WO2024168521A1 - 显示模组及显示装置 - Google Patents

显示模组及显示装置 Download PDF

Info

Publication number
WO2024168521A1
WO2024168521A1 PCT/CN2023/075934 CN2023075934W WO2024168521A1 WO 2024168521 A1 WO2024168521 A1 WO 2024168521A1 CN 2023075934 W CN2023075934 W CN 2023075934W WO 2024168521 A1 WO2024168521 A1 WO 2024168521A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
prism
display
display module
particles
Prior art date
Application number
PCT/CN2023/075934
Other languages
English (en)
French (fr)
Inventor
王超越
刘健明
董文波
余训旺
王会明
贺新月
赵鹏
杨秀琴
张铭祺
马京
Original Assignee
京东方科技集团股份有限公司
合肥京东方显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 合肥京东方显示技术有限公司 filed Critical 京东方科技集团股份有限公司
Priority to PCT/CN2023/075934 priority Critical patent/WO2024168521A1/zh
Publication of WO2024168521A1 publication Critical patent/WO2024168521A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors

Definitions

  • the present disclosure relates to the field of display technology, and in particular to a display module and a display device.
  • the display device includes a display module and a middle frame.
  • the display module includes a display panel and a plurality of optical films stacked one on top of the other.
  • the plurality of optical films in the display module and the display panel are snapped onto the middle frame.
  • the optical film is easy to expand, so that there is a gap between the display panel and the optical film, thereby increasing the thickness of the middle frame, making it difficult for the display device to be ultra-thin and ultra-light. Therefore, it is of great significance to study the ultra-thin and ultra-light display device.
  • the display module includes a display component, a first composite prism film and a first adhesive layer.
  • the display component includes a first display panel and a first polarizer; the first polarizer is arranged on the non-display side of the first display panel; the first display panel has a display area.
  • the first composite prism film includes a first prism layer and a haze layer; the first prism layer is arranged on the side of the first polarizer away from the first display panel; the haze layer is arranged on the first prism layer and is located between the first prism layer and the first polarizer; the haze layer includes a first adhesive layer and a plurality of first diffusion particles dispersed in the first adhesive layer.
  • the first adhesive layer bonds the haze layer in the first composite prism film to the first polarizer in the display component; the orthographic projection of the first adhesive layer on the plane where the first display panel is located at least covers the display area.
  • the haze layer in the first composite prism film is bonded to the first polarizer in the display assembly by using the first adhesive layer, so that the display assembly and the first composite prism film form a fully bonded first display module.
  • the fully bonded first display module there is no gap between the first polarizer and the first composite prism film (that is, the air layer in the related art is removed).
  • the thickness of the first display module is reduced, making the first display module develop in the direction of ultra-lightness and thinness.
  • the plurality of first diffusion particles include a plurality of first particles, and the plurality of first particles are dispersed in the first binder layer.
  • the plurality of first particles are dispersed in the first binder layer.
  • a portion of each first particle is embedded in the first binder layer, and another portion protrudes from the first binder layer and is bonded to the first adhesive layer.
  • the haze layer has a sampling area, the orthographic projection of the sampling area on the first display panel is located in the display area of the first display panel, and the unit length of the sampling area is at least greater than or equal to 150 ⁇ m;
  • the plurality of first diffusion particles also include a plurality of second particles; the plurality of second particles are dispersed in the first binder layer.
  • the distance between the shortest first particle and the first polarizer is smaller than the distance between the second particle and the first polarizer.
  • the shortest first particle is all particles protruding from the upper surface of the first binder layer. Among the first particles, the first particle farthest from the first polarizer.
  • the distance between the shortest first particle and the first polarizer is smaller than the distance between the tallest second particle and the first polarizer, wherein the tallest second particle is the first particle closest to the first polarizer among all the second particles protruding from the upper surface of the first bonding agent layer.
  • the hardness of the first particles is greater than that of the second particles, and the total mass of the plurality of first particles is greater than the total mass of the plurality of second particles; the hardness of the first particles is greater than or equal to 20 MPA.
  • a ratio of the total mass of the plurality of first particles to the mass of the first bonding agent layer is greater than or equal to 60%.
  • the haze of the haze layer is greater than or equal to 70%; and the haze of the first adhesive layer is less than 1%.
  • the first display panel includes a plurality of columns of sub-pixels; the first prism layer includes a plurality of first prism units.
  • the ratio of the size of the first prism unit to the size of the sub-pixel is equal to n; n is a positive number other than 0.5 and a positive integer; and the first direction is the extension direction of the long side of the first display panel.
  • the first prism layer includes a plurality of columns of first prism units; an angle between an extension direction of the first prism units and a first direction which is an extension direction of a long side of the first display panel is greater than or equal to 30° and less than or equal to 150°.
  • the first composite prism film also includes a first back coating layer, which is arranged on a side of the first prism layer away from the first display panel; the first back coating layer includes a second adhesive layer and a plurality of second diffusion particles dispersed in the second adhesive layer; the haze of the first back coating layer is greater than or equal to 90%, or the haze of the first back coating layer is 35% to 70%.
  • the material of the second diffusion particles includes an organic material, and the particle size of the second diffusion particles is 5 ⁇ m to 10 ⁇ m.
  • the second diffusion particles include sixth particles and fifth particles, the material of the sixth particles is organic, and the material of the fifth particles includes metal oxide; and the particle size of the second diffusion particles is less than or equal to 4 ⁇ m.
  • the first composite prism film further includes a first brightness enhancement layer, and the first substrate layer is disposed on a side of the first prism layer away from the first polarizer.
  • the first brightness enhancement layer is disposed between the first substrate layer and the first prism layer and is in contact with the first substrate layer; the refractive index of the first brightness enhancement layer is less than the refractive index of the first substrate layer.
  • the first composite prism film further includes: a polarized brightness enhancement layer, and the polarized brightness enhancement layer is arranged between the first prism layer and the haze layer.
  • a first composite prism film including a first prism layer and a haze layer, wherein the haze layer is disposed on the first prism layer; the haze layer includes a first binder layer and a plurality of first diffusion particles dispersed in the first binder layer.
  • a display module including a second display panel and a second composite prism film, wherein the second display panel has a display area.
  • the second composite prism film includes a polarizing unit, a second adhesive layer, a second prism layer and a third adhesive layer, wherein the polarizing unit is arranged on the non-display side of the second display panel, and includes a polarizing layer and a first supporting layer arranged in a stacked manner.
  • the second adhesive layer adheres the second display panel to the polarizing unit; the orthographic projection of the second adhesive layer on the plane where the second display panel is located at least covers the display area.
  • the second prism layer is arranged on the side of the polarizing unit away from the second display panel; the second prism layer has a plurality of first light emitting surfaces, the first light emitting surfaces are arranged obliquely relative to the plane where the second display panel is located, and the first light emitting surfaces are uneven surfaces.
  • the third adhesive layer is arranged between the polarizing unit and the second prism layer, and is bonded to the second prism layer. Among them, one of the second adhesive layer, the first supporting layer and the third adhesive layer is subjected to haze treatment.
  • the haze of one of the second adhesive layer, the first supporting layer and the third adhesive layer is 45% to 60%, and the haze of the other two is less than 1%.
  • the polarizing unit further includes a second supporting layer; the second supporting layer, the polarizing layer and the first supporting layer are stacked in sequence; and the haze of the second supporting layer is less than 1%.
  • the haze of the first light emitting surface is 40% to 50%.
  • the first light emitting surface has a plurality of recessed portions and/or a plurality of raised portions.
  • the second prism layer includes a plurality of second prism units, the second prism units include a prism body and a plurality of third diffusion particles, the prism body has a bottom surface and an inclined surface connected to the bottom surface, wherein the plurality of third diffusion particles are attached to the inclined surface of the prism body to form the first light-emitting surface of the second prism unit.
  • the plurality of third diffusion particles include: a plurality of third particles and a plurality of fourth particles; the material of the third particles is an organic material; and the material of the fourth particles is a metal oxide.
  • a ratio of a total mass of the plurality of fourth particles to a total mass of the plurality of third particles is 30% to 50%.
  • the second prism layer includes multiple second prism units, the second prism unit has a second light emitting surface and two first light emitting surfaces, the second light emitting surface is connected to the two first light emitting surfaces; the second light emitting surface is parallel to the plane where the second display panel is located; the second light emitting surface is bonded to the second adhesive layer.
  • the second composite prism film also includes a second back coating layer, which is arranged on a side of the second prism layer away from the second display panel; the second back coating layer includes a third adhesive layer and a plurality of fourth diffusion particles dispersed in the third adhesive layer; the haze of the second back coating layer is greater than or equal to 90%, or the haze of the second back coating layer is 35% to 70%.
  • the material of the fourth diffusion particles is an organic material, and the particle size of the fourth diffusion particles is 5 ⁇ m to 10 ⁇ m.
  • the fourth diffusion The particles include eighth particles and seventh particles.
  • the material of the eighth particles is organic matter, and the material of the seventh particles is metal oxide.
  • the particle size of the fourth diffusion particles is less than or equal to 4 ⁇ m.
  • the second composite prism film further comprises a third substrate layer and a second brightness enhancement layer, wherein the third substrate layer is arranged on a side of the second prism layer away from the polarizing unit.
  • the second brightness enhancement layer is arranged between the third substrate layer and the second prism layer and contacts the third substrate layer; and the refractive index of the second brightness enhancement layer is less than the refractive index of the third substrate layer.
  • a second composite prism film comprising a polarizing unit, a second adhesive layer, a second prism layer and a third adhesive layer, wherein the polarizing unit comprises a polarizing layer and a first supporting layer which are stacked.
  • the second adhesive layer is adhered to the polarizing unit.
  • the second prism layer is arranged on a side of the polarizing unit away from the second adhesive layer; the second prism layer has a plurality of first light emitting surfaces, the first light emitting surfaces are arranged obliquely relative to the plane where the second adhesive layer is located, and the first light emitting surfaces are uneven surfaces.
  • the third adhesive layer is arranged between the polarizing unit and the second prism layer, and is bonded to the second prism layer. The haze of one of the second adhesive layer, the first supporting layer and the third adhesive layer is greater than 45% to 60%.
  • a display device comprising a frame and the above-mentioned display module.
  • the display module has a display surface, a back surface, and a side surface connecting the display surface and the back surface.
  • the frame has a first supporting surface; the back surface of the display module is bonded to the first supporting surface.
  • the first supporting surface is parallel to the plane where the display panel is located.
  • the frame includes a frame body and a first shielding portion; the frame body has a first supporting surface; the first shielding portion is protruded from the frame body, exposing the first supporting surface, and is arranged around the side of the display module.
  • the size of the first shielding portion is greater than or equal to the thickness of the display module.
  • the display device further includes a second shielding portion, the second shielding portion is adhered to a side surface of the display module, and the first shielding portion is arranged around the second shielding portion.
  • the frame is located on the back side of the display module away from the display surface.
  • the display device further includes a third shielding portion, which is attached to the side of the display module.
  • the third shielding portion extends from a side surface of the display module to the first supporting surface.
  • the display panel in the display module has a non-display area; and the width of the first supporting surface is smaller than the width of the non-display area.
  • the display device further comprises a backlight layer; the backlight layer is arranged on the frame and is located on the back side of the display module away from the display surface. There is an air layer between the backlight layer and the display module, and the haze of the back coating layer in the display module is greater than or equal to 90%.
  • the display device further comprises a backlight layer; the backlight layer is arranged on the frame and is located on the back side of the display module away from the display surface.
  • the display device further comprises: a diffusion sheet arranged between the second backlight layer and the display module, and the haze of the back coating layer in the display module is 35% to 70%.
  • the display device further includes: a prism film, which is arranged between the backlight layer and the display module; and there is a gap between the prism film and the display module.
  • FIG1 is a structural diagram of a display device according to some embodiments.
  • FIG2 is a schematic diagram of a first display module according to some embodiments.
  • FIG3 is a structural diagram of a first display module according to some embodiments.
  • FIG4 is a block diagram of a display assembly according to some embodiments.
  • FIGS. 6 and 9 are pictorial diagrams of a first composite prismatic film according to some embodiments.
  • FIG7 is an enlarged view at Q in FIG5 ;
  • FIG11 is a structural diagram of a first display panel and a first prism layer
  • FIG12 is another structural diagram of the first display panel and the first prism layer
  • FIG13 is a structural diagram of a second display module according to some embodiments.
  • FIG. 14 is a structural diagram of a second composite prismatic film according to some embodiments.
  • FIG15 is a structural diagram of a polarizing unit according to some embodiments.
  • FIG16 is a structural diagram of another polarizing unit according to some embodiments.
  • 17 to 20 are structural diagrams of a second prism layer according to some embodiments.
  • 21 to 24 are structural diagrams of display devices according to some embodiments.
  • first and second are used for descriptive purposes only and are not to be understood as indicating or implying relative importance or implicitly indicating the number of the indicated technical features.
  • a feature defined as “first” or “second” may explicitly or implicitly include one or more of the features.
  • plural means two or more.
  • At least one of A, B, and C has the same meaning as “at least one of A, B, or C” and both include the following combinations of A, B, and C: A only, B only, C only, the combination of A and B, the combination of A and C, the combination of B and C, and the combination of A, B, and C.
  • a and/or B includes the following three combinations: A only, B only, and a combination of A and B.
  • parallel includes absolute parallelism and approximate parallelism, wherein the acceptable deviation range of approximate parallelism can be, for example, a deviation within 5°;
  • perpendicular includes absolute perpendicularity and approximate perpendicularity, wherein the acceptable deviation range of approximate perpendicularity can also be, for example, a deviation within 5°.
  • equal includes absolute equality and approximate equality, wherein the acceptable deviation range of approximate equality can be, for example, the difference between the two equalities is less than or equal to 5% of either one.
  • Exemplary embodiments are described herein with reference to cross-sectional views and/or plan views that are idealized exemplary drawings.
  • the thickness of layers and the area of regions are exaggerated for clarity. Therefore, variations in shape relative to the drawings due to, for example, manufacturing techniques and/or tolerances are contemplated. Therefore, exemplary embodiments should not be construed as limited to the shapes of the regions shown herein, but rather include deviations in shapes due to, for example, manufacturing. For example, an etched region shown as a rectangle will typically have curved features. Due to Thus, the regions illustrated in the figures are schematic in nature and their shapes are not intended to illustrate the actual shape of a region of a device and are not intended to limit the scope of example embodiments.
  • the display device XZ is a product having an image (including a static image or a dynamic image, wherein the dynamic image may be a video) display function.
  • the display device XZ may be, for example: a virtual reality (VR) display device, an augmented reality (AR) display device, a display, a mobile phone (Mobile Phone), a tablet computer (Pad), a laptop computer, a television, a personal digital assistant (PDA), an ultra-mobile personal computer (Ultra-Mobile Personal Computer, MMPC), a netbook, a wearable device (such as a smart watch) or a vehicle-mounted display device XZ, etc.
  • This embodiment does not limit the type of the display device XZ.
  • the display device XZ may include a display module 1.
  • the display module 1 is a component configured to display a picture; for example, the display module 1 is configured to receive image data and display a picture corresponding to the image data.
  • the display device XZ may further include a controller, etc.
  • the controller is configured to send image data (e.g., grayscale data) to the display module 1; the display module 1 receives the image data and displays a screen corresponding to the image data.
  • the controller may be a central processing unit (CPU) or a graphics processing unit (GPU).
  • the display device XZ further includes a frame 4 (eg, a middle frame, etc.), and the frame 4 is configured to fix the display module 1, the controller, etc.
  • a frame 4 eg, a middle frame, etc.
  • the display module 1 may include a display panel ZM.
  • the display panel ZM is configured to receive a data signal (e.g., a voltage signal) corresponding to image data, and display an image (i.e., a picture) based on the data signal.
  • the display panel ZM may have a display area and a non-display area (e.g., the display area and non-display area of the first display panel hereinafter, and the display area and non-display area of the second display panel hereinafter).
  • the display area of the display panel ZM is an area on the display panel ZM where an image can be displayed, and the area on the display panel ZM other than the display area is a non-display area.
  • the non-display area may be located on at least one side (e.g., one, or multiple sides) of the display area, for example, the non-display area is arranged around the display area.
  • the display panel ZM can be any self-luminous display panel such as an organic light emitting diode (OLED) display panel, a quantum dot light emitting diode (QLED) display panel, and a micro light emitting diode (Mini-LED or Micro-LED) display panel; it can also be a liquid crystal display (LCD) panel.
  • OLED organic light emitting diode
  • QLED quantum dot light emitting diode
  • MILED micro light emitting diode
  • LCD liquid crystal display
  • the display panel ZM includes a plurality of sub-pixels located in the display area.
  • the display panel ZM also includes a plurality of signal lines, such as a plurality of gate lines and a plurality of data lines.
  • Each sub-pixel can be coupled to a gate line and a data line, and is configured to write the data in response to a scanning signal transmitted by the gate line. and based on the data signal, emitting light with corresponding intensity.
  • a plurality of gate lines may extend approximately along a first direction.
  • a gate line may be parallel to the first direction.
  • a gate line may extend in a direction with a smaller angle with the first direction.
  • the smaller angle may have a value range of -8° to 8°, or -5° to 5°.
  • the smaller angle described may refer to the value range of the angle, and may be adaptively selected within the value range.
  • a (e.g., each) gate line may be coupled to sub-pixels in the same row, and may be configured to transmit a scan signal to the sub-pixels in the row.
  • the gate line is located in the display area, and may also extend into the non-display area.
  • the display panel ZM may further include a gate drive circuit located in the non-display area.
  • the gate drive circuit may be referred to as a GOA (Gate On Array) circuit.
  • the gate drive circuit is coupled to a plurality of data lines and is configured to provide a scan signal to the gate lines.
  • the gate drive circuit may be disposed on one side (e.g., the left side or the right side) of the display area along a first direction.
  • the gate drive circuit may be a gate drive chip that is not included in the display panel ZM but is coupled to a plurality of gate lines in the display panel ZM.
  • a plurality of data lines may extend substantially along a second direction.
  • the second direction is perpendicular to the first direction.
  • a data line may be parallel to the second direction.
  • a data line may also have a small angle with the second direction.
  • One (e.g., each) data line may be coupled to a sub-pixel in the same column and configured to provide a data signal to the sub-pixel in the column.
  • the data line is located in the display area and may also extend into the non-display area.
  • the display panel ZM may further include a driver chip, which may be a driver IC, such as a source driver IC or a display driver circuit (DDIC).
  • the driver chip is coupled to the display panel ZM, and may be bound to a non-display area of the display panel ZM, for example.
  • the driver chip is configured to provide a corresponding data signal to the display panel ZM based on the received image data.
  • the driver chip is coupled to a plurality of data lines and is configured to provide data signals to the data lines.
  • the first direction may be the extending direction of the long side of the display panel.
  • the second direction may be the extending direction of the wide side of the display panel.
  • the first direction intersects with the second direction, for example, perpendicularly to establish a rectangular coordinate system.
  • the display device XZ may further include a driver chip, which may be a driver IC, for example, a source driver IC or a display driver circuit (Display Driver Integrated Circuit, DDIC), etc.
  • the driver chip is coupled to the display panel ZM, for example, it may be bound to a non-display area of the display panel ZM.
  • the driver chip is configured to provide a corresponding data signal to the display panel ZM based on the received image data.
  • the display module 1 further includes a composite prism film FH.
  • a composite prism film FH for example, the display component of Example 1 described below or the second display panel of Example 2 described below is fixed on the frame 4, and the composite prism film FH (for example, the first composite prism film or the second composite prism film described below) is fixed on the frame 4.
  • the composite prism film FH for example, the first composite prism film or the second composite prism film described below
  • Some embodiments of the present disclosure provide a display module to solve the problem of an air layer between a second display panel or a display component and a composite prism sheet.
  • the embodiments of the present disclosure provide two display modules, which can be respectively referred to as a first display module and a second display module for the purpose of distinction.
  • the first display module and the second display module are introduced below through two examples.
  • Example 1 Referring to FIG. 2 to FIG. 11 , a first display module 10 is provided.
  • the first display module 10 may include a display assembly 110 .
  • the display assembly 110 includes a first display panel 112 and a first polarizer 113.
  • the first polarizer 113 is disposed on the non-display side of the first display panel 112.
  • the first polarizer 113 is attached to the non-display side of the first display panel 112 (e.g., a liquid crystal display panel).
  • the description of the first display panel 112 can refer to the relevant description of the display panel in the display device.
  • the display module further includes a second polarizer 111; the second polarizer 111 is disposed on the display side of the first display panel 112 (e.g., a liquid crystal display panel).
  • the second polarizer 111 is attached to the display side of the first display panel 112 (e.g., a liquid crystal display panel).
  • the polarization direction of the first polarizer 113 is perpendicular to the polarization direction of the second polarizer 111.
  • the first display module 10 further includes a first adhesive layer 120 and a first composite prism film 130 .
  • the first adhesive layer 120 bonds the first polarizer 113 in the display assembly 110 to the first composite prism film 130 .
  • the haze of the first adhesive layer 120 may be less than 1%.
  • the transmittance of the first adhesive layer 120 may be greater than 90% (e.g., 90%, 92%, 94%, 96%, 99%, 100%, etc.).
  • the first adhesive layer 120 may be a high-transmittance adhesive with low haze.
  • the first adhesive layer 120 may be an OCA (Optically Clear Adhesive) optical adhesive.
  • the Young's modulus of the first adhesive layer 120 is greater than 270 KPa, which reduces the internal stress generated between the first adhesive layer 120 and the first composite prism film 130.
  • the thickness of the first adhesive layer 120 is 50 ⁇ m to 125 ⁇ m. The thicker the first adhesive layer 120 is, the higher the cost is; the thinner the first adhesive layer 120 is, the weaker the adhesive ability is.
  • the first composite prism film 130 includes a haze layer 131 and a first prism layer 133 .
  • the haze layer 131 may be an optical film with a certain haze.
  • the first prism layer 133 is disposed on a side of the first polarizer 113 away from the first display panel 112; the haze layer 131 is disposed on the first prism layer 133 and is located between the first prism layer 133 and the first polarizer 113. That is, the first display panel 112, The first polarizer 113 , the first adhesive layer 120 and the first composite prism film 130 are stacked in sequence.
  • the first adhesive layer 120 bonds the haze layer 131 in the first composite prism film 130 to the first polarizer 113 in the display assembly 110 .
  • the first composite prism film 130 further includes a first substrate layer 135.
  • the material of the first support layer may be a thermoplastic polyester, such as polyethylene terephthalate (PET).
  • PET polyethylene terephthalate
  • the first prism layer 133 is disposed on the first substrate layer 135, and the haze layer 131 is disposed on a side of the first prism layer 133 away from the first substrate layer 135.
  • the orthographic projection of the first adhesive layer 120 on the plane where the first display panel 112 is located at least covers the display area of the first display panel 112. In some examples, the orthographic projection of the first adhesive layer 120 on the plane where the first display panel 112 is located covers the display area of the first display panel 112. In other examples, the orthographic projection of the first adhesive layer 120 on the plane where the first display panel 112 is located covers the display area and the non-display area of the first display panel 112.
  • the haze layer 131 in the first composite prism film 130 is bonded to the first polarizer 113 in the display assembly 110 by using the first adhesive layer 120, so that the display assembly 110 and the first composite prism film 130 form a fully bonded first display module 10.
  • the fully bonded first display module 10 there is no gap between the first polarizer 113 and the first composite prism film 130 (that is, the air layer in the related art is removed).
  • the air layer in the related art is removed.
  • the thickness of the first display module 10 is reduced, so that the first display module 10 is developed in the direction of ultra-lightness and thinness.
  • incident light for example, light emitted from the backlight layer in the display device described below
  • incident light whose incident angle is less than the preset angle
  • the remaining incident light does not meet the refraction condition of the first prism layer 133, and is reflected back to the backlight layer by the first prism layer 133, and is reflected by the reflective sheet at the bottom of the backlight layer, and is incident again into the first prism layer 133.
  • the incident light emitted from the backlight layer is continuously recycled under the action of the first prism layer 133, thereby achieving a brightening effect.
  • the haze of the haze layer 131 is greater than or equal to 70% (for example, the haze of the haze layer 131 can be 70%, 72%, 74%, 76%, 78%, 80%, 82%, 84%, 86%, 88%, 90%, 92%, 94%, 96%, 98%, 99%, 100%, etc.); the light is scattered by the haze layer 131, thereby improving the brightness of the first display panel 112.
  • the haze layer 131 includes a first binder layer 1312 and a plurality of first diffusion particles 1311 ; the plurality of first diffusion particles 1311 are dispersed in the first binder layer 1312 , so that the plurality of first diffusion particles 1311 can achieve the effect of light refraction and scattering.
  • the material of the layer 1312 may be a resin having adhesive properties, such as acrylic resin.
  • the plurality of first diffusion particles 1311 include a plurality of first particles DY, and the hardness of the first particles DY is greater than or equal to 20 MPA.
  • the material of the first particles DY can be an organic material with a greater hardness, for example, the organic material can be a polyester resin, and the polyester resin can be polymethyl methacrylate (PMMA for short).
  • the plurality of first particles DY e.g., the plurality of first particles DY; for example, a portion of the plurality of first particles DY
  • a portion of each first particle DY is embedded in the first binder layer 1312, and another portion protrudes from the first binder layer 1312 and adheres to the first adhesive layer 120.
  • the portion of the plurality of first particles DY has a loss in scattering of light.
  • each first particle DY is embedded in the first bonding agent layer 1312 ; another portion of each first particle DY protrudes out of the first bonding agent layer 1312 and adheres to the first adhesive layer 120 .
  • the portion of the first particles DY exposed outside the first bonding agent layer 1312 can refract and scatter light.
  • the refracted light and scattered light from the portion of the first particles DY exposed outside the first bonding agent layer 1312 can directly propagate to the first polarizer 113 .
  • the particle sizes of the plurality of second particles DR may be the same or may be the same.
  • the particle size of the first particles DY is 2 ⁇ m to 30 ⁇ m (2 ⁇ m, 5 ⁇ m, 10 ⁇ m, 15 ⁇ m, 20 ⁇ m, 25 ⁇ m, 30 ⁇ m, etc.).
  • the plurality of first diffusion particles further include a plurality of second particles DR.
  • the hardness of the plurality of second particles DR is less than 20 MPA.
  • the material of the second particles DR may be some organic material with relatively low hardness, for example, may be polyester resin, and the polyester resin may be polybutyl methacrylate (PBMA).
  • a plurality of second particles DR are dispersed in the first adhesive layer 1312. In this way, both the first particles DY and the second particles DR can refract and scatter light.
  • the hardness of the first particles DY is greater than that of the second particles DR; the total mass of the plurality of first particles DY is greater than the total mass of the plurality of second particles DR; for example, the density of the first particles DY is greater than or equal to the density of the second particles, so that the total volume of the plurality of first particles DY is greater than the total volume of the second particles DR.
  • the first particles DY can play a supporting role, and can reduce the squeezing of the first adhesive layer 120 on the second particles DR and the first adhesive layer 1312.
  • the second particles DR can refract and scatter light without causing Furthermore, with the cooperation of the first particles DY and the second particles DR, the haze layer 131 has a better supporting effect, and the light refraction and scattering effects are also better.
  • the average particle size of the plurality of first particles DY is greater than the average particle size of the plurality of second particles DR. This allows the first particles DY to have a good supporting effect.
  • the particle sizes of the plurality of second particles DR may be the same or may be the same.
  • the particle size of the second particles DR is 2 ⁇ m to 10 ⁇ m (2 ⁇ m, 3 ⁇ m, 4 ⁇ m, 5 ⁇ m, 6 ⁇ m, 7 ⁇ m, 8 ⁇ m, 9 ⁇ m, and 10 ⁇ m, etc.).
  • the ratio of the total mass of the plurality of first particles DY to the mass of the first bonding agent layer 1312 is greater than or equal to 60%. In some examples, the ratio of the total mass of the plurality of second particles DR to the total mass of the first bonding agent layer 1312 is less than or equal to 40%. In this way, the plurality of first particles DY can play a supporting role.
  • Table 1 is the ratio table of haze layer
  • the haze layer 131 has a sampling area
  • the orthographic projection of the sampling area on the first display panel 112 is located in the display area of the first display panel 112
  • the unit length of the sampling area is at least greater than or equal to 150 ⁇ m (for example, 150 ⁇ m, 200 ⁇ m, 250 ⁇ m, 300 ⁇ m, 350 ⁇ m, 400 ⁇ m, 450 ⁇ m, 500 ⁇ m, 550 ⁇ m, 600 ⁇ m, etc.).
  • the unit length of the display area of the first display panel 112 is greater than or equal to the unit length of the sampling area.
  • the unit length can be understood as a square.
  • the sampling area can be expressed as a square of 150 ⁇ m ⁇ 150 ⁇ m.
  • the distance between the shortest first particle DY1 and the first polarizer 113 is smaller than the distance D1 between the second particle and the first polarizer 113.
  • the distance D1 allows the first adhesive layer 120 to contact the first particle DY, but not the second particle DR and the first adhesive layer 1312.
  • the first particle DY plays a supporting role, which can eliminate the squeezing of the second particle DR and the first adhesive layer 1312 by the first adhesive layer 120; thereby avoiding the deformation of the second particle DR and the generation of internal stress.
  • the shortest first particle DY1 is the first particle DY farthest from the first polarizer 113 among all the first particles DY protruding from the upper surface ZBM of the first bonding agent layer 1312 . It can be understood that the shortest first particle DY1 is the first particle DY farthest from the first polarizer 113 among all the first particles DY protruding from the upper surface ZBM of the first bonding agent layer 1312 . The first particles DY closest to the upper surface ZBM of the first bonding agent layer 1312 .
  • the upper surface ZBM of the first bonding agent layer 1312 may be a surface of the first bonding agent layer 1312 closest to the first polarizer 113 .
  • the distance between the shortest first particle DY1 and the first polarizer 113 is less than the distance D1 between the tallest second particle DR1 and the first polarizer 113. In this way, the distance D1 allows the first glue layer 120 to contact the first particle DY without contacting the second particle DR and the first bonding agent layer 1312. In addition, the portion of the tallest second particle DR protruding from the upper surface ZBM of the first bonding agent layer 1312 can improve the scattering and refraction of light.
  • the distance D1 is 3.5 ⁇ m to 10 ⁇ m (3.5 ⁇ m, 4 ⁇ m, 4.5 ⁇ m, 5 ⁇ m, 5.5 ⁇ m, 6 ⁇ m, 6.5 ⁇ m, 7 ⁇ m, 7.5 ⁇ m, 8 ⁇ m, 8.5 ⁇ m, 9 ⁇ m, 9.5 ⁇ m and 10 ⁇ m, etc.).
  • the highest second particle DR is the first particle DY that is closest to the first polarizer 113 among all the second particles DR protruding from the upper surface ZBM of the first adhesive layer 1312; it can be understood that the highest second particle DR1 is the first particle DY that is farthest from the upper surface ZBM of the first adhesive layer 1312 among all the second particles DR protruding from the upper surface ZBM of the first adhesive layer 1312.
  • the distance between the shortest first particle DY1 and the first polarizer 113 is smaller than the distance between the second particles in the first bonding agent layer 1312 and the first polarizer 113 .
  • the second particles DR is embedded in the first adhesive layer 1312.
  • a portion of the second particles DR is embedded in the first adhesive layer 1312, and the other portion is exposed outside the first adhesive layer 1312.
  • the portion of the second particles DR exposed outside the first adhesive layer 1312 can refract and scatter light.
  • the refracted light and scattered light coming out of the portion of the second particles DR exposed outside the first adhesive layer 1312 can directly enter the first polarizer 113, avoiding reflection on the upper and lower surfaces of the first adhesive layer 1312, thereby weakening the light flux; thereby increasing the refractive ability of the haze layer 131.
  • the second particles DR are embedded in the first adhesive layer 1312.
  • the first composite prism film 130 also includes a first back coating layer 136.
  • the first back coating layer 136 is disposed on a side of the first prism layer 133 away from the first display panel 112. In this way, the first back coating layer 136 can reduce or eliminate the interference light between the backlight layer and the first prism layer 133.
  • the first substrate layer 135 is disposed on a side of the first prism layer 133 away from the first polarizer 113.
  • the first back coating layer 136 is disposed on a side of the first substrate layer 135 away from the first prism layer 133.
  • the first back coating layer 136 includes a second bonding agent layer 1361 and a plurality of second diffusion particles 1362 dispersed in the second bonding agent layer 1361.
  • the light emitted by the regularly distributed backlight layer passes through the second diffusion particles. 1362 forms scattered light, and since the propagation law of the scattered light is different from the arrangement law of the first prism layer 133, the interference light between the backlight layer and the first prism layer 133 is reduced.
  • the second bonding agent layer 1361 is disposed on a side of the first substrate layer 135 away from the first prism layer 133.
  • the haze of the first back coating layer 136 is 35% to 70% (for example, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, etc.).
  • the interference light between the backlight layer and the first prism layer 133 can be eliminated, thereby achieving the effect of uniform scattering of the light, thereby playing a hazing shielding role.
  • the material of the second diffusion particles 1362 may be an organic material, such as polyester resin, and the polyester resin may be polymethyl methacrylate (PMMA for short).
  • the particle size of the second diffusion particles 1362 is 5 ⁇ m to 10 ⁇ m (e.g., 5 ⁇ m, 6 ⁇ m, 7 ⁇ m, 8 ⁇ m, 9 ⁇ m, 10 ⁇ m, etc.).
  • the light when the display device does not use a diffusion plate, the light will also produce horizontal diamond patterns in the first prism layer 133. And when the light passes through the prism film of the display device, a mesh of diamond patterns will also be produced between the first prism layer 133 and the prism film.
  • the haze of the first back coating layer 136 is greater than or equal to 90% (for example, 90%, 92%, 94%, 96%, 98%, 100%, etc.), so that the haze of the first back coating layer 136 is increased, thereby enhancing the ability to evenly scatter light.
  • the ability of the first back coating layer 136 to interfere with light interference is increased, so that the atomization shielding effect of the first back coating layer 136 is enhanced.
  • the second diffusion particles 1362 include a plurality of sixth particles and a fifth particle.
  • the material of the sixth particle is an organic matter, for example, a polyester resin.
  • the material of the fifth particle can be a metal oxide, for example, titanium oxide.
  • the particle size of the second diffusion particles 1362 is less than or equal to 4 ⁇ m (for example, 0.1 ⁇ m, 0.5 ⁇ m, 1 ⁇ m, 1.5 ⁇ m, 2 ⁇ m, 2.5 ⁇ m, 3 ⁇ m, 3.5 ⁇ m, 4 ⁇ m, etc.).
  • the total mass of the plurality of fifth particles and the total mass of the plurality of sixth particles are 40% to 60% (for example, 40%, 43%, 45%, 47%, 50%, 53%, 57%, 60%, etc.).
  • a portion of the second diffusion particle 1362 is embedded in the second bonding agent layer 1361 , and another portion of the second diffusion particle 1362 protrudes from the second bonding agent layer 1361 .
  • the first composite prism film 130 further includes a first brightness enhancement layer 134.
  • the first brightness enhancement layer 134 is disposed between the first substrate layer 135 and the first prism layer 133. Since the refractive index of the first brightness enhancement layer 134 is less than the refractive index of the first substrate layer 135, the light passing through the first substrate layer 135 and the first brightness enhancement layer 134 and entering the first prism layer 133 is faster than the light passing through the first substrate layer 135 and entering the first prism layer 133; the added first brightness enhancement layer 134 can increase the incident angle and optical path of the light entering the first prism layer 133, thereby improving the first display panel 112. Display uniformity.
  • the refractive index of the first brightness enhancement layer 134 is 1.49 to 1.51 (1.49, 1.50, 1.51, etc.).
  • the material of the first substrate layer 135 can be an organic material, for example, an optical resin, and therefore, the refractive index of the first substrate layer 135 is 1.62.
  • the thickness of the first brightness enhancement layer 134 is 15 ⁇ m to 50 ⁇ m (15 ⁇ m, 20 ⁇ m, 25 ⁇ m, 30 ⁇ m, 35 ⁇ m, 40 ⁇ m, 45 ⁇ m, 50 ⁇ m, etc.).
  • the first prism composite film further includes a polarized brightness enhancement layer 137.
  • the polarized brightness enhancement layer 137 is disposed between the first prism layer 133 and the haze layer 131.
  • the first composite prism film further includes a second substrate layer 132, and the second substrate layer 132 is disposed between the polarized brightness enhancement layer 137 and the first prism layer 133.
  • the polarized brightness enhancement layer 137 can be attached to the second substrate layer 132.
  • the material description of the second substrate layer 132 can refer to the material description of the first substrate layer 135.
  • the first display panel 112 includes a plurality of sub-pixels XS located in a display area; the plurality of sub-pixels XS include a first sub-pixel for emitting a first color light, a second sub-pixel for emitting a second color light, and a third sub-pixel for emitting a third color light.
  • the first color, the second color, and the third color are three primary colors (e.g., red, green, and blue).
  • the first display panel 112 may include a red sub-pixel, a green sub-pixel, and a blue sub-pixel.
  • the plurality of sub-pixels XS are arranged in a plurality of columns.
  • the first direction is the extending direction of the long side of the first display panel 112. It can be understood that the first direction is perpendicular to the arrangement direction of the plurality of columns of sub-pixels and parallel to the plane where the first display panel 112 is located.
  • the first prism layer 133 includes a plurality of first prism units 1331.
  • the first prism unit 1331 is in the shape of a triangular prism.
  • the first prism unit 1331 may be in the shape of a triangular prism with a vertex angle of 90°.
  • the ratio of the size D3 of the first prism unit 1331 to the size D2 of the sub-pixel XS is equal to n; n is a natural number other than 0.5 and a positive integer (for example, n is 0 to 0.5, 0.5 to 1, 1 to 2, 2 to 3, etc.). In this way, interference light between multiple sub-pixels XS and multiple first prism units 1331 can be avoided.
  • the ratio of the size D3 of the first prism unit 1331 to the size D2 of the sub-pixel XS may be 0.1 to 0.49 (0.1, 0.2, 0.3, 0.4, 0.43, 0.45, 0.47, 0.49, etc.).
  • the ratio of the size D3 of the first prism unit 1331 to the size D2 of the sub-pixel XS may be 0.51 to 0.99 (0.51, 0.53, 0.57, 0.6, 0.63, 0.67, 0.7, 0.8, 0.9, 0.99, etc.).
  • the first prism layer 133 includes a plurality of columns of first prism units 1331; the angle ⁇ between the extension direction of the first prism units 1331 and the extension direction of the long side of the first display panel 112 is greater than or equal to 30° and less than or equal to 150° (for example, 30°, 40°, 50°, 60°, 70°, 80°, 90°, 100°, 110°, 120°, 130°, 140°, 150°, etc.). In this way, the angle ⁇ helps to improve the diagonal lines and avoid the generation of moiré lines between the first polarizer 113 and the first composite prism film 130. The angle ⁇ being greater than or equal to 90° helps to improve the viewing angle.
  • An embodiment of the present disclosure further provides an assembly method of a first display module, the assembly method comprising:
  • Step 1 preparing a first composite prism film may include: steps S110 to S170.
  • Step S110 forming a first substrate layer.
  • Step S120 forming a first brightness enhancement layer on the first substrate layer.
  • Step S130 forming a first prism layer on a side of the first brightness enhancement layer away from the first substrate layer.
  • Step S140 forming a first back coating layer on a side of the first substrate layer away from the first brightness enhancement layer.
  • Step S150 forming a second substrate layer on a side of the first prism layer away from the first substrate layer.
  • Step S160 forming a polarized brightness enhancement film on a side of the second substrate layer away from the first substrate layer.
  • Step S170 forming a haze layer on a side of the polarized brightness enhancement film away from the first substrate layer.
  • steps S150, S160, and S170 are performed first, and then steps S130 and S140 are performed.
  • Step 2 preparing a display component, which may include:
  • a first polarizer is formed on the non-display side of the first display panel, for example, the first polarizer is attached to the non-display side of the first display panel.
  • Step 3 Using the first adhesive layer, bond the first composite prism film to the first polarizer in the display assembly.
  • Example 2 Referring to FIG. 13 to FIG. 20 , a second display module 20 is provided.
  • the second display module 20 includes a second display panel 210 and a second composite prism film 220.
  • the second composite prism film 220 is attached to the non-display side of the second display panel 210.
  • the first display panel in Example 1 and the second display panel 210 in Example 2 may be the same (for example, both may be liquid crystal display panels); or they may be different.
  • the second composite prism film 220 includes a second adhesive layer 221, a third adhesive layer 225, a second prism layer 226, and a polarizing unit 222.
  • the polarizing unit 222 is disposed on the non-display side of the second display panel 210.
  • the second adhesive layer 221 adheres the second display panel 210 to the polarizing unit 222.
  • the third adhesive layer 225 adheres the second prism layer 226 to the polarizing unit 222. That is, the second display panel 210, the second adhesive layer 221, the polarizing unit 222, the third adhesive layer 225, and the second prism layer 226 are stacked in sequence.
  • the polarizing unit 222 includes a polarizing layer G2 and a first supporting layer G1 stacked together.
  • the second adhesive layer 221 bonds the first supporting layer G1 to the second display panel 210.
  • the second prism layer 226, the third adhesive layer 225, the first support layer G1, the polarizing layer G2 and the second display panel 210 are stacked in sequence.
  • the second adhesive layer 221 bonds the polarizing layer G2 to the second display panel 210, and the first support layer G1 is disposed on the side of the polarizing layer G2 away from the second display panel 210. That is, the second prism layer 226, the third adhesive layer 225, the polarizing layer G2, the first support layer G1 and the second display panel 210 are stacked in sequence.
  • the orthographic projection of the second adhesive layer 221 on the plane where the second display panel 210 is located at least covers the display area. In some examples, the orthographic projection of the second adhesive layer 221 on the plane where the second display panel 210 is located covers the display area. In other examples, the orthographic projection of the second adhesive layer 221 on the plane where the second display panel 210 is located covers the display area and the non-display area.
  • the second display panel 210 and the second composite prism film 220 are fully attached by using the second adhesive layer 221 in the second composite prism film 220. Therefore, there is no gap between the second display panel 210 and the first composite prism film (that is, the air layer between the second display panel 210 and the first composite prism film is removed). In this way, there is no more specular reflection light inside the second display module 20, so that the display screen of the second display module 20 is clear. At the same time, the thickness of the second display module 20 is reduced, making the display module develop in the direction of ultra-light and thin.
  • the second display module 20 further includes an upper polarizer; the upper polarizer is disposed on the display side (i.e., the light emitting side) of the second display panel 210 (e.g., a liquid crystal display panel).
  • the upper polarizer is attached to the display side of the second display panel 210 (e.g., a liquid crystal display panel).
  • the polarization direction of the upper polarizer is perpendicular to the polarization direction of the polarizing layer G2.
  • the second prism layer 226 has a plurality of first light emitting surfaces 2261, and the first light emitting surfaces 2261 are arranged obliquely relative to the plane where the second display panel 210 is located.
  • the first light emitting surfaces 2261 are uneven surfaces, so that the first light emitting surfaces 2261 in the second prism layer 226 have a certain haze; this also avoids increasing the thickness of the second prism layer 226.
  • the haze treatment of one of the second adhesive layer 221, the first supporting layer G1 and the third adhesive layer 225 is hazed.
  • the second adhesive layer 221 is hazed.
  • the first supporting layer G1 is hazed.
  • the third adhesive layer 225 is hazed.
  • the present disclosure also provides a first comparison scheme, which includes: a second prism layer 226, a third adhesive layer 225, a polarizing unit (a first supporting layer G1, a polarizing layer G2) and a second display panel 210 are stacked in sequence; and a first light emitting surface 2261, a second adhesive layer 221, a first supporting layer G1 and a third adhesive layer 225 are subjected to a haze treatment.
  • the first comparative solution is to solve the rainbow pattern between the second display panel 210 and the second composite prism film 220, and it is necessary to increase the size of the first light emitting surface 2261, the second adhesive layer 221, the first support layer G1 and the third adhesive layer.
  • the haze of one of the layers 225 As a result, the thickness of the first light emitting surface 2261, the second adhesive layer 221, the first supporting layer G1 and the third adhesive layer 225 is increased, and as the haze increases, the thickness will double. At the same time, the light transmittance is reduced and the process difficulty will double. As a result, the thickness of the display module of the first comparative scheme is thicker, which is not conducive to the development of the display module in the direction of ultra-light and thin.
  • the haze of the second adhesive layer 221 and the third adhesive layer 225 increases, which reduces the adhesion ability of the second adhesive layer 221 and the third adhesive layer 225, so that the display module is prone to debonding and falling off. The yellowing of the display module is more serious.
  • the reliability test eg. high temperature test, high humidity test
  • the reliability test conditions of the first comparative solution are the same as the reliability test conditions of the second display panel, the first comparative solution cannot pass the reliability test.
  • the present disclosure also provides a second comparative solution, which includes: a second prism layer 226, a third adhesive layer 225, a polarizing unit (a first supporting layer G1, a polarizing layer G2) and a second display panel 210 are stacked in sequence; at least two of the second adhesive layer 221, the first supporting layer G1 and the third adhesive layer 225 are subjected to haze treatment. In addition, the second adhesive layer 221 and the third adhesive layer 225 are subjected to haze treatment, so that the yellowing of the display module is more serious.
  • the reliability test eg. high temperature test, high humidity test
  • the reliability test conditions of the first comparative solution are the same as the reliability test conditions of the second display panel, the second comparative solution cannot pass the reliability test.
  • the haze of the first light emitting surface 2261 and the haze of one of the second adhesive layer 221, the first supporting layer G1 and the third adhesive layer 225 are used to solve the rainbow pattern between the second display panel 210 and the second composite prism film 220.
  • the haze of the first light emitting surface 2261 is small, and the haze of one of the second adhesive layer 221, the first supporting layer G1 and the third adhesive layer 225 is small; so that the thickness is thinner, the process is simpler, and the light transmittance is better.
  • the haze of one of the second adhesive layer 221, the first supporting layer G1, and the third adhesive layer 225 is 45% to 60% (e.g., 45%, 47%, 49%, 50%, 53%, 55%, 57%, 60%, etc.).
  • the haze of the second adhesive layer 221 is 45% to 60%.
  • the haze of the first supporting layer G1 is 45% to 60%.
  • the haze of the third adhesive layer 225 is 45% to 60%.
  • the haze of one of the second adhesive layer 221, the first supporting layer G1 and the third adhesive layer 225 is 45% to 60%
  • the haze of the other two is less than 1%.
  • the second adhesive layer 221 can be a haze adhesive
  • the third adhesive layer 225 can be a resin adhesive.
  • the haze of the first supporting layer G1 is 45% to 60%
  • the haze of the second adhesive layer 221 and the third adhesive layer 225 is less than 1%.
  • the haze of the three adhesive layers 225 is less than 1%.
  • the second adhesive layer 221 can be a pressure-sensitive adhesive
  • the third adhesive layer 225 can be a resin adhesive.
  • the second adhesive layer 221 can be a pressure-sensitive adhesive.
  • the second adhesive layer 221 can be a pressure-sensitive adhesive
  • the third adhesive layer 225 can be a haze adhesive.
  • the polarizing unit 222 further includes a second supporting layer G3.
  • the description of the material of the second supporting layer G3 can refer to the description of the material of the first supporting layer G1.
  • the second support layer G3, the polarizing layer G2 and the first support layer G1 are stacked in sequence; the haze of the second support layer G3 is less than 1%.
  • the first support layer G1, the polarizing layer G2 and the second support layer G3 are stacked in sequence. That is, when the third adhesive layer 225 bonds the first support layer G1 to the second prism layer 226, the second adhesive layer 221 bonds the second support layer G3 to the second display panel 210.
  • the second support layer G3, the polarizing layer G2 and the first support layer G1 are stacked in sequence. That is, when the third adhesive layer 225 bonds the second support layer G3 to the second prism layer 226, the second adhesive layer 221 bonds the first support layer G1 to the second display panel 210.
  • the haze of the first light emitting surface 2261 is 40% to 50% (eg, 40%, 42%, 44%, 45%, 47%, 49%, 50%, etc.).
  • the first light exit surface 2261 has a plurality of recessed portions AX.
  • the first light exit surface 2261 has a plurality of protrusions TQ.
  • the first light exit surface 2261 has a plurality of recessed portions AX and a plurality of protrusions TQ.
  • the size of the recessed portion AX is less than or equal to 0.5 ⁇ m (e.g., 0.5 ⁇ m, 0.4 ⁇ m, 0.3 ⁇ m, 0.2 ⁇ m, 0.1 ⁇ m, etc.).
  • the size of the protrusion TQ is less than or equal to 0.5 ⁇ m (e.g., 0.5 ⁇ m, 0.4 ⁇ m, 0.3 ⁇ m, 0.2 ⁇ m, 0.1 ⁇ m, etc.).
  • the second prism layer 226 includes a plurality of second prism units 2262
  • the second prism unit 2262 includes a prism body LJB and a plurality of third diffusion particles DSK
  • the prism body LJB has a bottom surface DM and an inclined surface QXM connected to the bottom surface DM.
  • the plurality of third diffusion particles DSK are attached to the inclined surface QXM of the prism body LJB to form a first light exit surface 2261 of the second prism unit 2262.
  • the particle size of the third diffusion particles DSK is less than or equal to 0.5 ⁇ m (eg, 0.5 ⁇ m, 0.4 ⁇ m, 0.3 ⁇ m, 0.2 ⁇ m, 0.1 ⁇ m, etc.).
  • the plurality of third diffusion particles DSK include: a plurality of third particles and a plurality of fourth particles; the material of the third particles is an organic material, such as polyester resin; the material of the fourth particles is a metal oxide, such as titanium oxide.
  • the ratio of the total mass of the plurality of fourth particles to the total mass of the plurality of third particles is 30% to 50% (30%, 34%, 35%, 37%, 39%, 40%, 44%, 46%, 49%, 50%, etc.).
  • the second prism layer 226 includes a plurality of second prism units 2262, each of which has a second light emitting surface EFG and two first light emitting surfaces 2261, wherein the second light emitting surface EFG is connected to the two first light emitting surfaces 2261; the second light emitting surface EFG is parallel to the plane where the second display panel 210 is located; and the second light emitting surface EFG is bonded to the third adhesive layer 225.
  • the cross section of the second prism unit is a trapezoid.
  • the second composite prism film 220 further includes a third substrate layer 228 and a second brightness enhancement layer 227.
  • the third substrate layer 228 is disposed on a side of the second prism layer 226 away from the polarizing unit 222.
  • the second brightness enhancement layer 227 is disposed between the third substrate layer 228 and the second prism layer 226 and in contact with the third substrate layer 228; the refractive index of the second brightness enhancement layer 227 is less than the refractive index of the third substrate layer 228.
  • the effects of the second brightness enhancement layer 227 and the third substrate layer 228 can refer to the effects of the second brightness enhancement layer and the first substrate layer, and will not be described in detail.
  • the second composite prism film 220 further includes a release film.
  • the release film is located on the side of the second adhesive layer 221 away from the polarizing unit 222, and is releasably disposed on the second adhesive layer 221.
  • the release film is first peeled off, and then the second adhesive layer 221 of the second composite prism film 220 is adhered to the second display panel. In this way, the release film can make the second adhesive layer 221 have good adhesion.
  • the second composite prism film 220 further includes a second back coating layer 229.
  • the back coating layer is disposed on a side of the second prism layer 226 away from the second display panel 210.
  • the second back coating layer 229 includes a third bonding agent layer 2291 and a plurality of fourth diffusion particles 2292 dispersed in the third bonding agent layer 2291; the haze of the second back coating layer 229 is greater than or equal to 90%, or the haze of the second back coating layer 229 is 35% to 70%.
  • the material of the fourth diffusion particles 2292 is an organic material, such as an organic material, such as a polyester resin, and the particle size of the fourth diffusion particles 2292 is 5 ⁇ m to 10 ⁇ m.
  • the fourth diffusion particles 2292 include eighth particles and seventh particles, the material of the eighth particles is organic, and the material of the seventh particles can be metal oxide, such as titanium oxide; the particle size of the fourth diffusion particles 2292 is less than or equal to 4 ⁇ m.
  • the description of the composition, material, effect, etc. of the second back coating layer 229 can refer to the description of the composition, material, effect, etc. of the first back coating layer, and will not be repeated.
  • An embodiment of the present disclosure provides an assembly method of a second display module, the assembly method comprising:
  • Step 4 preparing a second composite prism film may include: steps S210 to S270.
  • Step S210 forming a second prism layer on the third substrate layer.
  • Step S220 using a third adhesive layer, bonding the polarizing unit to the second prism layer, the polarizing unit being located on a side away from the second prism layer and away from the third substrate layer.
  • Step S230 forming a second adhesive layer on a side of the polarizing unit away from the second prism layer.
  • the step of preparing the second composite prism film may further include: a first support layer and a polarizing layer are stacked. In other examples, between step S210 and step S220, the step of preparing the second composite prism film may further include: a polarizing unit includes a first support layer, a polarizing layer, and a second polarizing layer are stacked.
  • the positional relationship between the polarizing unit and the second adhesive layer and the third adhesive layer may refer to the description of the positional relationship between the polarizing unit and the second adhesive layer and the third adhesive layer in Example 2.
  • step S240, the step of preparing the second composite prism film may further include: forming a release film on the second adhesive layer.
  • Step 5 Bond the non-display side of the second display panel to the second adhesive layer of the second composite prism film.
  • the release film is peeled off to expose the second adhesive layer, and the non-display side of the second display panel is bonded to the second adhesive layer of the second composite prism film.
  • the display module 1 in the following refers to a fully laminated display module 1 , that is, the fully laminated display module 1 may be the first display module 10 of Example 1, or may be the second display module 20 of Example 2.
  • the display device may be, for example, a borderless screen display device, in which the width of the non-display area of the borderless screen display device is less than or equal to 1 mm, making the frame extremely narrow, and the optical film cannot be fixed with conventional ears; under high temperature or humid conditions, the expansion space of the optical film and the diffuser is also very limited, and long-term squeezing will cause film wrinkles and other poor picture quality.
  • the direct-type backlight module in the display device includes a glass diffuser plate and an optical film attached to the glass diffuser plate, which can solve the problem of optical film expansion and fixation problems.
  • the price of glass diffuser is relatively high, the light efficiency is relatively low, and the glass diffuser also needs to be fixed.
  • the picture quality needs to be considered, which makes the peripheral structure design of the backlight module very complicated (for example, multiple steps of different widths are required, and multiple light guide strips are required), thereby increasing the process difficulty, the thickness of the backlight module and the assembly cost.
  • the glass diffuser is heavy and has high requirements for stability, making it difficult to make an ultra-light structure.
  • the display module 1 has a display surface 11, a back surface 12, and a side surface 13 connecting the display surface 11 and the back surface 12.
  • the frame 4 has a first support surface 41; the back surface of the display module 1 is bonded to the first support surface 41. In this way, the display module 1 is bonded to a contact position of the frame 4 (i.e., the first support surface 41).
  • the first support surface 41 is parallel to the plane where the display panel is located, so that the display module 1 is relatively horizontally attached to the first support surface 41 of the frame 4.
  • the display device further includes a first adhesive layer 3, and the first adhesive layer 3 adheres the display module 1 to the first support surface 41.
  • the first adhesive layer 3 may have a buffering property, and the first adhesive layer 3 may be a buffering foam.
  • the first adhesive layer 3 may be glue.
  • the color of the first adhesive layer 3 can be a color with good light-shielding properties, such as black, gray, etc.
  • the first adhesive layer 3 can be a black cushioning foam.
  • the color of the first adhesive layer 3 can also be a color with poor light-shielding properties, such as white, etc.
  • the first adhesive layer 3 can be a transparent cushioning foam.
  • the frame 4 includes a frame body 43 and a first shielding portion 42; the frame body 43 has a first supporting surface 41; the first shielding portion 42 is convexly disposed on the frame body 43, and exposes the first supporting surface 41, and is disposed around the side surface 13 of the display module 1. In this way, the first shielding portion 42 can shield the side surface 13 of the display module 1 to prevent light leakage.
  • the size of the first shielding portion 42 is greater than or equal to the thickness of the display module 1.
  • the size of the first shielding portion 42 is greater than or equal to 0.5 mm (e.g., 0.5 mm, 1 mm, 1.5 mm, 2 mm, etc.) than the thickness of the display module 1.
  • the display device further includes a second shielding portion 2, the second shielding portion 2 is attached to the side of the display module 1, and the first shielding portion 42 is arranged around the second shielding portion 2.
  • the second shielding portion 2 can prevent light leakage between the display module 1 and the first shielding portion 42.
  • the second shielding portion 2 is a double-sided adhesive tape
  • the second shielding portion 2 can be attached between the first shielding portion 42 and the side of the display panel.
  • the second shielding portion 2 is a buffer foam
  • the second shielding portion 2 can be attached to the display module 1, and the first shielding portion 4 is in contact with the first shielding portion 2.
  • the second shielding portion 2 may be glue or cushioning foam.
  • the second shielding portion 2 may be black glue or cushioning foam.
  • the display device further includes a third shielding portion 6.
  • the entire frame i.e., the entire frame shown in FIG. 17 , which does not have the first shielding portion 42 compared to the frame body 43 shown in FIG. 21 ) is located on the back side 12 of the display module 1 away from the display surface 11.
  • the third shielding portion 6 is attached to the side 13 of the display module 1. This prevents light leakage from the side 13 of the display module 1.
  • the third shielding portion 6 can be a black buffer foam or glue.
  • the third shielding portion 6 extends from the side surface 13 of the display module 1 to the first supporting surface 41. In this way, light leakage between the third shielding portion 6 and the first supporting surface 41 can be avoided. There is an overlapping area between the orthographic projection of the third shielding portion 6 on the first supporting portion and the first supporting surface 41 .
  • the width of the first support surface 41 is smaller than the width of the non-display area of the display panel. In this way, the first support surface 41 does not block the display area of the display panel.
  • the display module 1 includes a black matrix pattern. The black matrix is located in the display area and extends to the non-display area; the width of the first support surface 41 is smaller than the width of the portion of the black matrix located in the non-display area.
  • the display device further includes a backlight layer 5; the backlight layer 5 is disposed on the frame 4 and is located on the back side of the display module 1 away from the display surface. There is an air layer between the backlight layer 5 and the display module 1, wherein the air layer does not change the propagation direction of the light; so that the light emitted by the backlight layer 5 can be irradiated on the back coating layer of the display module 1 through the air layer. Since the haze of the back coating layer in the display module 1 (for example, the first back coating layer in the first display module, and for example, the second back coating layer in the second display module) is greater than or equal to 90%, the light diffuses through the back coating layer, thereby making the display image of the display module better.
  • the backlight layer 5 is disposed on the frame 4 and is located on the back side of the display module 1 away from the display surface.
  • the backlight layer 5 may include a back plate 52 and a plurality of light emitting devices 51 .
  • the light emitting device 51 is a device that can emit light after being powered on.
  • the light emitting device 51 can be an LED, a micro LED, an OLED (Quantum Dot Light Emitting Diodes, quantum dot light emitting diodes), etc., which are not limited here.
  • the light emitting device 51 can be a micro light emitting device, and the size of the micro light emitting device can refer to the size of the micro LED.
  • Micro LED includes sub-millimeter or even micron-level light emitting diodes, and can also include light emitting diodes with smaller sizes.
  • sub-millimeter-level light emitting diodes are also called sub-millimeter light emitting diodes (Mini Light Emitting Diode, referred to as: Mini LED); the size (e.g., length) of Mini LED can be 50 microns to 150 microns, such as 80 microns to 120 microns, and can be 100 microns or less.
  • Mini LED mini Light Emitting Diode
  • Micron-level light emitting diodes are also called micro light emitting diodes (Micro Light Emitting Diode, referred to as: Micro LED); for example, the size (e.g., length) of Micro LED can be less than 50 microns, such as 10 microns to 50 microns.
  • a plurality of light emitting devices 51 are disposed on the back plate 52 .
  • the plurality of light emitting devices 51 are configured to emit light toward the back surface 12 of the display module 1 .
  • the backlight layer 5 further includes a substrate, which may be a rigid substrate.
  • the material of the rigid substrate may be glass or PMMA (Poly Methyl Meth Acrylate).
  • the substrate may also be a flexible substrate.
  • the material of the flexible substrate may be PET (Poly Ethylene Terephthalate), PEN (Poly Ethylene Naphthalate Two Formic Acid glycol Ester), ultra-thin glass or PI (Polyimide).
  • a plurality of light emitting devices 51 are disposed on a substrate, and the substrate is disposed on a back plate 52.
  • the plurality of light emitting devices 51 are configured to emit light toward a side away from the substrate.
  • the plurality of light emitting devices 51 are configured to emit light toward a display.
  • the back side 12 of the module 1 emits light.
  • a surface of the frame 4 that is away from the first supporting surface 41 is fixed to the back plate 52.
  • the frame 4 and the back plate 52 are connected by bolts.
  • the backlight layer 5 may be a direct-type structure.
  • a plurality of light-emitting devices 51 are distributed on the upper surface of the back plate 52 , for example in an array; the upper surface of the back plate 52 is arranged opposite to the back surface of the display module 1 .
  • the backlight layer 5 may be a side-entry structure.
  • the backlight layer 5 further includes a light guide plate 53, and a plurality of light emitting devices 51 are arranged on the side of the frame 4.
  • the side of the frame 4 intersects the back surface 12 of the display module 1. Light emitted by the light emitting device 51 is transmitted to the back surface of the display module 1 through the light guide plate 53.
  • the display device further includes a backlight layer 5; the backlight layer 5 is disposed on the frame 4 and is located on the back side 12 of the display module 1 away from the display surface 11.
  • the display device further includes a diffuser 8 disposed between the second backlight layer 5 and the display module 1, so that the light emitted by the backlight layer 5 can be scattered by the diffuser 8 and then irradiated on the back coating layer of the display module 1. Since the haze of the back coating layer in the display module (for example, the first back coating layer in the first display module, and for example, the second back coating layer in the second display module) is 35% to 70%, the light is diffused through the back coating layer, thereby making the display image of the display module better.
  • the backlight layer 5 may include a back plate 52 and a plurality of light-emitting devices 51.
  • a side of the frame 4 (e.g., a middle frame) away from the first support surface 41 is fixed to the back plate 52.
  • the backlight layer 5 may be a direct-type structure, and reference may be made to the above description that the backlight layer 5 may be a direct-type structure.
  • the backlight layer 5 may be an edge-entry structure, and reference may be made to the above description that the backlight layer 5 may be an edge-entry structure. No further details will be given.
  • the display device further includes a prism film 7.
  • the prism film 7 is disposed between the backlight layer 5 and the display module 1. In this way, the light efficiency of the display module 1 is improved by combining the prism layer and the prism film 7 in the display module 1, as shown in Table 2, so that the brightness gain ratio of the display device is 100% to 120% (e.g., 100%, 105%, 110%, 115%, 120%, etc.).
  • Table 2 shows the brightness gain ratios of the conventional display device and the display device of this embodiment.
  • the non-full bonding in Table 2 indicates a method of fixing the air layer between the display panel and the prism film in the conventional display device.
  • Table 2 is a display device when the display module is the first display module.
  • DOP is a haze layer, a first prism layer, a first substrate layer, and a first back coating layer (haze is 35% to 70%);
  • COP is a haze layer, a polarized brightening layer, a first prism layer, a first substrate layer, and a first back coating layer (haze is 35% to 70%);
  • SOP is a haze layer, a polarized brightening layer, a first prism layer, a first substrate layer, and a first back coating layer (haze is 35% to 70%);
  • VOP is a haze layer, a polarized brightening layer, a first prism layer, a first substrate layer, and a first back coating layer (haze is 35% to 70%);
  • P is a prism film; wherein the thickness of the polarized brightening layer in COP, SOP, and VOP increases in sequence.
  • DBEF is a polarized brightening film.
  • DOPB is a haze layer, a first prism layer, a first substrate layer, and a first back coating layer, wherein the haze of the haze layer of DOPB is greater than the haze of the haze layer of DOP.
  • the power or number of the light emitting devices 51 in the backlight layer 5 can be reduced to achieve energy saving and consumption reduction, thereby preventing the temperature of the light emitting devices 51 from being too high or the EEI from being substandard or too low.
  • the combination of the prism layer and the prism film 7 in the display module 1 can achieve the same effect as the polarizing prism film in the existing display device, and thus can replace the polarizing prism film in the existing display device to save costs.
  • the gap is 1.1 mm to 2.66 mm (1.1 mm, 1.5 mm, 1.7 mm, 2 mm, 2.3 mm, 2.5 mm, 2.6 mm, 2.66 mm, etc.).
  • the extension direction of the prism layer in the display module may intersect (eg, be perpendicular to) the extension direction of the prism film 7 .
  • the display device further includes a plurality of support columns 9.
  • One end of the support column 9 is fixed to the back plate 52, and the other end is in contact with the back surface 12 of the display module 1.
  • the support column 9 can play a role in supporting the display module 1.
  • the support column 9 can be a bouncing silicone sleeve support column, so that the support column 9 is prevented from contacting the display module 1 to produce a cross black line, and can also play a role in supporting the display module 1 during transportation.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Elements Other Than Lenses (AREA)

Abstract

一种显示模组(10)。显示模组(10)包括显示组件(110)、第一复合棱镜膜(130)和第一胶层(120)。显示组件(110)包括第一显示面板(112)和第一偏光片(113);第一偏光片(113)设置在第一显示面板(112)的非显示侧;第一显示面板(112)具有显示区。第一复合棱镜膜(130)包括第一棱镜层(133)和雾度层(131);第一棱镜层(133)设置在第一偏光片(113)远离第一显示面板(112)的一侧;雾度层(131)设置在第一棱镜层(133)上,且位于第一棱镜层(133)与第一偏光片(113)之间;雾度层(131)包括第一接合剂层(1312)和分散在第一接合剂层(1312)中的多个第一扩散粒子(1311)。第一胶层(120)将第一复合棱镜膜(130)中的雾度层(131)与显示组件(110)中的第一偏光片(113)粘接;第一胶层(120)在第一显示面板(112)所在平面的正投影至少覆盖显示区。

Description

显示模组及显示装置 技术领域
本公开涉及显示技术领域,尤其涉及一种显示模组及显示装置。
背景技术
显示装置(例如,手机或虚拟现实设备等)。显示装置包括显示模组和中框,显示模组包括显示面板、以及层层叠放的多个光线膜片,显示模组中的多个光线膜片和显示面板卡合在中框上。但是光线膜片容易膨胀,使得显示面板与光学膜片间存在间隙,从而增加了中框的厚度,使得显示装置很难做到超薄超轻。因此,研究显示装置超薄超轻有很重的意义。
发明内容
一方面,提供一种显示模组。显示模组包括显示组件、第一复合棱镜膜和第一胶层。显示组件包括第一显示面板和第一偏光片;第一偏光片设置在第一显示面板的非显示侧;第一显示面板具有显示区。第一复合棱镜膜包括第一棱镜层和雾度层;第一棱镜层设置在第一偏光片远离第一显示面板的一侧;雾度层设置在第一棱镜层上,且位于第一棱镜层与第一偏光片之间;雾度层包括第一接合剂层和分散在第一接合剂层中的多个第一扩散粒子。第一胶层将第一复合棱镜膜中的雾度层与显示组件中的第一偏光片粘接;第一胶层在第一显示面板所在平面的正投影至少覆盖显示区。
这样一来,利用第一胶层将第一复合棱镜膜中的雾度层与显示组件中的第一偏光片粘接,使得显示组件和第一复合棱镜膜形成全贴合的第一显示模组。这样一来,在全贴合的第一显示模组中,第一偏光片与第一复合棱镜膜之间没有空隙(即去除了相关技术中的空气层)。从而使得第一显示模组的内部没有更多的镜面反射光线,使得的第一显示模组的显示画面清晰。此外还降低了第一显示模组的厚度,使第一显示模组超轻薄化的方向发展。
可选地,多个第一扩散粒子包括多个第一粒子,多个第一粒子分散在第一接合剂层中。针对多个第一粒子中的至少一些,每个第一粒子中的一部分嵌设在第一接合剂层中,另一部分凸出于第一接合剂层且与第一胶层粘接。
可选地,所述雾度层具有取样区,所述取样区在所述第一显示面板上的正投影位于所述第一显示面板的显示区内,所述取样区的单位长度至少大于或等于150μm;多个第一扩散粒子还包括多个第二粒子;多个第二粒子分散在第一接合剂层中。最矮第一粒子与第一偏光片的距离,小于第二粒子与第一偏光片的距离。其中,最矮第一粒子为所有凸出于第一接合剂层的上表面 的第一粒子中,最远离第一偏光片的第一粒子。
可选地,最矮第一粒子与第一偏光片的距离,小于最高第二粒子与第一偏光片的距离。其中,最高第二粒子为所有凸出于第一接合剂层的上表面的第二粒子中,最靠近第一偏光片的第一粒子。
可选地,第一粒子的硬度大于第二粒子的硬度,且多个第一粒子的总质量大于多个第二粒子的总质量;第一粒子的硬度大于或等于20MPA。
可选地,多个第一粒子的总质量与第一接合剂层的质量之比大于或等于60%。
可选地,雾度层的雾度大于或等于70%;第一胶层的雾度小于1%。
可选地,第一显示面板包括多列子像素;第一棱镜层包括多个第一棱镜单元。其中,在第一方向上,第一棱镜单元的尺寸与子像素的尺寸的比值等于n;n为除了0.5和正整数之外的正数;第一方向为第一显示面板的长边的延伸方向。
可选地,第一棱镜层包括多列第一棱镜单元;第一棱镜单元的延伸方向与第一方向为所述第一显示面板的长边的延伸方向之间的夹角大于等于30°,且小于等于150°。
可选地,第一复合棱镜膜还包括第一背涂层,第一背涂层设置在第一棱镜层远离第一显示面板的一侧;第一背涂层包括第二接合剂层和分散在第二接合剂层中的多个第二扩散粒子;第一背涂层的雾度大于或等于90%,或者,第一背涂层的雾度为35%~70%。
可选地,在第一背涂层的雾度为35%~70%的情况下,第二扩散粒子的材料包括有机材料,第二扩散粒子的粒径为5μm~10μm。
可选地,在第一背涂层的雾度大于或等于90%的情况下,所述第二扩散粒子包括第六粒子和第五粒子,所述第六粒子的材料为有机物,所述第五粒子的材料包括金属氧化物;第二扩散粒子的粒径小于或等于4μm。
可选地,第一复合棱镜膜还包括和第一增亮层,第一基材层设置在第一棱镜层远离第一偏光片的一侧。第一增亮层设置在第一基材层与第一棱镜层之间,且与第一基材层接触;第一增亮层的折射率小于第一基材层的折射率。
可选地,第一复合棱镜膜还包括:偏光增亮层,偏光增亮层设置在第一棱镜层与雾度层之间。
另一方面,提供一种第一复合棱镜膜,包括第一棱镜层和雾度层,雾度层设置在第一棱镜层上;雾度层包括第一接合剂层和分散在第一接合剂层中的多个第一扩散粒子。
又一方面,提供一种显示模组,包括第二显示面板和第二复合棱镜膜,第二显示面板具有显示区。第二复合棱镜膜包括偏光单元、第二胶层、第二棱镜层和第三胶层,偏光单元设置在第二显示面板的非显示侧,且包括层叠设置的偏光层和第一支撑层。第二胶层将第二显示面板与偏光单元粘贴;第二胶层在第二显示面板所在平面的正投影至少覆盖显示区。第二棱镜层设置在偏光单元远离第二显示面板的一侧;第二棱镜层具有多个第一出光面,第一出光面相对于第二显示面板所在平面倾斜设置,第一出光面为凹凸不平的面。第三胶层设置在偏光单元和第二棱镜层之间,且与第二棱镜层粘接。其中,第二胶层、第一支撑层和第三胶层中的一者雾度处理。
可选地,第二胶层、第一支撑层和第三胶层中的一者的雾度为45%~60%,另二者的雾度小于1%。
可选地,偏光单元还包括第二支撑层;第二支撑层、偏光层和第一支撑层依次层叠设置;第二支撑层的雾度小于1%。
可选地,第一出光面的雾度为40%~50%。
可选地,第一出光面具有多个凹陷部,和/或多个凸起部。
可选地,第二棱镜层包括多个第二棱镜单元,第二棱镜单元包括棱镜本体和多个第三扩散粒子,棱镜本体具有底面和与底面连接的倾斜面。其中,多个第三扩散粒子粘贴在棱镜本体的倾斜面上形成第二棱镜单元的第一出光面。
可选地,多个第三扩散粒子包括:多个第三粒子和多个第四粒子;第三粒子的材料为有机材料;第四粒子的材料为金属氧化物。
可选地,在多个第三扩散粒子中,所述多个第四粒子的总质量与所述多个第三粒子的总质量比值为30%~50%。
可选地,第二棱镜层包括多个第二棱镜单元,第二棱镜单元具有第二出光面和两个第一出光面,第二出光面与两个第一出光面连接;第二出光面和第二显示面板所在平面平行;第二出光面与第二胶层粘接。
可选地,第二复合棱镜膜还包括第二背涂层,第二背涂层设置在第二棱镜层远离第二显示面板的一侧;第二背涂层包括第三接合剂层和分散在第三接合剂层中的多个第四扩散粒子;第二背涂层的雾度大于或等于90%,或者,第二背涂层的雾度为35%~70%。
可选地,在第二背涂层的雾度为35%~70%的情况下,第四扩散粒子的材料为有机材料,第四扩散粒子的粒径为5μm~10μm。
可选地,在第二背涂层的雾度大于或等于90%的情况下,所述第四扩散 粒子包括第八粒子和第七粒子,所述第八粒子的材料为有机物,所述第七粒子的材料为金属氧化物;第四扩散粒子的粒径小于或等于4μm。
可选地,第二复合棱镜膜还包括第三基材层和第二增亮层,第三基材层设置在第二棱镜层远离偏光单元的一侧。第二增亮层设置在第三基材层与第二棱镜层之间,且与第三基材层接触;第二增亮层的折射率小于第三基材层的折射率。
又一方面,提供一种第二复合棱镜膜,包括偏光单元、第二胶层、第二棱镜层和第三胶层,偏光单元包括层叠设置的偏光层和第一支撑层。第二胶层,粘贴在偏光单元上。第二棱镜层设置在偏光单元远离第二胶层的一侧;第二棱镜层具有多个第一出光面,第一出光面相对于第二胶层所在平面倾斜设置,第一出光面为凹凸不平的面。第三胶层设置在偏光单元和第二棱镜层之间,且与第二棱镜层粘接。其中,第二胶层、第一支撑层和第三胶层中的一者的雾度大于45%~60%。
又一方面,提供一种显示装置,包括框架和上述的显示模组。显示模组具有显示面、背面和连接显示面和背面的侧面。框架具有第一支撑面;显示模组的背面与第一支撑面粘接。其中,第一支撑面平行于显示面板所在平面。
可选地,框架包括框本体和第一遮蔽部;框本体具有第一支撑面;第一遮蔽部凸设在框本体上,且暴露出第一支撑面,并围绕显示模组的侧面设置。
可选地,沿所显示模组的厚度方向上,第一遮蔽部的尺寸大于或等于显示模组的厚度。
可选地,显示装置还包括第二遮蔽部,第二遮蔽部粘贴在显示模组的侧面上,第一遮蔽部围绕第二遮蔽部设置。
可选地,框架整体位于显示模组的背面远离显示面的一侧。显示装置还包括第三遮蔽部,第三遮蔽部粘贴在显示模组的侧面上。
可选地,第三遮蔽部从显示模组的侧面延展至第一支撑面上。
可选地,显示模组中的显示面板具有非显示区;第一支撑面的宽度小于非显示区的宽度。
可选地,显示装置还包括背光层;背光层设置在框架上,且位于显示模组的背面远离显示面的一侧。背光层与显示模组之间具有一个空气层,显示模组中的背涂层的雾度大于或等于90%。
可选地,显示装置还包括背光层;背光层设置在框架上,且位于显示模组的背面远离显示面的一侧。显示装置还包括:设置在第二背光层与显示模组之间的扩散片,显示模组中的背涂层的雾度为35%~70%。
可选地,显示装置还包括:棱镜膜,设置于背光层和显示模组之间;棱镜膜与显示模组之间存在间隙。
附图说明
为了更清楚地说明本公开中的技术方案,下面将对本公开一些实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例的附图,对于本领域普通技术人员来讲,还可以根据这些附图获得其他的附图。此外,以下描述中的附图可以视作示意图,并非对本公开实施例所涉及的产品的实际尺寸、方法的实际流程、信号的实际时序等的限制。
图1为根据一些实施例的一种显示装置的结构图;
图2为根据一些实施例的第一显示模组的示意图;
图3为根据一些实施例的第一显示模组的结构图;
图4为根据一些实施例的显示组件的结构图;
图5、图8和10为根据一些实施例的第一复合棱镜膜的结构图;
图6和图9为根据一些实施例的第一复合棱镜膜的实物图;
图7为图5中在Q处的放大图;
图11为第一显示面板与第一棱镜层的一种结构图;
图12为第一显示面板与第一棱镜层的另一种结构图;
图13为根据一些实施例的第二显示模组的结构图;
图14为根据一些实施例的第二复合棱镜膜的结构图;
图15为根据一些实施例的一种偏光单元的结构图;
图16为根据一些实施例的另一种偏光单元的结构图;
图17~图20为根据一些实施例的第二棱镜层的结构图;
图21~图24为根据一些实施例的显示装置的结构图。
具体实施方式
下面将结合附图,对本公开一些实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开所提供的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本公开保护的范围。
除非上下文另有要求,否则,在整个说明书和权利要求书中,术语“包括(comprise)”及其其他形式例如第三人称单数形式“包括(comprises)”和现在分词形式“包括(comprising)”被解释为开放、包含的意思,即为“包含,但不限于”。在说明书的描述中,术语“一个实施例(one embodiment)”、“一些 实施例(some embodiments)”、“示例性实施例(exemplary embodiments)”、“示例(example)”、“特定示例(specific example)”或“一些示例(some examples)”等旨在表明与该实施例或示例相关的特定特征、结构、材料或特性包括在本公开的至少一个实施例或示例中。上述术语的示意性表示不一定是指同一实施例或示例。此外,所述的特定特征、结构、材料或特点可以以任何适当方式包括在任何一个或多个实施例或示例中。
以下,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本公开实施例的描述中,除非另有说明,“多个”的含义是两个或两个以上。
“A、B和C中的至少一个”与“A、B或C中的至少一个”具有相同含义,均包括以下A、B和C的组合:仅A,仅B,仅C,A和B的组合,A和C的组合,B和C的组合,及A、B和C的组合。
“A和/或B”,包括以下三种组合:仅A,仅B,及A和B的组合。
本文中“适用于”或“被配置为”的使用意味着开放和包容性的语言,其不排除适用于或被配置为执行额外任务或步骤的设备。
如本文所使用的那样,“平行”、“垂直”、“相等”包括所阐述的情况以及与所阐述的情况相近似的情况,该相近似的情况的范围处于可接受偏差范围内,其中所述可接受偏差范围如由本领域普通技术人员考虑到正在讨论的测量以及与特定量的测量相关的误差(即,测量系统的局限性)所确定。例如,“平行”包括绝对平行和近似平行,其中近似平行的可接受偏差范围例如可以是5°以内偏差;“垂直”包括绝对垂直和近似垂直,其中近似垂直的可接受偏差范围例如也可以是5°以内偏差。“相等”包括绝对相等和近似相等,其中近似相等的可接受偏差范围内例如可以是相等的两者之间的差值小于或等于其中任一者的5%。
应当理解的是,当层或元件被称为在另一层或基板上时,可以是该层或元件直接在另一层或基板上,或者也可以是该层或元件与另一层或基板之间存在中间层。
本文参照作为理想化示例性附图的剖视图和/或平面图描述了示例性实施方式。在附图中,为了清楚,放大了层的厚度和区域的面积。因此,可设想到由于例如制造技术和/或公差引起的相对于附图的形状的变动。因此,示例性实施方式不应解释为局限于本文示出的区域的形状,而是包括因例如制造而引起的形状偏差。例如,示为矩形的蚀刻区域通常将具有弯曲的特征。因 此,附图中所示的区域本质上是示意性的,且它们的形状并非旨在示出设备的区域的实际形状,并且并非旨在限制示例性实施方式的范围。
本公开的一些实施例提供一种显示装置XZ。参见图1,显示装置XZ为具有图像(包括静态图像或动态图像,其中,动态图像可以是视频)显示功能的产品。显示装置XZ例如可以是:虚拟现实(Virtual Reality,VR)显示设备、增强现实(Augmented Reality,AR)显示设备、显示器、手机(Mobile Phone)、平板电脑(Pad)、笔记本电脑、电视、个人数字助理(Personal Digital Assistant,PDA)、超级移动个人计算机(Ultra-Mobile Personal Computer,ΜMPC)、上网本、可穿戴设备(例如智能手表)或车载显示装置XZ等,本实施例对显示装置XZ的类型不作限制。
显示装置XZ可以包括显示模组1。显示模组1为被配置为显示画面的组件;例如,显示模组1被配置为接收图像数据,并显示图像数据相应的画面。
在一些示例中,显示装置XZ还可以包括控制器等。控制器被配置为向显示模组1发送图像数据(例如,灰阶数据);显示模组1接收该图像数据,并显示图像数据相应的画面。例如,控制器可以是中央处理器(Central Processing Unit,CPU)或者图像处理器(Graphics Processing Unit,GPU)等。
显示装置XZ还包括框架4(例如中框等),框架4被配置为固定显示模组1、控制器等。
显示模组1可以包括显示面板ZM。显示面板ZM被配置为接收与图像数据相应数据信号(例如电压信号),并基于该数据信号显示图像(即画面)。显示面板ZM可以具有显示区和非显示区(例如可以下文中第一显示面板的显示区和非显示区,又例如以下文中第二显示面板的显示区和非显示区)。显示面板ZM的显示区是显示面板ZM上能够显示图像的区域,显示面板ZM上除了显示区以外的区域为非显示区。其中,非显示区可以位于显示区的至少一侧(例如一个,又如多侧),例如非显示区围绕显示区一周设置。
在一些示例中,根据显示原理的不同,显示面板ZM可以是有机发光二极管(Organic Light Emitting Diode,简称OLED)显示面板,量子点发光二极管(Quantum dot Light Emitting Diodes,简称QLED)显示面板和微发光二极管(Mini-LED或Micro-LED)显示面板等自发光显示面板中的任一种;还可以是液晶显示(Liquid Crystal Display,简称LCD)面板。
示例性地,显示面板ZM包括位于显示区的多个子像素。显示面板ZM还包括多条信号线,例如多条栅线和多条数据线。每个子像素可以与一条栅线和一条数据线耦接,被配置为响应于该栅线传输的扫描信号,写入该数据 线传输的数据信号;并基于该数据信号,出射具有相应强度的光线。
在一些示例中,多条栅线可以大致沿第一方向延伸。在一些示例中,一条栅线可以与第一方向平行。又示例性地,一条栅线的延伸方向还可以与第一方向之间存在较小的夹角。例如,该较小的夹角的取值范围为-8°~8°,又如-5°~5°。下文中,叙述的较小的夹角可以参考该夹角的取值范围,并在该取值范围内进行适应性的选择。一(例如每条)栅线可以与同一行的子像素耦接,被配置为向该行子像素传输扫描信号。示例性地,栅线位于显示区内,也可以延伸到非显示区内。
在一种可能实现的方式中,显示面板ZM还可以包括位于非显示区的栅极驱动电路,此时,栅极驱动电路可以称为GOA(Gate On Array)电路。该栅极驱动电路与多条数据线耦接,被配置为向栅线提供扫描信号。例如,栅极驱动电路可以设置在显示区沿第一方向的一侧(例如左侧或右侧)。在另一些示例中,栅极驱动电路可以为栅极驱动芯片,不包含在显示面板ZM中,但与显示面板ZM中的多条栅线耦接。
在一些示例中,多条数据线可以大致沿第二方向延伸。其中,第二方向垂直于第一方向。示例性地,一条数据线可以与第二方向平行。在一些示例中,一条数据线还可以与第二方向之间存在较小的夹角。一(例如每条)数据线可以与同一列的子像素耦接,被配置为向该列的子像素提供数据信号。示例性地,数据线位于显示区内,也可以延伸到非显示区内。
在一种可能实现的方式中,显示面板ZM还可以包括驱动芯片,具体可以是驱动IC,例如,源极驱动IC或显示驱动电路(Display Driver Integrated Circuit,DDIC)等。驱动芯片与显示面板ZM耦接,例如可以绑定到显示面板ZM的非显示区。驱动芯片被配置为基于接收到的图像数据,向显示面板ZM提供相应的数据信号。在一些示例中,驱动芯片与多条数据线耦接,被配置为向数据线提供数据信号。
为了方便描述,第一方向可以是显示面板的长边的延伸方向。第二方向可以显示面板的宽边的延伸方向。第一方向与第二方向交叉,例如垂直而建立直角坐标系。
在一些示例中,显示装置XZ还可以包括驱动芯片,具体可以是驱动IC,例如,源极驱动IC或显示驱动电路(Display Driver Integrated Circuit,DDIC)等。驱动芯片与显示面板ZM耦接,例如可以绑定到显示面板ZM的非显示区。驱动芯片被配置为基于接收到的图像数据,向显示面板ZM提供相应的数据信号。
在相关技术中,继续参见图1,显示模组1还包括复合棱镜膜FH,例如,将下文中示例一的显示组件或下文中示例二的第二显示面板固定在框架4上,复合棱镜膜FH(例如下文中的第一复合棱镜膜或第二复合棱镜膜)固定在框架4上;第二显示面板或显示组件与复合棱镜片之间存在空气层,那么光线在通过空气层的上、下表面时会产生反射,使得显示模组1的显示效果不好。
本公开的一些实施例提供了一种显示模组,以解决第二显示面板或显示组件与复合棱镜片之间存在空气层的问题。其中,本公开的实施例提供了两种显示模组,为了做出区分,该两种显示模组可以分别称为第一显示模组和第二显示模组。下面通过两个示例介绍第一显示模组和第二显示模组。
示例一:参见图2~图11,提供第一显示模组10。
参见图2和图3,第一显示模组10可以包括显示组件110。
参见图4,显示组件110包括第一显示面板112和第一偏光片113。第一偏光片113设置在第一显示面板112的非显示侧。例如,第一偏光片113贴附在第一显示面板112(例如液晶显示面板)的非显示侧。第一显示面板112的描述可参考显示装置中对显示面板的相关描述。
在一些示例中,继续参见图4,显示模组还包括第二偏光片111;第二偏光片111设置在第一显示面板112(例如液晶显示面板)的显示侧。例如第二偏光片111贴附在第一显示面板112(例如液晶显示面板)的显示侧。其中,第一偏光片113的偏振方向和第二偏光片111的偏振方向垂直。
继续参见图2和图3,第一显示模组10还包括第一胶层120和第一复合棱镜膜130。第一胶层120将显示组件110中的第一偏光片113与第一复合棱镜膜130粘合。
第一胶层120的雾度可以是小于1%。第一胶层120的透过率可以是大于90%(例如90%、92%、94%、96%、99%、100%等)。第一胶层120可以是雾度较低的高透胶。例如第一胶层120可以是OCA(Optically Clear Adhesive)光学胶。第一胶层120的杨氏模量大于270KPa,减少第一胶层120与第一复合棱镜膜130之间产生内应力。第一胶层120的厚度为50μm~125μm,第一胶层120的厚度较厚,成本较高;第一胶层120的厚度胶薄,粘贴能力弱。
继续参见图2和图3,第一复合棱镜膜130包括雾度层131和第一棱镜层133。
雾度层131可以是具有一定雾度的光学膜片。第一棱镜层133设置在第一偏光片113远离第一显示面板112的一侧;雾度层131设置在第一棱镜层133上,且位于第一棱镜层133与第一偏光片113之间。即第一显示面板112、 第一偏光片113、第一胶层120和第一复合棱镜膜130依次层叠设置。第一胶层120将第一复合棱镜膜130中的雾度层131与显示组件110中的第一偏光片113粘接。
在一些示例中,第一复合棱镜膜130还包括第一基材层135,第一支撑层的材料可以是热塑性聚酯,例如可以是聚对苯二甲酸乙二醇酯(Polyethylene terephthalate,简称PET)。第一棱镜层133设置在第一基材层135上,雾度层131设置在第一棱镜层133远离第一基材层135的一侧。
第一胶层120在第一显示面板112所在平面的正投影至少覆盖第一显示面板112的显示区。在一些示例中,第一胶层120在第一显示面板112所在平面的正投影覆盖第一显示面板112的显示区。在另一些示例中,第一胶层120在第一显示面板112所在平面的正投影覆盖第一显示面板112的显示区和非显示区。
这样一来,利用第一胶层120将第一复合棱镜膜130中的雾度层131与显示组件110中的第一偏光片113粘接,使得显示组件110和第一复合棱镜膜130形成全贴合的第一显示模组10。这样一来,在全贴合的第一显示模组10中,第一偏光片113与第一复合棱镜膜130之间没有空隙(即去除了相关技术中的空气层)。从而使得第一显示模组10的内部没有更多的镜面反射光线,使得的第一显示模组10的显示画面清晰。此外还降低了第一显示模组10的厚度,使第一显示模组10超轻薄化的方向发展。
入射光线(例如可以是下文中的显示装置中的背光层发出的光线)通过第一棱镜层133时,入射光线的入射角小于预设角度的入射光线可以通过第一棱镜层133折射出去;其余入射光线不满足第一棱镜层133的折射条件,而被第一棱镜层133反射回到背光层中,并由背光层底部的反射片反射,再次入射到第一棱镜层133中。这样,背光层发出的入射光线在第一棱镜层133的作用下,不断的循环利用,从而达到增亮效果。
光线通过第一棱镜层133进入到雾度层131时,由于雾度层131具有雾度,例如雾度层131的雾度大于或等于70%(例如雾度层131的雾度可以是70%、72%、74%、76%、78%、80%、82%、84%、86%、88%、90%、92%、94%、96%、98%、99%、100%等);光线被雾度层131进行散射,从而可以提升第一显示面板112的辉度。
参见图5和图6,雾度层131包括第一接合剂层1312和多个第一扩散粒子1311;多个第一扩散粒子1311分散在第一接合剂层1312中,这样一来,设置的多个第一扩散粒子1311可以起到光线折射和散射的效果。第一接合剂 层1312的材料可以是具有粘贴能力的树脂,例如丙烯酸树脂。
在一些实施例中,多个第一扩散粒子1311包括多个第一粒子DY,第一粒子DY的硬度大于或等于20MPA。这样一来,在第一胶层120挤压雾度层131中的第一粒子DY的情况下,由于第一粒子DY的硬度较大,使得第一粒子DY不会发生形变;从而可以避免第一粒子DY产生内应力,而使得雾度层131与第一胶层之间产生彩虹纹。其中,第一粒子DY的材料可以是硬度较大的有机材料,例如该有机材料可是聚酯树脂,聚酯树脂可以是聚甲基丙烯酸甲酯(Poly Methyl Methacrylate,简称PMMA)。
在一些示例中,针对多个第一粒子DY中的至少一些(例如多个第一粒子DY;又例如一部分的多个第一粒子DY),每个第一粒子DY中的一部分嵌设在第一接合剂层1312中,另一部分凸出于第一接合剂层1312且与第一胶层120粘接。对于多个第一粒子DY中的一部分可以嵌设在第一接合剂层1312内,该多个第一粒子DY中的一部分对光的散射有损失。
例如,针对全部的第一粒子DY,每个第一粒子DY的一部分嵌设在第一接合剂层1312中;每个第一粒子DY的另一部分凸出于第一接合剂层1312且与第一胶层120粘接。
这样一来,第一粒子DY中裸露于第一接合剂层1312外的部分可以起到折射和散射光线的效果。从第一粒子DY中裸露于第一接合剂层1312外的部分出来的折射光线和散射光线,可以直接传播至第一偏光片113。
在一些示例中,多个第二粒子DR的粒径可以相同,也可以相同。例如第一粒子DY的粒径为2μm~30μm(2μm、5μm、10μm、15μm、20μm、25μm和30μm等)。
示例性地,继续参见图5和图6,多个第一扩散粒子还包括多个第二粒子DR。在一些示例中,多个第二粒子DR的硬度小于20MPA。第二粒子DR的材料可以是一些硬度较小的有机材料,例如可以是聚酯树脂,聚酯树脂可以是聚甲基丙烯酸正丁酯(PBMA)。
多个第二粒子DR分散在第一接合剂层1312中。这样一来,第一粒子DY和第二粒子DR均可以起到折射光线和散射光线的效果。第一粒子DY的硬度大于第二粒子DR的硬度;多个第一粒子DY的总质量大于多个第二粒子DR的总质量;例如第一粒子DY的密度大于或等于第二粒子的密度,使得多个第一粒子DY的总体积大于个第二粒子DR的总体积。这样一来,第一粒子DY可以到支撑的作用,可以减少第一胶层120对第二粒子DR和第一接合剂层1312的挤压。从而第二粒子DR可以起到光线折射和散射的效果,而不起 到支撑的效果。进而在第一粒子DY和第二粒子DR的配合下,雾度层131的支撑效果较好,光线折射和散射效果也较好。
示例性地,多个第一粒子DY的平均粒径大于多个第二粒子DR的平均粒径。使得第一粒子DY可以起到很好的支撑效果。在一些示例中,多个第二粒子DR的粒径可以相同,也可以相同。例如,第二粒子DR的粒径为2μm~10μm(2μm、3μm、4μm、5μm、6μm、7μm、8μm、9μm和10μm等)。
示例性地,多个第一粒子DY的总质量与第一接合剂层1312的质量之比大于或等于60%。在一些示例中,多个第二粒子DR的总质量与第一接合剂层1312的总质量之比小于或等于40%。这样一来,使得多个第一粒子DY可以起到支撑的作用。
表1为雾度层的配比表
通过表1,可以得到雾度层的雾度为89%~95%。
示例性地,参见图5和图7,雾度层131具有取样区,所述取样区在所述第一显示面板112上的正投影位于所述第一显示面板112的显示区内,所述取样区的单位长度至少大于或等于150μm(例如150μm、200μm、250μm、300μm、350μm、400μm、450μm、500μm、550μm、600μm等)。其中第一显示面板112的显示区的单位长度大于等于取样区的单位长度。单位长度可以理解为正方形,例如,取样区的单位长度为150μm的情况下,该取样区可以表示为150μm×150μm的正方形。
在取样区内,最矮第一粒子DY1与第一偏光片113的距离,小于第二粒子与第一偏光片113的距离D1。这样一来,该距离D1使得第一胶层120可以接触到第一粒子DY,不接触到第二粒子DR和第一接合剂层1312。也就是说,在第一粒子DY起到支撑的作用,可以消除第一胶层120对第二粒子DR和第一接合剂层1312的挤压;从而避免了第二粒子DR会发生形变,产生内应力的情况。
最矮第一粒子DY1为所有凸出于第一接合剂层1312的上表面的第一粒子DY中,最远离第一偏光片113的第一粒子DY;可以理解为,最矮第一粒子DY1为所有凸出于第一接合剂层1312的上表面ZBM的第一粒子DY中, 最靠近第一接合剂层1312的上表面ZBM的第一粒子DY。其中,第一接合剂层1312的上表面ZBM可以是第一接合剂层1312中最靠近第一偏光片113的表面。
在一些示例中,在取样区内,最矮第一粒子DY1与第一偏光片113的距离,小于最高第二粒子DR1与第一偏光片113的距离D1。这样一来,该距离D1使得第一胶层120可以接触到第一粒子DY,不接触到第二粒子DR和第一接合剂层1312。此外,最高第二粒子DR中凸出于第一接合剂层1312的上表面ZBM的部分可以提高光的散射和折射。例如该距离D1为3.5μm~10μm(3.5μm、4μm、4.5μm、5μm、5.5μm、6μm、6.5μm、7μm、7.5μm、8μm、8.5μm、9μm、9.5μm和10μm等)。
最高第二粒子DR为所有凸出于第一接合剂层1312的上表面ZBM的第二粒子DR中,最靠近第一偏光片113的第一粒子DY;可以理解为,最高第二粒子DR1为所有凸出于第一接合剂层1312的上表面ZBM的第二粒子DR中,最远离第一接合剂层1312的上表面ZBM的第一粒子DY。
在一些示例中,在取样区内,最矮第一粒子DY1与第一偏光片113的距离,小于位于第一接合剂层1312中的第二粒子与第一偏光片113的距离。
示例性地,第二粒子DR的至少一部分嵌设在中。例如,第二粒子DR的一部分嵌设在第一接合剂层1312中,另一部分裸露在第一接合剂层1312外。这样一来,第二粒子DR裸露在第一接合剂层1312外的部分可以折射和散射光线。具体的,从第二粒子DR中裸露于第一接合剂层1312外的部分出来的折射光线和散射光线可以直接进入到第一偏光片113,避免在第一接合剂层1312的上表面、下表面反射,而减弱光通量;从而增加了雾度层131的折射能力。又例如,第二粒子DR嵌设在第一接合剂层1312中。
在一些实施例中,规律排列的背光层所发出的光未经散射进入到第一棱镜层133(包括规律分布的多个第一棱镜单元)中,光线之间会发生光线干涉。因此,继续参见图5和图6,第一复合棱镜膜130还包括第一背涂层136。第一背涂层136设置在第一棱镜层133远离第一显示面板112的一侧。这样一来,第一背涂层136可以减小或消除背光层与第一棱镜层133之间的干涉光线。在一些示例中,第一基材层135设置在第一棱镜层133远离第一偏光片113的一侧。第一背涂层136设置在第一基材层135远离第一棱镜层133的一侧。
第一背涂层136包括第二接合剂层1361和分散在第二接合剂层1361中的多个第二扩散粒子1362。规律分布的背光层发出的光线经过第二扩散粒子 1362形成散射光线,由于该散射光线的传播规律与第一棱镜层133的排布规律不相同,因此减少了背光层与第一棱镜层133之间的干涉光线。在一些示例中,第二接合剂层1361设置在第一基材层135远离第一棱镜层133的一侧。
示例性地,继续参见图5,显示装置在使用扩散板的情况下,第一背涂层136的雾度为35%~70%(例如35%、40%、45%、50%、55%、60%、65%、70%等),利用该第一背涂层136的雾度和扩散板双重的作用,可以消除背光层与第一棱镜层133之间的干涉光线,达到光线匀化散射的作用,从而起到雾化遮蔽作用。
在第一背涂层136的雾度为35%~70%的情况下,第二扩散粒子1362的材料为可以是有机材料,例如聚酯树脂,聚酯树脂可以是聚甲基丙烯酸甲酯(Poly Methyl Methacrylate,简称PMMA)。第二扩散粒子1362的粒径为5μm~10μm(例如5μm、6μm、7μm、8μm、9μm、10μm等)。
又示例性地,显示装置在不使用扩散板的情况下,光线还会在第一棱镜层133中产生水平状的钻石纹路。并且光线在通过显示装置的棱镜膜的情况下,第一棱镜层133和棱镜膜之间还会产生网状的钻石纹。第一背涂层136的雾度大于等于90%(例如90%、92%、94%、96%、98%、100%等),这样一来,增大了第一背涂层136的雾度,从而增强了光线匀化散射的能力。进而增加了第一背涂层136干扰光线干涉的能力,使得第一背涂层136雾化遮蔽作用增强。
在第一背涂层136的雾度大于或等于90%的情况下,第二扩散粒子1362的包括多个第六粒子和第五粒子。第六粒子的材料为有机物,例如可以是聚酯树脂。第五粒子材料可以是金属氧化物,例如可以是钛氧化物。第二扩散粒子1362的粒径小于或等于4μm(例如0.1μm、0.5μm、1μm、1.5μm、2μm、2.5μm、3μm、3.5μm、4μm等)。多个第五粒子的总质量与多个第六粒子总质量为40%~60%(例如40%、43%、45%、47%、50%、53%、57%、60%等)。
在一些示例中,第二扩散粒子1362的一部分嵌设在第二接合剂层1361中,第二扩散粒子1362的另一部分凸出于第二接合剂层1361。
在一些实施例中,参见图8和图9,第一复合棱镜膜130还包括第一增亮层134。第一增亮层134设置在第一基材层135与第一棱镜层133之间。由于第一增亮层134的折射率小于第一基材层135的折射率,这样一来,光线经过第一基材层135和第一增亮层134进入到第一棱镜层133,相比于光线经过第一基材层135进入到第一棱镜层133而言;增加的第一增亮层134可以增大进入到第一棱镜层133光线的入射角和光程,从而提升了第一显示面板112 的显示均一性。
在一些示例中,第一增亮层134的折射率为1.49~1.51(1.49、1.50、1.51等)。第一基材层135的材料可以是有机材料,例如可以是光学树脂,因此,第一基材层135的折射率为1.62。沿第一基材层135、第一增亮层134和第一棱镜层133的层叠方向上(即显示模组的厚度方向上),第一增亮层134的厚度为15μm~50μm(15μm、20μm、25μm、30μm、35μm、40μm、45μm、50μm等)。
在一些实施例中,继续参见图10,第一棱镜复合膜还包括偏光增亮层137。偏光增亮层137设置在第一棱镜层133与雾度层131之间。在一些示例中,第一复合棱镜膜还包括第二基材层132,第二基材层132设置在偏光增亮层137和第一棱镜层133之间。例如,偏光增亮层137可以粘贴在第二基材层132上。其中,第二基材层132的材料描述可参考第一基材层135的材料相关描述。
在一些实施例中,参见图11,第一显示面板112包括位于显示区的多个子像素XS;该多个子像素XS中包括用于出射第一颜色光的第一子像素、用于出射第二颜色光的第二子像素和用于出射第三颜色光的第三子像素。其中,第一颜色、第二颜色和第三颜色为三基色(例如红色、绿色和蓝色)。示例性的,第一显示面板112可以包括红色子像素、绿色子像素和蓝色子像素。
多个子像素XS排成多列。第一方向为第一显示面板112的长边的延伸方向。可以理解为,第一方向垂直于多列子像素的排列方向,并与第一显示面板112所在平面平行。
第一棱镜层133包括多个第一棱镜单元1331。在一些示例中,第一棱镜单元1331的形状为三棱柱。例如第一棱镜单元1331可以是顶角为90°的三棱柱。
其中,在第一方向上,第一棱镜单元1331的尺寸D3与子像素XS的尺寸D2的比值等于n;n为除过0.5和正整数之外的自然数(例如n为0~0.5、0.5~1、1~2、2~3等)。这样一来,可以避免在多个子像素XS与多个第一棱镜单元1331之间产生干涉光线。
例如,在第一方向上,第一棱镜单元1331的尺寸D3与子像素XS的尺寸D2的比值可以是0.1~0.49(0.1、0.2、0.3、0.4、0.43、0.45、0.47和0.49等)。又例如,在第一方向上,第一棱镜单元1331的尺寸D3与子像素XS的尺寸D2的比值还可以是0.51~0.99(0.51、0.53、0.57、0.6、0.63、0.67、0.7、0.8、0.9和0.99等)。
参见图12,第一棱镜层133包括多列第一棱镜单元1331;第一棱镜单元1331的延伸方向与第一显示面板112的长边的延伸方向之间的夹角θ大于等于30°,且小于等于150°(例如,30°、40°、50°、60°、70°、80°、90°、100°、110°、120°、130°、140°、150°等)。这样一来,该夹角θ有助于改善斜纹,可以避免在第一偏光片113与第一复合棱镜膜130之间产生摩尔纹。该夹角θ大于等于90°有助于改善视角。
本公开的实施例还提供一种第一显示模组的组装方法,该组装方法包括:
步骤一、制备第一复合棱镜膜,可以包括:步骤S110~步骤S170。
步骤S110,形成第一基材层。步骤S120,在第一基材层上形成第一增亮层。步骤S130,在第一增亮层远离第一基材层的一面上形成第一棱镜层。步骤S140,在第一基材层远离第一增亮层的一面上形成第一背涂层。步骤S150,在第一棱镜层远离第一基材层的一面上形成第二基材层。步骤S160,在第二基材层远离第一基材层的一面上形成偏光增亮膜。步骤S170,在偏光增亮膜远离第一基材层的一面上形成雾度层。其中,在一些示例中,先执行步骤S150、步骤S160和步骤S170,再执行步骤S130和步骤S140。
步骤二、制备显示组件,可以步骤包括:
在第一显示面板的非显示侧形成第一偏光片。例如将第一偏光片贴附在第一显示面板的非显示侧。
步骤三、利用第一胶层,将第一复合棱镜膜与显示组件中的第一偏光片粘合。
示例二:参见图13~图20,提供第二显示模组20。
参见图13和图14,第二显示模组20包括第二显示面板210和第二复合棱镜膜220。第二复合棱镜膜220贴合在第二显示面板210的非显示侧。第二显示面板210的相关描述可以参考显示装置中对显示面板的相关描述。在一些示例中,示例一中的第一显示面板和示例二中的第二显示面板210可以相同(例如均可以是液晶显示面板);也可以不相同。
第二复合棱镜膜220包括第二胶层221、第三胶层225、第二棱镜层226和偏光单元222。偏光单元222设置在第二显示面板210的非显示侧。第二胶层221将第二显示面板210与偏光单元222粘贴。第三胶层225将第二棱镜层226与偏光单元222粘贴。即第二显示面板210、第二胶层221、偏光单元222、第三胶层225和第二棱镜层226依次层叠设置。
偏光单元222包括层叠设置的偏光层G2和第一支撑层G1。在一些示例中,第二胶层221将第一支撑层G1与第二显示面板210粘合,偏光层G2设 置在第一支撑层G1远离第二显示面板210的一侧;即第二棱镜层226、第三胶层225、第一支撑层G1、偏光层G2和第二显示面板210依次层叠设置。在另一些示例中,第二胶层221将偏光层G2与第二显示面板210粘合,第一支撑层G1设置在偏光层G2远离第二显示面板210的一侧。即第二棱镜层226、第三胶层225、偏光层G2、第一支撑层G1和第二显示面板210依次层叠设置。
第二胶层221在第二显示面板210所在平面的正投影至少覆盖显示区。在一些示例中,第二胶层221在第二显示面板210所在平面的正投影覆盖显示区。在另一些示例中,第二胶层221在第二显示面板210所在平面的正投影覆盖显示区和非显示区。
这样一来,利用第二复合棱镜膜220中的第二胶层221,使第二显示面板210和第二复合棱镜膜220全贴合。从而第二显示面板210与第一复合棱镜膜之间没有空隙(即去除了第二显示面板210与第一复合棱镜膜之间的空气层)。这样一来,第二显示模组20的内部没有更多的镜面反射光线,使得第二显示模组20的显示画面清晰。同时还降低了第二显示模组20的厚度,使显示模组超轻薄化的方向发展。
在一些示例中,第二显示模组20还包括上偏光片;上偏光片设置在第二显示面板210(例如液晶显示面板)的显示侧(即出光侧)。例如上偏光片贴附在第二显示面板210(例如液晶显示面板)的显示侧。其中,上偏光片的偏振方向和偏光层G2的偏振方向垂直。
第二棱镜层226具有多个第一出光面2261,第一出光2261面相对于第二显示面板210所在平面倾斜设置。第一出光面2261为凹凸不平的面,使得第二棱镜层226中的第一出光面2261具有一定的雾度;这样还避免增加第二棱镜层226的厚度。
第二胶层221、第一支撑层G1和第三胶层225中的一者的雾度处理。例如,第二胶层221雾度处理。又例如,第一支撑层G1雾度处理。又例如,第三胶层225雾度处理。
本公开还提供第一对比方案,第一对比方案包括:第二棱镜层226、第三胶层225、偏光单元(第一支撑层G1、偏光层G2)和第二显示面板210依次层叠设置;将第一出光面2261、第二胶层221、第一支撑层G1和第三胶层225中的一者雾度处理。
第一对比方案要解决第二显示面板210与第二复合棱镜膜220之间的彩虹纹,就需要增大第一出光面2261、第二胶层221、第一支撑层G1和第三胶 层225中的一者的雾度。从而增加了第一出光面2261、第二胶层221、第一支撑层G1和第三胶层225的厚度,并且随着雾度的增加,厚度会翻倍的加厚。同时,透光性降低,工艺难度会翻倍的增加。这样一来,使得第一对比方案的显示模组的厚度较厚,不利于使显示模组超轻薄化方向发展。此外,第二胶层221和第三胶层225的雾度增加,使得第二胶层221和第三胶层225粘贴能力降低,从而显示模组容易出现开胶脱落等情况。显示模组的发黄比较严重。
那么,在信赖性测试(例如高温测试,高湿测试)时,由于第一对比方方案的信赖性测试的条件与第二显示面板的信赖性测试条件相同,使得第一对比方案不能通过信赖性测试。
本公开还提供第二对比方案,第二对比方案包括:第二棱镜层226、第三胶层225、偏光单元(第一支撑层G1、偏光层G2)和第二显示面板210依次层叠设置;将第二胶层221、第一支撑层G1和第三胶层225中的至少两者雾度处理。此外,第二胶层221和第三胶层225均雾度处理,使得显示模组的发黄比较严重。
那么,在信赖性测试(例如高温测试,高湿测试)时,由于第一对比方方案的信赖性测试的条件与第二显示面板的信赖性测试条件相同,使得第二对比方案不能通过信赖性测试。
相比于第一对比方案和第二对比方案,在本公开的实施例中,利用第一出光面2261的雾度、以及二胶层221、第一支撑层G1和第三胶层225中的一者的雾度。可以解决第二显示面板210与第二复合棱镜膜220之间的彩虹纹。此外,第一出光面2261的雾度较小,第二胶层221、第一支撑层G1和第三胶层225中的一者的雾度较小;使得厚度也较薄,工艺也较为简单,透光性也较好。
示例性地,第二胶层221、第一支撑层G1和第三胶层225中的一者的雾度为45%~60%(例如,45%、47%、49%、50%、53%、55%、57%、60%等)。例如,第二胶层221的雾度为45%~60%。又例如,第一支撑层G1的雾度为45%~60%。又例如,第三胶层225的雾度为45%~60%。
在一些示例中,第二胶层221、第一支撑层G1和第三胶层225中的一者的雾度为45%~60%的情况下,另二者的雾度小于1%。例如,第二胶层221的雾度为45%~60%的情况下,第一支撑层G1和第三胶层225的雾度均小于1%。在此情况下,第二胶层221可以是雾度胶,第三胶层225可以是树脂胶。又例如,第一支撑层G1的雾度为45%~60%的情况下,所第二胶层221和第 三胶层225的雾度小于1%。在此情况下,第二胶层221可以是压敏胶,第三胶层225可以是树脂胶。又例如,第三胶层225的雾度为45%~60%的情况下,第二胶层221和第一支撑层G1的雾度小于1%。在此情况下,第二胶层221可以是压敏胶。在此情况下,第二胶层221可以是压敏胶,第三胶层225可以是雾度胶。
在一些示例中,偏光单元222还包括第二支撑层G3。第二支撑层G3的材料的相关描述可参考第一支撑层G1的材料的相关描述。
第二支撑层G3、偏光层G2和第一支撑层G1依次层叠设置;第二支撑层G3的雾度小于1%。在一些示例中,参见图16,从下到上,第一支撑层G1、偏光层G2和第二支撑层G3依次层叠设置。即第三胶层225将第一支撑层G1与第二棱镜层226粘合的情况下,第二胶层221将第二支撑层G3与第二显示面板210粘合。在另一些示例中,参见图15,从下到上,第二支撑层G3、偏光层G2和第一支撑层G1依次层叠设置。即第三胶层225将第二支撑层G3与第二棱镜层226粘合的情况下,第二胶层221将第一支撑层G1与第二显示面板210粘合。
在一些示例中,第一出光面2261的雾度为40%~50%(例如,40%、42%、44%、45%、47%、49%、50%等)。
在一些示例中,参见图17,第一出光面2261具有多个凹陷部AX。在一些示例中,参见图18,第一出光面2261具有多个凸起部TQ。在一些示例中,参见图19,第一出光面2261具有多个凹陷部AX和多个凸起部TQ。其中,凹陷部AX的尺寸小于或等于0.5μm(例如0.5μm、0.4μm、0.3μm、0.2μm、0.1μm等)。凸起部TQ的尺寸小于或等于0.5μm(例如0.5μm、0.4μm、0.3μm、0.2μm、0.1μm等)。
在一些示例中,参见图20,第二棱镜层226包括多个第二棱镜单元2262,第二棱镜单元2262包括棱镜本体LJB和多个第三扩散粒子DSK,棱镜本体LJB具有底面DM和与底面DM连接的倾斜面QXM。其中,多个第三扩散粒子DSK粘贴在棱镜本体LJB的倾斜面QXM上形成第二棱镜单元2262的第一出光面2261。
在一些示例中,第三扩散粒子DSK的粒径小于或等于0.5μm(例如0.5μm、0.4μm、0.3μm、0.2μm、0.1μm等)。
在一些示例中,多个第三扩散粒子DSK包括:多个第三粒子和多个第四粒子;第三粒子的材料为有机材料,例如可以是聚酯树脂;第四粒子的材料为可以是金属氧化物,例如可以是钛氧化物。在多个第三扩散粒子DSK中, 多个第四粒子的总质量与多个第三粒子的总质量比值为30%~50%(30%、34%、35%、37%、39%、40%、44%、46%、49%、50%等)。
在一些示例中,第二棱镜层226包括多个第二棱镜单元2262,第二棱镜单元2262具有第二出光面EFG和两个第一出光面2261,第二出光面EFG与两个第一出光面2261连接;第二出光面EFG和第二显示面板210所在平面平行;第二出光面EFG与第三胶层225粘接。这样一来,使得第二棱镜单元的横截面为梯形。
在一些示例中,参见图14,第二复合棱镜膜220还包括第三基材层228和第二增亮层227。第三基材层228设置在第二棱镜层226远离偏光单元222的一侧。第二增亮层227设置在第三基材层228与第二棱镜层226之间,且与第三基材层228接触;第二增亮层227的折射率小于第三基材层228的折射率。第二增亮层227和第三基材层228的效果,可参考第以增亮层和第一基材层所带来的效果,不再赘述。
在一些示例中,第二复合棱镜膜220还包括离型膜。离型膜位于第二胶层221远离偏光单元222一侧,且可剥离地设置在第二胶层221上。在将第二复合棱镜膜220与第二显示面板贴合时,先剥离离型膜,然后利用第二复合棱镜膜220的第二胶层221与第二显示面板粘合。这样一来,离型膜可以使得第二胶层221的粘贴性很好。
在一些实施例中,继续参见图14,第二复合棱镜膜220还包括第二背涂层229。背涂层设置在第二棱镜层226远离第二显示面板210的一侧。第二背涂层229包括第三接合剂层2291和分散在第三接合剂层2291中的多个第四扩散粒子2292;第二背涂层229的雾度大于或等于90%,或者,第二背涂层229的雾度为35%~70%。在第二背涂层229的雾度为35%~70%的情况下,第四扩散粒子2292的材料为有机材料,例如可以是有机材料,例如可以是聚酯树脂,第四扩散粒子2292的粒径为5μm~10μm。在第二背涂层229的雾度大于或等于90%的情况下,第四扩散粒子2292包括第八粒子和第七粒子,第八粒子的材料为有机物,所述第七粒子的材料为可以是金属氧化物,例如可以是钛氧化物;第四扩散粒子2292的粒径小于或等于4μm。第二背涂层229的成分、材料、效果等描述可参考示第一背涂层的成分、材料、效果等的相关描述,不再赘述。
本公开的实施例提供一种第二显示模组的组装方法,该组装方法包括:
步骤四、制备第二复合棱镜膜,可以包括:步骤S210~步骤S270。
步骤S210,在第三基材层上形成第二棱镜层。步骤S220,利用第三胶层,将偏光单元和第二棱镜层粘合,偏光单元位于远离第二棱镜层远离第三基材层的一侧。步骤S230,在偏光单元远离第二棱镜层的一侧面上形成第二胶层。
在一些示例中,在步骤S210与步骤S220之间,制备第二复合棱镜膜的步骤还可以包括:层叠设置的第一支撑层和偏光层。在另一些示例中,在步骤S210与步骤S220之间,制备第二复合棱镜膜的步骤还可以包括:偏光单元包括层叠设置的第一支撑层、偏光层和第二偏光层。
其中,偏光单元与第二胶层和第三胶层的位置关系,可参考示例二中偏光单元与第二胶层和第三胶层的位置关系的相关描述。
在一些示例中,步骤S240,制备第二复合棱镜膜的步骤还可以包括:在第二胶层上形成离型膜。
步骤五、将第二显示面板的非显示侧粘合在第二复合棱镜膜的第二胶层上。在一些示例中,剥离离型膜,暴露出第二胶层,将第二显示面板的非显示侧粘合在第二复合棱镜膜的第二胶层上。
下文继续介绍显示装置。参见图21~图24,其中,下文中的显示模组1表示全贴合的显示模组1,即全贴合的显示模组1可以是示例一的第一显示模组10,或者可以是示例二的第二显示模组20。
显示装置可以是例如无界屏的显示装置,无界屏的显示装置的非显示区的宽度小于等于1mm,使得边框极窄,光学膜片无法设置常规挂耳进行固定;在高温或者湿热条件下,光学膜片和扩散板的膨胀空间也十分有限,长期挤压会产生膜片褶皱等画面品质不良。例如显示装置中的直下式背光模组包括玻璃扩散板、以及贴附在玻璃扩散板上的光学膜片,可以解决光学膜片膨胀问题和固定空难的问题。
但是玻璃扩散板的价格较贵、光效较低,也需要玻璃扩散板也需要考虑固定问题,同时还需要考虑画面品质,使得背光模组的周边结构设计的十分复杂(例如需要多个不同宽度台阶,又例如需要多个导光条),从而增加工艺难度、增加背光模组厚度和组装成本。此外玻璃扩散板较重,对稳定性要求都很高,很难做成超轻结构。
综上,显示装置中采用玻璃扩散板并不具备市场优势,需要新的技术方案解决此问题。
参见图21,显示模组1具有显示面11、背面12和连接显示面11和背面12的侧面13。框架4具有第一支撑面41;显示模组1的背面与第一支撑面41粘接。这样一来,显示模组1粘贴在框架4的一个接触位置(即第一支撑 面41)上,从而简化框架4的结构,以便于快速的将显示模组1与框架4的连接。第一支撑面41平行于显示面板所在平面,使得显示模组1较为水平的粘贴在框架4的第一支撑面41上。
示例性地,显示装置还包括第一粘贴层3,第一粘贴层3将显示模组1与第一支撑面41粘贴。例如,第一粘贴层3可以是具有缓冲性能,该第一粘贴层3可以为缓冲泡棉。又例如,第一粘贴层3可以是胶水。
在一些示例中,第一粘贴层3的颜色可以是例如黑色、灰色等遮光性较好的颜色;例如,第一粘贴层3可以是黑色的缓冲泡棉。第一粘贴层3的颜色还可以是例如白色等遮光性较差的颜色;例如,第一粘贴层3可以是透明的缓冲泡棉。
在一些实施例中,继续参见图21,框架4包括框本体43和第一遮蔽部42;框本体43具有第一支撑面41;第一遮蔽部42凸设在框本体43上,且暴露出第一支撑面41,并围绕显示模组1的侧面13设置。这样一来,第一遮蔽部42可以将显示模组1的侧面13遮蔽住,避免漏光。
在一些示例中,沿显示模组1的厚度方向上,第一遮蔽部42的尺寸大于或等于显示模组1的厚度。例如,沿显示模组1的厚度方向上,第一遮蔽部42的尺寸比显示模组1的厚度大于或等于0.5mm(例如0.5mm、1mm、1.5mm、2mm等)。
在一些示例中,显示装置还包括第二遮蔽部2,第二遮蔽部2粘贴在显示模组1的侧面上,第一遮蔽部42围绕第二遮蔽部2设置。这样一来,第二遮蔽部2可以防止显示模组1与第一遮蔽部42之间漏光。例如,第二遮蔽部2为双面胶的情况下,第二遮蔽部2可以粘贴在第一遮蔽部42与显示面板的侧面之间。又例如,第二遮蔽部2为缓冲泡棉的情况下,第二遮蔽部2可以粘贴在显示模组1上,第一遮蔽部4与第一遮蔽部2接触。
在一些可能实现的方式中,第二遮蔽部2可以是胶水或缓冲泡棉。例如,第二遮蔽部2可以是黑色的胶水或缓冲泡棉。
在另一些实施例中,参见图22,显示装置还包括第三遮蔽部6。框架整体(即图17中示出的框架整体,相比于图21中示出的框本体43,没有第一遮蔽部42)位于显示模组1的背面12远离显示面11的一侧。第三遮蔽部6粘贴在显示模组1的侧面13上。从而可以防止显示模组1的侧面13漏光。例如,第三遮蔽部6可以是黑色的缓冲泡棉或胶水。
在一些示例中,第三遮蔽部6从显示模组1的侧面13延展至第一支撑面41上。这样一来,可以避免第三遮蔽部6与第一支撑面41之间漏光。例如, 第三遮蔽部6在第一支撑部上的正投影与第一支撑面41存在重叠区域。
第一支撑面41的宽度小于显示面板的非显示区的宽度。这样一来,第一支撑面41不会挡住显示面板的显示区。在一些示例中,显示模组1包括黑矩阵图案。黑矩阵位于显示区,并延伸至非显示区;第一支撑面41的宽度小于黑矩阵中位于非显示区的部分的宽度。
在一些实施例中,显示装置还包括背光层5;背光层5设置在框架4上,且位于显示模组1的背面远离显示面的一侧。背光层5与显示模组1之间具有一个空气层,其中空气层不会改变光线的传播方向;使得背光层5发出的光可以通过空气层照射在显示模组1的背涂层上。由于显示模组1中的背涂层(例如第一显示模组中的第一背涂层,又例如,第二显示模组中的第二背涂层)的雾度大于或等于90%,使得光线经过该背涂层扩散,从而使得显示模组的显示画面更好。
示例性地,背光层5可以包括背板52和多个发光器件51。
发光器件51是在通电后可发光的器件。例如发光器件51可以是LED,微LED,OLED(Quantum Dot Light Emitting Diodes,量子点发光二极管)等,在此不做限制。作为示例,发光器件51可以是微型发光器件,该微型发光器件的尺寸可以参考微LED的尺寸。微LED包括亚毫米量级甚至微米量级的发光二极管,还可以包括尺寸更小的发光二极管。其中,亚毫米量级发光二极管也称为次毫米发光二极管(Mini Light Emitting Diode,简称:Mini LED);Mini LED的尺寸(例如长度)可以为50微米~150微米,例如80微米~120微米,又如可以在100微米及以下。微米量级的发光二极管也称为微型发光二极管(Micro Light Emitting Diode,简称:Micro LED);例如,Micro LED的尺寸(例如长度)可以小于50微米,例如10微米~50微米。
多个发光器件51设置在背板52上。多个发光器件51被配置为向显示模组1的背面12发光。
在一些示例中,背光层5还包括基板,基板可以为刚性基板。该刚性基板的材料可以为玻璃或PMMA(Poly Methyl Meth Acrylate,聚甲基丙烯酸甲酯)等。基板还可以为柔性基板。该柔性基板的材料可以为PET(Poly Ethylene Terephthalate,聚对苯二甲酸乙二醇酯)、PEN(Poly Ethylene Naphthalate Two Formic Acid glycol Ester,聚萘二甲酸乙二醇酯)、超薄玻璃或PI(Polyimide,聚酰亚胺)等。
多个发光器件51设置在基板上,基板设置在背板52上。多个发光器件51被配置为向远离基板的一侧发光。例如,多个发光器件51被配置为向显示 模组1的背面12发光。
框架4中远离第一支撑面41的一面固定在所述背板52上。例如框架4与背板52通过螺栓连接。
在一些示例中,背光层5可以是直下式结构。多个发光器件51例如阵列分布在背板52的上表面上;背板52的上表面与显示模组1的背面相对设置。
在另一些示例中,参见图24,背光层5可以是侧入式结构。背光层5还包括导光板53,多个发光器件51设置在框架4的侧面上。框架4的侧面与显示模组1的背面12交叉的面。发光器件51发出的经过导光板53传播至显示模组1的背面上。
在另一些实施例中,参见图23,显示装置还包括背光层5;背光层5设置在框架4上,且位于显示模组1的背面12远离显示面11的一侧。显示装置还包括设置在第二背光层5与显示模组1之间的扩散片8,使得背光层5发出的光可以通过扩散片8的散射后照射在显示模组1的背涂层上。由于显示模组中的背涂层(例如第一显示模组中的第一背涂层,又例如,第二显示模组中的第二背涂层)的雾度为35%~70%,使得光线经过该背涂层再扩散,从而使得显示模组的显示画面更好。
示例性地,背光层5可以包括背板52和多个发光器件51。框架4(例如是中框)中远离第一支撑面41的一面固定在所述背板52上。例如,背光层5可以是直下式结构,可参考上文中对背光层5可以是直下式结构的相关描述。又例如,背光层5可以是侧入式结构,可参考上文中对背光层5可以是侧入式结构的相关描述。不再赘述。
在一些示例中,显示装置还包括棱镜膜7。棱镜膜7设置于背光层5和显示模组1之间。这样一来,利用显示模组1中的棱镜层和棱镜膜7的结合,提高显示模组1的光效,参见表2,使得显示装置的亮度增益比为100%~120%(例如100%、105%、110%、115%、120%等)。
表2为现有显示装置与本实施例的显示装置的亮度增益比。
其中,表2中的非全贴合表示现有显示装置中显示面板与棱镜膜之间的之间空气层的固定方式。表2为显示模组为第一显示模组的情况下的显示装置。
DOP为雾度层、第一棱镜层、第一基材层、第一背涂层(雾度为35%~70%);COP为雾度层、偏光增亮层、第一棱镜层、第一基材层、第一背涂层(雾度为35%~70%);SOP为雾度层、偏光增亮层、第一棱镜层、第一基材层、第一背涂层(雾度为35%~70%);VOP为雾度层、偏光增亮层、第一棱镜层、第一基材层、第一背涂层(雾度为35%~70%);P为棱镜膜;其中,COP、SOP、VOP中的偏光增亮层的厚度依次增加。DBEF为偏光增亮膜。DOPB为雾度层、第一棱镜层、第一基材层、第一背涂层,其中,DOPB的雾度层的雾度大于DOP的雾度层的雾度。
由于显示装置的亮度提升了,因此可以降低背光层5中发光器件51的功率或者数量,达到节能降耗的作用,从而防止发光器件51的温度过高或者EEI不达标或级别过低。
此外,利用显示模组1中的棱镜层和棱镜膜7的结合,可以达到与现有显示装置中的偏光棱镜膜相同的作用,因此可以代替现有显示装置中的偏光棱镜膜,以节约了成本。
在一些示例中,棱镜膜7与显示模组1之间存在间隙。间隙为1.1mm~2.66mm(1.1mm、1.5mm、1.7mm、2mm、2.3mm、2.5mm、2.6mm、2.66mm等)。
在一些示例中,显示模组的中的棱镜层(例如,第一显示模组的中的第一棱镜层,又例如,第二显示模组的中的第二棱镜层)的延伸方向与棱镜膜7的延伸方向可以交叉(例如垂直)。
在一些示例中,显示装置还包括多个支撑柱9。支撑柱9的一端固定在背板52上,另一端与显示模组1的背面12接触。支撑柱9可以起到支撑显示模组1的作用。例如,该支撑柱9可以是弹跳式硅胶套支撑柱,这样一来,防止支撑柱9与显示模组1接触产生十字黑纹,并且在运输过程中还可以起到支撑显示模组1的作用。
以上,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以权利要求的保护范围为准。

Claims (38)

  1. 一种显示模组,包括:
    显示组件,包括第一显示面板和第一偏光片;所述第一偏光片设置在所述第一显示面板的非显示侧;所述第一显示面板具有显示区;
    第一复合棱镜膜,包括第一棱镜层和雾度层;所述第一棱镜层设置在所述第一偏光片远离所述第一显示面板的一侧;所述雾度层设置在所述第一棱镜层上,且位于所述第一棱镜层与所述第一偏光片之间;所述雾度层包括第一接合剂层和分散在所述第一接合剂层中的多个第一扩散粒子;
    第一胶层,将所述第一复合棱镜膜中的雾度层与所述显示组件中的第一偏光片粘接;所述第一胶层在所述第一显示面板所在平面的正投影至少覆盖所述显示区。
  2. 根据权利要求1所述的显示模组,其中,
    所述多个第一扩散粒子包括多个第一粒子,所述多个第一粒子分散在所述第一接合剂层中;
    针对所述多个第一粒子中的至少一些,每个第一粒子中的一部分嵌设在所述第一接合剂层中,另一部分凸出于所述第一接合剂层且与所述第一胶层粘接。
  3. 根据权利要求2所述的显示模组,其中,
    所述雾度层具有取样区,所述取样区在所述第一显示面板上的正投影位于所述第一显示面板的显示区内,所述取样区的单位长度至少大于或等于150μm;
    所述多个第一扩散粒子还包括多个第二粒子;所述多个第二粒子分散在所述第一接合剂层中;
    在所述取样区内,最矮第一粒子与所述第一偏光片的距离,小于所述第二粒子与所述第一偏光片的距离;
    其中,所述最矮第一粒子为所有凸出于所述第一接合剂层的上表面的第一粒子中,最远离所述第一偏光片的第一粒子。
  4. 根据权利要求3所述的显示模组,其中,
    所述多个第一粒子的平均粒径大于所述多个第二粒子的平均粒径。
  5. 根据权利要求1~4任一项所述的显示模组,其中,
    所述第一复合棱镜膜还包括:
    第一基材层,设置在所述第一棱镜层远离所述第一偏光片的一侧;
    第一增亮层,设置在所述第一基材层与所述第一棱镜层之间,且与所述第一基材层接触;所述第一增亮层的折射率小于所述第一基材层的折射率。
  6. 根据权利要求3或4所述的显示模组,其中,
    所述第一粒子的硬度大于所述第二粒子的硬度,且所述多个第一粒子的总质量大于所述多个第二粒子的总质量;所述第一粒子的硬度大于或等于20MPA。
  7. 根据权利要求2~4、6任一项所述的显示模组,其中,
    所述多个第一粒子的总质量与所述第一接合剂层的质量之比大于或等于60%。
  8. 根据权利要求1~7任一项所述的显示模组,其中,
    所述雾度层的雾度大于或等于70%;所述第一胶层的雾度小于1%。
  9. 根据权利要求1~8任一项所述的显示模组,其中,
    所述第一显示面板包括多列子像素;所述第一棱镜层包括多个第一棱镜单元;
    其中,在第一方向上,所述第一棱镜单元的尺寸与所述子像素的尺寸的比值等于n;n为除了0.5和正整数之外的正数;所述第一方向为所述第一显示面板的长边的延伸方向。
  10. 根据权利要求1~9任一项所述的显示模组,其中,
    所述第一棱镜层包括多列第一棱镜单元;所述第一棱镜单元的延伸方向与所述第一显示面板的长边的延伸方向之间的夹角大于等于30°,且小于等于150°。
  11. 根据权利要求1~10任一项所述的显示模组,其中,
    所述第一复合棱镜膜还包括:
    第一背涂层,设置在所述第一棱镜层远离所述第一显示面板的一侧;所述第一背涂层包括第二接合剂层和分散在所述第二接合剂层中的多个第二扩散粒子;所述第一背涂层的雾度大于或等于90%,或者,所述第一背涂层的雾度为35%~70%。
  12. 根据权利要求11所述的显示模组,其中,
    在所述第一背涂层的雾度为35%~70%的情况下,所述第二扩散粒子的材料包括有机材料,所述第二扩散粒子的粒径为5μm~10μm。
  13. 根据权利要求11所述的显示模组,其中,
    在所述第一背涂层的雾度大于或等于90%的情况下,所述第二扩散粒子包括第六粒子和第五粒子,所述第六粒子的材料为有机物,所述第五粒子的材料包括金属氧化物;所述第二扩散粒子的粒径小于或等于4μm。
  14. 根据权利要求1~13任一项所述的显示模组,其中,
    所述第一复合棱镜膜还包括:
    偏光增亮层,设置在所述第一棱镜层与所述雾度层之间。
  15. 一种第一复合棱镜膜,包括:
    第一棱镜层;
    雾度层,设置在所述第一棱镜层上;所述雾度层包括第一接合剂层和分散在所述第一接合剂层中的多个第一扩散粒子。
  16. 一种显示模组,包括第二显示面板和第二复合棱镜膜,所述第二显示面板具有显示区;
    其中,所述第二复合棱镜膜包括:
    偏光单元,设置在所述第二显示面板的非显示侧,且包括层叠设置的偏光层和第一支撑层;
    第二胶层,将所述第二显示面板与所述偏光单元粘贴;所述第二胶层在所述第二显示面板所在平面的正投影至少覆盖所述显示区;
    第二棱镜层,设置在所述偏光单元远离所述第二显示面板的一侧;所述第二棱镜层具有多个第一出光面,所述第一出光面相对于所述第二显示面板所在平面倾斜设置,所述第一出光面为凹凸不平的面;
    第三胶层,设置在所述偏光单元和所述第二棱镜层之间,且与所述第二棱镜层粘接;
    其中,所述第二胶层、所述第一支撑层和所述第三胶层中的一者雾度处理。
  17. 根据权利要求16所述的显示模组,其中,
    所述第二胶层、所述第一支撑层和所述第三胶层中的一者的雾度为45%~60%,另二者的雾度小于1%。
  18. 根据权利要求16或17所述的显示模组,其中,
    所述偏光单元还包括:第二支撑层;所述第二支撑层、所述偏光层和第一支撑层依次层叠设置;所述第二支撑层的雾度小于1%。
  19. 根据权利要求16~18任一项所述的显示模组,其中,
    所述第一出光面的雾度为40%~50%。
  20. 根据权利要求16~19任一项所述的显示模组,其中,
    所述第一出光面具有多个凹陷部,和/或多个凸起部。
  21. 根据权利要求16~20任一项所述的显示模组,其中,
    所述第二棱镜层包括多个第二棱镜单元,所述第二棱镜单元包括棱镜本 体和多个第三扩散粒子,所述棱镜本体具有底面和与底面连接的倾斜面;
    其中,所述多个第三扩散粒子粘贴在所述棱镜本体的倾斜面上形成所述第二棱镜层的所述第一出光面。
  22. 根据权利要求21所述的显示模组,其中,
    所述多个第三扩散粒子包括:多个第三粒子和多个第四粒子;所述第三粒子的材料为有机材料;所述第四粒子的材料为金属氧化物。
  23. 根据权利要求22所述的显示模组,其中,
    在所述多个第三扩散粒子中,所述多个第四粒子的总质量与所述多个第三粒子的总质量比值为30%~50%。
  24. 根据权利要求16~23任一项所述的显示模组,其中,
    所述第二棱镜层包括多个第二棱镜单元,所述第二棱镜单元具有第二出光面和两个第一出光面,所述第二出光面与所述两个第一出光面连接;所述第二出光面和所述第二显示面板所在平面平行;所述第二出光面与所述第三胶层粘接。
  25. 根据权利要求16~24任一项所述的显示模组,其中,
    所述第二复合棱镜膜还包括:
    第二背涂层,设置在所述第二棱镜层远离所述第二显示面板的一侧;所述第二背涂层包括第三接合剂层和分散在所述第三接合剂层中的多个第四扩散粒子;所述第二背涂层的雾度大于或等于90%,或者,所述第二背涂层的雾度为35%~70%。
  26. 根据权利要求25所述的显示模组,其中,
    在所述第二背涂层的雾度为35%~70%的情况下,所述第四扩散粒子的材料为有机材料,所述第四扩散粒子的粒径为5μm~10μm。
  27. 根据权利要求25任一项所述的显示模组,其中,
    在所述第二背涂层的雾度大于或等于90%的情况下,所述第四扩散粒子包括第八粒子和第七粒子,所述第八粒子的材料为有机物,所述第七粒子的材料为金属氧化物;所述第四扩散粒子的粒径小于或等于4μm。
  28. 根据权利要求16~27任一项所述的显示模组,其中,
    所述第二复合棱镜膜还包括:
    第三基材层,设置在所述第二棱镜层远离所述偏光单元的一侧;
    第二增亮层,设置在所述第三基材层与所述第二棱镜层之间,且与所述第三基材层接触;所述第二增亮层的折射率小于所述第三基材层的折射率。
  29. 一种第二复合棱镜膜,包括:
    偏光单元,包括层叠设置的偏光层和第一支撑层;
    第二胶层,粘贴在所述偏光单元上;
    第二棱镜层,设置在所述偏光单元远离所述第二胶层的一侧;所述第二棱镜层具有多个第一出光面,所述第一出光面相对于所述第二胶层所在平面倾斜设置,所述第一出光面为凹凸不平的面;
    第三胶层,设置在所述偏光单元和所述第二棱镜层之间,且与所述第二棱镜层粘接;
    其中,所述第二胶层、所述第一支撑层和所述第三胶层中的一者雾度处理。
  30. 一种显示装置,包括:
    权利要求1~14中任一项所述的显示模组,或者,权利要求16~28中任一项所述的显示模组;所述显示模组具有显示面、背面和连接所述显示面和背面的侧面;
    框架,具有第一支撑面;所述显示模组的背面与所述第一支撑面粘接;
    其中,所述第一支撑面平行于所述显示面板所在平面。
  31. 根据权利要求30所述的显示装置,其中,
    所述框架包括框本体和第一遮蔽部;所述框本体具有所述第一支撑面;所述第一遮蔽部凸设在所述框本体上,且暴露出所述第一支撑面,并围绕所述显示模组的侧面设置。
  32. 根据权利要求31所述的显示装置,其中,
    沿所显示模组的厚度方向上,所述第一遮蔽部的尺寸大于或等于所述显示模组的厚度。
  33. 根据权利要求31或32所述的显示装置,所述显示装置还包括:
    第二遮蔽部,粘贴在所述显示模组的侧面上,所述第一遮蔽部围绕所述第二遮蔽部设置。
  34. 根据权利要求30所述的显示装置,其中,
    所述框架整体位于所述显示模组的背面远离显示面的一侧;
    所述显示装置还包括:
    第三遮蔽部,粘贴在所述显示模组的侧面上。
  35. 根据权利要求34所述的显示装置,其中,
    所述第三遮蔽部从所述显示模组的侧面延展至所述第一支撑面上。
  36. 根据权利要求30~35任一项所述的显示装置,其中,
    所述显示模组中的显示面板具有非显示区;所述第一支撑面的宽度小于 所述非显示区的宽度。
  37. 根据权利要求30~36任一项所述的显示装置,其中,
    所述显示装置还包括背光层;所述背光层设置在所述框架上,且位于所述显示模组的背面远离显示面的一侧;
    所述背光层与所述显示模组之间具有一个空气层,所述显示模组中的背涂层的雾度大于或等于90%;或者,所述显示装置还包括:设置在所述背光层与所述显示模组之间的扩散片,所述显示模组中的背涂层的雾度为35%~70%。
  38. 根据权利要求37所述的显示装置,其中,
    所述显示装置还包括:棱镜膜,设置于所述背光层和所述显示模组之间;所述棱镜膜与所述显示模组之间存在间隙。
PCT/CN2023/075934 2023-02-14 2023-02-14 显示模组及显示装置 WO2024168521A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2023/075934 WO2024168521A1 (zh) 2023-02-14 2023-02-14 显示模组及显示装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2023/075934 WO2024168521A1 (zh) 2023-02-14 2023-02-14 显示模组及显示装置

Publications (1)

Publication Number Publication Date
WO2024168521A1 true WO2024168521A1 (zh) 2024-08-22

Family

ID=92421921

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/075934 WO2024168521A1 (zh) 2023-02-14 2023-02-14 显示模组及显示装置

Country Status (1)

Country Link
WO (1) WO2024168521A1 (zh)

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002243920A (ja) * 2001-02-15 2002-08-28 Keiwa Inc 光学シート及びこれを用いたバックライトユニット
WO2003032074A1 (fr) * 2001-09-27 2003-04-17 Tsujiden Co., Ltd. Film de diffusion de lumiere
JP2004151550A (ja) * 2002-10-31 2004-05-27 Seiko Epson Corp 電気光学装置及び電子機器
US20080117507A1 (en) * 2006-06-02 2008-05-22 Sabic Innovative Plastics Ip Bv Prism pitch optimization
CN201087849Y (zh) * 2007-09-17 2008-07-16 胜华科技股份有限公司 光学膜片组件及具有该光学膜片组件的导光模块
CN101285961A (zh) * 2007-04-13 2008-10-15 株式会社常宝 使用光扩散剂的多功能光学多层膜
CN101452086A (zh) * 2007-12-05 2009-06-10 群康科技(深圳)有限公司 棱镜片、背光模组及液晶显示装置
CN103809230A (zh) * 2012-11-14 2014-05-21 友辉光电股份有限公司 增亮膜、背光模组以及液晶显示装置
CN205507127U (zh) * 2016-02-25 2016-08-24 东莞市纳利光学材料有限公司 一种耐高温增亮膜
CN106814504A (zh) * 2015-11-30 2017-06-09 乐金显示有限公司 光学膜及其制造方法和液晶显示器
CN108254965A (zh) * 2016-12-29 2018-07-06 乐金显示有限公司 液晶显示器及其制造方法
CN108732811A (zh) * 2017-04-20 2018-11-02 群创光电股份有限公司 显示装置
KR20190040629A (ko) * 2017-10-11 2019-04-19 엘지디스플레이 주식회사 디스플레이장치
KR20190062889A (ko) * 2017-11-29 2019-06-07 엘지디스플레이 주식회사 액정표시장치용 백라이트 유닛
CN110928053A (zh) * 2019-12-31 2020-03-27 凯鑫森(上海)功能性薄膜产业有限公司 液晶显示器用贴合膜及液晶显示器背光模组
CN113296312A (zh) * 2021-05-14 2021-08-24 惠州视维新技术有限公司 显示装置
WO2021185270A1 (zh) * 2020-03-17 2021-09-23 海信视像科技股份有限公司 显示装置

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002243920A (ja) * 2001-02-15 2002-08-28 Keiwa Inc 光学シート及びこれを用いたバックライトユニット
WO2003032074A1 (fr) * 2001-09-27 2003-04-17 Tsujiden Co., Ltd. Film de diffusion de lumiere
JP2004151550A (ja) * 2002-10-31 2004-05-27 Seiko Epson Corp 電気光学装置及び電子機器
US20080117507A1 (en) * 2006-06-02 2008-05-22 Sabic Innovative Plastics Ip Bv Prism pitch optimization
CN101285961A (zh) * 2007-04-13 2008-10-15 株式会社常宝 使用光扩散剂的多功能光学多层膜
CN201087849Y (zh) * 2007-09-17 2008-07-16 胜华科技股份有限公司 光学膜片组件及具有该光学膜片组件的导光模块
CN101452086A (zh) * 2007-12-05 2009-06-10 群康科技(深圳)有限公司 棱镜片、背光模组及液晶显示装置
CN103809230A (zh) * 2012-11-14 2014-05-21 友辉光电股份有限公司 增亮膜、背光模组以及液晶显示装置
CN106814504A (zh) * 2015-11-30 2017-06-09 乐金显示有限公司 光学膜及其制造方法和液晶显示器
CN205507127U (zh) * 2016-02-25 2016-08-24 东莞市纳利光学材料有限公司 一种耐高温增亮膜
CN108254965A (zh) * 2016-12-29 2018-07-06 乐金显示有限公司 液晶显示器及其制造方法
CN108732811A (zh) * 2017-04-20 2018-11-02 群创光电股份有限公司 显示装置
KR20190040629A (ko) * 2017-10-11 2019-04-19 엘지디스플레이 주식회사 디스플레이장치
KR20190062889A (ko) * 2017-11-29 2019-06-07 엘지디스플레이 주식회사 액정표시장치용 백라이트 유닛
CN110928053A (zh) * 2019-12-31 2020-03-27 凯鑫森(上海)功能性薄膜产业有限公司 液晶显示器用贴合膜及液晶显示器背光模组
WO2021185270A1 (zh) * 2020-03-17 2021-09-23 海信视像科技股份有限公司 显示装置
CN113296312A (zh) * 2021-05-14 2021-08-24 惠州视维新技术有限公司 显示装置

Similar Documents

Publication Publication Date Title
WO2019148591A1 (zh) 直下式背光模组以及液晶显示器
US9140426B2 (en) Backlight unit and display apparatus using the same
US9366893B2 (en) Liquid crystal display device
KR101340604B1 (ko) 백라이트 유닛 및 이를 구비한 액정표시장치모듈
US7461962B2 (en) Backlight assembly, display device provided with the same, and method thereof
JP5933509B2 (ja) 液晶表示装置
US20100283942A1 (en) Illuminating device and liquid crystal display device
TW200408883A (en) Polarized light source system and liquid crystal display using the same
KR100945392B1 (ko) 광학 시트, 이를 포함하는 백라이트 유닛 및 액정표시장치
WO2023160643A1 (zh) 显示模组和显示装置
WO2016183901A1 (zh) 导光板及背光模组
WO2020187105A1 (zh) 反射式液晶显示装置及其制备方法
US20090296022A1 (en) Optical sheet, backlight unit, and liquid crystal display
CN110908191A (zh) 显示模组和显示装置
WO2020057295A1 (zh) 背光模组及其制作方法、显示装置
WO2021190414A1 (zh) 一种显示装置
JP2004151550A (ja) 電気光学装置及び電子機器
CN101749561B (zh) 背光模块及应用其的显示装置
WO2022104554A1 (zh) 一种背光模组及显示装置
WO2015165010A1 (zh) 导光板、液晶显示器显示模组和终端设备
KR100960556B1 (ko) 광학시트 및 이를 이용한 액정표시장치
WO2024168521A1 (zh) 显示模组及显示装置
US7768594B2 (en) Liquid crystal display device
KR20210057997A (ko) 액정표시장치
KR20150037299A (ko) 액정표시장치