WO2024177005A1 - Polyester resin and polyester resin production method - Google Patents
Polyester resin and polyester resin production method Download PDFInfo
- Publication number
- WO2024177005A1 WO2024177005A1 PCT/JP2024/005759 JP2024005759W WO2024177005A1 WO 2024177005 A1 WO2024177005 A1 WO 2024177005A1 JP 2024005759 W JP2024005759 W JP 2024005759W WO 2024177005 A1 WO2024177005 A1 WO 2024177005A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- polyester resin
- polycarboxylic acid
- polyhydric alcohol
- acid component
- mol
- Prior art date
Links
- 229920001225 polyester resin Polymers 0.000 title claims abstract description 223
- 239000004645 polyester resin Substances 0.000 title claims abstract description 223
- 238000004519 manufacturing process Methods 0.000 title claims description 51
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 claims abstract description 131
- 238000002425 crystallisation Methods 0.000 claims abstract description 80
- 230000008025 crystallization Effects 0.000 claims abstract description 80
- 239000002253 acid Substances 0.000 claims abstract description 79
- YLQBMQCUIZJEEH-UHFFFAOYSA-N Furan Chemical group C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 claims abstract description 47
- 150000005846 sugar alcohols Polymers 0.000 claims abstract description 43
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims abstract description 17
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 17
- 229910052751 metal Inorganic materials 0.000 claims abstract description 15
- 238000000113 differential scanning calorimetry Methods 0.000 claims abstract description 14
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims abstract description 8
- 239000002184 metal Substances 0.000 claims abstract description 8
- 229910052732 germanium Inorganic materials 0.000 claims abstract description 7
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 claims abstract description 7
- 229910052719 titanium Inorganic materials 0.000 claims abstract description 7
- 239000010936 titanium Substances 0.000 claims abstract description 7
- 229910052787 antimony Inorganic materials 0.000 claims abstract description 6
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 claims abstract description 6
- 238000010438 heat treatment Methods 0.000 claims description 53
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 claims description 36
- 238000006068 polycondensation reaction Methods 0.000 claims description 34
- 238000000034 method Methods 0.000 claims description 31
- 239000008188 pellet Substances 0.000 claims description 22
- 239000003484 crystal nucleating agent Substances 0.000 claims description 17
- 238000002844 melting Methods 0.000 claims description 16
- 230000008018 melting Effects 0.000 claims description 16
- 150000001732 carboxylic acid derivatives Chemical class 0.000 claims description 14
- 239000000203 mixture Substances 0.000 claims description 14
- 230000008859 change Effects 0.000 claims description 10
- 239000007790 solid phase Substances 0.000 claims description 9
- 239000007795 chemical reaction product Substances 0.000 claims description 7
- 238000001816 cooling Methods 0.000 claims description 6
- 239000000835 fiber Substances 0.000 claims description 6
- 239000000470 constituent Substances 0.000 claims description 5
- 238000005520 cutting process Methods 0.000 claims description 2
- 238000007599 discharging Methods 0.000 claims description 2
- 230000000379 polymerizing effect Effects 0.000 claims description 2
- 230000020169 heat generation Effects 0.000 abstract description 8
- -1 polyethylene furanolate Polymers 0.000 description 33
- 229910052698 phosphorus Inorganic materials 0.000 description 29
- 239000011574 phosphorus Substances 0.000 description 29
- 125000001931 aliphatic group Chemical group 0.000 description 27
- 239000002994 raw material Substances 0.000 description 18
- 229920005989 resin Polymers 0.000 description 18
- 239000011347 resin Substances 0.000 description 18
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 17
- 239000003054 catalyst Substances 0.000 description 17
- 229920000642 polymer Polymers 0.000 description 15
- OFOBLEOULBTSOW-UHFFFAOYSA-N Malonic acid Chemical compound OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 14
- 230000000052 comparative effect Effects 0.000 description 14
- 230000008569 process Effects 0.000 description 14
- 239000003963 antioxidant agent Substances 0.000 description 13
- 239000002685 polymerization catalyst Substances 0.000 description 13
- 239000000243 solution Substances 0.000 description 13
- 238000005979 thermal decomposition reaction Methods 0.000 description 13
- CHTHALBTIRVDBM-UHFFFAOYSA-N furan-2,5-dicarboxylic acid Chemical compound OC(=O)C1=CC=C(C(O)=O)O1 CHTHALBTIRVDBM-UHFFFAOYSA-N 0.000 description 12
- 238000005259 measurement Methods 0.000 description 12
- 238000006116 polymerization reaction Methods 0.000 description 12
- 239000000047 product Substances 0.000 description 12
- 238000005886 esterification reaction Methods 0.000 description 11
- 230000004927 fusion Effects 0.000 description 11
- 150000002148 esters Chemical class 0.000 description 10
- 238000000465 moulding Methods 0.000 description 10
- 238000012545 processing Methods 0.000 description 10
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 9
- 125000004432 carbon atom Chemical group C* 0.000 description 9
- 230000007423 decrease Effects 0.000 description 9
- 239000002028 Biomass Substances 0.000 description 8
- ADCOVFLJGNWWNZ-UHFFFAOYSA-N antimony trioxide Chemical compound O=[Sb]O[Sb]=O ADCOVFLJGNWWNZ-UHFFFAOYSA-N 0.000 description 8
- 238000006243 chemical reaction Methods 0.000 description 8
- 239000013078 crystal Substances 0.000 description 8
- 239000000155 melt Substances 0.000 description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 8
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical class C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 description 7
- 230000000694 effects Effects 0.000 description 7
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 7
- 239000000523 sample Substances 0.000 description 7
- HEDRZPFGACZZDS-MICDWDOJSA-N Trichloro(2H)methane Chemical compound [2H]C(Cl)(Cl)Cl HEDRZPFGACZZDS-MICDWDOJSA-N 0.000 description 6
- 229920000139 polyethylene terephthalate Polymers 0.000 description 6
- 239000005020 polyethylene terephthalate Substances 0.000 description 6
- 238000003756 stirring Methods 0.000 description 6
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 5
- 125000003118 aryl group Chemical group 0.000 description 5
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 5
- 239000011521 glass Substances 0.000 description 5
- 239000000178 monomer Substances 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 4
- KDYFGRWQOYBRFD-UHFFFAOYSA-N Succinic acid Natural products OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 description 4
- 150000007513 acids Chemical class 0.000 description 4
- 125000002723 alicyclic group Chemical group 0.000 description 4
- AZDRQVAHHNSJOQ-UHFFFAOYSA-N alumane Chemical class [AlH3] AZDRQVAHHNSJOQ-UHFFFAOYSA-N 0.000 description 4
- 238000000137 annealing Methods 0.000 description 4
- 230000000903 blocking effect Effects 0.000 description 4
- 238000007334 copolymerization reaction Methods 0.000 description 4
- 238000001938 differential scanning calorimetry curve Methods 0.000 description 4
- 238000002845 discoloration Methods 0.000 description 4
- 230000007613 environmental effect Effects 0.000 description 4
- 230000032050 esterification Effects 0.000 description 4
- DNXDYHALMANNEJ-UHFFFAOYSA-N furan-2,3-dicarboxylic acid Chemical compound OC(=O)C=1C=COC=1C(O)=O DNXDYHALMANNEJ-UHFFFAOYSA-N 0.000 description 4
- 238000002156 mixing Methods 0.000 description 4
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N phenol group Chemical group C1(=CC=CC=C1)O ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 4
- 229920000728 polyester Polymers 0.000 description 4
- 238000006467 substitution reaction Methods 0.000 description 4
- 229910052623 talc Inorganic materials 0.000 description 4
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- GTDPSWPPOUPBNX-UHFFFAOYSA-N ac1mqpva Chemical compound CC12C(=O)OC(=O)C1(C)C1(C)C2(C)C(=O)OC1=O GTDPSWPPOUPBNX-UHFFFAOYSA-N 0.000 description 3
- 230000003078 antioxidant effect Effects 0.000 description 3
- 239000012298 atmosphere Substances 0.000 description 3
- 230000003197 catalytic effect Effects 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 150000002291 germanium compounds Chemical class 0.000 description 3
- YBMRDBCBODYGJE-UHFFFAOYSA-N germanium oxide Inorganic materials O=[Ge]=O YBMRDBCBODYGJE-UHFFFAOYSA-N 0.000 description 3
- 230000001771 impaired effect Effects 0.000 description 3
- 229910010272 inorganic material Inorganic materials 0.000 description 3
- 239000012046 mixed solvent Substances 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 239000002667 nucleating agent Substances 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 239000003208 petroleum Substances 0.000 description 3
- 230000037048 polymerization activity Effects 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 239000000376 reactant Substances 0.000 description 3
- 230000035484 reaction time Effects 0.000 description 3
- 239000011342 resin composition Substances 0.000 description 3
- 125000001424 substituent group Chemical group 0.000 description 3
- 239000000454 talc Substances 0.000 description 3
- 238000005809 transesterification reaction Methods 0.000 description 3
- QPFMBZIOSGYJDE-UHFFFAOYSA-N 1,1,2,2-tetrachloroethane Chemical compound ClC(Cl)C(Cl)Cl QPFMBZIOSGYJDE-UHFFFAOYSA-N 0.000 description 2
- 238000005160 1H NMR spectroscopy Methods 0.000 description 2
- RAADBCJYJHQQBI-UHFFFAOYSA-N 2-sulfoterephthalic acid Chemical compound OC(=O)C1=CC=C(C(O)=O)C(S(O)(=O)=O)=C1 RAADBCJYJHQQBI-UHFFFAOYSA-N 0.000 description 2
- ZHBXLZQQVCDGPA-UHFFFAOYSA-N 5-[(1,3-dioxo-2-benzofuran-5-yl)sulfonyl]-2-benzofuran-1,3-dione Chemical compound C1=C2C(=O)OC(=O)C2=CC(S(=O)(=O)C=2C=C3C(=O)OC(C3=CC=2)=O)=C1 ZHBXLZQQVCDGPA-UHFFFAOYSA-N 0.000 description 2
- QNVNLUSHGRBCLO-UHFFFAOYSA-N 5-hydroxybenzene-1,3-dicarboxylic acid Chemical compound OC(=O)C1=CC(O)=CC(C(O)=O)=C1 QNVNLUSHGRBCLO-UHFFFAOYSA-N 0.000 description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- QIGBRXMKCJKVMJ-UHFFFAOYSA-N Hydroquinone Chemical compound OC1=CC=C(O)C=C1 QIGBRXMKCJKVMJ-UHFFFAOYSA-N 0.000 description 2
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 2
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 2
- GOOHAUXETOMSMM-UHFFFAOYSA-N Propylene oxide Chemical class CC1CO1 GOOHAUXETOMSMM-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- KKEYFWRCBNTPAC-UHFFFAOYSA-N Terephthalic acid Chemical compound OC(=O)C1=CC=C(C(O)=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-N 0.000 description 2
- DTQVDTLACAAQTR-UHFFFAOYSA-N Trifluoroacetic acid Chemical compound OC(=O)C(F)(F)F DTQVDTLACAAQTR-UHFFFAOYSA-N 0.000 description 2
- HDYRYUINDGQKMC-UHFFFAOYSA-M acetyloxyaluminum;dihydrate Chemical compound O.O.CC(=O)O[Al] HDYRYUINDGQKMC-UHFFFAOYSA-M 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- WNLRTRBMVRJNCN-UHFFFAOYSA-N adipic acid Chemical compound OC(=O)CCCCC(O)=O WNLRTRBMVRJNCN-UHFFFAOYSA-N 0.000 description 2
- 125000000217 alkyl group Chemical group 0.000 description 2
- 229940009827 aluminum acetate Drugs 0.000 description 2
- 229920006125 amorphous polymer Polymers 0.000 description 2
- 229940058905 antimony compound for treatment of leishmaniasis and trypanosomiasis Drugs 0.000 description 2
- 150000001463 antimony compounds Chemical class 0.000 description 2
- FAWGZAFXDJGWBB-UHFFFAOYSA-N antimony(3+) Chemical compound [Sb+3] FAWGZAFXDJGWBB-UHFFFAOYSA-N 0.000 description 2
- 150000007514 bases Chemical class 0.000 description 2
- 235000013361 beverage Nutrition 0.000 description 2
- WERYXYBDKMZEQL-UHFFFAOYSA-N butane-1,4-diol Chemical compound OCCCCO WERYXYBDKMZEQL-UHFFFAOYSA-N 0.000 description 2
- KDYFGRWQOYBRFD-NUQCWPJISA-N butanedioic acid Chemical compound O[14C](=O)CC[14C](O)=O KDYFGRWQOYBRFD-NUQCWPJISA-N 0.000 description 2
- 239000006227 byproduct Substances 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 238000009833 condensation Methods 0.000 description 2
- 230000005494 condensation Effects 0.000 description 2
- 238000006731 degradation reaction Methods 0.000 description 2
- RTZKZFJDLAIYFH-UHFFFAOYSA-N ether Substances CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- 150000002240 furans Chemical class 0.000 description 2
- 230000009477 glass transition Effects 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- 239000003112 inhibitor Substances 0.000 description 2
- 239000011147 inorganic material Substances 0.000 description 2
- QQVIHTHCMHWDBS-UHFFFAOYSA-N isophthalic acid Chemical compound OC(=O)C1=CC=CC(C(O)=O)=C1 QQVIHTHCMHWDBS-UHFFFAOYSA-N 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 150000004702 methyl esters Chemical class 0.000 description 2
- 239000006199 nebulizer Substances 0.000 description 2
- BDJRBEYXGGNYIS-UHFFFAOYSA-N nonanedioic acid Chemical compound OC(=O)CCCCCCCC(O)=O BDJRBEYXGGNYIS-UHFFFAOYSA-N 0.000 description 2
- 238000000655 nuclear magnetic resonance spectrum Methods 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- VLTRZXGMWDSKGL-UHFFFAOYSA-N perchloric acid Chemical compound OCl(=O)(=O)=O VLTRZXGMWDSKGL-UHFFFAOYSA-N 0.000 description 2
- 150000003009 phosphonic acids Chemical class 0.000 description 2
- 150000003018 phosphorus compounds Chemical class 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- CYIDZMCFTVVTJO-UHFFFAOYSA-N pyromellitic acid Chemical compound OC(=O)C1=CC(C(O)=O)=C(C(O)=O)C=C1C(O)=O CYIDZMCFTVVTJO-UHFFFAOYSA-N 0.000 description 2
- 238000001953 recrystallisation Methods 0.000 description 2
- 239000012925 reference material Substances 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 239000012488 sample solution Substances 0.000 description 2
- CXMXRPHRNRROMY-UHFFFAOYSA-N sebacic acid Chemical compound OC(=O)CCCCCCCCC(O)=O CXMXRPHRNRROMY-UHFFFAOYSA-N 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 239000006228 supernatant Substances 0.000 description 2
- 150000003609 titanium compounds Chemical class 0.000 description 2
- VXUYXOFXAQZZMF-UHFFFAOYSA-N titanium(IV) isopropoxide Chemical compound CC(C)O[Ti](OC(C)C)(OC(C)C)OC(C)C VXUYXOFXAQZZMF-UHFFFAOYSA-N 0.000 description 2
- ARCGXLSVLAOJQL-UHFFFAOYSA-N trimellitic acid Chemical compound OC(=O)C1=CC=C(C(O)=O)C(C(O)=O)=C1 ARCGXLSVLAOJQL-UHFFFAOYSA-N 0.000 description 2
- DNIAPMSPPWPWGF-VKHMYHEASA-N (+)-propylene glycol Chemical compound C[C@H](O)CO DNIAPMSPPWPWGF-VKHMYHEASA-N 0.000 description 1
- SZCWBURCISJFEZ-UHFFFAOYSA-N (3-hydroxy-2,2-dimethylpropyl) 3-hydroxy-2,2-dimethylpropanoate Chemical compound OCC(C)(C)COC(=O)C(C)(C)CO SZCWBURCISJFEZ-UHFFFAOYSA-N 0.000 description 1
- BYEAHWXPCBROCE-UHFFFAOYSA-N 1,1,1,3,3,3-hexafluoropropan-2-ol Chemical class FC(F)(F)C(O)C(F)(F)F BYEAHWXPCBROCE-UHFFFAOYSA-N 0.000 description 1
- IVSZLXZYQVIEFR-UHFFFAOYSA-N 1,3-Dimethylbenzene Natural products CC1=CC=CC(C)=C1 IVSZLXZYQVIEFR-UHFFFAOYSA-N 0.000 description 1
- YPFDHNVEDLHUCE-UHFFFAOYSA-N 1,3-propanediol Substances OCCCO YPFDHNVEDLHUCE-UHFFFAOYSA-N 0.000 description 1
- PXGZQGDTEZPERC-UHFFFAOYSA-N 1,4-cyclohexanedicarboxylic acid Chemical compound OC(=O)C1CCC(C(O)=O)CC1 PXGZQGDTEZPERC-UHFFFAOYSA-N 0.000 description 1
- ALVZNPYWJMLXKV-UHFFFAOYSA-N 1,9-Nonanediol Chemical compound OCCCCCCCCCO ALVZNPYWJMLXKV-UHFFFAOYSA-N 0.000 description 1
- QFGCFKJIPBRJGM-UHFFFAOYSA-N 12-[(2-methylpropan-2-yl)oxy]-12-oxododecanoic acid Chemical compound CC(C)(C)OC(=O)CCCCCCCCCCC(O)=O QFGCFKJIPBRJGM-UHFFFAOYSA-N 0.000 description 1
- JCTXKRPTIMZBJT-UHFFFAOYSA-N 2,2,4-trimethylpentane-1,3-diol Chemical compound CC(C)C(O)C(C)(C)CO JCTXKRPTIMZBJT-UHFFFAOYSA-N 0.000 description 1
- WDFYPITVMAKZRL-UHFFFAOYSA-N 2,2-dimethylpropane-1,3-diol;2-methyloxirane Chemical compound CC1CO1.OCC(C)(C)CO WDFYPITVMAKZRL-UHFFFAOYSA-N 0.000 description 1
- XZNZSQWHZSUEJJ-UHFFFAOYSA-N 2,2-dimethylpropane-1,3-diol;oxirane Chemical compound C1CO1.OCC(C)(C)CO XZNZSQWHZSUEJJ-UHFFFAOYSA-N 0.000 description 1
- VDSSCEGRDWUQAP-UHFFFAOYSA-N 2,2-dipropylpropane-1,3-diol Chemical compound CCCC(CO)(CO)CCC VDSSCEGRDWUQAP-UHFFFAOYSA-N 0.000 description 1
- GJDRKHHGPHLVNI-UHFFFAOYSA-N 2,6-ditert-butyl-4-(diethoxyphosphorylmethyl)phenol Chemical compound CCOP(=O)(OCC)CC1=CC(C(C)(C)C)=C(O)C(C(C)(C)C)=C1 GJDRKHHGPHLVNI-UHFFFAOYSA-N 0.000 description 1
- MXPYJVUYLVNEBB-UHFFFAOYSA-N 2-[2-(2-carboxybenzoyl)oxycarbonylbenzoyl]oxycarbonylbenzoic acid Chemical compound OC(=O)C1=CC=CC=C1C(=O)OC(=O)C1=CC=CC=C1C(=O)OC(=O)C1=CC=CC=C1C(O)=O MXPYJVUYLVNEBB-UHFFFAOYSA-N 0.000 description 1
- HJIYDQCBJVTQAO-UHFFFAOYSA-N 2-butyl-2-(hydroxymethyl)propane-1,3-diol Chemical compound CCCCC(CO)(CO)CO HJIYDQCBJVTQAO-UHFFFAOYSA-N 0.000 description 1
- WVQHODUGKTXKQF-UHFFFAOYSA-N 2-ethyl-2-methylhexane-1,1-diol Chemical compound CCCCC(C)(CC)C(O)O WVQHODUGKTXKQF-UHFFFAOYSA-N 0.000 description 1
- QWGRWMMWNDWRQN-UHFFFAOYSA-N 2-methylpropane-1,3-diol Chemical compound OCC(C)CO QWGRWMMWNDWRQN-UHFFFAOYSA-N 0.000 description 1
- CTJFNNZDSZIGOM-UHFFFAOYSA-N 3-methylcyclohex-2-ene-1,1,2-tricarboxylic acid Chemical compound CC1=C(C(O)=O)C(C(O)=O)(C(O)=O)CCC1 CTJFNNZDSZIGOM-UHFFFAOYSA-N 0.000 description 1
- SXFJDZNJHVPHPH-UHFFFAOYSA-N 3-methylpentane-1,5-diol Chemical compound OCCC(C)CCO SXFJDZNJHVPHPH-UHFFFAOYSA-N 0.000 description 1
- HSSYVKMJJLDTKZ-UHFFFAOYSA-N 3-phenylphthalic acid Chemical compound OC(=O)C1=CC=CC(C=2C=CC=CC=2)=C1C(O)=O HSSYVKMJJLDTKZ-UHFFFAOYSA-N 0.000 description 1
- VPWNQTHUCYMVMZ-UHFFFAOYSA-N 4,4'-sulfonyldiphenol Chemical class C1=CC(O)=CC=C1S(=O)(=O)C1=CC=C(O)C=C1 VPWNQTHUCYMVMZ-UHFFFAOYSA-N 0.000 description 1
- VNGLVZLEUDIDQH-UHFFFAOYSA-N 4-[2-(4-hydroxyphenyl)propan-2-yl]phenol;2-methyloxirane Chemical compound CC1CO1.C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 VNGLVZLEUDIDQH-UHFFFAOYSA-N 0.000 description 1
- FUSNOPLQVRUIIM-UHFFFAOYSA-N 4-amino-2-(4,4-dimethyl-2-oxoimidazolidin-1-yl)-n-[3-(trifluoromethyl)phenyl]pyrimidine-5-carboxamide Chemical compound O=C1NC(C)(C)CN1C(N=C1N)=NC=C1C(=O)NC1=CC=CC(C(F)(F)F)=C1 FUSNOPLQVRUIIM-UHFFFAOYSA-N 0.000 description 1
- HBLRZDACQHNPJT-UHFFFAOYSA-N 4-sulfonaphthalene-2,7-dicarboxylic acid Chemical compound OS(=O)(=O)C1=CC(C(O)=O)=CC2=CC(C(=O)O)=CC=C21 HBLRZDACQHNPJT-UHFFFAOYSA-N 0.000 description 1
- WNKQDGLSQUASME-UHFFFAOYSA-N 4-sulfophthalic acid Chemical compound OC(=O)C1=CC=C(S(O)(=O)=O)C=C1C(O)=O WNKQDGLSQUASME-UHFFFAOYSA-N 0.000 description 1
- VQVIHDPBMFABCQ-UHFFFAOYSA-N 5-(1,3-dioxo-2-benzofuran-5-carbonyl)-2-benzofuran-1,3-dione Chemical compound C1=C2C(=O)OC(=O)C2=CC(C(C=2C=C3C(=O)OC(=O)C3=CC=2)=O)=C1 VQVIHDPBMFABCQ-UHFFFAOYSA-N 0.000 description 1
- LNJAFCPRJMLMGT-UHFFFAOYSA-N 5-(4-sulfophenoxy)benzene-1,3-dicarboxylic acid Chemical compound OC(=O)C1=CC(C(=O)O)=CC(OC=2C=CC(=CC=2)S(O)(=O)=O)=C1 LNJAFCPRJMLMGT-UHFFFAOYSA-N 0.000 description 1
- CARJPEPCULYFFP-UHFFFAOYSA-N 5-Sulfo-1,3-benzenedicarboxylic acid Chemical compound OC(=O)C1=CC(C(O)=O)=CC(S(O)(=O)=O)=C1 CARJPEPCULYFFP-UHFFFAOYSA-N 0.000 description 1
- DEVXQDKRGJCZMV-UHFFFAOYSA-K Aluminum acetoacetate Chemical compound [Al+3].CC(=O)CC([O-])=O.CC(=O)CC([O-])=O.CC(=O)CC([O-])=O DEVXQDKRGJCZMV-UHFFFAOYSA-K 0.000 description 1
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 1
- 229910052582 BN Inorganic materials 0.000 description 1
- 229930185605 Bisphenol Natural products 0.000 description 1
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 description 1
- 238000005481 NMR spectroscopy Methods 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 1
- ALQSHHUCVQOPAS-UHFFFAOYSA-N Pentane-1,5-diol Chemical compound OCCCCCO ALQSHHUCVQOPAS-UHFFFAOYSA-N 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- ZJCCRDAZUWHFQH-UHFFFAOYSA-N Trimethylolpropane Chemical compound CCC(CO)(CO)CO ZJCCRDAZUWHFQH-UHFFFAOYSA-N 0.000 description 1
- YIMQCDZDWXUDCA-UHFFFAOYSA-N [4-(hydroxymethyl)cyclohexyl]methanol Chemical compound OCC1CCC(CO)CC1 YIMQCDZDWXUDCA-UHFFFAOYSA-N 0.000 description 1
- 238000002835 absorbance Methods 0.000 description 1
- 239000006096 absorbing agent Substances 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- ZOIORXHNWRGPMV-UHFFFAOYSA-N acetic acid;zinc Chemical compound [Zn].CC(O)=O.CC(O)=O ZOIORXHNWRGPMV-UHFFFAOYSA-N 0.000 description 1
- 239000001361 adipic acid Substances 0.000 description 1
- 235000011037 adipic acid Nutrition 0.000 description 1
- 125000003545 alkoxy group Chemical group 0.000 description 1
- 125000005907 alkyl ester group Chemical group 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 235000011114 ammonium hydroxide Nutrition 0.000 description 1
- APUPEJJSWDHEBO-UHFFFAOYSA-P ammonium molybdate Chemical compound [NH4+].[NH4+].[O-][Mo]([O-])(=O)=O APUPEJJSWDHEBO-UHFFFAOYSA-P 0.000 description 1
- 239000011609 ammonium molybdate Substances 0.000 description 1
- 229940010552 ammonium molybdate Drugs 0.000 description 1
- 235000018660 ammonium molybdate Nutrition 0.000 description 1
- 150000003863 ammonium salts Chemical class 0.000 description 1
- 150000008064 anhydrides Chemical class 0.000 description 1
- 239000002216 antistatic agent Substances 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- WKDNYTOXBCRNPV-UHFFFAOYSA-N bpda Chemical compound C1=C2C(=O)OC(=O)C2=CC(C=2C=C3C(=O)OC(C3=CC=2)=O)=C1 WKDNYTOXBCRNPV-UHFFFAOYSA-N 0.000 description 1
- FPCJKVGGYOAWIZ-UHFFFAOYSA-N butan-1-ol;titanium Chemical compound [Ti].CCCCO.CCCCO.CCCCO.CCCCO FPCJKVGGYOAWIZ-UHFFFAOYSA-N 0.000 description 1
- 238000011088 calibration curve Methods 0.000 description 1
- 238000007707 calorimetry Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- PMMYEEVYMWASQN-IMJSIDKUSA-N cis-4-Hydroxy-L-proline Chemical compound O[C@@H]1CN[C@H](C(O)=O)C1 PMMYEEVYMWASQN-IMJSIDKUSA-N 0.000 description 1
- 239000003426 co-catalyst Substances 0.000 description 1
- 238000004040 coloring Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000010924 continuous production Methods 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- QSAWQNUELGIYBC-UHFFFAOYSA-N cyclohexane-1,2-dicarboxylic acid Chemical compound OC(=O)C1CCCCC1C(O)=O QSAWQNUELGIYBC-UHFFFAOYSA-N 0.000 description 1
- XBZSBBLNHFMTEB-UHFFFAOYSA-N cyclohexane-1,3-dicarboxylic acid Chemical compound OC(=O)C1CCCC(C(O)=O)C1 XBZSBBLNHFMTEB-UHFFFAOYSA-N 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000000593 degrading effect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 150000001991 dicarboxylic acids Chemical class 0.000 description 1
- 239000000539 dimer Substances 0.000 description 1
- 150000002009 diols Chemical class 0.000 description 1
- GWZCCUDJHOGOSO-UHFFFAOYSA-N diphenic acid Chemical compound OC(=O)C1=CC=CC=C1C1=CC=CC=C1C(O)=O GWZCCUDJHOGOSO-UHFFFAOYSA-N 0.000 description 1
- SZXQTJUDPRGNJN-UHFFFAOYSA-N dipropylene glycol Chemical compound OCCCOCCCO SZXQTJUDPRGNJN-UHFFFAOYSA-N 0.000 description 1
- 238000004993 emission spectroscopy Methods 0.000 description 1
- 125000004494 ethyl ester group Chemical group 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 239000003063 flame retardant Substances 0.000 description 1
- 229940119177 germanium dioxide Drugs 0.000 description 1
- 235000011187 glycerol Nutrition 0.000 description 1
- 150000002334 glycols Chemical class 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 239000012760 heat stabilizer Substances 0.000 description 1
- SXCBDZAEHILGLM-UHFFFAOYSA-N heptane-1,7-diol Chemical compound OCCCCCCCO SXCBDZAEHILGLM-UHFFFAOYSA-N 0.000 description 1
- XXMIOPMDWAUFGU-UHFFFAOYSA-N hexane-1,6-diol Chemical compound OCCCCCCO XXMIOPMDWAUFGU-UHFFFAOYSA-N 0.000 description 1
- 239000012493 hydrazine sulfate Substances 0.000 description 1
- 229910000377 hydrazine sulfate Inorganic materials 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 238000009616 inductively coupled plasma Methods 0.000 description 1
- 238000001746 injection moulding Methods 0.000 description 1
- 150000002484 inorganic compounds Chemical class 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 238000004898 kneading Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 125000004123 n-propyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- KYTZHLUVELPASH-UHFFFAOYSA-N naphthalene-1,2-dicarboxylic acid Chemical compound C1=CC=CC2=C(C(O)=O)C(C(=O)O)=CC=C21 KYTZHLUVELPASH-UHFFFAOYSA-N 0.000 description 1
- SLCVBVWXLSEKPL-UHFFFAOYSA-N neopentyl glycol Chemical compound OCC(C)(C)CO SLCVBVWXLSEKPL-UHFFFAOYSA-N 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 150000002828 nitro derivatives Chemical class 0.000 description 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N o-dimethylbenzene Natural products CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- OEIJHBUUFURJLI-UHFFFAOYSA-N octane-1,8-diol Chemical compound OCCCCCCCCO OEIJHBUUFURJLI-UHFFFAOYSA-N 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- PVADDRMAFCOOPC-UHFFFAOYSA-N oxogermanium Chemical compound [Ge]=O PVADDRMAFCOOPC-UHFFFAOYSA-N 0.000 description 1
- URLKBWYHVLBVBO-UHFFFAOYSA-N p-dimethylbenzene Natural products CC1=CC=C(C)C=C1 URLKBWYHVLBVBO-UHFFFAOYSA-N 0.000 description 1
- WXZMFSXDPGVJKK-UHFFFAOYSA-N pentaerythritol Chemical compound OCC(CO)(CO)CO WXZMFSXDPGVJKK-UHFFFAOYSA-N 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- ACVYVLVWPXVTIT-UHFFFAOYSA-N phosphinic acid Chemical class O[PH2]=O ACVYVLVWPXVTIT-UHFFFAOYSA-N 0.000 description 1
- XNGIFLGASWRNHJ-UHFFFAOYSA-N phthalic acid Chemical compound OC(=O)C1=CC=CC=C1C(O)=O XNGIFLGASWRNHJ-UHFFFAOYSA-N 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920001451 polypropylene glycol Polymers 0.000 description 1
- 229920000166 polytrimethylene carbonate Polymers 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 239000001294 propane Substances 0.000 description 1
- JUJWROOIHBZHMG-RALIUCGRSA-N pyridine-d5 Chemical compound [2H]C1=NC([2H])=C([2H])C([2H])=C1[2H] JUJWROOIHBZHMG-RALIUCGRSA-N 0.000 description 1
- 150000003242 quaternary ammonium salts Chemical class 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 238000007086 side reaction Methods 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000001384 succinic acid Substances 0.000 description 1
- 150000008054 sulfonate salts Chemical group 0.000 description 1
- 125000000542 sulfonic acid group Chemical group 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000013501 sustainable material Substances 0.000 description 1
- 150000003512 tertiary amines Chemical class 0.000 description 1
- WXYNMTGBLWPTNQ-UHFFFAOYSA-N tetrabutoxygermane Chemical compound CCCCO[Ge](OCCCC)(OCCCC)OCCCC WXYNMTGBLWPTNQ-UHFFFAOYSA-N 0.000 description 1
- 229940073455 tetraethylammonium hydroxide Drugs 0.000 description 1
- LRGJRHZIDJQFCL-UHFFFAOYSA-M tetraethylazanium;hydroxide Chemical compound [OH-].CC[N+](CC)(CC)CC LRGJRHZIDJQFCL-UHFFFAOYSA-M 0.000 description 1
- YGBFTDQFAKDXBZ-UHFFFAOYSA-N tributyl stiborite Chemical compound [Sb+3].CCCC[O-].CCCC[O-].CCCC[O-] YGBFTDQFAKDXBZ-UHFFFAOYSA-N 0.000 description 1
- IMFACGCPASFAPR-UHFFFAOYSA-N tributylamine Chemical compound CCCCN(CCCC)CCCC IMFACGCPASFAPR-UHFFFAOYSA-N 0.000 description 1
- ZIBGPFATKBEMQZ-UHFFFAOYSA-N triethylene glycol Chemical compound OCCOCCOCCO ZIBGPFATKBEMQZ-UHFFFAOYSA-N 0.000 description 1
- QXJQHYBHAIHNGG-UHFFFAOYSA-N trimethylolethane Chemical compound OCC(C)(CO)CO QXJQHYBHAIHNGG-UHFFFAOYSA-N 0.000 description 1
- 239000004246 zinc acetate Substances 0.000 description 1
- 150000003752 zinc compounds Chemical class 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G63/00—Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
- C08G63/66—Polyesters containing oxygen in the form of ether groups
- C08G63/668—Polyesters containing oxygen in the form of ether groups derived from polycarboxylic acids and polyhydroxy compounds
- C08G63/672—Dicarboxylic acids and dihydroxy compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G63/00—Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
- C08G63/78—Preparation processes
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G63/00—Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
- C08G63/78—Preparation processes
- C08G63/80—Solid-state polycondensation
Definitions
- the present invention relates to a polyester resin having a furan skeleton and a method for producing a polyester resin having a furan skeleton.
- PEF polyethylene furanolate
- FDCA biomass-derived 2,5-furandicarboxylic acid
- PET polyethylene terephthalate
- gas barrier properties that are better than those of PET, so it is expected to be used in a wide range of applications beyond just bottles, films, and fibers, which are existing alternatives to PET.
- PEF has a slower crystallization rate, which is cited as an issue in the manufacture of molded products.
- PEF can also be used to increase its molecular weight through solid-state polymerization (SSP), but if the crystallinity is insufficient, resin blocking can occur during the SSP process, degrading product quality.
- SSP solid-state polymerization
- a method of annealing before SSP is known, but this is undesirable from the perspective of environmental impact and manufacturing costs in terms of LCA (Life Cycle Assessment).
- Patent Document 1 attempts have been made to improve the crystallization rate by adjusting the reduced viscosity and terminal acid value of polyesters using crystal nucleating agents, but the results have not been sufficient.
- Non-Patent Document 1 there is a case where a cold crystallization peak of PEF was confirmed by differential scanning calorimetry (DSC) at a heating rate of 10°C/min.
- DSC differential scanning calorimetry
- the resin may deteriorate due to heat during processing, resulting in a decrease in resin properties, a decrease in molecular weight, and discoloration of the resin. Also, if the molecular weight is low, it is possible to speed up the crystallization rate, but the strength of the molded product may be insufficient. If the molecular weight is high, it is difficult to maintain the crystallization rate of the polyester resin when it is melted again during processing such as melt molding.
- the present invention was devised to solve the problems of the prior art, and aims to provide a polyester resin containing a polycarboxylic acid having a furan skeleton and ethylene glycol, which has a sufficient molecular weight and excellent thermal stability and can maintain a high crystallization rate even after remelting, and a method for producing the polyester resin.
- the polyester resin according to one embodiment of the present disclosure contains a polycarboxylic acid having a furan skeleton as a polycarboxylic acid component and ethylene glycol as a polyhydric alcohol component.
- the polyester resin has a cold crystallization peak temperature during the second heating step, measured by differential scanning calorimetry (DSC) at a heating rate of 2°C/min, within the range of 145 to 185°C, a heat generation amount of 5 J/g or more, a reduced viscosity of the polyester resin of 0.50 dl/g or more, and contains at least one metal element selected from antimony, aluminum, titanium, and germanium, and the total content of the metal elements is 350 mass ppm or less.
- DSC differential scanning calorimetry
- the inventors After extensive investigations, the inventors have found that a high crystallization rate can be maintained even after remelting by satisfying the above conditions for the cold crystallization peak temperature and heat generation amount during the second heating step, measured by differential scanning calorimetry (DSC) at a heating rate of 2°C/min.
- DSC differential scanning calorimetry
- the inventors then discovered that by optimizing the amount of the metal elements in the polyester resin and satisfying the above conditions for the temperature and heat generation amount of the cold crystallization peak during the second heating step, it is possible to provide a polyester resin having a furan skeleton that maintains a high crystallization rate even after remelting, even if the molecular weight is high, and has excellent thermal stability, thereby completing the present invention.
- a method for producing a polyester resin according to another embodiment of the present disclosure is a method for producing a polyester resin containing a polycarboxylic acid having a furan skeleton as a polycarboxylic acid component and containing ethylene glycol as a polyhydric alcohol component.
- the production method includes a step of applying a shear stress to a molten composition of the reaction product obtained in the polycondensation reaction step. The inventors have found that applying a shear stress fixes the orientation of molecules in the polyester resin, and that the molecular orientation remains fixed without being canceled even after remelting, allowing a high crystallization rate to be maintained even after remelting.
- the present invention comprises the following: Item 1.
- a polyester resin comprising a polyvalent carboxylic acid component and a polyhydric alcohol component as constituent components, the polyester resin being characterized in that it satisfies the following (1) to (4).
- the polycarboxylic acid component contains a polycarboxylic acid having a furan skeleton, and the polyhydric alcohol component contains ethylene glycol.
- the temperature of the cold crystallization peak during the second heating step, as measured by differential scanning calorimetry (DSC) at a heating rate of 2° C./min, is in the range of 145 to 185° C., and the calorific value is 5 J/g or more.
- the reduced viscosity is 0.50 dl/g or more.
- At least one metal element selected from antimony, aluminum, titanium, and germanium is contained, and the total content of the metal elements is 350 ppm by mass or less.
- Item 2. The polyester resin according to Item 1, comprising 0.1 to 5 mol % of diethylene glycol relative to 100 mol % in total of the polyhydric alcohol components.
- Item 3. The polyester resin according to item 1 or 2, containing 0.001 to 4 mass % of a crystal nucleating agent.
- Item 6 The polyester resin according to any one of items 1 to 5, having a melting point of 200° C. or higher.
- Item 7. A polyester resin pellet comprising the polyester resin according to any one of items 1 to 6.
- Item 8. A bottle formed from the polyester resin according to any one of items 1 to 6, or the polyester resin pellets according to item 7.
- Item 9. A film formed from the polyester resin according to any one of items 1 to 6, or the polyester resin pellets according to item 7.
- Item 10. A fiber formed from the polyester resin according to any one of items 1 to 6, or the polyester resin pellets according to item 7.
- a method for producing a polyester resin having a polycarboxylic acid component and a polyhydric alcohol component as constituent components comprising: a step of polycondensing the polycarboxylic acid component and the polyhydric alcohol component; and a step of applying a shear stress to a molten composition of the reaction product obtained in the polycondensation reaction step, the polycarboxylic acid component including a polycarboxylic acid component having a furan skeleton, and the polyhydric alcohol component including ethylene glycol.
- Item 12 The method for producing a polyester resin according to Item 11, wherein a shear stress of 0.15 MPa or more is applied in the step of applying a shear stress.
- Item 14 A method for producing polyester resin pellets, comprising the steps of discharging the polyester resin obtained by the production method according to any one of items 11 to 13 in a molten state, cooling the polyester resin, and cutting the polyester resin pellets.
- Item 15. A method for producing polyester resin pellets, comprising a step of further solid-phase polymerizing the polyester resin pellets obtained by the method for producing polyester resin pellets according to item 14.
- the polyester resin of the present invention has a high molecular weight, good thermal stability, and can maintain a high crystallization rate even after remelting, so that the crystallization rate during melt molding processing can be improved and productivity can be improved.
- a polyester resin having a furan skeleton that can suppress thermal decomposition during processing and has high strength can be provided. Therefore, the polyester resin of the present invention can be suitably used as a material for various molded products such as films, fibers, beverage bottles, and optical products.
- FIG. 1 is a graph showing the results of Example 1, with the horizontal axis representing the shear rate [sec ⁇ 1 ] and the vertical axis representing the melt viscosity [Pa ⁇ s].
- the polyester resin of the present invention is a polyester resin whose constituent components are a polycarboxylic acid component and a polyhydric alcohol component. It contains a polycarboxylic acid having a furan skeleton as the polycarboxylic acid component, and ethylene glycol as the polyhydric alcohol component.
- the polyester resin of the present invention preferably contains 80 mol% or more of units consisting of a polycarboxylic acid having a furan skeleton and ethylene glycol, more preferably 85 mol% or more, even more preferably 90 mol% or more, particularly preferably 95 mol% or more, and may even contain 100 mol%.
- the polyester resin of the present invention contains a polycarboxylic acid having a furan skeleton as a polycarboxylic acid component.
- the furan skeleton include furan and furan substitution products (i.e., furan in which one or two hydrogen atoms are substituted with any substituent; the substituent does not include a carboxy group).
- the substituent introduced into the furan substitution product include an alkyl group having 1 to 10 carbon atoms, an aromatic group having 6 to 18 carbon atoms, a halogen, an alkoxy group having 1 to 10 carbon atoms, etc.
- a furan substitution product substituted with an alkyl group having 1 to 4 carbon atoms or unsubstituted furan is preferred, and unsubstituted furan is more preferred.
- furandicarboxylic acid having two carboxy groups is preferred.
- furandicarboxylic acids having carboxy groups at the 2nd and 3rd positions, the 2nd and 4th positions, the 2nd and 5th positions, or the 3rd and 4th positions of the furan ring that can react with other monomers and 2,5-furandicarboxylic acid, which is a furandicarboxylic acid having carboxy groups at the 2nd and 5th positions, is particularly preferred in terms of heat resistance.
- furandicarboxylic acid and its derivatives can be used as a raw material monomer for producing polyester resin.
- Examples of derivatives include alkyl esters having 1 to 4 carbon atoms, and among these, methyl ester, ethyl ester, n-propyl ester, isopropyl ester, etc. are preferred, and methyl ester is more preferred. These may be used alone or in combination of two or more.
- the polyvalent carboxylic acid component having a furan skeleton that constitutes the polyester resin of the present invention may be a petroleum-derived raw material or a biomass-derived raw material, but from an environmental perspective, it is preferable to use a biomass-derived raw material.
- the ratio of the polycarboxylic acid component having a furan skeleton to 100 mol% of all polycarboxylic acid components constituting the polyester resin is not particularly limited, but is usually preferably 95 mol% or more, more preferably 96 mol% or more, even more preferably 97 mol% or more, and may be 98 mol% or more, or may be 99 mol% or more. It is also a preferred embodiment that the polycarboxylic acid component is composed only of polycarboxylic acid components having a furan skeleton.
- the polyester resin of the present invention may contain an aliphatic polycarboxylic acid component as the polycarboxylic acid component.
- an aliphatic polycarboxylic acid component an aliphatic dicarboxylic acid having two carboxy groups is preferable.
- the aliphatic dicarboxylic acid include succinic acid, adipic acid, azelaic acid, sebacic acid, dodecanedioic acid, and dimer acid. Among them, an aliphatic dicarboxylic acid having 2 to 12 carbon atoms is preferable.
- the aliphatic polycarboxylic acid component may be either a saturated aliphatic dicarboxylic acid or an unsaturated dicarboxylic acid, but is preferably a saturated aliphatic dicarboxylic acid.
- the aliphatic polycarboxylic acid component may be a linear aliphatic dicarboxylic acid or a branched aliphatic dicarboxylic acid, but is preferably a linear aliphatic dicarboxylic acid.
- an aliphatic dicarboxylic acid and its derivatives can be used as a raw material monomer for producing the polyester resin. The derivatives are the same as those described above.
- the aliphatic polycarboxylic acid component is preferably a linear saturated aliphatic dicarboxylic acid having 2 to 12 carbon atoms, more preferably a linear saturated aliphatic dicarboxylic acid having 2 to 10 carbon atoms, and even more preferably a linear saturated aliphatic dicarboxylic acid having 3 to 7 carbon atoms.
- the amount of the aliphatic polycarboxylic acid component relative to 100 mol% of the total polycarboxylic acid components constituting the polyester resin is preferably 5 mol% or less, more preferably 4 mol% or less, and even more preferably 3 mol% or less.
- the aliphatic polycarboxylic acid component may not be contained, but if it is contained, it is preferably 0.1 mol% or more, more preferably 0.7 mol% or more, and even more preferably 1.5 mol% or more.
- the polyester resin of the present invention contains an aliphatic polycarboxylic acid within the above range, the decrease in heat resistance due to the copolymerization component can be suppressed, and the crystallization rate can be improved. The reason is not clear, but it is thought that the molecular mobility of the polyester resin is increased by containing a flexible aliphatic polycarboxylic acid component within the above optimal range, and the molecules are oriented so that crystals can be formed.
- the copolymerization amount of the aliphatic polycarboxylic acid component is larger than the above range, the molecular mobility is increased, but the chain length of the block consisting of the polycarboxylic acid component having a furan skeleton and the polyhydric alcohol component becomes shorter, making it difficult to form crystals.
- the aliphatic polyvalent carboxylic acid component that constitutes the polyester resin of the present invention may be a petroleum-derived raw material or a biomass-derived raw material, but from an environmental standpoint, it is preferable to use a biomass-derived raw material.
- the polyester resin of the present invention may contain, as the polycarboxylic acid component, other carboxylic acid components than the polycarboxylic acid component having a furan skeleton and the aliphatic polycarboxylic acid component, and may be a dicarboxylic acid component or a trivalent or higher polycarboxylic acid component, as long as the effect of the present invention is not impaired.
- the other carboxylic acid components include aromatic polycarboxylic acids and their esters, or alicyclic polycarboxylic acids and their esters, and the polyester may be a mixture of one or more of these.
- aromatic polycarboxylic acids include terephthalic acid, isophthalic acid, orthophthalic acid, naphthalenedicarboxylic acid, biphenyldicarboxylic acid, diphenic acid, 5-hydroxyisophthalic acid, trimellitic acid, pyromellitic acid, methylcyclohexene tricarboxylic acid, oxydiphthalic dianhydride (ODPA), 3,3',4,4'-benzophenonetetracarboxylic dianhydride (BTDA), 3,3',4,4'-diphenyltetracarboxylic dianhydride (BPDA), 3,3',4,4'-diphenylsulfonetetracarboxylic dianhydride (DSDA), 4,4'-(hexafluoroisopropylidene)diphthalic dianhydride (6FDA), 2,2'-bis[(dicarboxyphenoxy)phenyl]propane dianhydride (BSAA), etc.
- aromatic dicarboxylic acids having a sulfonic acid group or a sulfonate salt group such as sulfoterephthalic acid, 5-sulfoisophthalic acid, 4-sulfophthalic acid, 4-sulfonaphthalene-2,7-dicarboxylic acid, 5-(4-sulfophenoxy)isophthalic acid, sulfoterephthalic acid, and their metal salts and ammonium salts.
- alicyclic polycarboxylic acids examples include alicyclic dicarboxylic acids such as 1,4-cyclohexanedicarboxylic acid, 1,3-cyclohexanedicarboxylic acid, 1,2-cyclohexanedicarboxylic acid and their anhydrides. These other carboxylic acid components may be used alone or in combination of two or more. They may also be ester-modified.
- the amount of the above-mentioned other carboxylic acid components relative to 100 mol% of all polycarboxylic acid components constituting the polyester resin of the present invention is preferably 3 mol% or less in total, more preferably 2 mol% or less, and even more preferably 1 mol% or less. It is also a preferred embodiment that does not contain the above-mentioned other carboxylic acid components, that is, the polycarboxylic acid component consists only of polycarboxylic acid components having a furan skeleton and aliphatic polycarboxylic acid components. It is also a preferred embodiment that the polycarboxylic acid component consists only of polycarboxylic acid components having a furan skeleton.
- the polyhydric alcohol component constituting the polyester resin of the present invention includes ethylene glycol.
- the proportion of ethylene glycol in the total polyhydric alcohol components constituting the polyester resin of the present invention is not particularly limited, but is usually preferably 80 mol% or more, more preferably 85 mol% or more, even more preferably 90 mol% or more, and particularly preferably 95 mol% or more. It is also a preferred embodiment that the polyhydric alcohol component consists only of ethylene glycol. Furthermore, it is also preferable that it is 99.5 mol% or less, even more preferably 99 mol% or less, and even more preferably 98 mol% or less.
- the ethylene glycol that constitutes the polyester resin of the present invention may be a petroleum-derived raw material or a biomass-derived raw material, but from an environmental perspective, it is preferable to use a biomass-derived raw material.
- the polyester resin of the present invention may also contain diethylene glycol as a polyhydric alcohol component.
- the ratio of diethylene glycol to 100 mol% of all polyhydric alcohol components constituting the polyester resin of the present invention is preferably 5 mol% or less, more preferably 3 mol% or less, and even more preferably 2 mol% or less.
- the ratio of diethylene glycol to 100 mol% of all polyhydric alcohol components is preferably 0.1 mol% or more, more preferably 0.5 mol% or more, and even more preferably 1 mol% or more.
- the polyester resin of the present invention contains diethylene glycol as a polyhydric alcohol component, it may be a by-product of condensation of ethylene glycol, or it may be added as a raw material.
- a basic compound can be added as a diethylene glycol inhibitor.
- basic compounds include tertiary amines such as triethylamine and tri-n-butylamine, and quaternary ammonium salts such as tetraethylammonium hydroxide.
- the polyester resin of the present invention may also contain a polyhydric alcohol component other than ethylene glycol or diethylene glycol, and may be a dihydric alcohol component or a trihydric or higher polyhydric alcohol component.
- the polyhydric alcohol component other than ethylene glycol or diethylene glycol is preferably selected from aliphatic polyhydric alcohols, alicyclic polyhydric alcohols, ether bond-containing polyhydric alcohols, and aromatic-containing polyhydric alcohols, and may be a mixture of one or more of these.
- aliphatic polyhydric alcohols examples include 1,2-propylene glycol, 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, 2-methyl-1,3-propanediol, neopentyl glycol, 1,6-hexanediol, 3-methyl-1,5-pentanediol, 1,7-heptanediol, 1,8-octanediol, 1,9-nonanediol, 2-ethyl-2-butylpropanediol, hydroxypivalic acid neopentyl glycol ester, dimethylolheptane, 2,2,4-trimethyl-1,3-pentanediol, glycerin, pentaerythritol, trimethylolethane, trimethylolpentane, and trimethylolpropane.
- Examples of the alicyclic polyhydric alcohol include 1,4-cyclohexanediol, 1,4-cyclohexanedimethanol, tricyclodecanediol, tricyclodecanedimethylol, spiroglycol, hydrogenated bisphenol A, and ethylene oxide and propylene oxide adducts of hydrogenated bisphenol A.
- Examples of the ether bond-containing polyhydric alcohol include diethylene glycol, triethylene glycol, dipropylene glycol, polyethylene glycol, polypropylene glycol, polytetramethylene glycol, neopentyl glycol ethylene oxide adduct, and neopentyl glycol propylene oxide adduct, which may also be used if necessary.
- aromatic polyhydric alcohols include glycols obtained by adding 1 to several moles of ethylene oxide or propylene oxide to two phenolic hydroxyl groups of bisphenols, such as paraxylene glycol, metaxylene glycol, orthoxylene glycol, 1,4-phenylene glycol, an ethylene oxide adduct of 1,4-phenylene glycol, bisphenol A, an ethylene oxide adduct of bisphenol A, and a propylene oxide adduct of bisphenol A. These may be used alone or in combination of two or more.
- the polyester resin of the present invention contains at least one metal element selected from antimony, aluminum, titanium, and germanium, and the total content of the metal elements is 350 mass ppm or less. Preferably, the total content is 300 mass ppm or less, and more preferably, 250 mass ppm or less. In this case, the polyester resin of the present invention has excellent thermal stability. If the polyester resin contains a large amount of the metal elements, it may promote the thermal decomposition reaction of the polyester resin at high temperatures, which may cause a decrease in reduced viscosity, coloration of the resin, and thermal degradation.
- the polyester resin of the present invention may contain a crystal nucleating agent.
- the crystal nucleating agent include inorganic materials such as talc, boron nitride, silica, and layered silicate, and organic materials such as ester oligomer, polyethylene wax, and polypropylene wax. Talc and ester oligomer are preferred. These may be used alone or in combination of two or more.
- the polyester resin of the present invention has a cold crystallization peak in the range of 145 to 185°C during the second heating step, as measured by differential scanning calorimetry (DSC) at a heating rate of 2°C/min, and has a heat generation rate of 5 J/g or more.
- DSC differential scanning calorimetry
- the crystallization rate can be further improved and a high crystallization rate can be maintained.
- the polyester resin contains a crystal nucleating agent and has a history of being subjected to high shear stress in a molten state.
- the preferred content is 0.001% by mass or more, more preferably 0.01% by mass or more, and even more preferably 0.1% by mass or more, based on the polyester resin.
- the upper limit of the crystal nucleating agent content is 4% by mass, more preferably 3% by mass, even more preferably 2% by mass, and most preferably 1% by mass. If the content of the crystal nucleating agent is less than the lower limit, the effect of promoting crystallization cannot be fully obtained, and if it is more than the upper limit, the mechanical properties of the polyester resin may decrease, and flexibility may be impaired.
- the nucleating agent is an inorganic material
- the preferred average particle size of the nucleating agent is 5 ⁇ m or less, more preferably 3 ⁇ m or less, even more preferably 1 ⁇ m or less, and most preferably 0.5 ⁇ m or less.
- the lower limit of the average particle size of the nucleating agent is preferably 0.1 ⁇ m.
- the method for producing the polyester resin of the present invention preferably includes a step of polycondensing a polycarboxylic acid component containing a polycarboxylic acid having a furan skeleton with a polyhydric alcohol component containing ethylene glycol, and a step of applying a shear stress to the molten composition of the reaction product obtained in the polycondensation reaction step.
- the method for producing the polyester resin of the present invention can be carried out using a method including known steps, except that a polycarboxylic acid having a furan skeleton is used as the polycarboxylic acid component, ethylene glycol is used as the polyhydric alcohol component, and a polycondensation reaction step is included.
- the molar ratio of the polyvalent carboxylic acid component containing a polyvalent carboxylic acid having a furan skeleton and the polyhydric alcohol component containing ethylene glycol at the time of charging is not particularly limited as long as the polyester resin of the present invention can be produced.
- the diol is preferably 0.9 mol or more, more preferably 1.0 mol or more, and even more preferably 1.2 mol or more, per 1.0 mol of the dicarboxylic acid component. On the other hand, it is preferably 4.0 mol or less, more preferably 3.0 mol or less, and even more preferably 2.5 mol or less.
- the method for producing the polyester resin of the present invention includes a step of polycondensation reaction.
- a polymerization catalyst When polycondensing the polyester resin of the present invention, it is preferable to use a polymerization catalyst.
- the timing and amount of the catalyst to be added may be appropriately adjusted. That is, the polymerization catalyst may be added when the raw materials are charged, or may be added during the production process. Also, the polymerization catalyst may be added when the raw materials are charged and during the production process.
- the catalyst may be charged as a simple polymerization catalyst or in a state of being dissolved or dispersed in water, alcohol, or glycol such as ethylene glycol.
- polymerization catalysts examples include titanium compounds (tetra-n-butyl titanate, tetraisopropyl titanate, titanium oxyacetylacetonate, etc.), antimony compounds (tributoxyantimony, antimony trioxide, etc.), germanium compounds (tetra-n-butoxygermanium, germanium oxide, etc.), zinc compounds (zinc acetate, etc.), and aluminum compounds (aluminum acetate, aluminum acetylacetate, etc.).
- an aluminum compound as a polymerization catalyst it is preferable to use a phosphorus compound in combination as a co-catalyst.
- the above polymerization catalysts may be used alone or in combination. In terms of reactivity in polycondensation, antimony compounds, aluminum compounds, titanium compounds, and germanium compounds are preferred, and in consideration of the effect on the coloring of the resin, aluminum compounds and germanium compounds are more preferred.
- Phosphorus compounds can be added in the polyester resin manufacturing process. There are no particular limitations on the phosphorus compound, but phosphonic acid compounds and phosphinic acid compounds are preferred because they have a large effect of improving catalytic activity, and of these, phosphonic acid compounds are more preferred because they have a particularly large effect of improving catalytic activity.
- the amount of the polymerization catalyst used is preferably large in terms of a high polycondensation reaction rate and high production efficiency.
- the polyester resin contains a large amount of metal elements, the polyester resin may be discolored or thermally deteriorated due to the promotion of thermal decomposition reaction at high temperatures. Even if the polymerization catalyst is placed in a reduced pressure environment during the polycondensation of the polyester resin, almost 100% of the amount initially added to the system as a catalyst remains in the copolymerized polyester resin produced by polycondensation.
- the amount of the polymerization catalyst added to the polyester resin produced is specifically 1 mass ppm or more, more preferably 3 mass ppm or more, and even more preferably 5 mass ppm or more. On the other hand, it is preferably 350 mass ppm or less, more preferably 300 mass ppm or less, and even more preferably 250 mass ppm or less.
- the polyester resin of the present invention from the viewpoint of the thermal stability of the polyester resin, it is preferable to produce the polyester resin using a polymerization catalyst containing an aluminum compound and a phosphorus compound.
- the polyester resin of the present invention contains a phosphorus compound
- it preferably contains 20 to 250 ppm by mass of phosphorus element, more preferably 30 to 200 ppm by mass, even more preferably 40 to 150 ppm by mass, and particularly preferably 50 to 120 ppm by mass. If the phosphorus element is less than 20 ppm by mass, there is a risk of reduced polymerization activity and increased amounts of foreign matter. On the other hand, if it exceeds 250 ppm by mass, catalyst costs will increase and polymerization activity may decrease.
- the phosphorus compound which functions as a catalyst together with the aluminum compound, is placed in a reduced pressure environment during the polycondensation of the copolymerized polyester resin, a portion (about 10 to 40%) of the amount initially added to the system as a catalyst is generally removed from the system, and this removal rate varies depending on the molar ratio of phosphorus element added to aluminum element, the basicity or acidity of the aluminum compound-containing glycol solution or phosphorus compound-containing glycol solution added, the method of adding the aluminum compound-containing solution or phosphorus compound-containing solution (whether they are added as a single liquid or added separately), etc. Therefore, it is preferable to add 20 to 250 ppm by mass of phosphorus element to the polyester resin to be produced, more preferably 30 to 200 ppm by mass, and even more preferably 40 to 150 ppm by mass.
- the molar ratio of phosphorus element to aluminum element is preferably 1.1 to 2.8, more preferably 1.3 to 2.6, and even more preferably 1.5 to 2.5.
- the aluminum element and phosphorus element in the polyester resin are derived from the aluminum compound and phosphorus compound used as polymerization catalysts for the polyester resin, respectively.
- a complex having catalytic activity in the polycondensation system is functionally formed, and sufficient polymerization activity can be exhibited. If the content ratio of phosphorus element to aluminum element is less than 1.1, there is a risk of reduced thermal stability and thermal oxidation stability, and an increase in the amount of foreign matter. On the other hand, if the content ratio of phosphorus element to aluminum element exceeds 2.8, the amount of phosphorus compound added becomes too large, and the catalyst cost increases.
- the molar ratio of phosphorus element added to aluminum element is preferably 1.3 to 2.5, more preferably 1.5 to 2.3, and even more preferably 1.7 to 2.2.
- the esterification reaction can be, for example, a direct esterification method in which a polycarboxylic acid having a furan skeleton is directly reacted with ethylene glycol, and if necessary, other copolymerization components, water is distilled off to carry out the esterification reaction, and then a polycondensation reaction is carried out under normal pressure or reduced pressure.
- the transesterification reaction can be, for example, a production method in which 2,5-dimethyl furandicarboxylate is reacted with ethylene glycol, and if necessary, other copolymerization components, methyl alcohol is distilled off to carry out the esterification reaction, and then a polycondensation reaction is carried out under normal pressure or reduced pressure.
- the conditions of temperature, time, pressure, etc. in the esterification reaction and transesterification reaction can be within the ranges of conventionally known polyester resin manufacturing methods.
- the reaction temperature is usually 100°C or higher, and preferably 120°C or higher. Also, it is usually 300°C or lower, preferably 290°C or lower, and more preferably 280°C or lower. By keeping the temperature within these ranges, the reaction can proceed efficiently.
- the reaction atmosphere is usually an inert gas atmosphere such as nitrogen or argon.
- the reaction pressure is usually -0.05 MPa to 0.3 MPa in gauge pressure.
- the reaction time is usually 1 hour or more, and on the other hand, it is usually 10 hours or less, preferably 8 hours or less.
- the conditions for the polycondensation reaction can be within the ranges of conventionally known polyester manufacturing methods.
- the polycondensation reaction temperature is preferably 230°C or higher, more preferably 235°C or higher, and even more preferably 240°C or higher. On the other hand, it is preferably 300°C or lower, more preferably 290°C or lower, and even more preferably 280°C or lower.
- the absolute pressure is preferably 150 Pa or lower, more preferably 100 Pa or lower, and even more preferably 50 Pa or lower.
- the reaction time is preferably 10 hours or less, more preferably 7 hours or less, and even more preferably 5 hours or less. By setting the reaction time within this range, the polycondensation reaction rate is sufficiently ensured, and thermal decomposition, coloration, side reactions, etc. are suppressed, resulting in a polyester resin with a high molecular weight.
- esterification reaction or transesterification reaction may be carried out in one step or in multiple steps.
- the polycondensation reaction may be carried out in one step or in multiple steps.
- the apparatus for producing the polyester resin of the present invention may be of either a batch type or a continuous type.
- the method for producing the polyester resin of the present invention can include a step of applying shear stress to the molten composition of the reaction product obtained by the polycondensation reaction.
- the process of applying shear stress may, for example, be a method in which a reaction product obtained by a polycondensation reaction between a polycarboxylic acid component containing a polycarboxylic acid having a furan skeleton and a polyhydric alcohol component containing ethylene glycol is supplied to a device that applies shear stress, and shear stress is applied to the molten composition.
- a twin-screw extruder As a device for applying shear stress, a twin-screw extruder, a resin kneading device such as a gear pump, a passing device such as a die, a compression device such as a heat press or a roll press, etc. can be used, but it is preferable to use a twin-screw extruder.
- a shear stress of 0.15 MPa or more it is preferable to apply a shear stress of 0.15 MPa or more. More preferably, it is 0.25 MPa or more, even more preferably, it is 0.35 MPa or more, and particularly preferably, it is 0.45 MPa or more. If the shear stress is more than this, it is believed that a sufficient shear stress can be applied to the resin, the molecules become more likely to be oriented so that crystals can be formed, and a high crystallization rate can be maintained even after remelting.
- the melt viscosity of the composition when the shear stress is applied is preferably 300 to 3000 Pa ⁇ s, more preferably 600 to 2000 Pa ⁇ s
- the extrusion temperature is preferably 180° C. or higher, more preferably 190° C. or higher
- the shear rate is preferably 1500 sec ⁇ 1 or lower, more preferably 1000 sec ⁇ 1 or lower, and it is preferable to knead and extrude the polyester resin at the above shear rate.
- the molecules are more easily oriented by including a step of applying shear stress to the molten composition of the reaction product obtained in the polycondensation reaction step.
- the oriented molecules are fixed and can maintain a high crystallization rate even after remelting. This can improve the productivity of molded bodies during melt molding processing.
- the reactants obtained in the polycondensation reaction process may be supplied to the device that applies shear stress by, for example, directly connecting the polymerization device and the device that applies shear stress.
- the reactants obtained in the polycondensation reaction process can be transported in a molten state and supplied to the device that applies shear stress, allowing continuous production.
- the reactants may be discharged once in chip form from the polymerization device and then supplied to the device that applies shear stress. From the viewpoint of production efficiency, it is preferable to directly connect the polymerization device and the device that applies shear stress.
- the polyester resin obtained in the manufacturing process that includes the step of applying shear stress has a high crystallization rate and can maintain an oriented molecular state, so crystallization can be easily promoted even after melting. Therefore, the degree of crystallization can be sufficiently increased in melt molding processes such as injection molding and melt film forming, and molded products with excellent operational stability during melt molding and high mechanical strength can be obtained.
- the polyester resin pellets of the present invention can be produced by a conventional pellet production method.
- the polyester resin obtained in the shear stress application step can be discharged from the device in the form of strands, which can then be cut by a cutter while being cooled with water or the like.
- the polyester resin obtained in the shear stress application process may be polymerized further by solid-phase polymerization to increase the molecular weight.
- the molecular weight of the polyester resin after the polycondensation reaction process can be further increased.
- the method of the solid-phase polymerization is not particularly limited, but examples include a method of heating the polyester resin obtained in the above-mentioned step of applying shear stress, or the polyester resin pellets obtained in the above-mentioned method of manufacturing polyester resin pellets, in an inert gas atmosphere or under reduced pressure.
- the reaction may be carried out with the polyester resin pellets or powder left to stand, or with stirring.
- stirring may be carried out by installing a stirring blade in the reaction vessel, or by moving the reaction vessel.
- the solid-phase polymerization reaction temperature is preferably below the melting point.
- the reaction temperature is preferably 180°C or higher, and more preferably 190°C or higher. On the other hand, it is preferably 260°C or lower, and more preferably 250°C or lower.
- the heating time is preferably 1 hour or longer, and more preferably 3 hours or longer. On the other hand, since discoloration is less likely to occur, it is preferably 50 hours or shorter, more preferably 40 hours or shorter, and even more preferably 30 hours or shorter.
- the solid-phase polymerization process makes it possible to increase the molecular weight of the polyester resin of the present invention, resulting in the production of molded products with high strength.
- DSC differential scanning calorimetry
- the crystallization behavior of a polymer is evaluated by the cold crystallization peak temperature and the amount of heat generated (heat of cold crystallization), which are indicators of the polymer crystallization rate.
- the crystallization rate is obtained that includes the influence of the manufacturing process, such as pretreatment and thermal history of the polymer. If the temperature is further increased, the polymer begins to melt and heat is absorbed.
- the melting peak temperature is the melting point, and the amount of heat absorbed when the temperature is increased to above the melting point and the polymer is completely melted indicates the heat of fusion of the polymer.
- the heat of cold crystallization is the amount of crystals newly generated during heating, and the difference between the heat of fusion and the heat of cold crystallization corresponds to the amount of crystals that the polymer possessed before the start of the first heating. For example, if the heat of cold crystallization is 10 J/g and the heat of fusion is 30 J/g, it is understood that a polymer with crystals of the difference of 20 J/g was subjected to DSC measurement. The temperature is then lowered to room temperature and cooled. If the cooling rate is slow during this cooling process, the molten polymer will begin to crystallize, generate heat, and recrystallization can be confirmed. At this time, crystals with the original arrangement of the polymer are obtained.
- an amorphous polymer can be obtained without recrystallization.
- the amorphous polymer obtained by quenching from the molten state in the first heating step is gradually heated again from room temperature to above the melting point.
- a cold crystallization peak is obtained again.
- the amount of heat generated by the cold crystallization obtained here is generally the inherent crystallization rate of the polymer, which cancels the effects of the manufacturing process, such as the pretreatment and thermal history of the polymer.
- a high inherent crystallization rate of the polymer means that the cold crystallization peak temperature in the second heating step is low, and the amount of heat generated by the cold crystallization is high. If the temperature is further increased, the polymer will melt again.
- the cold crystallization peak of the polyester resin of the present invention refers to the cold crystallization peak during the second heating, which is measured by melting the polyester resin during the first heating step, then amorphizing it by rapid cooling, and then performing differential scanning calorimetry (DSC) at a heating rate of 2°C/min.
- the cold crystallization peak temperature during the second heating step is in the range of 145 to 185°C. It is preferably 150 to 183°C, and more preferably 155°C to 180°C.
- the heat generated by cold crystallization during the second heating step in the polyester resin of the present invention is 5 J/g or more. It is preferably 8 J/g or more, more preferably 10 J/g or more, and even more preferably 15 J/g or more. In this case, the polyester resin of the present invention exhibits a high crystallization rate even after the remelting process, and by improving the crystallization rate during melt molding of the polyester resin, the productivity of the molded body can be improved.
- the heat of fusion of the polyester resin of the present invention during the first heating step is not particularly limited, but is preferably 6 J/g or more, more preferably 8 J/g or more.
- the upper limit of the heat of fusion during the first heating step is not particularly limited, but is, for example, 40 J/g or less, and preferably 30 J/g or less.
- the heat of fusion during the second heating step is preferably 10 J/g or more, more preferably 15 J/g or more, and even more preferably 20 J/g or more.
- the upper limit of the heat of fusion during the second heating step is not particularly limited, but is, for example, 60 J/g or less, and preferably 45 J/g or less.
- the polyester resin of the present invention preferably has a melting point of 200°C or higher, more preferably 205°C or higher, from the viewpoint of increasing the mechanical strength of the molded body obtained from the polyester resin. Furthermore, in the case of a solid-phase polymerization process, the processing temperature can be set high, so that productivity can be improved. There is no particular upper limit to the melting point, and it is, for example, 240°C or lower, and preferably 230°C or lower.
- the lower limit of the reduced viscosity of the polyester resin of the present invention is 0.50 dl/g or more. It is preferably 0.55 dl/g or more, and more preferably 0.60 dl/g or more.
- the upper limit of the reduced viscosity is preferably 1.20 dl/g or less, more preferably 1.10 dl/g or less, even more preferably 1.00 dl/g or less, particularly preferably 0.90 dl/g or less, and most preferably 0.80 dl/g or less.
- the polyester resin of the present invention preferably has a small change in reduced viscosity before and after the thermal decomposition test. That is, the change in reduced viscosity after heat treatment at 280°C for 1 hour is preferably 0.15 dl/g or less, more preferably 0.14 dl/g or less, and even more preferably 0.13 dl/g or less. If the change in reduced viscosity exceeds the above range, discoloration or thermal degradation of the resin may occur. There is no particular lower limit to the change in reduced viscosity, and it is, for example, 0.03 dl/g or more, and preferably 0.05 dl/g or more.
- the acid value after the polycondensation reaction process is preferably 100 eq/ton or less, more preferably 50 eq/ton or less, and even more preferably 25 eq/ton or less. In this case, it is possible to prevent the acid value of the polyester resin in the subsequent process from becoming too high. As a result, it is possible to prevent the deterioration of the thermal stability of the polyester resin, prevent discoloration of the polyester resin during processing and a decrease in molecular weight, and obtain a molded product with high strength.
- There is no particular lower limit for the acid value after the polycondensation reaction process is, for example, 3 eq/ton or more, and preferably 7 eq/ton or more.
- the copolymer polyester resin of the present invention can contain various antioxidants as appropriate.
- the method of blending with the polyester resin is not particularly limited, and examples include adding the antioxidant when the raw materials for producing the polyester resin are charged, adding the antioxidant during the polyester resin production process, and dry blending with the polyester resin after production.
- antioxidants include known antioxidants such as phenol-based antioxidants, phosphorus-based antioxidants, amine-based antioxidants, sulfur-based antioxidants, nitro compound-based antioxidants, and inorganic compound-based antioxidants. Phenol-based antioxidants, which have relatively high heat resistance, are preferred, and it is preferable to include 0.05 to 0.5 parts by mass per 100 parts by mass of the resulting polyester resin.
- additives such as heat stabilizers, hydrolysis inhibitors, flame retardants, antistatic agents, release agents, and ultraviolet absorbers may be added to the polyester resin of the present invention, so long as the properties of the resin are not impaired. These additives may be added when the raw materials used to manufacture the polyester resin are charged, or may be added during the manufacturing process of the polyester resin, or may be dry-blended with the polyester resin after manufacture.
- the polyester resin of the present invention is preferably formed into polyester resin pellets, which are easily handled. These can be used to form molded articles.
- the polyester resin pellets of the present invention have a high crystallization rate, which makes it possible to prevent resin blocking, and to obtain excellent operational stability during melt molding and stable supply to the molding machine.
- the polyester resin of the present invention can be molded into bottles, films, fibers, etc. using known molding methods.
- melt viscosity ( ⁇ ) measurement The melt viscosity in the step of applying a shear stress was measured by the following method.
- a dried resin sample (polyester resin after polycondensation) was filled into a cylinder kept at a predetermined temperature, and after melting for about 1 minute, the melt viscosity (Pa s) at a predetermined shear rate was measured.
- Polyester resin composition 20 mg of the polyester resin was dissolved in 0.6 ml of a mixed solvent of trifluoroacetic acid/deuterated chloroform (15/85 (volume ratio)) and centrifuged. The supernatant was then collected and subjected to H-NMR measurement, and the composition of the polyester resin was identified from the NMR spectrum. H-HMR measurements were carried out using the following equipment and conditions. Apparatus: Fourier transform nuclear magnetic resonance apparatus (AVANCE NEO600, manufactured by BRUKER) ⁇ 1H resonance frequency: 600.13MHz Lock solvent: deuterated chloroform Flip angle: 30° Data acquisition time: 4 seconds Delay time: 1 second Measurement temperature: 30°C ⁇ Number of times of accumulation: 128 times
- polyester resin Metal element content in polyester resin;
- the polyester resin was weighed in a platinum crucible, carbonized on an electric stove, and then incinerated in a muffle furnace at 550°C for 8 hours.
- the incinerated sample was dissolved in 1.2M hydrochloric acid to prepare a sample solution.
- the prepared sample solution was measured under the following conditions, and the concentrations of antimony, aluminum, titanium, and germanium in the polyester resin were determined by high-frequency inductively coupled plasma emission spectrometry.
- ⁇ Apparatus SPECTRO CIROS-120 Plasma output: 1400W Plasma gas: 13.0 L / min Auxiliary gas: 2.0 L/min
- Nebulizer Crossflow nebulizer Chamber: Cyclone chamber Measurement wavelength: 167.078 nm Phosphorus element content in polyester resin; The polyester resin was subjected to wet decomposition with sulfuric acid, nitric acid, and perchloric acid, and then neutralized with ammonia water. Ammonium molybdate and hydrazine sulfate were added to the prepared solution, and the absorbance at a wavelength of 830 nm was measured using an ultraviolet-visible absorption spectrophotometer (Shimadzu Corporation, UV-1700). The concentration of phosphorus element in the polyester resin was determined from a calibration curve prepared in advance.
- Acid number 20 mg of polyester resin was dissolved in 0.6 ml of a mixed solvent of deuterated hexafluoroisopropanol/deuterated chloroform (1/9 (volume ratio)) and centrifuged. The supernatant was then collected and 10 ⁇ L of deuterated pyridine was added, followed by H-NMR measurement in the same manner as in identifying the composition of the polyester resin described above, and the acid value was determined from the NMR spectrum.
- the temperature of the cold crystallization peak was determined from the exothermic peak temperature of the DSC curve at the 2nd temperature rise, and the heat generation amount of the cold crystallization peak was determined from the integral value obtained from the intersection of the exothermic curve generated by crystallization at the 2nd temperature rise and the extrapolated baseline.
- the melting point was determined from the endothermic peak temperature of each of the DSC curves during the first heating and the second heating, and the heat of fusion was determined from the integral value obtained from the intersection of each of the endothermic curves generated by the changes during melting during the first heating and the second heating with the extrapolated baseline.
- Example 1 In a 2-liter stainless steel autoclave equipped with an electric wire heater, 2,5-furandicarboxylic acid (100 mol%) as a polycarboxylic acid component and ethylene glycol (200 mol%) in an amount twice the molar amount of the polycarboxylic acid component as a polyhydric alcohol component were charged.
- the amounts of these raw material monomers were such that the resin composition was as shown in Table 1. Note that diethylene glycol contained in the resin composition was not intentionally added, but was obtained by condensation of ethylene glycol.
- the resin was then fed to a twin-screw extruder (barrel temperature 215°C, screw rotation speed 150 rpm), and melt extruded while applying shear stress to the polyester resin at an actual resin temperature of 216°C, and the discharged strand was quenched in a water bath and pelletized with a cutter to obtain a polyester resin.
- the results of the obtained polyester resin are shown in Table 1.
- the temperature dependency of the melt viscosity of the obtained polyester resin is also shown in Figure 1.
- Example 2 In the same manner as in Example 1, an ester oligomer having an esterification rate of 95% was obtained.
- the same treatment as in Example 1 was carried out, except that the aluminum-containing ethylene glycol solution s and the phosphorus-containing ethylene glycol solution t prepared by the above-mentioned method were added as catalysts to the obtained ester oligomer to prepare a one-component mixture in such amounts of aluminum element and phosphorus element relative to the mass of the obtained polyester resin as shown in Table 1.
- the results of the obtained polyester resin are shown in Table 1.
- Example 3 The same treatment as in Example 1 was carried out, except that the catalyst was changed to tetra-n-butoxytitanium, and the titanium element was added in an amount relative to the mass of the obtained polyester resin shown in Table 1. The results of the obtained polyester resin are shown in Table 1.
- Example 4 The same treatment as in Example 1 was carried out, except that the catalyst was changed to germanium dioxide and the germanium element was added in an amount shown in Table 1 relative to the mass of the obtained polyester resin. The results of the obtained polyester resin are shown in Table 1.
- Example 5 The same treatment as in Example 1 was carried out, except that the barrel temperature of the twin-screw extruder was changed to 230° C. The results of the obtained polyester resin are shown in Table 1.
- Example 6 The same treatment as in Example 1 was carried out, except that the barrel temperature of the twin-screw extruder was changed to 200° C.
- the results for the obtained polyester resin are shown in Table 1. Note that, since it became impossible to measure the melt viscosity at 200° C. using a capillograph, it is noted in Table 1 that "measurable" was not possible.
- Example 7 The same treatment as in Example 1 was carried out, except that after the target melt viscosity was reached in the polycondensation reaction, a PBT oligomer (Polysizer A-55: manufactured by DIC Corporation) was added as a crystal nucleating agent to the polyester resin in an amount of 1 mass %. The results of the obtained polyester resin are shown in Table 1.
- Example 8 The same treatment as in Example 7 was carried out, except that talc (SG-95: manufactured by Nippon Talc Co., Ltd.) was used as the crystal nucleating agent.
- talc SG-95: manufactured by Nippon Talc Co., Ltd.
- Table 1 The results of the obtained polyester resin are shown in Table 1.
- Example 9 The same treatment as in Example 1 was carried out, except that the barrel temperature of the twin-screw extruder was changed to 250° C. The results of the obtained polyester resin are shown in Table 1.
- Example 10 The polyester resin obtained in Example 1 was dried in a vacuum dryer at 80° C. for 200 hours, and 10 g of the dried resin was placed in a glass container, kept at a vacuum of 1 Torr or less, and subjected to solid-phase polymerization for 6 hours in an oil bath at 200° C.
- the results of the obtained polyester resin are shown in Table 1.
- Example 11 The polyester resin obtained in Example 1 was dried in a vacuum dryer at 80° C. for 200 hours, and 10 g of the dried resin was placed in a glass container, kept at a vacuum of 1 Torr or less, and subjected to solid-phase polymerization for 12 hours in an oil bath at 200° C.
- the results of the obtained polyester resin are shown in Table 1.
- Example 12 The same treatment as in Example 1 was carried out except that the polybasic carboxylic acid component was changed to 2,5-furandicarboxylic acid (98 mol %) and succinic acid was changed to 2 mol %.
- the results of the obtained polyester resin are shown in Table 1.
- Antimony trioxide was added as a catalyst to the obtained ester oligomer so that the antimony element was 250 ppm by mass relative to the mass of the obtained polyester resin.
- the temperature of the system was then raised to 270°C over 1 hour, during which the pressure of the system was gradually reduced to 0.15 kPa, and the polycondensation reaction was carried out under these conditions until the target melt viscosity was reached.
- the strands discharged from the autoclave were then quenched in a water bath and pelletized with a cutter to obtain a polyester resin.
- the results of the obtained polyester resin are shown in Table 1.
- Comparative Example 3 A portion of the polyester resin obtained in Comparative Example 1 was taken out and subjected to the following annealing treatment. The results for the obtained polyester resin are shown in Table 1.
- the temperature of the cold crystallization peak during the 2nd heating is in the range of 145 to 185 ° C., and a polyester resin with a calorific value of 5 J / g or more is obtained. Even if the molecular weight is high, the crystallization rate after remelting is sufficiently maintained, and the thermal decomposition is also high.
- Examples 2 to 4 are examples in which the catalyst is changed from Example 1, and all of them obtained good results.
- Examples 5, 6, and 9 are examples in which the temperature when applying shear stress is changed from Example 1. There is a tendency that the shear stress decreases by increasing the temperature, and the shear stress increases by decreasing the temperature. In Example 6, the shear stress was high and could not be measured, but all of them obtained good results.
- Example 6 since the temperature of the cold crystallization peak during the 2nd heating in Example 6 is relatively low, it can be seen that the crystallization rate is improved when the shear stress is high.
- Examples 7 and 8 are examples in which a crystal nucleating agent is added. It can be seen that the crystallization rate after remelting is improved by adding a crystal nucleating agent, since the temperature of the cold crystallization peak during the 2nd heating is lower than that of Example 1 by adding a crystal nucleating agent.
- Examples 10 and 11 are examples of solid-state polymerization. It can be seen that the reduced viscosity is further improved.
- Example 12 is a polyester resin copolymerized with succinic acid, and it can be seen that the temperature of the cold crystallization peak during the 2nd heating is low and the crystallization rate is improved. On the other hand, in Comparative Example 1, the process of applying shear stress was not performed, and the cold crystallization peak was not observed during the 2nd heating, so it can be seen that the crystallization rate was not sufficient. Comparative Example 2 is an example in which the amount of catalyst was increased compared to Comparative Example 1.
- the temperature of the cold crystallization peak during the 2nd heating was observed in the range of 145 to 185 ° C., the heat generation amount was 5 J / g or more, and an improvement in the crystallization rate was observed, but the amount of change in reduced viscosity before and after the thermal decomposition test was large, and the thermal decomposition property was deteriorated, which is not preferable for practical use.
- Comparative Example 3 a high heat of fusion was obtained by performing an annealing treatment on the resin of Comparative Example 1, and the temperature of the cold crystallization peak during the 1st heating was observed in the range of 145 to 185 ° C., the heat generation amount was 3 J / g or more, and an improvement in the crystallization rate during the 1st heating was observed, but the cold crystallization peak during the 2nd heating was not observed, and the progress of crystallization during remelting could not be confirmed.
- Comparative Example 4 is a case where a crystal nucleating agent was added to the resin of Comparative Example 1, but no cold crystallization peak was observed during the second heating step, indicating that the crystallization rate was insufficient.
- the polyester resin having a furan skeleton of the present invention has a sufficient molecular weight and can maintain a high crystallization rate even after remelting. Therefore, the crystallization rate during melt molding processing can be improved, and productivity can be improved.
- a polyester resin having a furan skeleton with high strength can be provided, which can suppress thermal decomposition during processing.
- it can be suitably used as a material for various molded products such as films, fibers, beverage bottles, and optical applications. This allows the polyester resin to be produced by a simple method, and a polyester resin with reduced CO 2 emissions from the viewpoint of LCA can be produced.
- a polyester resin with a high biomass degree can be produced, and a sustainable polyester resin with consideration for the environment can be produced.
- a polyester resin having a high crystallization rate can be obtained by the method for producing a polyester resin of the present invention. By crystallizing quickly, processing troubles such as blocking of pellets can be suppressed, and productivity can be improved.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Polyesters Or Polycarbonates (AREA)
Abstract
The purpose of the present invention is to provide a polyester resin that includes ethylene glycol and a polycarboxylic acid having a furan backbone, that has a sufficient molecular weight and excellent thermal stability, and that can maintain a high crystallization rate even after being re-melted. A polyester resin according to the present invention contains, as structural components, a polycarboxylic acid component and a polyhydric alcohol component, and is characterized by satisfying the following (1)-(4). (1) Contains a polycarboxylic acid having a furan backbone as the polycarboxylic acid component, and ethylene glycol as the polyhydric alcohol component. (2) During the second temperature increase, the temperature of the cold crystallization peak is within the range of 145-185°C, and the heat generation amount is 5 J/g or more, as measured by differential scanning calorimetry (DSC) at a temperature increase rate of 2°C/min. (3) Has a reduced viscosity of 0.50 dl/g or more. (4) Contains at least one metal element selected from antimony, aluminum, titanium, and germanium, and the total contained amount of the metal element is 350 mass ppm or less.
Description
本発明は、フラン骨格を有するポリエステル樹脂及びフラン骨格を有するポリエステル樹脂の製造方法に関する。
The present invention relates to a polyester resin having a furan skeleton and a method for producing a polyester resin having a furan skeleton.
近年、環境配慮型又は環境持続型材料として、バイオマス由来の2,5-フランジカルボン酸(FDCA)を用いたポリエチレンフラノレート(PEF)が注目されている。PEFはポリエチレンテレフタレート(PET)同等の機械的強度や熱特性に加えて、ガスバリア性がPET以上である点などから既存のPET代替用途であるボトルやフィルム、繊維だけでなく、幅広い利用が期待されている。
In recent years, polyethylene furanolate (PEF), which uses biomass-derived 2,5-furandicarboxylic acid (FDCA), has been attracting attention as an environmentally friendly or sustainable material. In addition to having mechanical strength and thermal properties equivalent to polyethylene terephthalate (PET), PEF also has gas barrier properties that are better than those of PET, so it is expected to be used in a wide range of applications beyond just bottles, films, and fibers, which are existing alternatives to PET.
しかしながら、PEFはPETに比べて、結晶化速度が遅い点が成形品の製造における課題として挙がっている。PET同様に、PEFにおいても固相重合(SSP:Solid-State Polymerization)で分子量を増加させる方法が適用される場合があるが、結晶性が不十分だと、SSPを行う過程で樹脂のブロッキングが生じてしまい、製品品位を悪化させてしまう場合がある。ブロッキング回避のため、SSPを行う前にアニール処理を実施する方法が知られているが、LCA(Life Cycle Assessment)による環境負荷や製造コストの観点から好ましくない。
However, compared to PET, PEF has a slower crystallization rate, which is cited as an issue in the manufacture of molded products. As with PET, PEF can also be used to increase its molecular weight through solid-state polymerization (SSP), but if the crystallinity is insufficient, resin blocking can occur during the SSP process, degrading product quality. To avoid blocking, a method of annealing before SSP is known, but this is undesirable from the perspective of environmental impact and manufacturing costs in terms of LCA (Life Cycle Assessment).
そのため、例えば、特許文献1に開示されているように、結晶核剤を用いたポリエステルの還元粘度や末端酸価を調整することで、結晶化速度改善が試みられているが、十分なものではなかった。
For example, as disclosed in Patent Document 1, attempts have been made to improve the crystallization rate by adjusting the reduced viscosity and terminal acid value of polyesters using crystal nucleating agents, but the results have not been sufficient.
また、非特許文献1に開示されているように、示差走査熱量測定(DSC)で10℃/分の昇温速度でPEFの冷結晶化ピークが確認された事例がある。しかし、多くの触媒量を使用しているため、1st昇温時の熱履歴で熱分解による分子量の低下が見られ、熱安定性の低いものであった。
Also, as disclosed in Non-Patent Document 1, there is a case where a cold crystallization peak of PEF was confirmed by differential scanning calorimetry (DSC) at a heating rate of 10°C/min. However, because a large amount of catalyst was used, a decrease in molecular weight due to thermal decomposition was observed in the thermal history during the first heating, and the thermal stability was low.
熱安定性が低いと、加工時の熱により劣化し、樹脂特性が低下することがあり、分子量の低下や樹脂の着色が生じる場合がある。また、分子量が低い場合は、結晶化速度を速くすることは可能であるが、成形体としての強度が不足してしまうことがある。分子量が高い場合、溶融成形等の加工時に再びポリエステル樹脂を溶融した際に、ポリエステル樹脂の結晶化速度を保持することは困難であった。
If the thermal stability is low, the resin may deteriorate due to heat during processing, resulting in a decrease in resin properties, a decrease in molecular weight, and discoloration of the resin. Also, if the molecular weight is low, it is possible to speed up the crystallization rate, but the strength of the molded product may be insufficient. If the molecular weight is high, it is difficult to maintain the crystallization rate of the polyester resin when it is melted again during processing such as melt molding.
本発明は、かかる従来技術の問題を解決するために創案されたものであり、フラン骨格を有する多価カルボン酸とエチレングリコールを含むポリエステル樹脂において、十分な分子量および優れた熱安定性とを有し、再溶融後も高い結晶化速度を保持することができるポリエステル樹脂、及びポリエステル樹脂の製造方法を提供することを目的とする。
The present invention was devised to solve the problems of the prior art, and aims to provide a polyester resin containing a polycarboxylic acid having a furan skeleton and ethylene glycol, which has a sufficient molecular weight and excellent thermal stability and can maintain a high crystallization rate even after remelting, and a method for producing the polyester resin.
本開示の一態様に係るポリエステル樹脂は、多価カルボン酸成分としてフラン骨格を有する多価カルボン酸、多価アルコール成分としてエチレングリコールを含む。前記ポリエステル樹脂は、昇温速度2℃/分の示差走査熱量測定(DSC)によって測定される、2nd昇温時の冷結晶化ピークの温度が145~185℃の範囲内にあり、発熱量が5J/g以上であり、前記ポリエステル樹脂の還元粘度が0.50dl/g以上であり、前記ポリエステル樹脂中にアンチモン、アルミニウム、チタン、およびゲルマニウムから選ばれる少なくとも1種の金属元素を含み、前記金属元素の含有量の合計が350質量ppm以下である。本発明者らは、検討を重ねた結果、昇温速度2℃/分の示差走査熱量測定(DSC)によって測定される、2nd昇温時の冷結晶化ピークの温度及び発熱量が前記条件を満たすことにより、再溶融後も、高い結晶化速度を保持できることを見出した。そして、ポリエステル樹脂中の前記金属元素量を最適化し、2st昇温時の冷結晶化ピークの温度及び発熱量が前記条件を満たすことにより、分子量が高くても、再溶融後も高い結晶化速度を保持することができ、優れた熱安定性を有するフラン骨格を有するポリエステル樹脂を提供できることを見出し、本発明を完成した。
The polyester resin according to one embodiment of the present disclosure contains a polycarboxylic acid having a furan skeleton as a polycarboxylic acid component and ethylene glycol as a polyhydric alcohol component. The polyester resin has a cold crystallization peak temperature during the second heating step, measured by differential scanning calorimetry (DSC) at a heating rate of 2°C/min, within the range of 145 to 185°C, a heat generation amount of 5 J/g or more, a reduced viscosity of the polyester resin of 0.50 dl/g or more, and contains at least one metal element selected from antimony, aluminum, titanium, and germanium, and the total content of the metal elements is 350 mass ppm or less. After extensive investigations, the inventors have found that a high crystallization rate can be maintained even after remelting by satisfying the above conditions for the cold crystallization peak temperature and heat generation amount during the second heating step, measured by differential scanning calorimetry (DSC) at a heating rate of 2°C/min. The inventors then discovered that by optimizing the amount of the metal elements in the polyester resin and satisfying the above conditions for the temperature and heat generation amount of the cold crystallization peak during the second heating step, it is possible to provide a polyester resin having a furan skeleton that maintains a high crystallization rate even after remelting, even if the molecular weight is high, and has excellent thermal stability, thereby completing the present invention.
本開示の別の一態様に係るポリエステル樹脂の製造方法は、多価カルボン酸成分としてフラン骨格を有する多価カルボン酸を含み、多価アルコール成分としてエチレングリコールを含むポリエステル樹脂を製造する方法である。前記製造方法は、重縮合反応工程で得られた反応物の溶融組成物に剪断応力を付与する工程を有する。本発明者らは、剪断応力を付与することで、ポリエステル樹脂中の分子の配向が固定され、再溶融後もその分子の配向がキャンセルされることなく固定され、再溶融後も高い結晶化速度を保持できることを見出した。
A method for producing a polyester resin according to another embodiment of the present disclosure is a method for producing a polyester resin containing a polycarboxylic acid having a furan skeleton as a polycarboxylic acid component and containing ethylene glycol as a polyhydric alcohol component. The production method includes a step of applying a shear stress to a molten composition of the reaction product obtained in the polycondensation reaction step. The inventors have found that applying a shear stress fixes the orientation of molecules in the polyester resin, and that the molecular orientation remains fixed without being canceled even after remelting, allowing a high crystallization rate to be maintained even after remelting.
すなわち、本発明は以下の構成からなる。
項1.多価カルボン酸成分と多価アルコール成分とを構成成分とするポリエステル樹脂であって、以下の(1)~(4)を満たすことを特徴とするポリエステル樹脂。
(1)前記多価カルボン酸成分としてフラン骨格を有する多価カルボン酸を含み、前記多価アルコール成分としてエチレングリコールを含む。
(2)昇温速度2℃/分の示差走査熱量測定(DSC)によって測定される、2nd昇温時の冷結晶化ピークの温度が145~185℃の範囲内にあり、発熱量が5J/g以上である。
(3)還元粘度が0.50dl/g以上である。
(4)アンチモン、アルミニウム、チタン、およびゲルマニウムから選ばれる少なくとも1種の金属元素を含み、前記金属元素の含有量の合計が350質量ppm以下である。
項2.前記多価アルコール成分の合計100mol%に対し、ジエチレングリコールを0.1~5mol%含む、項1に記載のポリエステル樹脂。
項3.結晶核剤を0.001~4質量%含む、項1又は2に記載のポリエステル樹脂。
項4.フラン骨格を有する多価カルボン酸成分とエチレングリコール成分とから成る単位を80mol%以上含む、項1~3のいずれか一項に記載のポリエステル樹脂。
項5.280℃で1時間加熱処理した前後の還元粘度の変化量が0.15dl/g以下である、項1~4のいずれか一項に記載のポリエステル樹脂。
項6.融点が200℃以上である、項1~5のいずれか一項に記載のポリエステル樹脂。
項7.項1~6のいずれか一項に記載のポリエステル樹脂から成るポリエステル樹脂ペレット。
項8.項1~6のいずれか一項に記載のポリエステル樹脂、または項7に記載のポリエステル樹脂ペレットから形成されたボトル。
項9.項1~6のいずれか一項に記載のポリエステル樹脂、または項7に記載のポリエステル樹脂ペレットから形成されたフィルム。
項10.項1~6のいずれか一項に記載のポリエステル樹脂、または項7に記載のポリエステル樹脂ペレットから形成された繊維。
項11.多価カルボン酸成分と多価アルコール成分とを構成成分とするポリエステル樹脂の製造方法であって、多価カルボン酸成分と多価アルコール成分とを重縮合反応する工程、および前記重縮合反応する工程で得られた反応物の溶融組成物に剪断応力を付与する工程を有し、前記多価カルボン酸成分はフラン骨格を有する多価カルボン酸成分を含み、前記多価アルコール成分はエチレングリコールを含む、ポリエステル樹脂の製造方法。
項12.前記剪断応力を付与する工程において、0.15MPa以上の剪断応力を付与する、項11に記載のポリエステル樹脂の製造方法。
項13.前記剪断応力を付与する工程において、二軸押出機により剪断応力を付与する、項11又は12に記載のポリエステル樹脂の製造方法。
項14.項11~13のいずれか一項に記載の製造方法により得られたポリエステル樹脂を溶融状態で吐出し、冷却し、切断する工程を有するポリエステル樹脂ペレットの製造方法。
項15.項14に記載の製造方法により得られたポリエステル樹脂ペレットをさらに固相重合する工程を有する、ポリエステル樹脂ペレットの製造方法。 That is, the present invention comprises the following:
Item 1. A polyester resin comprising a polyvalent carboxylic acid component and a polyhydric alcohol component as constituent components, the polyester resin being characterized in that it satisfies the following (1) to (4).
(1) The polycarboxylic acid component contains a polycarboxylic acid having a furan skeleton, and the polyhydric alcohol component contains ethylene glycol.
(2) The temperature of the cold crystallization peak during the second heating step, as measured by differential scanning calorimetry (DSC) at a heating rate of 2° C./min, is in the range of 145 to 185° C., and the calorific value is 5 J/g or more.
(3) The reduced viscosity is 0.50 dl/g or more.
(4) At least one metal element selected from antimony, aluminum, titanium, and germanium is contained, and the total content of the metal elements is 350 ppm by mass or less.
Item 2. The polyester resin according to Item 1, comprising 0.1 to 5 mol % of diethylene glycol relative to 100 mol % in total of the polyhydric alcohol components.
Item 3. The polyester resin according to item 1 or 2, containing 0.001 to 4 mass % of a crystal nucleating agent.
Item 4. The polyester resin according to any one of Items 1 to 3, containing 80 mol % or more of units composed of a polyvalent carboxylic acid component having a furan skeleton and an ethylene glycol component.
Item 5. The polyester resin according to any one of items 1 to 4, wherein the change in reduced viscosity before and after heat treatment at 280° C. for 1 hour is 0.15 dl/g or less.
Item 6. The polyester resin according to any one of items 1 to 5, having a melting point of 200° C. or higher.
Item 7. A polyester resin pellet comprising the polyester resin according to any one of items 1 to 6.
Item 8. A bottle formed from the polyester resin according to any one of items 1 to 6, or the polyester resin pellets according to item 7.
Item 9. A film formed from the polyester resin according to any one of items 1 to 6, or the polyester resin pellets according to item 7.
Item 10. A fiber formed from the polyester resin according to any one of items 1 to 6, or the polyester resin pellets according to item 7.
Item 11. A method for producing a polyester resin having a polycarboxylic acid component and a polyhydric alcohol component as constituent components, the method comprising: a step of polycondensing the polycarboxylic acid component and the polyhydric alcohol component; and a step of applying a shear stress to a molten composition of the reaction product obtained in the polycondensation reaction step, the polycarboxylic acid component including a polycarboxylic acid component having a furan skeleton, and the polyhydric alcohol component including ethylene glycol.
Item 12. The method for producing a polyester resin according to Item 11, wherein a shear stress of 0.15 MPa or more is applied in the step of applying a shear stress.
Item 13. The method for producing a polyester resin according to Item 11 or 12, wherein in the step of applying a shear stress, the shear stress is applied by a twin-screw extruder.
Item 14. A method for producing polyester resin pellets, comprising the steps of discharging the polyester resin obtained by the production method according to any one of items 11 to 13 in a molten state, cooling the polyester resin, and cutting the polyester resin pellets.
Item 15. A method for producing polyester resin pellets, comprising a step of further solid-phase polymerizing the polyester resin pellets obtained by the method for producing polyester resin pellets according to item 14.
項1.多価カルボン酸成分と多価アルコール成分とを構成成分とするポリエステル樹脂であって、以下の(1)~(4)を満たすことを特徴とするポリエステル樹脂。
(1)前記多価カルボン酸成分としてフラン骨格を有する多価カルボン酸を含み、前記多価アルコール成分としてエチレングリコールを含む。
(2)昇温速度2℃/分の示差走査熱量測定(DSC)によって測定される、2nd昇温時の冷結晶化ピークの温度が145~185℃の範囲内にあり、発熱量が5J/g以上である。
(3)還元粘度が0.50dl/g以上である。
(4)アンチモン、アルミニウム、チタン、およびゲルマニウムから選ばれる少なくとも1種の金属元素を含み、前記金属元素の含有量の合計が350質量ppm以下である。
項2.前記多価アルコール成分の合計100mol%に対し、ジエチレングリコールを0.1~5mol%含む、項1に記載のポリエステル樹脂。
項3.結晶核剤を0.001~4質量%含む、項1又は2に記載のポリエステル樹脂。
項4.フラン骨格を有する多価カルボン酸成分とエチレングリコール成分とから成る単位を80mol%以上含む、項1~3のいずれか一項に記載のポリエステル樹脂。
項5.280℃で1時間加熱処理した前後の還元粘度の変化量が0.15dl/g以下である、項1~4のいずれか一項に記載のポリエステル樹脂。
項6.融点が200℃以上である、項1~5のいずれか一項に記載のポリエステル樹脂。
項7.項1~6のいずれか一項に記載のポリエステル樹脂から成るポリエステル樹脂ペレット。
項8.項1~6のいずれか一項に記載のポリエステル樹脂、または項7に記載のポリエステル樹脂ペレットから形成されたボトル。
項9.項1~6のいずれか一項に記載のポリエステル樹脂、または項7に記載のポリエステル樹脂ペレットから形成されたフィルム。
項10.項1~6のいずれか一項に記載のポリエステル樹脂、または項7に記載のポリエステル樹脂ペレットから形成された繊維。
項11.多価カルボン酸成分と多価アルコール成分とを構成成分とするポリエステル樹脂の製造方法であって、多価カルボン酸成分と多価アルコール成分とを重縮合反応する工程、および前記重縮合反応する工程で得られた反応物の溶融組成物に剪断応力を付与する工程を有し、前記多価カルボン酸成分はフラン骨格を有する多価カルボン酸成分を含み、前記多価アルコール成分はエチレングリコールを含む、ポリエステル樹脂の製造方法。
項12.前記剪断応力を付与する工程において、0.15MPa以上の剪断応力を付与する、項11に記載のポリエステル樹脂の製造方法。
項13.前記剪断応力を付与する工程において、二軸押出機により剪断応力を付与する、項11又は12に記載のポリエステル樹脂の製造方法。
項14.項11~13のいずれか一項に記載の製造方法により得られたポリエステル樹脂を溶融状態で吐出し、冷却し、切断する工程を有するポリエステル樹脂ペレットの製造方法。
項15.項14に記載の製造方法により得られたポリエステル樹脂ペレットをさらに固相重合する工程を有する、ポリエステル樹脂ペレットの製造方法。 That is, the present invention comprises the following:
Item 1. A polyester resin comprising a polyvalent carboxylic acid component and a polyhydric alcohol component as constituent components, the polyester resin being characterized in that it satisfies the following (1) to (4).
(1) The polycarboxylic acid component contains a polycarboxylic acid having a furan skeleton, and the polyhydric alcohol component contains ethylene glycol.
(2) The temperature of the cold crystallization peak during the second heating step, as measured by differential scanning calorimetry (DSC) at a heating rate of 2° C./min, is in the range of 145 to 185° C., and the calorific value is 5 J/g or more.
(3) The reduced viscosity is 0.50 dl/g or more.
(4) At least one metal element selected from antimony, aluminum, titanium, and germanium is contained, and the total content of the metal elements is 350 ppm by mass or less.
Item 2. The polyester resin according to Item 1, comprising 0.1 to 5 mol % of diethylene glycol relative to 100 mol % in total of the polyhydric alcohol components.
Item 3. The polyester resin according to item 1 or 2, containing 0.001 to 4 mass % of a crystal nucleating agent.
Item 4. The polyester resin according to any one of Items 1 to 3, containing 80 mol % or more of units composed of a polyvalent carboxylic acid component having a furan skeleton and an ethylene glycol component.
Item 5. The polyester resin according to any one of items 1 to 4, wherein the change in reduced viscosity before and after heat treatment at 280° C. for 1 hour is 0.15 dl/g or less.
Item 6. The polyester resin according to any one of items 1 to 5, having a melting point of 200° C. or higher.
Item 7. A polyester resin pellet comprising the polyester resin according to any one of items 1 to 6.
Item 8. A bottle formed from the polyester resin according to any one of items 1 to 6, or the polyester resin pellets according to item 7.
Item 9. A film formed from the polyester resin according to any one of items 1 to 6, or the polyester resin pellets according to item 7.
Item 10. A fiber formed from the polyester resin according to any one of items 1 to 6, or the polyester resin pellets according to item 7.
Item 11. A method for producing a polyester resin having a polycarboxylic acid component and a polyhydric alcohol component as constituent components, the method comprising: a step of polycondensing the polycarboxylic acid component and the polyhydric alcohol component; and a step of applying a shear stress to a molten composition of the reaction product obtained in the polycondensation reaction step, the polycarboxylic acid component including a polycarboxylic acid component having a furan skeleton, and the polyhydric alcohol component including ethylene glycol.
Item 12. The method for producing a polyester resin according to Item 11, wherein a shear stress of 0.15 MPa or more is applied in the step of applying a shear stress.
Item 13. The method for producing a polyester resin according to Item 11 or 12, wherein in the step of applying a shear stress, the shear stress is applied by a twin-screw extruder.
Item 14. A method for producing polyester resin pellets, comprising the steps of discharging the polyester resin obtained by the production method according to any one of items 11 to 13 in a molten state, cooling the polyester resin, and cutting the polyester resin pellets.
Item 15. A method for producing polyester resin pellets, comprising a step of further solid-phase polymerizing the polyester resin pellets obtained by the method for producing polyester resin pellets according to item 14.
本発明のポリエステル樹脂は、分子量が高く、良好な熱安定性を有し、再溶融後も高い結晶化速度を保持することができるため、溶融成形加工時における結晶化速度を向上でき、生産性を向上させることができる。また、加工時における熱分解を抑制でき、強度の高いフラン骨格を有するポリエステル樹脂を提供することができる。
そのため、本発明のポリエステル樹脂は、フィルムや繊維、飲料用ボトル、光学用途等の各種成形品用の材料として好適に用いることができる。 The polyester resin of the present invention has a high molecular weight, good thermal stability, and can maintain a high crystallization rate even after remelting, so that the crystallization rate during melt molding processing can be improved and productivity can be improved. In addition, a polyester resin having a furan skeleton that can suppress thermal decomposition during processing and has high strength can be provided.
Therefore, the polyester resin of the present invention can be suitably used as a material for various molded products such as films, fibers, beverage bottles, and optical products.
そのため、本発明のポリエステル樹脂は、フィルムや繊維、飲料用ボトル、光学用途等の各種成形品用の材料として好適に用いることができる。 The polyester resin of the present invention has a high molecular weight, good thermal stability, and can maintain a high crystallization rate even after remelting, so that the crystallization rate during melt molding processing can be improved and productivity can be improved. In addition, a polyester resin having a furan skeleton that can suppress thermal decomposition during processing and has high strength can be provided.
Therefore, the polyester resin of the present invention can be suitably used as a material for various molded products such as films, fibers, beverage bottles, and optical products.
以下に、本発明を実施するための代表的な態様を具体的に説明するが、本発明はその要旨を超えない限り以下の態様に限定されるものではない。
Below, we will explain in detail typical embodiments of the present invention, but the present invention is not limited to the following embodiments as long as they do not exceed the gist of the invention.
本発明のポリエステル樹脂は、多価カルボン酸成分と多価アルコール成分とを構成成分とするポリエステル樹脂である。多価カルボン酸成分としてのフラン骨格を持つ多価カルボン酸と、多価アルコール成分としてのエチレングリコールとを含む。本発明のポリエステル樹脂は、フラン骨格を持つ多価カルボン酸とエチレングリコールとから成る単位を80mol%以上含むことが好ましく、85mol%以上含むことがより好ましく、90mol%以上含むことがさらに好ましく、95mol%以上含むことが特に好ましく、100mol%であってもよい。
The polyester resin of the present invention is a polyester resin whose constituent components are a polycarboxylic acid component and a polyhydric alcohol component. It contains a polycarboxylic acid having a furan skeleton as the polycarboxylic acid component, and ethylene glycol as the polyhydric alcohol component. The polyester resin of the present invention preferably contains 80 mol% or more of units consisting of a polycarboxylic acid having a furan skeleton and ethylene glycol, more preferably 85 mol% or more, even more preferably 90 mol% or more, particularly preferably 95 mol% or more, and may even contain 100 mol%.
本発明のポリエステル樹脂は、多価カルボン酸成分として、フラン骨格を持つ多価カルボン酸を含む。フラン骨格は例えば、フラン及びフラン置換体(即ち、フランの水素原子の1~2個が任意の置換基で置換されたもの;ここで置換基にカルボキシ基は含まない)が挙げられる。フラン置換体に導入される置換基の例としては、炭素数1~10のアルキル基、炭素数6~18の芳香族基、ハロゲン、炭素数1~10のアルコキシ基等が挙げられる。好ましくは炭素数1~4のアルキル基で置換されたフラン置換体又は無置換のフランであり、より好ましくは無置換のフランである。
The polyester resin of the present invention contains a polycarboxylic acid having a furan skeleton as a polycarboxylic acid component. Examples of the furan skeleton include furan and furan substitution products (i.e., furan in which one or two hydrogen atoms are substituted with any substituent; the substituent does not include a carboxy group). Examples of the substituent introduced into the furan substitution product include an alkyl group having 1 to 10 carbon atoms, an aromatic group having 6 to 18 carbon atoms, a halogen, an alkoxy group having 1 to 10 carbon atoms, etc. A furan substitution product substituted with an alkyl group having 1 to 4 carbon atoms or unsubstituted furan is preferred, and unsubstituted furan is more preferred.
フラン骨格を持つ多価カルボン酸成分としては、2つのカルボキシ基を有するフランジカルボン酸が好ましい。フランジカルボン酸には、フラン環の2位と3位、2位と4位、2位と5位、或いは3位と4位に他の単量体と反応可能なカルボキシ基を有するものがあり、特に2位と5位にカルボキシ基を有するフランジカルボン酸である2,5-フランジカルボン酸が耐熱性の点でより好ましい。ポリエステル樹脂を製造するための原料モノマーとしては、フランジカルボン酸及びその誘導体が使用可能である。誘導体としては炭素数1~4のアルキルエステルが挙げられ、中でもメチルエステル、エチルエステル、n-プロピルエステル、イソプロピルエステルなどが好ましく、より好ましくはメチルエステルである。これらは1種を単独で用いても良く、2種以上を混合して使用しても良い。
As a polyvalent carboxylic acid component having a furan skeleton, furandicarboxylic acid having two carboxy groups is preferred. There are furandicarboxylic acids having carboxy groups at the 2nd and 3rd positions, the 2nd and 4th positions, the 2nd and 5th positions, or the 3rd and 4th positions of the furan ring that can react with other monomers, and 2,5-furandicarboxylic acid, which is a furandicarboxylic acid having carboxy groups at the 2nd and 5th positions, is particularly preferred in terms of heat resistance. As a raw material monomer for producing polyester resin, furandicarboxylic acid and its derivatives can be used. Examples of derivatives include alkyl esters having 1 to 4 carbon atoms, and among these, methyl ester, ethyl ester, n-propyl ester, isopropyl ester, etc. are preferred, and methyl ester is more preferred. These may be used alone or in combination of two or more.
本発明のポリエステル樹脂を構成するフラン骨格を有する多価カルボン酸成分は、石油由来原料であってもバイオマス由来の原料であっても良いが、バイオマス由来の原料を用いる方が環境問題上で好ましい。
The polyvalent carboxylic acid component having a furan skeleton that constitutes the polyester resin of the present invention may be a petroleum-derived raw material or a biomass-derived raw material, but from an environmental perspective, it is preferable to use a biomass-derived raw material.
ポリエステル樹脂を構成する全多価カルボン酸成分100mol%に対する、フラン骨格を有する多価カルボン酸成分の割合は、特段の制限はないが、通常95mol%以上であることが好ましく、96mol%以上であることがより好ましく、97mol%以上であることが更に好ましく、98mol%以上であってもよく、99mol%以上であってもよい。また、多価カルボン酸成分が、フラン骨格を有する多価カルボン酸成分のみからなることも好ましい態様である。
The ratio of the polycarboxylic acid component having a furan skeleton to 100 mol% of all polycarboxylic acid components constituting the polyester resin is not particularly limited, but is usually preferably 95 mol% or more, more preferably 96 mol% or more, even more preferably 97 mol% or more, and may be 98 mol% or more, or may be 99 mol% or more. It is also a preferred embodiment that the polycarboxylic acid component is composed only of polycarboxylic acid components having a furan skeleton.
本発明のポリエステル樹脂は、多価カルボン酸成分として、脂肪族多価カルボン酸成分を含んでもよい。脂肪族多価カルボン酸成分としては、2つのカルボキシ基を有する脂肪族ジカルボン酸が好ましい。例として、コハク酸、アジピン酸、アゼライン酸、セバシン酸、ドデカン二酸、ダイマー酸などの脂肪族ジカルボン酸を挙げることができる。中でも、炭素数2~12の脂肪族ジカルボン酸であることが好ましい。
脂肪族多価カルボン酸成分としては、飽和脂肪族ジカルボン酸であっても、不飽和ジカルボン酸であっても良いが、飽和脂肪族ジカルボン酸であることが好ましい。
脂肪族多価カルボン酸成分としては、直鎖状の脂肪族ジカルボン酸であっても、分岐を有する脂肪族ジカルボン酸であっても良いが、直鎖状の脂肪族ジカルボン酸であることが好ましい。ポリエステル樹脂を製造するための原料モノマーとしては、脂肪族ジカルボン酸及びその誘導体が使用可能である。誘導体は、上記と同様である。 The polyester resin of the present invention may contain an aliphatic polycarboxylic acid component as the polycarboxylic acid component. As the aliphatic polycarboxylic acid component, an aliphatic dicarboxylic acid having two carboxy groups is preferable. Examples of the aliphatic dicarboxylic acid include succinic acid, adipic acid, azelaic acid, sebacic acid, dodecanedioic acid, and dimer acid. Among them, an aliphatic dicarboxylic acid having 2 to 12 carbon atoms is preferable.
The aliphatic polycarboxylic acid component may be either a saturated aliphatic dicarboxylic acid or an unsaturated dicarboxylic acid, but is preferably a saturated aliphatic dicarboxylic acid.
The aliphatic polycarboxylic acid component may be a linear aliphatic dicarboxylic acid or a branched aliphatic dicarboxylic acid, but is preferably a linear aliphatic dicarboxylic acid. As a raw material monomer for producing the polyester resin, an aliphatic dicarboxylic acid and its derivatives can be used. The derivatives are the same as those described above.
脂肪族多価カルボン酸成分としては、飽和脂肪族ジカルボン酸であっても、不飽和ジカルボン酸であっても良いが、飽和脂肪族ジカルボン酸であることが好ましい。
脂肪族多価カルボン酸成分としては、直鎖状の脂肪族ジカルボン酸であっても、分岐を有する脂肪族ジカルボン酸であっても良いが、直鎖状の脂肪族ジカルボン酸であることが好ましい。ポリエステル樹脂を製造するための原料モノマーとしては、脂肪族ジカルボン酸及びその誘導体が使用可能である。誘導体は、上記と同様である。 The polyester resin of the present invention may contain an aliphatic polycarboxylic acid component as the polycarboxylic acid component. As the aliphatic polycarboxylic acid component, an aliphatic dicarboxylic acid having two carboxy groups is preferable. Examples of the aliphatic dicarboxylic acid include succinic acid, adipic acid, azelaic acid, sebacic acid, dodecanedioic acid, and dimer acid. Among them, an aliphatic dicarboxylic acid having 2 to 12 carbon atoms is preferable.
The aliphatic polycarboxylic acid component may be either a saturated aliphatic dicarboxylic acid or an unsaturated dicarboxylic acid, but is preferably a saturated aliphatic dicarboxylic acid.
The aliphatic polycarboxylic acid component may be a linear aliphatic dicarboxylic acid or a branched aliphatic dicarboxylic acid, but is preferably a linear aliphatic dicarboxylic acid. As a raw material monomer for producing the polyester resin, an aliphatic dicarboxylic acid and its derivatives can be used. The derivatives are the same as those described above.
脂肪族多価カルボン酸成分としては、好ましくは炭素数2~12の直鎖状の飽和脂肪族ジカルボン酸であり、より好ましくは炭素数2~10の直鎖状の飽和脂肪族ジカルボン酸であり、さらに好ましくは炭素数3~7の直鎖状の飽和脂肪族ジカルボン酸である。
ポリエステル樹脂を構成する全多価カルボン酸成分100mol%に対する、脂肪族多価カルボン酸成分量は、5mol%以下であることが好ましく、4mol%以下であることがより好ましく、3mol%以下であることが更に好ましい。また、脂肪族多価カルボン酸成分は含有していなくてもよいが、含有する場合には0.1mol%以上であることが好ましく、0.7mol%以上であることがより好ましく、1.5mol%以上であることが更に好ましい。
本発明のポリエステル樹脂が上述の範囲内で脂肪族多価カルボン酸を含む場合、共重合成分による耐熱性低下を抑制でき、結晶化速度が向上しうる。その理由については明確ではないが、上述の最適な範囲内で柔軟な脂肪族多価カルボン酸成分を含むことで、ポリエステル樹脂の分子運動性が上がり、結晶形成できるように分子が配向するためと考えられる。上述の範囲より、脂肪族多価カルボン酸成分の共重合量が多いと、分子運動性は上がるが、フラン骨格を有する多価カルボン酸成分と多価アルコール成分からなるブロックの鎖長が短くなって、結晶形成が難しくなると考えられる。 The aliphatic polycarboxylic acid component is preferably a linear saturated aliphatic dicarboxylic acid having 2 to 12 carbon atoms, more preferably a linear saturated aliphatic dicarboxylic acid having 2 to 10 carbon atoms, and even more preferably a linear saturated aliphatic dicarboxylic acid having 3 to 7 carbon atoms.
The amount of the aliphatic polycarboxylic acid component relative to 100 mol% of the total polycarboxylic acid components constituting the polyester resin is preferably 5 mol% or less, more preferably 4 mol% or less, and even more preferably 3 mol% or less. In addition, the aliphatic polycarboxylic acid component may not be contained, but if it is contained, it is preferably 0.1 mol% or more, more preferably 0.7 mol% or more, and even more preferably 1.5 mol% or more.
When the polyester resin of the present invention contains an aliphatic polycarboxylic acid within the above range, the decrease in heat resistance due to the copolymerization component can be suppressed, and the crystallization rate can be improved. The reason is not clear, but it is thought that the molecular mobility of the polyester resin is increased by containing a flexible aliphatic polycarboxylic acid component within the above optimal range, and the molecules are oriented so that crystals can be formed. If the copolymerization amount of the aliphatic polycarboxylic acid component is larger than the above range, the molecular mobility is increased, but the chain length of the block consisting of the polycarboxylic acid component having a furan skeleton and the polyhydric alcohol component becomes shorter, making it difficult to form crystals.
ポリエステル樹脂を構成する全多価カルボン酸成分100mol%に対する、脂肪族多価カルボン酸成分量は、5mol%以下であることが好ましく、4mol%以下であることがより好ましく、3mol%以下であることが更に好ましい。また、脂肪族多価カルボン酸成分は含有していなくてもよいが、含有する場合には0.1mol%以上であることが好ましく、0.7mol%以上であることがより好ましく、1.5mol%以上であることが更に好ましい。
本発明のポリエステル樹脂が上述の範囲内で脂肪族多価カルボン酸を含む場合、共重合成分による耐熱性低下を抑制でき、結晶化速度が向上しうる。その理由については明確ではないが、上述の最適な範囲内で柔軟な脂肪族多価カルボン酸成分を含むことで、ポリエステル樹脂の分子運動性が上がり、結晶形成できるように分子が配向するためと考えられる。上述の範囲より、脂肪族多価カルボン酸成分の共重合量が多いと、分子運動性は上がるが、フラン骨格を有する多価カルボン酸成分と多価アルコール成分からなるブロックの鎖長が短くなって、結晶形成が難しくなると考えられる。 The aliphatic polycarboxylic acid component is preferably a linear saturated aliphatic dicarboxylic acid having 2 to 12 carbon atoms, more preferably a linear saturated aliphatic dicarboxylic acid having 2 to 10 carbon atoms, and even more preferably a linear saturated aliphatic dicarboxylic acid having 3 to 7 carbon atoms.
The amount of the aliphatic polycarboxylic acid component relative to 100 mol% of the total polycarboxylic acid components constituting the polyester resin is preferably 5 mol% or less, more preferably 4 mol% or less, and even more preferably 3 mol% or less. In addition, the aliphatic polycarboxylic acid component may not be contained, but if it is contained, it is preferably 0.1 mol% or more, more preferably 0.7 mol% or more, and even more preferably 1.5 mol% or more.
When the polyester resin of the present invention contains an aliphatic polycarboxylic acid within the above range, the decrease in heat resistance due to the copolymerization component can be suppressed, and the crystallization rate can be improved. The reason is not clear, but it is thought that the molecular mobility of the polyester resin is increased by containing a flexible aliphatic polycarboxylic acid component within the above optimal range, and the molecules are oriented so that crystals can be formed. If the copolymerization amount of the aliphatic polycarboxylic acid component is larger than the above range, the molecular mobility is increased, but the chain length of the block consisting of the polycarboxylic acid component having a furan skeleton and the polyhydric alcohol component becomes shorter, making it difficult to form crystals.
本発明のポリエステル樹脂を構成する脂肪族多価カルボン酸成分は、石油由来原料であってもバイオマス由来の原料であっても良いが、バイオマス由来の原料を用いる方が環境問題上で好ましい。
The aliphatic polyvalent carboxylic acid component that constitutes the polyester resin of the present invention may be a petroleum-derived raw material or a biomass-derived raw material, but from an environmental standpoint, it is preferable to use a biomass-derived raw material.
本発明のポリエステル樹脂は、本発明の効果を損なわない範囲で、多価カルボン酸成分として、フラン骨格を有する多価カルボン酸成分と脂肪族多価カルボン酸成分以外のその他のカルボン酸成分を含んでも良く、2価カルボン酸成分であっても3価以上の多価カルボン酸成分であってもよい。その他のカルボン酸成分としては、芳香族多価カルボン酸及びそのエステル、または脂環族多価カルボン酸及びそのエステルが挙げられ、それらに含まれる1種または2種以上の混合物であってもよい。
The polyester resin of the present invention may contain, as the polycarboxylic acid component, other carboxylic acid components than the polycarboxylic acid component having a furan skeleton and the aliphatic polycarboxylic acid component, and may be a dicarboxylic acid component or a trivalent or higher polycarboxylic acid component, as long as the effect of the present invention is not impaired. Examples of the other carboxylic acid components include aromatic polycarboxylic acids and their esters, or alicyclic polycarboxylic acids and their esters, and the polyester may be a mixture of one or more of these.
芳香族多価カルボン酸の例としては、テレフタル酸、イソフタル酸、オルソフタル酸、ナフタレンジカルボン酸、ビフェニルジカルボン酸、ジフェン酸、5-ヒドロキシイソフタル酸、トリメリット酸、ピロメリット酸、メチルシクロへキセントリカルボン酸、オキシジフタル酸二無水物(ODPA)、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物(BTDA)、3,3’,4,4’-ジフェニルテトラカルボン酸二無水物(BPDA)、3,3’,4,4’-ジフェニルスルホンテトラカルボン酸二無水物(DSDA)、4,4’-(ヘキサフロロイソプロピリデン)ジフタル酸二無水物(6FDA)、2,2’-ビス[(ジカルボキシフェノキシ)フェニル]プロパン二無水物(BSAA)等が上げられる。その他、スルホテレフタル酸、5-スルホイソフタル酸、4-スルホフタル酸、4-スルホナフタレン-2,7-ジカルボン酸、5-(4-スルホフェノキシ)イソフタル酸、スルホテレフタル酸、およびそれらの金属塩、アンモニウム塩などのスルホン酸基又はスルホン酸塩基を有する芳香族ジカルボン酸等を挙げることができる。
Examples of aromatic polycarboxylic acids include terephthalic acid, isophthalic acid, orthophthalic acid, naphthalenedicarboxylic acid, biphenyldicarboxylic acid, diphenic acid, 5-hydroxyisophthalic acid, trimellitic acid, pyromellitic acid, methylcyclohexene tricarboxylic acid, oxydiphthalic dianhydride (ODPA), 3,3',4,4'-benzophenonetetracarboxylic dianhydride (BTDA), 3,3',4,4'-diphenyltetracarboxylic dianhydride (BPDA), 3,3',4,4'-diphenylsulfonetetracarboxylic dianhydride (DSDA), 4,4'-(hexafluoroisopropylidene)diphthalic dianhydride (6FDA), 2,2'-bis[(dicarboxyphenoxy)phenyl]propane dianhydride (BSAA), etc. Other examples include aromatic dicarboxylic acids having a sulfonic acid group or a sulfonate salt group, such as sulfoterephthalic acid, 5-sulfoisophthalic acid, 4-sulfophthalic acid, 4-sulfonaphthalene-2,7-dicarboxylic acid, 5-(4-sulfophenoxy)isophthalic acid, sulfoterephthalic acid, and their metal salts and ammonium salts.
脂環族多価カルボン酸の例としては、1,4-シクロヘキサンジカルボン酸、1,3-シクロヘキサンジカルボン酸、1,2-シクロヘキサンジカルボン酸とその酸無水物などの脂環族ジカルボン酸類を挙げることができる。これらその他のカルボン酸成分は1種を単独で用いても良く、2種以上を混合して使用しても良い。またエステル変性されていてもよい。
Examples of alicyclic polycarboxylic acids include alicyclic dicarboxylic acids such as 1,4-cyclohexanedicarboxylic acid, 1,3-cyclohexanedicarboxylic acid, 1,2-cyclohexanedicarboxylic acid and their anhydrides. These other carboxylic acid components may be used alone or in combination of two or more. They may also be ester-modified.
本発明のポリエステル樹脂を構成する全多価カルボン酸成分100モル%に対する、上述のその他のカルボン酸成分量が、合計で3モル%以下であることが好ましく、2モル%以下であることがより好ましく、1モル%以下であることが更に好ましい。上述のその他のカルボン酸成分は含まない、すなわち、多価カルボン酸成分が、フラン骨格を有する多価カルボン酸成分と脂肪族多価カルボン酸成分のみからなることも好ましい態様である。また、多価カルボン酸成分が、フラン骨格を有する多価カルボン酸成分のみからなることも好ましい態様である。
The amount of the above-mentioned other carboxylic acid components relative to 100 mol% of all polycarboxylic acid components constituting the polyester resin of the present invention is preferably 3 mol% or less in total, more preferably 2 mol% or less, and even more preferably 1 mol% or less. It is also a preferred embodiment that does not contain the above-mentioned other carboxylic acid components, that is, the polycarboxylic acid component consists only of polycarboxylic acid components having a furan skeleton and aliphatic polycarboxylic acid components. It is also a preferred embodiment that the polycarboxylic acid component consists only of polycarboxylic acid components having a furan skeleton.
本発明のポリエステル樹脂を構成する多価アルコール成分としては、エチレングリコールを含む。本発明のポリエステル樹脂を構成する全多価アルコール成分中のエチレングリコールの割合は、特段の制限はないが、通常80mol%以上が好ましく、より好ましくは85mol%以上、さらに好ましくは90mol%以上、特に好ましくは95mol%以上である。また、多価アルコール成分が、エチレングリコールのみからなることも好ましい態様である。さらに、99.5mol%以下であることも好ましく、99mol%以下であることもより好ましく、さらに好ましくは98mol%以下である。
The polyhydric alcohol component constituting the polyester resin of the present invention includes ethylene glycol. The proportion of ethylene glycol in the total polyhydric alcohol components constituting the polyester resin of the present invention is not particularly limited, but is usually preferably 80 mol% or more, more preferably 85 mol% or more, even more preferably 90 mol% or more, and particularly preferably 95 mol% or more. It is also a preferred embodiment that the polyhydric alcohol component consists only of ethylene glycol. Furthermore, it is also preferable that it is 99.5 mol% or less, even more preferably 99 mol% or less, and even more preferably 98 mol% or less.
本発明のポリエステル樹脂を構成するエチレングリコールは、石油由来原料であってもバイオマス由来の原料であっても良いが、バイオマス由来の原料を用いる方が環境問題上で好ましい。
The ethylene glycol that constitutes the polyester resin of the present invention may be a petroleum-derived raw material or a biomass-derived raw material, but from an environmental perspective, it is preferable to use a biomass-derived raw material.
また、本発明のポリエステル樹脂は、多価アルコール成分として、ジエチレングリコールを含んでもよい。本発明のポリエステル樹脂を構成する全多価アルコール成分100mol%に対するジエチレングリコールの割合は、5mol%以下であることが好ましく、3mol%以下であることがより好ましく、2mol%以下であることが更に好ましい。また、全多価アルコール成分100mol%に対するジエチレングリコールの割合が、0.1mol%以上であることが好ましく、より好ましくは0.5mol%以上であり、さらに好ましくは1mol%以上である。
The polyester resin of the present invention may also contain diethylene glycol as a polyhydric alcohol component. The ratio of diethylene glycol to 100 mol% of all polyhydric alcohol components constituting the polyester resin of the present invention is preferably 5 mol% or less, more preferably 3 mol% or less, and even more preferably 2 mol% or less. The ratio of diethylene glycol to 100 mol% of all polyhydric alcohol components is preferably 0.1 mol% or more, more preferably 0.5 mol% or more, and even more preferably 1 mol% or more.
本発明のポリエステル樹脂において、多価アルコール成分としてジエチレングリコールを含む場合、エチレングリコールが縮合することにより副生したものであっても構わないし、原料として仕込んだものであっても構わない。ジエチレングリコールの副生量を抑制するため、ジエチレングリコール抑制剤として、例えば塩基性化合物を添加することができる。塩基性化合物としては、トリエチルアミン、トリ-n-ブチルアミン等の第3級アミン、水酸化テトラエチルアンモニウム等の第4級アンモニウム塩等が挙げられる。
When the polyester resin of the present invention contains diethylene glycol as a polyhydric alcohol component, it may be a by-product of condensation of ethylene glycol, or it may be added as a raw material. In order to suppress the amount of diethylene glycol by-product, for example, a basic compound can be added as a diethylene glycol inhibitor. Examples of basic compounds include tertiary amines such as triethylamine and tri-n-butylamine, and quaternary ammonium salts such as tetraethylammonium hydroxide.
また、本発明のポリエステル樹脂は、エチレングリコール、ジエチレングリコール以外の多価アルコール成分を含んでもよく、2価アルコール成分であっても3価以上の多価アルコール成分であってもよい。エチレングリコール、ジエチレングリコール以外の多価アルコール成分としては、脂肪族多価アルコール、脂環族多価アルコール、エーテル結合含有多価アルコールおよび芳香族含有多価アルコールから選ばれるものであることが好ましく、それらの1種または2種以上の混合物であってもよい。脂肪族多価アルコールの例としては、1,2-プロピレングリコール、1,3-プロパンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、2-メチル-1,3-プロパンジオール、ネオペンチルグリコール、1,6-ヘキサンジオール、3-メチル-1,5-ペンタンジオール、1,7-ヘプタンジオール、1,8-オクタンジオール、1,9-ノナンジオール、2-エチル-2-ブチルプロパンジオール、ヒドロキシピバリン酸ネオペンチルグリコールエステル、ジメチロールヘプタン、2,2,4-トリメチル-1,3-ペンタンジオール、グリセリン、ペンタエリスリトール、トリメチロールエタン、トリメチロールペンタン、トリメチロールプロパン等を挙げることができる。
The polyester resin of the present invention may also contain a polyhydric alcohol component other than ethylene glycol or diethylene glycol, and may be a dihydric alcohol component or a trihydric or higher polyhydric alcohol component. The polyhydric alcohol component other than ethylene glycol or diethylene glycol is preferably selected from aliphatic polyhydric alcohols, alicyclic polyhydric alcohols, ether bond-containing polyhydric alcohols, and aromatic-containing polyhydric alcohols, and may be a mixture of one or more of these. Examples of aliphatic polyhydric alcohols include 1,2-propylene glycol, 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, 2-methyl-1,3-propanediol, neopentyl glycol, 1,6-hexanediol, 3-methyl-1,5-pentanediol, 1,7-heptanediol, 1,8-octanediol, 1,9-nonanediol, 2-ethyl-2-butylpropanediol, hydroxypivalic acid neopentyl glycol ester, dimethylolheptane, 2,2,4-trimethyl-1,3-pentanediol, glycerin, pentaerythritol, trimethylolethane, trimethylolpentane, and trimethylolpropane.
脂環族多価アルコールの例としては、1,4-シクロヘキサンジオール、1,4-シクロヘキサンジメタノール、トリシクロデカンジオール、トリシクロデカンジメチロール、スピログリコール、水素化ビスフェノールAまたは水素化ビスフェノールAのエチレンオキサイド付加物およびプロピレンオキサイド付加物等を挙げることができる。
エーテル結合含有多価アルコールの例としては、ジエチレングリコール、トリエチレングリコール、ジプロピレングリコール、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール、ネオペンチルグリコールエチレンオキサイド付加物またはネオペンチルグリコールプロピレンオキサイド付加物も必要により使用しうる。
芳香族含有多価アルコールの例としてはパラキシレングリコール、メタキシレングリコール、オルトキシレングリコール、1,4-フェニレングリコール、1,4-フェニレングリコールのエチレンオキサイド付加物、ビスフェノールA、ビスフェノールAのエチレンオキサイド付加物およびプロピレンオキサイド付加物等の、ビスフェノール類の2つのフェノール性水酸基にエチレンオキサイド又はプロピレンオキサイドをそれぞれ1~数モル付加して得られるグリコール類等を例示できる。これらは1種を単独で用いても良く、2種以上を混合して使用しても良い。 Examples of the alicyclic polyhydric alcohol include 1,4-cyclohexanediol, 1,4-cyclohexanedimethanol, tricyclodecanediol, tricyclodecanedimethylol, spiroglycol, hydrogenated bisphenol A, and ethylene oxide and propylene oxide adducts of hydrogenated bisphenol A.
Examples of the ether bond-containing polyhydric alcohol include diethylene glycol, triethylene glycol, dipropylene glycol, polyethylene glycol, polypropylene glycol, polytetramethylene glycol, neopentyl glycol ethylene oxide adduct, and neopentyl glycol propylene oxide adduct, which may also be used if necessary.
Examples of aromatic polyhydric alcohols include glycols obtained by adding 1 to several moles of ethylene oxide or propylene oxide to two phenolic hydroxyl groups of bisphenols, such as paraxylene glycol, metaxylene glycol, orthoxylene glycol, 1,4-phenylene glycol, an ethylene oxide adduct of 1,4-phenylene glycol, bisphenol A, an ethylene oxide adduct of bisphenol A, and a propylene oxide adduct of bisphenol A. These may be used alone or in combination of two or more.
エーテル結合含有多価アルコールの例としては、ジエチレングリコール、トリエチレングリコール、ジプロピレングリコール、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール、ネオペンチルグリコールエチレンオキサイド付加物またはネオペンチルグリコールプロピレンオキサイド付加物も必要により使用しうる。
芳香族含有多価アルコールの例としてはパラキシレングリコール、メタキシレングリコール、オルトキシレングリコール、1,4-フェニレングリコール、1,4-フェニレングリコールのエチレンオキサイド付加物、ビスフェノールA、ビスフェノールAのエチレンオキサイド付加物およびプロピレンオキサイド付加物等の、ビスフェノール類の2つのフェノール性水酸基にエチレンオキサイド又はプロピレンオキサイドをそれぞれ1~数モル付加して得られるグリコール類等を例示できる。これらは1種を単独で用いても良く、2種以上を混合して使用しても良い。 Examples of the alicyclic polyhydric alcohol include 1,4-cyclohexanediol, 1,4-cyclohexanedimethanol, tricyclodecanediol, tricyclodecanedimethylol, spiroglycol, hydrogenated bisphenol A, and ethylene oxide and propylene oxide adducts of hydrogenated bisphenol A.
Examples of the ether bond-containing polyhydric alcohol include diethylene glycol, triethylene glycol, dipropylene glycol, polyethylene glycol, polypropylene glycol, polytetramethylene glycol, neopentyl glycol ethylene oxide adduct, and neopentyl glycol propylene oxide adduct, which may also be used if necessary.
Examples of aromatic polyhydric alcohols include glycols obtained by adding 1 to several moles of ethylene oxide or propylene oxide to two phenolic hydroxyl groups of bisphenols, such as paraxylene glycol, metaxylene glycol, orthoxylene glycol, 1,4-phenylene glycol, an ethylene oxide adduct of 1,4-phenylene glycol, bisphenol A, an ethylene oxide adduct of bisphenol A, and a propylene oxide adduct of bisphenol A. These may be used alone or in combination of two or more.
本発明のポリエステル樹脂は、アンチモン、アルミニウム、チタン、およびゲルマニウムから選ばれる少なくとも1種の金属元素を含み、前記金属元素含有量の合計が350質量ppm以下である。好ましくは、300質量ppm以下であり、250質量ppm以下であることがより好ましい。この場合、本発明のポリエステル樹脂は優れた熱安定性を有する。ポリエステル樹脂中に前記金属元素が多く含有すると、高温下でポリエステル樹脂の熱分解反応を促進し、還元粘度の低下や樹脂の着色、熱劣化を引き起こす要因となりうる。
The polyester resin of the present invention contains at least one metal element selected from antimony, aluminum, titanium, and germanium, and the total content of the metal elements is 350 mass ppm or less. Preferably, the total content is 300 mass ppm or less, and more preferably, 250 mass ppm or less. In this case, the polyester resin of the present invention has excellent thermal stability. If the polyester resin contains a large amount of the metal elements, it may promote the thermal decomposition reaction of the polyester resin at high temperatures, which may cause a decrease in reduced viscosity, coloration of the resin, and thermal degradation.
本発明のポリエステル樹脂は、結晶核剤を含んでもよい。結晶核剤としては、例えば無機材料として、タルク、窒化ホウ素、シリカ、層状ケイ酸塩が挙げられ、有機材料として、エステルオリゴマー、ポリエチレンワックス、ポリプロピレンワックスが挙げられる。好ましくは、タルク、エステルオリゴマーが挙げられる。これらは1種を単独で用いても良く、2種以上を混合して使用しても良い。昇温速度2℃/分の示差走査熱量測定(DSC)によって測定される、2nd昇温時の冷結晶化ピークが145~185℃の範囲内にあり、発熱量が5J/g以上である本発明のポリエステル樹脂中に、結晶核剤を含むことで、結晶化速度のより一層の向上と高い結晶化速度を保持することが可能となる。また、ポリエステル樹脂中に、結晶核剤を含み、溶融状態において高い剪断応力を付与された履歴をもつものであることも、好ましい態様の一つである。
The polyester resin of the present invention may contain a crystal nucleating agent. Examples of the crystal nucleating agent include inorganic materials such as talc, boron nitride, silica, and layered silicate, and organic materials such as ester oligomer, polyethylene wax, and polypropylene wax. Talc and ester oligomer are preferred. These may be used alone or in combination of two or more. The polyester resin of the present invention has a cold crystallization peak in the range of 145 to 185°C during the second heating step, as measured by differential scanning calorimetry (DSC) at a heating rate of 2°C/min, and has a heat generation rate of 5 J/g or more. By including a crystal nucleating agent in the polyester resin, the crystallization rate can be further improved and a high crystallization rate can be maintained. In addition, it is also a preferred embodiment that the polyester resin contains a crystal nucleating agent and has a history of being subjected to high shear stress in a molten state.
結晶核剤を含有する場合の好ましい含有量は、ポリエステル樹脂に対して0.001質量%以上、より好ましくは0.01質量%以上、さらに好ましくは0.1質量%以上である。また、結晶核剤の含有量の上限は4質量%、より好ましくは3質量%、さらに好ましくは2質量%、最も好ましくは1質量%である。結晶核剤の含有量が上記下限より少ないと、結晶化促進の効果を十分に得ることができず、上記上限よりも多いとポリエステル樹脂の機械物性が低下し、しなやかさが損なわれるおそれがある。
When a crystal nucleating agent is contained, the preferred content is 0.001% by mass or more, more preferably 0.01% by mass or more, and even more preferably 0.1% by mass or more, based on the polyester resin. The upper limit of the crystal nucleating agent content is 4% by mass, more preferably 3% by mass, even more preferably 2% by mass, and most preferably 1% by mass. If the content of the crystal nucleating agent is less than the lower limit, the effect of promoting crystallization cannot be fully obtained, and if it is more than the upper limit, the mechanical properties of the polyester resin may decrease, and flexibility may be impaired.
結晶核剤が無機材料の場合、核剤効果としてはその粒径が小さいほど好ましい。好ましい結晶核剤の平均粒径は5μm以下、より好ましくは3μm以下、さらに好ましくは1μm以下、最も好ましくは0.5μm以下である。なお、結晶核剤の平均粒径の下限は0.1μmが好ましい。
When the nucleating agent is an inorganic material, the smaller the particle size, the better for the nucleating effect. The preferred average particle size of the nucleating agent is 5 μm or less, more preferably 3 μm or less, even more preferably 1 μm or less, and most preferably 0.5 μm or less. The lower limit of the average particle size of the nucleating agent is preferably 0.1 μm.
本発明のポリエステル樹脂の製造方法としては、フラン骨格を有する多価カルボン酸を含む多価カルボン酸成分と、エチレングリコールを含む多価アルコール成分とを重縮合反応する工程、および前記重縮合反応工程で得られた反応物の溶融組成物に、剪断応力を付与する工程を有することが好ましい。
The method for producing the polyester resin of the present invention preferably includes a step of polycondensing a polycarboxylic acid component containing a polycarboxylic acid having a furan skeleton with a polyhydric alcohol component containing ethylene glycol, and a step of applying a shear stress to the molten composition of the reaction product obtained in the polycondensation reaction step.
本発明のポリエステル樹脂の製造方法としては、多価カルボン酸成分として、フラン骨格を有する多価カルボン酸、及び多価アルコール成分としてエチレングリコールを用いる点、重縮合反応する工程を含む点以外は、公知の工程を備えた方法で行うことができる。
The method for producing the polyester resin of the present invention can be carried out using a method including known steps, except that a polycarboxylic acid having a furan skeleton is used as the polycarboxylic acid component, ethylene glycol is used as the polyhydric alcohol component, and a polycondensation reaction step is included.
本発明のポリエステル樹脂の製造方法において、フラン骨格を有する多価カルボン酸を含む多価カルボン酸成分と、エチレングリコールを含む多価アルコール成分との仕込み時のモル比は、本発明のポリエステル樹脂が製造できれば特に限定されない。但し、分子量の高いポリエステル樹脂を得やすい点では、ジカルボン酸成分1.0molに対し、ジオールは0.9mol以上とすることが好ましく、1.0mol以上とすることがより好ましく、1.2mol以上とすることがさらに好ましい。また、一方で、4.0mol以下とすることが好ましく、3.0mol以下とすることがより好ましく、2.5mol以下とすることがさらに好ましい。
In the method for producing the polyester resin of the present invention, the molar ratio of the polyvalent carboxylic acid component containing a polyvalent carboxylic acid having a furan skeleton and the polyhydric alcohol component containing ethylene glycol at the time of charging is not particularly limited as long as the polyester resin of the present invention can be produced. However, in terms of facilitating the production of a polyester resin with a high molecular weight, the diol is preferably 0.9 mol or more, more preferably 1.0 mol or more, and even more preferably 1.2 mol or more, per 1.0 mol of the dicarboxylic acid component. On the other hand, it is preferably 4.0 mol or less, more preferably 3.0 mol or less, and even more preferably 2.5 mol or less.
本発明のポリエステル樹脂の製造方法は、重縮合反応する工程を有する。本発明のポリエステル樹脂を重縮合する際には、重合触媒を用いることが好ましい。触媒を添加するタイミングや量等は適宜調整すればよい。すなわち、重合触媒は、原料仕込み時に添加しても、製造工程の途中で添加してもよい。また、原料仕込み時と製造工程の途中で各々添加してもよい。
触媒の仕込み方法としては、重合触媒単体を仕込んでも、水、アルコール、エチレングリコールなどのグリコールに溶解または分散させた状態で仕込んでもよい。 The method for producing the polyester resin of the present invention includes a step of polycondensation reaction. When polycondensing the polyester resin of the present invention, it is preferable to use a polymerization catalyst. The timing and amount of the catalyst to be added may be appropriately adjusted. That is, the polymerization catalyst may be added when the raw materials are charged, or may be added during the production process. Also, the polymerization catalyst may be added when the raw materials are charged and during the production process.
The catalyst may be charged as a simple polymerization catalyst or in a state of being dissolved or dispersed in water, alcohol, or glycol such as ethylene glycol.
触媒の仕込み方法としては、重合触媒単体を仕込んでも、水、アルコール、エチレングリコールなどのグリコールに溶解または分散させた状態で仕込んでもよい。 The method for producing the polyester resin of the present invention includes a step of polycondensation reaction. When polycondensing the polyester resin of the present invention, it is preferable to use a polymerization catalyst. The timing and amount of the catalyst to be added may be appropriately adjusted. That is, the polymerization catalyst may be added when the raw materials are charged, or may be added during the production process. Also, the polymerization catalyst may be added when the raw materials are charged and during the production process.
The catalyst may be charged as a simple polymerization catalyst or in a state of being dissolved or dispersed in water, alcohol, or glycol such as ethylene glycol.
重合触媒としては、例えば、チタン化合物(テトラ-n-ブチルチタネート、テトライソプロピルチタネート、チタンオキシアセチルアセトネートなど)、アンチモン化合物(トリブトキシアンチモン、三酸化アンチモンなど)、ゲルマニウム化合物(テトラ-n-ブトキシゲルマニウム、酸化ゲルマニウムなど)、亜鉛化合物(酢酸亜鉛など)、アルミニウム化合物(酢酸アルミニウム、アルミニウムアセチルアセテートなど)などを挙げることができる。アルミニウム化合物を重合触媒として用いる場合、リン化合物を助触媒として併用することが好ましい。上記重合触媒は1種又は2種以上使用してもよい。重縮合の反応性の面からアンチモン化合物、アルミニウム化合物、チタン化合物、ゲルマニウム化合物が好ましく、樹脂の着色への影響も考慮するとアルミニウム化合物、ゲルマニウム化合物がより好ましい。
Examples of polymerization catalysts include titanium compounds (tetra-n-butyl titanate, tetraisopropyl titanate, titanium oxyacetylacetonate, etc.), antimony compounds (tributoxyantimony, antimony trioxide, etc.), germanium compounds (tetra-n-butoxygermanium, germanium oxide, etc.), zinc compounds (zinc acetate, etc.), and aluminum compounds (aluminum acetate, aluminum acetylacetate, etc.). When using an aluminum compound as a polymerization catalyst, it is preferable to use a phosphorus compound in combination as a co-catalyst. The above polymerization catalysts may be used alone or in combination. In terms of reactivity in polycondensation, antimony compounds, aluminum compounds, titanium compounds, and germanium compounds are preferred, and in consideration of the effect on the coloring of the resin, aluminum compounds and germanium compounds are more preferred.
ポリエステル樹脂の製造工程においてリン化合物を添加することができる。リン化合物としては、特に限定はされないが、ホスホン酸系化合物、ホスフィン酸系化合物を用いると触媒活性の向上効果が大きいため好ましく、これらの中でもホスホン酸系化合物を用いると触媒活性の向上効果が特に大きいためより好ましい。
Phosphorus compounds can be added in the polyester resin manufacturing process. There are no particular limitations on the phosphorus compound, but phosphonic acid compounds and phosphinic acid compounds are preferred because they have a large effect of improving catalytic activity, and of these, phosphonic acid compounds are more preferred because they have a particularly large effect of improving catalytic activity.
重合触媒の使用量は、重縮合反応速度が速く、製造効率が高い点では多いことが好ましい。また、一方で、ポリエステル樹脂中に金属元素が多く含有すると、高温化でポリエステルの熱分解反応を促進し、樹脂の着色や熱劣化を引き起こす要因となりうる。
重合触媒は、ポリエステル樹脂の重縮合時に減圧環境下に置かれても、触媒として系に最初に添加された使用量のほぼ100%が、重縮合によって製造された共重合ポリエステル樹脂中に残留する。すなわち、重合触媒の量は重縮合の前後でほぼ変化しないため、生成されるポリエステル樹脂に対する重合触媒の添加量は、具体的には、1質量ppm以上、より好ましくは3質量ppm以上、さらに好ましくは5質量ppm以上である。また、一方で、好ましくは、350質量ppm以下であり、より好ましくは300質量ppm以下であり、250質量ppm以下であることがさらに好ましい。 The amount of the polymerization catalyst used is preferably large in terms of a high polycondensation reaction rate and high production efficiency. On the other hand, if the polyester resin contains a large amount of metal elements, the polyester resin may be discolored or thermally deteriorated due to the promotion of thermal decomposition reaction at high temperatures.
Even if the polymerization catalyst is placed in a reduced pressure environment during the polycondensation of the polyester resin, almost 100% of the amount initially added to the system as a catalyst remains in the copolymerized polyester resin produced by polycondensation. That is, since the amount of the polymerization catalyst is almost unchanged before and after polycondensation, the amount of the polymerization catalyst added to the polyester resin produced is specifically 1 mass ppm or more, more preferably 3 mass ppm or more, and even more preferably 5 mass ppm or more. On the other hand, it is preferably 350 mass ppm or less, more preferably 300 mass ppm or less, and even more preferably 250 mass ppm or less.
重合触媒は、ポリエステル樹脂の重縮合時に減圧環境下に置かれても、触媒として系に最初に添加された使用量のほぼ100%が、重縮合によって製造された共重合ポリエステル樹脂中に残留する。すなわち、重合触媒の量は重縮合の前後でほぼ変化しないため、生成されるポリエステル樹脂に対する重合触媒の添加量は、具体的には、1質量ppm以上、より好ましくは3質量ppm以上、さらに好ましくは5質量ppm以上である。また、一方で、好ましくは、350質量ppm以下であり、より好ましくは300質量ppm以下であり、250質量ppm以下であることがさらに好ましい。 The amount of the polymerization catalyst used is preferably large in terms of a high polycondensation reaction rate and high production efficiency. On the other hand, if the polyester resin contains a large amount of metal elements, the polyester resin may be discolored or thermally deteriorated due to the promotion of thermal decomposition reaction at high temperatures.
Even if the polymerization catalyst is placed in a reduced pressure environment during the polycondensation of the polyester resin, almost 100% of the amount initially added to the system as a catalyst remains in the copolymerized polyester resin produced by polycondensation. That is, since the amount of the polymerization catalyst is almost unchanged before and after polycondensation, the amount of the polymerization catalyst added to the polyester resin produced is specifically 1 mass ppm or more, more preferably 3 mass ppm or more, and even more preferably 5 mass ppm or more. On the other hand, it is preferably 350 mass ppm or less, more preferably 300 mass ppm or less, and even more preferably 250 mass ppm or less.
本発明のポリエステル樹脂の製造方法において、ポリエステル樹脂の熱安定性の観点から、アルミニウム化合物とリン化合物を含む重合触媒を用いて製造されることが好ましい。
In the method for producing the polyester resin of the present invention, from the viewpoint of the thermal stability of the polyester resin, it is preferable to produce the polyester resin using a polymerization catalyst containing an aluminum compound and a phosphorus compound.
本発明のポリエステル樹脂がリン化合物を含む場合、リン元素を20~250質量ppm含むことが好ましく、より好ましくは30~200質量ppmであり、さらに好ましくは40~150質量ppmであり、特に好ましくは50~120質量ppmである。リン元素が20質量ppm未満では、重合活性が低下したり、異物量が増大するおそれがある。一方、250質量ppmを超えると触媒コストが増加する上に、重合活性が低下するおそれがある。
When the polyester resin of the present invention contains a phosphorus compound, it preferably contains 20 to 250 ppm by mass of phosphorus element, more preferably 30 to 200 ppm by mass, even more preferably 40 to 150 ppm by mass, and particularly preferably 50 to 120 ppm by mass. If the phosphorus element is less than 20 ppm by mass, there is a risk of reduced polymerization activity and increased amounts of foreign matter. On the other hand, if it exceeds 250 ppm by mass, catalyst costs will increase and polymerization activity may decrease.
アルミニウム化合物とともに触媒として機能するリン化合物は、共重合ポリエステル樹脂の重縮合時に減圧環境下に置かれる際、触媒として系に最初に添加された使用量の一部(10~40%程度)は系外に除去されるのが一般的であり、この除去割合はアルミニウム元素に対するリン元素の添加モル比、添加するアルミニウム化合物含有グリコール溶液やリン化合物含有グリコール溶液の塩基性度や酸性度、アルミニウム化合物含有溶液やリン化合物含有溶液の添加方法(一液化して添加するか、別々に添加するか)等により変化する。そのため、生成されるポリエステル樹脂に対するリン元素の添加量を20~250質量ppmとすることが好ましく、より好ましくは30~200質量ppmであり、さらに好ましくは40~150質量ppmである。
When the phosphorus compound, which functions as a catalyst together with the aluminum compound, is placed in a reduced pressure environment during the polycondensation of the copolymerized polyester resin, a portion (about 10 to 40%) of the amount initially added to the system as a catalyst is generally removed from the system, and this removal rate varies depending on the molar ratio of phosphorus element added to aluminum element, the basicity or acidity of the aluminum compound-containing glycol solution or phosphorus compound-containing glycol solution added, the method of adding the aluminum compound-containing solution or phosphorus compound-containing solution (whether they are added as a single liquid or added separately), etc. Therefore, it is preferable to add 20 to 250 ppm by mass of phosphorus element to the polyester resin to be produced, more preferably 30 to 200 ppm by mass, and even more preferably 40 to 150 ppm by mass.
本発明のポリエステル樹脂において、アルミニウム元素に対するリン元素のモル基準での含有比率は、1.1~2.8であることが好ましく、より好ましくは1.3~2.6であり、さらに好ましくは1.5~2.5である。上述のように、ポリエステル樹脂中のアルミニウム元素およびリン元素はそれぞれ、ポリエステル樹脂の重合触媒として使用するアルミニウム化合物およびリン化合物に由来する。これらアルミニウム化合物とリン化合物を特定の比率で併用することで、重縮合系中で触媒活性を有する錯体が機能的に形成され、十分な重合活性を発揮することができる。アルミニウム元素に対するリン元素の含有比率が1.1未満では、熱安定性および熱酸化安定性が低下するおそれや、異物量が増大するおそれがある。一方、アルミニウム元素に対するリン元素の含有比率が2.8を超えると、リン化合物の添加量が多くなりすぎるため、触媒コストが増大する。
In the polyester resin of the present invention, the molar ratio of phosphorus element to aluminum element is preferably 1.1 to 2.8, more preferably 1.3 to 2.6, and even more preferably 1.5 to 2.5. As described above, the aluminum element and phosphorus element in the polyester resin are derived from the aluminum compound and phosphorus compound used as polymerization catalysts for the polyester resin, respectively. By using these aluminum compounds and phosphorus compounds in combination in a specific ratio, a complex having catalytic activity in the polycondensation system is functionally formed, and sufficient polymerization activity can be exhibited. If the content ratio of phosphorus element to aluminum element is less than 1.1, there is a risk of reduced thermal stability and thermal oxidation stability, and an increase in the amount of foreign matter. On the other hand, if the content ratio of phosphorus element to aluminum element exceeds 2.8, the amount of phosphorus compound added becomes too large, and the catalyst cost increases.
上述のとおり、リン化合物は、ポリエステル樹脂の重縮合時に減圧環境下に置かれる際、触媒として系に最初に添加された使用量の一部(10~40%程度)が系外に除去されるのが一般的であるため、アルミニウム元素に対するリン元素の添加モル比は、1.3~2.5であることが好ましく、より好ましくは1.5~2.3であり、さらに好ましくは1.7~2.2である。
As mentioned above, when the phosphorus compound is placed in a reduced pressure environment during the polycondensation of polyester resin, a portion (about 10 to 40%) of the amount initially added to the system as a catalyst is generally removed from the system, so the molar ratio of phosphorus element added to aluminum element is preferably 1.3 to 2.5, more preferably 1.5 to 2.3, and even more preferably 1.7 to 2.2.
本発明のポリエステル樹脂の製造方法において、エステル化反応としては、例えば、フラン骨格を有する多価カルボン酸とエチレングリコール、および必要により他の共重合成分を直接反応させて、水を留去しエステル化反応した後、常圧あるいは減圧下で重縮合反応を行う直接エステル化法が挙げられる。エステル交換反応としては、例えば、2,5-フランジカルボン酸ジメチルとエチレングリコール、および必要により他の共重合成分を反応させてメチルアルコールを留去しエステル交換反応させた後、常圧あるいは減圧下で重縮合反応を行う製造方法が挙げられる。
In the method for producing the polyester resin of the present invention, the esterification reaction can be, for example, a direct esterification method in which a polycarboxylic acid having a furan skeleton is directly reacted with ethylene glycol, and if necessary, other copolymerization components, water is distilled off to carry out the esterification reaction, and then a polycondensation reaction is carried out under normal pressure or reduced pressure.
The transesterification reaction can be, for example, a production method in which 2,5-dimethyl furandicarboxylate is reacted with ethylene glycol, and if necessary, other copolymerization components, methyl alcohol is distilled off to carry out the esterification reaction, and then a polycondensation reaction is carried out under normal pressure or reduced pressure.
エステル化反応及びエステル交換反応における温度、時間、圧力等の条件は、従来公知のポリエステル樹脂製造法の範囲を採用できる。反応温度は、通常100℃以上であり、120℃以上が好ましい。また、通常300℃以下であり、290℃以下が好ましく、280℃以下がさらに好ましい。これらの範囲であることで、効率的に反応を進行させることができる。反応雰囲気は、通常、窒素、アルゴン等の不活性ガス雰囲気下とする。反応圧力は、通常、ゲージ圧で-0.05MPaから0.3MPaである。反応時間は、通常1時間以上であり、また、一方で、通常10時間以下、好ましくは8時間以下である。
The conditions of temperature, time, pressure, etc. in the esterification reaction and transesterification reaction can be within the ranges of conventionally known polyester resin manufacturing methods. The reaction temperature is usually 100°C or higher, and preferably 120°C or higher. Also, it is usually 300°C or lower, preferably 290°C or lower, and more preferably 280°C or lower. By keeping the temperature within these ranges, the reaction can proceed efficiently. The reaction atmosphere is usually an inert gas atmosphere such as nitrogen or argon. The reaction pressure is usually -0.05 MPa to 0.3 MPa in gauge pressure. The reaction time is usually 1 hour or more, and on the other hand, it is usually 10 hours or less, preferably 8 hours or less.
重縮合反応における温度、時間、圧力等の条件は、従来公知のポリエステル製造法の範囲を採用できる。重縮合反応温度は、230℃以上であることが好ましく、より好ましくは235℃以上、さらに好ましくは240℃以上である。また、一方で、300℃以下であることが好ましく、より好ましくは290℃以下、さらに好ましくは280℃以下である。絶対圧力は150Pa以下であることが好ましく、より好ましくは100Pa以下、さらに好ましくは50Pa以下である。反応時間は10時間以下であることが好ましく、より好ましくは7時間以下、さらに好ましくは5時間以下である。この範囲とすることにより、重縮合反応速度が十分確保され、且つ熱分解、着色、副反応等が抑制され、分子量の高いポリエステル樹脂が得られる。
The conditions for the polycondensation reaction, such as temperature, time, and pressure, can be within the ranges of conventionally known polyester manufacturing methods. The polycondensation reaction temperature is preferably 230°C or higher, more preferably 235°C or higher, and even more preferably 240°C or higher. On the other hand, it is preferably 300°C or lower, more preferably 290°C or lower, and even more preferably 280°C or lower. The absolute pressure is preferably 150 Pa or lower, more preferably 100 Pa or lower, and even more preferably 50 Pa or lower. The reaction time is preferably 10 hours or less, more preferably 7 hours or less, and even more preferably 5 hours or less. By setting the reaction time within this range, the polycondensation reaction rate is sufficiently ensured, and thermal decomposition, coloration, side reactions, etc. are suppressed, resulting in a polyester resin with a high molecular weight.
これらいずれの方式においても、エステル化反応あるいはエステル交換反応は、1段階で行ってもよいし、また多段階に分けて行ってもよい。重縮合反応では、1段階で行ってもよいし、また多段階に分けて行ってもよい。
In any of these methods, the esterification reaction or transesterification reaction may be carried out in one step or in multiple steps. The polycondensation reaction may be carried out in one step or in multiple steps.
本発明のポリエステル樹脂を製造する装置は、バッチ式でも連続式であってもよい。
The apparatus for producing the polyester resin of the present invention may be of either a batch type or a continuous type.
本発明のポリエステル樹脂の製造方法としては、重縮合反応により得られた反応物の溶融組成物に、剪断応力を付与する工程を有することができる。
The method for producing the polyester resin of the present invention can include a step of applying shear stress to the molten composition of the reaction product obtained by the polycondensation reaction.
剪断応力を付与する工程としては、例えば、フラン骨格を有する多価カルボン酸を含む多価カルボン酸成分と、エチレングリコールを含む多価アルコール成分との重縮合反応により得られた反応物を、剪断応力を付与する装置に供給し、溶融組成物に剪断応力を付与させる方法が挙げられる。
The process of applying shear stress may, for example, be a method in which a reaction product obtained by a polycondensation reaction between a polycarboxylic acid component containing a polycarboxylic acid having a furan skeleton and a polyhydric alcohol component containing ethylene glycol is supplied to a device that applies shear stress, and shear stress is applied to the molten composition.
剪断応力を付与する装置としては、二軸押出機やギアポンプなどの樹脂混練装置、ダイスなどの通過装置、ヒートプレスやロールプレスといった圧縮装置などを使用することができるが、二軸押出機を使用することが好ましい。
As a device for applying shear stress, a twin-screw extruder, a resin kneading device such as a gear pump, a passing device such as a die, a compression device such as a heat press or a roll press, etc. can be used, but it is preferable to use a twin-screw extruder.
前記剪断応力を付与する工程において、0.15MPa以上の剪断応力を付与することが好ましい。より好ましくは0.25MPa以上であり、更に好ましくは0.35MPa以上であり、特に好ましくは0.45MPa以上である。剪断応力がこれ以上であると、樹脂に十分な剪断応力を付与でき、結晶形成できるように分子が配向しやすくなり、再溶融後も高い結晶化速度を保持することができると考えられる。
In the step of applying the shear stress, it is preferable to apply a shear stress of 0.15 MPa or more. More preferably, it is 0.25 MPa or more, even more preferably, it is 0.35 MPa or more, and particularly preferably, it is 0.45 MPa or more. If the shear stress is more than this, it is believed that a sufficient shear stress can be applied to the resin, the molecules become more likely to be oriented so that crystals can be formed, and a high crystallization rate can be maintained even after remelting.
ここで、剪断応力τとは、剪断速度γ、溶融粘度μとすると、下記式(1)
τ=μγ 式(1)
で表される。 Here, the shear stress τ is expressed by the following formula (1) where γ is the shear rate and μ is the melt viscosity.
τ=μγ Formula (1)
It is expressed as:
τ=μγ 式(1)
で表される。 Here, the shear stress τ is expressed by the following formula (1) where γ is the shear rate and μ is the melt viscosity.
τ=μγ Formula (1)
It is expressed as:
例えば、二軸押出機の場合、スクリュー外径D、スクリュー回転数N、チップクリアランスhとすると、剪断速度γは、下記式(2)
γ=πDN/h 式(2)
で表される。 For example, in the case of a twin-screw extruder, when the screw outer diameter is D, the screw rotation speed is N, and the tip clearance is h, the shear rate γ is calculated by the following formula (2):
γ=πDN/h Formula (2)
It is expressed as:
γ=πDN/h 式(2)
で表される。 For example, in the case of a twin-screw extruder, when the screw outer diameter is D, the screw rotation speed is N, and the tip clearance is h, the shear rate γ is calculated by the following formula (2):
γ=πDN/h Formula (2)
It is expressed as:
好適な実施の態様において、剪断応力を付与する際の組成物の溶融粘度は、300~3000Pa・sであることが好ましく、600~2000Pa・sにあることがより好ましく、押出温度は、180℃以上であることが好ましく、190℃以上であることがより好ましい。剪断速度は1500sec-1以下であることが好ましく、1000sec-1以下であることがより好ましく、上記剪断速度で混練し、ポリエステル樹脂を押出すことが好ましい。
In a preferred embodiment, the melt viscosity of the composition when the shear stress is applied is preferably 300 to 3000 Pa·s, more preferably 600 to 2000 Pa·s, the extrusion temperature is preferably 180° C. or higher, more preferably 190° C. or higher, the shear rate is preferably 1500 sec −1 or lower, more preferably 1000 sec −1 or lower, and it is preferable to knead and extrude the polyester resin at the above shear rate.
本発明のポリエステル樹脂の製造方法において、重縮合反応工程で得られた反応物の溶融組成物に剪断応力を付与する工程を有することで、分子が配向しやすくなる。また、配向された分子は固定され、再溶融後も高い結晶化速度を保持することができると考えられる。そのため、溶融成形加工時の成形体の生産性を向上できる。
In the method for producing the polyester resin of the present invention, the molecules are more easily oriented by including a step of applying shear stress to the molten composition of the reaction product obtained in the polycondensation reaction step. In addition, it is believed that the oriented molecules are fixed and can maintain a high crystallization rate even after remelting. This can improve the productivity of molded bodies during melt molding processing.
本発明のポリエステル樹脂の製造方法において、剪断応力を付与する装置に重縮合反応工程で得られた反応物を供給する方法は、例えば、重合装置と剪断応力を付与する装置とを直接接続してもよい。この場合、重縮合反応工程で得られた反応物を溶融状態のまま移送し、剪断応力を付与する装置に反応物を供給でき、連続的に製造することができる。また、重合装置から一度チップ状態で排出した後、剪断応力を付与する装置に供給してもよい。生産効率の観点から重合装置と剪断応力を付与する装置とを直接接続することが好ましい。
In the method for producing polyester resin of the present invention, the reactants obtained in the polycondensation reaction process may be supplied to the device that applies shear stress by, for example, directly connecting the polymerization device and the device that applies shear stress. In this case, the reactants obtained in the polycondensation reaction process can be transported in a molten state and supplied to the device that applies shear stress, allowing continuous production. Alternatively, the reactants may be discharged once in chip form from the polymerization device and then supplied to the device that applies shear stress. From the viewpoint of production efficiency, it is preferable to directly connect the polymerization device and the device that applies shear stress.
前記剪断応力を付与する工程を含む製造工程で得られたポリエステル樹脂は、結晶化速度が速く、分子が配向した状態を保持できるため、溶融後も結晶化を容易に促進することができる。そのため、射出成型工程や溶融製膜工程といった溶融成型加工で、十分結晶化度を高めることができるので、優れた溶融成形時の操業安定性、機械的強度の高い成型体を得ることができる。
The polyester resin obtained in the manufacturing process that includes the step of applying shear stress has a high crystallization rate and can maintain an oriented molecular state, so crystallization can be easily promoted even after melting. Therefore, the degree of crystallization can be sufficiently increased in melt molding processes such as injection molding and melt film forming, and molded products with excellent operational stability during melt molding and high mechanical strength can be obtained.
本発明におけるポリエステル樹脂ペレットの製造方法は、従来公知のペレット製造法を採用することができる。例えば、上記剪断応力を付与する工程で得られたポリエステル樹脂を装置からストランド状に吐出し、水などで冷却しながらカッターによって切断すればよい。
The polyester resin pellets of the present invention can be produced by a conventional pellet production method. For example, the polyester resin obtained in the shear stress application step can be discharged from the device in the form of strands, which can then be cut by a cutter while being cooled with water or the like.
剪断応力を付与する工程で得られたポリエステル樹脂をさらに必要に応じて、分子量を増加させる為に固相重合法で追加重合してもよい。この場合、重縮合反応工程後のポリエステル樹脂の分子量を更に増加させることができる。
If necessary, the polyester resin obtained in the shear stress application process may be polymerized further by solid-phase polymerization to increase the molecular weight. In this case, the molecular weight of the polyester resin after the polycondensation reaction process can be further increased.
前記固相重合の方法は特に限定されないが、例えば、上述の剪断応力を付与する工程で得られたポリエステル樹脂、または上述のポリエステル樹脂ペレットの製造方法で得られたポリエステル樹脂ペレットを、不活性ガス雰囲気下又は減圧下において加熱する方法が挙げられる。反応は、ポリエステル樹脂のペレットや粉末を静置した状態で行っても、撹拌状態で行ってもよい。撹拌する場合は、反応容器に撹拌翼を設置して行っても、反応容器を動かすことにより撹拌してもよい。
The method of the solid-phase polymerization is not particularly limited, but examples include a method of heating the polyester resin obtained in the above-mentioned step of applying shear stress, or the polyester resin pellets obtained in the above-mentioned method of manufacturing polyester resin pellets, in an inert gas atmosphere or under reduced pressure. The reaction may be carried out with the polyester resin pellets or powder left to stand, or with stirring. When stirring, stirring may be carried out by installing a stirring blade in the reaction vessel, or by moving the reaction vessel.
固相重合の反応温度は、融点以下の温度で行うことが好ましい。反応温度は、180℃以上が好ましく、190℃以上がさらに好ましい。また、一方で、260℃以下が好ましく、250℃以下がさらに好ましい。加熱時間は1時間以上とすることが好ましく、さらに好ましくは3時間以上である。また、一方で、着色が生じ難いことから、50時間以下とすることが好ましく、40時間以下とすることがより好ましく、30時間以下とすることがさらに好ましい。
The solid-phase polymerization reaction temperature is preferably below the melting point. The reaction temperature is preferably 180°C or higher, and more preferably 190°C or higher. On the other hand, it is preferably 260°C or lower, and more preferably 250°C or lower. The heating time is preferably 1 hour or longer, and more preferably 3 hours or longer. On the other hand, since discoloration is less likely to occur, it is preferably 50 hours or shorter, more preferably 40 hours or shorter, and even more preferably 30 hours or shorter.
前記固相重合工程により、本発明のポリエステル樹脂の分子量を増加させることが可能であり、強度の高い成形品を取得することができる。
The solid-phase polymerization process makes it possible to increase the molecular weight of the polyester resin of the present invention, resulting in the production of molded products with high strength.
示差走査熱量計(DSC)による冷結晶化ピーク測定と融解熱量測定について説明する。
一般に、DSCは試料及び基準物質で構成される試料部の温度を、一定に変化させ、その試料と基準物質の温度差を測定する。そのとき試料の融解、ガラス転移、結晶化、硬化などの転移他、熱履歴を解析することで、比熱、純度など種々の測定が可能である。
DSC測定において、1st昇温では、室温(例えば20℃)から徐々に温度を上昇させていくと、ガラス転移温度になりベースラインのシフトが起きる。さらに温度を上げるとポリマーの結晶化に由来する発熱ピークである冷結晶化ピークが得られる。一般的にポリマーの結晶化挙動は冷結晶化ピーク温度や発熱量(冷結晶化熱量)で評価するため、これらがポリマー結晶化速度の指標となる。特に1st昇温時にはポリマーへの前処理や熱履歴といった製造プロセスの影響を含んだ結晶化速度が得られる。さらに温度を上昇させるとポリマーの融解が始まり、吸熱が起きる。融解ピーク温度を融点とし、融点以上まで温度を上げて完全に溶融させた際に得られる吸熱量がポリマーの融解熱量を示す。冷結晶化熱量は昇温時に新たに生成した結晶量であり、融解熱量と冷結晶化熱量の差分が1st昇温開始前にポリマーが保有していた結晶量に相当する。例えば、冷結晶化熱量が10J/g、融解熱量が30J/gを示した場合は、差分の20J/g分の結晶をもったポリマーをDSC測定に供したことが分かる。その後、今度は室温まで温度を下げて、冷却していく。この降温過程では降温速度が遅いと溶融していたポリマーが結晶化を始め、発熱し、再結晶化が確認できる。このときに高分子ポリマーの本来の配列の結晶が得られる。一方、降温速度が速いと再結晶化を経ずにアモルファスなポリマーとすることができる。
2nd昇温では、1st昇温により溶融された状態から急冷して得たアモルファスなポリマーを再度、徐々に室温から融点以上まで昇温させる。その昇温過程で、再び冷結晶化ピークが得られる。ここで得られる冷結晶化の発熱量は、一般的にはポリマーの前処理や熱履歴といった製造プロセスの影響をキャンセルしたポリマー本来の結晶化速度となる。つまり、ポリマー本来の結晶化速度が速いとは2nd昇温における冷結晶化ピーク温度が低いことであり、その冷結晶化熱量が高いことである。さらに温度を上昇させると、ポリマーは再度、融解する。 The cold crystallization peak measurement and the calorimetry of fusion by differential scanning calorimetry (DSC) are described below.
In general, DSC changes the temperature of the sample section, which consists of a sample and a reference material, at a constant rate and measures the temperature difference between the sample and the reference material. By analyzing the sample's melting, glass transition, crystallization, hardening, and other thermal history, various measurements such as specific heat and purity are possible.
In the first heating in DSC measurement, when the temperature is gradually increased from room temperature (e.g., 20°C), the glass transition temperature is reached and a shift in the baseline occurs. If the temperature is further increased, a cold crystallization peak, which is an exothermic peak resulting from the crystallization of the polymer, is obtained. Generally, the crystallization behavior of a polymer is evaluated by the cold crystallization peak temperature and the amount of heat generated (heat of cold crystallization), which are indicators of the polymer crystallization rate. In particular, during the first heating, the crystallization rate is obtained that includes the influence of the manufacturing process, such as pretreatment and thermal history of the polymer. If the temperature is further increased, the polymer begins to melt and heat is absorbed. The melting peak temperature is the melting point, and the amount of heat absorbed when the temperature is increased to above the melting point and the polymer is completely melted indicates the heat of fusion of the polymer. The heat of cold crystallization is the amount of crystals newly generated during heating, and the difference between the heat of fusion and the heat of cold crystallization corresponds to the amount of crystals that the polymer possessed before the start of the first heating. For example, if the heat of cold crystallization is 10 J/g and the heat of fusion is 30 J/g, it is understood that a polymer with crystals of the difference of 20 J/g was subjected to DSC measurement. The temperature is then lowered to room temperature and cooled. If the cooling rate is slow during this cooling process, the molten polymer will begin to crystallize, generate heat, and recrystallization can be confirmed. At this time, crystals with the original arrangement of the polymer are obtained. On the other hand, if the cooling rate is fast, an amorphous polymer can be obtained without recrystallization.
In the second heating step, the amorphous polymer obtained by quenching from the molten state in the first heating step is gradually heated again from room temperature to above the melting point. In the heating process, a cold crystallization peak is obtained again. The amount of heat generated by the cold crystallization obtained here is generally the inherent crystallization rate of the polymer, which cancels the effects of the manufacturing process, such as the pretreatment and thermal history of the polymer. In other words, a high inherent crystallization rate of the polymer means that the cold crystallization peak temperature in the second heating step is low, and the amount of heat generated by the cold crystallization is high. If the temperature is further increased, the polymer will melt again.
一般に、DSCは試料及び基準物質で構成される試料部の温度を、一定に変化させ、その試料と基準物質の温度差を測定する。そのとき試料の融解、ガラス転移、結晶化、硬化などの転移他、熱履歴を解析することで、比熱、純度など種々の測定が可能である。
DSC測定において、1st昇温では、室温(例えば20℃)から徐々に温度を上昇させていくと、ガラス転移温度になりベースラインのシフトが起きる。さらに温度を上げるとポリマーの結晶化に由来する発熱ピークである冷結晶化ピークが得られる。一般的にポリマーの結晶化挙動は冷結晶化ピーク温度や発熱量(冷結晶化熱量)で評価するため、これらがポリマー結晶化速度の指標となる。特に1st昇温時にはポリマーへの前処理や熱履歴といった製造プロセスの影響を含んだ結晶化速度が得られる。さらに温度を上昇させるとポリマーの融解が始まり、吸熱が起きる。融解ピーク温度を融点とし、融点以上まで温度を上げて完全に溶融させた際に得られる吸熱量がポリマーの融解熱量を示す。冷結晶化熱量は昇温時に新たに生成した結晶量であり、融解熱量と冷結晶化熱量の差分が1st昇温開始前にポリマーが保有していた結晶量に相当する。例えば、冷結晶化熱量が10J/g、融解熱量が30J/gを示した場合は、差分の20J/g分の結晶をもったポリマーをDSC測定に供したことが分かる。その後、今度は室温まで温度を下げて、冷却していく。この降温過程では降温速度が遅いと溶融していたポリマーが結晶化を始め、発熱し、再結晶化が確認できる。このときに高分子ポリマーの本来の配列の結晶が得られる。一方、降温速度が速いと再結晶化を経ずにアモルファスなポリマーとすることができる。
2nd昇温では、1st昇温により溶融された状態から急冷して得たアモルファスなポリマーを再度、徐々に室温から融点以上まで昇温させる。その昇温過程で、再び冷結晶化ピークが得られる。ここで得られる冷結晶化の発熱量は、一般的にはポリマーの前処理や熱履歴といった製造プロセスの影響をキャンセルしたポリマー本来の結晶化速度となる。つまり、ポリマー本来の結晶化速度が速いとは2nd昇温における冷結晶化ピーク温度が低いことであり、その冷結晶化熱量が高いことである。さらに温度を上昇させると、ポリマーは再度、融解する。 The cold crystallization peak measurement and the calorimetry of fusion by differential scanning calorimetry (DSC) are described below.
In general, DSC changes the temperature of the sample section, which consists of a sample and a reference material, at a constant rate and measures the temperature difference between the sample and the reference material. By analyzing the sample's melting, glass transition, crystallization, hardening, and other thermal history, various measurements such as specific heat and purity are possible.
In the first heating in DSC measurement, when the temperature is gradually increased from room temperature (e.g., 20°C), the glass transition temperature is reached and a shift in the baseline occurs. If the temperature is further increased, a cold crystallization peak, which is an exothermic peak resulting from the crystallization of the polymer, is obtained. Generally, the crystallization behavior of a polymer is evaluated by the cold crystallization peak temperature and the amount of heat generated (heat of cold crystallization), which are indicators of the polymer crystallization rate. In particular, during the first heating, the crystallization rate is obtained that includes the influence of the manufacturing process, such as pretreatment and thermal history of the polymer. If the temperature is further increased, the polymer begins to melt and heat is absorbed. The melting peak temperature is the melting point, and the amount of heat absorbed when the temperature is increased to above the melting point and the polymer is completely melted indicates the heat of fusion of the polymer. The heat of cold crystallization is the amount of crystals newly generated during heating, and the difference between the heat of fusion and the heat of cold crystallization corresponds to the amount of crystals that the polymer possessed before the start of the first heating. For example, if the heat of cold crystallization is 10 J/g and the heat of fusion is 30 J/g, it is understood that a polymer with crystals of the difference of 20 J/g was subjected to DSC measurement. The temperature is then lowered to room temperature and cooled. If the cooling rate is slow during this cooling process, the molten polymer will begin to crystallize, generate heat, and recrystallization can be confirmed. At this time, crystals with the original arrangement of the polymer are obtained. On the other hand, if the cooling rate is fast, an amorphous polymer can be obtained without recrystallization.
In the second heating step, the amorphous polymer obtained by quenching from the molten state in the first heating step is gradually heated again from room temperature to above the melting point. In the heating process, a cold crystallization peak is obtained again. The amount of heat generated by the cold crystallization obtained here is generally the inherent crystallization rate of the polymer, which cancels the effects of the manufacturing process, such as the pretreatment and thermal history of the polymer. In other words, a high inherent crystallization rate of the polymer means that the cold crystallization peak temperature in the second heating step is low, and the amount of heat generated by the cold crystallization is high. If the temperature is further increased, the polymer will melt again.
本発明のポリエステル樹脂の冷結晶化ピークは、1st昇温により溶融した後、急冷してアモルファス化し、次いで行う昇温速度2℃/分の示差走査熱量測定(DSC)によって測定される、2nd昇温時における冷結晶化ピークをいう。2nd昇温時の冷結晶化ピーク温度は145~185℃の範囲内にある。好ましくは、150~183℃であり、より好ましくは、155℃~180℃である。本発明のポリエステル樹脂における2nd昇温時の冷結晶化の発熱量は5J/g以上である。好ましくは8J/g以上であり、より好ましくは10J/g以上であり、更に好ましくは15J/g以上である。この場合、本発明のポリエステル樹脂は、再溶融工程を経ても高い結晶化速度を示しており、ポリエステル樹脂の溶融成形加工時における結晶化速度を向上させることで、成形体の生産性を向上できる。
The cold crystallization peak of the polyester resin of the present invention refers to the cold crystallization peak during the second heating, which is measured by melting the polyester resin during the first heating step, then amorphizing it by rapid cooling, and then performing differential scanning calorimetry (DSC) at a heating rate of 2°C/min. The cold crystallization peak temperature during the second heating step is in the range of 145 to 185°C. It is preferably 150 to 183°C, and more preferably 155°C to 180°C. The heat generated by cold crystallization during the second heating step in the polyester resin of the present invention is 5 J/g or more. It is preferably 8 J/g or more, more preferably 10 J/g or more, and even more preferably 15 J/g or more. In this case, the polyester resin of the present invention exhibits a high crystallization rate even after the remelting process, and by improving the crystallization rate during melt molding of the polyester resin, the productivity of the molded body can be improved.
本発明のポリエステル樹脂の、昇温速度10℃/分の示差走査熱量測定(DSC)によって測定される、好ましい1st昇温時の融解熱量は、特に限定されないが、6J/g以上であり、より好ましくは8J/g以上である。1st昇温時の融解熱量の上限は特に限定されず、例えば40J/g以下であり、30J/g以下であることが好ましい。昇温速度2℃/分の示差走査熱量測定(DSC)によって測定される、好ましい2nd昇温時の融解熱量は、10J/g以上であり、より好ましくは15J/g以上、さらに好ましくは20J/g以上である。2nd昇温時の融解熱量の上限は特に限定されず、例えば60J/g以下であり、45J/g以下であることが好ましい。
The heat of fusion of the polyester resin of the present invention during the first heating step, measured by differential scanning calorimetry (DSC) at a heating rate of 10°C/min, is not particularly limited, but is preferably 6 J/g or more, more preferably 8 J/g or more. The upper limit of the heat of fusion during the first heating step is not particularly limited, but is, for example, 40 J/g or less, and preferably 30 J/g or less. The heat of fusion during the second heating step, measured by differential scanning calorimetry (DSC) at a heating rate of 2°C/min, is preferably 10 J/g or more, more preferably 15 J/g or more, and even more preferably 20 J/g or more. The upper limit of the heat of fusion during the second heating step is not particularly limited, but is, for example, 60 J/g or less, and preferably 45 J/g or less.
本発明のポリエステル樹脂は、前記ポリエステル樹脂から得られる成形体の機械的強度を高める観点から、融点が200℃以上であることが好ましく、より好ましくは205℃以上である。また、固相重合工程を有する場合において、処理温度を高く設定できるため、生産性を向上させることができる。融点の上限は特に限定されず、例えば240℃以下であり、230℃以下であることが好ましい。
The polyester resin of the present invention preferably has a melting point of 200°C or higher, more preferably 205°C or higher, from the viewpoint of increasing the mechanical strength of the molded body obtained from the polyester resin. Furthermore, in the case of a solid-phase polymerization process, the processing temperature can be set high, so that productivity can be improved. There is no particular upper limit to the melting point, and it is, for example, 240°C or lower, and preferably 230°C or lower.
本発明のポリエステル樹脂の還元粘度の下限は、0.50dl/g以上である。好ましくは0.55dl/g以上であり、更に好ましくは0.60dl/g以上である。また、還元粘度の上限は、好ましくは1.20dl/g以下であり、より好ましくは1.10dl/g以下であり、更に好ましくは1.00dl/g以下であり、特に好ましくは0.90dl/g以下であり、最も好ましくは0.80dl/g以下である。還元粘度が上記以上であり、十分な結晶化速度を有することで、本発明のポリエステル樹脂は、強度が高く熱安定性に優れ、生産性を向上させることができる。
The lower limit of the reduced viscosity of the polyester resin of the present invention is 0.50 dl/g or more. It is preferably 0.55 dl/g or more, and more preferably 0.60 dl/g or more. The upper limit of the reduced viscosity is preferably 1.20 dl/g or less, more preferably 1.10 dl/g or less, even more preferably 1.00 dl/g or less, particularly preferably 0.90 dl/g or less, and most preferably 0.80 dl/g or less. By having a reduced viscosity of the above or more and a sufficient crystallization rate, the polyester resin of the present invention has high strength and excellent thermal stability, and can improve productivity.
本発明のポリエステル樹脂は、熱分解試験前後の還元粘度の変化量が小さいほうが好ましい。すなわち、280℃で1時間加熱処理した後の還元粘度の変化量が0.15dl/g以下であることが好ましく、0.14dl/g以下であることがより好ましく、0.13dl/g以下であることがさらに好ましい。還元粘度の変化量が上記範囲を上回る場合、樹脂の着色や熱劣化を引き起こす可能性がある。還元粘度の変化量の下限は特に限定されず、例えば0.03dl/g以上であり、0.05dl/g以上であることが好ましい。
The polyester resin of the present invention preferably has a small change in reduced viscosity before and after the thermal decomposition test. That is, the change in reduced viscosity after heat treatment at 280°C for 1 hour is preferably 0.15 dl/g or less, more preferably 0.14 dl/g or less, and even more preferably 0.13 dl/g or less. If the change in reduced viscosity exceeds the above range, discoloration or thermal degradation of the resin may occur. There is no particular lower limit to the change in reduced viscosity, and it is, for example, 0.03 dl/g or more, and preferably 0.05 dl/g or more.
本発明のポリエステル樹脂における、重縮合反応工程後の酸価は、100eq/ton以下であることが好ましく、50eq/ton以下であることがより好ましく、25eq/ton以下であることがさらに好ましい。この場合、後の工程におけるポリエステル樹脂の酸価が高くなりすぎることを防ぐことが可能である。その結果、ポリエステル樹脂の熱安定性が悪化することを防ぎ、加工時のポリエステル樹脂の着色や分子量低下を防ぎ、強度の高い成形体を取得することができる。重縮合反応工程後の酸価の下限は特に限定されず、例えば3eq/ton以上であり、7eq/ton以上であることが好ましい。
In the polyester resin of the present invention, the acid value after the polycondensation reaction process is preferably 100 eq/ton or less, more preferably 50 eq/ton or less, and even more preferably 25 eq/ton or less. In this case, it is possible to prevent the acid value of the polyester resin in the subsequent process from becoming too high. As a result, it is possible to prevent the deterioration of the thermal stability of the polyester resin, prevent discoloration of the polyester resin during processing and a decrease in molecular weight, and obtain a molded product with high strength. There is no particular lower limit for the acid value after the polycondensation reaction process, and it is, for example, 3 eq/ton or more, and preferably 7 eq/ton or more.
本発明の共重合ポリエステル樹脂には、各種の酸化防止剤を適宜含有させることができる。ポリエステル樹脂に配合する方法は、特に限定されず、例えば、ポリエステル樹脂を製造する原料仕込み時での添加、ポリエステル樹脂の製造工程中での添加、製造後のポリエステル樹脂とのドライブレンド等が挙げられる。酸化防止剤としては、フェノール系酸化防止剤、リン系酸化防止剤、アミン系酸化防止剤、硫黄系酸化防止剤、ニトロ化合物系酸化防止剤、無機化合物系酸化防止剤など公知のものが例示できる。比較的耐熱性の高いフェノール系酸化防止剤が好ましく、得られるポリエステル樹脂100質量部に対して0.05質量部以上0.5質量部以下含有することが好ましい。
The copolymer polyester resin of the present invention can contain various antioxidants as appropriate. The method of blending with the polyester resin is not particularly limited, and examples include adding the antioxidant when the raw materials for producing the polyester resin are charged, adding the antioxidant during the polyester resin production process, and dry blending with the polyester resin after production. Examples of antioxidants include known antioxidants such as phenol-based antioxidants, phosphorus-based antioxidants, amine-based antioxidants, sulfur-based antioxidants, nitro compound-based antioxidants, and inorganic compound-based antioxidants. Phenol-based antioxidants, which have relatively high heat resistance, are preferred, and it is preferable to include 0.05 to 0.5 parts by mass per 100 parts by mass of the resulting polyester resin.
本発明のポリエステル樹脂には、その特性が損なわれない範囲において、酸化防止剤の他に、熱安定剤、加水分解防止剤、難燃剤、帯電防止剤、離型剤、紫外線吸収剤等の各種の添加剤を添加してもよい。これらの添加剤は、ポリエステル樹脂を製造する原料仕込み時に添加してもよいし、ポリエステル樹脂の製造工程中に添加してもよいし、製造後のポリエステル樹脂とドライブレンドしてもよい。
In addition to the antioxidant, various additives such as heat stabilizers, hydrolysis inhibitors, flame retardants, antistatic agents, release agents, and ultraviolet absorbers may be added to the polyester resin of the present invention, so long as the properties of the resin are not impaired. These additives may be added when the raw materials used to manufacture the polyester resin are charged, or may be added during the manufacturing process of the polyester resin, or may be dry-blended with the polyester resin after manufacture.
本発明のポリエステル樹脂は、容易に取り扱いできる形状として、ポリエステル樹脂ペレットを形成することが好ましい。これを使用して成形体を形成することができる。本発明のポリエステル樹脂ペレットは高い結晶化速度を有するため、樹脂のブロッキングを防ぐことができ、優れた溶融成形時の操業安定性、成形機への供給安定性を得ることができる。
The polyester resin of the present invention is preferably formed into polyester resin pellets, which are easily handled. These can be used to form molded articles. The polyester resin pellets of the present invention have a high crystallization rate, which makes it possible to prevent resin blocking, and to obtain excellent operational stability during melt molding and stable supply to the molding machine.
本発明のポリエステル樹脂は、公知の成形方法により、ボトル、フィルム、繊維などに成形することが可能である。
The polyester resin of the present invention can be molded into bottles, films, fibers, etc. using known molding methods.
本願は、2023年2月20日に出願された日本国特許出願第2023-024348号に基づく優先権の利益を主張するものである。2023年2月20日に出願された日本国特許出願第2023-024348号の明細書の全内容が、本願に参考のため援用される。
This application claims the benefit of priority based on Japanese Patent Application No. 2023-024348, filed on February 20, 2023. The entire contents of the specification of Japanese Patent Application No. 2023-024348, filed on February 20, 2023, are incorporated by reference into this application.
以下、本発明を実施例により説明するが、本発明はもとよりこれらの実施例に限定されるものではない。
また、各物性は、下記の方法により測定した。 The present invention will be described below with reference to examples, but the present invention is not limited to these examples.
Moreover, each physical property was measured by the following methods.
また、各物性は、下記の方法により測定した。 The present invention will be described below with reference to examples, but the present invention is not limited to these examples.
Moreover, each physical property was measured by the following methods.
溶融粘度(μ)測定;
剪断応力を付与する工程における溶融粘度を以下の方法にて測定した。
東洋精機製キャピログラフ1Bにて、φ1mm、キャピラリー長10mm、炉体径9.55mmのキャピラリーダイを用い、所定温度に保ったシリンダ内に、乾燥した樹脂サンプル(重縮合後のポリエステル樹脂)を充填し、約1分間溶融した後、所定の剪断速度における溶融粘度(Pa・s)を測定した。 Melt viscosity (μ) measurement;
The melt viscosity in the step of applying a shear stress was measured by the following method.
A capillary die having a diameter of 1 mm, a capillary length of 10 mm, and a furnace diameter of 9.55 mm was used in a Toyo Seiki Co., Ltd. Capillograph 1B. A dried resin sample (polyester resin after polycondensation) was filled into a cylinder kept at a predetermined temperature, and after melting for about 1 minute, the melt viscosity (Pa s) at a predetermined shear rate was measured.
剪断応力を付与する工程における溶融粘度を以下の方法にて測定した。
東洋精機製キャピログラフ1Bにて、φ1mm、キャピラリー長10mm、炉体径9.55mmのキャピラリーダイを用い、所定温度に保ったシリンダ内に、乾燥した樹脂サンプル(重縮合後のポリエステル樹脂)を充填し、約1分間溶融した後、所定の剪断速度における溶融粘度(Pa・s)を測定した。 Melt viscosity (μ) measurement;
The melt viscosity in the step of applying a shear stress was measured by the following method.
A capillary die having a diameter of 1 mm, a capillary length of 10 mm, and a furnace diameter of 9.55 mm was used in a Toyo Seiki Co., Ltd. Capillograph 1B. A dried resin sample (polyester resin after polycondensation) was filled into a cylinder kept at a predetermined temperature, and after melting for about 1 minute, the melt viscosity (Pa s) at a predetermined shear rate was measured.
剪断速度γ;
剪断応力を付与する工程において、以下の二軸押出機を使用し、剪断速度γを下記の式3より算出した。
・テクノベル社製KZW15TW-45/60MG-NH(-2200)
・スクリュー外径 ;15.21mm
・クリアランス ;0.22mm
剪断速度γ(sec-1) : γ=πD(N/60)/h (式3)
(D:スクリュー外径(mm)、N:スクリュー回転数(rpm)、h:クリアランス(mm)) shear rate γ;
In the step of applying a shear stress, the following twin-screw extruder was used, and the shear rate γ was calculated from the following formula 3.
・Technovel KZW15TW-45/60MG-NH (-2200)
・Screw outer diameter: 15.21 mm
Clearance: 0.22 mm
Shear rate γ (sec −1 ): γ=πD(N/60)/h (Formula 3)
(D: screw outer diameter (mm), N: screw rotation speed (rpm), h: clearance (mm))
剪断応力を付与する工程において、以下の二軸押出機を使用し、剪断速度γを下記の式3より算出した。
・テクノベル社製KZW15TW-45/60MG-NH(-2200)
・スクリュー外径 ;15.21mm
・クリアランス ;0.22mm
剪断速度γ(sec-1) : γ=πD(N/60)/h (式3)
(D:スクリュー外径(mm)、N:スクリュー回転数(rpm)、h:クリアランス(mm)) shear rate γ;
In the step of applying a shear stress, the following twin-screw extruder was used, and the shear rate γ was calculated from the following formula 3.
・Technovel KZW15TW-45/60MG-NH (-2200)
・Screw outer diameter: 15.21 mm
Clearance: 0.22 mm
Shear rate γ (sec −1 ): γ=πD(N/60)/h (Formula 3)
(D: screw outer diameter (mm), N: screw rotation speed (rpm), h: clearance (mm))
剪断応力(MPa);
剪断応力をτとし、前述の溶融粘度μと前述の剪断速度γを用いて下記の式4より算出した。
剪断応力τ(MPa)=μγ (式4) Shear stress (MPa);
The shear stress was calculated from the following formula 4 using τ, the melt viscosity μ, and the shear rate γ.
Shear stress τ (MPa) = μγ (Equation 4)
剪断応力をτとし、前述の溶融粘度μと前述の剪断速度γを用いて下記の式4より算出した。
剪断応力τ(MPa)=μγ (式4) Shear stress (MPa);
The shear stress was calculated from the following formula 4 using τ, the melt viscosity μ, and the shear rate γ.
Shear stress τ (MPa) = μγ (Equation 4)
還元粘度測定;
ポリエステル樹脂0.10gを、フェノール/1,1,2,2-テトラクロロエタン(6/4(質量比))混合溶媒を使用して溶解し、温度30℃でウベローデ粘度計を用いて測定し、dl/gで表した。 Reduced viscosity measurement;
0.10 g of the polyester resin was dissolved in a mixed solvent of phenol/1,1,2,2-tetrachloroethane (6/4 (mass ratio)), and the viscosity was measured at 30° C. using an Ubbelohde viscometer and expressed in dl/g.
ポリエステル樹脂0.10gを、フェノール/1,1,2,2-テトラクロロエタン(6/4(質量比))混合溶媒を使用して溶解し、温度30℃でウベローデ粘度計を用いて測定し、dl/gで表した。 Reduced viscosity measurement;
0.10 g of the polyester resin was dissolved in a mixed solvent of phenol/1,1,2,2-tetrachloroethane (6/4 (mass ratio)), and the viscosity was measured at 30° C. using an Ubbelohde viscometer and expressed in dl/g.
熱分解試験前後の還元粘度変化量測定;
ポリエステル樹脂5gをガラス容器に入れ、真空乾燥140℃、16時間乾燥し、水分率150ppm以下の乾燥ポリエステル樹脂を作製した。その後、ガラス容器内に窒素を充填し、280℃の塩浴中で1時間加熱処理を行い、上記と同様の方法で処理後の還元粘度を測定し、以下の式から熱分解試験前後の還元粘度変化量を算出した。
(熱分解試験前後の還元粘度変化量)=(加熱処理前の還元粘度)-(加熱処理後の還元粘度) (式5) Measurement of the change in reduced viscosity before and after thermal decomposition test;
5 g of the polyester resin was placed in a glass container and dried in a vacuum at 140° C. for 16 hours to produce a dried polyester resin with a moisture content of 150 ppm or less. The glass container was then filled with nitrogen and heat-treated in a salt bath at 280° C. for 1 hour. The reduced viscosity after the treatment was measured in the same manner as above, and the amount of change in reduced viscosity before and after the thermal decomposition test was calculated using the following formula.
(Change in reduced viscosity before and after thermal decomposition test)=(reduced viscosity before heat treatment)−(reduced viscosity after heat treatment) (Equation 5)
ポリエステル樹脂5gをガラス容器に入れ、真空乾燥140℃、16時間乾燥し、水分率150ppm以下の乾燥ポリエステル樹脂を作製した。その後、ガラス容器内に窒素を充填し、280℃の塩浴中で1時間加熱処理を行い、上記と同様の方法で処理後の還元粘度を測定し、以下の式から熱分解試験前後の還元粘度変化量を算出した。
(熱分解試験前後の還元粘度変化量)=(加熱処理前の還元粘度)-(加熱処理後の還元粘度) (式5) Measurement of the change in reduced viscosity before and after thermal decomposition test;
5 g of the polyester resin was placed in a glass container and dried in a vacuum at 140° C. for 16 hours to produce a dried polyester resin with a moisture content of 150 ppm or less. The glass container was then filled with nitrogen and heat-treated in a salt bath at 280° C. for 1 hour. The reduced viscosity after the treatment was measured in the same manner as above, and the amount of change in reduced viscosity before and after the thermal decomposition test was calculated using the following formula.
(Change in reduced viscosity before and after thermal decomposition test)=(reduced viscosity before heat treatment)−(reduced viscosity after heat treatment) (Equation 5)
ポリエステル樹脂組成;
ポリエステル樹脂20mgをトリフルオロ酢酸/重クロロホルム(15/85(容量比))混合溶媒0.6mlに溶解し、遠心分離を行った。その後、上澄み液を採取し、H-NMR測定を行い、NMRスペクトルからポリエステル樹脂の組成を同定した。
以下の装置、条件でH-HMR測定を行った。
・装置:フーリエ変換核磁気共鳴装置(BRUKER製、AVANCE NEO600)
・1H共鳴周波数:600.13MHz
・ロック溶媒:重クロロホルム
・フリップ角:30°
・データ取り込み時間:4秒
・遅延時間:1秒
・測定温度:30℃
・積算回数:128回 Polyester resin composition:
20 mg of the polyester resin was dissolved in 0.6 ml of a mixed solvent of trifluoroacetic acid/deuterated chloroform (15/85 (volume ratio)) and centrifuged. The supernatant was then collected and subjected to H-NMR measurement, and the composition of the polyester resin was identified from the NMR spectrum.
H-HMR measurements were carried out using the following equipment and conditions.
Apparatus: Fourier transform nuclear magnetic resonance apparatus (AVANCE NEO600, manufactured by BRUKER)
・1H resonance frequency: 600.13MHz
Lock solvent: deuterated chloroform Flip angle: 30°
Data acquisition time: 4 seconds Delay time: 1 second Measurement temperature: 30°C
・Number of times of accumulation: 128 times
ポリエステル樹脂20mgをトリフルオロ酢酸/重クロロホルム(15/85(容量比))混合溶媒0.6mlに溶解し、遠心分離を行った。その後、上澄み液を採取し、H-NMR測定を行い、NMRスペクトルからポリエステル樹脂の組成を同定した。
以下の装置、条件でH-HMR測定を行った。
・装置:フーリエ変換核磁気共鳴装置(BRUKER製、AVANCE NEO600)
・1H共鳴周波数:600.13MHz
・ロック溶媒:重クロロホルム
・フリップ角:30°
・データ取り込み時間:4秒
・遅延時間:1秒
・測定温度:30℃
・積算回数:128回 Polyester resin composition:
20 mg of the polyester resin was dissolved in 0.6 ml of a mixed solvent of trifluoroacetic acid/deuterated chloroform (15/85 (volume ratio)) and centrifuged. The supernatant was then collected and subjected to H-NMR measurement, and the composition of the polyester resin was identified from the NMR spectrum.
H-HMR measurements were carried out using the following equipment and conditions.
Apparatus: Fourier transform nuclear magnetic resonance apparatus (AVANCE NEO600, manufactured by BRUKER)
・1H resonance frequency: 600.13MHz
Lock solvent: deuterated chloroform Flip angle: 30°
Data acquisition time: 4 seconds Delay time: 1 second Measurement temperature: 30°C
・Number of times of accumulation: 128 times
ポリエステル樹脂中における金属元素含有量;
白金製るつぼにポリエステル樹脂を秤量し、電気コンロでの炭化の後、マッフル炉で550℃、8時間の条件で灰化した。灰化後のサンプルを1.2M塩酸に溶解し、試料溶液とした。調製した試料溶液を下記の条件で測定し、高周波誘導結合プラズマ発光分析法によりポリエステル樹脂中におけるアンチモン元素、アルミニウム元素、チタン元素、ゲルマニウム元素の濃度を求めた。
・装置:SPECTRO社製 CIROS-120
・プラズマ出力:1400W
・プラズマガス:13.0L/min
・補助ガス:2.0L/min
・ネブライザー:クロスフローネブライザー
・チャンバー:サイクロンチャンバー
・測定波長:167.078nm
ポリエステル樹脂中におけるリン元素含有量;
ポリエステル樹脂を硫酸、硝酸、過塩素酸で湿式分解を行った後、アンモニア水で中和した。調整した溶液にモリブデン酸アンモニウムおよび硫酸ヒドラジンを加えた後、紫外可視吸光光度計(島津製作所社製、UV-1700)を用いて、波長830nmでの吸光度を測定した。あらかじめ作製した検量線から、ポリエステル樹脂中のリン元素の濃度を求めた。 Metal element content in polyester resin;
The polyester resin was weighed in a platinum crucible, carbonized on an electric stove, and then incinerated in a muffle furnace at 550°C for 8 hours. The incinerated sample was dissolved in 1.2M hydrochloric acid to prepare a sample solution. The prepared sample solution was measured under the following conditions, and the concentrations of antimony, aluminum, titanium, and germanium in the polyester resin were determined by high-frequency inductively coupled plasma emission spectrometry.
・Apparatus: SPECTRO CIROS-120
Plasma output: 1400W
Plasma gas: 13.0 L / min
Auxiliary gas: 2.0 L/min
Nebulizer: Crossflow nebulizer Chamber: Cyclone chamber Measurement wavelength: 167.078 nm
Phosphorus element content in polyester resin;
The polyester resin was subjected to wet decomposition with sulfuric acid, nitric acid, and perchloric acid, and then neutralized with ammonia water. Ammonium molybdate and hydrazine sulfate were added to the prepared solution, and the absorbance at a wavelength of 830 nm was measured using an ultraviolet-visible absorption spectrophotometer (Shimadzu Corporation, UV-1700). The concentration of phosphorus element in the polyester resin was determined from a calibration curve prepared in advance.
白金製るつぼにポリエステル樹脂を秤量し、電気コンロでの炭化の後、マッフル炉で550℃、8時間の条件で灰化した。灰化後のサンプルを1.2M塩酸に溶解し、試料溶液とした。調製した試料溶液を下記の条件で測定し、高周波誘導結合プラズマ発光分析法によりポリエステル樹脂中におけるアンチモン元素、アルミニウム元素、チタン元素、ゲルマニウム元素の濃度を求めた。
・装置:SPECTRO社製 CIROS-120
・プラズマ出力:1400W
・プラズマガス:13.0L/min
・補助ガス:2.0L/min
・ネブライザー:クロスフローネブライザー
・チャンバー:サイクロンチャンバー
・測定波長:167.078nm
ポリエステル樹脂中におけるリン元素含有量;
ポリエステル樹脂を硫酸、硝酸、過塩素酸で湿式分解を行った後、アンモニア水で中和した。調整した溶液にモリブデン酸アンモニウムおよび硫酸ヒドラジンを加えた後、紫外可視吸光光度計(島津製作所社製、UV-1700)を用いて、波長830nmでの吸光度を測定した。あらかじめ作製した検量線から、ポリエステル樹脂中のリン元素の濃度を求めた。 Metal element content in polyester resin;
The polyester resin was weighed in a platinum crucible, carbonized on an electric stove, and then incinerated in a muffle furnace at 550°C for 8 hours. The incinerated sample was dissolved in 1.2M hydrochloric acid to prepare a sample solution. The prepared sample solution was measured under the following conditions, and the concentrations of antimony, aluminum, titanium, and germanium in the polyester resin were determined by high-frequency inductively coupled plasma emission spectrometry.
・Apparatus: SPECTRO CIROS-120
Plasma output: 1400W
Plasma gas: 13.0 L / min
Auxiliary gas: 2.0 L/min
Nebulizer: Crossflow nebulizer Chamber: Cyclone chamber Measurement wavelength: 167.078 nm
Phosphorus element content in polyester resin;
The polyester resin was subjected to wet decomposition with sulfuric acid, nitric acid, and perchloric acid, and then neutralized with ammonia water. Ammonium molybdate and hydrazine sulfate were added to the prepared solution, and the absorbance at a wavelength of 830 nm was measured using an ultraviolet-visible absorption spectrophotometer (Shimadzu Corporation, UV-1700). The concentration of phosphorus element in the polyester resin was determined from a calibration curve prepared in advance.
酸価;
ポリエステル樹脂20mgを重ヘキサフルオロイソプロパノール/重クロロホルム(1/9(容量比))混合溶媒0.6mlに溶解し、遠心分離を行った。その後、上澄み液を採取し、重ピリジンを10μL添加した後、上記ポリエステル樹脂の組成の同定と同様の方法でH-NMR測定を行い、NMRスペクトルから酸価を求めた。 Acid number;
20 mg of polyester resin was dissolved in 0.6 ml of a mixed solvent of deuterated hexafluoroisopropanol/deuterated chloroform (1/9 (volume ratio)) and centrifuged. The supernatant was then collected and 10 μL of deuterated pyridine was added, followed by H-NMR measurement in the same manner as in identifying the composition of the polyester resin described above, and the acid value was determined from the NMR spectrum.
ポリエステル樹脂20mgを重ヘキサフルオロイソプロパノール/重クロロホルム(1/9(容量比))混合溶媒0.6mlに溶解し、遠心分離を行った。その後、上澄み液を採取し、重ピリジンを10μL添加した後、上記ポリエステル樹脂の組成の同定と同様の方法でH-NMR測定を行い、NMRスペクトルから酸価を求めた。 Acid number;
20 mg of polyester resin was dissolved in 0.6 ml of a mixed solvent of deuterated hexafluoroisopropanol/deuterated chloroform (1/9 (volume ratio)) and centrifuged. The supernatant was then collected and 10 μL of deuterated pyridine was added, followed by H-NMR measurement in the same manner as in identifying the composition of the polyester resin described above, and the acid value was determined from the NMR spectrum.
冷結晶化ピークの温度(℃)、冷結晶化ピークの発熱量(J/g)、融点(℃)、融解熱量(J/g);
日立ハイテクサイエンス株式会社製の示差走査熱量分析計「DSC7000型」にて、ポリエステル樹脂5mgをアルミパンに入れ、蓋を押さえて密封した。次いで、250℃まで10℃/分で昇温し、250℃で3分ホールドすることで、結晶を完全に融解させ、1st昇温時のDSC曲線を得た。その後、250℃から50℃/分で25℃まで降温し、再び250℃まで2℃/分で昇温し、2nd昇温時のDSC曲線を得た。冷結晶化ピークの温度は2nd昇温時のDSC曲線の発熱ピーク温度から、冷結晶化ピークの発熱量は2nd昇温時の結晶化によって生じる発熱曲線と外挿したベースラインの交点から得られる積分値より求めた。融点は、1st昇温時、2nd昇温時のDSC曲線のそれぞれの吸熱ピーク温度から、融解熱量は1st昇温時、2nd昇温時の融解時の変化によって生じるそれぞれの吸熱曲線と外挿したベースラインの交点から得られる積分値より求めた。 Temperature of cold crystallization peak (°C), heat of cold crystallization peak (J/g), melting point (°C), heat of fusion (J/g);
Using a Hitachi High-Tech Science Corporation differential scanning calorimeter "DSC7000", 5 mg of polyester resin was placed in an aluminum pan and the lid was pressed down to seal. Next, the temperature was raised to 250°C at 10°C/min and held at 250°C for 3 minutes to completely melt the crystals, and a DSC curve was obtained at the 1st temperature rise. Then, the temperature was lowered from 250°C to 25°C at 50°C/min, and the temperature was raised again to 250°C at 2°C/min to obtain a DSC curve at the 2nd temperature rise. The temperature of the cold crystallization peak was determined from the exothermic peak temperature of the DSC curve at the 2nd temperature rise, and the heat generation amount of the cold crystallization peak was determined from the integral value obtained from the intersection of the exothermic curve generated by crystallization at the 2nd temperature rise and the extrapolated baseline. The melting point was determined from the endothermic peak temperature of each of the DSC curves during the first heating and the second heating, and the heat of fusion was determined from the integral value obtained from the intersection of each of the endothermic curves generated by the changes during melting during the first heating and the second heating with the extrapolated baseline.
日立ハイテクサイエンス株式会社製の示差走査熱量分析計「DSC7000型」にて、ポリエステル樹脂5mgをアルミパンに入れ、蓋を押さえて密封した。次いで、250℃まで10℃/分で昇温し、250℃で3分ホールドすることで、結晶を完全に融解させ、1st昇温時のDSC曲線を得た。その後、250℃から50℃/分で25℃まで降温し、再び250℃まで2℃/分で昇温し、2nd昇温時のDSC曲線を得た。冷結晶化ピークの温度は2nd昇温時のDSC曲線の発熱ピーク温度から、冷結晶化ピークの発熱量は2nd昇温時の結晶化によって生じる発熱曲線と外挿したベースラインの交点から得られる積分値より求めた。融点は、1st昇温時、2nd昇温時のDSC曲線のそれぞれの吸熱ピーク温度から、融解熱量は1st昇温時、2nd昇温時の融解時の変化によって生じるそれぞれの吸熱曲線と外挿したベースラインの交点から得られる積分値より求めた。 Temperature of cold crystallization peak (°C), heat of cold crystallization peak (J/g), melting point (°C), heat of fusion (J/g);
Using a Hitachi High-Tech Science Corporation differential scanning calorimeter "DSC7000", 5 mg of polyester resin was placed in an aluminum pan and the lid was pressed down to seal. Next, the temperature was raised to 250°C at 10°C/min and held at 250°C for 3 minutes to completely melt the crystals, and a DSC curve was obtained at the 1st temperature rise. Then, the temperature was lowered from 250°C to 25°C at 50°C/min, and the temperature was raised again to 250°C at 2°C/min to obtain a DSC curve at the 2nd temperature rise. The temperature of the cold crystallization peak was determined from the exothermic peak temperature of the DSC curve at the 2nd temperature rise, and the heat generation amount of the cold crystallization peak was determined from the integral value obtained from the intersection of the exothermic curve generated by crystallization at the 2nd temperature rise and the extrapolated baseline. The melting point was determined from the endothermic peak temperature of each of the DSC curves during the first heating and the second heating, and the heat of fusion was determined from the integral value obtained from the intersection of each of the endothermic curves generated by the changes during melting during the first heating and the second heating with the extrapolated baseline.
以下、触媒として用いた、アルミニウム含有エチレングリコール溶液及びリン含有エチレングリコール溶液の調製について説明する。
<アルミニウム含有エチレングリコール溶液sの調製>
塩基性酢酸アルミニウムの20g/L水溶液に対して、等量(容量比)のエチレングリコールをともに調合タンクに仕込み、室温(23℃)で数時間撹拌した後、減圧(3kPa)下、50~90℃で数時間撹拌しながら系から水を留去し、アルミニウム化合物が20g/L含まれたアルミニウム含有エチレングリコール溶液sを調製した。
<リン含有エチレングリコール溶液tの調製>
リン化合物として、Irganox1222(ビーエーエスエフ社製)を、エチレングリコールとともに調合タンクに仕込み、窒素置換下撹拌しながら175℃で150分熱処理し、リン化合物が50g/L含まれたリン含有エチレングリコール溶液tを調製した。 The preparation of the aluminum-containing ethylene glycol solution and the phosphorus-containing ethylene glycol solution used as the catalyst will be described below.
<Preparation of Aluminum-Containing Ethylene Glycol Solution s>
A 20 g/L aqueous solution of basic aluminum acetate and an equal amount (volume ratio) of ethylene glycol were charged into a blending tank and stirred at room temperature (23° C.) for several hours. After that, water was distilled off from the system while stirring at 50 to 90° C. under reduced pressure (3 kPa) for several hours, to prepare an aluminum-containing ethylene glycol solution s containing 20 g/L of an aluminum compound.
<Preparation of phosphorus-containing ethylene glycol solution t>
As a phosphorus compound, Irganox 1222 (manufactured by BASF) was charged into a mixing tank together with ethylene glycol, and heat-treated at 175° C. for 150 minutes while stirring under nitrogen substitution to prepare a phosphorus-containing ethylene glycol solution t containing 50 g/L of the phosphorus compound.
<アルミニウム含有エチレングリコール溶液sの調製>
塩基性酢酸アルミニウムの20g/L水溶液に対して、等量(容量比)のエチレングリコールをともに調合タンクに仕込み、室温(23℃)で数時間撹拌した後、減圧(3kPa)下、50~90℃で数時間撹拌しながら系から水を留去し、アルミニウム化合物が20g/L含まれたアルミニウム含有エチレングリコール溶液sを調製した。
<リン含有エチレングリコール溶液tの調製>
リン化合物として、Irganox1222(ビーエーエスエフ社製)を、エチレングリコールとともに調合タンクに仕込み、窒素置換下撹拌しながら175℃で150分熱処理し、リン化合物が50g/L含まれたリン含有エチレングリコール溶液tを調製した。 The preparation of the aluminum-containing ethylene glycol solution and the phosphorus-containing ethylene glycol solution used as the catalyst will be described below.
<Preparation of Aluminum-Containing Ethylene Glycol Solution s>
A 20 g/L aqueous solution of basic aluminum acetate and an equal amount (volume ratio) of ethylene glycol were charged into a blending tank and stirred at room temperature (23° C.) for several hours. After that, water was distilled off from the system while stirring at 50 to 90° C. under reduced pressure (3 kPa) for several hours, to prepare an aluminum-containing ethylene glycol solution s containing 20 g/L of an aluminum compound.
<Preparation of phosphorus-containing ethylene glycol solution t>
As a phosphorus compound, Irganox 1222 (manufactured by BASF) was charged into a mixing tank together with ethylene glycol, and heat-treated at 175° C. for 150 minutes while stirring under nitrogen substitution to prepare a phosphorus-containing ethylene glycol solution t containing 50 g/L of the phosphorus compound.
(実施例1)
撹拌機付きの電熱線ヒーター式2リッターステンレス製オートクレーブに、多価カルボン酸成分として2,5-フランジカルボン酸(100モル%)と、多価アルコール成分として多価カルボン酸成分の2倍モル量のエチレングリコール(200モル%)を仕込んだ。これらの原料モノマー配合量は、樹脂組成が表1に示す値になるようなものであった。なお、樹脂組成に含まれるジエチレングリコールは、意図的な添加ではなく、エチレングリコールの縮合によって得られたものである。さらに、トリエチルアミンを多価カルボン酸成分に対して0.3モル%加え、常圧下240℃にて水を系外に留去しながらエステル化反応を120分間行い、エステル化率が95%のエステルオリゴマーを得た。
得られたエステルオリゴマーに、触媒として三酸化アンチモンを、得られるポリエステル樹脂の質量に対して、アンチモン元素が250質量ppmになるように添加した。
その後、1時間で系の温度を270℃まで昇温して、この間に系の圧力を徐々に減じて0.15kPaとし、この条件下で重縮合反応を行い、目標溶融粘度に到達させた。その後、二軸押出機(バレル温度215℃、スクリュー回転数150rpm)に樹脂を供給し、樹脂実温が216℃の状態でポリエステル樹脂に剪断応力を付与させながら溶融押出し、排出したストランドを水浴で急冷後、カッターでペレタイズを行い、ポリエステル樹脂を得た。得られたポリエステル樹脂の結果を表1に示す。また得られたポリエステル樹脂の溶融粘度の温度依存性について図1に示す。 Example 1
In a 2-liter stainless steel autoclave equipped with an electric wire heater, 2,5-furandicarboxylic acid (100 mol%) as a polycarboxylic acid component and ethylene glycol (200 mol%) in an amount twice the molar amount of the polycarboxylic acid component as a polyhydric alcohol component were charged. The amounts of these raw material monomers were such that the resin composition was as shown in Table 1. Note that diethylene glycol contained in the resin composition was not intentionally added, but was obtained by condensation of ethylene glycol. Furthermore, 0.3 mol% of triethylamine was added relative to the polycarboxylic acid component, and an esterification reaction was carried out for 120 minutes at 240°C under normal pressure while distilling water out of the system, to obtain an ester oligomer with an esterification rate of 95%.
Antimony trioxide was added as a catalyst to the obtained ester oligomer so that the antimony element was 250 ppm by mass relative to the mass of the obtained polyester resin.
Then, the temperature of the system was raised to 270°C in 1 hour, during which the pressure of the system was gradually reduced to 0.15 kPa, and under these conditions, a polycondensation reaction was carried out to reach the target melt viscosity. The resin was then fed to a twin-screw extruder (barrel temperature 215°C, screw rotation speed 150 rpm), and melt extruded while applying shear stress to the polyester resin at an actual resin temperature of 216°C, and the discharged strand was quenched in a water bath and pelletized with a cutter to obtain a polyester resin. The results of the obtained polyester resin are shown in Table 1. The temperature dependency of the melt viscosity of the obtained polyester resin is also shown in Figure 1.
撹拌機付きの電熱線ヒーター式2リッターステンレス製オートクレーブに、多価カルボン酸成分として2,5-フランジカルボン酸(100モル%)と、多価アルコール成分として多価カルボン酸成分の2倍モル量のエチレングリコール(200モル%)を仕込んだ。これらの原料モノマー配合量は、樹脂組成が表1に示す値になるようなものであった。なお、樹脂組成に含まれるジエチレングリコールは、意図的な添加ではなく、エチレングリコールの縮合によって得られたものである。さらに、トリエチルアミンを多価カルボン酸成分に対して0.3モル%加え、常圧下240℃にて水を系外に留去しながらエステル化反応を120分間行い、エステル化率が95%のエステルオリゴマーを得た。
得られたエステルオリゴマーに、触媒として三酸化アンチモンを、得られるポリエステル樹脂の質量に対して、アンチモン元素が250質量ppmになるように添加した。
その後、1時間で系の温度を270℃まで昇温して、この間に系の圧力を徐々に減じて0.15kPaとし、この条件下で重縮合反応を行い、目標溶融粘度に到達させた。その後、二軸押出機(バレル温度215℃、スクリュー回転数150rpm)に樹脂を供給し、樹脂実温が216℃の状態でポリエステル樹脂に剪断応力を付与させながら溶融押出し、排出したストランドを水浴で急冷後、カッターでペレタイズを行い、ポリエステル樹脂を得た。得られたポリエステル樹脂の結果を表1に示す。また得られたポリエステル樹脂の溶融粘度の温度依存性について図1に示す。 Example 1
In a 2-liter stainless steel autoclave equipped with an electric wire heater, 2,5-furandicarboxylic acid (100 mol%) as a polycarboxylic acid component and ethylene glycol (200 mol%) in an amount twice the molar amount of the polycarboxylic acid component as a polyhydric alcohol component were charged. The amounts of these raw material monomers were such that the resin composition was as shown in Table 1. Note that diethylene glycol contained in the resin composition was not intentionally added, but was obtained by condensation of ethylene glycol. Furthermore, 0.3 mol% of triethylamine was added relative to the polycarboxylic acid component, and an esterification reaction was carried out for 120 minutes at 240°C under normal pressure while distilling water out of the system, to obtain an ester oligomer with an esterification rate of 95%.
Antimony trioxide was added as a catalyst to the obtained ester oligomer so that the antimony element was 250 ppm by mass relative to the mass of the obtained polyester resin.
Then, the temperature of the system was raised to 270°C in 1 hour, during which the pressure of the system was gradually reduced to 0.15 kPa, and under these conditions, a polycondensation reaction was carried out to reach the target melt viscosity. The resin was then fed to a twin-screw extruder (barrel temperature 215°C, screw rotation speed 150 rpm), and melt extruded while applying shear stress to the polyester resin at an actual resin temperature of 216°C, and the discharged strand was quenched in a water bath and pelletized with a cutter to obtain a polyester resin. The results of the obtained polyester resin are shown in Table 1. The temperature dependency of the melt viscosity of the obtained polyester resin is also shown in Figure 1.
(実施例2)
実施例1と同様にして、エステル化率が95%のエステルオリゴマーを得た。
得られたエステルオリゴマーに、触媒として、上記方法で調製したアルミニウム含有エチレングリコール溶液s及びリン含有エチレングリコール溶液tを、得られるポリエステル樹脂の質量に対して、アルミニウム元素及びリン元素が表1記載の量になるように混合し一液化した混合液を添加した以外は、実施例1と同様の処理を行った。得られたポリエステル樹脂の結果を表1に示す。 Example 2
In the same manner as in Example 1, an ester oligomer having an esterification rate of 95% was obtained.
The same treatment as in Example 1 was carried out, except that the aluminum-containing ethylene glycol solution s and the phosphorus-containing ethylene glycol solution t prepared by the above-mentioned method were added as catalysts to the obtained ester oligomer to prepare a one-component mixture in such amounts of aluminum element and phosphorus element relative to the mass of the obtained polyester resin as shown in Table 1. The results of the obtained polyester resin are shown in Table 1.
実施例1と同様にして、エステル化率が95%のエステルオリゴマーを得た。
得られたエステルオリゴマーに、触媒として、上記方法で調製したアルミニウム含有エチレングリコール溶液s及びリン含有エチレングリコール溶液tを、得られるポリエステル樹脂の質量に対して、アルミニウム元素及びリン元素が表1記載の量になるように混合し一液化した混合液を添加した以外は、実施例1と同様の処理を行った。得られたポリエステル樹脂の結果を表1に示す。 Example 2
In the same manner as in Example 1, an ester oligomer having an esterification rate of 95% was obtained.
The same treatment as in Example 1 was carried out, except that the aluminum-containing ethylene glycol solution s and the phosphorus-containing ethylene glycol solution t prepared by the above-mentioned method were added as catalysts to the obtained ester oligomer to prepare a one-component mixture in such amounts of aluminum element and phosphorus element relative to the mass of the obtained polyester resin as shown in Table 1. The results of the obtained polyester resin are shown in Table 1.
(実施例3)
触媒をテトラ-n-ブトキシチタンに変更し、得られるポリエステル樹脂の質量に対して、チタン元素が表1記載の量になるように添加した以外は、実施例1と同様の処理を行った。得られたポリエステル樹脂の結果を表1に示す。 Example 3
The same treatment as in Example 1 was carried out, except that the catalyst was changed to tetra-n-butoxytitanium, and the titanium element was added in an amount relative to the mass of the obtained polyester resin shown in Table 1. The results of the obtained polyester resin are shown in Table 1.
触媒をテトラ-n-ブトキシチタンに変更し、得られるポリエステル樹脂の質量に対して、チタン元素が表1記載の量になるように添加した以外は、実施例1と同様の処理を行った。得られたポリエステル樹脂の結果を表1に示す。 Example 3
The same treatment as in Example 1 was carried out, except that the catalyst was changed to tetra-n-butoxytitanium, and the titanium element was added in an amount relative to the mass of the obtained polyester resin shown in Table 1. The results of the obtained polyester resin are shown in Table 1.
(実施例4)
触媒を二酸化ゲルマニウムに変更し、得られるポリエステル樹脂の質量に対して、ゲルマニウム元素が表1記載の量になるように添加した以外は、実施例1と同様の処理を行った。得られたポリエステル樹脂の結果を表1に示す。 Example 4
The same treatment as in Example 1 was carried out, except that the catalyst was changed to germanium dioxide and the germanium element was added in an amount shown in Table 1 relative to the mass of the obtained polyester resin. The results of the obtained polyester resin are shown in Table 1.
触媒を二酸化ゲルマニウムに変更し、得られるポリエステル樹脂の質量に対して、ゲルマニウム元素が表1記載の量になるように添加した以外は、実施例1と同様の処理を行った。得られたポリエステル樹脂の結果を表1に示す。 Example 4
The same treatment as in Example 1 was carried out, except that the catalyst was changed to germanium dioxide and the germanium element was added in an amount shown in Table 1 relative to the mass of the obtained polyester resin. The results of the obtained polyester resin are shown in Table 1.
(実施例5)
二軸押出機のバレル温度を230℃に変更した以外は、実施例1と同様の処理を行った。得られたポリエステル樹脂の結果を表1に示す。 Example 5
The same treatment as in Example 1 was carried out, except that the barrel temperature of the twin-screw extruder was changed to 230° C. The results of the obtained polyester resin are shown in Table 1.
二軸押出機のバレル温度を230℃に変更した以外は、実施例1と同様の処理を行った。得られたポリエステル樹脂の結果を表1に示す。 Example 5
The same treatment as in Example 1 was carried out, except that the barrel temperature of the twin-screw extruder was changed to 230° C. The results of the obtained polyester resin are shown in Table 1.
(実施例6)
二軸押出機のバレル温度を200℃に変更した以外は、実施例1と同様の処理を行った。得られたポリエステル樹脂の結果を表1に示す。なお、キャピログラフで200℃の溶融粘度測定が不可となったため、表1には測定不可と記載した。 Example 6
The same treatment as in Example 1 was carried out, except that the barrel temperature of the twin-screw extruder was changed to 200° C. The results for the obtained polyester resin are shown in Table 1. Note that, since it became impossible to measure the melt viscosity at 200° C. using a capillograph, it is noted in Table 1 that "measurable" was not possible.
二軸押出機のバレル温度を200℃に変更した以外は、実施例1と同様の処理を行った。得られたポリエステル樹脂の結果を表1に示す。なお、キャピログラフで200℃の溶融粘度測定が不可となったため、表1には測定不可と記載した。 Example 6
The same treatment as in Example 1 was carried out, except that the barrel temperature of the twin-screw extruder was changed to 200° C. The results for the obtained polyester resin are shown in Table 1. Note that, since it became impossible to measure the melt viscosity at 200° C. using a capillograph, it is noted in Table 1 that "measurable" was not possible.
(実施例7)
重縮合反応で目標溶融粘度に到達後に、結晶核剤としてPBTオリゴマー(ポリサイザーA-55:DIC株式会社製)をポリエステル樹脂に対して、1質量%になるように添加した以外は実施例1と同様の処理を行った。得られたポリエステル樹脂の結果を表1に示す。 (Example 7)
The same treatment as in Example 1 was carried out, except that after the target melt viscosity was reached in the polycondensation reaction, a PBT oligomer (Polysizer A-55: manufactured by DIC Corporation) was added as a crystal nucleating agent to the polyester resin in an amount of 1 mass %. The results of the obtained polyester resin are shown in Table 1.
重縮合反応で目標溶融粘度に到達後に、結晶核剤としてPBTオリゴマー(ポリサイザーA-55:DIC株式会社製)をポリエステル樹脂に対して、1質量%になるように添加した以外は実施例1と同様の処理を行った。得られたポリエステル樹脂の結果を表1に示す。 (Example 7)
The same treatment as in Example 1 was carried out, except that after the target melt viscosity was reached in the polycondensation reaction, a PBT oligomer (Polysizer A-55: manufactured by DIC Corporation) was added as a crystal nucleating agent to the polyester resin in an amount of 1 mass %. The results of the obtained polyester resin are shown in Table 1.
(実施例8)
結晶核剤としてタルク(SG-95:日本タルク株式会社製)を用いた以外は実施例7と同様の処理を行った。得られたポリエステル樹脂の結果を表1に示す。 (Example 8)
The same treatment as in Example 7 was carried out, except that talc (SG-95: manufactured by Nippon Talc Co., Ltd.) was used as the crystal nucleating agent. The results of the obtained polyester resin are shown in Table 1.
結晶核剤としてタルク(SG-95:日本タルク株式会社製)を用いた以外は実施例7と同様の処理を行った。得られたポリエステル樹脂の結果を表1に示す。 (Example 8)
The same treatment as in Example 7 was carried out, except that talc (SG-95: manufactured by Nippon Talc Co., Ltd.) was used as the crystal nucleating agent. The results of the obtained polyester resin are shown in Table 1.
(実施例9)
二軸押出機のバレル温度を250℃に変更した以外は、実施例1と同様の処理を行った。得られたポリエステル樹脂の結果を表1に示す。 Example 9
The same treatment as in Example 1 was carried out, except that the barrel temperature of the twin-screw extruder was changed to 250° C. The results of the obtained polyester resin are shown in Table 1.
二軸押出機のバレル温度を250℃に変更した以外は、実施例1と同様の処理を行った。得られたポリエステル樹脂の結果を表1に示す。 Example 9
The same treatment as in Example 1 was carried out, except that the barrel temperature of the twin-screw extruder was changed to 250° C. The results of the obtained polyester resin are shown in Table 1.
(実施例10)
実施例1で得られたポリエステル樹脂を真空乾燥機で80℃、200時間乾燥処理し、それをガラス容器に10g入れ、1Torr以下の真空度に保持して、200℃のオイルバスにて6時間固相重合を行った。得られたポリエステル樹脂の結果を表1に示す。 Example 10
The polyester resin obtained in Example 1 was dried in a vacuum dryer at 80° C. for 200 hours, and 10 g of the dried resin was placed in a glass container, kept at a vacuum of 1 Torr or less, and subjected to solid-phase polymerization for 6 hours in an oil bath at 200° C. The results of the obtained polyester resin are shown in Table 1.
実施例1で得られたポリエステル樹脂を真空乾燥機で80℃、200時間乾燥処理し、それをガラス容器に10g入れ、1Torr以下の真空度に保持して、200℃のオイルバスにて6時間固相重合を行った。得られたポリエステル樹脂の結果を表1に示す。 Example 10
The polyester resin obtained in Example 1 was dried in a vacuum dryer at 80° C. for 200 hours, and 10 g of the dried resin was placed in a glass container, kept at a vacuum of 1 Torr or less, and subjected to solid-phase polymerization for 6 hours in an oil bath at 200° C. The results of the obtained polyester resin are shown in Table 1.
(実施例11)
実施例1で得られたポリエステル樹脂を真空乾燥機で80℃、200時間乾燥処理し、それをガラス容器に10g入れ、1Torr以下の真空度に保持して、200℃のオイルバスにて12時間固相重合を行った。得られたポリエステル樹脂の結果を表1に示す。 (Example 11)
The polyester resin obtained in Example 1 was dried in a vacuum dryer at 80° C. for 200 hours, and 10 g of the dried resin was placed in a glass container, kept at a vacuum of 1 Torr or less, and subjected to solid-phase polymerization for 12 hours in an oil bath at 200° C. The results of the obtained polyester resin are shown in Table 1.
実施例1で得られたポリエステル樹脂を真空乾燥機で80℃、200時間乾燥処理し、それをガラス容器に10g入れ、1Torr以下の真空度に保持して、200℃のオイルバスにて12時間固相重合を行った。得られたポリエステル樹脂の結果を表1に示す。 (Example 11)
The polyester resin obtained in Example 1 was dried in a vacuum dryer at 80° C. for 200 hours, and 10 g of the dried resin was placed in a glass container, kept at a vacuum of 1 Torr or less, and subjected to solid-phase polymerization for 12 hours in an oil bath at 200° C. The results of the obtained polyester resin are shown in Table 1.
(実施例12)
多価カルボン酸成分を2,5-フランジカルボン酸(98モル%)と、コハク酸を2モル%とに変更した以外は実施例1と同様に処理を行った。得られたポリエステルの樹脂の結果を表1に示す。 Example 12
The same treatment as in Example 1 was carried out except that the polybasic carboxylic acid component was changed to 2,5-furandicarboxylic acid (98 mol %) and succinic acid was changed to 2 mol %. The results of the obtained polyester resin are shown in Table 1.
多価カルボン酸成分を2,5-フランジカルボン酸(98モル%)と、コハク酸を2モル%とに変更した以外は実施例1と同様に処理を行った。得られたポリエステルの樹脂の結果を表1に示す。 Example 12
The same treatment as in Example 1 was carried out except that the polybasic carboxylic acid component was changed to 2,5-furandicarboxylic acid (98 mol %) and succinic acid was changed to 2 mol %. The results of the obtained polyester resin are shown in Table 1.
(比較例1)
撹拌機付きの電熱線ヒーター式2リッターステンレス製オートクレーブに、多価カルボン酸成分として2,5-フランジカルボン酸(100モル%)と、多価アルコール成分として多価カルボン酸成分の2倍モル量のエチレングリコール(200モル%)を仕込んだ。これらの原料モノマー配合量は、樹脂組成が表1に示す値になるようなものであった。さらに、トリエチルアミンを多価カルボン酸成分に対して0.3モル%加え、常圧下240℃にて水を系外に留去しながらエステル化反応を120分間行い、エステル化率が95%のエステルオリゴマーを得た。
得られたエステルオリゴマーに、触媒として三酸化アンチモンを、得られるポリエステル樹脂の質量に対して、アンチモン元素が250質量ppmになるように添加した。
その後、1時間で系の温度を270℃まで昇温して、この間に系の圧力を徐々に減じて0.15kPaとし、この条件下で重縮合反応を行い、目標溶融粘度に到達させた。その後、オートクレーブより排出したストランドを水浴で急冷し、カッターでペレタイズを行い、ポリエステル樹脂を得た。得られたポリエステル樹脂の結果を表1に示す。 (Comparative Example 1)
A 2-liter stainless steel autoclave equipped with an electric wire heater was charged with 2,5-furandicarboxylic acid (100 mol%) as a polycarboxylic acid component and ethylene glycol (200 mol%) in an amount twice the molar amount of the polycarboxylic acid component as a polyhydric alcohol component. The amounts of these raw material monomers were such that the resin composition was as shown in Table 1. Furthermore, 0.3 mol% of triethylamine was added relative to the polycarboxylic acid component, and an esterification reaction was carried out for 120 minutes at 240°C under normal pressure while distilling water out of the system, to obtain an ester oligomer with an esterification rate of 95%.
Antimony trioxide was added as a catalyst to the obtained ester oligomer so that the antimony element was 250 ppm by mass relative to the mass of the obtained polyester resin.
The temperature of the system was then raised to 270°C over 1 hour, during which the pressure of the system was gradually reduced to 0.15 kPa, and the polycondensation reaction was carried out under these conditions until the target melt viscosity was reached. The strands discharged from the autoclave were then quenched in a water bath and pelletized with a cutter to obtain a polyester resin. The results of the obtained polyester resin are shown in Table 1.
撹拌機付きの電熱線ヒーター式2リッターステンレス製オートクレーブに、多価カルボン酸成分として2,5-フランジカルボン酸(100モル%)と、多価アルコール成分として多価カルボン酸成分の2倍モル量のエチレングリコール(200モル%)を仕込んだ。これらの原料モノマー配合量は、樹脂組成が表1に示す値になるようなものであった。さらに、トリエチルアミンを多価カルボン酸成分に対して0.3モル%加え、常圧下240℃にて水を系外に留去しながらエステル化反応を120分間行い、エステル化率が95%のエステルオリゴマーを得た。
得られたエステルオリゴマーに、触媒として三酸化アンチモンを、得られるポリエステル樹脂の質量に対して、アンチモン元素が250質量ppmになるように添加した。
その後、1時間で系の温度を270℃まで昇温して、この間に系の圧力を徐々に減じて0.15kPaとし、この条件下で重縮合反応を行い、目標溶融粘度に到達させた。その後、オートクレーブより排出したストランドを水浴で急冷し、カッターでペレタイズを行い、ポリエステル樹脂を得た。得られたポリエステル樹脂の結果を表1に示す。 (Comparative Example 1)
A 2-liter stainless steel autoclave equipped with an electric wire heater was charged with 2,5-furandicarboxylic acid (100 mol%) as a polycarboxylic acid component and ethylene glycol (200 mol%) in an amount twice the molar amount of the polycarboxylic acid component as a polyhydric alcohol component. The amounts of these raw material monomers were such that the resin composition was as shown in Table 1. Furthermore, 0.3 mol% of triethylamine was added relative to the polycarboxylic acid component, and an esterification reaction was carried out for 120 minutes at 240°C under normal pressure while distilling water out of the system, to obtain an ester oligomer with an esterification rate of 95%.
Antimony trioxide was added as a catalyst to the obtained ester oligomer so that the antimony element was 250 ppm by mass relative to the mass of the obtained polyester resin.
The temperature of the system was then raised to 270°C over 1 hour, during which the pressure of the system was gradually reduced to 0.15 kPa, and the polycondensation reaction was carried out under these conditions until the target melt viscosity was reached. The strands discharged from the autoclave were then quenched in a water bath and pelletized with a cutter to obtain a polyester resin. The results of the obtained polyester resin are shown in Table 1.
(比較例2)
三酸化アンチモンの量を400質量ppmに変更した以外は、比較例1と同様の処理を行った。得られたポリエステル樹脂の結果を表1に示す。 (Comparative Example 2)
Except for changing the amount of antimony trioxide to 400 ppm by mass, the same treatment as in Comparative Example 1 was carried out. The results of the obtained polyester resin are shown in Table 1.
三酸化アンチモンの量を400質量ppmに変更した以外は、比較例1と同様の処理を行った。得られたポリエステル樹脂の結果を表1に示す。 (Comparative Example 2)
Except for changing the amount of antimony trioxide to 400 ppm by mass, the same treatment as in Comparative Example 1 was carried out. The results of the obtained polyester resin are shown in Table 1.
(比較例3)
比較例1で得られたポリエステル樹脂を一部取り出し、以下のアニール処理を行った。得られたポリエステル樹脂の結果を表1に示す。 (Comparative Example 3)
A portion of the polyester resin obtained in Comparative Example 1 was taken out and subjected to the following annealing treatment. The results for the obtained polyester resin are shown in Table 1.
比較例1で得られたポリエステル樹脂を一部取り出し、以下のアニール処理を行った。得られたポリエステル樹脂の結果を表1に示す。 (Comparative Example 3)
A portion of the polyester resin obtained in Comparative Example 1 was taken out and subjected to the following annealing treatment. The results for the obtained polyester resin are shown in Table 1.
<アニール処理>
試料5gをガラス容器に入れ、真空乾燥80℃、3時間予備乾燥後、180℃、3時間処理し、結晶ポリエステルを作製した。 <Annealing treatment>
5 g of the sample was placed in a glass container, pre-dried in vacuum at 80° C. for 3 hours, and then treated at 180° C. for 3 hours to prepare a crystalline polyester.
試料5gをガラス容器に入れ、真空乾燥80℃、3時間予備乾燥後、180℃、3時間処理し、結晶ポリエステルを作製した。 <Annealing treatment>
5 g of the sample was placed in a glass container, pre-dried in vacuum at 80° C. for 3 hours, and then treated at 180° C. for 3 hours to prepare a crystalline polyester.
(比較例4)
重縮合反応で目標溶融粘度に到達後に、結晶核剤としてPBTオリゴマー(ポリサイザーA-55:DIC株式会社製)をポリエステル樹脂に対して、1質量%になるように添加した以外は比較例1と同様の処理を行った。得られたポリエステル樹脂の結果を表1に示す。 (Comparative Example 4)
After the target melt viscosity was reached in the polycondensation reaction, a PBT oligomer (Polysizer A-55: manufactured by DIC Corporation) was added as a crystal nucleating agent to the polyester resin in an amount of 1% by mass, but the same treatment as in Comparative Example 1 was carried out. The results of the obtained polyester resin are shown in Table 1.
重縮合反応で目標溶融粘度に到達後に、結晶核剤としてPBTオリゴマー(ポリサイザーA-55:DIC株式会社製)をポリエステル樹脂に対して、1質量%になるように添加した以外は比較例1と同様の処理を行った。得られたポリエステル樹脂の結果を表1に示す。 (Comparative Example 4)
After the target melt viscosity was reached in the polycondensation reaction, a PBT oligomer (Polysizer A-55: manufactured by DIC Corporation) was added as a crystal nucleating agent to the polyester resin in an amount of 1% by mass, but the same treatment as in Comparative Example 1 was carried out. The results of the obtained polyester resin are shown in Table 1.
実施例1~12によると、2nd昇温時の冷結晶化ピークの温度が145~185℃の範囲に見られ、発熱量が5J/g以上であるポリエステル樹脂が得られており、分子量が高くても再溶融後の結晶化速度が十分に保持されており、熱分解性も高いことがわかる。また、実施例2~4は触媒を実施例1から変更した例であり、いずれも良好な結果が得られた。実施例5、6、9は、剪断応力を付与する際の温度を実施例1から変更した例である。温度を高くすることで剪断応力は低くなり、温度を低くすることで剪断応力が高くなる傾向が見られ、実施例6では剪断応力が高く測定できなかったが、いずれも良好な結果が得られた。特に、実施例6の2nd昇温時の冷結晶化ピークの温度が比較的低いことから、剪断応力が高いと結晶化速度が向上していることがわかる。実施例7、8は、結晶核剤を添加した例である。結晶核剤を添加することで、2nd昇温時の冷結晶化ピークの温度が実施例1よりも低下していることから、再溶融後の結晶化速度が向上していることがわかる。実施例10、11は、固相重合を行った例である。還元粘度が一段と向上していることがわかる。実施例12は、コハク酸を共重合したポリエステル樹脂であり、2nd昇温時の冷結晶化ピークの温度が低く、結晶化速度が向上していることがわかる。
一方、比較例1は剪断応力を付与する工程を経ておらず、2nd昇温時の冷結晶化ピークは見られなかったため、結晶化速度は十分ではなかったことがわかる。比較例2は比較例1よりも触媒量を増加させた例である。剪断応力を付与する工程を経ずとも、2nd昇温時の冷結晶化ピークの温度が145~185℃の範囲に見られ、発熱量が5J/g以上であり、結晶化速度の向上は認められるが、熱分解試験前後の還元粘度変化量は大きく、熱分解性が悪化しており、実用上好ましくない。比較例3は比較例1の樹脂にアニール処理を行うことで、高い融解熱量が得られており、1st昇温時の冷結晶化ピークの温度が145~185℃の範囲に見られ、発熱量が3J/g以上であり、1st昇温時の結晶化速度の向上は認められるが、2nd昇温時の冷結晶化ピークは見られず、再溶融時の結晶化の進行が確認できなかった。比較例4は比較例1の樹脂に結晶核剤を添加した場合であるが、2nd昇温時の冷結晶化ピークは見られず、結晶化速度は十分ではなかったことがわかる。 According to Examples 1 to 12, the temperature of the cold crystallization peak during the 2nd heating is in the range of 145 to 185 ° C., and a polyester resin with a calorific value of 5 J / g or more is obtained. Even if the molecular weight is high, the crystallization rate after remelting is sufficiently maintained, and the thermal decomposition is also high. In addition, Examples 2 to 4 are examples in which the catalyst is changed from Example 1, and all of them obtained good results. Examples 5, 6, and 9 are examples in which the temperature when applying shear stress is changed from Example 1. There is a tendency that the shear stress decreases by increasing the temperature, and the shear stress increases by decreasing the temperature. In Example 6, the shear stress was high and could not be measured, but all of them obtained good results. In particular, since the temperature of the cold crystallization peak during the 2nd heating in Example 6 is relatively low, it can be seen that the crystallization rate is improved when the shear stress is high. Examples 7 and 8 are examples in which a crystal nucleating agent is added. It can be seen that the crystallization rate after remelting is improved by adding a crystal nucleating agent, since the temperature of the cold crystallization peak during the 2nd heating is lower than that of Example 1 by adding a crystal nucleating agent. Examples 10 and 11 are examples of solid-state polymerization. It can be seen that the reduced viscosity is further improved. Example 12 is a polyester resin copolymerized with succinic acid, and it can be seen that the temperature of the cold crystallization peak during the 2nd heating is low and the crystallization rate is improved.
On the other hand, in Comparative Example 1, the process of applying shear stress was not performed, and the cold crystallization peak was not observed during the 2nd heating, so it can be seen that the crystallization rate was not sufficient. Comparative Example 2 is an example in which the amount of catalyst was increased compared to Comparative Example 1. Even without the process of applying shear stress, the temperature of the cold crystallization peak during the 2nd heating was observed in the range of 145 to 185 ° C., the heat generation amount was 5 J / g or more, and an improvement in the crystallization rate was observed, but the amount of change in reduced viscosity before and after the thermal decomposition test was large, and the thermal decomposition property was deteriorated, which is not preferable for practical use. In Comparative Example 3, a high heat of fusion was obtained by performing an annealing treatment on the resin of Comparative Example 1, and the temperature of the cold crystallization peak during the 1st heating was observed in the range of 145 to 185 ° C., the heat generation amount was 3 J / g or more, and an improvement in the crystallization rate during the 1st heating was observed, but the cold crystallization peak during the 2nd heating was not observed, and the progress of crystallization during remelting could not be confirmed. Comparative Example 4 is a case where a crystal nucleating agent was added to the resin of Comparative Example 1, but no cold crystallization peak was observed during the second heating step, indicating that the crystallization rate was insufficient.
一方、比較例1は剪断応力を付与する工程を経ておらず、2nd昇温時の冷結晶化ピークは見られなかったため、結晶化速度は十分ではなかったことがわかる。比較例2は比較例1よりも触媒量を増加させた例である。剪断応力を付与する工程を経ずとも、2nd昇温時の冷結晶化ピークの温度が145~185℃の範囲に見られ、発熱量が5J/g以上であり、結晶化速度の向上は認められるが、熱分解試験前後の還元粘度変化量は大きく、熱分解性が悪化しており、実用上好ましくない。比較例3は比較例1の樹脂にアニール処理を行うことで、高い融解熱量が得られており、1st昇温時の冷結晶化ピークの温度が145~185℃の範囲に見られ、発熱量が3J/g以上であり、1st昇温時の結晶化速度の向上は認められるが、2nd昇温時の冷結晶化ピークは見られず、再溶融時の結晶化の進行が確認できなかった。比較例4は比較例1の樹脂に結晶核剤を添加した場合であるが、2nd昇温時の冷結晶化ピークは見られず、結晶化速度は十分ではなかったことがわかる。 According to Examples 1 to 12, the temperature of the cold crystallization peak during the 2nd heating is in the range of 145 to 185 ° C., and a polyester resin with a calorific value of 5 J / g or more is obtained. Even if the molecular weight is high, the crystallization rate after remelting is sufficiently maintained, and the thermal decomposition is also high. In addition, Examples 2 to 4 are examples in which the catalyst is changed from Example 1, and all of them obtained good results. Examples 5, 6, and 9 are examples in which the temperature when applying shear stress is changed from Example 1. There is a tendency that the shear stress decreases by increasing the temperature, and the shear stress increases by decreasing the temperature. In Example 6, the shear stress was high and could not be measured, but all of them obtained good results. In particular, since the temperature of the cold crystallization peak during the 2nd heating in Example 6 is relatively low, it can be seen that the crystallization rate is improved when the shear stress is high. Examples 7 and 8 are examples in which a crystal nucleating agent is added. It can be seen that the crystallization rate after remelting is improved by adding a crystal nucleating agent, since the temperature of the cold crystallization peak during the 2nd heating is lower than that of Example 1 by adding a crystal nucleating agent. Examples 10 and 11 are examples of solid-state polymerization. It can be seen that the reduced viscosity is further improved. Example 12 is a polyester resin copolymerized with succinic acid, and it can be seen that the temperature of the cold crystallization peak during the 2nd heating is low and the crystallization rate is improved.
On the other hand, in Comparative Example 1, the process of applying shear stress was not performed, and the cold crystallization peak was not observed during the 2nd heating, so it can be seen that the crystallization rate was not sufficient. Comparative Example 2 is an example in which the amount of catalyst was increased compared to Comparative Example 1. Even without the process of applying shear stress, the temperature of the cold crystallization peak during the 2nd heating was observed in the range of 145 to 185 ° C., the heat generation amount was 5 J / g or more, and an improvement in the crystallization rate was observed, but the amount of change in reduced viscosity before and after the thermal decomposition test was large, and the thermal decomposition property was deteriorated, which is not preferable for practical use. In Comparative Example 3, a high heat of fusion was obtained by performing an annealing treatment on the resin of Comparative Example 1, and the temperature of the cold crystallization peak during the 1st heating was observed in the range of 145 to 185 ° C., the heat generation amount was 3 J / g or more, and an improvement in the crystallization rate during the 1st heating was observed, but the cold crystallization peak during the 2nd heating was not observed, and the progress of crystallization during remelting could not be confirmed. Comparative Example 4 is a case where a crystal nucleating agent was added to the resin of Comparative Example 1, but no cold crystallization peak was observed during the second heating step, indicating that the crystallization rate was insufficient.
本発明のフラン骨格を有するポリエステル樹脂は、十分な分子量を有し、再溶融後も高い結晶化速度を保持することができる。そのため、溶融成形加工時における結晶化速度を向上でき、生産性を向上させることができる。また、加工時における熱分解を抑制でき、強度の高いフラン骨格を有するポリエステル樹脂を提供することができる。また、フィルムや繊維、飲料用ボトル、光学用途等の各種成形品用の材料として好適に用いることができる。これにより簡便な方法でポリエステル樹脂を製造することができ、LCAの観点からCO2排出量を抑制したポリエステル樹脂を製造することができる。またバイオマス度の高いポリエステル樹脂を製造することができ、環境を配慮した持続可能なポリエステル樹脂を製造することができる。また、本発明のポリエステル樹脂の製造方法により、高い結晶化速度を有するポリエステル樹脂を得ることができる。速やかに結晶化することで、ペレットのブロッキングなどの加工トラブルを抑制し、生産性を向上することができる。
The polyester resin having a furan skeleton of the present invention has a sufficient molecular weight and can maintain a high crystallization rate even after remelting. Therefore, the crystallization rate during melt molding processing can be improved, and productivity can be improved. In addition, a polyester resin having a furan skeleton with high strength can be provided, which can suppress thermal decomposition during processing. In addition, it can be suitably used as a material for various molded products such as films, fibers, beverage bottles, and optical applications. This allows the polyester resin to be produced by a simple method, and a polyester resin with reduced CO 2 emissions from the viewpoint of LCA can be produced. In addition, a polyester resin with a high biomass degree can be produced, and a sustainable polyester resin with consideration for the environment can be produced. In addition, a polyester resin having a high crystallization rate can be obtained by the method for producing a polyester resin of the present invention. By crystallizing quickly, processing troubles such as blocking of pellets can be suppressed, and productivity can be improved.
The polyester resin having a furan skeleton of the present invention has a sufficient molecular weight and can maintain a high crystallization rate even after remelting. Therefore, the crystallization rate during melt molding processing can be improved, and productivity can be improved. In addition, a polyester resin having a furan skeleton with high strength can be provided, which can suppress thermal decomposition during processing. In addition, it can be suitably used as a material for various molded products such as films, fibers, beverage bottles, and optical applications. This allows the polyester resin to be produced by a simple method, and a polyester resin with reduced CO 2 emissions from the viewpoint of LCA can be produced. In addition, a polyester resin with a high biomass degree can be produced, and a sustainable polyester resin with consideration for the environment can be produced. In addition, a polyester resin having a high crystallization rate can be obtained by the method for producing a polyester resin of the present invention. By crystallizing quickly, processing troubles such as blocking of pellets can be suppressed, and productivity can be improved.
Claims (15)
- 多価カルボン酸成分と多価アルコール成分とを構成成分とするポリエステル樹脂であって、以下の(1)~(4)を満たすことを特徴とするポリエステル樹脂。
(1)前記多価カルボン酸成分としてフラン骨格を有する多価カルボン酸を含み、前記多価アルコール成分としてエチレングリコールを含む。
(2)昇温速度2℃/分の示差走査熱量測定(DSC)によって測定される、2nd昇温時の冷結晶化ピークの温度が145~185℃の範囲内にあり、発熱量が5J/g以上である。
(3)還元粘度が0.50dl/g以上である。
(4)アンチモン、アルミニウム、チタン、およびゲルマニウムから選ばれる少なくとも1種の金属元素を含み、前記金属元素の含有量の合計が350質量ppm以下である。 A polyester resin comprising a polyvalent carboxylic acid component and a polyhydric alcohol component as constituent components, the polyester resin being characterized in that it satisfies the following (1) to (4).
(1) The polycarboxylic acid component contains a polycarboxylic acid having a furan skeleton, and the polyhydric alcohol component contains ethylene glycol.
(2) The temperature of the cold crystallization peak during the second heating step, as measured by differential scanning calorimetry (DSC) at a heating rate of 2° C./min, is in the range of 145 to 185° C., and the calorific value is 5 J/g or more.
(3) The reduced viscosity is 0.50 dl/g or more.
(4) At least one metal element selected from antimony, aluminum, titanium, and germanium is contained, and the total content of the metal elements is 350 ppm by mass or less. - 前記多価アルコール成分の合計100mol%に対し、ジエチレングリコールを0.1~5mol%含む、請求項1に記載のポリエステル樹脂。 The polyester resin according to claim 1, which contains 0.1 to 5 mol % of diethylene glycol per 100 mol % of the total of the polyhydric alcohol components.
- 結晶核剤を0.001~4質量%含む、請求項1に記載のポリエステル樹脂。 The polyester resin according to claim 1, containing 0.001 to 4% by mass of a crystal nucleating agent.
- フラン骨格を有する多価カルボン酸成分とエチレングリコール成分とから成る単位を80mol%以上含む、請求項1に記載のポリエステル樹脂。 The polyester resin according to claim 1, which contains 80 mol% or more of units consisting of a polycarboxylic acid component having a furan skeleton and an ethylene glycol component.
- 280℃で1時間加熱処理した前後の還元粘度の変化量が0.15dl/g以下である、請求項1に記載のポリエステル樹脂。 The polyester resin according to claim 1, in which the change in reduced viscosity before and after heat treatment at 280°C for 1 hour is 0.15 dl/g or less.
- 融点が200℃以上である、請求項1に記載のポリエステル樹脂。 The polyester resin according to claim 1, having a melting point of 200°C or higher.
- 請求項1~6のいずれか一項に記載のポリエステル樹脂から成るポリエステル樹脂ペレット。 Polyester resin pellets made of the polyester resin described in any one of claims 1 to 6.
- 請求項1~6のいずれか一項に記載のポリエステル樹脂から形成されたボトル。 A bottle formed from the polyester resin described in any one of claims 1 to 6.
- 請求項1~6のいずれか一項に記載のポリエステル樹脂から形成されたフィルム。 A film formed from the polyester resin described in any one of claims 1 to 6.
- 請求項1~6のいずれか一項に記載のポリエステル樹脂から形成された繊維。 Fiber formed from the polyester resin described in any one of claims 1 to 6.
- 多価カルボン酸成分と多価アルコール成分とを構成成分とするポリエステル樹脂の製造方法であって、多価カルボン酸成分と多価アルコール成分とを重縮合反応する工程、および前記重縮合反応する工程で得られた反応物の溶融組成物に剪断応力を付与する工程を有し、前記多価カルボン酸成分はフラン骨格を有する多価カルボン酸成分を含み、前記多価アルコール成分はエチレングリコールを含む、ポリエステル樹脂の製造方法。 A method for producing a polyester resin having a polycarboxylic acid component and a polyhydric alcohol component as constituent components, the method comprising the steps of polycondensation reacting the polycarboxylic acid component and the polyhydric alcohol component, and applying a shear stress to a molten composition of the reaction product obtained in the polycondensation reacting step, the polycarboxylic acid component including a polycarboxylic acid component having a furan skeleton, and the polyhydric alcohol component including ethylene glycol.
- 前記剪断応力を付与する工程において、0.15MPa以上の剪断応力を付与する、請求項11に記載のポリエステル樹脂の製造方法。 The method for producing a polyester resin according to claim 11, wherein a shear stress of 0.15 MPa or more is applied in the step of applying the shear stress.
- 前記剪断応力を付与する工程において、二軸押出機により剪断応力を付与する、請求項11に記載のポリエステル樹脂の製造方法。 The method for producing a polyester resin according to claim 11, wherein the shear stress is applied by a twin-screw extruder in the step of applying the shear stress.
- 請求項11~13のいずれか一項に記載の製造方法により得られたポリエステル樹脂を溶融状態で吐出し、冷却し、切断する工程を有するポリエステル樹脂ペレットの製造方法。 A method for producing polyester resin pellets, comprising the steps of discharging, cooling, and cutting the polyester resin obtained by the method according to any one of claims 11 to 13 in a molten state.
- 請求項14に記載の製造方法により得られたポリエステル樹脂ペレットをさらに固相重合する工程を有する、ポリエステル樹脂ペレットの製造方法。
A method for producing polyester resin pellets, comprising a step of further solid-phase polymerizing the polyester resin pellets obtained by the method for producing polyester resin pellets according to claim 14.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2023-024348 | 2023-02-20 | ||
JP2023024348 | 2023-02-20 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024177005A1 true WO2024177005A1 (en) | 2024-08-29 |
Family
ID=92501153
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2024/005759 WO2024177005A1 (en) | 2023-02-20 | 2024-02-19 | Polyester resin and polyester resin production method |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2024177005A1 (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008075068A (en) * | 2006-08-25 | 2008-04-03 | Canon Inc | Resin composition |
JP2011132506A (en) * | 2009-11-27 | 2011-07-07 | Canon Inc | Flame-retardant resin composition and molded article thereof |
JP2015506389A (en) * | 2011-12-29 | 2015-03-02 | ナチュラ コスメティコス ソシエダッド アノニマ | Process for the production of poly (ethylene 2,5-furandicarboxylate) from 2,5-furandicarboxylic acid, its use, its polyester compounds and blends |
JP2015120838A (en) * | 2013-12-24 | 2015-07-02 | 花王株式会社 | Porous sheet |
-
2024
- 2024-02-19 WO PCT/JP2024/005759 patent/WO2024177005A1/en unknown
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008075068A (en) * | 2006-08-25 | 2008-04-03 | Canon Inc | Resin composition |
JP2011132506A (en) * | 2009-11-27 | 2011-07-07 | Canon Inc | Flame-retardant resin composition and molded article thereof |
JP2015506389A (en) * | 2011-12-29 | 2015-03-02 | ナチュラ コスメティコス ソシエダッド アノニマ | Process for the production of poly (ethylene 2,5-furandicarboxylate) from 2,5-furandicarboxylic acid, its use, its polyester compounds and blends |
JP2015120838A (en) * | 2013-12-24 | 2015-07-02 | 花王株式会社 | Porous sheet |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2407515B1 (en) | Polyester resin composition, process for production of same, and film | |
JP6936802B2 (en) | Polyester resin, its manufacturing method and resin molded products formed from it | |
MX2009000462A (en) | Composite solid phase polymerization catalyst. | |
EP3177664B1 (en) | Modified polybutylene naphthalate for improved performance and process of making thereof | |
KR102210711B1 (en) | Biodegradable copolymer polyester resin comprising anhydrosugar alcohol and anhydrosugar alcohol-alkylene glycol and method for preparing the same | |
JP2022155579A (en) | Polyester resin and molding comprising polyester resin | |
TWI554388B (en) | Polyester hollow molded body and method for forming polyester hollow molded body | |
WO2024177005A1 (en) | Polyester resin and polyester resin production method | |
JP2017531723A (en) | Polycyclohexylenedimethylene terephthalate resin with improved crystallization rate and method for producing the same | |
WO2024177004A1 (en) | Polyester resin and method for producing polyester resin | |
JP2008239744A (en) | Polyester resin | |
JP3576320B2 (en) | Polyester resin with improved color properties | |
JP5652552B2 (en) | Polyester hollow molded body and method for molding polyester hollow molded body | |
JP2003012781A (en) | Polybutylene terephthalate resin and molded article | |
KR20230118952A (en) | polyester resin | |
TW202235479A (en) | polyester resin | |
JP2022144048A (en) | Polyester resin, and molded article made thereof | |
JP2022550817A (en) | Polyester resin mixtures and moldings formed therefrom | |
WO2023132368A1 (en) | Copolyester resin | |
JP6402441B2 (en) | Polyester manufacturing method | |
KR101127951B1 (en) | Biaxially-oriented polyester film and preparation method thereof | |
JP2004143209A (en) | Polybutylene terephthalate resin composition and molded product | |
BRPI1003219A2 (en) | process for producing polyethylene terephthalate based resins, polyethylene terephthalate based resins and use of said resins | |
JPS59152925A (en) | Copolymerization ester of polyethylene terephthalate and bis(4-beta hydroxyethoxyphenyl) sulfone | |
TW202436436A (en) | Method for producing a copolymerized polyester resin |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 24760304 Country of ref document: EP Kind code of ref document: A1 |