WO2024166711A1 - Information processing method, information processing device, and program - Google Patents

Information processing method, information processing device, and program Download PDF

Info

Publication number
WO2024166711A1
WO2024166711A1 PCT/JP2024/002397 JP2024002397W WO2024166711A1 WO 2024166711 A1 WO2024166711 A1 WO 2024166711A1 JP 2024002397 W JP2024002397 W JP 2024002397W WO 2024166711 A1 WO2024166711 A1 WO 2024166711A1
Authority
WO
WIPO (PCT)
Prior art keywords
robot
person
information processing
cost
task
Prior art date
Application number
PCT/JP2024/002397
Other languages
French (fr)
Japanese (ja)
Inventor
大輔 福永
典史 吉川
厚 岡森
Original Assignee
ソニーグループ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーグループ株式会社 filed Critical ソニーグループ株式会社
Publication of WO2024166711A1 publication Critical patent/WO2024166711A1/en

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/40Control within particular dimensions
    • G05D1/43Control of position or course in two dimensions
    • G05D1/435Control of position or course in two dimensions resulting in a change of level, e.g. negotiating lifts or stairs
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/60Intended control result
    • G05D1/644Optimisation of travel parameters, e.g. of energy consumption, journey time or distance

Definitions

  • This disclosure relates to an information processing method, an information processing device, and a program.
  • Patent Document 1 discloses a system that controls multiple shared elevators, in which when a robot is to use the elevator, an interrupt process runs, and the most suitable elevator is selected, reserved for the robot, and operated.
  • prioritizing humans means that robots cannot use equipment, slowing down task completion. Conversely, prioritizing robots means that humans cannot use equipment, affecting human work.
  • the present disclosure has been made in consideration of the above problems, and provides an information processing method, information processing device, and program that can improve the work efficiency of both humans and robots when there is equipment that is used jointly by both humans and robots.
  • the information processing method disclosed herein receives target values for the robot and the person in a shared facility shared by the robot and the person, and creates a behavior plan for the robot based on costs that satisfy the received target values and include an occupancy cost that represents a penalty for the robot occupying the shared facility, the target values being target values that include the robot that is not the target of the behavior plan.
  • FIG. 1 is a diagram illustrating a first example of an entire system according to an embodiment.
  • FIG. 13 is a diagram illustrating a second example of the entire system according to the embodiment.
  • 1 is a diagram for explaining a path plan for a plurality of robots according to an embodiment;
  • FIG. 13 is a diagram for explaining the problem of the movement of a robot in an elevator according to an embodiment.
  • FIG. 13 is a diagram for explaining the problem of the movement of a robot in an elevator according to an embodiment.
  • 10 is a diagram for explaining a flow of parameter adjustment according to an embodiment.
  • FIG. FIG. 13 is a diagram showing an example in which tasks assigned to a robot and a person according to an embodiment have priorities.
  • FIG. 13 is a diagram showing an initial state before parameter adjustment of an evaluation score monitor in the embodiment.
  • FIG. 13 is a diagram showing a state after a predetermined time has elapsed from the initial state before parameter adjustment of the evaluation score monitor in the embodiment.
  • FIG. FIG. 13 is a diagram showing the settings and evaluation score monitor of a robot during parameter adjustment by a central server in an embodiment. A figure showing the robot settings and evaluation score monitor after the central server in the embodiment has completed parameter adjustment.
  • 11A and 11B are diagrams for explaining a pattern in which the central server in the embodiment recognizes a robot made by another company as an unknown moving object using a camera.
  • FIG. 2 is a functional block diagram of a central server according to an embodiment.
  • FIG. 13 is a diagram showing an example of a data input source input to an evaluation score data input unit of the central server according to the embodiment.
  • FIG. 1 is a diagram for explaining a relationship between a central server and a robot made by another company according to an embodiment.
  • FIG. 1 is a diagram for explaining a relationship between a central server and a robot made by another company according to an embodiment.
  • FIG. 10 is a flowchart illustrating an operation of a central server according to an embodiment.
  • 10 is a flowchart illustrating a flow of a task execution process of a central server according to an embodiment.
  • 13A and 13B are diagrams illustrating a comparison of people's waiting times before and after parameter adjustment of occupancy cost according to an embodiment.
  • FIG. 2 is a hardware configuration diagram illustrating an example of a computer that realizes the functions of the central server according to the embodiment.
  • the system on which the embodiment is based is a system that uses multiple robots to perform some task, such as transporting items in a factory or transporting goods in a logistics warehouse.
  • the system can freely operate the robots that are the objects of the system's control.
  • the system can also freely operate the equipment used by the robots.
  • the system can operate elevators and open automatic doors.
  • the system's equipment is used simultaneously by (multiple) people. Human behavior is unknown, and it is not known when the equipment will be used.
  • FIG. 1 is a diagram showing a first example of the entire system according to an embodiment.
  • the facility includes a plurality of robots 103 that are subject to the control of a central server 100, and an elevator 101 that is a shared facility.
  • a plurality of people 104 are present near the elevator 101. The movements of the people 104 are not managed by the central server 100.
  • the robot 103 is a robot that performs a task. Multiple robots 103 may each perform a different task. Multiple people 104 may also perform tasks, each performing a different task.
  • the robot 103 transmits its current location to the central server 100. Also, the robot 103 performs actions such as moving based on movement instructions from the central server 100.
  • the elevator 101 is a shared facility between the robot 103 and the person 104, and has an elevator controller 102.
  • the elevator controller 102 is a device that can operate the elevator 101, etc.
  • the elevator controller 102 controls the operation of the elevator 101 based on instructions from the central server 100.
  • the central server 100 generates a new plan that is an overall optimization based on the current position of the robot 103, the current plan, and the state of the elevator 101.
  • the plan also includes operations for the elevator 101.
  • elevator operations include when to call which elevator and for which robot.
  • the central server 100 issues movement instructions to the robot 103 and button operation instructions to the elevator controller 102 of the elevator 101.
  • the robot 103 moves according to the operation instructions from the central server 100.
  • the elevator controller 102 outputs the elevator button pressing status, etc. to the central server 100.
  • FIG. 2 is a diagram showing a second example of the entire system according to the embodiment.
  • FIG. 2 shows an example in which a human presence sensor 402 is provided.
  • the same parts as in FIG. 1 are given the same reference numerals and their explanations are omitted.
  • the human presence sensor 402 sends information about people 104, such as the number of people waiting in the elevator 101, to the central server 100.
  • the human presence sensor 402 may be a camera, etc.
  • FIG. 3 is a diagram for explaining path planning for multiple robots 103 according to an embodiment.
  • three paths 200a, 200b, and 200c for the robots 103 are shown, each of which is given a reference number, and the central server 100 creates a plan for one of these paths 200a, 200b, and 200c, which has the lowest cost and does not cause collisions or deadlocks between the robots 103.
  • FIG. 4 is a diagram for explaining the problem of the movement of the robot 103 in the elevator 101 according to the embodiment. For example, as shown in FIG. 4, assume that a person 104 who wants to go to the 2nd floor is waiting for the elevator 101 on the 1st floor. Assume that there are three robots 103 on the 2nd floor who want to go to the 1st floor to perform a task.
  • the second robot may have to wait a long time in front of the elevator. If the elevator waits a little longer and the second robot can be loaded, the robot's task efficiency may increase significantly. Note that, because the tasks of the robot 103 are controlled by the central server 100, it is clear that it is more efficient to load two robots 103.
  • Cost can be, for example, the time it takes to reach a goal, the distance to the goal, etc.
  • an occupancy cost is introduced that represents the penalty for the robot 103 occupying equipment shared with the person 104.
  • the robot's 103 behavior plan is optimized so that the "normal cost + occupancy cost" is minimized. This means that plans that require the robot 103 to occupy shared equipment for too long will not be executed.
  • the acceptable amount of occupancy can be adjusted by changing the coefficient (parameter) or function of the occupancy cost.
  • the function used to calculate the occupancy cost can be expressed as a linear function, an exponential function, or a step function, where t is the time that the robot 103 occupies the shared equipment.
  • T be the set of times during which shared facilities are occupied in the plan.
  • a combination of these functions may be used, for example at+bmax(T).
  • the time t during which the robot 103 occupies the shared equipment is, for example, as follows: The time spent waiting for the elevator car to arrive after the button (up or down) is pressed The time spent waiting for the robot 103 to get on after the person 104 gets on the elevator 101 If multiple people 104 are waiting, the waiting times are added up. For example, if three people 104 wait for 20 seconds, 10 seconds, and 5 seconds, respectively, a total of 35 seconds is added up to the time t that the robot 103 occupies the shared facility.
  • Total cost normal cost + ⁇ ⁇ occupancy cost
  • Normal cost Time it takes for all robots to reach the goal
  • Occupancy cost The time the elevator waits for the robot.
  • the robot's occupancy time and human waiting time are dynamically adjusted during operation by adjusting parameters such as the weighting of normal cost and occupancy cost, and the occupancy cost formula (coefficient).
  • Parameter adjustment flow> 6 is a diagram for explaining a flow of parameter adjustment according to an embodiment.
  • input data 301 includes, for example, the number of people waiting captured by a camera, the usage status of the elevator 101, a manual trigger, and the like.
  • step S1 When a trigger to start parameter adjustment occurs based on the input data 301, the parameters are adjusted (step S1).
  • step S1 the weighting ⁇ between normal cost and occupancy cost and the formula (coefficient) for occupancy cost are adjusted.
  • step S2 the situation (metrics) is checked (step S2). After the situation is checked, it is determined whether the situation has reached the target value. If the target value has not been reached, the parameters are adjusted again (step S1). If it is determined that the situation has reached the target value, the parameter adjustment process ends.
  • the target values are set, for example, to the task efficiency of the person 104, the average waiting time of the person 104, the task efficiency of the robot 103, the average occupancy time of the robot 103, etc.
  • Trigger for parameter adjustment The trigger for starting parameter adjustment may be adjusted depending on the time of day. For example, the waiting time of people is shortened during the day when there are many people 104, and the occupancy time of the robot 103 is lengthened during the middle of the night when there are fewer people 104.
  • the trigger for starting parameter adjustment may be adjusted based on data obtained from outside. For example, when a sensor detects congestion of people 104, the waiting time of people 104 is temporarily shortened. The system learns how to make adjustments. Congestion is detected by recognizing people with a camera and determining how many people 104 are waiting. For example, adjustments are made to temporarily shorten the waiting time of people 104 depending on the usage status of the elevator 101. In this case, data on the button pressing status of the elevator 101 and the movement status of the car is used.
  • the trigger for starting parameter adjustment may be adjusted by an external operation. For example, to temporarily prioritize the task of the robot 103, the parameter is adjusted manually from the UI (User Interface).
  • UI User Interface
  • the user determines target values in advance (before starting parameter adjustment).
  • the target values are, for example, the average waiting time of the person 104, the maximum waiting time of the person 104, the task efficiency of the robot 103 (how many tasks are completed per hour), and the average occupancy time of the equipment by the robot 103.
  • the waiting time of person 104 is the time from pressing the button (up or down) until the elevator car arrives, or the time from when a person gets into elevator 101 until the robot 103 gets in. If multiple people 104 are waiting, the waiting times are added up. If person 104A waits 20 seconds, person 104B waits 10 seconds, and person 104C waits 5 seconds, the total is 35 seconds.
  • the waiting time of person 104 may be an indicator of the increase in people's waiting time due to the influence of robot 103.
  • step S2 continues parameter adjustment until the target value is reached.
  • the UI can be used to check how close the status is to the target value. If the status has reached the target value, the parameter adjustment process ends, and if the status has not reached the target value, the process returns to the parameter adjustment process in step S1.
  • parameter adjustment Next, the concept of parameter adjustment will be described. For example, if you want to reduce the waiting time of the person 104, increase the weight of the occupancy cost, and if you want to increase the task efficiency of the robot 103, decrease the weight of the occupancy cost. Note that PID control and learning are used to determine how much the parameters should be changed in one cycle.
  • the multiple robots 103 perform different tasks, and the priorities of the tasks may differ. For example, a transportation task and a cleaning task for manufacturing.
  • the transportation task is prioritized for production planning, but the cleaning task has a low priority because it does not have a large impact even if it does not proceed as planned.
  • Priority is expressed by how the cost is determined. With normal cost, higher costs are assigned to tasks with higher priority. For example, a low priority task takes 60 seconds and costs 60, while a high priority task takes 60 seconds and costs 120. With occupancy cost, higher priority tasks take less. In other words, costs are determined based on the priority of the task.
  • the person 104 When there is a priority within the task of person 104> Like the robot 103, the person 104 also performs various different tasks, and the priority may differ for each task (person). For example, there is a person 104 who goes to fix the alarm of a device or robot and a person 104 who performs regular inspections.
  • priority can be expressed by determining the situation (metrics) used when checking the situation. For example, if a person's waiting time is used as a score, a person with a low priority will receive a score of 10 if they wait 10 seconds, but if a person with a high priority waits 10 seconds, a score of 30 will be recorded. Alternatively, only the waiting time and task efficiency of people performing high priority tasks can be recorded, and the rest of them can be ignored and not recorded as costs regardless of how long they wait. In other words, the evaluation score of person 104 is calculated based on the priority set for person 104.
  • FIG. 7 is a diagram showing an example in which the tasks assigned to the robot 103 and the person 104 according to the embodiment have priorities.
  • FIG. 7 an example is shown in which the central server 100 manages robots 103a and 103b.
  • robot 103a "task 1, normal cost multiplier x 2.0, occupancy cost multiplier x 0.25, priority 5" is set.
  • robot 103b "task 2, normal cost multiplier x 1.0, occupancy cost multiplier x 1.0, priority 1" is set.
  • the central server 100 plans the robots 103 by changing the way costs are assigned for each robot 103's priority.
  • the evaluation score monitor 401 displays the task efficiency score (evaluation score) of person 104 calculated by the central server 100. In other words, the evaluation score of person 104 who is assigned task 1 with a high priority is higher than the evaluation score of person 104 who is assigned task 2 with a lower priority than task 1.
  • the evaluation score monitor 401 displays the evaluation score calculated by the central server 100.
  • the evaluation score displayed may be a person's task efficiency score, but is not limited to this. It is also possible to display multiple scores.
  • the evaluation score may be displayed as a score for task A, a score for task B, etc.
  • the central server 100 adjusts the parameters so that the multiple evaluation scores approach the target value.
  • the central server 100 also changes the way the evaluation score is assigned for each priority of the person 104. Then, the occupancy score parameters are adjusted based on the evaluation score.
  • Example of Measuring Task Efficiency of Person 104 When measuring task efficiency of person 104, for example, the following factors are used: 1. Waiting time in front of the elevator 101 Waiting time information is acquired by a camera, a human presence sensor 402, or the like. 2. Operational status of elevator 11 The operational status of elevator 11 is how many people it has transported, how many times (floors) it has moved, and how many times the doors have been opened and closed. 3. Number of alarms responded to/Response time An alarm goes off when an abnormality occurs in a device or robot. The number of alarms responded to/Response time is the number of responses or the time it takes to respond, and is managed by the production system or robot system. 4.
  • (Factory) Production volume (Factory) production volume is managed by the production system. 5. (Factory) Product Inspection Finished products and products in the process of production are inspected for defects. (Factory) The number of product inspections is controlled by the production system.
  • Fig. 8 is a diagram showing an initial state before parameter adjustment of the evaluation score monitor 401 according to the embodiment.
  • Fig. 8 shows an example in which the central server 100 manages robots 103a and 103b.
  • the central server 100 manages robots 103a and 103b.
  • For the robot 103a "task 1, normal cost multiplier x 2.0, priority 5" is set.
  • For the robot 103b "task 2, normal cost multiplier x 1.0, priority 1" is set.
  • the central server 100 plans the robots 103 by changing the way costs are assigned for each priority of the robots 103.
  • evaluation score monitor 401 displays the task efficiency score of person 104 calculated by the central server 100.
  • the central server 100 operates without considering the balance with the person 104, and the evaluation score monitor 401 does not display evaluation scores such as the efficiency of task A and the efficiency of task B. Note that the central server 100 may operate with the balance with the person 104 adjusted in advance.
  • FIG. 9 is a diagram showing the state of the evaluation score monitor 401 according to the embodiment after a predetermined time has elapsed from the initial state before parameter adjustment. As shown in FIG. 9, after a predetermined time (1 hour) has elapsed from the initial state shown in FIG. 8, the evaluation score monitor 401 displays, for example, that the efficiency of task A is 10 (task A was performed 10 times per hour) and the efficiency of task B is 20.
  • the central server 100 adjusts the occupancy cost parameters.
  • FIG. 10 shows the settings and evaluation score monitor 401 of the robot 103 during parameter adjustment by the central server 100 according to the embodiment.
  • robot 103a As shown in FIG. 10, during parameter adjustment in the central server 100, for example, the following are set for robot 103a: "Task 1, normal cost multiplier x 2.0, occupancy cost (parameter a), priority 5.”
  • robot 103b the following are set: "Task 2, normal cost multiplier x 1.0, occupancy cost (parameter a), priority 1.”
  • the evaluation score monitor 401 displays that the efficiency of task A is 10 (task A was performed 10 times per hour) and the efficiency of task B is 20. However, in the state shown in FIG. 10, the efficiency of task A is not 15, so the goal has not been achieved.
  • FIG. 11 is a diagram showing the settings of the robot 103 and the evaluation score monitor 401 after the central server 100 according to the embodiment has completed parameter adjustment.
  • FIG. 11 shows a case where one hour has passed since the central server 100 started parameter adjustment, and the efficiency of task A has reached 15, achieving the goal.
  • parameter a is changed to a', and the robot 103a is set to "task 1, normal cost multiplier x 2.0, occupancy cost (parameter a'), priority 5.”
  • the robot 103b is set to "task 2, normal cost multiplier x 1.0, occupancy cost (parameter a'), priority 1.”
  • the evaluation score monitor 401 displays that the efficiency of task A is 15, and the efficiency of task B is 25. Therefore, in the state shown in FIG. 11, the efficiency of task A is 15, so the goal has been achieved and parameter adjustment is completed.
  • the part that has been described so far as a person 104 can be any unknown moving object that cannot be managed by the central server 100.
  • it could be a robot 105 made by another company that is managed by another company's system (i.e. not managed by the central server 100).
  • FIG. 12 is a diagram for explaining a pattern in which the central server 100 according to the embodiment recognizes a robot 105 made by another company as an unknown moving object using the camera 106.
  • the central server 100 recognizes the number of people 104 and robots 105 made by other companies that have been sent, and reflects this in the evaluation score.
  • the settings for the people 104 are "task 1, evaluation score multiplier x 2.0, priority 3," and the settings for the robots 105 made by other companies are “task 2, evaluation score multiplier x 1.0, priority 1.”
  • the settings for the robot 103a are "task 1, normal cost multiplier x 2.0, occupancy cost parameter a', priority 5.”
  • the settings for the robot 103b are "task 2, normal cost multiplier x 1.0, occupancy cost parameter a', priority 1.”
  • Fig. 13 is a functional block diagram of the central server 100 according to the embodiment.
  • the central server 100 includes a parameter adjustment unit 601, an evaluation score calculation unit 602, a task planning unit 603, a robot control unit 604, and an elevator control unit 605.
  • an external evaluation score target value input unit 500 is connected to the robot 103 via the communication unit 503_1.
  • the elevator control unit 605 of the central server 100 is connected to the elevator controller 102 of the elevator 101 via the communication unit 503_2.
  • the evaluation score target value input unit 500 is a terminal or the like for an operator, into which the target value of the evaluation score is input.
  • the task input unit 501 inputs the tasks of the robot 103 from a production system or the like.
  • the parameter adjustment unit 601 receives the target value input by the evaluation score target value input unit 500.
  • the parameter adjustment unit 601 adjusts the parameters of the occupancy cost so that the evaluation score reaches the target value received from the evaluation score target value input unit 500.
  • the evaluation score data input unit 504 inputs the number of units manufactured from the manufacturing equipment or production system, the waiting time of people from the camera in front of the elevator 101, etc.
  • the task planning unit 603 plans tasks using the occupancy cost after parameter adjustment. For example, the task planning unit 603 plans the task allocation and route of the robot 103, the timing of elevator control, and the like.
  • the task planning unit 603 creates an action plan for the robot 103 based on costs that satisfy the received target value and include an occupancy cost that represents a penalty for the robot 103 occupying shared equipment.
  • the target value is a target value that includes robots 105 made by other companies that are not subject to the action plan (see Figure 12).
  • the robot control unit 604 controls the robot 103 via the communication unit 503_1 based on the plan formulated by the task planning unit 603.
  • the elevator control unit 605 controls the elevator controller 102 of the elevator 101 via the communication unit 503_2 based on the plan formulated by the task planning unit 603.
  • the evaluation score calculation unit 602 calculates an evaluation score based on the data input from the evaluation score data input unit 504, and outputs it to the evaluation score display unit 502 via the communication unit.
  • the evaluation score display unit 502 is a terminal for an operator, etc., and displays the current evaluation score calculated by the evaluation score calculation unit 602.
  • the evaluation score display unit 502 is, for example, the evaluation score monitor 401 shown in FIG. 7.
  • FIG. 14 is a diagram showing an example of a data input source input to the evaluation score data input unit 504 of the central server 100 according to an embodiment.
  • the same parts as those in FIG. 13 are given the same reference numerals, and their description will be omitted.
  • data is input to the evaluation score data input unit 504 from the production system/manufacturing equipment 606, the camera 106, the human presence sensor 106, and the elevator 101.
  • the production system/manufacturing equipment 606 inputs information related to the tasks of the people 104/other company's robot 105, such as the number of productions and inspections, the number of alarm responses, and the response time.
  • the camera 106 and the human presence sensor 106 inputs information related to the people 104/other company's robot 105 waiting for the elevator 101, and the number and duration of the people 104/other company's robot 105 inside the elevator 101.
  • the elevator 101 inputs information related to the number of times the elevator 101 is operated, the number of times the doors are opened and closed, and the time the doors are opened and closed.
  • FIG. 15 is a diagram for explaining the relationship between the central server 100 according to the embodiment and a robot system 613 made by another company.
  • FIG. 15 shows a robot system 612 that uses an embodiment and a robot system 613 made by another company. If information such as the progress of tasks in the robot system 613 made by another company can be obtained from a system that manages the entire system, such as the production system 611, this information can be used in the evaluation score.
  • the production system 611 issues task instructions for production process A to a robot system 612 using an embodiment, and receives the task progress status and task efficiency of production process A.
  • the production system 611 also issues task instructions for production process B to a robot system 613 made by another company, and receives the task progress status and task efficiency of production process B.
  • the production system 611 transmits the task efficiency (for calculating an evaluation score) of production process B to the robot system 612 using an embodiment.
  • a system that oversees the entire system such as a production system in a factory, also exists in warehouse use cases.
  • the status of the tasks performed by the robot system 613 made by another company can be input to the central server 100 via the system and used to calculate the evaluation score.
  • the task efficiency of the robot system 612 using the embodiment and the robot system 613 made by another company can be optimally balanced by adjusting the parameters.
  • FIG. 16 is a diagram for explaining the relationship between the central server 100 and a robot system 613 made by another company according to an embodiment.
  • the progress and task efficiency of tasks performed by a robot system 613a made by another company are input to the overall management system 614.
  • the progress and task efficiency of tasks performed by a robot system 613b made by another company are input to the overall management system 614.
  • the overall management system 614 is, for example, a production system in the case of a factory, or a warehouse management system in the case of a warehouse.
  • the overall management system 614 inputs the task efficiencies of the other company's robot system 613a and the other company's robot system 613b to the evaluation score data input unit 504.
  • the evaluation score data input unit 504 transmits the task efficiencies to the evaluation score calculation unit 602.
  • the task efficiencies are used for the evaluation score in the evaluation score calculation unit 602.
  • FIG. 17 is a flowchart for explaining the operation of the central server 100 according to the embodiment.
  • step S11 task execution is started without occupancy cost or with default parameters.
  • step S11 task input, task planning, and robot 103/elevator 101 control are performed.
  • step S12 data is acquired from the evaluation score data input unit 504, and task execution is performed for a while while calculating the evaluation score (step S12).
  • steps S11 and S12 the tasks of the person 104 and the robot 103 are not balanced.
  • step S13 it is determined whether the evaluation score has reached the target value. If the evaluation score has reached the target value (YES in step S13), the control process of the central server 100 ends. If the evaluation score has reached the target value (NO in step S13), the parameter adjustment unit 601 changes the occupancy cost parameters so that the evaluation score approaches the target value (step S14).
  • step S15 After the occupancy cost parameters are changed in the parameter adjustment unit 601, the changed parameters are applied to the task planning unit 603 (step S15). Then, data is obtained from the evaluation score data input unit 504, and the task is executed for a while while calculating the evaluation score (step S16).
  • steps S14 to S16 the balance of tasks between the person 104 and the robot 103 is gradually optimized.
  • the evaluation score target value can be input from the evaluation score target value input unit 500 at any time. It can also be input before the start. If it is input after the end, the flow starts again from the process of determining whether the evaluation score has reached the target value in step S503.
  • Flowchart for explaining the operation of the central server 100 according to the embodiment during task execution 18 is a flowchart for explaining the flow of task execution processing by the central server 100 according to the embodiment.
  • new tasks are input one after another from a production system or the like, and therefore the process is expressed as a loop.
  • a new task is input from the task input unit 501 (step S21).
  • the task planning unit 603 assigns the input new task to the robot 103 (step S22).
  • a path for the assigned robot 103 is planned (step S23).
  • the occupancy cost is used as described above.
  • the robot control unit 604 issues a movement command to the robot 103 based on the planned route (step S31).
  • the elevator control unit 605 moves the elevator 101 at an appropriate time based on the created plan (step S32).
  • the robot control unit 604 starts the robot 103's work when the robot 103 reaches the destination (step S33).
  • the work may be, for example, loading and unloading of goods. Note that the processing of steps S31 to S33 may be executed asynchronously.
  • the central server 100 sets parameters related to occupancy costs. Changing the parameters through parameter setting changes the occupancy time of the robot 103 and the waiting time of the person 104. When a target average waiting time of people is given, the parameters are adjusted and the waiting time of the person changes. When a target task efficiency is given, the parameters are adjusted and the task efficiency of the robot 103 changes.
  • a UI for adjusting parameters related to occupancy cost there is a UI for adjusting parameters related to occupancy cost, a UI for setting the target average waiting time of people, a UI for setting the target task efficiency of the robot, and a UI for displaying the status during parameter adjustment.
  • the UI that displays the status during parameter adjustment includes the parameter value itself, changes in the average waiting time of people, changes in the task efficiency of the robot 103, changes in the time that the robot 103 occupies shared equipment, etc.
  • the system according to the embodiment can be used for inter-floor transportation in a factory or warehouse.
  • a robot 103 transports an object to another floor by using an elevator 101.
  • Both the robot 103 and a person 104 use the same elevator 101 to move between floors.
  • the elevator 101 is treated as a shared facility, and the occupancy cost is used to optimize how long the elevator should wait for the robot 103.
  • control similar to that of the elevator 101 can be performed for narrow passages where only one robot 103 can pass, or for equipment that uses people 104.
  • the system according to the embodiment can be used as a guide robot in an airport or a commercial building.
  • the robot 103 guides a person 104.
  • the person 104 guided by the robot 103 gets into the elevator 101 together with the robot 103.
  • a user who has not been guided may also use the elevator 101 at the same time.
  • Elevator 101 is used as a shared facility.
  • Robot 103's plan uses occupancy cost to optimize how long elevator 101 should wait for the guide robot.
  • Escalators and narrow passageways can be controlled in the same way as elevator 101.
  • the system according to the embodiment can be used for parking and charging unmanned taxis.
  • unmanned taxi that is remotely controlled, if the unmanned taxi occupies a parking lot or charging space for too long, the person 104 will be unable to use the parking lot or charging space.
  • the system according to the embodiment uses occupancy costs to make optimal plans to prevent the autonomous vehicle from occupying the space for too long.
  • the central server 100 when there is equipment that is used jointly by a person 104 and a robot 103, the central server 100 according to the embodiment can improve the work efficiency of both parties and can apply an optimal plan overall to the robot 103.
  • the method of the embodiment allows for parameter adjustments to adjust the balance between the waiting time of the person 104 and the work efficiency of the robot 103, thereby achieving the optimal balance desired by the user.
  • the central server 100 can also adjust the occupancy time of the robot 103 and the waiting time of the person 104. This allows for more optimal control than simply "preventing occupancy for longer than a specified time” or “always giving priority to the person 104 (or robot 103).”
  • the central server 100 of the embodiment can save cases where the task efficiency of the robot 103 can be significantly improved by simply extending the occupancy time a little. Depending on how the occupancy cost is expressed, it is also possible to simply "prevent occupancy for longer than a specified time" for the robot 103.
  • the balance can be dynamically adjusted during operation. For example, an operator can adjust parameters when there is temporary congestion or when prioritizing the work of the robot 103.
  • FIG. 19 is a diagram showing a comparison of the waiting time of person 104 before and after parameter adjustment of occupancy cost in the embodiment.
  • the portion before parameter adjustment 701_1 is shown by dots, and the portion after parameter adjustment 701_2 is shown by diagonal lines.
  • the waiting time after parameter adjustment 701_1 is longer than the portion before parameter adjustment 701_2 in the first minute, but over time the waiting time after parameter adjustment 701_1 becomes shorter than the portion before parameter adjustment 701_2.
  • the occupancy cost parameters can be dynamically adjusted. How the parameters should be adjusted varies depending on the environment and situation, so more optimal control can be achieved if they can be dynamically adjusted during operation.
  • an "occupancy cost" to the cost when planning the behavior of the robot 103, it becomes possible to make a plan that takes into account the penalty for the robot 103 occupying equipment.
  • By adjusting the parameters of the occupancy cost it is possible to adjust the balance between the waiting time when a person uses equipment and the task efficiency of the robot.
  • control can be performed with consideration of the overall efficiency including the robot 103 and the person 104, rather than simply prioritizing either the robot 103 or the person 104 as in conventional technology. For example, if the task efficiency of the robot 103 is greatly improved, the person 104 is made to wait a little longer. If not, the robot 103 is moved so as to shorten the waiting time of the person.
  • FIG. 20 is a hardware configuration diagram showing an example of the central server 100 according to the embodiment.
  • a computer that realizes the arithmetic device 102 of the information processing device 100 according to each of the above-described embodiments is realized by a computer 1000 having a configuration as shown in Fig. 20, for example.
  • Fig. 20 is a hardware configuration diagram showing an example of the computer 1000 that realizes the functions of the arithmetic device 102.
  • the computer 1000 has a CPU 1100, a RAM 1200, a ROM (Read Only Memory) 1300, a HDD (Hard Disk Drive) 1400, a communication interface 1500, and an input/output interface 1600.
  • Each unit of the computer 1000 is connected by a bus 1050.
  • the CPU 1100 operates based on the programs stored in the ROM 1300 or the HDD 1400 and controls each part. For example, the CPU 1100 loads the programs stored in the ROM 1300 or the HDD 1400 into the RAM 1200 and executes processes corresponding to the various programs.
  • the ROM 1300 stores boot programs such as the BIOS (Basic Input Output System) that is executed by the CPU 1100 when the computer 1000 starts up, as well as programs that depend on the hardware of the computer 1000.
  • BIOS Basic Input Output System
  • HDD 1400 is a computer-readable recording medium that non-temporarily records programs executed by CPU 1100 and data used by such programs.
  • HDD 1400 is a recording medium that records application programs related to the present disclosure, which are an example of program data 1450.
  • the communication interface 1500 is an interface for connecting the computer 1000 to an external network 1550 (e.g., the Internet).
  • the CPU 1100 receives data from other devices and transmits data generated by the CPU 1100 to other devices via the communication interface 1500.
  • the input/output interface 1600 is an interface for connecting the input/output device 1650 and the computer 1000.
  • the CPU 1100 receives data from an input device such as a keyboard or a mouse via the input/output interface 1600.
  • the CPU 1100 also transmits data to an output device such as a display, a speaker, or a printer via the input/output interface 1600.
  • the input/output interface 1600 may also function as a media interface that reads programs and the like recorded on a specific recording medium.
  • Examples of media include optical recording media such as DVDs (Digital Versatile Discs) and PDs (Phase change rewritable Discs), magneto-optical recording media such as MOs (Magneto-Optical Disks), tape media, magnetic recording media, and semiconductor memories.
  • optical recording media such as DVDs (Digital Versatile Discs) and PDs (Phase change rewritable Discs)
  • magneto-optical recording media such as MOs (Magneto-Optical Disks)
  • tape media magnetic recording media
  • magnetic recording media and semiconductor memories.
  • the CPU 1100 of the computer 1000 executes an image processing program loaded onto the RAM 1200 to realize functions such as the reissue request unit 43.
  • the HDD 1400 also stores the SE management processing program according to the present disclosure and data in the content storage unit 121.
  • the CPU 1100 reads and executes the program data 1450 from the HDD 1400, but as another example, it may also obtain these programs from other devices via the external network 1550.
  • This technology can also be configured as follows:
  • Creating an action plan for the robot includes: calculating said occupancy cost; The occupancy cost is expressed as a function of the time that the robot occupies the shared equipment.
  • the robot is a plurality of robots
  • the costs include a normal cost representing a time required for the plurality of robots to reach a goal.
  • the action plan is generated to minimize the cost.
  • the normal cost is f(t)
  • the occupancy cost is g(t)
  • the cost is expressed as f(t) + ⁇ ⁇ g(t)
  • is a parameter indicating the ratio between the normal cost f(t) and the occupancy cost g(t),
  • the function is a linear function, an exponential function, a step function, or a combination of the linear function, the exponential function, and the step function of the time that the robot occupies the shared equipment.
  • An information processing method according to (4). (9) Creating an action plan for the robot includes: The information processing method according to (7), further comprising re-adjusting the parameters ⁇ and g(t) if the target value is not reached. (10) The parameter is adjusted until the target value is reached.
  • An information processing method according to (9). (11) The parameters are adjusted according to the time of day.
  • An information processing method according to (9). (12) The parameters are adjusted based on data obtained from an external source.
  • An information processing method according to (9). (13) The parameters are adjusted by external manipulation.
  • Priorities are set for the tasks of the plurality of robots; The cost is determined based on the priority.
  • An information processing method according to (5) (15) a first priority set for a first task of a first robot among the plurality of robots is higher than a second priority set for a second task of a second robot among the plurality of robots; The normal cost of the first task is higher than the normal cost of the second task.
  • an occupancy cost of the first task is lower than the occupancy cost of the second task;
  • the person is a plurality of people, The priority is set for each person, The evaluation score of the person is calculated based on the priority set for the person.
  • a third priority set for a third task of a first person of the plurality of people is higher than a fourth priority set for a fourth task of a second person of the plurality of people;
  • the evaluation score of the first person is higher than the evaluation score of the second person.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Manipulator (AREA)

Abstract

The information processing method according to the present disclosure receives target values for a robot and a person in a shared facility that is shared by the robot and the person, and creates a robot behavior plan that satisfies the received target values, on the basis of costs including an occupancy cost for the robot to occupy the shared facility.

Description

情報処理方法、情報処理装置及びプログラムInformation processing method, information processing device, and program
 本開示は、情報処理方法、情報処理装置及びプログラムに関する。 This disclosure relates to an information processing method, an information processing device, and a program.
 工場では多くのロボットが使用されている。工場では、装置のメンテナンス、点検、製品の検査等で頻繁に様々な箇所で人が作業を行い、完全にロボットだけで製造を行うのは難しい。 Many robots are used in factories. In factories, people frequently work in various places for equipment maintenance, inspection, product inspection, etc., making it difficult to carry out manufacturing entirely with robots.
 そのため、人とロボットが同じ空間を共有し、移動しなければならない。特にエレベーターの効率の良い制御は、人とロボットとが混在すると難しい。ロボットを優先してしまうと人の作業効率が悪くなるし、人を優先するとロボットのタスク計画がうまく遂行できなくなる。 As a result, humans and robots must share and move around in the same space. Efficient control of elevators is particularly difficult when humans and robots are mixed together. Giving priority to robots reduces human work efficiency, and giving priority to humans means that the robots' task plans cannot be carried out effectively.
 従来、(1)常に人を優先する、(2)常にロボットを優先する、(3)一定のルールを用いてバランスをとる(例えば、人が1分以上待っていたら人優先に切り替える)ことによりロボットの行動計画を作成する技術がある。  Conventionally, there is technology that creates a robot's behavior plan by (1) always giving priority to humans, (2) always giving priority to robots, or (3) using certain rules to strike a balance (for example, if a human has been waiting for more than one minute, it switches to human priority).
 例えば、特許文献1では、複数の共用エレベーターを制御するシステムにおいて、ロボットが使うときは割り込みで処理が走り、最適なエレベーターを選択してロボット用に予約し、動かすシステムが開示されている。 For example, Patent Document 1 discloses a system that controls multiple shared elevators, in which when a robot is to use the elevator, an interrupt process runs, and the most suitable elevator is selected, reserved for the robot, and operated.
特開平4-32471号公報Japanese Patent Application Publication No. 4-32471
 しかし、人を優先するとロボットが設備を使えず、タスクの完了が遅くなる。反対に、ロボットを優先すると人が設備を使えず、人の作業に影響する。 However, prioritizing humans means that robots cannot use equipment, slowing down task completion. Conversely, prioritizing robots means that humans cannot use equipment, affecting human work.
 本開示は、上記問題に鑑みてなされたものであり、人とロボットが共同で使う設備があるときに、両者の作業効率を効率化することができる情報処理方法、情報処理装置及びプログラムを提供する。 The present disclosure has been made in consideration of the above problems, and provides an information processing method, information processing device, and program that can improve the work efficiency of both humans and robots when there is equipment that is used jointly by both humans and robots.
 本開示の情報処理方法は、ロボットと人とが共有する共有設備における前記ロボット及び前記人に対する目標値を受信し、前記受信した目標値を満たし、前記共有設備を前記ロボットが占有することに対するペナルティを表す占有コストを含むコストに基づいて前記ロボットの行動計画を作成し、前記目標値は、前記行動計画の対象とならない前記ロボットを含む目標値である。 The information processing method disclosed herein receives target values for the robot and the person in a shared facility shared by the robot and the person, and creates a behavior plan for the robot based on costs that satisfy the received target values and include an occupancy cost that represents a penalty for the robot occupying the shared facility, the target values being target values that include the robot that is not the target of the behavior plan.
実施の形態に係るシステム全体の第1例を示す図である。FIG. 1 is a diagram illustrating a first example of an entire system according to an embodiment. 実施の形態に係るシステム全体の第2例を示す図である。FIG. 13 is a diagram illustrating a second example of the entire system according to the embodiment. 実施の形態に係る複数のロボットの経路計画を説明するための図である。1 is a diagram for explaining a path plan for a plurality of robots according to an embodiment; 実施の形態に係るエレベーターにおけるロボットの移動の課題について説明するための図である。FIG. 13 is a diagram for explaining the problem of the movement of a robot in an elevator according to an embodiment. 実施の形態に係るエレベーターにおけるロボットの移動の課題について説明するための図である。FIG. 13 is a diagram for explaining the problem of the movement of a robot in an elevator according to an embodiment. 実施の形態に係るパラメータ調整の流れについて説明するための図である。10 is a diagram for explaining a flow of parameter adjustment according to an embodiment. FIG. 実施の形態に係るロボット及び人に割り当てられているタスクに優先度がある場合の例を示す図である。FIG. 13 is a diagram showing an example in which tasks assigned to a robot and a person according to an embodiment have priorities. 実施の形態に係る評価スコアモニターのパラメータ調整前の最初の状態を示す図である。FIG. 13 is a diagram showing an initial state before parameter adjustment of an evaluation score monitor in the embodiment. 実施の形態に係る評価スコアモニターのパラメータ調整前の最初の状態から所定時間経過後の状態を示す図である。13 is a diagram showing a state after a predetermined time has elapsed from the initial state before parameter adjustment of the evaluation score monitor in the embodiment. FIG. 実施の形態に係る中央サーバがパラメータ調整中のロボットの設定及び評価スコアモニターを示す図である。FIG. 13 is a diagram showing the settings and evaluation score monitor of a robot during parameter adjustment by a central server in an embodiment. 実施の形態に係る中央サーバがパラメータ調整完了後のロボットの設定及び評価スコアモニターを示す図である。A figure showing the robot settings and evaluation score monitor after the central server in the embodiment has completed parameter adjustment. 実施の形態に係る中央サーバが他社製ロボットも未知の移動体としてカメラで認識するパターンを説明するための図である。11A and 11B are diagrams for explaining a pattern in which the central server in the embodiment recognizes a robot made by another company as an unknown moving object using a camera. 実施の形態に係る中央サーバの機能ブロック図である。FIG. 2 is a functional block diagram of a central server according to an embodiment. 実施の形態に係る中央サーバの評価スコア用データ入力部に入力されるデータ入力ソースの一例を示す図である。FIG. 13 is a diagram showing an example of a data input source input to an evaluation score data input unit of the central server according to the embodiment. 実施の形態に係る中央サーバと他社製ロボットとの関係を説明するための図である。1 is a diagram for explaining a relationship between a central server and a robot made by another company according to an embodiment. FIG. 実施の形態に係る中央サーバと他社製ロボットとの関係を説明するための図である。1 is a diagram for explaining a relationship between a central server and a robot made by another company according to an embodiment. FIG. 実施の形態に係る中央サーバの動作を説明するためのフローチャートである。10 is a flowchart illustrating an operation of a central server according to an embodiment. 実施の形態に係る中央サーバのタスク実行処理の流れを説明するためのフローチャートである。10 is a flowchart illustrating a flow of a task execution process of a central server according to an embodiment. 実施の形態に係る占有コストのパラメータ調整前後の人の待ち時間の前後の比較を示す図である。13A and 13B are diagrams illustrating a comparison of people's waiting times before and after parameter adjustment of occupancy cost according to an embodiment. 実施の形態に係る中央サーバの機能を実現するコンピュータの一例を示すハードウェア構成図である。FIG. 2 is a hardware configuration diagram illustrating an example of a computer that realizes the functions of the central server according to the embodiment.
 以下、添付図面を参照しながら、本開示の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。説明は以下の順序で行うものとする。 Below, a preferred embodiment of the present disclosure will be described in detail with reference to the attached drawings. Note that in this specification and drawings, components having substantially the same functional configuration will be assigned the same reference numerals to avoid duplicated explanations. The explanation will be given in the following order.
 1.前提となるシステム
 2.システム全体の構成
 3.ロボット103の計画の例
 4.エレベーター101における課題
 5.実施の形態の概要
 6.占有コスト等
  6.1.占有コスト
  6.2.占有コストの例
  6.3.占有コストの比重の変更
  6.4.パラメータ調整の流れ
  6.5.パラメータ調整のトリガー
  6.6.状況(メトリクス)確認
  6.7.パラメータ調整
  6.8.ロボット103のタスク内で優先度がある場合
  6.9.人104のタスク内で優先度がある場合
  6.10.タスクに優先度がある場合の例
  6.11.人104のタスク効率を測定する例
  6.12.パラメータ調整の流れ(全体)
 7.実施の形態に係る中央サーバ100の機能ブロック図
  7.1.実施の形態に係る中央サーバ100と他社製ロボットシステム613との関係
 8.実施の形態に係る中央サーバ100の全体の動作を説明するためのフローチャート
 9.実施の形態に係る中央サーバ100のタスク実行中の動作を説明するためのフローチャート
 10.設定及びUI
 11.ユースケース
 12.効果
 13.ハードウェア構成 
1. Prerequisite system 2. Overall system configuration 3. Example of robot 103 plan 4. Issues with elevator 101 5. Overview of embodiment 6. Occupancy cost, etc. 6.1. Occupancy cost 6.2. Example of occupancy cost 6.3. Changing the weight of occupancy cost 6.4. Parameter adjustment flow 6.5. Trigger for parameter adjustment 6.6. Status (metrics) confirmation 6.7. Parameter adjustment 6.8. Case where priority exists within a robot 103 task 6.9. Case where priority exists within a person 104 task 6.10. Example where a task has priority 6.11. Example of measuring the task efficiency of a person 104 6.12. Parameter adjustment flow (overall)
7. Functional block diagram of the central server 100 according to the embodiment 7.1. Relationship between the central server 100 according to the embodiment and a robot system 613 made by another company 8. Flowchart for explaining the overall operation of the central server 100 according to the embodiment 9. Flowchart for explaining the operation of the central server 100 according to the embodiment during task execution 10. Settings and UI
11. Use Cases 12. Effects 13. Hardware Configuration
 <1.前提となるシステム>
 実施の形態の前提となるシステムは、複数のロボットを使って何らかのタスクを遂行するシステムである。タスクは、例えば、工場での物品の搬送、物流倉庫での商品の搬送である。
<1. Prerequisite system>
The system on which the embodiment is based is a system that uses multiple robots to perform some task, such as transporting items in a factory or transporting goods in a logistics warehouse.
 システムは、システムの制御対象となるロボットを自由に操作できる。また、システムは、ロボットが使用する設備も自由に操作できる。例えば、システムは、エレベーターを操作する、自動ドアを開ける等の操作を行うことができる。システムの設備は(複数の)人により同時に使用される。人の行動は未知であり、いつ設備を使うか分からない。 The system can freely operate the robots that are the objects of the system's control. The system can also freely operate the equipment used by the robots. For example, the system can operate elevators and open automatic doors. The system's equipment is used simultaneously by (multiple) people. Human behavior is unknown, and it is not known when the equipment will be used.
 <2.システム全体の構成>
 図1は、実施の形態に係るシステム全体の第1例を示す図である。図1に示すように、設備には、中央サーバ100の制御の対象である複数のロボット103及び共有設備であるエレベーター101が存在する。エレベーター101の近傍には、複数の人104が存在する。人104の動きは、中央サーバ100では管理されない。
2. Overall system configuration
Fig. 1 is a diagram showing a first example of the entire system according to an embodiment. As shown in Fig. 1, the facility includes a plurality of robots 103 that are subject to the control of a central server 100, and an elevator 101 that is a shared facility. A plurality of people 104 are present near the elevator 101. The movements of the people 104 are not managed by the central server 100.
 ロボット103は、タスクを行うロボットである。複数のロボット103は、それぞれ異なるタスクを行っても良い。複数の人104もタスクを行い、それぞれ異なるタスクを行っても良い。ロボット103は、中央サーバ100に現在位置を送信する。また、ロボット103は、中央サーバ100からの移動指示に基づいて、移動等の動作を行う。 The robot 103 is a robot that performs a task. Multiple robots 103 may each perform a different task. Multiple people 104 may also perform tasks, each performing a different task. The robot 103 transmits its current location to the central server 100. Also, the robot 103 performs actions such as moving based on movement instructions from the central server 100.
 エレベーター101は、ロボット103と人104との共有設備であり、エレベーターコントローラ102を有する。エレベーターコントローラ102は、エレベーター101の操作等を行うことができる装置である。エレベーターコントローラ102は、中央サーバ100からの指示に基づいて、エレベーター101の動作の制御を行う。 The elevator 101 is a shared facility between the robot 103 and the person 104, and has an elevator controller 102. The elevator controller 102 is a device that can operate the elevator 101, etc. The elevator controller 102 controls the operation of the elevator 101 based on instructions from the central server 100.
 中央サーバ100は、ロボット103の現在位置、現在の計画、エレベーター101の状態を元に全体最適で新しい計画を生成する。計画にはエレベーター101への操作も含まれる。例えば、エレベーターの操作は、どのタイミングで、どのエレベーターを、どのロボットのために呼ぶかである。中央サーバ100は、生成された計画を元にロボット103に移動指示、エレベーター101のエレベーターコントローラ102にボタン操作指示を出す。ロボット103は、中央サーバ100からの操作指示に従って、移動を行う。エレベーターコントローラ102は、中央サーバ100からの操作指示に応答して、エレベーターのボタン押し状況等を中央サーバ100に出力する。 The central server 100 generates a new plan that is an overall optimization based on the current position of the robot 103, the current plan, and the state of the elevator 101. The plan also includes operations for the elevator 101. For example, elevator operations include when to call which elevator and for which robot. Based on the generated plan, the central server 100 issues movement instructions to the robot 103 and button operation instructions to the elevator controller 102 of the elevator 101. The robot 103 moves according to the operation instructions from the central server 100. In response to the operation instructions from the central server 100, the elevator controller 102 outputs the elevator button pressing status, etc. to the central server 100.
 図2は、実施の形態に係るシステム全体の第2例を示す図である。図2では、図1に示した構成に加えて、人感センサ-402が設けられた例を示している。図1と同一部分には同一符号を付して、その説明を省略する。 FIG. 2 is a diagram showing a second example of the entire system according to the embodiment. In addition to the configuration shown in FIG. 1, FIG. 2 shows an example in which a human presence sensor 402 is provided. The same parts as in FIG. 1 are given the same reference numerals and their explanations are omitted.
 人感センサ-402は、エレベーター101の人の待ち人数等の人104の情報を中央サーバ100に送る。人感センサ-402は、カメラ等であっても良い。 The human presence sensor 402 sends information about people 104, such as the number of people waiting in the elevator 101, to the central server 100. The human presence sensor 402 may be a camera, etc.
 <3.ロボット103の計画の例>
 次に、複数のロボット103の計画の例について説明する。
3. Example of Plan for Robot 103
Next, an example of a plan for multiple robots 103 will be described.
 それぞれのロボット103にはゴール地点があり、ゴール地点にできるだけ短い時間でたどり着きたい。しかし、何も考えずに最短経路を与えると、ロボット同士が衝突やデッドロックを起こしてゴールにたどり着けなくなる場合がある。そのため、ルールやアルゴリズムを使って衝突、デッドロックしない経路を作る必要がある。従って、中央サーバ100は、ロボット103がゴールに到達するまでの時間の合計(=コスト)を最小化できる計画を作成する。コストが最小となる計画を最適な計画という。 Each robot 103 has a goal, and wants to reach that goal in the shortest time possible. However, if the shortest route is given without any thought, the robots may collide or deadlock, preventing them from reaching the goal. For this reason, it is necessary to use rules and algorithms to create a route that will avoid collisions and deadlocks. Therefore, the central server 100 creates a plan that can minimize the total time (= cost) it takes for the robots 103 to reach the goal. The plan that minimizes the cost is called the optimal plan.
 図3は、実施の形態に係る複数のロボット103の経路計画を説明するための図である。図3では、参照符号が付されたロボット103の3つの経路200a、200b、200cが示されており、中央サーバ100は、これら経路200a、200b、200cのうち、ロボット103同士が衝突やデッドロックを起こさずに、コストが最小となる経路を有する計画を作成する。 FIG. 3 is a diagram for explaining path planning for multiple robots 103 according to an embodiment. In FIG. 3, three paths 200a, 200b, and 200c for the robots 103 are shown, each of which is given a reference number, and the central server 100 creates a plan for one of these paths 200a, 200b, and 200c, which has the lowest cost and does not cause collisions or deadlocks between the robots 103.
 <4.エレベーター101における課題>
 次に、エレベーター101におけるロボット103の移動の課題について説明する。
<4. Issues with Elevator 101>
Next, the problem of the movement of the robot 103 in the elevator 101 will be described.
 図4は、実施の形態に係るエレベーター101におけるロボット103の移動の課題について説明するための図である。例えば、図4に示すように、1Fには、2Fに行きたい人104が1Fでエレベーター101を待っているとする。2Fでは、1Fに行ってタスクをしたいロボット103が3台いるとする。 FIG. 4 is a diagram for explaining the problem of the movement of the robot 103 in the elevator 101 according to the embodiment. For example, as shown in FIG. 4, assume that a person 104 who wants to go to the 2nd floor is waiting for the elevator 101 on the 1st floor. Assume that there are three robots 103 on the 2nd floor who want to go to the 1st floor to perform a task.
 ロボット103の効率だけを考えると2Fで全ロボットを乗せて、まとめて1Fへ行くのが良い。しかし、それだと1Fの人104が長く待たされる。2Fのエレベーター101の近くにいるロボット103だけがエレベーター101に乗り込んですぐに1Fに移動した方が、人の待ち時間は少ない。 If we only consider the efficiency of the robots 103, it is best to load all the robots on the second floor and have them go to the first floor together. However, this means that people 104 on the first floor have to wait a long time. If only the robots 103 near the elevator 101 on the second floor get on the elevator 101 and go to the first floor immediately, people will have to wait less time.
 また、例えば、図5に示すように、1Fには、2Fに行きたい人104が1Fでエレベーター101を待っているとする。2Fでは、1Fに行ってタスクをしたいロボット103が2台いるとする。 Also, for example, as shown in FIG. 5, suppose that a person 104 who wants to go to the second floor is waiting for the elevator 101 on the first floor. Suppose that there are two robots 103 on the second floor who want to go to the first floor to perform a task.
 この場合、逆に、2Fで一番近いロボット103だけを乗せて移動してしまうと、2台目のロボットはエレベーター前で長い時間待つことになるかもしれない。あと少しだけエレベーターが待ち、2台目のロボットを乗せられればロボットのタスク効率が大幅に上がる可能性がある。なお、ロボット103のタスクは中央サーバ100で制御しているため、ロボット103を2台乗せた方が効率の良いことが分かる。 In this case, conversely, if only the closest robot 103 on the second floor is loaded and moved, the second robot may have to wait a long time in front of the elevator. If the elevator waits a little longer and the second robot can be loaded, the robot's task efficiency may increase significantly. Note that, because the tasks of the robot 103 are controlled by the central server 100, it is clear that it is more efficient to load two robots 103.
 つまり、ロボット103のためにどれだけエレベーター101を待たせるべきかを、人とロボットの双方を考慮して最適になるように調整したい。 In other words, we want to optimize how long the elevator 101 should wait for the robot 103, taking into account both the human and the robot.
 <5.実施の形態の概要>
 このような調整として、実施の形態においては、ロボット103の行動計画の作成について以下の解決策を採る。
5. Overview of the embodiment
As such an adjustment, in this embodiment, the following solution is adopted for creating a behavior plan for the robot 103.
 通常、ロボットの行動計画は「コスト」を最小化するように最適化される。コストは、例えば、ゴールに到達するまでの時間、ゴールまでの距離等である。 Usually, a robot's action plan is optimized to minimize "cost." Cost can be, for example, the time it takes to reach a goal, the distance to the goal, etc.
 実施の形態においては、その主となるコスト(通常コストと呼ぶ)に加えて、ロボット103が人104との共用設備を占有することに対するペナルティを表す占有コストを導入する。 In the embodiment, in addition to the main cost (called the normal cost), an occupancy cost is introduced that represents the penalty for the robot 103 occupying equipment shared with the person 104.
 占有コストは、ロボット103が共用設備を占有する時間(=人104が使えない時間)の関数で表される。例えば、占有コストは、a(係数)דロボット103のためにエレベーター101が待機する時間”である。 The occupancy cost is expressed as a function of the time that the robot 103 occupies the shared facility (= the time that the person 104 cannot use it). For example, the occupancy cost is a (coefficient) x "the time that the elevator 101 waits for the robot 103."
 ロボット103の行動計画は“通常コスト+占有コスト”が最小になるように最適化する。すると、ロボット103が共用設備を占有する時間があまりに長い計画は実行されないようになる。どれくらい占有しても良いかは、占有コストの係数(パラメータ)や関数を変えることで調整できる。 The robot's 103 behavior plan is optimized so that the "normal cost + occupancy cost" is minimized. This means that plans that require the robot 103 to occupy shared equipment for too long will not be executed. The acceptable amount of occupancy can be adjusted by changing the coefficient (parameter) or function of the occupancy cost.
 <6.占有コスト等>
  <6.1.占有コスト>
 次に、実施の形態に係る占有コストについて説明する。
<6. Occupancy costs, etc.>
6.1. Occupancy Cost
Next, the occupancy cost according to the embodiment will be described.
 占有コストを求めるために使用される関数は、ロボット103が共有設備を占有する時間をtとすると線形関数、指数関数、ステップ関数で表すことができる。
線形関数:at(aは係数)
指数関数:a (線形関数よりも長時間の待ちを防ぎたい場合に使用される。)
ステップ関数:0(t≦a)
       ∞(t>a)
 なお、ステップ関数は閾値として使用される。
The function used to calculate the occupancy cost can be expressed as a linear function, an exponential function, or a step function, where t is the time that the robot 103 occupies the shared equipment.
Linear function: at (a is the coefficient)
Exponential function: a t (used when you want to avoid waiting longer than the linear function)
Step function: 0 (t≦a)
∞(t>a)
Note that the step function is used as the threshold.
 計画の中で共用設備を占有した時間の集合をTとすると、
線形関数:amax(T)
指数関数: a(max(T))
ステップ関数:0(max(T)≦a)
       ∞(max(T)>a)
 また、これら関数の組み合わせでも良い。例えば、at+bmax(T)である。
Let T be the set of times during which shared facilities are occupied in the plan.
Linear function: amax(T)
Exponential function: a (max(T))
Step function: 0 (max(T)≦a)
∞(max(T)>a)
Also, a combination of these functions may be used, for example at+bmax(T).
 次に、通常コストf(t)と占有コストg(t)の比重について説明する。比重を表すパラメータをαとすると、全体のコストは、f(t)+α×g(t)と表すことができる。従って、αを調整することで、占有コストの比重を調整することができる。 Next, we will explain the weighting of the normal cost f(t) and the occupancy cost g(t). If the parameter representing the weighting is α, then the total cost can be expressed as f(t) + α × g(t). Therefore, by adjusting α, it is possible to adjust the weighting of the occupancy cost.
 次に、ロボット103が共用設備を占有する時間tの例について説明する。エレベーター101の場合、ロボット103が共用設備を占有する時間tは、例えば、以下の通りである。
 ボタン(上 or 下)を押してからエレベーターかごが到着するのを待っている時間
 エレベーター101に人104が乗り込んだ後、ロボット103が乗り込むのを待っている時間
 複数の人104が待っている場合は、待ち時間を積算する。例えば、3人の人104がそれぞれ20秒、10秒、5秒待っていた場合、合計35秒がロボット103が共用設備を占有する時間tに積算される。
Next, an example of the time t during which the robot 103 occupies the shared equipment will be described. In the case of the elevator 101, the time t during which the robot 103 occupies the shared equipment is, for example, as follows:
The time spent waiting for the elevator car to arrive after the button (up or down) is pressed The time spent waiting for the robot 103 to get on after the person 104 gets on the elevator 101 If multiple people 104 are waiting, the waiting times are added up. For example, if three people 104 wait for 20 seconds, 10 seconds, and 5 seconds, respectively, a total of 35 seconds is added up to the time t that the robot 103 occupies the shared facility.
  <6.2.占有コストの例>
 次に、コストに対するロボット103の計画について説明する。
全体コスト=通常コスト+α×占有コスト
通常コスト:ロボット全台がゴールに到達するまでの時間、
占有コスト:エレベーターがロボットを待つ時間とする。
6.2. Examples of Occupancy Costs
Next, the planning of the robot 103 with respect to costs will be described.
Total cost = normal cost + α × occupancy cost Normal cost: Time it takes for all robots to reach the goal,
Occupancy cost: The time the elevator waits for the robot.
 図4に示す状態において、
 ロボット103を3台まとめて1Fに移動させる計画:
通常コスト=50
占有コスト=50
になるとする。α=1の場合、合計コスト=50+50=100になる。
In the state shown in FIG.
Plan to move all three robots 103 to the first floor:
Normal cost = 50
Occupancy cost = 50
When α=1, the total cost is 50+50=100.
 ロボット103を3台、2回に分けて1Fに移動させる計画:
通常コスト=60
占有コスト=30
になるとする。α=1の場合、合計コスト=60+30=90になる。
Plan to move three robots 103 to the first floor in two batches:
Normal cost = 60
Occupancy cost = 30
When α=1, the total cost is 60+30=90.
 従って、この場合、合計コストが小さいロボット103を3台2回に分けて1Fに移動させる計画の方が良い。 Therefore, in this case, it would be better to plan to move three robots 103, which have a lower total cost, to the first floor in two trips.
 図5に示す状態において、
 ロボット103を2台まとめて1Fに移動させる計画:
通常コスト=30
占有コスト=40
になるとする。α=1の場合、合計コスト=30+40=70になる。
In the state shown in FIG.
Plan to move two robots 103 together to the first floor:
Normal cost = 30
Occupancy cost = 40
When α=1, the total cost is 30+40=70.
 ロボット103を2台、2回に分けて1Fに移動させる計画:
通常コスト=50
占有コスト=30
になるとする。α=1の場合、合計コスト=50+30=80になる。
Plan to move two robots 103 to the 1st floor in two trips:
Normal cost = 50
Occupancy cost = 30
When α=1, the total cost is 50+30=80.
 従って、この場合、合計コストが小さいロボット103を2台まとめて1Fに移動させる計画の方が良い。 Therefore, in this case, it would be better to plan to move the two robots 103 together, which have a smaller total cost, to the first floor.
  <6.3.占有コストの比重の変更>
 次に、比重を表すパラメータαを変更した場合について説明する。
<6.3. Change in weighting of occupancy costs>
Next, a case where the parameter α representing the weight is changed will be described.
 ロボット103を2台まとめて1Fに移動させる計画:
通常コスト=50
占有コスト=40
になるとする。α=1の場合、合計コスト=50+1×40=90になる。
Plan to move two robots 103 together to the first floor:
Normal cost = 50
Occupancy cost = 40
When α=1, the total cost is 50+1×40=90.
 ロボット103を2台、2回に分けて1Fに移動させる計画:
通常コスト=80
占有コスト=25
になるとする。α=1の場合、合計コスト=80+1×24=105になる。
Plan to move two robots 103 to the 1st floor in two trips:
Normal cost = 80
Occupancy cost = 25
When α=1, the total cost is 80+1×24=105.
 従って、α=1の場合、合計コストが小さいロボット103を2台まとめて1Fに移動させる計画の方が良い。 Therefore, when α = 1, it is better to plan to move the two robots 103, which have the smallest total cost, together to the 1st floor.
 次に、比重を表すパラメータαを1から3に変更した場合について説明する。
 ロボット103を2台まとめて1Fに移動させる計画:
通常コスト=50
占有コスト=40
になるとする。α=3の場合、合計コスト=50+3×40=170になる。
Next, a case where the parameter α representing the weight is changed from 1 to 3 will be described.
Plan to move two robots 103 together to the first floor:
Normal cost = 50
Occupancy cost = 40
If α=3, the total cost is 50+3×40=170.
 ロボット103を2台、2回に分けて1Fに移動させる計画:
通常コスト=80
占有コスト=25
になるとする。α=3の場合、合計コスト=80+3×25=155になる。
Plan to move two robots 103 to the 1st floor in two trips:
Normal cost = 80
Occupancy cost = 25
If α=3, the total cost is 80+3×25=155.
 従って、α=3の場合、合計コストが小さいロボット103を2台、2回に分けて1Fに移動させる計画の方が良い。 Therefore, when α = 3, it is better to plan to move two robots 103, which have a smaller total cost, to the 1st floor in two trips.
 すなわち、比重を表すパラメータαを変更することで、ロボット103を優先するか人104を優先するか調整できる。 In other words, by changing the parameter α, which indicates the weighting, it is possible to adjust whether to give priority to the robot 103 or the person 104.
 実施の形態では、通常コストと占有コストの比重、占有コストの式(係数)等のパラメータを調整することで、ロボットの占有時間と人の待ち時間を運用時に動的に調整する。 In the embodiment, the robot's occupancy time and human waiting time are dynamically adjusted during operation by adjusting parameters such as the weighting of normal cost and occupancy cost, and the occupancy cost formula (coefficient).
 動的に調整する場合としては、例えば、エレベーター101が混雑してきたら人の待ち時間を減らすような調整がある。また、ロボット103のタスク進捗が悪いときに、ロボット103の占有時間を長くするように調整、人104が使わない時間帯は、ロボット103の占有時間を長くする調整、設備のメンテナンスのため、一時的に人104を優先するように調整する場合等がある。 In cases where dynamic adjustments are made, for example, adjustments are made to reduce the waiting time of people when the elevator 101 becomes crowded. In addition, adjustments are made to extend the occupancy time of the robot 103 when the robot 103 is not making good progress in its tasks, adjustments are made to extend the occupancy time of the robot 103 during times when people 104 are not using the facility, and adjustments are made to give priority to people 104 temporarily for equipment maintenance.
  <6.4.パラメータ調整の流れ>
 図6は、実施の形態に係るパラメータ調整の流れについて説明するための図である。図6に示すように、入力データ301は、例えば、カメラで撮影した待ち人数、エレベーター101の利用状況、人手によるトリガー等である。
<6.4. Parameter adjustment flow>
6 is a diagram for explaining a flow of parameter adjustment according to an embodiment. As shown in FIG. 6, input data 301 includes, for example, the number of people waiting captured by a camera, the usage status of the elevator 101, a manual trigger, and the like.
 入力データ301に基づいて、パラメータ調整開始のトリガーがあるとパラメータの調整が行われる(ステップS1)。 When a trigger to start parameter adjustment occurs based on the input data 301, the parameters are adjusted (step S1).
 パラメータの調整(ステップS1)では、通常コストと占有コストとの比重αの調整、占有コストの式(係数)の調整が行われる。 In parameter adjustment (step S1), the weighting α between normal cost and occupancy cost and the formula (coefficient) for occupancy cost are adjusted.
 次に、状況(メトリクス)の確認が行われる(ステップS2)。状況確認が行われて、状況が目標値に達しているかの判断が行われる。目標値に達していなければ再度パラメータの調整(ステップS1)が行われる。状況が目標値に達していると判断された場合、パラメータ調整の処理は終了する。 Next, the situation (metrics) is checked (step S2). After the situation is checked, it is determined whether the situation has reached the target value. If the target value has not been reached, the parameters are adjusted again (step S1). If it is determined that the situation has reached the target value, the parameter adjustment process ends.
 目標値は、例えば、人104のタスク効率、人104の平均待ち時間、ロボット103のタスク効率、ロボット103の平均占有時間等に設定される。 The target values are set, for example, to the task efficiency of the person 104, the average waiting time of the person 104, the task efficiency of the robot 103, the average occupancy time of the robot 103, etc.
  <6.5.パラメータ調整のトリガー>
 パラメータ調整の開始のトリガーは、時間帯によって調整されても良い。例えば、人104が多い昼間は人の待ち時間を短くし、人104の少ない深夜はロボット103の占有時間を長くする。
6.5. Trigger for parameter adjustment
The trigger for starting parameter adjustment may be adjusted depending on the time of day. For example, the waiting time of people is shortened during the day when there are many people 104, and the occupancy time of the robot 103 is lengthened during the middle of the night when there are fewer people 104.
 パラメータ調整の開始のトリガーは、外部から得られたデータを元に調整されても良い。例えば、センサ-で人104の混雑を認識したときに、人104の待ち時間を一時的に短くする。どのように調整すると良いかはシステムが学習する。混雑は、カメラで人を認識し、どれくらいの人104が待っているか判定する。例えば、エレベーター101の利用状況により、人104の待ち時間を一時的に短くするように調整する。この場合、エレベーター101のボタン押し状況やカゴの移動状況のデータを使う。 The trigger for starting parameter adjustment may be adjusted based on data obtained from outside. For example, when a sensor detects congestion of people 104, the waiting time of people 104 is temporarily shortened. The system learns how to make adjustments. Congestion is detected by recognizing people with a camera and determining how many people 104 are waiting. For example, adjustments are made to temporarily shorten the waiting time of people 104 depending on the usage status of the elevator 101. In this case, data on the button pressing status of the elevator 101 and the movement status of the car is used.
 パラメータ調整の開始のトリガーは、外部からの操作で調整されても良い。例えば、一時的にロボット103のタスクを優先させたいため、UI(User Interface)から手動で調整する。 The trigger for starting parameter adjustment may be adjusted by an external operation. For example, to temporarily prioritize the task of the robot 103, the parameter is adjusted manually from the UI (User Interface).
  <6.6.状況(メトリクス)確認>
 利用者は、事前(パラメータ調整開始前)に目標値を決めておく。目標値は、例えば、人104の平均待ち時間、人104の最大待ち時間、ロボット103のタスク効率(時間あたりに何個のタスクを完了したか)、ロボット103による設備の平均占有時間である。
<6.6. Status (metrics) check>
The user determines target values in advance (before starting parameter adjustment). The target values are, for example, the average waiting time of the person 104, the maximum waiting time of the person 104, the task efficiency of the robot 103 (how many tasks are completed per hour), and the average occupancy time of the equipment by the robot 103.
 人104の待ち時間は、例えば、エレベーター101の場合、ボタン(上 or 下)を押してからエレベーターかごが到着するのを待っている時間、エレベーター101に人が乗り込んだ後、ロボット103が乗り込むのを待っている時間、複数の人104が待っている場合は、待ち時間を積算する。人104Aが20秒、人104Bが10秒、人104Cが5秒待っていた場合、合計35秒である。人104の待ち時間は、ロボット103の影響によって人の待ち時間が増えるような指標であれば良い。 The waiting time of person 104, for example, in the case of elevator 101, is the time from pressing the button (up or down) until the elevator car arrives, or the time from when a person gets into elevator 101 until the robot 103 gets in. If multiple people 104 are waiting, the waiting times are added up. If person 104A waits 20 seconds, person 104B waits 10 seconds, and person 104C waits 5 seconds, the total is 35 seconds. The waiting time of person 104 may be an indicator of the increase in people's waiting time due to the influence of robot 103.
 ステップS2の状況確認は、目標値に達するまでパラメータ調整を続ける。状況が、どれくらい目標値に近づいているかはUIで確認しても良い。そして、状況が目標値に達していればパラメータ調整処理を終了し、状況が目標値に達していなければ、ステップS1のパラメータ調整処理に再度戻る。 The status check in step S2 continues parameter adjustment until the target value is reached. The UI can be used to check how close the status is to the target value. If the status has reached the target value, the parameter adjustment process ends, and if the status has not reached the target value, the process returns to the parameter adjustment process in step S1.
  <6.7.パラメータ調整>
 次に、パラメータ調整の考え方について説明する。例えば、人104の待ち時間を減らしたい場合は占有コストの比重を増やし、ロボット103のタスク効率を上げたい場合は占有コストの比重を減らす。なお、一回のサイクルでどれくらいパラメータを変えれば良いかは、PID制御や学習を使う。
6.7. Parameter Adjustment
Next, the concept of parameter adjustment will be described. For example, if you want to reduce the waiting time of the person 104, increase the weight of the occupancy cost, and if you want to increase the task efficiency of the robot 103, decrease the weight of the occupancy cost. Note that PID control and learning are used to determine how much the parameters should be changed in one cycle.
  <6.8.ロボット103のタスク内で優先度がある場合>
 複数のロボット103は異なるタスクを行い、それぞれのタスクの優先度が異なる場合がある。例えば、製造のための運搬タスクと清掃タスクである。運搬タスクは生産計画のために優先されるが、清掃タスクは予定通り進まなくても大きな影響は無いため、優先度が低い。
<6.8. When there is a priority within a task of the robot 103>
The multiple robots 103 perform different tasks, and the priorities of the tasks may differ. For example, a transportation task and a cleaning task for manufacturing. The transportation task is prioritized for production planning, but the cleaning task has a low priority because it does not have a large impact even if it does not proceed as planned.
 コストの決め方で優先度が表現される。通常コストは、優先度が高いタスクのコストを多く付ける。例えば、優先度の低いタスクは所要時間60秒でコスト60、優先度の高いタスクは所要時間60秒でコスト120である。占有コストは、優先度が高いタスクのコストを少なく付ける。すなわち、コストはタスクの優先度に基づいて決定される。 Priority is expressed by how the cost is determined. With normal cost, higher costs are assigned to tasks with higher priority. For example, a low priority task takes 60 seconds and costs 60, while a high priority task takes 60 seconds and costs 120. With occupancy cost, higher priority tasks take less. In other words, costs are determined based on the priority of the task.
  <6.9.人104のタスク内で優先度がある場合>
 ロボット103と同様に人104も様々な異なるタスクを行っており、タスクごと(人ごと)に優先度が異なる場合がある。例えば、装置やロボットのアラームを直しに行く人104と定期点検する人104等である。
<6.9. When there is a priority within the task of person 104>
Like the robot 103, the person 104 also performs various different tasks, and the priority may differ for each task (person). For example, there is a person 104 who goes to fix the alarm of a device or robot and a person 104 who performs regular inspections.
 人104の場合、状況確認の際に使う状況(メトリクス)の決め方で優先度を表現することができる。例えば、人の待ち時間をスコアとして使う場合に、優先度が低い人は10秒待ってスコア10だが、優先度が高い人が10秒待つとスコア30が計上される。もしくは優先度が高いタスクを行う人の待ち時間やタスク効率だけを計上して、それ以外はどれだけ待っていようがコストとして計上せずに気にしない等である。すなわち、人104の評価スコアは、人104に設定された優先度に基づいて算出される。 In the case of person 104, priority can be expressed by determining the situation (metrics) used when checking the situation. For example, if a person's waiting time is used as a score, a person with a low priority will receive a score of 10 if they wait 10 seconds, but if a person with a high priority waits 10 seconds, a score of 30 will be recorded. Alternatively, only the waiting time and task efficiency of people performing high priority tasks can be recorded, and the rest of them can be ignored and not recorded as costs regardless of how long they wait. In other words, the evaluation score of person 104 is calculated based on the priority set for person 104.
  <6.10.タスクに優先度がある場合の例>
 図7は、実施の形態に係るロボット103及び人104に割り当てられているタスクに優先度がある場合の例を示す図である。
<6.10. Example of when tasks have priority>
FIG. 7 is a diagram showing an example in which the tasks assigned to the robot 103 and the person 104 according to the embodiment have priorities.
 図7では、中央サーバ100は、ロボット103a、ロボット103bを管理する例を示している。ロボット103aには、「タスク1、通常コスト倍率×2.0、占有コスト倍率×0.25、優先度5」が設定される。ロボット103bには、「タスク2、通常コスト倍率×1.0、占有コスト倍率×1.0、優先度1」が設定される。中央サーバ100は、ロボット103の優先度ごとにコストの付け方を変えてロボット103の計画をする。 In FIG. 7, an example is shown in which the central server 100 manages robots 103a and 103b. For robot 103a, "task 1, normal cost multiplier x 2.0, occupancy cost multiplier x 0.25, priority 5" is set. For robot 103b, "task 2, normal cost multiplier x 1.0, occupancy cost multiplier x 1.0, priority 1" is set. The central server 100 plans the robots 103 by changing the way costs are assigned for each robot 103's priority.
 また、人104aには、「タスク1、評価スコア倍率×2.0、優先度3」が設定され、人104bには、「タスク2、評価スコア倍率×1.0、優先度1」が設定される。評価スコアモニター401は、中央サーバ100にて算出された人104のタスク効率スコア(評価スコア)を表示する。すなわち、優先度の高いタスク1が割り当てられた人104の評価スコアは、優先度がタスク1よりも低いタスク2が割り当てられた人104の評価スコアよりも高い。 Furthermore, for person 104a, "Task 1, evaluation score multiplier x 2.0, priority 3" is set, and for person 104b, "Task 2, evaluation score multiplier x 1.0, priority 1" is set. The evaluation score monitor 401 displays the task efficiency score (evaluation score) of person 104 calculated by the central server 100. In other words, the evaluation score of person 104 who is assigned task 1 with a high priority is higher than the evaluation score of person 104 who is assigned task 2 with a lower priority than task 1.
 評価スコアモニター401は、中央サーバ100で算出された評価スコアを表示する。評価スコアとしては、例えば、人のタスク効率スコアが表示されるがこれに限られない。なお、表示されるスコアは複数であっても良い。例えば、評価スコアは、タスクAのスコア、タスクBのスコア等のように表示されても良い。中央サーバ100は、複数の評価スコアが目標値に近づくようにパラメータの調整を行う。また、中央サーバ100は、人104の優先度ごとに評価スコアの付け方を変える。そして、評価スコアを元に占有スコアのパラメータを調整する。 The evaluation score monitor 401 displays the evaluation score calculated by the central server 100. For example, the evaluation score displayed may be a person's task efficiency score, but is not limited to this. It is also possible to display multiple scores. For example, the evaluation score may be displayed as a score for task A, a score for task B, etc. The central server 100 adjusts the parameters so that the multiple evaluation scores approach the target value. The central server 100 also changes the way the evaluation score is assigned for each priority of the person 104. Then, the occupancy score parameters are adjusted based on the evaluation score.
  <6.11.人104のタスク効率を測定する例>
 人104のタスク効率を測定する場合、例えば、以下の要素が使用される。
1.エレベーター101の前での待ち時間
 待ち時間は、カメラや人感センサ-402などで情報が取得される。
2.エレベーター11の稼働状況
 稼働状況は、何人の人を運んだか、何回(階)移動したか、何回扉を開閉したかである。
3.アラーム対応数/対応時間
 装置やロボットの異常でアラームが鳴る。アラーム対応数/対応時間は、対応した数もしくは対応されるまでの時間を生産システムやロボットシステムで管理しておく。
4.(工場)製造数
 (工場)製造数は、生産システムで管理されている。
5.(工場)製品の検査数
 完成した製品、もしくは生産途中の製品に異常が無いか検査する。
 (工場)製品の検査数は、生産システムで管理されている。
6.11. Example of Measuring Task Efficiency of Person 104
When measuring task efficiency of person 104, for example, the following factors are used:
1. Waiting time in front of the elevator 101 Waiting time information is acquired by a camera, a human presence sensor 402, or the like.
2. Operational status of elevator 11 The operational status of elevator 11 is how many people it has transported, how many times (floors) it has moved, and how many times the doors have been opened and closed.
3. Number of alarms responded to/Response time An alarm goes off when an abnormality occurs in a device or robot. The number of alarms responded to/Response time is the number of responses or the time it takes to respond, and is managed by the production system or robot system.
4. (Factory) Production volume (Factory) production volume is managed by the production system.
5. (Factory) Product Inspection Finished products and products in the process of production are inspected for defects.
(Factory) The number of product inspections is controlled by the production system.
  <6.12.パラメータ調整の流れ(全体)>
 図8は、実施の形態に係る評価スコアモニター401のパラメータ調整前の最初の状態を示す図である。図8では、中央サーバ100は、ロボット103a、ロボット103bを管理する例を示している。ロボット103aには、「タスク1、通常コスト倍率×2.0、優先度5」が設定される。ロボット103bには、「タスク2、通常コスト倍率×1.0、優先度1」が設定される。中央サーバ100は、ロボット103の優先度ごとにコストの付け方を変えてロボット103の計画をする。
<6.12. Parameter adjustment flow (overall)>
Fig. 8 is a diagram showing an initial state before parameter adjustment of the evaluation score monitor 401 according to the embodiment. Fig. 8 shows an example in which the central server 100 manages robots 103a and 103b. For the robot 103a, "task 1, normal cost multiplier x 2.0, priority 5" is set. For the robot 103b, "task 2, normal cost multiplier x 1.0, priority 1" is set. The central server 100 plans the robots 103 by changing the way costs are assigned for each priority of the robots 103.
 また、人104aには、「タスク1、評価スコア倍率×2.0、優先度3」が設定され、人104bには、「タスク2、評価スコア倍率×1.0、優先度1」が設定される。評価スコアモニター401は、中央サーバ100にて算出された人104のタスク効率スコアを表示する。 Furthermore, for person 104a, "task 1, evaluation score multiplier x 2.0, priority 3" is set, and for person 104b, "task 2, evaluation score multiplier x 1.0, priority 1" is set. The evaluation score monitor 401 displays the task efficiency score of person 104 calculated by the central server 100.
 最初の状態では、中央サーバ100は、人104とのバランスは考慮せずに動作し、評価スコアモニター401には、タスクAの効率、タスクBの効率などの評価スコアは表示されない。なお、人104とのバランスを事前に調整したバランスで動作させても良い。 In the initial state, the central server 100 operates without considering the balance with the person 104, and the evaluation score monitor 401 does not display evaluation scores such as the efficiency of task A and the efficiency of task B. Note that the central server 100 may operate with the balance with the person 104 adjusted in advance.
 図9は、実施の形態に係る評価スコアモニター401のパラメータ調整前の最初の状態から所定時間経過後の状態を示す図である。図9に示すように、図8に示した最初の状態から所定時間(1時間)経過後には、評価スコアモニター401には、例えば、タスクAの効率が10(1時間当たりに10回タスクAを行えた)、タスクBの効率が20であることが表示される。 FIG. 9 is a diagram showing the state of the evaluation score monitor 401 according to the embodiment after a predetermined time has elapsed from the initial state before parameter adjustment. As shown in FIG. 9, after a predetermined time (1 hour) has elapsed from the initial state shown in FIG. 8, the evaluation score monitor 401 displays, for example, that the efficiency of task A is 10 (task A was performed 10 times per hour) and the efficiency of task B is 20.
 タスクAの効率を15まで上げたい場合、中央サーバ100にタスクAの効率を15まで上げたいという目標が入力される。そうすると、中央サーバ100において、占有コストのパラメータの調整が行われる。 If it is desired to increase the efficiency of task A to 15, the goal of increasing the efficiency of task A to 15 is input to the central server 100. Then, the central server 100 adjusts the occupancy cost parameters.
 図10は、実施の形態に係る中央サーバ100がパラメータ調整中のロボット103の設定及び評価スコアモニター401を示す図である。 FIG. 10 shows the settings and evaluation score monitor 401 of the robot 103 during parameter adjustment by the central server 100 according to the embodiment.
 図10に示すように、中央サーバ100においてパラメータ調整中において、例えば、ロボット103aには、「タスク1、通常コスト倍率×2.0、占有コスト(パラメータa)、優先度5」が設定される。ロボット103bには、「タスク2、通常コスト倍率×1.0、占有コスト(パラメータa)、優先度1」が設定される。 As shown in FIG. 10, during parameter adjustment in the central server 100, for example, the following are set for robot 103a: "Task 1, normal cost multiplier x 2.0, occupancy cost (parameter a), priority 5." For robot 103b, the following are set: "Task 2, normal cost multiplier x 1.0, occupancy cost (parameter a), priority 1."
 この時、評価スコアモニター401には、タスクAの効率が10(1時間当たりに10回タスクAを行えた)、タスクBの効率が20であることが表示されている。しかし、図10に示す状態では、タスクAの効率が15になっていないので目標を達成していない。 At this time, the evaluation score monitor 401 displays that the efficiency of task A is 10 (task A was performed 10 times per hour) and the efficiency of task B is 20. However, in the state shown in FIG. 10, the efficiency of task A is not 15, so the goal has not been achieved.
 図11は、実施の形態に係る中央サーバ100がパラメータ調整完了後のロボット103の設定及び評価スコアモニター401を示す図である。図11は、中央サーバ100がパラメータ調整を開始した後、1時間経過して、タスクAの効率が15になり目標を達成した場合を示している。 FIG. 11 is a diagram showing the settings of the robot 103 and the evaluation score monitor 401 after the central server 100 according to the embodiment has completed parameter adjustment. FIG. 11 shows a case where one hour has passed since the central server 100 started parameter adjustment, and the efficiency of task A has reached 15, achieving the goal.
 図11に示すように、中央サーバ100においてパラメータ調整完了後において、パラメータaがa’に変更されて、ロボット103aには、「タスク1、通常コスト倍率×2.0、占有コスト(パラメータa’)、優先度5」が設定される。ロボット103bには、「タスク2、通常コスト倍率×1.0、占有コスト(パラメータa’)、優先度1」が設定される。 As shown in FIG. 11, after the central server 100 completes parameter adjustment, parameter a is changed to a', and the robot 103a is set to "task 1, normal cost multiplier x 2.0, occupancy cost (parameter a'), priority 5." The robot 103b is set to "task 2, normal cost multiplier x 1.0, occupancy cost (parameter a'), priority 1."
 この時、評価スコアモニター401には、タスクAの効率が15、タスクBの効率が25であることが表示されている。従って、図11に示す状態では、タスクAの効率が15になっているので目標を達成しており、パラメータ調整が終了する。 At this time, the evaluation score monitor 401 displays that the efficiency of task A is 15, and the efficiency of task B is 25. Therefore, in the state shown in FIG. 11, the efficiency of task A is 15, so the goal has been achieved and parameter adjustment is completed.
 ここまで人104として説明してきた部分は、中央サーバ100が管理できない未知の移動体なら何でも良い。例えば、他社のシステムで管理されている(=中央サーバ100で管理されていない)他社製ロボット105が該当する。 The part that has been described so far as a person 104 can be any unknown moving object that cannot be managed by the central server 100. For example, it could be a robot 105 made by another company that is managed by another company's system (i.e. not managed by the central server 100).
 図12は、実施の形態に係る中央サーバ100が他社製ロボット105も未知の移動体としてカメラ106で認識するパターンを説明するための図である。図12において、カメラ106は、エレベーター101の前やエレベーター101内の人104及び他社製ロボット105の数(=混雑状況)を認識し、中央サーバ100に送信する。 FIG. 12 is a diagram for explaining a pattern in which the central server 100 according to the embodiment recognizes a robot 105 made by another company as an unknown moving object using the camera 106. In FIG. 12, the camera 106 recognizes the number of people 104 and robots 105 made by other companies in front of and inside the elevator 101 (=crowding situation), and transmits this to the central server 100.
 中央サーバ100は、送信された人104及び他社製ロボット105の数を認識し、評価スコアに反映する。なお、図12において、人104には、「タスク1、評価スコア倍率×2.0、優先度3」が設定され、他社製ロボット105には、「タスク2、評価スコア倍率×1.0、優先度1」が設定されている。また、ロボット103aには、「タスク1、通常コスト倍率×2.0、占有コスト パラメータa’、優先度5」が設定される。ロボット103bには、「タスク2、通常コスト倍率×1.0、占有コスト パラメータa’、優先度1」が設定される。 The central server 100 recognizes the number of people 104 and robots 105 made by other companies that have been sent, and reflects this in the evaluation score. In FIG. 12, the settings for the people 104 are "task 1, evaluation score multiplier x 2.0, priority 3," and the settings for the robots 105 made by other companies are "task 2, evaluation score multiplier x 1.0, priority 1." The settings for the robot 103a are "task 1, normal cost multiplier x 2.0, occupancy cost parameter a', priority 5." The settings for the robot 103b are "task 2, normal cost multiplier x 1.0, occupancy cost parameter a', priority 1."
 <7.実施の形態に係る中央サーバ100の機能ブロック図>
 図13は、実施の形態に係る中央サーバ100の機能ブロック図である。図13に示すように、中央サーバ100は、パラメータ調整部601、評価スコア算出部602、タスク計画部603、ロボット制御部604及びエレベーター制御部605を有している。
7. Functional block diagram of central server 100 according to the embodiment
Fig. 13 is a functional block diagram of the central server 100 according to the embodiment. As shown in Fig. 13, the central server 100 includes a parameter adjustment unit 601, an evaluation score calculation unit 602, a task planning unit 603, a robot control unit 604, and an elevator control unit 605.
 また、中央サーバ100の外部には、外部の評価スコア目標値入力部500、タスク入力部501、評価スコア表示部502、評価スコア用データ入力部504、通信部503_1、503_2が設けられている。中央サーバ100のロボット制御部604は、通信部503_1を介してロボット103と接続している。中央サーバ100のエレベーター制御部605は、通信部503_2を介してエレベーター101のエレベーターコントローラ102と接続している。 Also, outside the central server 100, there are provided an external evaluation score target value input unit 500, a task input unit 501, an evaluation score display unit 502, an evaluation score data input unit 504, and communication units 503_1 and 503_2. The robot control unit 604 of the central server 100 is connected to the robot 103 via the communication unit 503_1. The elevator control unit 605 of the central server 100 is connected to the elevator controller 102 of the elevator 101 via the communication unit 503_2.
 評価スコア目標値入力部500は、オペレータ用の端末等であり、評価スコアの目標値が入力される。タスク入力部501は、生産システム等からロボット103のタスクを入力する。 The evaluation score target value input unit 500 is a terminal or the like for an operator, into which the target value of the evaluation score is input. The task input unit 501 inputs the tasks of the robot 103 from a production system or the like.
 パラメータ調整部601は、評価スコア目標値入力部500により入力された目標値を受信する。パラメータ調整部601は、評価スコアが評価スコア目標値入力部500から受信した目標値に達するように占有コストのパラメータを調整する。評価スコア用データ入力部504は、製造装置や生産システムから製造数、エレベーター101前のカメラから人の待ち時間等が入力される。 The parameter adjustment unit 601 receives the target value input by the evaluation score target value input unit 500. The parameter adjustment unit 601 adjusts the parameters of the occupancy cost so that the evaluation score reaches the target value received from the evaluation score target value input unit 500. The evaluation score data input unit 504 inputs the number of units manufactured from the manufacturing equipment or production system, the waiting time of people from the camera in front of the elevator 101, etc.
 タスク計画部603は、パラメータ調整後の占有コストを使ってタスクを計画する。タスク計画部603は、例えば、ロボット103のタスク割り当てや経路、エレベーター制御のタイミングなどを計画する。タスク計画部603は、受信した目標値を満たし、共有設備をロボット103が占有することに対するペナルティを表す占有コストを含むコストに基づいてロボット103の行動計画を作成する。目標値は、行動計画の対象とならない他社製ロボット105(図12参照)を含む目標値である。 The task planning unit 603 plans tasks using the occupancy cost after parameter adjustment. For example, the task planning unit 603 plans the task allocation and route of the robot 103, the timing of elevator control, and the like. The task planning unit 603 creates an action plan for the robot 103 based on costs that satisfy the received target value and include an occupancy cost that represents a penalty for the robot 103 occupying shared equipment. The target value is a target value that includes robots 105 made by other companies that are not subject to the action plan (see Figure 12).
 ロボット制御部604は、タスク計画部603にて計画された計画に基づいて、通信部503_1を介してロボット103を制御する。エレベーター制御部605は、タスク計画部603にて計画された計画に基づいて、通信部503_2を介してエレベーター101のエレベーターコントローラ102を制御する。 The robot control unit 604 controls the robot 103 via the communication unit 503_1 based on the plan formulated by the task planning unit 603. The elevator control unit 605 controls the elevator controller 102 of the elevator 101 via the communication unit 503_2 based on the plan formulated by the task planning unit 603.
 評価スコア算出部602は、評価スコア用データ入力部504から入力されたデータに基づいて評価スコアを算出して、通信部を介して評価スコア表示部502に出力する。評価スコア表示部502はオペレータ用の端末等であり、評価スコア算出部602にて算出された現在の評価スコアを表示する。評価スコア表示部502は、例えば、図7に示した評価スコアモニター401である。 The evaluation score calculation unit 602 calculates an evaluation score based on the data input from the evaluation score data input unit 504, and outputs it to the evaluation score display unit 502 via the communication unit. The evaluation score display unit 502 is a terminal for an operator, etc., and displays the current evaluation score calculated by the evaluation score calculation unit 602. The evaluation score display unit 502 is, for example, the evaluation score monitor 401 shown in FIG. 7.
 図14は、実施の形態に係る中央サーバ100の評価スコア用データ入力部504に入力されるデータ入力ソースの一例を示す図である。図14において、図13と同一部分には同一符号を付して、その説明を省略する。 FIG. 14 is a diagram showing an example of a data input source input to the evaluation score data input unit 504 of the central server 100 according to an embodiment. In FIG. 14, the same parts as those in FIG. 13 are given the same reference numerals, and their description will be omitted.
 図14に示すように、評価スコア用データ入力部504には、生産システム/製造装置606、カメラ106や人感センサ-106、エレベーター101からデータが入力される。例えば、生産システム/製造装置606からは、製造数や検査数、アラーム対応回数、対応時間など、人104/他社製ロボット105のタスクに関する情報が入力される。例えば、カメラ106や人感センサ-106からは、エレベーター101を待機する人104/他社製ロボット105、エレベーター101内の人104/他社製ロボット105の滞在時間、数が入力される。例えば、エレベーター101からは、エレベーター101の稼働回数、扉の開閉数、扉の開閉時間が入力される。 As shown in FIG. 14, data is input to the evaluation score data input unit 504 from the production system/manufacturing equipment 606, the camera 106, the human presence sensor 106, and the elevator 101. For example, the production system/manufacturing equipment 606 inputs information related to the tasks of the people 104/other company's robot 105, such as the number of productions and inspections, the number of alarm responses, and the response time. For example, the camera 106 and the human presence sensor 106 inputs information related to the people 104/other company's robot 105 waiting for the elevator 101, and the number and duration of the people 104/other company's robot 105 inside the elevator 101. For example, the elevator 101 inputs information related to the number of times the elevator 101 is operated, the number of times the doors are opened and closed, and the time the doors are opened and closed.
  <7.1実施の形態に係る中央サーバ100と他社製ロボットシステム613との関係>
 図15は、実施の形態に係る中央サーバ100と他社製ロボットシステム613との関係を説明するための図である。
<7.1 Relationship between the central server 100 and the robot system 613 manufactured by another company according to the embodiment>
FIG. 15 is a diagram for explaining the relationship between the central server 100 according to the embodiment and a robot system 613 made by another company.
 例えば、工場のユースケースでは、工場の全てのタスクを管理する生産システム611があり、その下に各社のロボットシステムが紐づいている。図15においては、実施の形態を用いたロボットシステム612及び他社製のロボットシステム613が示されている。生産システム611のような全体を管轄するシステムから他社製のロボットシステム613のタスクの進捗状況などの情報が取得できれば、それを評価スコアに使用することができる。 For example, in a factory use case, there is a production system 611 that manages all tasks in the factory, and each company's robot system is linked to it. Figure 15 shows a robot system 612 that uses an embodiment and a robot system 613 made by another company. If information such as the progress of tasks in the robot system 613 made by another company can be obtained from a system that manages the entire system, such as the production system 611, this information can be used in the evaluation score.
 生産システム611は、実施の形態を用いたロボットシステム612に生産工程Aのタスク指示を行い、生産工程Aのタスク進捗状況、タスク効率を受信する。また、生産システム611は、他社製のロボットシステム613に生産工程Bのタスク指示を行い、生産工程Bのタスク進捗状況、タスク効率を受信する。実施の形態においては、生産システム611は、生産工程Bのタスク効率(評価スコア計算用)を実施の形態を用いたロボットシステム612に送信する。 The production system 611 issues task instructions for production process A to a robot system 612 using an embodiment, and receives the task progress status and task efficiency of production process A. The production system 611 also issues task instructions for production process B to a robot system 613 made by another company, and receives the task progress status and task efficiency of production process B. In the embodiment, the production system 611 transmits the task efficiency (for calculating an evaluation score) of production process B to the robot system 612 using an embodiment.
 工場でいう生産システムのような、全体を管轄するシステムは倉庫ユースケースなどでも存在する。全体を管轄するシステムが存在する場合は、それを経由して他社製ロボットシステム613が行うタスクの状況を中央サーバ100に入力し、評価スコアの算出に使用することができる。その結果、実施の形態を用いたロボットシステム612と他社製ロボットシステム613のタスク効率をパラメータ調整により最適なバランスにすることができる。 A system that oversees the entire system, such as a production system in a factory, also exists in warehouse use cases. When a system that oversees the entire system exists, the status of the tasks performed by the robot system 613 made by another company can be input to the central server 100 via the system and used to calculate the evaluation score. As a result, the task efficiency of the robot system 612 using the embodiment and the robot system 613 made by another company can be optimally balanced by adjusting the parameters.
 図16は、実施の形態に係る中央サーバ100と他社製ロボットシステム613との関係を説明するための図である。図16において、全体管理システム614には、他社製ロボットシステム613aが行うタスクの進捗状況、タスク効率が入力される。また、全体管理システム614には、他社製ロボットシステム613bが行うタスクの進捗状況、タスク効率が入力される。 FIG. 16 is a diagram for explaining the relationship between the central server 100 and a robot system 613 made by another company according to an embodiment. In FIG. 16, the progress and task efficiency of tasks performed by a robot system 613a made by another company are input to the overall management system 614. In addition, the progress and task efficiency of tasks performed by a robot system 613b made by another company are input to the overall management system 614.
 全体管理システム614は、例えば、工場の場合は生産システム、倉庫の場合は倉庫管理システムである。全体管理システム614は、他社製ロボットシステム613a及び他社製ロボットシステム613bのタスク効率を評価スコア用データ入力部504に入力する。評価スコア用データ入力部504は、タスク効率を評価スコア算出部602に送信する。タスク効率は、評価スコア算出部602において評価スコア用に使用される。 The overall management system 614 is, for example, a production system in the case of a factory, or a warehouse management system in the case of a warehouse. The overall management system 614 inputs the task efficiencies of the other company's robot system 613a and the other company's robot system 613b to the evaluation score data input unit 504. The evaluation score data input unit 504 transmits the task efficiencies to the evaluation score calculation unit 602. The task efficiencies are used for the evaluation score in the evaluation score calculation unit 602.
 <8.実施の形態に係る中央サーバ100の全体の動作を説明するためのフローチャート>
 図17は、実施の形態に係る中央サーバ100の動作を説明するためのフローチャートである。
8. Flowchart for explaining the overall operation of the central server 100 according to the embodiment
FIG. 17 is a flowchart for explaining the operation of the central server 100 according to the embodiment.
 図17に示すように、占有コスト無し、もしくはデフォルトパラメータでタスク実行を開始する(ステップS11)。ステップS11では、タスク入力、タスク計画、ロボット103/エレベーター101制御が行われる。 As shown in FIG. 17, task execution is started without occupancy cost or with default parameters (step S11). In step S11, task input, task planning, and robot 103/elevator 101 control are performed.
 次に、評価スコア用データ入力部504からデータを取得し、評価スコアを算出しながら、しばらくタスク実行を実行する(ステップS12)。ステップS11及びステップS12の状態では、人104とロボット103とのタスクのバランスがとれていない状態である。 Next, data is acquired from the evaluation score data input unit 504, and task execution is performed for a while while calculating the evaluation score (step S12). In the states of steps S11 and S12, the tasks of the person 104 and the robot 103 are not balanced.
 次に、評価スコアが目標値に達しているかの判断が行われる(ステップS13)。評価スコアが目標値に達している場合(ステップS13のYES)には、中央サーバ100の制御処理は終了する。評価スコアが目標値に達している場合(ステップS13のNO)には、評価スコアが目標値に近づくようにパラメータ調整部601で占有コストのパラメータを変更する(ステップS14)。 Next, it is determined whether the evaluation score has reached the target value (step S13). If the evaluation score has reached the target value (YES in step S13), the control process of the central server 100 ends. If the evaluation score has reached the target value (NO in step S13), the parameter adjustment unit 601 changes the occupancy cost parameters so that the evaluation score approaches the target value (step S14).
 パラメータ調整部601で占有コストのパラメータを変更した後、タスク計画部603に変更後のパラメータを適用する(ステップS15)。そして、評価スコア用データ入力部504からデータを取得し、評価スコアを算出しながら、しばらくタスクを実行する(ステップS16)。 After the occupancy cost parameters are changed in the parameter adjustment unit 601, the changed parameters are applied to the task planning unit 603 (step S15). Then, data is obtained from the evaluation score data input unit 504, and the task is executed for a while while calculating the evaluation score (step S16).
 ステップS14~ステップS16の状態で、人104とロボット103とのタスクのバランスが次第に最適化されていく。 In steps S14 to S16, the balance of tasks between the person 104 and the robot 103 is gradually optimized.
 なお、評価スコア目標値入力部500からの評価スコア目標値の入力は任意のタイミングで行うことができる。開始前に行うこともできる。終了後に行うと、再びステップS503の評価スコアが目標値に達しているかの判断処理からフローが開始する。 The evaluation score target value can be input from the evaluation score target value input unit 500 at any time. It can also be input before the start. If it is input after the end, the flow starts again from the process of determining whether the evaluation score has reached the target value in step S503.
 <9.実施の形態に係る中央サーバ100のタスク実行中の動作を説明するためのフローチャート>
 図18は、実施の形態に係る中央サーバ100のタスク実行処理の流れを説明するためのフローチャートである。図18では、新しいタスクは生産システム等から次々と投入されるため、ループで表現している。
9. Flowchart for explaining the operation of the central server 100 according to the embodiment during task execution
18 is a flowchart for explaining the flow of task execution processing by the central server 100 according to the embodiment. In FIG. 18, new tasks are input one after another from a production system or the like, and therefore the process is expressed as a loop.
 タスク入力部501から新しいタスクが入力される(ステップS21)。タスク計画部603は、入力された新しいタスクをロボット103に割り当てる(ステップS22)。そして、割り当てたロボット103の経路を計画する(ステップS23)。ここで、経路を計画する際には、上述のように占有コストが使用される。 A new task is input from the task input unit 501 (step S21). The task planning unit 603 assigns the input new task to the robot 103 (step S22). Then, a path for the assigned robot 103 is planned (step S23). Here, when planning the path, the occupancy cost is used as described above.
 ロボット制御部604は、計画された経路を元にロボット103に移動指示を出す(ステップS31)。エレベーター制御部605は、作成された計画に基づいて、適切なタイミングでエレベーター101を移動させる(ステップS32)。ロボット制御部604は、ロボット103が目的地に到達したらロボット103の作業を開始する(ステップS33)。作業としては、例えば、物品の積み下ろし等である。なお、ステップS31~S33の処理は、非同期で実行されても良い。 The robot control unit 604 issues a movement command to the robot 103 based on the planned route (step S31). The elevator control unit 605 moves the elevator 101 at an appropriate time based on the created plan (step S32). The robot control unit 604 starts the robot 103's work when the robot 103 reaches the destination (step S33). The work may be, for example, loading and unloading of goods. Note that the processing of steps S31 to S33 may be executed asynchronously.
 <10.設定及びUI>
 次に、実施の形態に係る中央サーバ100の設定及びUIについて説明する。
10. Settings and UI
Next, the settings and UI of the central server 100 according to the embodiment will be described.
 実施の形態の中央サーバ100には、占有コストに関するパラメータ設定を行う。パラメータ設定によりパラメータを変えると、ロボット103による占有時間や人104の待ち時間が変わる。目標とする人の平均待ち時間を与えると、パラメータが調節され、人の待ち時間が変わる。目標とするタスク効率を与えると、パラメータが調節され、ロボット103のタスク効率が変わる。 In the embodiment, the central server 100 sets parameters related to occupancy costs. Changing the parameters through parameter setting changes the occupancy time of the robot 103 and the waiting time of the person 104. When a target average waiting time of people is given, the parameters are adjusted and the waiting time of the person changes. When a target task efficiency is given, the parameters are adjusted and the task efficiency of the robot 103 changes.
 実施の形態では、占有コストに関するパラメータを調整するUI、目標とする人の平均待ち時間を設定するUI、目標とするロボットのタスク効率を設定するUI、パラメータ調整中の状況を表示するUIがある。 In the embodiment, there is a UI for adjusting parameters related to occupancy cost, a UI for setting the target average waiting time of people, a UI for setting the target task efficiency of the robot, and a UI for displaying the status during parameter adjustment.
 パラメータ調整中の状況を表示するUIとしては、パラメータの値自身、人の平均待ち時間の変化、ロボット103のタスク効率の変化、ロボット103が共有設備を占有している時間の変化等がある。 The UI that displays the status during parameter adjustment includes the parameter value itself, changes in the average waiting time of people, changes in the task efficiency of the robot 103, changes in the time that the robot 103 occupies shared equipment, etc.
 <11.ユースケース>
 次に、実施の形態に係るシステムのユースケースについて例示する。
<11. Use Cases>
Next, a use case of the system according to the embodiment will be illustrated.
・ユースケース1
 実施の形態に係るシステムは、工場や倉庫の階間搬送において使用できる。工場や倉庫の階間搬送では、ロボット103がエレベーター101を使って別の階にロボットで物品を搬送する。ロボット103も人104も同じエレベーター101を使って階間を移動する。
Use case 1
The system according to the embodiment can be used for inter-floor transportation in a factory or warehouse. In inter-floor transportation in a factory or warehouse, a robot 103 transports an object to another floor by using an elevator 101. Both the robot 103 and a person 104 use the same elevator 101 to move between floors.
 エレベーター101を共用設備として、占有コストを使い、ロボット103のためにどれだけエレベーターを待たせるかを最適化する。エレベーター101以外にも、ロボット103を1台しか通れないような狭い通路や、人104を使う装置でもエレベーター101と同じような制御ができる。 The elevator 101 is treated as a shared facility, and the occupancy cost is used to optimize how long the elevator should wait for the robot 103. In addition to the elevator 101, control similar to that of the elevator 101 can be performed for narrow passages where only one robot 103 can pass, or for equipment that uses people 104.
・ユースケース2
 実施の形態に係るシステムは、空港や商業ビルの案内ロボットとして使用できる。ロボット103が案内ロボットとして使用される場合、ロボット103が人104の道案内をする。ロボット103に案内された人104はロボット103と一緒にエレベーター101に乗り込む。案内されていない利用者も同時にエレベーター101を使うことがある。
Use case 2
The system according to the embodiment can be used as a guide robot in an airport or a commercial building. When the robot 103 is used as a guide robot, the robot 103 guides a person 104. The person 104 guided by the robot 103 gets into the elevator 101 together with the robot 103. A user who has not been guided may also use the elevator 101 at the same time.
 エレベーター101が共用設備として使用される。ロボット103の計画は、占有コストを使い、案内ロボットのためにどれだけエレベーター101を待たせるかを最適化する。エスカレーターや狭い通路でもエレベーター101と同じような制御ができる。 Elevator 101 is used as a shared facility. Robot 103's plan uses occupancy cost to optimize how long elevator 101 should wait for the guide robot. Escalators and narrow passageways can be controlled in the same way as elevator 101.
・ユースケース3
 実施の形態に係るシステムは、無人タクシーの駐車や充電に使用できる。
無人タクシーが遠隔操作される無人タクシーの場合、駐車場や充電スペースを長く占有しすぎると人104が使えなくなる。
Use case 3
The system according to the embodiment can be used for parking and charging unmanned taxis.
In the case of an unmanned taxi that is remotely controlled, if the unmanned taxi occupies a parking lot or charging space for too long, the person 104 will be unable to use the parking lot or charging space.
 このような場合、実施の形態に係るシステムは、占有コストを使って、自動運転車が長く占有しすぎないような最適な計画をする。 In such cases, the system according to the embodiment uses occupancy costs to make optimal plans to prevent the autonomous vehicle from occupying the space for too long.
 <12.効果>
 従って、実施の形態に係る中央サーバ100は、人104とロボット103が共同で使う設備があるときに、両者の作業効率を効率化することができ、全体として最適な計画をロボット103に適用できる。
<12. Effects>
Therefore, when there is equipment that is used jointly by a person 104 and a robot 103, the central server 100 according to the embodiment can improve the work efficiency of both parties and can apply an optimal plan overall to the robot 103.
 どのような計画が最適なのかは環境や状況によって異なるが、実施の形態の手法ではパラメータ調整によって、人104の待ち時間とロボット103の作業効率のバランスを調整できるため、利用者が求める最適なバランスを実現することができる。 While the optimal plan differs depending on the environment and circumstances, the method of the embodiment allows for parameter adjustments to adjust the balance between the waiting time of the person 104 and the work efficiency of the robot 103, thereby achieving the optimal balance desired by the user.
 また、中央サーバ100は、ロボット103の占有時間と人104の待ち時間を調節できる。単に「指定した時間以上占有しないようにする」や「人104(もしくはロボット103)を常に優先する」制御よりも最適な制御ができる。実施の形態の中央サーバ100は、占有時間を少し伸ばすだけでロボット103のタスク効率を大幅に上げられるケースを救うことができる。なお、占有コストの表現次第ではロボット103が「指定した時間以上占有しないようにする」だけにすることもできる。 The central server 100 can also adjust the occupancy time of the robot 103 and the waiting time of the person 104. This allows for more optimal control than simply "preventing occupancy for longer than a specified time" or "always giving priority to the person 104 (or robot 103)." The central server 100 of the embodiment can save cases where the task efficiency of the robot 103 can be significantly improved by simply extending the occupancy time a little. Depending on how the occupancy cost is expressed, it is also possible to simply "prevent occupancy for longer than a specified time" for the robot 103.
 また、実施の形態によれば、運用時に動的にバランスを調整できる。例えば、一時的に混雑する場合やロボット103の作業を優先したい場合にオペレータがパラメータを調整できる。 Furthermore, according to the embodiment, the balance can be dynamically adjusted during operation. For example, an operator can adjust parameters when there is temporary congestion or when prioritizing the work of the robot 103.
 図19は、実施の形態に係る占有コストのパラメータ調整前後の人104の待ち時間の前後の比較を示す図である。図19において、同図に示すように、パラメータ調整前の部分701_1はドットで示した部分を示し、パラメータ調整後の部分701_2は斜線で示した部分を示す。図19に示すように、パラメータ調整後の待ち時間701_1は、最初の1分はパラメータ調整前の部分701_2よりも長いが、時間とともにパラメータ調整後の待ち時間701_1は、パラメータ調整前の部分701_2よりも短くなることが示されている。 FIG. 19 is a diagram showing a comparison of the waiting time of person 104 before and after parameter adjustment of occupancy cost in the embodiment. As shown in FIG. 19, the portion before parameter adjustment 701_1 is shown by dots, and the portion after parameter adjustment 701_2 is shown by diagonal lines. As shown in FIG. 19, the waiting time after parameter adjustment 701_1 is longer than the portion before parameter adjustment 701_2 in the first minute, but over time the waiting time after parameter adjustment 701_1 becomes shorter than the portion before parameter adjustment 701_2.
 また、実施の形態によれば、占有コストのパラメータの調整を動的にできる。どのようにパラメータを調整すれば良いかは環境や状況によって様々に変わるため、運用時に動的に調節できるとより最適な制御を実現できる。 Furthermore, according to the embodiment, the occupancy cost parameters can be dynamically adjusted. How the parameters should be adjusted varies depending on the environment and situation, so more optimal control can be achieved if they can be dynamically adjusted during operation.
 実施の形態によれば、ロボット103の行動を計画する際のコストに「占有コスト」を加えることで、ロボット103が設備を占有することに対するペナルティを考慮した計画をできるようにする。占有コストのパラメータを調節することで、人が設備を使う際の待ち時間とロボットのタスク効率のバランスを調整することができる。 According to the embodiment, by adding an "occupancy cost" to the cost when planning the behavior of the robot 103, it becomes possible to make a plan that takes into account the penalty for the robot 103 occupying equipment. By adjusting the parameters of the occupancy cost, it is possible to adjust the balance between the waiting time when a person uses equipment and the task efficiency of the robot.
 実施の形態によれば、占有コストを計画に組み込むことで、従来技術のように、単にロボット103又は人104のどちらかを優先するのではなく、ロボット103と人104とを含めた全体の効率を意識した制御ができる。例えば、ロボット103のタスク効率が大きく上がるのであれば、人104は少し長く待たせる。そうでなければ人の待ち時間を短くするようにロボット103を動かす等である。 According to the embodiment, by incorporating occupancy costs into the plan, control can be performed with consideration of the overall efficiency including the robot 103 and the person 104, rather than simply prioritizing either the robot 103 or the person 104 as in conventional technology. For example, if the task efficiency of the robot 103 is greatly improved, the person 104 is made to wait a little longer. If not, the robot 103 is moved so as to shorten the waiting time of the person.
 <13.ハードウェア構成>
 図20は、実施の形態に係る中央サーバ100の一例を示すハードウェア構成図である。
 上述してきた各実施形態に係る情報処理装置100の演算装置102を実現するコンピュータは、例えば図20に示すような構成のコンピュータ1000によって実現される。図20は、演算装置102の機能を実現するコンピュータ1000の一例を示すハードウェア構成図である。コンピュータ1000は、CPU1100、RAM1200、ROM(Read Only Memory)1300、HDD(Hard Disk Drive)1400、通信インターフェイス1500、及び入出力インターフェイス1600を有する。コンピュータ1000の各部は、バス1050によって接続される。
13. Hardware Configuration
FIG. 20 is a hardware configuration diagram showing an example of the central server 100 according to the embodiment.
A computer that realizes the arithmetic device 102 of the information processing device 100 according to each of the above-described embodiments is realized by a computer 1000 having a configuration as shown in Fig. 20, for example. Fig. 20 is a hardware configuration diagram showing an example of the computer 1000 that realizes the functions of the arithmetic device 102. The computer 1000 has a CPU 1100, a RAM 1200, a ROM (Read Only Memory) 1300, a HDD (Hard Disk Drive) 1400, a communication interface 1500, and an input/output interface 1600. Each unit of the computer 1000 is connected by a bus 1050.
 CPU1100は、ROM1300又はHDD1400に格納されたプログラムに基づいて動作し、各部の制御を行う。例えば、CPU1100は、ROM1300又はHDD1400に格納されたプログラムをRAM1200に展開し、各種プログラムに対応した処理を実行する。 The CPU 1100 operates based on the programs stored in the ROM 1300 or the HDD 1400 and controls each part. For example, the CPU 1100 loads the programs stored in the ROM 1300 or the HDD 1400 into the RAM 1200 and executes processes corresponding to the various programs.
 ROM1300は、コンピュータ1000の起動時にCPU1100によって実行されるBIOS(Basic Input Output System)等のブートプログラムや、コンピュータ1000のハードウェアに依存するプログラム等を格納する。 The ROM 1300 stores boot programs such as the BIOS (Basic Input Output System) that is executed by the CPU 1100 when the computer 1000 starts up, as well as programs that depend on the hardware of the computer 1000.
 HDD1400は、CPU1100によって実行されるプログラム、及び、かかるプログラムによって使用されるデータ等を非一時的に記録する、コンピュータが読み取り可能な記録媒体である。具体的には、HDD1400は、プログラムデータ1450の一例である本開示に係るアプリケーションプログラムを記録する記録媒体である。 HDD 1400 is a computer-readable recording medium that non-temporarily records programs executed by CPU 1100 and data used by such programs. Specifically, HDD 1400 is a recording medium that records application programs related to the present disclosure, which are an example of program data 1450.
 通信インターフェイス1500は、コンピュータ1000が外部ネットワーク1550(例えばインターネット)と接続するためのインターフェイスである。例えば、CPU1100は、通信インターフェイス1500を介して、他の機器からデータを受信したり、CPU1100が生成したデータを他の機器へ送信したりする。 The communication interface 1500 is an interface for connecting the computer 1000 to an external network 1550 (e.g., the Internet). For example, the CPU 1100 receives data from other devices and transmits data generated by the CPU 1100 to other devices via the communication interface 1500.
 入出力インターフェイス1600は、入出力デバイス1650とコンピュータ1000とを接続するためのインターフェイスである。例えば、CPU1100は、入出力インターフェイス1600を介して、キーボードやマウス等の入力デバイスからデータを受信する。また、CPU1100は、入出力インターフェイス1600を介して、ディスプレイやスピーカーやプリンタ等の出力デバイスにデータを送信する。また、入出力インターフェイス1600は、所定の記録媒体(メディア)に記録されたプログラム等を読み取るメディアインターフェイスとして機能してもよい。メディアとは、例えばDVD(Digital Versatile Disc)、PD(Phase change rewritable Disk)等の光学記録媒体、MO(Magneto-Optical disk)等の光磁気記録媒体、テープ媒体、磁気記録媒体、又は半導体メモリ等である。 The input/output interface 1600 is an interface for connecting the input/output device 1650 and the computer 1000. For example, the CPU 1100 receives data from an input device such as a keyboard or a mouse via the input/output interface 1600. The CPU 1100 also transmits data to an output device such as a display, a speaker, or a printer via the input/output interface 1600. The input/output interface 1600 may also function as a media interface that reads programs and the like recorded on a specific recording medium. Examples of media include optical recording media such as DVDs (Digital Versatile Discs) and PDs (Phase change rewritable Discs), magneto-optical recording media such as MOs (Magneto-Optical Disks), tape media, magnetic recording media, and semiconductor memories.
 例えば、コンピュータ1000が第1の実施形態に係る演算装置102として機能する場合、コンピュータ1000のCPU1100は、RAM1200上にロードされた画像処理プログラムを実行することにより、再発行依頼部43等の機能を実現する。また、HDD1400には、本開示に係るSE管理処理プログラムや、コンテンツ記憶部121内のデータが格納される。なお、CPU1100は、プログラムデータ1450をHDD1400から読み取って実行するが、他の例として、外部ネットワーク1550を介して、他の装置からこれらのプログラムを取得してもよい。 For example, when the computer 1000 functions as the arithmetic device 102 according to the first embodiment, the CPU 1100 of the computer 1000 executes an image processing program loaded onto the RAM 1200 to realize functions such as the reissue request unit 43. The HDD 1400 also stores the SE management processing program according to the present disclosure and data in the content storage unit 121. The CPU 1100 reads and executes the program data 1450 from the HDD 1400, but as another example, it may also obtain these programs from other devices via the external network 1550.
 以上、添付図面を参照しながら本開示の好適な実施の形態について詳細に説明したが、本開示の技術的範囲はかかる例に限定されない。本開示の技術分野における通常の知識を有する者であれば、請求の範囲に記載された技術的思想の範疇内において、各種の変更例又は修正例に想到し得ることは明らかであり、これらについても、当然に本開示の技術的範囲に属するものと了解される。 The above describes in detail preferred embodiments of the present disclosure with reference to the attached drawings, but the technical scope of the present disclosure is not limited to such examples. It is clear that a person with ordinary knowledge in the technical field of the present disclosure can conceive of various modified or revised examples within the scope of the technical ideas described in the claims, and it is understood that these also naturally fall within the technical scope of the present disclosure.
 また、本明細書に記載された効果は、あくまで説明的又は例示的なものであって限定的ではない。つまり、本開示に係る技術は、上記の効果とともに、又は上記の効果に代えて、本明細書の記載から当業者には明らかな他の効果を奏しうる。 Furthermore, the effects described in this specification are merely descriptive or exemplary and are not limiting. In other words, the technology disclosed herein may achieve other effects that are apparent to a person skilled in the art from the description in this specification, in addition to or in place of the above effects.
 なお、本技術は以下のような構成も取ることができる。 This technology can also be configured as follows:
(1)
 ロボットと人とが共有する共有設備における前記ロボット及び前記人に対する目標値を受信し、
 前記受信した目標値を満たし、前記共有設備を前記ロボットが占有する占有コストを含むコストに基づいて前記ロボットの行動計画を作成する、
情報処理方法。
(2)
 前記目標値は、前記人の平均待ち時間、前記人の最大待ち時間、前記ロボットのタスク効率、前記ロボットによる前記共有設備の平均占有時間の少なくとも1つを含む
(1)に記載の情報処理方法。
(3)
 前記受信した目標値に対する評価スコアを表示すること
を具備する(1)又は(2)に記載の情報処理方法。
(4)
 前記ロボットの行動計画を作成することは、
 前記占有コストを算出することを含み、
 前記占有コストは、前記ロボットが前記共有設備を占有する時間の関数で表される、
(1)~(3)のいずれか1つに記載の情報処理方法。
(5)
 前記ロボットは複数であり、
 前記コストは、前記複数のロボットがゴールに到達までの時間を表す通常コストを含む、
(1)~(4)のいずれか1つに記載の情報処理方法。
(6)
 前記行動計画は、前記コストが最小になるように作成される、
(5)に記載の情報処理方法。
(7)
 前記通常コストをf(t)、
 前記占有コストをg(t)、
 前記コストは、f(t)+α×g(t)で表され、
 αは、通常コストをf(t)と占有コストをg(t)との比重を示すパラメータである、
(5)又は(6)に記載の情報処理方法。
(8)
 前記関数は、前記ロボットが前記共有設備を占有する時間の線形関数、指数関数、ステップ関数、又は前記線形関数、前記指数関数、前記ステップ関数のいずれかの組み合わせである、
(4)に記載の情報処理方法。
(9)
 前記ロボットの行動計画を作成することは、
 前記目標値に到達しない場合に、前記α及び前記g(t)のパラメータを、再度調整することを含む
(7)に記載の情報処理方法。
(10)
 前記パラメータは、前記目標値に達するまで調整される、
(9)に記載の情報処理方法。
(11)
 前記パラメータは、時間帯によって調整される、
(9)に記載の情報処理方法。
(12)
 前記パラメータは、外部から得られたデータを元に調整される、
(9)に記載の情報処理方法。
(13)
 前記パラメータは、外部からの操作で調整される、
(9)に記載の情報処理方法。
(14)
 前記複数のロボットのタスクには優先度が設定され、
 前記コストは、前記優先度に基づいて決定される、
(5)に記載の情報処理方法。
(15)
 前記複数のロボットのうちの第1ロボットの第1タスクに設定された第1優先度は、前記複数のロボットのうちの第2ロボットの第2タスクに設定された第2優先度よりも高く、
 前記第1タスクの前記通常コストは、前記第2タスクの前記通常コストよりも高い、
(14)に記載の情報処理方法。
(16)
 前記第1タスクの占有コストは、前記第2タスクの前記占有コストよりも低い、
(15)に記載の情報処理方法。
(17)
 前記人は、複数であり、
 人毎に前記優先度が設定され、
 前記人の評価スコアは、前記人に設定された優先度に基づいて算出される、
(16)に記載の情報処理方法。
(18)
 前記複数の人のうちの第1の人の第3タスクに設定された第3優先度は、前記複数の人のうちの第2の人の第4タスクに設定された第4優先度よりも高く、
 前記第1の人の評価スコアは、前記第2の人の前記評価スコアよりも高い、
(17)に記載の情報処理方法。
(19)
 ロボットと人とが共有する共有設備における前記ロボット及び前記人に対する目標値を受信する受信部と、
 前記受信した目標値を満たし、前記共有設備を前記ロボットが占有する占有コストを含むコストに基づいて前記ロボットの行動計画を作成する計画部と
を具備する
情報処理装置。
(20)
 情報処理装置に、
 ロボットと人とが共有する共有設備における前記ロボット及び前記人に対する目標値を受信させ、
 前記受信した目標値を満たし、前記共有設備を前記ロボットが占有する占有コストを含むコストに基づいて前記ロボットの行動計画を作成させる、
プログラム。
(1)
receiving target values for the robot and the person in a shared facility shared by the robot and the person;
creating an action plan for the robot based on costs that satisfy the received target values and include an occupancy cost of the robot occupying the shared facility;
Information processing methods.
(2)
The information processing method according to (1), wherein the target value includes at least one of an average waiting time of the person, a maximum waiting time of the person, a task efficiency of the robot, and an average occupancy time of the shared equipment by the robot.
(3)
The information processing method according to (1) or (2), further comprising displaying an evaluation score for the received target value.
(4)
Creating an action plan for the robot includes:
calculating said occupancy cost;
The occupancy cost is expressed as a function of the time that the robot occupies the shared equipment.
An information processing method according to any one of (1) to (3).
(5)
The robot is a plurality of robots,
The costs include a normal cost representing a time required for the plurality of robots to reach a goal.
An information processing method according to any one of (1) to (4).
(6)
The action plan is generated to minimize the cost.
An information processing method according to (5).
(7)
The normal cost is f(t),
The occupancy cost is g(t),
The cost is expressed as f(t) + α × g(t),
α is a parameter indicating the ratio between the normal cost f(t) and the occupancy cost g(t),
An information processing method according to (5) or (6).
(8)
The function is a linear function, an exponential function, a step function, or a combination of the linear function, the exponential function, and the step function of the time that the robot occupies the shared equipment.
An information processing method according to (4).
(9)
Creating an action plan for the robot includes:
The information processing method according to (7), further comprising re-adjusting the parameters α and g(t) if the target value is not reached.
(10)
The parameter is adjusted until the target value is reached.
An information processing method according to (9).
(11)
The parameters are adjusted according to the time of day.
An information processing method according to (9).
(12)
The parameters are adjusted based on data obtained from an external source.
An information processing method according to (9).
(13)
The parameters are adjusted by external manipulation.
An information processing method according to (9).
(14)
Priorities are set for the tasks of the plurality of robots;
The cost is determined based on the priority.
An information processing method according to (5).
(15)
a first priority set for a first task of a first robot among the plurality of robots is higher than a second priority set for a second task of a second robot among the plurality of robots;
The normal cost of the first task is higher than the normal cost of the second task.
An information processing method according to (14).
(16)
an occupancy cost of the first task is lower than the occupancy cost of the second task;
An information processing method according to (15).
(17)
The person is a plurality of people,
The priority is set for each person,
The evaluation score of the person is calculated based on the priority set for the person.
An information processing method according to (16).
(18)
a third priority set for a third task of a first person of the plurality of people is higher than a fourth priority set for a fourth task of a second person of the plurality of people;
The evaluation score of the first person is higher than the evaluation score of the second person.
An information processing method according to (17).
(19)
a receiving unit that receives target values for the robot and the person in a shared facility shared by the robot and the person;
and a planning unit that creates a behavior plan for the robot based on costs including an occupancy cost of the robot occupying the shared facility while satisfying the received target value.
(20)
In the information processing device,
receiving target values for the robot and the person in a shared facility shared by the robot and the person;
creating an action plan for the robot based on costs including an occupancy cost of the robot occupying the shared facility while satisfying the received target value;
program.
 100 中央サーバ
 101 エレベーター
 102 エレベーターコントローラ
 103 ロボット
 104 人
 105 他社製ロボット
 106 カメラ
 200 経路
 301 入力データ
 401 評価スコアモニター
 402 人感センサ-
 403 装置
 500 評価スコア目標値入力部
 501 タスク入力部
 502 評価スコア表示部
 503_1、503_2 通信部
 504 評価スコア用データ入力部
 601 パラメータ調整部
 602 評価スコア算出部
 603 タスク計画部
 604 ロボット制御部
 605 エレベーター制御部
 606 生産システム/製造装置
 611 生産システム
 612 実施の形態を用いたロボットシステム
 613 他社製ロボットシステム
 614 全体管理システム
 701_1、701_2 待ち時間
100 Central server 101 Elevator 102 Elevator controller 103 Robot 104 Person 105 Robot made by another company 106 Camera 200 Route 301 Input data 401 Evaluation score monitor 402 Human presence sensor
403 Apparatus 500 Evaluation score target value input unit 501 Task input unit 502 Evaluation score display unit 503_1, 503_2 Communication unit 504 Evaluation score data input unit 601 Parameter adjustment unit 602 Evaluation score calculation unit 603 Task planning unit 604 Robot control unit 605 Elevator control unit 606 Production system/manufacturing apparatus 611 Production system 612 Robot system using the embodiment 613 Robot system made by another company 614 Overall management system 701_1, 701_2 Waiting time

Claims (20)

  1.  ロボットと人とが共有する共有設備における前記ロボット及び前記人に対する目標値を受信し、
     前記受信した目標値を満たし、前記共有設備を前記ロボットが占有する占有コストを含むコストに基づいて前記ロボットの行動計画を作成する、
    情報処理方法。
    receiving target values for the robot and the person in a shared facility shared by the robot and the person;
    creating an action plan for the robot based on costs that satisfy the received target values and include an occupancy cost of the robot occupying the shared facility;
    Information processing methods.
  2.  前記目標値は、前記人の平均待ち時間、前記人の最大待ち時間、前記ロボットのタスク効率、前記ロボットによる前記共有設備の平均占有時間の少なくとも1つを含む、
    請求項1に記載の情報処理方法。
    The target value includes at least one of an average waiting time of the person, a maximum waiting time of the person, a task efficiency of the robot, and an average occupancy time of the shared equipment by the robot.
    The information processing method according to claim 1 .
  3.  前記受信した目標値に対する評価スコアを表示すること
    を具備する請求項1に記載の情報処理方法。
    The information processing method according to claim 1 , further comprising displaying an evaluation score for the received target value.
  4.  前記ロボットの行動計画を作成することは、
     前記占有コストを算出することを含み、
     前記占有コストは、前記ロボットが前記共有設備を占有する時間の関数で表される、
    請求項1に記載の情報処理方法。
    Creating an action plan for the robot includes:
    calculating said occupancy cost;
    The occupancy cost is expressed as a function of the time that the robot occupies the shared equipment.
    The information processing method according to claim 1 .
  5.  前記ロボットは複数であり、
     前記コストは、前記複数の前記ロボットがゴールに到達までの時間を表す通常コストを含む、
    請求項1に記載の情報処理方法。
    The robot is a plurality of robots,
    The costs include a normal cost representing a time required for the plurality of robots to reach a goal.
    The information processing method according to claim 1 .
  6.  前記行動計画は、前記コストが最小になるように作成される、
    請求項5に記載の情報処理方法。
    The action plan is generated to minimize the cost.
    The information processing method according to claim 5.
  7.  前記通常コストをf(t)、
     前記占有コストをg(t)、
     前記コストは、f(t)+α×g(t)で表され、
     αは、通常コストをf(t)と占有コストをg(t)との比重を示すパラメータである、
    請求項5に記載の情報処理方法。
    The normal cost is f(t),
    The occupancy cost is g(t),
    The cost is expressed as f(t) + α × g(t),
    α is a parameter indicating the ratio between the normal cost f(t) and the occupancy cost g(t),
    The information processing method according to claim 5.
  8.  前記関数は、前記ロボットが前記共有設備を占有する時間の線形関数、指数関数、ステップ関数、又は前記線形関数、前記指数関数、前記ステップ関数のいずれかの組み合わせである、
    請求項4に記載の情報処理方法。
    The function is a linear function, an exponential function, a step function, or a combination of the linear function, the exponential function, and the step function of the time that the robot occupies the shared equipment.
    The information processing method according to claim 4.
  9.  前記ロボットの行動計画を作成することは、
     前記目標値に到達しない場合に、前記α及び前記g(t)のパラメータを、再度調整することを含む、
    請求項7に記載の情報処理方法。
    Creating an action plan for the robot includes:
    and if the target value is not reached, re-adjusting the α and g(t) parameters.
    The information processing method according to claim 7.
  10.  前記パラメータは、前記目標値に達するまで調整される、
    請求項9に記載の情報処理方法。
    The parameter is adjusted until the target value is reached.
    The information processing method according to claim 9.
  11.  前記パラメータは、時間帯によって調整される、
    請求項9に記載の情報処理方法。
    The parameters are adjusted according to the time of day.
    The information processing method according to claim 9.
  12.  前記パラメータは、外部から得られたデータを元に調整される、
    請求項9に記載の情報処理方法。
    The parameters are adjusted based on externally obtained data.
    The information processing method according to claim 9.
  13.  前記パラメータは、外部からの操作で調整される、
    請求項9に記載の情報処理方法。
    The parameters are adjusted by external manipulation.
    The information processing method according to claim 9.
  14.  前記複数の前記ロボットのタスクには優先度が設定され、
     前記コストは、前記優先度に基づいて決定される、
    請求項5に記載の情報処理方法。
    Priorities are set for the tasks of the plurality of robots;
    The cost is determined based on the priority.
    The information processing method according to claim 5.
  15.  前記複数の前記ロボットのうちの第1ロボットの第1タスクに設定された第1優先度は、前記複数の前記ロボットのうちの第2ロボットの第2タスクに設定された第2優先度よりも高く、
     前記第1タスクの前記通常コストは、前記第2タスクの前記通常コストよりも高い、
    請求項14に記載の情報処理方法。
    a first priority set for a first task of a first robot among the plurality of robots is higher than a second priority set for a second task of a second robot among the plurality of robots;
    The normal cost of the first task is higher than the normal cost of the second task.
    The information processing method according to claim 14.
  16.  前記第1タスクの占有コストは、前記第2タスクの前記占有コストよりも低い、
    請求項15に記載の情報処理方法。
    an occupancy cost of the first task is lower than the occupancy cost of the second task;
    The information processing method according to claim 15.
  17.  前記人は、複数であり、
     人毎に前記優先度が設定され、
     前記人の評価スコアは、前記人に設定された優先度に基づいて算出される、
    請求項16に記載の情報処理方法。
    The person is a plurality of people,
    The priority is set for each person,
    The evaluation score of the person is calculated based on the priority set for the person.
    The information processing method according to claim 16.
  18.  前記複数の前記人のうちの第1の人の第3タスクに設定された第3優先度は、前記複数の前記人のうちの第2の人の第4タスクに設定された第4優先度よりも高く、
     前記第1の人の評価スコアは、前記第2の人の前記評価スコアよりも高い、
    請求項17に記載の情報処理方法。
    a third priority set for a third task of a first person of the plurality of people is higher than a fourth priority set for a fourth task of a second person of the plurality of people;
    The evaluation score of the first person is higher than the evaluation score of the second person.
    18. The information processing method according to claim 17.
  19.  ロボットと人とが共有する共有設備における前記ロボット及び前記人に対する目標値を受信する受信部と、
     前記受信した目標値を満たし、前記共有設備を前記ロボットが占有する占有コストを含むコストに基づいて前記ロボットの行動計画を作成する計画部と
    を具備する、
    情報処理装置。
    a receiving unit that receives target values for the robot and the person in a shared facility shared by the robot and the person;
    a planning unit that creates a behavior plan for the robot based on costs including an occupancy cost of the robot occupying the shared facility while satisfying the received target value.
    Information processing device.
  20.  情報処理装置に、
     ロボットと人とが共有する共有設備における前記ロボット及び前記人に対する目標値を受信させ、
     前記受信した目標値を満たし、前記共有設備を前記ロボットが占有する占有コストを含むコストに基づいて前記ロボットの行動計画を作成させる、
    プログラム。
    In the information processing device,
    receiving target values for the robot and the person in a shared facility shared by the robot and the person;
    creating a behavior plan for the robot based on costs including an occupancy cost of the robot occupying the shared facility while satisfying the received target value;
    program.
PCT/JP2024/002397 2023-02-06 2024-01-26 Information processing method, information processing device, and program WO2024166711A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2023-016448 2023-02-06
JP2023016448 2023-02-06

Publications (1)

Publication Number Publication Date
WO2024166711A1 true WO2024166711A1 (en) 2024-08-15

Family

ID=92262396

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2024/002397 WO2024166711A1 (en) 2023-02-06 2024-01-26 Information processing method, information processing device, and program

Country Status (1)

Country Link
WO (1) WO2024166711A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018066057A1 (en) * 2016-10-04 2018-04-12 三菱電機株式会社 Elevator control device and autonomous moving body control device
WO2018211650A1 (en) * 2017-05-18 2018-11-22 三菱電機株式会社 Operation planning device for autonomous mobile body
JP2022169161A (en) * 2021-04-27 2022-11-09 三菱電機株式会社 Support system for robot operation plan decision

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018066057A1 (en) * 2016-10-04 2018-04-12 三菱電機株式会社 Elevator control device and autonomous moving body control device
WO2018211650A1 (en) * 2017-05-18 2018-11-22 三菱電機株式会社 Operation planning device for autonomous mobile body
JP2022169161A (en) * 2021-04-27 2022-11-09 三菱電機株式会社 Support system for robot operation plan decision

Similar Documents

Publication Publication Date Title
US9481548B2 (en) Sensor-based elevator system and method using the same
CN109132742B (en) Elevator user guidance system
JP2022037223A (en) Method for controlling route of robot, server and memory medium
JPH01226678A (en) Elevator controller
JPH0318566A (en) Group management controller for elevator
JP2020200131A (en) Elevator operation control system, elevator system, and elevator operation control method
JPH02117572A (en) Elevator controller
JPS5939669A (en) Traffic information gathering device for elevator
JP2019210082A (en) Elevator display system and program
WO2024166711A1 (en) Information processing method, information processing device, and program
Markon et al. Control of traffic systems in buildings
US10118796B2 (en) System and method for group elevator scheduling based on submodular optimization
JP3498632B2 (en) Elevator management device
CN113848937A (en) Robot obstacle avoidance control method and related equipment
JP7083786B2 (en) In-car condition detection system, elevator and in-car condition detection method
JP4710229B2 (en) Elevator system and group management control device thereof
JP2574855B2 (en) Elevator group management control device
JPH08217341A (en) Group supervisory operation control device for elevator
JP7359340B1 (en) Elevator system and elevator car assignment method
JP2574876B2 (en) Elevator group control device
JP2570208B2 (en) Elevator group management controller
KR20240035012A (en) Elevator operating system for humans and robots
Sorsa et al. The elevator dispatching problem
WO2024209871A1 (en) Conveyance task management system and conveyance task management method
JPH01192682A (en) Group management control device for elevator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 24753155

Country of ref document: EP

Kind code of ref document: A1