WO2024169282A1 - 一种终端天线、天线系统和电子设备 - Google Patents

一种终端天线、天线系统和电子设备 Download PDF

Info

Publication number
WO2024169282A1
WO2024169282A1 PCT/CN2023/131431 CN2023131431W WO2024169282A1 WO 2024169282 A1 WO2024169282 A1 WO 2024169282A1 CN 2023131431 W CN2023131431 W CN 2023131431W WO 2024169282 A1 WO2024169282 A1 WO 2024169282A1
Authority
WO
WIPO (PCT)
Prior art keywords
radiator
antenna
point
frequency band
current
Prior art date
Application number
PCT/CN2023/131431
Other languages
English (en)
French (fr)
Inventor
朱若晴
李元鹏
Original Assignee
荣耀终端有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 荣耀终端有限公司 filed Critical 荣耀终端有限公司
Publication of WO2024169282A1 publication Critical patent/WO2024169282A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/48Earthing means; Earth screens; Counterpoises
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/20Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements characterised by the operating wavebands
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way

Definitions

  • the embodiments of the present application relate to the field of antenna technology, and in particular, to a terminal antenna, an antenna system and an electronic device.
  • One or more metal decorative parts are provided in the electronic device to provide rigid support to the corresponding module.
  • metal decorative parts will have a significant impact on the radiation performance of nearby antennas.
  • the embodiments of the present application provide a terminal antenna, an antenna system, and an electronic device, which can reasonably design the metal Deco near the antenna to prevent the metal Deco from affecting the antenna radiation while providing support for the antenna radiation, thereby obtaining better radiation performance and more frequency band coverage.
  • a terminal antenna which is arranged in an electronic device, and the antenna comprises: a first radiator and a second radiator, wherein two ends of the first radiator are respectively provided with a first feeding point and a first grounding point, and the second radiator is provided with at least one grounding point.
  • the first feeding point is coupled to a first feed source, and the first grounding point and at least one grounding point on the second radiator are respectively coupled to a reference ground.
  • a first current is distributed on the first radiator.
  • a second current is distributed in a first area on the second radiator. The first area is close to a side of the first radiator on the second radiator, and the first area corresponds to an area where the first radiator is projected onto the second radiator.
  • the directions of the first current and the second current are the same.
  • the position on the second radiator close to the first grounding point can generate a current in the same direction as that on the first radiator. Therefore, the radiation generated by the current in the same direction on the second radiator will not only not affect the radiation of the first radiator, but also produce a positive superposition effect on the radiation of the first radiator, thereby improving the overall radiation performance.
  • the electronic device has a metal frame structure, the first radiator reuses at least a portion of the metal frame of the electronic device, and the second radiator reuses a metal decorative part in the electronic device.
  • the radiator of the first antenna is taken as an example of a metal frame.
  • the radiator of the first antenna may also be in the form of LDS, MDA, FPC, etc.
  • the minimum distance between the first radiator and the second radiator does not exceed 15 mm.
  • the at least one grounding point on the second radiator includes a second grounding point, and the second grounding point is arranged in the first area.
  • the first feeding point and the first grounding point are respectively provided at two ends of the first radiator, including: the first end of the first radiator is provided with the first grounding point.
  • the second grounding point is provided in the first area, including: the second grounding point is provided at the first end of the first area.
  • the first end of the first area corresponds to the projection position of the first end of the first radiator in the first area.
  • the second grounding point can be set at a position corresponding to the grounding point of the first radiator, so that the current coupled to the second radiator close to the first radiator can produce an effect in the same direction as that on the first radiator in the projection area (i.e., the first area) of the first radiator.
  • the operating frequency band of the first antenna includes a first frequency band.
  • the at least one grounding point on the second radiator includes a third grounding point.
  • the first feeding point and the first grounding point are respectively provided at both ends of the first radiator, including: the first end of the first radiator is provided with the first grounding point.
  • the projection position of the first end of the first radiator in the first area is the first position.
  • the distance between the third grounding point and the first straight line corresponds to 1/2 wavelength of the first frequency band.
  • the first straight line passes through the first position, and the first straight line is perpendicular to the straight line where the first radiator is located.
  • the grounding point on the second radiator may also be at an end in the first region away from the grounding point of the first radiator.
  • the unidirectional current generated in the first region on the second radiator can operate in the same frequency band as the first radiator.
  • the two unidirectional currents can achieve the effect of superimposing in the same frequency band.
  • the first radiator when the antenna is working, operates in a first frequency band, and the second radiator has a third current distributed on a side close to the first radiator, the third current includes the second current, and the third current is used to excite a 1 times wavelength mode covering the first frequency band on the second radiator.
  • the working mode on the second radiator on the side close to the first radiator can be a 1-wavelength mode.
  • the current of a part of the 1-wavelength mode (such as a 1/2 wavelength) can have the same direction as the current on the first radiator.
  • the straight line where the third current on the second radiator is located is parallel to the straight line where the first current on the first radiator is located.
  • the third current and the first current may be parallel to the straight line where the long side of the electronic device is located.
  • the operating frequency band of the first antenna includes a second frequency band.
  • At least one grounding point is provided on the second radiator, including: a fourth grounding point is provided on the second radiator.
  • a first feeding point and a first grounding point are provided at both ends of the first radiator, respectively, including: the first end of the first radiator is provided with the first grounding point.
  • the projection position of the first end of the first radiator in the first area is the first position.
  • the distance between the fourth grounding point and the second straight line corresponds to 1/2 wavelength or 1/4 wavelength of the second frequency band.
  • the second straight line passes through the first position, and the first straight line is parallel to the straight line where the first radiator is located.
  • a grounding point away from the first radiator may also be provided on the second radiator.
  • the setting of the grounding point can excite a current mode on the second radiator whose direction is perpendicular to the third current.
  • the current mode may be a transverse mode.
  • the transverse mode can be controlled by the distance between the fourth grounding point and the second straight line to achieve excitation in a 1/2 wavelength mode or a 1/4 wavelength mode, thereby achieving coverage of the second frequency band.
  • the first frequency band may be a 2.4 GHz or 5 GHz WIFI frequency band
  • the second frequency band may be a GPS frequency band
  • a second feeding point is further provided on the second radiator, and the second feeding point is coupled to a second feed source, and the second feed source is used to feed a signal to the second radiator through the second feeding point, so that the second radiator operates in a third frequency band.
  • the second radiator can be stimulated to work in the above-mentioned transverse mode and/or longitudinal mode while radiating the patch antenna.
  • the third frequency band can correspond to the area of the second radiator. The larger the area of the second radiator, the lower the third frequency band. Conversely, the smaller the area of the second radiator, the higher the third frequency band. In this way, without adding a new radiator, the number of covered frequency bands of the terminal antenna is expanded.
  • the coverage of the third frequency band can also be used to enhance the bandwidth of the first frequency band and/or the second frequency band.
  • an antenna system which is applied to an electronic device, and the antenna system includes a first antenna and a second antenna, wherein the first antenna is a terminal antenna provided in the first aspect and any possible design thereof.
  • the operating frequency band of the antenna system includes a first frequency band, a second frequency band, and a third frequency band.
  • the first radiator and the second radiator of the first antenna are used to cover the first frequency band.
  • the second radiator of the first antenna and the second antenna are used to cover the second frequency band.
  • the second radiator of the first antenna is also used to cover the third frequency band.
  • the second radiator of the first antenna includes a fourth grounding point, and the first end of the first radiator of the first antenna is provided with the first grounding point.
  • the projection position of the first end of the first radiator in the first area is the first position.
  • the first area is close to the side of the first radiator on the second radiator, and the first area corresponds to the area where the first radiator is projected onto the second radiator.
  • the distance between the fourth grounding point and the second straight line corresponds to 1/2 wavelength of the second frequency band.
  • the second straight line passes through the first position, and the first straight line is parallel to the straight line where the first radiator is located.
  • the transverse mode current distribution on the second radiator can be differentiated from the current distribution on the second antenna, thereby ensuring the isolation between the two when the transverse mode and the second radiator cover the same frequency band (such as the second frequency band).
  • the electronic device has a metal frame structure
  • the first radiator of the first antenna reuses at least a portion of the metal frame on the first side of the electronic device
  • the radiator of the second antenna reuses at least a portion of the metal frame on the second side of the electronic device
  • the first side and the second side are two adjacent sides.
  • the second radiator of the first antenna is arranged near the intersection of the second side and the third side, and the minimum distance from the second radiator to the second side or the third side does not exceed 15 mm.
  • an electronic device in a third aspect, is provided, the electronic device being provided with at least one processor, a radio frequency module, and a terminal antenna as provided in the first aspect and any possible design thereof, and/or an antenna system as provided in the second aspect and any possible design thereof.
  • the electronic device transmits or receives a signal
  • the signal is transmitted or received through the radio frequency module and the terminal antenna and/or the antenna system.
  • FIG1 is a schematic rear view of an electronic device
  • FIG2 is a schematic diagram of a side exposure of an electronic device
  • FIG3 is a schematic diagram of stacking near a camera module of an electronic device
  • FIG4 is a schematic diagram of an antenna arrangement
  • FIG5 is a schematic diagram of a grounding arrangement of a metal decorative part
  • FIG6 is a schematic diagram showing a comparison of current distribution on a metal decorative part and an antenna
  • FIG. 7 is a schematic diagram showing a comparison of current distribution on an antenna and a metal decorative part provided in an embodiment of the present application.
  • FIG8 is a schematic diagram of the working logic of an antenna solution provided in an embodiment of the present application.
  • FIG9 is a schematic diagram of the working logic of an antenna solution provided in an embodiment of the present application.
  • FIG10 is a schematic diagram of the working logic of an antenna solution provided in an embodiment of the present application.
  • FIG11 is a schematic diagram of the working logic of an antenna solution provided in an embodiment of the present application.
  • FIG12 is a schematic diagram of a setting range of a grounding point 33 provided in an embodiment of the present application.
  • FIG13 is a schematic diagram of S-parameter simulation of the antenna solution provided in an embodiment of the present application.
  • FIG14 is a schematic diagram of the working logic of an antenna solution provided in an embodiment of the present application.
  • FIG15 is a schematic diagram of the working logic of an antenna solution provided in an embodiment of the present application.
  • FIG16 is a schematic diagram of the working logic of an antenna solution provided in an embodiment of the present application.
  • FIG17 is a schematic diagram of the working logic of an antenna solution provided in an embodiment of the present application.
  • FIG18 is a schematic diagram of S-parameter simulation of the antenna solution provided in an embodiment of the present application.
  • FIG19 is a schematic diagram of the working logic of an antenna solution provided in an embodiment of the present application.
  • FIG20 is a schematic diagram of current simulation of an antenna solution provided in an embodiment of the present application.
  • FIG21 is a schematic diagram of current simulation of an antenna solution provided in an embodiment of the present application.
  • FIG22 is a schematic diagram of S-parameter simulation of the antenna solution provided in an embodiment of the present application.
  • FIG23 is a schematic diagram of ECC parameter simulation of the antenna solution provided in an embodiment of the present application.
  • FIG24 is a schematic diagram of the working logic of an antenna solution provided in an embodiment of the present application.
  • FIG. 25 is a schematic diagram of the setting of a metal Deco provided in an embodiment of the present application.
  • first and second are used for descriptive purposes only and are not to be understood as indicating or implying relative importance or implicitly indicating the number of the indicated technical features.
  • a feature defined as “first” or “second” may explicitly or implicitly include one or more of the features.
  • plural means two or more.
  • FIG1 shows a back view of an electronic device.
  • the electronic device is a mobile phone
  • the mobile phone has a metal frame structure as an example.
  • the metal frame can be set on the side periphery of the electronic device.
  • the metal frame can be used to provide a metal texture to the user and improve the structural strength of the electronic device.
  • the electronic device may be provided with at least one camera module.
  • the at least one camera module may include a front camera module, a rear camera module, etc. Take the rear camera module as an example.
  • the rear camera module may also be referred to as a rear camera module.
  • the rear camera module When the rear camera module is working, it can collect ambient light through at least one camera included therein.
  • a camera window may be provided on the back cover of the electronic device.
  • the position of the camera window may correspond to the position of the rear camera module of the electronic device.
  • the camera of the rear camera module may extend from the camera window to facilitate light collection during shooting.
  • FIG. 2 shows an exploded view of some components of an electronic device.
  • a floor may be provided inside the metal frame.
  • the floor may be used to provide a zero potential reference for each electronic component on the electronic device.
  • the floor may provide a zero potential reference for an antenna provided in the electronic device.
  • a printed circuit board (not shown in FIG. 2 ) may be installed on the floor.
  • the printed circuit board (PCB or PCB board for short) may be used to carry various electronic components in the electronic device.
  • a connector may be provided on the PCB, and the connector may be used to transfer signals between the rear camera module and the image processor provided on the PCB.
  • one or more gaps running through the inside and outside of the metal frame may be provided.
  • the multiple gaps may break the metal frame into multiple unconnected parts. Different parts of the metal frame may be reused as components of other components. For example, the metal frame may be reused as an antenna radiator, etc.
  • a decorative piece may also be provided between the rear camera module and the rear cover.
  • the decorative piece may be made of metal.
  • the decorative piece made of metal may be referred to as a metal decorative piece, or a metal Deco.
  • the metal Deco may be used to provide rigid protection for the camera in the rear camera module.
  • FIG2 is only an example of a metal decorative part.
  • a steel sheet may be embedded in the metal decorative part to improve the structural strength of the corresponding position.
  • Figure 3 shows the relative positions of the rear camera module, metal Deco, back cover and side metal frame from the tangent direction of the xoz plane.
  • the rear camera module in the z direction, the rear camera module, the metal Deco, and the back cover are arranged in sequence.
  • the metal frame can be located on the side of the metal Deco (such as the positive x direction).
  • the camera of the rear camera module can extend from the z direction through the metal Deco to the back cover for light collection.
  • the metal Deco may include a top metal portion of the xoy plane and a side metal portion of the yoz plane.
  • the side metal portions may be disposed on both sides of the top metal portion for rigidly supporting the top metal.
  • one end of the side metal portion is connected to the top metal portion, and the other end may be fixed to the PCB.
  • the fixing method may include welding, crimping, etc.
  • the side metal is not necessarily connected to the reference ground on the mainboard. That is, the metal Deco may be grounded or ungrounded.
  • the size of the rear camera module continues to expand.
  • the size of the Metal Deco can be slightly larger than the rear camera module, so the size of the Metal Deco also increases with the expansion of the rear camera module.
  • the distance between the Metal Deco and the side (or top) metal frame is correspondingly reduced. In some cases, the minimum distance between the Metal Deco (such as the top metal part and/or the side metal part of the Metal Deco) and the side metal frame is close to or even less than 15mm.
  • An antenna may be provided in the electronic device to implement the wireless communication function of the electronic device. Taking the electronic device shown in FIG. 1 to FIG. 3 as an example, an antenna implementation scheme therein is described by way of example.
  • the antenna is arranged on the side, such as the long side of the upper left corner of the back view as shown in FIG1 .
  • the radiator of the antenna can reuse the metal frame to achieve the purpose of radiation.
  • the antenna with the radiator reusing the metal frame can also be called a frame antenna.
  • FIG4 shows an example of a solution of antenna A1.
  • the radiator 11 of the antenna A1 can reuse the metal frame at the corresponding position.
  • the projection of the metal frame as the radiator of the antenna A1 in the negative direction of the x-axis may include at least a portion falling on the metal Deco.
  • a feed source and a ground point may be provided on the radiator of the antenna A1.
  • the feed source F1 may be provided at the lower end of the radiator, and the ground point G1 may be provided at the upper end of the radiator.
  • the antenna A1 may operate in a left-handed mode for radiation.
  • a capacitor may be connected in series between the feed source F1 and the radiator to excite the left-handed mode.
  • the antenna A1 may also be in other antenna forms, such as IFA, ILA, Loop, etc.
  • a grounding can be set on the metal Deco, thereby constructing a short-circuit wall to achieve isolation of the radiation of antenna A1 when it is working.
  • FIG5 is a schematic diagram of setting a grounding point on a metal Deco to construct a short-circuit wall.
  • the metal Deco may include at least two grounding points.
  • the grounding points on the metal Deco may include point 21 and point 22.
  • the point 21 and point 22 may be respectively set on an edge of the metal Deco close to the antenna A1 radiator. Take the antenna A1 radiator being set on the side as an example. Then the point 21 and point 22 on the metal Deco may be set on a side of the metal Deco close to the side metal frame (such as the left side). In some implementations, as shown in FIG. 5, point 21 and point 22 may be respectively set at the upper left corner and the lower left corner of the metal Deco.
  • a short-circuit wall that is nearly parallel to the antenna A1 radiator may be equivalently constructed between the point 21 and the point 22. The short-circuit wall may effectively isolate the inward radiation generated when the antenna A1 is working.
  • a point 23 for grounding can also be provided on the metal Deco.
  • the point 23 can be provided at the upper right corner of the metal Deco.
  • the point 23 can form a transverse short-circuit wall together with the point 22.
  • the transverse short-circuit wall can be used to further isolate the inward radiation of the antenna A1.
  • the transverse short-circuit wall can also have the effect of isolating the radiation of the top antenna.
  • FIG6 take the current distributed on the antenna radiator at the current moment as an example, in which a current flows from the ground point to the feed direction.
  • An electric field in the same direction can be distributed between the antenna radiator and the metal Deco, such as an electric field directed from the radiator to the metal Deco.
  • a current in the opposite direction to that on the antenna radiator will be generated at the edge of the metal Deco close to the antenna radiator.
  • the direction of the current generated on the metal Deco can be from point 22 to point 21.
  • the electric field example shown in FIG6 is only an example of direction and distribution, and has no corresponding relationship with the electric field strength at each position in space.
  • the reverse current on the metal Deco and the antenna radiator causes the structure between the metal Deco and the antenna radiator to present an electric field energy storage state at different phases, thereby affecting the normal radiation of the antenna A1. That is, the grounding setting of the metal Deco as shown in Figure 5 or Figure 6 will still have a significant impact on the normal operation of the nearby antenna (such as antenna A1).
  • the antenna A1 close to the metal Deco is used as a frame antenna for illustration.
  • the antenna A1 is realized by laser direct structuring (LDS), metalframe diecasting for anodizing (MDA), flexible printed circuit (FPC), etc.
  • LDS laser direct structuring
  • MDA metalframe diecasting for anodizing
  • FPC flexible printed circuit
  • the embodiment of the present application provides a terminal antenna, which can select at least one grounding point at a preset position on the metal Deco. By setting the at least one grounding point, the influence of the metal Deco on the radiation of the antenna body can be avoided.
  • the metal Deco can be effectively stimulated to produce parasitic resonance, which is used to expand the antenna coverage bandwidth and/or improve the radiation performance of the antenna body.
  • more grounding points at preset positions can be set on the Metal Deco, so that the Metal Deco can also stimulate currents perpendicular to the straight line where the long side of the antenna radiator is located (such as transverse currents).
  • the current distribution can also be used to improve the radiation performance of the antenna.
  • the isolation between the antennas is increased by reasonably adjusting the working mode of the transverse current to avoid mutual interference between the antennas.
  • an additional feed source may be provided on the Metal Deco, so that the Metal Deco can work in another frequency band without affecting the radiation of the original antenna, thereby enriching the range of frequency bands covered by the electronic device.
  • the antenna solution provided in the embodiment of the present application can be applied to the user's electronic device.
  • the electronic device can also be called a terminal device.
  • the antenna solution provided in the embodiment of the present application is set in a terminal device, it can also be called a terminal antenna.
  • the setting of the antenna solution in the electronic device can be used to support the wireless communication function of the electronic device.
  • the electronic device may include a mobile phone as shown in Figures 1 to 3.
  • the electronic device may also have other implementation forms.
  • the electronic device may be a smart switch, an electronic switch, a tablet computer, a desktop, a laptop, a handheld computer, a notebook computer, a vehicle-mounted device, an ultra-mobile personal computer (UMPC), a netbook, a cellular phone, a personal digital assistant (PDA), an augmented reality (AR) or a virtual reality (VR) device, etc.
  • UMPC ultra-mobile personal computer
  • PDA personal digital assistant
  • AR augmented reality
  • VR virtual reality
  • the electronic device may include a processor, an external memory interface, an internal memory, a universal serial bus (USB) connector, a charging management module, a power management module, a battery, at least one antenna, a mobile communication module, a wireless communication module, an audio module, a speaker, a receiver, a microphone, an earphone interface, a sensor module 180, a button, a motor, an indicator, a camera module, a display screen, and a subscriber identification module (SIM) card interface, etc.
  • a processor an external memory interface
  • an internal memory a universal serial bus (USB) connector
  • USB universal serial bus
  • the sensor module may include a pressure sensor, a gyroscope sensor, an air pressure sensor, a magnetic sensor, an acceleration sensor, a distance sensor, a proximity light sensor, a fingerprint sensor, a temperature sensor, a touch sensor, an ambient light sensor, a bone conduction sensor, etc.
  • At least one antenna can be connected to the mobile communication module and/or Or a wireless communication module is coupled to realize signal transmission and reception.
  • the electronic device may have a metal frame structure as shown in FIG. 1 or FIG. 2, and the at least one antenna may be a frame antenna.
  • the at least one antenna may include an antenna A1 disposed near the metal Deco and on the long side of the electronic device.
  • the relative relationship of the vicinity is similar to the relative position relationship of the proximity, which can be understood as: the minimum distance between the metal frame reused as the antenna radiator and the metal Deco does not exceed 15mm.
  • the operating frequency band of the antenna A1 may include a first frequency band, or the operating frequency band of the antenna A1 may include a first frequency band and a second frequency band.
  • the first frequency band may be a 2.4G WIFI frequency band.
  • the 2.4G WIFI frequency band may include 2.4GHz-2.5GHz.
  • the second frequency band may be a GPS frequency band.
  • the GPS frequency band may include 1575MHz.
  • the at least one antenna may include an antenna A1 disposed near the metal Deco and on the long side of the electronic device; and an antenna A2 disposed near the metal Deco and on the short side of the electronic device.
  • the operating frequency band of the antenna A1 is similar to the above example.
  • the operating frequency band of the antenna A2 may include the first frequency band, or the operating frequency band of the antenna A2 may include the first frequency band and the second frequency band.
  • the working frequency band of the antenna A1 may include at least a partial overlap with the working frequency band of the antenna A2.
  • the working frequency band of the antenna A1 includes the 2.4G WIFI frequency band
  • the working frequency band of the antenna A2 includes both the 2.4G WIFI frequency band and the GPS frequency band.
  • the camera module may include a rear camera module, a front camera module, etc.
  • the rear camera module may be provided with a corresponding metal Deco.
  • the setting of the metal Deco may refer to the schematic diagram of FIG. 2 or FIG. 3.
  • the x-dimension of the metal Deco may be in the range of 5 mm to 85 mm.
  • the y-dimension of the metal Deco may be in the range of 5 mm to 85 mm.
  • At least one grounding point can be set at a preset position on the metal Deco.
  • the antenna near the metal Deco is working, through electromagnetic coupling, the current in the same direction as the antenna (such as antenna A1) can be excited at the position corresponding to the antenna radiator on the metal Deco, thereby improving the antenna performance.
  • the radiator of antenna A1 may include part of the metal frame on the side of the electronic device.
  • metal Deco can radiate as part of antenna A1. Therefore, in this application, the radiator of antenna A1 may include part of the metal frame on the side of the electronic device, as well as metal Deco.
  • the antenna A1 and/or the antenna A2 in the electronic device may also be implemented in the form of FPC, LDS, MDA, etc.
  • FPC frequency division multiplexing
  • LDS low-density diode
  • the electronic device may include more or fewer components, or combine certain components, or separate certain components, or arrange the components in different ways.
  • the above components may be implemented in hardware, software, or a combination of software and hardware.
  • the terminal antenna solution provided by the embodiment of the present application will be described in detail below in conjunction with the accompanying drawings.
  • the terminal antenna solution can achieve its effect through the corresponding grounding setting on the metal Deco.
  • the frame antenna A1 disposed near the metal Deco and located on the side of the electronic device is taken as an example.
  • FIG. 7 is an example of a terminal antenna solution provided in an embodiment of the present application.
  • the antenna solution shown in FIG. 7 may include at least two logical components: an antenna body, and a metal Deco.
  • the antenna body may correspond to the antenna A1 in the existing design (such as the design shown in FIG. 4 to FIG. 6 ).
  • the antenna A1 may be a side frame antenna.
  • a ground point and a feed source may be provided on the radiator 11 of the antenna A1.
  • the feed source may be located at one end of the radiator 11, such as the lower end corresponding to the negative direction of the y-axis.
  • the ground point may be located at the other end of the radiator 11, such as the upper end corresponding to the positive direction of the y-axis.
  • At least one grounding point may be provided on the metal Deco.
  • the antenna A1 shown in FIG7 may also be referred to as the first antenna.
  • the radiator 11 of the antenna A1 may be referred to as the first radiator.
  • the metal Deco may be used as a part of the first antenna, such as the metal Deco may be referred to as the second radiator.
  • the at least one grounding point may include a point 31 for grounding.
  • the point 31 may be referred to as a second grounding point.
  • the point 31 may be disposed on one side of the radiator 11 of the Metal Deco Antenna A1 .
  • the point 31 may be arranged close to a point where the ground return current of the antenna A1 is large.
  • antenna A1 in Figure 7 For example, take antenna A1 in Figure 7 as an example.
  • the point where the return current of antenna A1 is large can be located at the grounding point G1 of antenna A1.
  • the setting of point 31 on the metal Deco can refer to the following two points (as shown in 1-1 and 1-2):
  • the point 31 can be set on a side of the metal Deco close to the antenna A1.
  • the side close to the antenna A1 can refer to: the edge of the metal Deco close to the antenna A1, or the area on the metal Deco extending inward (i.e., in the negative direction of the x axis) from the edge close to the antenna A1 by no more than 10 mm.
  • the point 31 can coincide with or be close to the projection of G1 onto the metal Deco (i.e., the projection along the negative direction of the x-axis).
  • the projection of G1 onto the metal Deco being close to point 31 can be understood as: point 31 is located within the range of +/-15mm along the y direction of the projection position of G1 on the metal Deco. That is, a one-dimensional coordinate is established in the y direction with the projection point of G1 on the metal Deco as the center. Then the setting of point 31 can be within the range of -15mm to 15mm.
  • the second grounding point corresponds to the projection position of the first end of the first radiator in the first area. It can be understood that when the projection of the point 31 coincides with the projection of the grounding point G1 on the side of the metal Deco close to the radiator 11, the position corresponding to the point 31 can also be called the first position.
  • the first area involved in the embodiment of the present application may be a partial area on the second radiator (i.e., metal Deco) close to the antenna A1 side.
  • the first area may include the area where the radiator 11 is projected onto the metal Deco.
  • the upper end of the first area may be the position corresponding to point 31.
  • the lower end of the first area may be the position after the feed source F1 of the antenna A1 is projected onto the metal Deco.
  • the lower end of the first area may extend to the lower edge of the metal Deco.
  • the current direction at the position on the metal Deco corresponding to the radiator 11 of the antenna A1 i.e., the projection position of the radiator 11 on the metal Deco
  • the current direction at the position on the metal Deco corresponding to the radiator 11 of the antenna A1 can be the same as the current direction on the radiator 11. This avoids the influence on the radiation process of the antenna A1 caused by the reverse current as shown in FIG6.
  • the longitudinal (i.e., y-direction) current on the metal Deco can also be used to enhance the antenna performance through a 1x wavelength mode. Radiation performance of line A1.
  • the 1-times-wavelength mode of the longitudinal current can be used to cover the first frequency band. In other embodiments, the 1-times-wavelength mode of the longitudinal current can be used to cover the second frequency band.
  • the center frequency wavelength of the first frequency band is the first wavelength.
  • the y-dimension of the metal Deco is greater than or equal to the first wavelength.
  • a current 41 in the negative direction of the y-axis in the same direction as that on the radiator 11 can be distributed from point 31 to the negative direction of the y-axis.
  • a current 42 in the positive direction of the y-axis can be distributed from point 31 to the positive direction of the y-axis.
  • the position of point 31 can be expressed as a current reversal point, that is, a current reversal point corresponding to a 1-times-wavelength mode.
  • the electrical lengths of the current 41 and the current 42 can be respectively close to or equal to 1/2 of the first wavelength. Then, the current 41 and the current 42 can together constitute a current distribution with a 1-times-wavelength resonance characteristic corresponding to the first frequency band.
  • the current 41 may be referred to as a second current.
  • the current 41 and the current 42 may together constitute a third current corresponding to 1 times the wavelength.
  • the metal Deco can excite the 1-wavelength mode corresponding to the working frequency band of the antenna A1 in the y direction. That is, the metal Deco can generate a 1-wavelength resonance corresponding to the first frequency band based on the parasitic principle.
  • the resonance of the longitudinal 1-times-wavelength mode generated by the metal Deco and the resonance generated by the antenna A1 can be superimposed in space to jointly cover the first frequency band, thereby improving the radiation performance of the antenna A1 in the first frequency band.
  • the metal Deco can be directly grounded from the point 31 .
  • a matching circuit may be provided between point 31 on the metal Deco and the reference ground.
  • the matching circuit may include at least one of an inductor, a capacitor, and a resistor. The type and number of components in the matching circuit may be selected according to actual conditions.
  • a capacitor included in a matching circuit can be set to a value between 0pF and 10pF. This capacitor can be used to tune the coupling between the metal Deco and the antenna A1 at point 31, thereby stimulating a better 1x wavelength mode to radiate on the metal Deco.
  • a matching circuit is provided between point 31 and the reference ground to achieve relevant adjustments.
  • the resonance corresponding to the longitudinal (y-direction) 1x wavelength mode of Metal Deco can be tuned to the first frequency band.
  • more grounding points can be set on the metal Deco to achieve the purpose of tuning 1 times the wavelength to cover the frequency band.
  • a point 32 for grounding may be provided at the lower side of point 31 (in the negative direction of the y-axis).
  • the y-direction distance between point 32 and point 31 may be controlled to be 1/2 of the first wavelength.
  • the y-direction distance between point 32 and point 31 may also be described as the distance from point 32 to a first straight line.
  • the first straight line may be a straight line passing through point 31, and the first straight line may be perpendicular to the straight line where the radiator 11 is located. That is, the first straight line may be a straight line passing through point 31. 31 along the x-axis.
  • point 32 can effectively divert the y-direction current on the metal Deco to the reference ground at a position half a wavelength away from point 31, thereby tuning the 1 times wavelength mode tuning coverage frequency band on the metal Deco to the first frequency band.
  • point 32 can also be called the third grounding point.
  • the y-direction current corresponding to the 1 times wavelength mode on the metal Deco can be called the third current.
  • the current between point 32 and point 31 can be the second current.
  • the current on the radiator 11 can be the first current.
  • the distribution area of the second current can also correspond to the first area on the metal Deco. That is, the third current includes the second current.
  • the second current is in the same direction as the first current.
  • a matching circuit may also be arranged between point 32 and the reference ground.
  • the matching circuit may include at least one of a capacitor, an inductor, and a resistor.
  • the matching circuit may be used to tune the 1x wavelength on the Metal Deco.
  • the point 32 when the y-direction dimension of the metal Deco is less than 2/2 times of the first wavelength, the point 32 can be set at the bottom end of the metal Deco in the negative direction of the y-axis.
  • An inductor can be set in the matching circuit between the point 32 and the reference ground, thereby increasing the electrical length from the point 31 on the metal Deco to the ground. Then, the 1-times-wavelength mode on the metal Deco is tuned to the vicinity of the first frequency band.
  • the purpose of tuning the 1x wavelength mode to cover the frequency band is achieved by setting point 32 at 1/2 wavelength below point 31.
  • the grounding point for diverting and controlling the electrical length of the 1x wavelength mode can also be set on the upper side of point 31.
  • a point 32' for grounding can be set on the metal Deco.
  • the y-direction distance between the point 32' and the point 31 can be controlled to be about 1/2 of the first wavelength. In this way, the effect of adjusting the electrical length corresponding to the current 42 in the current distribution of the 1 times wavelength mode is achieved.
  • the 1 times wavelength mode on the metal Deco can also be tuned to the vicinity of the first frequency band.
  • the settings and deformations related to the point 32' can refer to the description of point 32.
  • a matching circuit can be set between point 32' and the reference ground.
  • FIG. 9 and FIG. 10 illustrate the y-direction size setting of point 32 (or point 32').
  • the x-direction position of point 32 (or point 32') may be flexible. Take point 32 as an example.
  • the x-axis coordinate of point 32 may be the same as or close to the x-axis coordinate of point 31. That is, point 32 may be set on a side of the metal Deco close to the antenna A1.
  • the x-axis coordinate of point 32 may be different from that of point 31.
  • point 32 may be disposed on a side of the display Deco away from antenna A1.
  • the oblique current can also be decomposed into a part of the one-time wavelength mode in the y-axis (such as current 41).
  • the metal Deco may also be provided with a point 32 as shown in FIG. 9 and a point 32' as shown in FIG. 10.
  • the electrical length of the return current on both sides of the point 31 is adjusted at the same time, so that the 1x wavelength mode on the metal Deco can cover the first frequency band more accurately.
  • the scheme examples in Figures 7 to 10 above set at least one grounding point on the metal Deco to achieve the excitation of the 1-times-wavelength mode in the longitudinal direction (y direction) on the metal Deco, thereby avoiding the influence on the radiation of the antenna A1 and improving the radiation performance of the antenna A1 in the first frequency band.
  • the above example is described by using a longitudinal 1-time wavelength to cover the first frequency band.
  • the longitudinal 1-time wavelength can also be used to cover the second frequency band or other frequency bands.
  • the specific implementation can refer to the description in the aforementioned Figures 7 to 10, and will not be repeated one by one.
  • a grounding point is set on the metal Deco, which can also be used to couple the lateral (x-direction) current generated on the metal Deco.
  • the lateral current can also be used to improve the radiation performance of the working frequency band. Take the example of improving the radiation performance of the second frequency band by the lateral current.
  • the wavelength of the center frequency point of the second frequency band can be the second wavelength.
  • the transverse current can cover the second frequency band through a 1/2 wavelength mode to improve the radiation performance of the second frequency band.
  • the transverse current can cover the second frequency band through a 1/4 wavelength mode to improve the radiation performance of the second frequency band.
  • a point 33 may be provided on the metal Deco for grounding. By providing this point 33, the effect of exciting the transverse current can be achieved.
  • the position of the point 33 can satisfy the following two restrictions (as shown in 2-1 and 2-2):
  • the y coordinate parameters of point 33 and the point G1 of the antenna A1 with large return current are the same or similar.
  • the point 33 can be set on the straight line where the projection of the grounding point G1 of the antenna A1 along the x axis onto the metal Deco is located.
  • the distance between point 33 and the edge of the metal Deco close to the antenna A1 can be controlled to be 1/4 of the second wavelength or 1/2 of the second wavelength.
  • point 33 can also be called the fourth grounding point, and the position of the fourth grounding point can be described as that the distance between the fourth grounding point and the second straight line corresponds to 1/2 wavelength or 1/4 wavelength of the second frequency band.
  • the second straight line can be a straight line along the direction of the y-axis (i.e., parallel to the straight line where the radiator 11 is located). The second straight line can pass through point 31 (such as the first position).
  • the energy on the antenna A1 can be coupled to the metal Deco and then flow back to the reference ground in the transverse direction at the point 33.
  • a transverse current is excited on the metal Deco.
  • the transverse current can correspond to the 1/2 wavelength or 1/4 wavelength mode of the second frequency band, so that the transverse current can cover the second frequency band in the 1/2 wavelength mode or the 1/4 wavelength mode.
  • the lateral (x-direction) length between point 33 and G1 at the corresponding position of the metal Deco is 1/4 of the second wavelength.
  • the metal Deco can be excited to obtain a lateral 1/4 wavelength mode covering the second frequency band.
  • the metal Deco taking the case where the transverse (x-direction) length between point 33 and G1 at the corresponding position of the metal Deco (i.e., the position of the above-mentioned point 31) is 1/2 of the second wavelength, the metal Deco can be excited to obtain a transverse 1/2 wavelength mode covering the second frequency band.
  • the purpose of covering the second frequency band is achieved.
  • the working frequency band of the antenna A1 includes the second frequency band
  • the 1/2 wavelength mode or 1/4 wavelength mode covering the second frequency band excited on the metal Deco can be superimposed on the radiation of the antenna A1, thereby enhancing the antenna A1.
  • Radiation performance in the second frequency band When the working frequency band of the antenna body (i.e., the radiator 11) of the antenna A1 does not include the second frequency band, the 1/2 wavelength mode or the 1/4 wavelength mode is excited on the metal Deco to cover the second frequency band, thereby achieving the effect of expanding the frequency band coverage of the antenna A1.
  • the y-direction (i.e., longitudinal) setting of the point 33 may be restricted by other components, so it is difficult to accurately keep consistent with the y-direction coordinate of the grounding point G1.
  • the y-direction coordinate of the point 33 may also be close to the coordinate parameters of G1.
  • an example of the setting range of point 33 provided in an embodiment of the present application is shown.
  • Point 33 is set within a range of a/2 extending in the positive y-direction (above as shown in Figure 12) and a/4 extending in the negative y-direction (below as shown in Figure 12) with the y-coordinate of G1 as the origin.
  • a is the total length of the metal Deco in the y-direction.
  • FIG12 above shows an example of the y-direction setting range of the point 33 based on a specific size.
  • the y-direction setting range of the point 33 can also be: taking the y coordinate of G1 as the origin, extending 1/4 wavelength upward and 3/4 wavelength downward.
  • a corresponding matching circuit may be provided between point 33 and the reference ground.
  • the setting of the matching circuit may refer to the matching circuit corresponding to point 31 in the above example. The functions and setting methods of the two are similar and will not be described in detail here.
  • the setting of point 33 does not change the boundary conditions of the metal Deco relative to the antenna body of antenna A1. Therefore, the setting of point 33 will not affect the coupling state from the ground point G1 to the metal Deco on the radiator 11. In this way, after the setting of point 33, while being able to excite the transverse current in the aforementioned implementation, the metal Deco can also be distributed with a longitudinal 1-times-wavelength mode as shown in FIG. 7 or FIG. 8.
  • the longitudinal 1x wavelength mode and the lateral 1/2 wavelength mode or 1/4 wavelength mode can be excited simultaneously on the Metal Deco.
  • the longitudinal mode can be used to cover a first frequency band.
  • the transverse mode can be used to cover a second frequency band.
  • the lateral 1/2 wavelength is excited by setting point 33.
  • resonance 51-resonance 53 can correspond to the resonance of the lateral 1/2 mode on the metal Deco.
  • Resonance 52 can correspond to the resonance generated by the antenna body part of antenna A1 (i.e., radiator 11).
  • Resonance 53 can correspond to the resonance of the longitudinal 1 times wavelength mode on the metal Deco. It can be seen from the return loss that even if Metal Deco is set, the bandwidth is significantly improved due to the application of the setting of point 33 provided in this application. The resonance depth is also significantly optimized.
  • the system efficiency in Figure 13 is compared with the case without metal Deco.
  • metal Deco is set and point 33 is grounded according to the scheme shown in Figure 11 or Figure 12, the efficiency around 2.4GHz-2.5GHz is
  • the efficiency peak of the lateral 1/2 wavelength mode i.e. the mode corresponding to resonance 51
  • the efficiency peak of the longitudinal 1 wavelength mode i.e. the mode corresponding to resonance 53
  • exciting the transverse and longitudinal modes can effectively improve the radiation performance of the antenna A1.
  • FIG. 13 above is an example of exciting the transverse 1/2 wavelength mode on the metal Deco.
  • exciting the 1/4 wavelength mode on the metal Deco can also achieve a similar effect.
  • the lateral mode and the longitudinal mode on the metal Deco can be excited simultaneously by setting point 33.
  • point 32 can also be set near the edge of antenna A1.
  • the y-axis coordinate of point 32 is different from the y-axis coordinate of point 33.
  • the setting of point 32 can be used to control the current return to ground of the longitudinal 1x wavelength mode, thereby tuning the 1x wavelength mode to the desired frequency band.
  • the longitudinal 1x wavelength mode is used to cover the first frequency band. Then, the difference in the y-axis coordinates between point 32 and point 33 can correspond to 1/2 of the first wavelength.
  • the current distribution on the side of the metal Deco close to the antenna A1 conforms to the distribution characteristics of the 1x wavelength mode corresponding to the first frequency band.
  • the longitudinal 1x wavelength mode is tuned to the first frequency band.
  • b1 can be set to correspond to 1/2 of the first wavelength
  • b2 can be set to correspond to 1/2 of the second wavelength
  • b1 can be set to correspond to 1/2 of the first wavelength
  • b2 can be set to correspond to 1/4 of the second wavelength
  • the adjustment method of the coverage frequency band of the horizontal 1/2 wavelength mode and the vertical 1 times wavelength mode can refer to the corresponding adjustment in the above examples and will not be repeated here.
  • two grounding points can be set on the metal Deco at the same time to achieve the excitation of the transverse mode and the longitudinal mode.
  • the coverage frequency bands of the transverse mode and the longitudinal mode can be the same or different.
  • three grounding points may be provided on the metal Deco at the same time. By adjusting the positions of the three grounding points, the excitation of the transverse mode and the longitudinal mode can be further tuned.
  • Point 31, point 32 and point 33 can be set on the metal Deco at the same time.
  • point 31, point 32 and point 33 can refer to the description in the above examples respectively. Their specific implementations can refer to each other.
  • the x-axis position of point 32 can also be flexibly selected.
  • point 32 can be set below point 31, that is, metal Deco
  • the point 32 is located on the side close to the radiator 11.
  • the point 32 can be set below the point 33, that is, the side of the metal Deco away from the radiator 11.
  • the y-axis coordinate difference between the point 32 and the point 31 or the point 33 can be controlled to be near 1/2 of the first wavelength. In this way, the coverage frequency band of the longitudinal mode is tuned to the vicinity of the first frequency band.
  • antenna A1 is used as a left-hand antenna.
  • antenna A1 may be necessary to synchronously adjust the lower ground position (such as point 31) of the metal Deco on the longitudinal close side according to the change of the current point of the antenna body on antenna A1.
  • the coupling strength can be improved to achieve a better longitudinal 1-wavelength excitation.
  • the metal Deco can participate in effective radiation as a part of the antenna A1.
  • the radiation capacity of the antenna A1 is improved.
  • the electronic device may be provided with an antenna A2 which is also located near the metal Deco.
  • the antenna A2 is disposed on the top left side of the back view of the electronic device.
  • the antenna A2 may be arranged above the metal Deco (i.e., in the positive direction of the y-axis).
  • the antenna A2 may include a radiator, such as the radiator 12. Take the antenna A2 as an IFA-type frame antenna as an example.
  • the antenna A2 may include a grounding point G3 arranged at the left end of the radiator 12.
  • the antenna A2 may also include a feed source F2 arranged on the radiator 12.
  • the antenna A2 When the antenna A2 is working, its working frequency band can be covered by the 1/2 wavelength mode or the 1/4 wavelength mode.
  • the operating frequency band of antenna A2 may include a first frequency band and/or a second frequency band.
  • the operating frequency band of antenna A2 may include at least a portion overlapping with antenna A1.
  • the first frequency band may be a 2.4G WIFI frequency band
  • the second frequency band may be a GPS frequency band.
  • the working frequency bands of antenna A1 and antenna A2 both include the 2.4G WIFI band
  • the 2.4G WIFI coverage of dual antennas can effectively improve the throughput rate of WIFI communication.
  • a grounding point can also be set on the metal Deco accordingly, so that the direction of the lateral mode current on the metal Deco is the same as the direction of the current on the radiator 12, avoiding the influence of the metal Deco on the operation of the radiator 12.
  • settings corresponding to points 31, 32, and 33 in the aforementioned example can be made on the metal Deco to improve the radiation performance of the antenna A2. The specific settings can be referred to the aforementioned description. No further details will be given here.
  • the metal Deco For example, three grounding points as shown in FIG. 16 are set on the metal Deco to improve the radiation performance of the antenna A1, the lateral mode of the metal Deco is used to cover the second frequency band, and the working frequency band of the antenna A2 also includes the second frequency band.
  • a problem of poor isolation may occur, thereby affecting the radiation performance of the two antennas in the corresponding frequency bands.
  • the transverse mode of the metal Deco can be tuned to the 1/2 wavelength mode. In order to reduce the mutual influence between the two antennas.
  • the maximum current point of the transverse mode can be close to the position of the top antenna feed (i.e., the feed F2 of the antenna A2).
  • the feed F2 of the antenna A2 can correspond to the current maximum point of the antenna A2.
  • the lateral mode on the metal Deco is used to cover the first frequency band.
  • the isolation simulation between antenna A1 and antenna A2 is shown when both use the 1/2 wavelength mode to cover the first frequency band, and when the 1/4 wavelength mode is used to cover the first frequency band.
  • the 1/2 wavelength mode can be a 1/2 wavelength mode of the transverse current.
  • the transverse mode radiation of Metal Deco is also included in the radiation of Antenna A1.
  • antenna A1 and Metal Deco cover the 2.4G WIFI band through the 1/4 wavelength mode
  • antenna A2 covers the 2.4G WIFI band through the 1/4 wavelength mode
  • the dual-port isolation of antenna A1 and antenna A2 is poor, with the worst point close to -8dB. Therefore, there will be obvious interference between the two.
  • the antenna A2 covers the first frequency band through 1/4 wavelength and the transverse mode on the metal Deco is a 1/2 wavelength mode, since the two modes are different and the current distribution is also different, the isolation will be better and the mutual interference will be lower.
  • the metal Deco can cover the first frequency band or the second frequency band through the 1/2 wavelength mode. In this way, the isolation between antenna A1 and antenna A2 is guaranteed, thereby improving the radiation performance of the entire antenna system.
  • the antenna solution provided in the embodiment of the present application can avoid the influence of the metal Deco on the antenna when it is set close to the antenna by setting at least one grounding point (such as at least one of points 31 to 33) on the metal Deco.
  • the longitudinal 1x wavelength mode and/or the transverse 1/2 wavelength mode (or the transverse 1/4 wavelength mode) on the metal Deco can also be stimulated to improve the radiation performance of the original antenna.
  • This solution can also be applied to an antenna system including multiple border antennas. By controlling the transverse mode on the metal Deco to work in the 1/2 wavelength mode, the isolation of adjacent antennas is optimized, so that the entire antenna system obtains better radiation performance.
  • the antenna solution i.e., the metal Deco grounding solution
  • the coverage frequency bands of antenna A1 and antenna A2 may include at least partial overlap.
  • Antenna A1 and antenna A2 may be located on two vertical sides close to the metal Deco, respectively.
  • points 31, 32, and 33 can be set on the metal Deco. Any one or more of the points 31, 32, and 33 can be set with a matching circuit between the reference ground.
  • Point 31 can be used to excite the longitudinal 1-wavelength on the side of the metal Deco close to the antenna A1, thereby achieving the excitation of the same-direction current at the position on the metal Deco corresponding to the radiator 11 of the antenna A1.
  • Point 32 can be used to tune the longitudinal 1-wavelength current.
  • the underground position of the flow is determined so that the longitudinal 1 times wavelength can cover or partially cover the first frequency band and/or the second frequency band.
  • Point 33 can be used to excite the lateral 1/2 wavelength mode to cover or partially cover the first frequency band and/or the second frequency band.
  • Metal Deco can radiate as a part of Antenna A1. Therefore, through the setting of points 31 to 33 on Metal Deco, in terms of logical division, Metal Deco can be included in Antenna A1. That is, the radiator of Antenna A1 includes radiator 11 and Metal Deco.
  • the horizontal 1/2 wavelength corresponding to the point 33 can improve the isolation between the antenna A1 and the antenna A2. Therefore, even if the working frequency band of the antenna A2 includes the horizontal 1/2 wavelength coverage band on the metal Deco, the isolation between the antenna A1 and the antenna A2 can be well controlled.
  • the longitudinal current is distributed at 1 times the wavelength.
  • the frame antenna current is in the same direction as the metal Deco edge current.
  • the small point of the metal Deco edge current corresponds to the large point of the frame current, which is EH electromagnetic coupling.
  • the metal Deco is distributed at 1/2 times the wavelength horizontally, and the position of the large current point is basically consistent with the position of the large current point of the frame antenna (such as antenna A2), which is HH magnetic coupling.
  • the current on the decorative part is weak as a whole. Moreover, the current direction on the side of the metal Deco close to the antenna A1 is opposite to the current direction on the antenna A1.
  • a strong current is distributed on the metal Deco.
  • the strong current distribution can support the metal Deco to radiate effectively in the longitudinal mode and the transverse mode.
  • FIG. 22 a schematic diagram of system efficiency simulation between the solution provided by the embodiment of the present application and the conventional solution is shown.
  • an efficiency comparison under hand model scenarios (such as left hand model and right hand model) is also provided.
  • the efficiency peak is close to -3dB.
  • the efficiency peak in the conventional design is only -5dB.
  • the -6dB bandwidth of the solution provided by the present application is also significantly higher than that of the conventional design.
  • the right-hand mode peak efficiency of the solution provided by the present application reaches -8dB.
  • the peak efficiency of the right-hand mode in the conventional design is less than -10dB.
  • the bandwidth of the solution provided by the present application is significantly higher than that of the conventional design.
  • the peak efficiency of the right-hand mode of the solution provided by the present application reaches -6dB.
  • the peak efficiency of the left-hand mode in the conventional design is less than -8dB.
  • the bandwidth of the solution provided by the present application is significantly higher than that of the conventional design.
  • the solution provided by the present application has a higher peak efficiency and a smaller hand mode drop than the conventional design.
  • the radiation performance of the solution shown in FIG19 is significantly better than the conventional design.
  • the correlation between the received signal amplitudes between different antenna units can usually be characterized by the Envelop Correlation Coefficient (ECC).
  • ECC Envelop Correlation Coefficient
  • FIG. 23 shows a schematic comparison of the ECC simulation of this solution and the conventional design.
  • the first frequency band (2.4G WIFI band) as an example.
  • ECC increases significantly in high-efficiency frequency bands (such as around 2.5 GHz), indicating that the mutual influence between the two antennas increases significantly in this frequency band.
  • ECC is kept below 0.1. This shows that the two antennas have good independent working capabilities. When one antenna is working, it is basically not affected by the other antenna.
  • an independent feed source can also be set on the Metal Deco to facilitate the Metal Deco to radiate independently and cover a third frequency band different from the first frequency band or the second frequency band.
  • a feed source F3 may be provided on the metal Deco.
  • the feed source F3 may be used to excite the metal Deco to operate in the third frequency band.
  • the third frequency band may correspond to the area of the metal Deco. The larger the area of the metal Deco, the more the third frequency band is biased toward low frequency. Conversely, the smaller the area of the metal Deco, the more the third frequency band is biased toward high frequency.
  • a corresponding matching circuit may also be provided between the feed source F3 and the metal Deco for tuning the third frequency band.
  • the design of the matching circuit may also be used to better preserve the boundary conditions corresponding to any of the grounding points 31 to 33, so that the metal Deco will not significantly affect the transverse mode and the longitudinal mode in the aforementioned example while radiating the third frequency band.
  • the matching circuit between the feed source F3 and Metal Deco may include a small parallel inductor.
  • the inductance of the small inductor may not exceed 10nH.
  • the setting of the small parallel inductor can be used to design boundary conditions without destroying the original large current point.
  • the matching circuit between the feed source F3 and Metal Deco may also include other forms of LC circuits. The embodiments of the present application do not limit the specific components in the matching circuit.
  • the feeding source F3 as an example, which is set at the location of the large electric field of the metal Deco.
  • the matching circuit between the feeding source F3 and the metal Deco may include a parallel capacitor. The setting of the parallel capacitor can be used to design the boundary conditions without destroying the original large electric field point.
  • the metal Deco has a rectangular appearance and is set in the upper left corner of the back view of the electronic device. It should be understood by those skilled in the art that in other metal Deco designs, In the embodiment of the present invention, the solution can also be applied accordingly.
  • the appearance of the metal Deco can also include a rectangular appearance with a central design as shown in 61 in FIG. 25.
  • the appearance of the metal Deco can also include a circular or elliptical appearance with a central design as shown in 62 in FIG. 25.
  • the specific implementation on different metal Deco can refer to the description in the above examples, and the effects that can be achieved are similar, which will not be repeated here.

Landscapes

  • Details Of Aerials (AREA)
  • Support Of Aerials (AREA)

Abstract

本申请实施例公开了一种终端天线、天线系统和电子设备,涉及天线技术领域,可以通过对天线附近的金属Deco进行合理设计,使得避免金属Deco对天线辐射产生影响。具体方案为:第一辐射体和第二辐射体,第一辐射体的两端分别设置有第一馈电点和第一接地点,第二辐射体上设置有至少一个接地点。第一馈电点与第一馈源耦接,第一接地点和第二辐射体上的至少一个接地点分别与参考地耦接。天线工作时,第一辐射体上分布有第一电流。第二辐射体上的第一区域分布有第二电流。第一区域在第二辐射体上靠近第一辐射体的一侧,第一区域对应于第一辐射体向第二辐射体投影的区域。第一电流和第二电流的方向相同。

Description

一种终端天线、天线系统和电子设备
本申请要求于2023年2月15日提交国家知识产权局、申请号为202310162877.X、发明名称为“一种终端天线、天线系统和电子设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及天线技术领域,尤其涉及一种终端天线、天线系统和电子设备。
背景技术
电子设备中会设置一个或多个金属装饰件,用于向对应模块提供刚性支撑。
随着通信技术的发展,在电子设备中有限空间中的天线数量也越来越多。一些天线会设置在金属装饰件附近。
金属装饰件作为具有较大面积的导电体,会对临近天线的辐射性能产生显著影响。
发明内容
本申请实施例提供一种终端天线、天线系统和电子设备,可以通过对天线附近的金属Deco进行合理设计,使得避免金属Deco对天线辐射产生影响的同时,能够对天线的辐射提供支持。由此获取更好的辐射性能以及更多的频带覆盖。
为了达到上述目的,本申请实施例采用如下技术方案:
第一方面,提供一种终端天线,该终端天线设置在电子设备中,该天线包括:第一辐射体和第二辐射体,该第一辐射体的两端分别设置有第一馈电点和第一接地点,该第二辐射体上设置有至少一个接地点。该第一馈电点与第一馈源耦接,该第一接地点和该第二辐射体上的至少一个接地点分别与参考地耦接。该天线工作时,该第一辐射体上分布有第一电流。该第二辐射体上的第一区域分布有第二电流。该第一区域在该第二辐射体上靠近该第一辐射体的一侧,该第一区域对应于该第一辐射体向该第二辐射体投影的区域。该第一电流和该第二电流的方向相同。
这样,通过第二辐射体上的接地点设置,使得第二辐射体上靠近第一接地点的位置能够产生与第一辐射体上同向的电流。由此,该第二辐射体上的同向电流产生的辐射,不仅不会影响第一辐射体的辐射,还能够对第一辐射体的辐射产生正向叠加的效果,从而提升整体辐射性能。
可选的,该电子设备具有金属边框架构,该第一辐射体复用该电子设备的金属边框的至少部分,该第二辐射体复用该电子设备中的金属装饰件。
需要说明的是,本示例中,以第一天线的辐射体复用金属边框为例。在另一些实施例中,该第一天线的辐射体还可以是LDS、MDA、FPC等形式。
可选的,该第一辐射体和该第二辐射体之间的最小距离不超过15mm。
可选的,该第二辐射体上的至少一个接地点包括第二接地点,该第二接地点设置在该第一区域中。
可选的,该第一辐射体的两端分别设置有第一馈电点和第一接地点,包括:该第一辐射体的第一端设置有该第一接地点。该第二接地点设置在该第一区域中,包括:该第二接地点设置在该第一区域的第一端。该第一区域的第一端对应于该第一辐射体的第一端在该第一区域的投影位置。
在该示例中,第二接地点可以设置在第一辐射体接地点对应的位置。由此使得耦合到第二辐射体上靠近第一辐射体的电流,可以在第一辐射体的投影区域(即第一区域)中产生与第一辐射体上同向的效果。
可选的,该第一天线的工作频段包括第一频段。该第二辐射体上的至少一个接地点包括第三接地点。该第一辐射体的两端分别设置有第一馈电点和第一接地点,包括:该第一辐射体的第一端设置有该第一接地点。该第一辐射体的第一端在该第一区域中的投影位置为第一位置。该第三接地点与第一直线之间的距离对应于该第一频段的1/2波长。该第一直线穿过该第一位置,该第一直线与该第一辐射体所在直线垂直。
在该示例中,第二辐射体上的接地点还可以是在第一区域中远离第一辐射体接地点的一端。这样,通过控制该第三接地点与第一辐射体的接地点在第二辐射体上的投影位置之间的距离,使得第二辐射体上的第一区域产生的同向电流,可以工作在与第一辐射体相同的频段。由此使得两个同向电流能够起到在相同频段叠加的效果。
可选的,该天线工作时,该第一辐射体工作在第一频段,该第二辐射体在靠近该第一辐射体的一侧分布有第三电流,该第三电流包括该第二电流,该第三电流用于在该第二辐射体上激励覆盖该第一频段的1倍波长模式。
由此,明确了在第二辐射体上,靠近第一辐射体的一侧上的工作模式可以为1倍波长模式。该1倍波长模式的一部分(如其中的一个1/2波长)的电流可以与第一辐射体上的电流方向相同。
可选的,该第二辐射体上的第三电流所在直线与该第一辐射体上的第一电流所在直线平行。
例如,第三电流与第一电流都可以与电子设备的长边所在直线平行。
可选的,该第一天线的工作频段包括第二频段。该第二辐射体上设置有至少一个接地点,包括:该第二辐射体上设置有第四接地点。该第一辐射体的两端分别设置有第一馈电点和第一接地点,包括:该第一辐射体的第一端设置有该第一接地点。该第一辐射体的第一端在该第一区域中的投影位置为第一位置。该第四接地点与第二直线之间的距离对应于该第二频段的1/2波长或1/4波长。该第二直线穿过该第一位置,该第一直线与该第一辐射体所在直线平行。
在该示例中,该第二辐射体上还可以设置有远离第一辐射体的接地点。该接地点的设置能够在第二辐射体上激励方向与第三电流垂直的电流模式。例如,第三电流为纵向时,该电流模式可以为横向模式。该横向模式可以通过第四接地点与第二直线之间的距离控制,实现在1/2波长模式或1/4波长模式的激励,进而实现第二频段的覆盖。
在一些实现中,第一频段可以为2.4GHz或5GHz的WIFI频段,第二频段可以为GPS频段。
可选的,该第二辐射体上还设置有第二馈电点,该第二馈电点与第二馈源耦接,该第二馈源用于通过该第二馈电点向该第二辐射体馈入信号,以便于该第二辐射体工作在第三频段。
由此,通过在第二辐射体上增设馈源,可以激励第二辐射体工作在上述横向模式和/或纵向模式的同时,进行Patch天线的辐射。该第三频段可以与第二辐射体的面积相对应。第二辐射体的面积越大,第三频段越低。反之,第二辐射体的面积越小,第三频段越高。这样,在不增加新的辐射体的情况下,扩展该终端天线的覆盖频段的数量。
当然,在一些实现中,该第三频段的覆盖也可以用于对第一频段和/或第二频段进行带宽增强。
第二方面,提供一种天线系统,该天线系统应用于电子设备,该天线系统包括第一天线和第二天线,该第一天线为如第一方面及其任一种可能的设计中提供的终端天线。该天线系统的工作频段包括第一频段、第二频段以及第三频段。该第一天线的第一辐射体和第二辐射体用于覆盖该第一频段。该第一天线的第二辐射体和该第二天线用于覆盖该第二频段。该第一天线的第二辐射体还用于覆盖该第三频段。
可选的,该第一天线的第二辐射体上包括第四接地点,该第一天线的第一辐射体的第一端设置有该第一接地点。该第一辐射体的第一端在第一区域中的投影位置为第一位置。该第一区域在该第二辐射体上靠近该第一辐射体的一侧,该第一区域对应于该第一辐射体向该第二辐射体投影的区域。该第四接地点与第二直线之间的距离对应于该第二频段的1/2波长。该第二直线穿过该第一位置,该第一直线与该第一辐射体所在直线平行。由此使得在第二天线设置时,第二辐射体上的横向模式电流分布能够与第二天线上的电流分布呈现差异化,由此在横向模式与第二辐射体覆盖同一个频段(如第二频段)时,保证二者之间的隔离度。
可选的,该电子设备为金属边框架构,该第一天线的第一辐射体复用该电子设备的第一边上的金属边框的至少部分,该第二天线的辐射体复用该电子设备的第二边上的金属边框的至少部分,该第一边和该第二边是相邻的两个边。
可选的,该第一天线的第二辐射体设置在该第二边和该第三边的交点附近,该第二辐射体到该第二边或该第三边的最小距离不超过15mm。
第三方面,提供一种电子设备,该电子设备设置有至少一个处理器,射频模块,以及如第一方面及其任一种可能的设计中提供的终端天线,和/或如第二方面及其任一种可能的设计中提供的天线系统。该电子设备在进行信号发射或接收时,通过该射频模块和该终端天线和/或该天线系统进行信号的发射或接收。
应当理解的是,上述第二方面,第三方面提供的技术方案,其技术特征均可对应到第一方面及其可能的设计中提供的方案中,因此能够达到的有益效果类似,此处不再赘述。
附图说明
图1为一种电子设备的背视示意图;
图2为一种电子设备的侧面爆照示意图;
图3为一种电子设备的摄像模组附近的堆叠示意图;
图4为一种天线的设置示意图;
图5为一种金属装饰件接地设置的示意图;
图6为一种金属装饰件以及天线上电流分布的对比示意图;
图7为本申请实施例提供的一种天线与金属装饰件上的电流分布的对比示意图;
图8为本申请实施例提供的一种天线方案的工作逻辑示意图;
图9为本申请实施例提供的一种天线方案的工作逻辑示意图;
图10为本申请实施例提供的一种天线方案的工作逻辑示意图;
图11为本申请实施例提供的一种天线方案的工作逻辑示意图;
图12为本申请实施例提供的一种接地点33设置范围的示意图;
图13为本申请实施例提供的天线方案的S参数仿真示意图;
图14为本申请实施例提供的一种天线方案的工作逻辑示意图;
图15为本申请实施例提供的一种天线方案的工作逻辑示意图;
图16为本申请实施例提供的一种天线方案的工作逻辑示意图;
图17为本申请实施例提供的一种天线方案的工作逻辑示意图;
图18为本申请实施例提供的天线方案的S参数仿真示意图;
图19为本申请实施例提供的一种天线方案的工作逻辑示意图;
图20为本申请实施例提供的一种天线方案的电流仿真示意图;
图21为本申请实施例提供的一种天线方案的电流仿真示意图;
图22为本申请实施例提供的天线方案的S参数仿真示意图;
图23为本申请实施例提供的天线方案的ECC参数仿真示意图;
图24为本申请实施例提供的一种天线方案的工作逻辑示意图;
图25为本申请实施例提供的一种金属Deco的设置示意图。
具体实施方式
以下,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本实施例的描述中,除非另有说明,“多个”的含义是两个或两个以上。
本申请实施例提供的技术方案可以应用于电子设备中。为了能够对本申请实施例提供的技术方案进行详细说明,以下首先对电子设备进行简要示例。
示例性的,图1示出了一种电子设备的背面视图。该示例中,以电子设备为手机,手机具有金属边框架构为例。该金属边框可以设置在电子设备的侧边外围。该金属边框可以用于向用户提供金属质感,同时提升电子设备的结构强度。
一般的,电子设备可以设置有至少一个摄像模组。例如,该至少一个摄像模组可以包括前置摄像模组、后置摄像模组等。以后置摄像模组为例。该后置摄像模组也可称为后摄模组。
后摄模组在工作时,可以通过其中包括的至少一个摄像头,采集环境光线。
对应的,如图1所示,在电子设备的后盖上,可以开设有摄像窗口。摄像窗口的位置可以与电子设备的后摄模组的位置相对应。在后盖扣合在电子设备上时,后摄模组的摄像头可以从该摄像窗口伸出,以便于在拍摄时进行光线采集。
图2示出了电子设备的部分组件的爆炸图示意。
如图2所示,在金属边框内部可以设置有地板。该地板可以用于为电子设备上的各个电子部件提供零电位参考。例如,地板可以为电子设备中设置的天线提供零电位参考。
在一些实现中,在地板上可以装设印制电路板(图2中未示出)。该印制电路板(简称为PCB或PCB板)可以用于电子设备中各个电子部件的承载。例如,PCB上可以设置有连接器,该连接器可以用于信号在后摄模组与设置在PCB上的图像处理器之间的流转。
在如图2的示例中,金属边框上可以设置有一个或多个贯穿内外的缝隙。该多个缝隙可以将金属边框打断为多个互不连接的部分。不同部分的金属边框可以用于复用作为其他部件的组成部分。例如,金属边框可以作为天线辐射体复用等。
如图2所示,后摄模组与后盖之间,还可以设置有装饰件(Deco)。在一些实现中,该装饰件可以通过金属材质制备。对应的,金属材质的装饰件可以称为金属装饰件,或金属Deco。如图2所示,该金属Deco可以用于为后摄模组中的摄像头提供刚性保护。
需要说明的是,如图2的示例中仅为一种金属装饰件的示例。在另一些实现中,金属装饰件中还可以内嵌有钢片,由此提升对应位置的结构强度。
图3从xoz平面的切向,示出了后摄模组、金属Deco、后盖以及侧边金属边框的相对位置示意。
如图3所示,在z向上,后摄模组、金属Deco以及后盖依次设置。金属边框可以位于金属Deco侧边(如x正方向)。后摄模组的摄像头可以从z向穿过金属Deco伸出后盖,以便进行光线采集。
在图3的示例中,金属Deco可以包括xoy平面的顶部金属部分,以及yoz平面的侧边金属部分。侧边金属部分可以设置在顶部金属部分的两侧,用于对顶部金属进行刚性支撑。作为一种可能的实现,侧边金属部分的一端与顶部金属部分连接,另一端则可以固定在PCB上。固定的方式可以包括焊接、压接等。在不同的情况下,该侧边金属与主板上的参考地并不一定相连。也即,金属Deco可以是接地的,也可以是不接地的。
随着电子设备拍摄能力的提升,后摄模组设置越发复杂。由此导致后摄模组的尺寸不断扩大。金属Deco的尺寸可以稍大于后摄模组,因此,金属Deco的尺寸也随后摄模组的扩大变大。金属Deco与侧边(或顶边)金属边框的距离也就对应缩小。在一些情况下,金属Deco(如金属Deco的顶部金属部分和/或侧边金属部分)与侧边金属边框的最小距离已经接近甚至小于15mm。
在电子设备中可以设置有天线,用于实现电子设备的无线通信功能。以如图1-图3所示的电子设备为例,对其中的天线实现方案进行举例说明。
示例性的,以天线设置在侧边,如图1所示背面视图左上角的长边为例。
在一些实施例中,在如图1-图3所示的具有金属边框架构的电子设备中,天线的辐射体可以复用金属边框设置,实现辐射目的。该辐射体复用金属边框的天线也可称为边框天线。
图4示出了一种天线A1的方案示例。如图4所示,该天线A1的辐射体11可以复用对应位置的金属边框。在一些实现中,该作为天线A1的辐射体的金属边框,向x轴负方向的投影可以包括至少部分落在金属Deco上。
在天线A1的辐射体上可以设置有馈源以及接地点。在如图4的方案示例中,馈源F1可以设置在辐射体的下侧末端,接地点G1可以设置在辐射体的上侧末端。在一些实现中,该天线A1可以工作在左手模式进行辐射。例如,在馈源F1与辐射体之间可以串联电容,用于激励该左手模式。在另一些实现中,该天线A1还可以为其他天线形式,如IFA、ILA、Loop等。
可以理解的是,在天线辐射体附近的金属材料都会对天线的辐射产生影响。
结合前述图1-图4的说明,在金属Deco靠近天线A1的辐射体11(如最小距离小于15mm)时,就会对天线A1的辐射产生影响。
为了应对金属Deco对天线A1产生的影响,一般的,可以在金属Deco上设置接地,由此构造短路壁,实现对天线A1工作时辐射的隔离。
示例性的,图5为一种在金属Deco上设置接地点构造短路壁的示意。
如图5所示,金属Deco上的接地点可以包括至少两个。
例如,金属Deco上的接地点可以包括点21和点22。该点21和点22可以分别设置在金属Deco靠近天线A1辐射体的一个边上。以天线A1辐射体设置在侧边为例。则该金属Deco上的点21和点22可以设置在金属Deco靠近侧边金属边框的一侧(如左侧)。在一些实现中,如图5所述,点21和点22可以分别设置在金属Deco的左上角以及左下角。由此,该点21和点22之间可以等效构造出一个接近平行于天线A1辐射体的短路壁。该短路壁可以有效地隔离天线A1工作时产生的向内辐射。
在如图5的示例中,在金属Deco上还可以设置有用于接地的点23。该点23可以设置在金属Deco的右上角。由此使得该点23可以与点22共同构成横向短路壁。该横向短路壁可以用于进一步隔离天线A1的向内辐射。此外,在电子设备的顶部也设置有天线时,该横向短路壁还可以起到隔离顶部天线辐射的效果。
然而,在如图5的方案实现中,由于金属Deco靠近天线辐射体。因此,通过如图5所示的接地设置后,金属Deco依然会对天线的辐射产生影响。
示例性的,如图6所示,以当前时刻天线辐射体上分布有从接地点流向馈源方向的电流为例。在天线辐射体以及金属Deco之间可以分布有同向的电场,如由辐射体指向金属Deco的电场。基于该电场的电磁耦合,使得在金属Deco靠近天线辐射体的边沿会产生与天线辐射体上反向的电流。例如,该金属Deco上产生的电流方向可以由点22指向点21。需要说明的是,该如图6所示的电场示例,仅为对方向以及分布情况的举例,与空间中各个位置的电场强度并无对应关系。
这样,该金属Deco上与天线辐射体上的反向电流,使得金属Deco与天线辐射体之间的结构呈现不同相位下的电场储能状态。由此影响天线A1的正常辐射。也即,该如图5或图6所示的金属Deco的接地设置,依然会对靠近的天线(如天线A1)的正常工作造成显著地影响。
可以理解的是,上述实现中,是以金属Deco靠近的天线A1为边框天线为例进行说明的。在另一些情况下,即使天线A1具有其他的设置形式,类似的问题依然存在。 比如,在天线A1通过激光直接成型技术(Laser-Direct-structuring,LDS)、阳极氧化的压铸成型工艺(Metalframe Diecasting for Anodicoxidation,MDA)、柔性电路板(Flexible Printed Circuit,FPC)等手段实现的情况下,在金属Deco上按照如图5或图6所示的接地方案设置时,该金属Deco也会对天线A1的正常工作产生影响。
为了解决金属Deco靠近天线设置时(如最小距离小于15mm),对天线的辐射性能产生显著影响的问题。本申请实施例提供一种终端天线,可以在金属Deco上的预设位置,选取至少一个接地点。通过该至少一个接地点的设置,能够避免金属Deco对天线本体辐射的影响。
此外,通过该预设位置的至少一个接地点设置,还能够有效激励金属Deco产生寄生谐振,用于扩展天线覆盖带宽,和/或提升天线本体辐射的辐射性能。
在一些实施例中,在金属Deco上还可以设置更多预设位置的接地点,使得金属Deco上还可以激励垂直于天线辐射体长边所在直线的电流(如横向电流)。通过对接地点位置的调整设置,使得该电流分布也能够用于提升天线的辐射性能。在一些实施例中,在电子设备中设置有多个同频或临频(即频段包括至少部分重合)天线的情况下,通过合理调整横向电流的工作模式,增加各个天线之间的隔离,避免各个天线之间的互相干扰。
在一些实施例中,在金属Deco上还可以设置额外的馈源,使得金属Deco在不影响原天线辐射的同时,工作在另一频段。由此丰富电子设备覆盖频段的范围。
以下将结合附图对本申请实施例提供的技术方案进行详细说明。
需要说明的是,本申请实施例提供的天线方案,可以应用于用户的电子设备中。该电子设备也可以称为终端设备。本申请实施例提供的天线方案设置在终端设备中的情况下,也可以称为终端天线。该天线方案在电子设备在中的设置,可以用于支持该电子设备的无线通信功能。例如,该电子设备可以包括如图1-图3所示的手机。
在另一些实现中,该电子设备还可以具有其他的实现形式。示例性的,该电子设备可以是智能开关、电子开关、平板电脑、桌面型、膝上型、手持计算机、笔记本电脑、车载设备、超级移动个人计算机(ultra-mobile personal computer,UMPC)、上网本,以及蜂窝电话、个人数字助理(personal digital assistant,PDA)、增强现实(augmented reality,AR)\虚拟现实(virtual reality,VR)设备等,本申请实施例对该电子设备的具体形态不作特殊限制。
作为一种示例,从硬件组成的角度。电子设备可以包括处理器,外部存储器接口,内部存储器,通用串行总线(universal serial bus,USB)接头,充电管理模块,电源管理模块,电池,至少一个天线,移动通信模块,无线通信模块,音频模块,扬声器,受话器,麦克风,耳机接口,传感器模块180,按键,马达,指示器,摄像模组,显示屏,以及用户标识模块(subscriber identification module,SIM)卡接口等。其中传感器模块可以包括压力传感器,陀螺仪传感器,气压传感器,磁传感器,加速度传感器,距离传感器,接近光传感器,指纹传感器,温度传感器,触摸传感器,环境光传感器,骨传导传感器等。
在该电子设备向用户提供无线通信功能时,至少一个天线可以与移动通信模块和/ 或无线通信模块耦接,实现信号的收发。在一些实施例中,电子设备可以具有如图1或图2所示的金属边框架构的情况下,该至少一个天线可以为边框天线。
例如,在一些实施例中,该至少一个天线可以包括设置在金属Deco附近,电子设备长边上的天线A1。在本申请中,该附近的相对关系与靠近的相对位置关系类似,可以理解为:复用作为天线辐射体的金属边框与金属Deco之间的最小距离不超过15mm。该天线A1的工作频段可以包括第一频段,或者,该天线A1的工作频段可以包括第一频段以及第二频段。例如,第一频段可以为2.4G WIFI频段。该2.4G WIFI频段可以包括2.4GHz-2.5GHz。第二频段可以为GPS频段。该GPS频段可以包括1575MHz。
在另一些实施例中,该至少一个天线可以包括设置在金属Deco附近,电子设备长边上的天线A1;以及设置在金属Deco附近,设置在电子设备短边上的天线A2。天线A1的工作频段与上述示例类似。该天线A2的工作频段可以包括第一频段,或者,该天线A2的工作频段可以包括第一频段以及第二频段。
作为一种可能的实现,该天线A1的工作频段与天线A2的工作频段可以包括至少部分重合。比如,天线A1的工作频段包括2.4G WIFI频段,天线A2的工作频段同时包括2.4G WIFI频段以及GPS频段。
在本示例中,摄像模组可以包括后摄模组、前摄模组等。结合前述说明,后摄模组可以设置有对应的金属Deco。该金属Deco的设置可以参考如图2或图3的示意。在不同实现中,该金属Deco的x向尺寸可以在5mm到85mm的范围内。该金属Deco的y向尺寸可以在5mm到85mm的范围内。
本申请实施例中,在该金属Deco上可以在预设位置设置有至少一个接地点。在靠近金属Deco的天线工作时,通过电磁耦合,在金属Deco上与天线辐射体对应位置,可以激励与天线(如天线A1)同向的电流,实现对天线性能的提升效果。
需要说明的是,在现有设计中,天线A1的辐射体可以包括电子设备侧边的部分金属边框。通过本申请中对金属Deco的接地方案设置,使得金属Deco能够作为天线A1的一部分进行辐射。因此,在本申请中,天线A1的辐射体可以包括电子设备侧边的部分金属边框,以及金属Deco。
可以理解的是,本申请实施例示意的结构并不构成对电子设备的具体限定。
例如,电子设备中的天线A1和/或天线A2,也可以是通过FPC、LDS、MDA等形式实现的。其能够达到的效果类似,不再一一赘述。
在本申请另一些实施例中,电子设备可以包括更多或更少的部件,或者组合某些部件,或者拆分某些部件,或者不同的部件布置。上述部件可以以硬件,软件或软件和硬件的组合实现。
以下将结合附图对本申请实施例提供终端天线方案进行详细说明。该终端天线方案可以通过金属Deco上对应的接地设置实现其效果。
结合图4-图6的说明,继续以金属Deco附近设置有位于电子设备侧边的边框天线A1为例。
示例性的,参考图7,为本申请实施例提供的一种终端天线的方案示例。
在如图7所示的天线方案可以包括至少两个逻辑组成部分:天线本体,以及金属 Deco。
其中,天线本体可以对应于现有设计(如图4-图6中所示的设计)中的天线A1。
结合图6的说明,该天线A1可以为侧边边框天线。该天线A1的辐射体11上可以设置有一个接地点以及一个馈源。馈源可以位于辐射体11的一个末端,如y轴负方向对应的下端。接地点可以位于辐射体11的另一个末端,如y轴正方向对应的上端。
金属Deco上可以设置有至少一个接地点。
在本申请的一些实现中,如图7所示的天线A1也可称为第一天线。天线A1的辐射体11可以称为第一辐射体。金属Deco可以作为第一天线的一部分,如金属Deco可以称为第二辐射体。
示例性的,该至少一个接地点可以包括用于接地设置的点31。在一些实现中,该点31可以称为第二接地点。
如图7所示,该点31可以设置在金属Deco天线A1的辐射体11的一边上。
该点31可以靠近天线A1的回地电流大点进行设置。
例如,以图7中的天线A1为例。天线A1的回地电流大点可以位于天线A1的接地点G1。金属Deco上点31的设置,可以参考如下2点限定(如1-1以及1-2所示):
1-1、在x方向上,该点31可以设置在金属Deco上靠近天线A1的一边上。其中,该靠近天线A1的一边上可以指:金属Deco靠近天线A1的边沿,或者金属Deco上距离靠近天线A1的边沿向内(即向x轴负方向)延伸不超过10mm的区域。
1-2、在y方向上,该点31可以与G1向金属Deco上的投影(即沿x轴负方向的投影)重合或者接近。其中,G1向金属Deco上的投影与点31接近可以理解为:点31位于G1在金属Deco上的投影位置沿y方向+/-15mm的范围内。也即,以G1在金属Deco上的投影点为中心,在y方向上建立一维坐标。则点31的设置可以在-15mm到15mm的范围内。
在本申请的一些实施例中,在点31(或第二接地点)的设置符合上述1-1以及1-2的限定时,可以认为该第二接地点对应于第一辐射体的第一端在第一区域的投影位置。可以理解的是,在该点31与接地点G1在金属Deco上靠近辐射体11的一侧的投影重合时,该点31对应的位置也可称为第一位置。
需要说明的是,在本申请实施例中涉及的第一区域可以是第二辐射体(即金属Deco)上靠近天线A1一侧的部分区域。该第一区域可包括辐射体11向金属Deco上投影的区域。例如,该第一区域的上端可以为点31对应的位置。该第一区域的下端可以为天线A1的馈源F1向金属Deco投影后的位置。或者,第一区域的下端可以延伸到金属Deco的下边沿。
本示例中,通过设置点31,能够使得在天线A1工作时,能量可以通过该点31耦合到金属Deco上,从而在金属Deco上形成纵向的电流分布。
由于点31的位置符合上述1-1以及1-2所示的限定。因此,在金属Deco上与天线A1的辐射体11对应位置(即辐射体11在金属Deco上的投影位置)的电流方向可以与辐射体11上的电流方向相同。由此避免如图6所示的反向电流导致的对天线A1辐射过程中的影响。
此外,该金属Deco上的纵向(即y向)电流还可以用于通过1倍波长模式提升天 线A1的辐射性能。在一些实施例中,该纵向电流的1倍波长模式可以用于覆盖第一频段。在另一些实施例中,该纵向电流的1倍波长模式可以用于覆盖第二频段。
以通过金属Deco上的纵向1倍波长模式覆盖第一频段为例。第一频段的中心频点波长为第一波长。
参考图8,在一些实施例中,以金属Deco是y向尺寸大于或等于第一波长为例。
通过该点31的回地设置,能够在金属Deco上,靠近天线A1的边上激励y向的符合第一频段对应1倍波长谐振特征的电流分布。
例如,如图8所示,从点31向y轴负方向可以分布有与辐射体11上同向的,向y轴负方向的电流41。从点31向y轴正方向可以分布有沿向y轴正方向的电流42。点31位置可以表现为电流反向点,也即对应于1倍波长模式的电流反向点。该电流41以及电流42的电长度可以分别接近或等于第一波长的1/2。那么,该电流41以及电流42可以共同构成与第一频段对应的1倍波长谐振特征的电流分布。
在一些实施例中,电流41可以称为第二电流。电流41以及电流42可以共同构成1倍波长对应的第三电流。
由此,该金属Deco可以在y向激励与天线A1的工作频段相对应的1倍波长模式。也即,金属Deco可以基于寄生原理,产生第一频段对应的1倍波长的谐振。
这样,该金属Deco产生的纵向的1倍波长模式的谐振与天线A1产生的谐振可以在空间叠加,共同覆盖第一频段,从而提升天线A1在第一频段的辐射性能。
需要说明的是,在一些实施例中,在金属Deco上设置点31后,该金属Deco可以直接从该点31接地。
在另一些实施例中,在金属Deco上设置点31后,该金属Deco上的点31与参考地之间还可以设置有匹配电路。示例性的,该匹配电路可以包括电感、电容以及电阻中的至少一种。匹配电路中的器件类型以及数量可以根据实际情况具体选取。
以匹配电路中包括电容为例。可以通过设置容值在0pF到10pF之间的电容。该电容可以用于调谐在点31处,金属Deco与天线A1之间的耦合。进而使得在金属Deco上可以激励更好的1倍波长模式进行辐射。
这样,通过在金属Deco上设置用于接地的点31,使得在金属Deco上与天线A1对应区域可以产生同向电流,避免了金属Deco接地对天线A1工作产生的影响。此外,通过在金属Deco上可以激励1倍波长模式,能够使得天线A1的辐射性能得到提升。
结合前述说明,在点31与参考地之间设置匹配电路,能够实现相关调节。在一些实施例中,通过合理调整匹配电路上的部件的容感值,可以达到将金属Deco的纵向(y向)1倍波长模式对应的谐振调谐到第一频段的目的。
在本申请的另一些实施例中,可以在金属Deco上设置更多接地点,达到调谐1倍波长覆盖频段的目的。
示例性的,参考图9,在点31的下侧(y轴负方向)可以设置有用于接地的点32。该点32与点31的y向距离可以控制在第一波长的1/2。在一些实现中,该点32与点31的y向距离也可以描述为点32到第一直线的距离。第一直线可以是穿过点31的直线,第一直线可以垂直于辐射体11所在直线。也即,该第一直线可以为穿过点 31的沿x轴的直线。
这样,该点32可以有效地在距离点31半波长的位置,将金属Deco上的y向电流引流到参考地,从而将金属Deco上的1倍波长模式调谐覆盖频段调谐到第一频段。在本示例中,点32也可称为第三接地点。金属Deco上的1倍波长模式对应的y向电流可以称为第三电流。在点32与点31之间的电流可以为第二电流。辐射体11上的电流可以为第一电流。该金属Deco上,第二电流的分布区域也就可以对应到金属Deco上的第一区域。也即第三电流包括第二电流。第二电流与第一电流同向。
类似于点31上匹配电路的设置,在一些实施例中,该点32与参考地之间也可以设置有匹配电路。该匹配电路可以包括电容、电感以及电阻中的至少一种。该匹配电路可以用于对金属Deco上的1倍波长进行调谐。
作为一种示例,在金属Deco的y向尺寸不足第一波长的2/2倍时,该点32可以设置在金属Deco的y轴负方向的底端。在点32以及参考地之间的匹配电路中可以设置电感,由此达到增加金属Deco上点31回地的电长度。进而将金属Deco上的1倍波长模式调谐到第一频段附近。
可以理解的是,如图9中的示例中,在金属Deco靠近天线A1的一边上,通过在点31下侧1/2波长处设置点32,实现调谐1倍波长模式覆盖频段的目的。那么对应的,在另一些实施例中,该用于引流控制1倍波长模式电长度的接地点也可以设置在点31的上侧。
示例性的,结合图10。在金属Deco上可以设置有用于接地的点32’。该点32’与点31之间的y向距离可以控制在第一波长的1/2左右。以此达到调整1倍波长模式的电流分布中,电流42对应的电长度的效果。类似于上述点32的设置,该如图10所示的示例中,通过点32’的设置,也能够将金属Deco上的1倍波长模式调谐到第一频段附近。该点32’相关的设置以及变形可以参考点32的说明。例如,点32’与参考地之间可以设置有匹配电路等。
上述图9以及图10的说明,对点32(或点32’)的y向尺寸设置进行了说明。在不同实现中,点32(或点32’)的x向位置可以是灵活的。以点32为例。
在一些实施例中,点32的x轴向坐标可以与点31的x轴向坐标相同或相近。也即,该点32可以设置在金属Deco上靠近天线A1的一边。
在另一些实施例中,点32的x轴向坐标可以不同于点31。例如,点32可以设置在见Deco上远离天线A1的一边。
本申请实施例中,在不同的x轴向设置情况下,通过将点32以及点31的纵向(y向)坐标差控制在第一波长的1/2,即使点32与点31之间的连线与y轴有夹角(即电流通过指向右下的方向回地),基于正交分解,该斜向的电流也可以被分解到y轴向的一倍波长模式的一部分(如电流41)。从而实现通过设置该点32,调谐金属Deco上y向的1倍波长模式的效果。
在本申请的另一些实现中,在金属Deco上还可以同时设置有如图9所示的点32,以及如图10所示的点32’。由此通过该点32以及点32’的设置,同时对点31两侧的回地电流的电长度进行调整,使得金属Deco上的1倍波长模式能够更精确地覆盖第一频段。
上述图7-图10中的方案示例,通过在金属Deco上设置至少一个接地点,实现金属Deco上纵向(y向)的1倍波长模式的激励。从而避免对天线A1辐射的影响,提升天线A1在第一频段的辐射性能。
可以理解的是,上述示例是以通过纵向的1倍波长覆盖第一频段为例进行说明的。在另一些实施例中,该纵向的1倍波长还可以用于覆盖第二频段或其他频段。其具体实现可以参考前述图7-图10中的说明,不再一一赘述。
在本申请实的另一些实施例中,在金属Deco上设置接地点,还可以用于在金属Deco上耦合产生的横向(x向)电流。该横向电流也可以用于提升工作频段的辐射性能。以通过横向电流提升第二频段的辐射性能为例。第二频段的中心频点的波长可以为第二波长。
示例性的,在一些实施例中,横向电流可以通过1/2波长模式覆盖第二频段,提升第二频段的辐射性能。在另一些实施例中,横向电流可以通过1/4波长模式,覆盖第二频段,提升第二频段的辐射性能。
结合图7-图10中的说明,参考图11。在本示例中,金属Deco上可以设置有点33用于接地。通过该点33的设置,能够达到激励横向电流的效果。
在本示例中,该点33的位置可以满足如下两个限定(如2-1以及2-2所示):
2-1、在y方向上,点33与天线A1的回地电流大点G1的y向坐标参数相同或相近。从另一个角度描述,该点33可以设置在天线A1的接地点G1沿x轴向金属Deco的投影所在直线上。
2-2、在x方向上,点33与金属Deco靠近天线A1一侧边沿的距离,可以控制在第二波长的1/4或第二波长的1/2。
从另一个角度,点33也可称为第四接地点,该第四接地点的位置可以描述为,第四接地点与第二直线之间的距离对应于第二频段的1/2波长或1/4波长。其中,第二直线可以是沿y轴所在方向(即平行于辐射体11所在直线)的直线。该第二直线可以穿过点31(如第一位置)。
在本示例中,通过该点33的设置,使得天线A1上的能量耦合到金属Deco上之后,能够沿横向在点33回流到参考地。由此在金属Deco上激励横向电流。
在不同实现中,通过点33位置的限制,能够使得该横向电流对应到第二频段的1/2波长或1/4波长模式。从而使得该横向电流可以1/2波长模式或1/4波长模式覆盖第二频段。
示例性的,在一些实施例中,以点33与G1在金属Deco对应位置(即上述点31所在位置)之间的横向(x向)长度为第二波长的1/4为例。该金属Deco上可以激励获取横向的1/4波长模式覆盖第二频段。
在另一些实施例中,以点33与G1在金属Deco对应位置(即上述点31所在位置)之间的横向(x向)长度为第二波长的1/2为例。该金属Deco上可以激励获取横向的1/2波长模式覆盖第二频段。
这样,通过在金属Deco上激励横向电流,达到覆盖第二频段的目的。可以理解的是,在天线A1的工作频段包括第二频段的情况下,该金属Deco上激励的覆盖第二频段的1/2波长模式或1/4波长模式,能够与天线A1的辐射相叠加,从而提升天线A1 在第二频段的辐射性能。而在天线A1的天线本体(即辐射体11)的工作频段不包括第二频段的情况下,通过在金属Deco上激励1/2波长模式或1/4波长模式覆盖第二频段,达到扩展天线A1频段覆盖范围的效果。
需要说明的是,结合前述2-1的说明。在具体实施过程中,该点33的y向(即纵向)设置可能会受到其他部件的限制,因此难以准确地与接地点G1的y向坐标保持一致。对应的,在本申请的一些实施例中,该点33的y向坐标也可以与G1在的坐标参数相近。例如,参考图12,示出了本申请实施例提供的点33的设置范围示例。在点33设置在以G1的y坐标为原点,向y向正方向(如图12所示的上方)延伸a/2,向y向负方向(如图12所示的下方)延伸a/4的范围内。其中,a为金属Deco的y向总长。这样,即使点33未严格设置在G1的右侧,该点33可以调整金属Deco上分布的斜向电流,可以通过正交分解分解到纵向1倍波长以及横向1/4波长或1/2波长的两个电流模式。由此在避免对天线A1造成影响的情况下,提升天线A1的辐射性能。
上述图12给出了基于具体尺寸的点33的y向设置范围的示例。在另一些实施例中,以点33用于激励金属Deco上横向的1/4波长为例,该点33的y向设置范围也可以为:以G1的y坐标为原点,向上延伸1/4波长,向下延伸3/4波长的范围。
此外,在点33以及参考地之间,也可以设置有对应的匹配电路。该匹配电路的设置可以参考前述示例中的点31对应的匹配电路。二者的功能以及设置方式类似,此处不再赘述。
需要说明的是,在本示例中,该点33的设置并未改变金属Deco相对于天线A1的天线本体的边界条件。因此,该点33的设置不会影响辐射体11上从接地点G1向金属Deco的耦合状态。这样,该点33设置后,在能够激励前述实现中的横向电流的情况下,还能够使得金属Deco上分布有如图7或图8所示的纵向1倍波长模式。
也就是说,通过该如图11所示的点33的设置,能够在金属Deco上同时激励纵向的1倍波长模式,以及横向的1/2波长模式或1/4波长模式。
在一些实现中,该纵向模式可以用于覆盖第一频段。该横向模式可以用于覆盖第二频段。
以下结合具体的仿真结果,对点33设置后的效果进行说明。
作为一种示例,以通过设置点33,激励横向的1/2波长为例。
如图13所示,以天线A1的工作频段(即上述第一频段)覆盖2.4G WIFI频段为例。
如图13中的S11(即回波损耗)所示,对比不设置金属Deco的情况。在设置金属Deco的情况下,并按照如图11或图12所示方案设置点33接地后,S11上可以表现为3个谐振。如谐振51-谐振53。其中,该谐振51可以对应于金属Deco上横向1/2模式的谐振。谐振52可以对应于天线A1的天线本体部分(即辐射体11)产生的谐振。谐振53可以对应于金属Deco上纵向1倍波长模式的谐振。可以看到,从回波损耗上,即使设置了金属Deco,由于应用了本申请中提供的点33的设置,使得带宽得到显著提升。谐振深度也得到明显优化。
如图13中的系统效率所示,对比不设置金属Deco的情况。在设置金属Deco的情况下,并按照如图11或图12所示方案设置点33接地后,2.4GHz-2.5GHz附近的效率 得到显著的提升。其中,横向1/2波长模式(即谐振51对应的模式)的效率峰值接近-2dB。纵向1倍波长模式(即谐振53对应的模式)的效率峰值接近-4dB。
由此,通过如图11或图12所示的接地设置,激励横向以及纵向模式能够有效提升天线A1的辐射性能。可以理解的是,上述图13是以在金属Deco上激励横向1/2波长模式为例进行说明的。在另一些实施例中,通过调整点33的x向坐标参数,在金属Deco上激励1/4波长模式,也能够达到类似的效果。
上述图11到图13的说明中,通过点33的设置,能够同时激励金属Deco上的横向模式以及纵向模式。在一些实施例中,结合前述图9的说明,参考图14。在金属Deco上设置点33的同时,还可以在靠近天线A1的边沿设置点32。该点32的y轴向坐标与点33的y轴向坐标不同。该点32的设置可以用于控制纵向的1倍波长模式的电流回地,从而将该1倍波长模式调谐到所需频段内。
示例性的,以纵向的1倍波长模式用于覆盖第一频段为例。那么,该点32与点33的y轴向坐标差异,可以对应到第一波长的1/2。通过该点32的调整,使得金属Deco上靠近天线A1一侧的电流分布符合第一频段对应的1倍波长模式分布特征。由此将纵向的1倍波长模式调谐到第一频段。
在如图14所示的接地方案中,也能够基于上述图11的说明,在金属Deco上激励横向模式。
参考图15。以G1在金属Deco靠近天线A1一侧的x轴向投影为G2,金属Deco上横向激励1/2波长模式为例。通过调整点33与G2之间横向(x轴向)的距离b1,以及点32与G2纵向(y轴向)之间的距离,可以达到调整横向1/2波长模式,以及纵向1倍波长模式覆盖频段的目的。
示例性的,在前述示例中,以横向1/2波长模式覆盖第二频段,纵向1倍波长模式覆盖低频频段为例。那么,b1可以被设置为与第一波长的1/2对应,b2可以被设置为与第二波长的1/2波长对应。
以横向1/4波长模式覆盖第二频段,纵向1倍波长模式覆盖低频频段为例。那么,b1可以被设置为与第一波长的1/2对应,b2可以被设置为与第二波长的1/4波长对应。
在其他情况下,横向1/2波长模式以及纵向1倍波长模式的覆盖频段调整方式,可参考上述示例对应调整,不再赘述。
由此,通过如图14以及图15的说明,在金属Deco上可以同时设置两个接地点,实现横向模式以及纵向模式的激励。该横向模式与纵向模式的覆盖频段可以相同,也可以不同。
在本申请的另一些实施例中,在金属Deco上还可以同时设置有三个接地点。通过该三个接地点的位置调整,进一步调谐横向模式以及纵向模式的激励。
示例性的,参考图16。在金属Deco上可以同时设置有点31、点32以及点33。
点31、点32以及点33的设置可以分别参考前述示例中的说明。其具体实施可以互相参考。
需要说明的是,如图前述对点32的设置说明,在如图16的示例中,该点32的x轴向位置也可以是灵活选取的。例如,该点32可以设置在点31的下方,即金属Deco 靠近辐射体11的一侧。又如,该点32可以设置在点33下方,即金属Deco远离辐射体11的一侧。在不同实现中,以纵向模式覆盖第一频段为例,该点32与点31或点33的y轴向坐标差异可以控制在第一波长的1/2附近。由此达到将纵向模式的覆盖频段调谐到第一频段附近的效果。
上述方案说明中,以电子设备设置有一个侧边天线A1为例,对金属Deco的设置以及效果进行了说明。可以理解的是,在该天线A1设置在靠近金属Deco的其他位置的情况下,可以对应调整金属Deco上接地点的位置,实现对应的效果。
可以理解的是,上述示例中,均以天线A1为左手天线为例。在天线A1通过其他形式实现时,可以需要根据天线A1上天线本体的电流大点变化,同步调整金属Deco纵向靠近侧的下地位置(如点31)。将对应的点31调整至天线A1上天线本体电流大点区域附近,就可以提升耦合强度,达到较好的纵向1倍波长的激励。
由此,通过在天线A1附近的金属Deco上,设置至少一个接地点(如点31-点33中的至少一个)。使得金属Deco可以作为天线A1的一部分参与有效辐射。从而在避免金属Deco对于天线A1的影响的同时,达到提升天线A1辐射能力的效果。
可以理解的是,在电子设备中还可以设置有天线A1之外的其他天线。比如,电子设备中可以设置有同样在金属Deco附近的天线A2。
示例性的,以电子设备的背视图顶部左侧设置有天线A2为例。参考图17。
该天线A2可以设置在金属Deco的上方(即y轴正方向)。该天线A2可以包括一个辐射体,如辐射体12。以天线A2为IFA形式的边框天线为例。该天线A2可以包括设置在辐射体12左侧末端的接地点G3。该天线A2还可以包括设置在辐射体12上的馈源F2。
在天线A2工作时,可以通过1/2波长模式或1/4波长模式覆盖其工作频段。
示例性的,天线A2的工作频段可以包括第一频段和/或第二频段。天线A2的工作频段可以包括至少部分与天线A1重合。其中,第一频段可以为2.4G WIFI频段,第二频段可以为GPS频段。
在具体实现中,在天线A1和天线A2的工作频段均包括2.4G WIFI频段的情况下,通过双天线的2.4G WIFI覆盖,能够有效提升WIFI通信的吞吐率。
结合图7-图16的说明。在一些实施例中,针对该天线A2,也可以对应的在金属Deco上设置接地点,从而使得金属Deco上的横向模式电流方向与辐射体12上的电流方向相同,避免金属Deco对于辐射体12工作时的影响。此外,还可以在金属Deco上进行与前述示例中的点31、点32以及点33对应的设置,实现对天线A2的辐射性能的提升。具体设置可以参考前述说明。此处不再赘述。
以金属Deco上设置如图16所示的三个接地点用于提升天线A1的辐射性能,金属Deco的横向模式用于覆盖第二频段,天线A2的工作频段也包括第二频段为例。
可以理解的是,由于金属Deco同时靠近天线A1以及天线A2,那么金属Deco的辐射提升效果可以同时作用于两个天线。这样,对于两个天线工作频段的重合部分
(如第一频段,和/或第二频段),就可能产生隔离度差的问题,从而导致使得两个天线在对应频段的辐射性能受到影响。
对于此,在本申请实施例中,可以将金属Deco的横向模式调谐到1/2波长模式, 以便降低两个天线之间的互相影响。
可以理解的是,在该横向模式激励1/2波长模式的情况下,该横向模式的电流最大点可以靠近顶部天线馈源(即天线A2的馈源F2)的位置。该天线A2的馈源F2可以对应于天线A2的电流大点。在两个模式(如金属Deco上的横向模式,以及天线A2上激励的用于覆盖同频段的模式)的电流大点互相靠近的情况下,能够使得两个模式之间的互相干扰得到有效控制。
示例性的,以金属Deco上的横向模式用于覆盖第一频段为例。
参考图18,示出了天线A1与天线A2同时使用1/2波长模式覆盖第一频段,以及使用1/4波长模式覆盖第一频段情况下,二者之间的隔离度仿真情况。该1/2波长模式可以为横向电流的1/2波长模式。其中,由于金属Deco用作提升天线A1的辐射性能,因此在本申请实施例中,金属Deco的横向模式辐射也包括在天线A1的辐射之内。
如图18所示,在天线A1以及金属Deco通过1/4波长模式覆盖2.4G WIFI频段,天线A2通过1/4波长模式覆盖2.4G WIFI频段的情况下,天线A1和天线A2的双端口隔离度较差,最差点接近-8dB。因此二者会出现较为明显的干扰。
在金属Deco通过1/2波长模式覆盖2.4G WIFI频段,天线A2通过1/2波长模式覆盖2.4G WIFI频段的情况下,天线A1和天线A2的双端口隔离度较好,最差点也低于-15dB。因此二者同时工作时不会出现较为明显的干扰。
可以理解的是,在天线A2通过1/4波长覆盖第一频段,金属Deco上横向模式为1/2波长模式的情况下。由于二者模式不同,电流分布也不同,因此隔离度会更好,互相干扰更低。
综上,本申请实施例中,通过合理设置金属Deco上点33的位置,使得金属Deco上可以通过1/2波长模式覆盖第一频段或第二频段。由此使得天线A1和天线A2之间的隔离度得到保证,进而提升整个天线系统的辐射性能。
由此,通过上述图7-图18的说明,本申请实施例提供的天线方案,能够通过在金属Deco上设置至少一个接地点(如点31-点33中的至少一个),避免金属Deco靠近天线设置时对天线的影响。此外,通过该至少一个接地点的设置,还能够激励金属Deco上的纵向1倍波长模式和/或横向1/2波长模式(或者横向1/4波长模式)来提升原天线的辐射性能。该方案也可以应用于包括多个边框天线的天线系统中,通过控制金属Deco上的横向模式工作在1/2波长模式,优化相邻天线的隔离度,从而使得整个天线系统获取更好的辐射性能。
作为一种示例,如图19所示,在本申请实施例提供的天线方案(也即金属Deco接地方案)应用于包括天线A1以及天线A2的天线系统的情况下,该天线A1和天线A2的覆盖频段可以包括至少部分重合。该天线A1和天线A2可以分别位于靠近金属Deco的两个垂直边上。
本示例中,可以通过在金属Deco上可以设置点31、点32以及点33。该点31、点32以及点33中的任意一个或多个都可以设置有与参考地之间的匹配电路。点31可以用于激励金属Deco上靠近天线A1一侧的纵向1倍波长,由此实现金属Deco上与天线A1的辐射体11对应位置上,同向电流的激励。点32可以用于调谐纵向1倍波长电 流的下地位置,从而使得纵向的1倍波长能够覆盖或部分覆盖第一频段和/或第二频段。点33可以用于激励横向的1/2波长模式,用于覆盖或部分覆盖第一频段和/或第二频段。这样,金属Deco可以作为天线A1的一部分进行辐射。因此通过金属Deco上点31-点33的设置,逻辑划分上,金属Deco可以包括在天线A1之中。也即,天线A1的辐射体包括辐射体11以及金属Deco。
结合前述图17-图19的说明,该点33对应的横向1/2波长能够提升天线A1与天线A2之间的隔离度。由此,即使天线A2的工作频段包括金属Deco上横向1/2波长覆盖频段的情况下,天线A1和天线A2之间的隔离度也可以得到较好的控制。
作为一种对比,以下结合图20-图22,对本申请实施例提供的技术方案与常规设计之间的效果进行对比性说明。以本申请实施例提供的方案采用如图19所示设计为例。现有设计可以对应于如图5或图6的设计。在系统效率仿真中,通过第一频段(即2.4G WIFI频段)的效率对比进行示例性说明。
参考图20,为本申请实施例提供的方案在工作过程中,金属Deco上电流的仿真模拟示意。颜色越深表明电流越强。
如图20所示,在金属Deco上,纵向电流呈现1倍波长分布。边框天线电流与金属Deco边沿电流同向,金属Deco边沿电流小点对应边框电流大点,为EH电磁耦合。金属Deco横向呈1/2倍波长分布,电流大点位置基本与边框天线(如天线A2)电流大点位置一致,为HH磁耦合。
参考图21,为本申请实施例提供的方案与常规设计之间的电流分布对比。二者的量程相同。颜色越深表明电流越强。
如图21所示,常规设计中,装饰件上电流整体较弱。并且,金属Deco靠近天线A1一侧的电流方向与天线A1上的电流方向相反。
对应的,在本申请实施例提供的方案中,在金属Deco上分布有较强的电流。该较强的电流分布能够支持金属Deco在纵向模式以及横向模式进行有效的辐射。
参考图22,为本申请实施例提供的方案与常规方案之间的系统效率仿真示意。在如图22的示例中,同时提供了手模场景(如左手模以及右手模)下的效率对比。
如图22中的自由空间(FS)场景的仿真示例。本申请实施例提供的方案中,效率峰值接近-3dB。对应的,常规设计中的效率峰值仅-5dB。本申请提供方案的-6dB带宽也显著高于常规设计。
如图22中的右手模场景的仿真示例。本申请提供方案的右手模峰值效率达到-8dB。对应的,常规设计中的右手模效率峰值不足-10dB。此外,右手模效率带宽对比上,本申请提供方案的带宽显著高于常规设计。结合图21中的自由空间仿真结果,对比右手模降幅差异。本申请中,峰值降幅不到5dB,对应的常规设计的峰值降幅超过5dB。
如图22中的左手模场景的仿真示例。本申请提供方案的右手模峰值效率达到-6dB。对应的,常规设计中的左手模效率峰值不足-8dB。此外,左手模效率带宽对比上,本申请提供方案的带宽显著高于常规设计。结合图21中的自由空间仿真结果,对比左手模降幅差异。本申请中,峰值降幅不到3dB,对应的常规设计的峰值降幅超过3dB。
综合图22中的仿真结果,本申请提供方案相比于常规设计,效率峰值更高,手模降幅更小。也就是说,该如图19所示方案的辐射性能显著优于常规设计。可以理解的是,结合前述原理性说明,在本申请的其他实现中,其有益效果类似,此处不再赘述。
需要说明的是,在如图19所示的同频或临频双天线设计中,通常可以通过相关包络系数(Envelop Correlation Coefficient,ECC)表征不同的天线单元间接收信号幅度之间的相关性。
本申请实施例提供的方案,结合图17的介绍,通过在金属Deco上激励横向的1/2波长模式,提升天线A1以及天线A2之间的隔离度。图23示出了本方案与常规设计的ECC仿真对比示意。继续以第一频段(2.4G WIFI频段)进行举例说明。
常规设计中,在效率较高频段(如2.5GHz附近),ECC显著上升。表明在该频段两个天线的互相影响显著上升。
对应的,在本申请提供的方案中,在2.4G WIFI全频段,ECC均保持在0.1以下。表明两个天线具有较好的独立工作能力。任一天线工作时基本不受另一个天线的影响。
在本申请的另一些实施例中,在上述如图7-图23中任一种可能的实现之外,还可以在金属Deco上设置独立的馈源,以便于金属Deco进行独立辐射,覆盖不同于第一频段或第二频段的第三频段。
示例性的,参考图24。在金属Deco上可以设置有馈源F3。该馈源F3可以用于激励金属Deco工作在第三频段。该第三频段可以与金属Deco的面积相对应。金属Deco的面积越大,第三频段越偏向于低频。反之,金属Deco的面积越小,第三频段越偏向于高频。
在本申请的一些实施例中,馈源F3与金属Deco之间也可以设置有对应的匹配电路,用于对第三频段进行调谐。该匹配电路的设计,还可以用于更好的保留上述点31-点33中任一个接地点对应的边界条件,从而使得金属Deco在进行第三频段的辐射的同时,不会对前述示例中的横向模式以及纵向模式产生显著影响。
作为一种可能的实现,以馈源F3设置在金属Deco的大电流的位置为例。该馈源F3与金属Deco之间的匹配电路可以包括并联小电感。该小电感的感值可以不超过10nH。该并联小电感的设置可以用于不破坏原本电流大点的边界条件设计。在另一些实现中,该馈源F3与金属Deco之间的匹配电路还可以包括其他形式的LC电路。本申请实施例对于匹配电路中的具体部件不做限定。
作为又一种可能的实现,以馈电F3设置在金属Deco的大电场的位置为例。该馈源F3与金属Deco之间的匹配电路可以包括并联电容。该并联电容的设置可以用于不破坏原本电场大点的边界条件设计。
这样,基于上述图7-图24的说明,本领域技术人员应当能够对本申请实施例提供的技术方案有了详细明确的了解。在具体实施过程中,可以根据上述方案中提供的各个实现,通过在金属Deco上合理选取接地点,提升天线整体的辐射性能。
需要说明的是,在上述示例中,均以金属Deco具有矩形外观,设置在电子设备背视图左上角为例进行说明。本领域技术人员应当理解的是,在其他金属Deco的设计 中,该方案也可以得到对应的应用。例如,金属Deco的外观也可以包括如图25中的61所示的居中设计的矩形外观。又如,金属Deco的外观也可以包括如图25中的62所示的居中设计的圆形或椭圆形外观。在不同金属Deco上的具体实现可以参考前述示例中的说明,能够达到的效果类似,此处不再赘述。
以上内容,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何在本申请揭露的技术范围内的变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (15)

  1. 一种终端天线,其特征在于,所述终端天线设置在电子设备中,
    所述天线包括:第一辐射体和第二辐射体,
    所述第一辐射体的两端分别设置有第一馈电点和第一接地点,所述第二辐射体上设置有至少一个接地点;
    所述第一馈电点与第一馈源耦接,所述第一接地点和所述第二辐射体上的至少一个接地点分别与参考地耦接;
    所述天线工作时,所述第一辐射体上分布有第一电流;
    所述第二辐射体上的第一区域分布有第二电流;所述第一区域在所述第二辐射体上靠近所述第一辐射体的一侧,所述第一区域对应于所述第一辐射体向所述第二辐射体投影的区域;
    所述第一电流和所述第二电流的方向相同。
  2. 根据权利要求1所述的天线,其特征在于,所述电子设备具有金属边框架构,
    所述第一辐射体复用所述电子设备的金属边框的至少部分,所述第二辐射体复用所述电子设备中的金属装饰件。
  3. 根据权利要求1或2所述的天线,其特征在于,所述第一辐射体和所述第二辐射体之间的最小距离不超过15mm。
  4. 根据权利要求1-3中任一项所述的天线,其特征在于,
    所述第二辐射体上的至少一个接地点包括第二接地点,所述第二接地点设置在所述第一区域中。
  5. 根据权利要求4所述的天线,其特征在于,
    所述第一辐射体的两端分别设置有第一馈电点和第一接地点,包括:所述第一辐射体的第一端设置有所述第一接地点;
    所述第二接地点设置在所述第一区域中,包括:所述第二接地点对应于所述第一辐射体的第一端在所述第一区域的投影位置。
  6. 根据权利要求1-5中任一项所述的天线,其特征在于,所述第一天线的工作频段包括第一频段;
    所述第二辐射体上的至少一个接地点包括第三接地点;
    所述第一辐射体的两端分别设置有第一馈电点和第一接地点,包括:所述第一辐射体的第一端设置有所述第一接地点;所述第一辐射体的第一端在所述第一区域中的投影位置为第一位置;
    所述第三接地点与第一直线之间的距离对应于所述第一频段的1/2波长;
    所述第一直线穿过所述第一位置,所述第一直线与所述第一辐射体所在直线垂直。
  7. 根据权利要求5或6所述的天线,其特征在于,
    所述天线工作时,所述第一辐射体工作在第一频段,所述第二辐射体在靠近所述第一辐射体的一侧分布有第三电流,所述第三电流包括所述第二电流,所述第三电流用于在所述第二辐射体上激励覆盖所述第一频段的1倍波长模式。
  8. 根据权利要求7所述的天线,其特征在于,所述第二辐射体上的第三电流所在 直线与所述第一辐射体上的第一电流所在直线平行。
  9. 根据权利要求1-8中任一项所述的天线,其特征在于,所述第一天线的工作频段包括第二频段;
    所述第二辐射体上设置有至少一个接地点,包括:所述第二辐射体上设置有第四接地点;
    所述第一辐射体的两端分别设置有第一馈电点和第一接地点,包括:所述第一辐射体的第一端设置有所述第一接地点;所述第一辐射体的第一端在所述第一区域中的投影位置为第一位置;
    所述第四接地点与第二直线之间的距离对应于所述第二频段的1/2波长或1/4波长;
    所述第二直线穿过所述第一位置,所述第一直线与所述第一辐射体所在直线平行。
  10. 根据权利要求1-9中任一项所述的天线,其特征在于,
    所述第二辐射体上还设置有第二馈电点,所述第二馈电点与第二馈源耦接,
    所述第二馈源用于通过所述第二馈电点向所述第二辐射体馈入信号,以便于所述第二辐射体工作在第三频段。
  11. 一种天线系统,其特征在于,所述天线系统应用于电子设备,
    所述天线系统包括第一天线和第二天线,所述第一天线为如权利要求1-10中任一项提供的终端天线;
    所述天线系统的工作频段包括第一频段、第二频段以及第三频段;
    所述第一天线的第一辐射体和第二辐射体用于覆盖所述第一频段;
    所述第一天线的第二辐射体和所述第二天线用于覆盖所述第二频段;
    所述第一天线的第二辐射体还用于覆盖所述第三频段。
  12. 根据权利要求11所述的天线系统,其特征在于,
    所述第一天线的第二辐射体上包括第四接地点,
    所述第一天线的第一辐射体的第一端设置有所述第一接地点;所述第一辐射体的第一端在第一区域中的投影位置为第一位置;所述第一区域在所述第二辐射体上靠近所述第一辐射体的一侧,所述第一区域对应于所述第一辐射体向所述第二辐射体投影的区域;
    所述第四接地点与第二直线之间的距离对应于所述第二频段的1/2波长;
    所述第二直线穿过所述第一位置,所述第一直线与所述第一辐射体所在直线平行。
  13. 根据权利要求11或12所述的天线系统,其特征在于,
    所述电子设备为金属边框架构,所述第一天线的第一辐射体复用所述电子设备的第一边上的金属边框的至少部分,所述第二天线的辐射体复用所述电子设备的第二边上的金属边框的至少部分,所述第一边和所述第二边是相邻的两个边。
  14. 根据权利要求13所述的天线系统,其特征在于,
    所述第一天线的第二辐射体到所述第一边或所述第二边的最小距离不超过15mm。
  15. 一种电子设备,其特征在于,所述电子设备设置有至少一个处理器,射频模 块,以及如权利要求1-10中任一项所述的终端天线,和/或如权利要求11-14中任一项所述的天线系统;
    所述电子设备在进行信号发射或接收时,通过所述射频模块和所述终端天线和/或所述天线系统进行信号的发射或接收。
PCT/CN2023/131431 2023-02-15 2023-11-14 一种终端天线、天线系统和电子设备 WO2024169282A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202310162877.XA CN118508050A (zh) 2023-02-15 2023-02-15 一种终端天线、天线系统和电子设备
CN202310162877.X 2023-02-15

Publications (1)

Publication Number Publication Date
WO2024169282A1 true WO2024169282A1 (zh) 2024-08-22

Family

ID=92231878

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/131431 WO2024169282A1 (zh) 2023-02-15 2023-11-14 一种终端天线、天线系统和电子设备

Country Status (2)

Country Link
CN (1) CN118508050A (zh)
WO (1) WO2024169282A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013135043A1 (zh) * 2012-03-12 2013-09-19 广东欧珀移动通信有限公司 一种耦合馈入式手机天线装置
CN214313511U (zh) * 2020-11-23 2021-09-28 重庆传音通讯技术有限公司 5g终端天线及终端
CN114243256A (zh) * 2021-11-09 2022-03-25 Oppo广东移动通信有限公司 一种电子设备
CN115441159A (zh) * 2022-08-05 2022-12-06 Oppo广东移动通信有限公司 电子设备
CN115708257A (zh) * 2021-08-20 2023-02-21 荣耀终端有限公司 一种耦合馈电的终端天线

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013135043A1 (zh) * 2012-03-12 2013-09-19 广东欧珀移动通信有限公司 一种耦合馈入式手机天线装置
CN214313511U (zh) * 2020-11-23 2021-09-28 重庆传音通讯技术有限公司 5g终端天线及终端
CN115708257A (zh) * 2021-08-20 2023-02-21 荣耀终端有限公司 一种耦合馈电的终端天线
CN114243256A (zh) * 2021-11-09 2022-03-25 Oppo广东移动通信有限公司 一种电子设备
CN115441159A (zh) * 2022-08-05 2022-12-06 Oppo广东移动通信有限公司 电子设备

Also Published As

Publication number Publication date
CN118508050A (zh) 2024-08-16

Similar Documents

Publication Publication Date Title
CN112751212B (zh) 天线系统及电子设备
WO2020173298A1 (zh) 一种天线模块、天线装置以及终端设备
TWI539660B (zh) 行動裝置
CN113013593A (zh) 天线组件和电子设备
CN212277399U (zh) 天线组件和电子设备
CN107305409A (zh) 移动装置
CN105609969A (zh) 通信终端
JP2003198410A (ja) 通信端末装置用アンテナ
US20220393360A1 (en) Electronic Device
WO2014059629A1 (zh) 多模宽带天线模块及无线终端
CN110048230B (zh) 紧凑型天线及移动终端
US20130135156A1 (en) Multi-Band Antenna For Portable Communication Device
CN112768875B (zh) 电子设备
US20240072440A1 (en) Antenna assembly and electronic device
WO2023093201A1 (zh) 天线装置和电子设备
CN114335998A (zh) 天线组件和电子设备
TWI643407B (zh) 天線結構
CN109428158A (zh) 移动装置
CN205509020U (zh) 通信终端
EP2375488B1 (en) Planar antenna and handheld device
WO2024169282A1 (zh) 一种终端天线、天线系统和电子设备
WO2023066217A1 (zh) 天线装置与电子设备
TWI590522B (zh) 行動裝置
CN115708257A (zh) 一种耦合馈电的终端天线
CN218334300U (zh) 一种天线装置及电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23922398

Country of ref document: EP

Kind code of ref document: A1