉模块后,该第一光交叉模块可以在需要调整该光信号的标称中心频率时,控制该光信号在经过转换模块后传输至第二光交叉模块,进而使得该光信号在该转换模块上进行标称中心频率的调整。
示例地,如图17所示,第一光交叉模块具有K个第一入端口、A个第二入端口、X个第一出端口和A个第二出端口。所以,第一光交叉模块共具有K+A(也即G+H+A)个入端口,以及J+A个出端口,第一光交叉模块的端口可以表示为(G+H+A)*(J+A)。K个第一入端口与K个光发射机(包括G个第一光发射机和H个第二光发射机)一一对应连接,X个第一出端口与第二光交叉模块的X个入端口一一对应连接,A个第二出端口分别通过A个转换模块与A个第二入端口一一对应连接。
对于任意光发射机发出的光信号,该光信号在传输至第一光交叉模块后,该第一光交叉模块可以在无需调整该光信号的标称中心频率时,将该光信号从该第一光交叉模块的第一出端口输出,进而使得该光信号沿不经过转换模块的路径,经过第二光交叉模块后传输至目标光纤。该第一光交叉模块还可以在需要调整该光信号的标称中心频率时,将该光信号从第二出端口输出,进而使得该光信号在经过转换模块后,再经过该第一光交叉模块的第二入端口、该光交叉单元的第一出端口和第二光交叉模块后传输至目标光纤。
在图17所示的示例中,第一光发射机支持第一频率范围内的光信号,第二光发射机支持第二频率范围内的光信号,第一光交叉模块和转换模块支持第一频率范围和第二频率范围内的光信号。
图17中通过光发射机、第一光交叉模块、转换模块和第二光交叉模块的合理连接,能够使得该光发射模组支持CDC特性。
可以理解的是,在A=X/2的向上取整时,第一光交叉模块还可以有其他可实现方式。
比如,如图18所示,第一光交叉模块包括:第一光交叉单元和第二光交叉单元;光发射模组还包括:X个第一合路模块、A个第二合路模块和A个分路模块。第一光交叉单元和第二光交叉单元均可以是MCS或adWSS,第一合路模块和第二合路模块均可以是合路器或者其他具有将多路光信号合为一路光信号的功能的器件,分路模块可以是分路器或者其他具有将一路光信号分为多路光信号的功能的器件。
第一光交叉单元具有与G个第一光发射机一一对应连接的G个第一入端口,第二光交叉单元具有与H个第二光发射机一一对应连接的H个第一入端口;第一光交叉单元和第二光交叉单元还均具有X个第一出端口、A个第二入端口和A个第二出端口。所以,第一光交叉单元共具有G+A个入端口,以及J+A个出端口,第一光交叉单元的端口可以表示为(G+A)*(J+A)。第二光交叉单元共具有H+A个入端口,以及J+A个出端口,第一光交叉单元的端口可以表示为(H+A)*(J+A)。
对于第一光交叉单元和第二光交叉单元中的每个光交叉单元,X个第一出端口与X个第一合路模块的输入端一一对应连接,X个第一合路模块的输出端与第二光交叉模块的X个入端口一一对应连接;A个第二出端口与A个第二合路模块的输入端一一对应连接,A个第二合路模块的输出端通过A个转换模块与A个分路模块的输入端一一对应连接;A个分路模块的输出端与A个第二入端口一一对应连接。转换模块用于:将经过的光信号的标称中心频率在第一频率范围和第二频率范围之间切换。
对于任意光发射机发出的光信号,该光信号在传输至连接的光交叉单元后,该光交叉单元可以在无需调整该光信号的标称中心频率时,将该光信号从该光交叉单元的第一出端口输出,进而使得该光信号沿不经过转换模块的路径,经过第一合路模块和第二光交叉模块后传输至目标光纤。该光交叉单元还可以在需要调整该光信号的标称中心频率时,将该光信号从任第二出端口输出,进而使得该光信号在经过第二合路模块和转换模块后,再依次经过分路模块、光交叉单元的第二入端口、该光交叉单元的第一出端口、第一合路模块和第二光交叉模块后传输至目标光纤。
另外,在图18中,第一光发射机和第二光发射机发出的光信号均可以通过转换模块进行标称中心频率的调整。在光发射模组需要输出第一频率范围内的光信号时,可以通过转换模块对第二光发射机发出的光信号的标称中心频率进行调整。在光发射模组需要输出第二频率范围内的光信号时,可以通过转换模块对第一光发射机发出的光信号的标称中心频率进行调整。可见,通过转换模块对标称中心频率的调整,能够增多光发射模组输出的光信号的频率范围。
在图18所示的示例中,第一光发射机支持第一频率范围内的光信号,第二光发射机支持第二频率范围内的光信号,第一光交叉单元、第二光交叉单元和转换模块支持第一频率范围和第二频率范围内的光信号。
图18中通过光发射机、第一光交叉模块、转换模块、合路模块和第二光交叉模块的合理连接,也能够使得该光发射模组支持CDC特性。
图17和图18中均以光发射模组支持CDC特性,且X=J为例。可选地,光发射模组也可以支持CD特性,且X也可以等于1,此时,图17所示的结构可以变为如图19所示的结构,图18所示的结构可以变为如图20所示的结构。图19和图20中,第一光交叉模块可以是MCS或adWSS。图19所示的结构可以参考图17所示的结构的相关介绍,图20所示的结构可以参考图18所示的结构的相关介绍,本申请实施例在此不做赘述。
以上分别以A=2X、X以及X/2的向上取整为例,对支持CD或CDC特性的光发射模组进行了介绍。可以理解的是,在光发射模组支持CD特性,且X=A=1的情况下,光发射模组还可以有其他可实现方式。
(1)示例地,在X=A=1时,如图21所示,第一光交叉模块可以包括:目标WSS、辅助WSS和K个分路单元;光发射模组还包括:合路模块。合路模块可以是合路器或者其他具有将多路光信号合为一路光信号的功能的器件。目标WSS和辅助WSS均具有K个输入端和1个输出端,K个分路单元的输入端与K个光发射机一一对应连接,K个分路单元的输出端与K个输入端均一一对应连接。所以,每个分路单元具有一个输入端和两个输出端。目标WSS的输出端与合路模块的输入端连接,辅助WSS的输出端经过转换模块与合路模块的输入端连接;合路模块的输出端连接第二光交叉模块的入端口。目标WSS用于在无需调整接收到的光信号的标称中心频率时,控制光信号从目标WSS的输出端输出;辅助WSS用于在需要调整接收到的光信号的标称中心频率时,控制光信号从辅助WSS的输出端输出。
对于任意一个光发射机,该光发射机发出的光信号能够传输至连接的分路单元。该分路单元会将该光信号分为两路光信号后,将这两路光信号分别传输至目标WSS和辅助WSS。一方面,在无需调整该光信号的标称中心频率时,目标WSS会将接收到的一路光信号输出至合路模块,以使该光信号经过第二光交叉模块之后传输至J根第二光纤中的目标光纤。在无需调整该光信号的标称中心频率时,辅助WSS虽然能够接收到一路光信号,但辅助WSS并不会输出该路光信号。另一方面,在需要调整该光信号的标称中心频率时,辅助WSS会将接收到的一路光信号输出至转换模块,以使该光信号在依次经过转换模块、合路模块和第二光交叉模块之后传输至J根第二光纤中的目标光纤。在需要调整该光信号的标称中心频率时,目标WSS虽然能够接收到一路光信号,但目标WSS并不会输出该路光信号。
在图21所示的示例中,光发射机、目标WSS、辅助WSS和转换模块均支持相同频率范围内的光信号。或者,K个光发射机中,一部分光发射机支持第一频率范围内的光信号,另一部分光发射机支持第二频率范围内的光信号,目标WSS、辅助WSS和转换模块均支持第一频率范围和第二频率范围内的光信号。这种情况下,目标WSS和辅助WSS与第二光交叉模块中的WSS可以支持相同频率范围内的光信号,这些WSS可以采用同一种WSS。
图21中通过光发射机、第一光交叉模块、转换模块、合路模块和第二光交叉模块的合理连接,能够使得该光发射模组支持CD特性。
(2)又示例地,在X=A=1时,如图22所示,第一光交叉模块可以包括:目标合路单元、辅助合路单元以及K个光开关,光发射模组还包括合路模块。目标合路单元和辅助合路单元均具有K个输入端和1个输出端;对于目标合路单元和辅助合路单元中的每个合路单元,K个光发射机通过K个光开关分别与该合路模块的K个输入端一一对应连接;目标合路单元的输出端与合路模块的输入端连接,辅助合路单元的输出端经过转换模块与合路模块的输入端连接;合路模块的输出端与第二光交叉模块的入端口连接。光开关用于:在需要调整来自连接的光发射机的光信号的标称中心频率时,将连接的光发射机连接至辅助合路单元;在无需调整来自连接的光发射机的光信号的标称中心频率时,将连接的光发射机连接至目标合路单元。
对于任意一个光发射机,该光发射机发出的光信号能够传输至连接的光开关。一方面,在需要调整该光信号的标称中心频率时,该光开关会将该光发射机连接至辅助合路单元(此时该光发射机并未连接至目标合路单元),以使该光信号传输至辅助合路单元后,依次经过转换模块、合路模块和第二光交叉模块后传输至J根第二光纤中的目标光纤。另一方面,在无需调整该光信号的标称中心频率时,该光开关会将该光发射机连接至目标合路单元,以使该光信号传输至目标合路单元后,依次经过合路模块和第二光交叉模块后传输至J根第二光纤中的目标光纤。
在图22所示的示例中,光发射机、目标合路单元、辅助合路单元和转换模块均支持相同频率范围内的光信号。
图22中通过光发射机、第一光交叉模块、转换模块、合路模块和第二光交叉模块的合理连接,能够使得该光发射模组支持CD特性。
另外,图7、8、11、12、13、17和18中均以光发射模组支持CDC特性,且第二光交叉模块包括J个第二WSS(详见图5相关的介绍,第二WSS可以称为线路WSS)为例。图7、8、11、12、13、17和18中光发射模组的CDC特性的介绍可以参考图2和图5中相关的CDC特性介绍,本申请实施例在此不做赘述。
图9、图10、14、15、16、19、20、21和22中均以光发射模组支持CD特性,且第二光交叉模块包括第五WSS和J个第六WSS(详见图1的相关介绍)。该第五WSS可以是第三光交叉单元,第三光交叉单元也可以不是WSS,而是分路器;第六WSS可以称为线路WSS。图9、图10、14、15、16、19、20、21和22中光发射模组的CDC特性的介绍可以参考图1中相关的CD特性介绍,本申请实施例在此不做赘述。
图7至图22均还示出了光发射模组所在的光设备中的光接收模组,可以理解的是,该光设备中的光接收模组也可以与这些附图所示的结构不同,本申请实施例不对光设备中的光接收模组的结构进行限定。
图11、14、17、19所示的光发射模组中,第一光交叉模块与第二光交叉模块能够直连,在无需调整光信号的标称中心频率时,第一光交叉模块可以将该光信号直接传输至第二光交叉模块,该光信号无需经过合路模块,因此,光信号的插损较少。
上述图7至图22所示的光发射模组中,第一光交叉模块的入端口和出端口的数量多种多样,在其中一些附图(如图12、图15)所示的光发射模组中,第一光交叉模块的入端口和出端口的个数均较少,因此,第一光交叉模块的复杂度较低,成本较低。
上述图7至图22所示的光发射模组中,图11、12、14、15、21、22中的K个光发射机均可以是同一种光发射机,支持同一频率范围内的光信号。图7、8、9、10、13、16、17、18、19、20中的G个第一光发射机均可以是同一种光发射机,支持第一频率范围内的光信号;图7、8、9、10、13、16、17、18、19、20中的H个第二光发射机均可以是同一种光发射机,支持第二频率范围内的光信号。
本申请中可以根据J的大小、X的大小、K的大小、光发射模组输出的光信号的频率范围的要求等因素,合理选择上述不同的实施例。
根据前述介绍可知,本申请实施例提供的光发射模组中,第一光交叉模块具有与K个光发射机连接的第一入端口,与第二光交叉模块连接的第一出端口,以及,与转换模块的入端口连接的第二出端口。转换模块具有与第二光交叉模块连接的出端口,或者,转换模块具有与第一光交叉模块的第二入端口连接的出端口。第一光交叉模块可以根据配置信息,将任意第一入端口接收到的光发射机发出的光信号从第一出端口送到第二光交叉模块,或者,将该光信号送到第二出端口后,再经过第二入端口和第一出端口后送到第 二光交叉模块。送到第二光交叉模块的入端口的光信号会被第二光交叉模块从出端口送到该光信号用于传输至的目标光纤上。
基于本申请实施例提供的光发射模组,本申请实施例还提供了一种光设备,该光设备包括本申请实施例提供的任一种光发射模组,以及用于接收光信号的光接收模组。
本申请实施例还提供了一种光系统,包括多个光设备,其中,至少一个光设备为本申请实施例提供的光设备。
在本申请中,术语“第一”和“第二”等仅用于描述目的,而不能理解为指示或暗示相对重要性。术语“至少一个”指一个或多个,“多个”指两个或两个以上,除非另有明确的限定。本申请中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
在本申请提供的相应实施例中,应该理解到,所揭露的结构可以通过其它的构成方式实现。例如,以上所描述的实施例仅仅是示意性的。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、模组和设备,可以通过其它的方式实现。例如,以上所描述的模组实施例仅仅是示意性的,例如,所述单元和模块的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或模块可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。
所述作为分离部件说明的单元或模块可以是或者也可以不是物理上分开的,作为单元或模块显示的部件可以是或者也可以不是物理单元或模块,即可以位于一个地方,或者也可以分布到多个地方。可以根据实际的需要选择其中的部分或者全部单元或模块来实现本实施例的方案。
另外,在本申请各个实施例中的各功能单元可以集成在一起,也可以是各个模块或单元相互独立,也可以两个或两个以上单元或模块集成在一起。上述集成在一起的结构既可以采用硬件的形式实现,也可以采用硬件加软件功能单元的形式实现。
以上所述,仅为本申请的可选实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (24)

  1. 一种光发射模组,其特征在于,所述光发射模组包括:至少一个光发射机、第一光交叉模块、至少一个转换模块和第二光交叉模块;所述第二光交叉模块具有X个入端口和J个出端口;X=1或X≥J,J≥1,所述J个出端口一一对应地连接J根光纤;
    所述光发射机用于向所述第一光交叉模块发射光信号;
    所述第一光交叉模块用于:在需要调整所述光信号的标称中心频率时,控制所述光信号沿经过所述转换模块的路径传输至所述第二光交叉模块的入端口;以及,在无需调整所述光信号的标称中心频率时,控制所述光信号沿不经过所述转换模块的路径传输至所述第二光交叉模块的入端口;
    所述转换模块用于调整经过的所述光信号的标称中心频率。
  2. 根据权利要求1所述的光发射模组,其特征在于,
    所述第一光交叉模块用于:在需要调整所述光信号的标称中心频率时,将所述光信号传输至所述转换模块;
    所述转换模块用于:将来自所述第一光交叉模块的所述光信号经过标称中心频率的调整后,传输至所述第一光交叉模块或所述第二光交叉模块的入端口;
    所述第一光交叉模块还用于:将来自所述转换模块的所述光信号传输至所述第二光交叉模块的入端口。
  3. 根据权利要求1或2所述的光发射模组,其特征在于,所述至少一个光发射机包括多个光发射机;
    所述第一光交叉模块用于:在需要调整所述多个光发射机发射的多个光信号的标称中心频率时,控制所述多个光信号沿经过同一所述转换模块的路径传输至所述第二光交叉模块的入端口。
  4. 根据权利要求3所述的光发射模组,其特征在于,所述至少一个转换模块包括A个转换模块,所述光发射机的个数为K,K≥1,1≤A≤K。
  5. 根据权利要求1至4任一所述的光发射模组,其特征在于,所述至少一个转换模块包括A个转换模块,A≤2X。
  6. 根据权利要求5所述的光发射模组,其特征在于,A≤X。
  7. 根据权利要求6所述的光发射模组,其特征在于,A≤X/2向上取整。
  8. 根据权利要求5所述的光发射模组,其特征在于,所述A个转换模块包括:X个第一转换模块和X个第二转换模块;
    所述第一光交叉模块包括:第一光交叉单元和第二光交叉单元;所述光发射机的个数为K,K个光发射机包括:G个第一光发射机和H个第二光发射机,所述第一光发射机用于向所述第一光交叉单元发射标称中心频率在第一频率范围内的光信号,所述第二光发射机用于向所述第二光交叉单元发射标称中心频率在第二频率范围内的光信号,G≥1,H≥1;
    所述第一光交叉单元用于:在需要调整接收到的所述光信号的标称中心频率时,控制所述光信号在经过所述第一转换模块后,传输至所述第二光交叉模块的入端口;用于传输至不同所述光纤的所述光信号经过的所述第一转换模块不同;
    所述第二光交叉单元用于:在需要调整接收到的所述光信号的标称中心频率时,控制所述光信号在经过所述第二转换模块后,传输至所述第二光交叉模块的入端口;用于传输至不同所述光纤的所述光信号经过的所述第二转换模块不同;
    所述第一转换模块用于:将经过的光信号的标称中心频率调整至所述第二频率范围内;所述第二转换模块用于:将经过的光信号的标称中心频率调整至所述第一频率范围内;经过所述转换模块的光信号的标称中心频率与所述光发射机发出的光信号的标称中心频率不同。
  9. 根据权利要求8所述的光发射模组,其特征在于,所述光发射模组还包括:X个合路模块;
    所述第一光交叉单元具有与所述G个第一光发射机一一对应连接的G个第一入端口,所述第二光交叉单元具有与所述H个第二光发射机一一对应连接的H个第一入端口;所述第一光交叉单元和所述第二光交叉单元还均具有X个第一出端口、X个第二入端口和X个第二出端口;
    所述X个第一出端口与所述X个合路模块的输入端一一对应连接,所述X个合路模块的输出端与所述第二光交叉模块的X个入端口一一对应连接;所述第一光交叉单元的所述X个第二出端口分别通过所述X个第一转换模块与所述第二光交叉单元的所述X个第二入端口一一对应连接;所述第二光交叉单元的所述X个第二出端口分别通过所述X个第二转换模块与所述第一光交叉单元的所述X个第二入端口一一对应连接。
  10. 根据权利要求8所述的光发射模组,其特征在于,所述光发射模组还包括:X个合路模块;
    所述第一光交叉单元具有与所述G个第一光发射机一一对应连接的G个入端口,所述第二光交叉单元具有与所述H个第二光发射机一一对应连接的H个入端口;所述第一光交叉单元和所述第二光交叉单元还均具有X个第一出端口和X个第二出端口;
    所述X个第一出端口与所述X个合路模块的输入端一一对应连接,所述X个合路模块的输出端与所述第二光交叉模块的X个入端口一一对应连接;所述第一光交叉单元的所述X个第二出端口分别通过所述X个第一转换模块与所述X个合路模块的输入端一一对应连接;所述第二光交叉单元的所述X个第二出端口分别通过所述X个第二转换模块与所述X个合路模块的输入端一一对应连接。
  11. 根据权利要求6所述的光发射模组,其特征在于,所述A个转换模块包括:X个转换模块;
    所述第一光交叉模块用于:在需要调整所述光信号的标称中心频率时,控制所述光信号在经过所述转换模块后传输至所述第二光交叉模块的入端口;用于传输至不同所述光纤的所述光信号经过的所述转换模块不同。
  12. 根据权利要求11所述的光发射模组,其特征在于,所述光发射机的个数为K,K≥1,所述第一光交叉模块具有K个第一入端口、X个第一出端口、X个第二入端口和X个第二出端口;
    所述K个第一入端口与K个光发射机一一对应连接,所述X个第一出端口与所述第二光交叉模块的X个入端口一一对应连接,所述X个第二入端口分别通过所述X个转换模块与所述X个第二出端口一一对应连接。
  13. 根据权利要求11所述的光发射模组,其特征在于,所述光发射机的个数为K,K≥1,所述光发射模组还包括X个合路模块;所述第一光交叉模块具有K个入端口、X个第一出端口和X个第二出端口;
    所述K个入端口与K个光发射机一一对应连接,所述X个第一出端口与所述X个合路模块的输入端一一对应连接,所述X个第二出端口分别通过所述X个转换模块与所述X个合路模块的输入端一一对应连接,所述X个合路模块的输出端与所述第二光交叉模块的X个入端口一一对应连接。
  14. 根据权利要求11所述的光发射模组,其特征在于,所述光发射机的个数为K,K个光发射机包括:G个第一光发射机和H个第二光发射机,所述第一光发射机用于发射标称中心频率在第一频率范围内的光信号,所述第二光发射机用于发射标称中心频率在第二频率范围内的光信号,G≥1,H≥1;所述第一光交叉模块包括:第一光交叉单元和第二光交叉单元,所述光发射模组还包括:X个第一合路模块和X个第二合路模块;
    所述第一光交叉单元具有与所述G个第一光发射机一一对应连接的G个入端口,所述第二光交叉单元具有与所述H个第二光发射机一一对应连接的H个入端口;所述第一光交叉单元和所述第二光交叉单元还均具有X个第一出端口和X个第二出端口;
    所述X个第一出端口与所述X个第一合路模块的输入端一一对应连接,所述X个第一合路模块的输出端与所述第二光交叉模块的X个入端口一一对应连接;所述X个第二出端口与所述X个第二合路模块 的输入端一一对应连接,所述X个第二合路模块的输出端分别通过所述X个转换模块与所述X个第一合路模块的输入端一一对应连接;
    所述转换模块用于:将经过的光信号的标称中心频率在所述第一频率范围和所述第二频率范围之间切换;经过所述转换模块的光信号的标称中心频率与所述光发射机发出的光信号的标称中心频率不同。
  15. 根据权利要求7所述的光发射模组,其特征在于,所述A个转换模块包括:X/2的向上取整个转换模块;
    所述光发射机的个数为K,K个光发射机包括:G个第一光发射机和H个第二光发射机,所述第一光发射机用于发射标称中心频率在第一频率范围内的光信号,所述第二光发射机用于发射标称中心频率在第二频率范围内的光信号,G≥1,H≥1;
    所述转换模块用于:将经过的光信号的标称中心频率在所述第一频率范围和所述第二频率范围之间切换;经过所述转换模块的光信号的标称中心频率与所述光发射机发出的光信号的标称中心频率不同。
  16. 根据权利要求15所述的光发射模组,其特征在于,所述第一光交叉模块具有K个第一入端口、A个第二入端口、X个第一出端口和A个第二出端口;
    所述K个第一入端口与所述K个光发射机一一对应连接,所述X个第一出端口与所述第二光交叉模块的X个入端口一一对应连接,所述A个第二出端口分别通过A个转换模块与所述A个第二入端口一一对应连接。
  17. 根据权利要求15所述的光发射模组,其特征在于,所述第一光交叉模块包括:第一光交叉单元和第二光交叉单元;所述光发射模组还包括:X个第一合路模块、A个第二合路模块和A个分路模块;
    所述第一光交叉单元具有与所述G个第一光发射机一一对应连接的G个第一入端口,所述第二光交叉单元具有与所述H个第二光发射机一一对应连接的H个第一入端口;所述第一光交叉单元和所述第二光交叉单元还均具有X个第一出端口、A个第二入端口和A个第二出端口;
    所述X个第一出端口与所述X个第一合路模块的输入端一一对应连接,所述X个第一合路模块的输出端与所述第二光交叉模块的X个入端口一一对应连接;所述A个第二出端口与所述A个第二合路模块的输入端一一对应连接,所述A个第二合路模块的输出端通过所述A个转换模块与所述A个分路模块的输入端一一对应连接;所述A个分路模块的输出端与所述A个第二入端口一一对应连接;
    所述转换模块用于:将经过的光信号的标称中心频率在所述第一频率范围和所述第二频率范围之间切换。
  18. 根据权利要求1至7任一所述的光发射模组,其特征在于,A=1,X=1,所述光发射机的个数为K,K≥1,所述第一光交叉模块包括:目标波长选择开关WSS、辅助WSS和K个分路单元,所述目标WSS和所述辅助WSS均具有K个输入端和1个输出端;所述光发射模组还包括:合路模块;
    所述K个分路单元的输入端与K个光发射机一一对应连接,所述K个分路单元的输出端与所述K个输入端一一对应连接;所述目标WSS的输出端与所述合路模块的输入端连接,所述辅助WSS的输出端经过所述转换模块与所述合路模块的输入端连接;所述合路模块的输出端连接所述第二光交叉模块的入端口;
    所述目标WSS用于在无需调整接收到的所述光信号的标称中心频率时,控制所述光信号从所述目标WSS的输出端输出;所述辅助WSS用于在需要调整接收到的所述光信号的标称中心频率时,控制所述光信号从所述辅助WSS的输出端输出。
  19. 根据权利要求1至7任一所述的光发射模组,其特征在于,A=1,X=1,所述光发射机的个数为K,K≥1,所述第一光交叉模块包括:目标合路单元、辅助合路单元以及K个光开关,所述目标合路单元和所述辅助合路单元均具有K个输入端和1个输出端;所述光发射模组还包括合路模块;
    K个光发射机通过所述K个光开关分别与所述K个输入端一一对应连接;所述目标合路单元的输出端与所述合路模块的输入端连接,所述辅助合路单元的输出端经过所述转换模块与所述合路模块的输入端连接;所述合路模块的输出端与所述第二光交叉模块的入端口连接;
    所述光开关用于:在需要调整来自连接的所述光发射机的所述光信号的标称中心频率时,将连接的所述光发射机连接至所述辅助合路单元;在无需调整来自连接的所述光发射机的所述光信号的标称中心频率时,将连接的所述光发射机连接至所述目标合路单元。
  20. 根据权利要求1至19任一所述的光发射模组,其特征在于,X=1,所述第二光交叉模块包括:第三光交叉单元和J个线路WSS;
    所述第三光交叉单元具有所述第二光交叉模块的一个入端口和J个中转出端口,所述J个中转出端口与所述J个线路WSS一一对应连接,所述线路WSS具有所述第二光交叉模块的一个出端口,所述J个线路WSS具有所述第二光交叉模块的J个出端口。
  21. 根据权利要求1至17任一所述的光发射模组,其特征在于,X≥J,所述第二光交叉模块包括:J个线路WSS;
    所述线路WSS具有所述第二光交叉模块的至少一个入端口和所述第二光交叉模块的一个出端口,所述J个线路WSS具有所述第二光交叉模块的X个入端口和J个出端口。
  22. 一种光设备,其特征在于,所述光设备包括:权利要求1至21任一所述的光发射模组,以及处理模组;
    所述处理模组与所述光发射模组连接,用于控制所述光发射模组发送光信号。
  23. 根据权利要求22所述的光设备,其特征在于,所述光设备还包括:用于接收光信号的光接收模组。
  24. 一种光通信系统,其特征在于,包括:多个光设备,至少一个所述光设备为权利要求22或23所述的光设备。
PCT/CN2023/126566 2023-02-28 2023-10-25 光发射模组、光设备及系统 WO2024179003A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202310228941.XA CN118573283A (zh) 2023-02-28 2023-02-28 光发射模组、光设备及系统
CN202310228941.X 2023-02-28

Publications (1)

Publication Number Publication Date
WO2024179003A1 true WO2024179003A1 (zh) 2024-09-06

Family

ID=92476952

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/126566 WO2024179003A1 (zh) 2023-02-28 2023-10-25 光发射模组、光设备及系统

Country Status (2)

Country Link
CN (1) CN118573283A (zh)
WO (1) WO2024179003A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10206919A (ja) * 1997-01-28 1998-08-07 Nippon Hoso Kyokai <Nhk> 光周波数の広波長域連続可変方法およびその装置
JP2003244102A (ja) * 2002-02-20 2003-08-29 Hitachi Ltd 光帯域狭窄化送信装置および光残留サイドバンド送信装置
CN1975548A (zh) * 2006-12-14 2007-06-06 天津大学 窗口可调的宽带光源
US20190109666A1 (en) * 2017-10-06 2019-04-11 Fujitsu Limited Wavelength converter and optical transmission device that includes wavelength converter

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10206919A (ja) * 1997-01-28 1998-08-07 Nippon Hoso Kyokai <Nhk> 光周波数の広波長域連続可変方法およびその装置
JP2003244102A (ja) * 2002-02-20 2003-08-29 Hitachi Ltd 光帯域狭窄化送信装置および光残留サイドバンド送信装置
CN1975548A (zh) * 2006-12-14 2007-06-06 天津大学 窗口可调的宽带光源
US20190109666A1 (en) * 2017-10-06 2019-04-11 Fujitsu Limited Wavelength converter and optical transmission device that includes wavelength converter

Also Published As

Publication number Publication date
CN118573283A (zh) 2024-08-30

Similar Documents

Publication Publication Date Title
US5712932A (en) Dynamically reconfigurable WDM optical communication systems with optical routing systems
US7088922B2 (en) Wavelength division multiplexing optical communication system
US7433594B2 (en) Node apparatus, optical wavelength division multiplexing network, and system switching method
US7215843B2 (en) Optical switching apparatus and optical switching method
KR101533872B1 (ko) 완전 무저항의 파장 무관계성을 실현한 재구성 가능한 광신호 분기, 삽입 다중화 장치
US20120087658A1 (en) Wavelength Selective Switch Band Aggregator and Band Deaggregator and Systems and Methods Using Same
US5953470A (en) Circuit for optical WDM system
KR20020059914A (ko) 양방향 파장 분할 다중 광전송 시스템
JP2015220590A (ja) 光送信装置、光受信装置、及び、光伝送方法
US20020015551A1 (en) Optical switch network, optical cross connecting device, and optical add/drop multiplexer
EP0933964A2 (en) Optical network switching system
JP2012169870A (ja) 光伝送装置および光フィルタ回路
WO1997022190A1 (en) Meshed optical network
US20220368446A1 (en) Apparatus and Method for Coherent Optical Multiplexing 1+1 Protection
US10530515B2 (en) OADM node and method in WDM system
CN115499728A (zh) 一种全光交换系统及全光交换方法
WO2024179003A1 (zh) 光发射模组、光设备及系统
US9800342B2 (en) Optical WDM transmission network
WO2019021972A1 (ja) 光波長分離装置及び光波長分離方法
EP1427122B1 (en) Bidirectional wavelength division multiplexing self-healing ring network
US7266294B2 (en) Coupler-based optical cross-connect
EP3588808A1 (en) Twdm pon with variable splitting ratio
JP2003234721A (ja) 光通信システム
WO2024161646A1 (ja) 通信装置、光アドドロップ装置、および信号処理方法
US20240015421A1 (en) Optical Communication System and Optical Communication Method