WO2024166076A1 - Production recombinée de peptides antimicrobiens in planta - Google Patents
Production recombinée de peptides antimicrobiens in planta Download PDFInfo
- Publication number
- WO2024166076A1 WO2024166076A1 PCT/IB2024/051292 IB2024051292W WO2024166076A1 WO 2024166076 A1 WO2024166076 A1 WO 2024166076A1 IB 2024051292 W IB2024051292 W IB 2024051292W WO 2024166076 A1 WO2024166076 A1 WO 2024166076A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- plant
- amps
- seq
- pam
- doi
- Prior art date
Links
- 108700042778 Antimicrobial Peptides Proteins 0.000 title claims description 121
- 102000044503 Antimicrobial Peptides Human genes 0.000 title claims description 121
- 238000004519 manufacturing process Methods 0.000 title abstract description 55
- 238000000034 method Methods 0.000 claims abstract description 74
- 230000014509 gene expression Effects 0.000 claims abstract description 58
- 230000009261 transgenic effect Effects 0.000 claims abstract description 41
- 238000000746 purification Methods 0.000 claims abstract description 34
- 102000004190 Enzymes Human genes 0.000 claims abstract description 20
- 108090000790 Enzymes Proteins 0.000 claims abstract description 20
- 108010043401 Small Ubiquitin-Related Modifier Proteins Proteins 0.000 claims abstract description 13
- 102000002669 Small Ubiquitin-Related Modifier Proteins Human genes 0.000 claims abstract description 13
- 238000003776 cleavage reaction Methods 0.000 claims abstract description 13
- 125000003630 glycyl group Chemical group [H]N([H])C([H])([H])C(*)=O 0.000 claims abstract description 12
- 230000007017 scission Effects 0.000 claims abstract description 12
- 108020001507 fusion proteins Proteins 0.000 claims abstract description 11
- 102000037865 fusion proteins Human genes 0.000 claims abstract description 11
- 102000008109 Mixed Function Oxygenases Human genes 0.000 claims abstract description 8
- 108010074633 Mixed Function Oxygenases Proteins 0.000 claims abstract description 8
- 230000001588 bifunctional effect Effects 0.000 claims abstract description 7
- 229920001192 peptidylglycine Polymers 0.000 claims abstract description 7
- 230000035772 mutation Effects 0.000 claims abstract description 6
- 241000196324 Embryophyta Species 0.000 claims description 252
- 108090000765 processed proteins & peptides Proteins 0.000 claims description 156
- 210000004027 cell Anatomy 0.000 claims description 120
- 108090000623 proteins and genes Proteins 0.000 claims description 99
- 102000004169 proteins and genes Human genes 0.000 claims description 63
- 241000207746 Nicotiana benthamiana Species 0.000 claims description 31
- 230000009466 transformation Effects 0.000 claims description 29
- 210000001519 tissue Anatomy 0.000 claims description 24
- 239000000872 buffer Substances 0.000 claims description 18
- 150000007523 nucleic acids Chemical group 0.000 claims description 18
- 150000001413 amino acids Chemical group 0.000 claims description 15
- 108091028043 Nucleic acid sequence Proteins 0.000 claims description 14
- 241000589158 Agrobacterium Species 0.000 claims description 13
- 101710154606 Hemagglutinin Proteins 0.000 claims description 12
- 101710093908 Outer capsid protein VP4 Proteins 0.000 claims description 12
- 101710135467 Outer capsid protein sigma-1 Proteins 0.000 claims description 12
- 101710176177 Protein A56 Proteins 0.000 claims description 12
- 239000000185 hemagglutinin Substances 0.000 claims description 12
- 230000001404 mediated effect Effects 0.000 claims description 12
- 239000003910 polypeptide antibiotic agent Substances 0.000 claims description 11
- 102000039446 nucleic acids Human genes 0.000 claims description 8
- 108020004707 nucleic acids Proteins 0.000 claims description 8
- 108010019084 mastoparan Proteins 0.000 claims description 7
- MASXKPLGZRMBJF-MVSGICTGSA-N mastoparan Chemical compound CC[C@H](C)[C@H](N)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](C)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](C)C(=O)N[C@@H](C)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](C)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CC(C)C)C(N)=O MASXKPLGZRMBJF-MVSGICTGSA-N 0.000 claims description 7
- 235000005637 Brassica campestris Nutrition 0.000 claims description 6
- 241001301148 Brassica rapa subsp. oleifera Species 0.000 claims description 6
- 241001077262 Conga Species 0.000 claims description 6
- 101100510299 Oryza sativa subsp. japonica KIN7A gene Proteins 0.000 claims description 6
- 108010028230 Trp-Ser- His-Pro-Gln-Phe-Glu-Lys Proteins 0.000 claims description 6
- 240000008042 Zea mays Species 0.000 claims description 6
- 108010070675 Glutathione transferase Proteins 0.000 claims description 5
- 102000005720 Glutathione transferase Human genes 0.000 claims description 5
- 240000007594 Oryza sativa Species 0.000 claims description 5
- 235000007164 Oryza sativa Nutrition 0.000 claims description 5
- 241000700157 Rattus norvegicus Species 0.000 claims description 5
- 210000001938 protoplast Anatomy 0.000 claims description 5
- 206010020649 Hyperkeratosis Diseases 0.000 claims description 4
- 101710175625 Maltose/maltodextrin-binding periplasmic protein Proteins 0.000 claims description 4
- 244000061176 Nicotiana tabacum Species 0.000 claims description 4
- 244000046052 Phaseolus vulgaris Species 0.000 claims description 4
- 108010090804 Streptavidin Proteins 0.000 claims description 4
- 210000000172 cytosol Anatomy 0.000 claims description 4
- 210000002257 embryonic structure Anatomy 0.000 claims description 4
- 206010022000 influenza Diseases 0.000 claims description 4
- 235000010469 Glycine max Nutrition 0.000 claims description 3
- 244000068988 Glycine max Species 0.000 claims description 3
- 235000002637 Nicotiana tabacum Nutrition 0.000 claims description 3
- 235000010627 Phaseolus vulgaris Nutrition 0.000 claims description 3
- 240000003768 Solanum lycopersicum Species 0.000 claims description 3
- 238000005520 cutting process Methods 0.000 claims description 3
- 235000005255 Allium cepa Nutrition 0.000 claims description 2
- 244000291564 Allium cepa Species 0.000 claims description 2
- 235000009328 Amaranthus caudatus Nutrition 0.000 claims description 2
- 240000001592 Amaranthus caudatus Species 0.000 claims description 2
- 235000013479 Amaranthus retroflexus Nutrition 0.000 claims description 2
- 244000237956 Amaranthus retroflexus Species 0.000 claims description 2
- 240000001436 Antirrhinum majus Species 0.000 claims description 2
- 241000219195 Arabidopsis thaliana Species 0.000 claims description 2
- 244000105624 Arachis hypogaea Species 0.000 claims description 2
- 235000010777 Arachis hypogaea Nutrition 0.000 claims description 2
- 240000000011 Artemisia annua Species 0.000 claims description 2
- 235000001405 Artemisia annua Nutrition 0.000 claims description 2
- 244000298939 Artemisia sp Species 0.000 claims description 2
- 235000007823 Artemisia sp Nutrition 0.000 claims description 2
- 244000075850 Avena orientalis Species 0.000 claims description 2
- 235000007319 Avena orientalis Nutrition 0.000 claims description 2
- 241000132023 Bellis perennis Species 0.000 claims description 2
- 235000021533 Beta vulgaris Nutrition 0.000 claims description 2
- 241000335053 Beta vulgaris Species 0.000 claims description 2
- 244000178993 Brassica juncea Species 0.000 claims description 2
- 235000011332 Brassica juncea Nutrition 0.000 claims description 2
- 235000014700 Brassica juncea var napiformis Nutrition 0.000 claims description 2
- 240000001432 Calendula officinalis Species 0.000 claims description 2
- 235000005881 Calendula officinalis Nutrition 0.000 claims description 2
- 102000000584 Calmodulin Human genes 0.000 claims description 2
- 108010041952 Calmodulin Proteins 0.000 claims description 2
- 235000011305 Capsella bursa pastoris Nutrition 0.000 claims description 2
- 240000008867 Capsella bursa-pastoris Species 0.000 claims description 2
- 235000002567 Capsicum annuum Nutrition 0.000 claims description 2
- 240000004160 Capsicum annuum Species 0.000 claims description 2
- 240000001829 Catharanthus roseus Species 0.000 claims description 2
- 241000219312 Chenopodium Species 0.000 claims description 2
- 240000006122 Chenopodium album Species 0.000 claims description 2
- 235000009344 Chenopodium album Nutrition 0.000 claims description 2
- 240000006162 Chenopodium quinoa Species 0.000 claims description 2
- 235000015493 Chenopodium quinoa Nutrition 0.000 claims description 2
- 241000737356 Chenopodium vulvaria Species 0.000 claims description 2
- 229920002101 Chitin Polymers 0.000 claims description 2
- 244000241257 Cucumis melo Species 0.000 claims description 2
- 235000009842 Cucumis melo Nutrition 0.000 claims description 2
- 235000009849 Cucumis sativus Nutrition 0.000 claims description 2
- 240000008067 Cucumis sativus Species 0.000 claims description 2
- 244000224182 Gomphrena globosa Species 0.000 claims description 2
- 235000009432 Gossypium hirsutum Nutrition 0.000 claims description 2
- 244000299507 Gossypium hirsutum Species 0.000 claims description 2
- 240000005625 Gypsophila elegans Species 0.000 claims description 2
- 235000003222 Helianthus annuus Nutrition 0.000 claims description 2
- 244000020551 Helianthus annuus Species 0.000 claims description 2
- 235000007340 Hordeum vulgare Nutrition 0.000 claims description 2
- 240000005979 Hordeum vulgare Species 0.000 claims description 2
- 241001632576 Hyacinthus Species 0.000 claims description 2
- 241000208280 Hyoscyamus niger Species 0.000 claims description 2
- 235000003228 Lactuca sativa Nutrition 0.000 claims description 2
- 240000008415 Lactuca sativa Species 0.000 claims description 2
- 240000006568 Lathyrus odoratus Species 0.000 claims description 2
- 235000004431 Linum usitatissimum Nutrition 0.000 claims description 2
- 240000006240 Linum usitatissimum Species 0.000 claims description 2
- 244000004444 Lobelia erinus Species 0.000 claims description 2
- 241000227653 Lycopersicon Species 0.000 claims description 2
- 235000002262 Lycopersicon Nutrition 0.000 claims description 2
- 235000007688 Lycopersicon esculentum Nutrition 0.000 claims description 2
- 244000207047 Melilotus alba Species 0.000 claims description 2
- 235000017385 Melilotus alba Nutrition 0.000 claims description 2
- 244000302512 Momordica charantia Species 0.000 claims description 2
- 235000009811 Momordica charantia Nutrition 0.000 claims description 2
- 101710135898 Myc proto-oncogene protein Proteins 0.000 claims description 2
- 102100038895 Myc proto-oncogene protein Human genes 0.000 claims description 2
- 241001532689 Narcissus pseudonarcissus Species 0.000 claims description 2
- 241001609967 Nicotiana clevelandii Species 0.000 claims description 2
- 241001495644 Nicotiana glutinosa Species 0.000 claims description 2
- 241000208134 Nicotiana rustica Species 0.000 claims description 2
- 241000208136 Nicotiana sylvestris Species 0.000 claims description 2
- 241001331592 Nicotiana x edwardsonii Species 0.000 claims description 2
- 235000010676 Ocimum basilicum Nutrition 0.000 claims description 2
- 240000007926 Ocimum gratissimum Species 0.000 claims description 2
- 240000007377 Petunia x hybrida Species 0.000 claims description 2
- 240000004001 Physalis peruviana Species 0.000 claims description 2
- 235000009074 Phytolacca americana Nutrition 0.000 claims description 2
- 240000007643 Phytolacca americana Species 0.000 claims description 2
- 235000010582 Pisum sativum Nutrition 0.000 claims description 2
- 240000004713 Pisum sativum Species 0.000 claims description 2
- 235000019057 Raphanus caudatus Nutrition 0.000 claims description 2
- 244000088415 Raphanus sativus Species 0.000 claims description 2
- 235000011380 Raphanus sativus Nutrition 0.000 claims description 2
- 240000000528 Ricinus communis Species 0.000 claims description 2
- 235000004443 Ricinus communis Nutrition 0.000 claims description 2
- 235000000545 Rosa sericea Nutrition 0.000 claims description 2
- 241001278862 Rosa sericea Species 0.000 claims description 2
- 240000001438 Salvia splendens Species 0.000 claims description 2
- 235000017668 Salvia splendens Nutrition 0.000 claims description 2
- 240000003705 Senecio vulgaris Species 0.000 claims description 2
- 235000002594 Solanum nigrum Nutrition 0.000 claims description 2
- 244000061457 Solanum nigrum Species 0.000 claims description 2
- 235000002595 Solanum tuberosum Nutrition 0.000 claims description 2
- 244000061456 Solanum tuberosum Species 0.000 claims description 2
- 240000006694 Stellaria media Species 0.000 claims description 2
- 101710150448 Transcriptional regulator Myc Proteins 0.000 claims description 2
- 235000015724 Trifolium pratense Nutrition 0.000 claims description 2
- 240000002913 Trifolium pratense Species 0.000 claims description 2
- 235000004424 Tropaeolum majus Nutrition 0.000 claims description 2
- 240000001260 Tropaeolum majus Species 0.000 claims description 2
- 241000722923 Tulipa Species 0.000 claims description 2
- 235000010749 Vicia faba Nutrition 0.000 claims description 2
- 240000006677 Vicia faba Species 0.000 claims description 2
- 241000510764 Villosa Species 0.000 claims description 2
- 241000394440 Viola arvensis Species 0.000 claims description 2
- 239000001511 capsicum annuum Substances 0.000 claims description 2
- 235000004426 flaxseed Nutrition 0.000 claims description 2
- 235000013526 red clover Nutrition 0.000 claims description 2
- 235000002634 Solanum Nutrition 0.000 claims 2
- 241000207763 Solanum Species 0.000 claims 2
- 101000959111 Homo sapiens Peptidyl-alpha-hydroxyglycine alpha-amidating lyase Proteins 0.000 claims 1
- 241000219745 Lupinus Species 0.000 claims 1
- 241001442158 Myosotis sylvatica Species 0.000 claims 1
- 241000209094 Oryza Species 0.000 claims 1
- 235000002560 Solanum lycopersicum Nutrition 0.000 claims 1
- 241000219315 Spinacia Species 0.000 claims 1
- 241000219793 Trifolium Species 0.000 claims 1
- 244000098338 Triticum aestivum Species 0.000 claims 1
- 102000055412 human PAM Human genes 0.000 claims 1
- 229920006227 ethylene-grafted-maleic anhydride Polymers 0.000 abstract description 46
- 230000009435 amidation Effects 0.000 abstract description 14
- 238000009825 accumulation Methods 0.000 abstract description 13
- 238000007112 amidation reaction Methods 0.000 abstract description 13
- 210000004899 c-terminal region Anatomy 0.000 abstract description 7
- 230000010474 transient expression Effects 0.000 abstract description 7
- 239000000203 mixture Substances 0.000 abstract description 4
- 230000037361 pathway Effects 0.000 abstract description 4
- 230000001052 transient effect Effects 0.000 abstract description 4
- 125000003345 AMP group Chemical group 0.000 abstract 2
- IRLPACMLTUPBCL-KQYNXXCUSA-N 5'-adenylyl sulfate Chemical compound C1=NC=2C(N)=NC=NC=2N1[C@@H]1O[C@H](COP(O)(=O)OS(O)(=O)=O)[C@@H](O)[C@H]1O IRLPACMLTUPBCL-KQYNXXCUSA-N 0.000 abstract 1
- 102100020775 Adenylosuccinate lyase Human genes 0.000 abstract 1
- 101100246230 Homo sapiens ADSL gene Proteins 0.000 abstract 1
- 102000004196 processed proteins & peptides Human genes 0.000 description 92
- 235000018102 proteins Nutrition 0.000 description 47
- 241000588724 Escherichia coli Species 0.000 description 34
- 239000013598 vector Substances 0.000 description 29
- 108091005804 Peptidases Proteins 0.000 description 28
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 27
- 239000004365 Protease Substances 0.000 description 26
- 102100037486 Reverse transcriptase/ribonuclease H Human genes 0.000 description 24
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 24
- 238000004458 analytical method Methods 0.000 description 21
- 239000012528 membrane Substances 0.000 description 21
- 206010041925 Staphylococcal infections Diseases 0.000 description 20
- 230000001580 bacterial effect Effects 0.000 description 20
- 208000015688 methicillin-resistant staphylococcus aureus infectious disease Diseases 0.000 description 20
- 244000052769 pathogen Species 0.000 description 20
- 238000001542 size-exclusion chromatography Methods 0.000 description 19
- 229940088598 enzyme Drugs 0.000 description 17
- 241000894006 Bacteria Species 0.000 description 16
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 15
- 239000003814 drug Substances 0.000 description 15
- 239000000284 extract Substances 0.000 description 15
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical compound P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 description 14
- 230000000694 effects Effects 0.000 description 14
- 239000000499 gel Substances 0.000 description 14
- 239000002953 phosphate buffered saline Substances 0.000 description 14
- 241000122230 Acinetobacter junii Species 0.000 description 13
- 239000013612 plasmid Substances 0.000 description 13
- 229920001184 polypeptide Polymers 0.000 description 13
- 108020004414 DNA Proteins 0.000 description 12
- MQTOSJVFKKJCRP-BICOPXKESA-N azithromycin Chemical compound O([C@@H]1[C@@H](C)C(=O)O[C@@H]([C@@]([C@H](O)[C@@H](C)N(C)C[C@H](C)C[C@@](C)(O)[C@H](O[C@H]2[C@@H]([C@H](C[C@@H](C)O2)N(C)C)O)[C@H]1C)(C)O)CC)[C@H]1C[C@@](C)(OC)[C@@H](O)[C@H](C)O1 MQTOSJVFKKJCRP-BICOPXKESA-N 0.000 description 12
- 229940079593 drug Drugs 0.000 description 12
- 238000002474 experimental method Methods 0.000 description 12
- 230000012010 growth Effects 0.000 description 12
- RAXXELZNTBOGNW-UHFFFAOYSA-N imidazole Natural products C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 description 12
- 108091033319 polynucleotide Proteins 0.000 description 12
- 102000040430 polynucleotide Human genes 0.000 description 12
- 239000002157 polynucleotide Substances 0.000 description 12
- 239000011780 sodium chloride Substances 0.000 description 12
- 238000002415 sodium dodecyl sulfate polyacrylamide gel electrophoresis Methods 0.000 description 12
- 230000000845 anti-microbial effect Effects 0.000 description 11
- 229960004099 azithromycin Drugs 0.000 description 11
- 125000002091 cationic group Chemical group 0.000 description 11
- 239000003795 chemical substances by application Substances 0.000 description 11
- 230000005764 inhibitory process Effects 0.000 description 11
- 239000000243 solution Substances 0.000 description 11
- 101710170231 Antimicrobial peptide 2 Proteins 0.000 description 10
- 241000495778 Escherichia faecalis Species 0.000 description 10
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 10
- 108700019146 Transgenes Proteins 0.000 description 10
- 239000003242 anti bacterial agent Substances 0.000 description 10
- 229940088710 antibiotic agent Drugs 0.000 description 10
- 230000032770 biofilm formation Effects 0.000 description 10
- 238000003119 immunoblot Methods 0.000 description 10
- 238000011534 incubation Methods 0.000 description 10
- 241000894007 species Species 0.000 description 10
- 108010078777 Colistin Proteins 0.000 description 9
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 9
- 238000003556 assay Methods 0.000 description 9
- 230000003115 biocidal effect Effects 0.000 description 9
- 239000005090 green fluorescent protein Substances 0.000 description 9
- 238000001764 infiltration Methods 0.000 description 9
- 230000002147 killing effect Effects 0.000 description 9
- JORAUNFTUVJTNG-BSTBCYLQSA-N n-[(2s)-4-amino-1-[[(2s,3r)-1-[[(2s)-4-amino-1-oxo-1-[[(3s,6s,9s,12s,15r,18s,21s)-6,9,18-tris(2-aminoethyl)-3-[(1r)-1-hydroxyethyl]-12,15-bis(2-methylpropyl)-2,5,8,11,14,17,20-heptaoxo-1,4,7,10,13,16,19-heptazacyclotricos-21-yl]amino]butan-2-yl]amino]-3-h Chemical compound CC(C)CCCCC(=O)N[C@@H](CCN)C(=O)N[C@H]([C@@H](C)O)CN[C@@H](CCN)C(=O)N[C@H]1CCNC(=O)[C@H]([C@@H](C)O)NC(=O)[C@H](CCN)NC(=O)[C@H](CCN)NC(=O)[C@H](CC(C)C)NC(=O)[C@@H](CC(C)C)NC(=O)[C@H](CCN)NC1=O.CCC(C)CCCCC(=O)N[C@@H](CCN)C(=O)N[C@H]([C@@H](C)O)CN[C@@H](CCN)C(=O)N[C@H]1CCNC(=O)[C@H]([C@@H](C)O)NC(=O)[C@H](CCN)NC(=O)[C@H](CCN)NC(=O)[C@H](CC(C)C)NC(=O)[C@@H](CC(C)C)NC(=O)[C@H](CCN)NC1=O JORAUNFTUVJTNG-BSTBCYLQSA-N 0.000 description 9
- 230000008823 permeabilization Effects 0.000 description 9
- 230000002265 prevention Effects 0.000 description 9
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 8
- 241000589155 Agrobacterium tumefaciens Species 0.000 description 8
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 8
- DTQVDTLACAAQTR-UHFFFAOYSA-N Trifluoroacetic acid Chemical class OC(=O)C(F)(F)F DTQVDTLACAAQTR-UHFFFAOYSA-N 0.000 description 8
- 229960003346 colistin Drugs 0.000 description 8
- XDJYMJULXQKGMM-UHFFFAOYSA-N polymyxin E1 Natural products CCC(C)CCCCC(=O)NC(CCN)C(=O)NC(C(C)O)C(=O)NC(CCN)C(=O)NC1CCNC(=O)C(C(C)O)NC(=O)C(CCN)NC(=O)C(CCN)NC(=O)C(CC(C)C)NC(=O)C(CC(C)C)NC(=O)C(CCN)NC1=O XDJYMJULXQKGMM-UHFFFAOYSA-N 0.000 description 8
- KNIWPHSUTGNZST-UHFFFAOYSA-N polymyxin E2 Natural products CC(C)CCCCC(=O)NC(CCN)C(=O)NC(C(C)O)C(=O)NC(CCN)C(=O)NC1CCNC(=O)C(C(C)O)NC(=O)C(CCN)NC(=O)C(CCN)NC(=O)C(CC(C)C)NC(=O)C(CC(C)C)NC(=O)C(CCN)NC1=O KNIWPHSUTGNZST-UHFFFAOYSA-N 0.000 description 8
- 239000000047 product Substances 0.000 description 8
- HODRFAVLXIFVTR-RKDXNWHRSA-N tevenel Chemical compound NS(=O)(=O)C1=CC=C([C@@H](O)[C@@H](CO)NC(=O)C(Cl)Cl)C=C1 HODRFAVLXIFVTR-RKDXNWHRSA-N 0.000 description 8
- MYPYJXKWCTUITO-UHFFFAOYSA-N vancomycin Natural products O1C(C(=C2)Cl)=CC=C2C(O)C(C(NC(C2=CC(O)=CC(O)=C2C=2C(O)=CC=C3C=2)C(O)=O)=O)NC(=O)C3NC(=O)C2NC(=O)C(CC(N)=O)NC(=O)C(NC(=O)C(CC(C)C)NC)C(O)C(C=C3Cl)=CC=C3OC3=CC2=CC1=C3OC1OC(CO)C(O)C(O)C1OC1CC(C)(N)C(O)C(C)O1 MYPYJXKWCTUITO-UHFFFAOYSA-N 0.000 description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 8
- ZKHQWZAMYRWXGA-UHFFFAOYSA-N Adenosine triphosphate Natural products C1=NC=2C(N)=NC=NC=2N1C1OC(COP(O)(=O)OP(O)(=O)OP(O)(O)=O)C(O)C1O ZKHQWZAMYRWXGA-UHFFFAOYSA-N 0.000 description 7
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 7
- 108091026890 Coding region Proteins 0.000 description 7
- 108010043121 Green Fluorescent Proteins Proteins 0.000 description 7
- 241000700159 Rattus Species 0.000 description 7
- 108010059993 Vancomycin Proteins 0.000 description 7
- 230000015572 biosynthetic process Effects 0.000 description 7
- YZBQHRLRFGPBSL-RXMQYKEDSA-N carbapenem Chemical compound C1C=CN2C(=O)C[C@H]21 YZBQHRLRFGPBSL-RXMQYKEDSA-N 0.000 description 7
- 239000003153 chemical reaction reagent Substances 0.000 description 7
- 230000001086 cytosolic effect Effects 0.000 description 7
- 239000013604 expression vector Substances 0.000 description 7
- 230000002209 hydrophobic effect Effects 0.000 description 7
- 229930027917 kanamycin Natural products 0.000 description 7
- 229960000318 kanamycin Drugs 0.000 description 7
- SBUJHOSQTJFQJX-NOAMYHISSA-N kanamycin Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CN)O[C@@H]1O[C@H]1[C@H](O)[C@@H](O[C@@H]2[C@@H]([C@@H](N)[C@H](O)[C@@H](CO)O2)O)[C@H](N)C[C@@H]1N SBUJHOSQTJFQJX-NOAMYHISSA-N 0.000 description 7
- 229930182823 kanamycin A Natural products 0.000 description 7
- 210000004962 mammalian cell Anatomy 0.000 description 7
- 239000002609 medium Substances 0.000 description 7
- 238000012545 processing Methods 0.000 description 7
- 230000001105 regulatory effect Effects 0.000 description 7
- 238000012360 testing method Methods 0.000 description 7
- 230000014616 translation Effects 0.000 description 7
- 229960003165 vancomycin Drugs 0.000 description 7
- MYPYJXKWCTUITO-LYRMYLQWSA-N vancomycin Chemical compound O([C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@H]1OC1=C2C=C3C=C1OC1=CC=C(C=C1Cl)[C@@H](O)[C@H](C(N[C@@H](CC(N)=O)C(=O)N[C@H]3C(=O)N[C@H]1C(=O)N[C@H](C(N[C@@H](C3=CC(O)=CC(O)=C3C=3C(O)=CC=C1C=3)C(O)=O)=O)[C@H](O)C1=CC=C(C(=C1)Cl)O2)=O)NC(=O)[C@@H](CC(C)C)NC)[C@H]1C[C@](C)(N)[C@H](O)[C@H](C)O1 MYPYJXKWCTUITO-LYRMYLQWSA-N 0.000 description 7
- QKNYBSVHEMOAJP-UHFFFAOYSA-N 2-amino-2-(hydroxymethyl)propane-1,3-diol;hydron;chloride Chemical compound Cl.OCC(N)(CO)CO QKNYBSVHEMOAJP-UHFFFAOYSA-N 0.000 description 6
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 6
- 102000004144 Green Fluorescent Proteins Human genes 0.000 description 6
- 241000700605 Viruses Species 0.000 description 6
- 238000013459 approach Methods 0.000 description 6
- 210000000349 chromosome Anatomy 0.000 description 6
- MYSWGUAQZAJSOK-UHFFFAOYSA-N ciprofloxacin Chemical compound C12=CC(N3CCNCC3)=C(F)C=C2C(=O)C(C(=O)O)=CN1C1CC1 MYSWGUAQZAJSOK-UHFFFAOYSA-N 0.000 description 6
- 230000002068 genetic effect Effects 0.000 description 6
- 230000008595 infiltration Effects 0.000 description 6
- 230000003993 interaction Effects 0.000 description 6
- 108020004999 messenger RNA Proteins 0.000 description 6
- 230000001717 pathogenic effect Effects 0.000 description 6
- YBYRMVIVWMBXKQ-UHFFFAOYSA-N phenylmethanesulfonyl fluoride Chemical compound FS(=O)(=O)CC1=CC=CC=C1 YBYRMVIVWMBXKQ-UHFFFAOYSA-N 0.000 description 6
- 239000000126 substance Substances 0.000 description 6
- 238000012546 transfer Methods 0.000 description 6
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 5
- 108700038250 PAM2-CSK4 Proteins 0.000 description 5
- 101100206155 Schizosaccharomyces pombe (strain 972 / ATCC 24843) tbp1 gene Proteins 0.000 description 5
- 229920002494 Zein Polymers 0.000 description 5
- 230000000844 anti-bacterial effect Effects 0.000 description 5
- 229940098773 bovine serum albumin Drugs 0.000 description 5
- 230000001413 cellular effect Effects 0.000 description 5
- 238000011033 desalting Methods 0.000 description 5
- 238000000338 in vitro Methods 0.000 description 5
- 239000003550 marker Substances 0.000 description 5
- 239000003607 modifier Substances 0.000 description 5
- 229910052757 nitrogen Inorganic materials 0.000 description 5
- 210000000056 organ Anatomy 0.000 description 5
- 150000003839 salts Chemical class 0.000 description 5
- 231100000419 toxicity Toxicity 0.000 description 5
- 230000001988 toxicity Effects 0.000 description 5
- 238000011144 upstream manufacturing Methods 0.000 description 5
- 239000005019 zein Substances 0.000 description 5
- 229940093612 zein Drugs 0.000 description 5
- 108010050820 Antimicrobial Cationic Peptides Proteins 0.000 description 4
- 102000014133 Antimicrobial Cationic Peptides Human genes 0.000 description 4
- HVLSXIKZNLPZJJ-TXZCQADKSA-N HA peptide Chemical compound C([C@@H](C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](C(C)C)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)N[C@@H](C)C(O)=O)NC(=O)[C@H]1N(CCC1)C(=O)[C@@H](N)CC=1C=CC(O)=CC=1)C1=CC=C(O)C=C1 HVLSXIKZNLPZJJ-TXZCQADKSA-N 0.000 description 4
- RJQXTJLFIWVMTO-TYNCELHUSA-N Methicillin Chemical compound COC1=CC=CC(OC)=C1C(=O)N[C@@H]1C(=O)N2[C@@H](C(O)=O)C(C)(C)S[C@@H]21 RJQXTJLFIWVMTO-TYNCELHUSA-N 0.000 description 4
- 102000035195 Peptidases Human genes 0.000 description 4
- 108020004511 Recombinant DNA Proteins 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- PXIPVTKHYLBLMZ-UHFFFAOYSA-N Sodium azide Chemical compound [Na+].[N-]=[N+]=[N-] PXIPVTKHYLBLMZ-UHFFFAOYSA-N 0.000 description 4
- 241000191967 Staphylococcus aureus Species 0.000 description 4
- 229930006000 Sucrose Natural products 0.000 description 4
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 4
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 4
- 235000016383 Zea mays subsp huehuetenangensis Nutrition 0.000 description 4
- 235000002017 Zea mays subsp mays Nutrition 0.000 description 4
- UDSAIICHUKSCKT-UHFFFAOYSA-N bromophenol blue Chemical compound C1=C(Br)C(O)=C(Br)C=C1C1(C=2C=C(Br)C(O)=C(Br)C=2)C2=CC=CC=C2S(=O)(=O)O1 UDSAIICHUKSCKT-UHFFFAOYSA-N 0.000 description 4
- 238000012054 celltiter-glo Methods 0.000 description 4
- 238000010367 cloning Methods 0.000 description 4
- 230000001332 colony forming effect Effects 0.000 description 4
- 238000010276 construction Methods 0.000 description 4
- 238000003235 crystal violet staining Methods 0.000 description 4
- 238000011143 downstream manufacturing Methods 0.000 description 4
- 235000013399 edible fruits Nutrition 0.000 description 4
- 239000002158 endotoxin Substances 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 108091006047 fluorescent proteins Proteins 0.000 description 4
- 102000034287 fluorescent proteins Human genes 0.000 description 4
- 108020002326 glutamine synthetase Proteins 0.000 description 4
- 238000004128 high performance liquid chromatography Methods 0.000 description 4
- 230000001965 increasing effect Effects 0.000 description 4
- 230000004941 influx Effects 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 235000009973 maize Nutrition 0.000 description 4
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 4
- 229960003085 meticillin Drugs 0.000 description 4
- 239000000137 peptide hydrolase inhibitor Substances 0.000 description 4
- 210000002706 plastid Anatomy 0.000 description 4
- 239000001253 polyvinylpolypyrrolidone Substances 0.000 description 4
- 235000013809 polyvinylpolypyrrolidone Nutrition 0.000 description 4
- 229920000523 polyvinylpolypyrrolidone Polymers 0.000 description 4
- 230000003389 potentiating effect Effects 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- XJMOSONTPMZWPB-UHFFFAOYSA-M propidium iodide Chemical compound [I-].[I-].C12=CC(N)=CC=C2C2=CC=C(N)C=C2[N+](CCC[N+](C)(CC)CC)=C1C1=CC=CC=C1 XJMOSONTPMZWPB-UHFFFAOYSA-M 0.000 description 4
- 230000009467 reduction Effects 0.000 description 4
- 239000011347 resin Substances 0.000 description 4
- 229920005989 resin Polymers 0.000 description 4
- 239000000523 sample Substances 0.000 description 4
- 238000004626 scanning electron microscopy Methods 0.000 description 4
- 238000010186 staining Methods 0.000 description 4
- 239000005720 sucrose Substances 0.000 description 4
- 239000006228 supernatant Substances 0.000 description 4
- 239000000725 suspension Substances 0.000 description 4
- 238000003786 synthesis reaction Methods 0.000 description 4
- 230000008685 targeting Effects 0.000 description 4
- 238000013519 translation Methods 0.000 description 4
- 238000010200 validation analysis Methods 0.000 description 4
- 102000007469 Actins Human genes 0.000 description 3
- 108010085238 Actins Proteins 0.000 description 3
- 239000002028 Biomass Substances 0.000 description 3
- 241000701489 Cauliflower mosaic virus Species 0.000 description 3
- 102000053602 DNA Human genes 0.000 description 3
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 3
- 241000206602 Eukaryota Species 0.000 description 3
- CEAZRRDELHUEMR-URQXQFDESA-N Gentamicin Chemical compound O1[C@H](C(C)NC)CC[C@@H](N)[C@H]1O[C@H]1[C@H](O)[C@@H](O[C@@H]2[C@@H]([C@@H](NC)[C@@](C)(O)CO2)O)[C@H](N)C[C@@H]1N CEAZRRDELHUEMR-URQXQFDESA-N 0.000 description 3
- 229930182566 Gentamicin Natural products 0.000 description 3
- 241000588747 Klebsiella pneumoniae Species 0.000 description 3
- GSDSWSVVBLHKDQ-JTQLQIEISA-N Levofloxacin Chemical compound C([C@@H](N1C2=C(C(C(C(O)=O)=C1)=O)C=C1F)C)OC2=C1N1CCN(C)CC1 GSDSWSVVBLHKDQ-JTQLQIEISA-N 0.000 description 3
- 108090000856 Lyases Proteins 0.000 description 3
- 102000004317 Lyases Human genes 0.000 description 3
- 108091034117 Oligonucleotide Proteins 0.000 description 3
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 3
- 229940124158 Protease/peptidase inhibitor Drugs 0.000 description 3
- 241000723873 Tobacco mosaic virus Species 0.000 description 3
- 239000007983 Tris buffer Substances 0.000 description 3
- 229960000583 acetic acid Drugs 0.000 description 3
- 238000001042 affinity chromatography Methods 0.000 description 3
- 230000003698 anagen phase Effects 0.000 description 3
- 230000003214 anti-biofilm Effects 0.000 description 3
- 230000015556 catabolic process Effects 0.000 description 3
- 229960000484 ceftazidime Drugs 0.000 description 3
- NMVPEQXCMGEDNH-TZVUEUGBSA-N ceftazidime pentahydrate Chemical compound O.O.O.O.O.S([C@@H]1[C@@H](C(N1C=1C([O-])=O)=O)NC(=O)\C(=N/OC(C)(C)C(O)=O)C=2N=C(N)SC=2)CC=1C[N+]1=CC=CC=C1 NMVPEQXCMGEDNH-TZVUEUGBSA-N 0.000 description 3
- 238000004113 cell culture Methods 0.000 description 3
- 210000000170 cell membrane Anatomy 0.000 description 3
- 210000002421 cell wall Anatomy 0.000 description 3
- 238000005119 centrifugation Methods 0.000 description 3
- 238000004587 chromatography analysis Methods 0.000 description 3
- 229960003405 ciprofloxacin Drugs 0.000 description 3
- 238000012790 confirmation Methods 0.000 description 3
- 231100000135 cytotoxicity Toxicity 0.000 description 3
- 230000003013 cytotoxicity Effects 0.000 description 3
- 238000006731 degradation reaction Methods 0.000 description 3
- 230000001419 dependent effect Effects 0.000 description 3
- 230000005611 electricity Effects 0.000 description 3
- 238000004520 electroporation Methods 0.000 description 3
- 238000001425 electrospray ionisation time-of-flight mass spectrometry Methods 0.000 description 3
- 239000012091 fetal bovine serum Substances 0.000 description 3
- 238000000684 flow cytometry Methods 0.000 description 3
- 229960002518 gentamicin Drugs 0.000 description 3
- 102000005396 glutamine synthetase Human genes 0.000 description 3
- 239000004009 herbicide Substances 0.000 description 3
- 238000001727 in vivo Methods 0.000 description 3
- 230000001939 inductive effect Effects 0.000 description 3
- 208000015181 infectious disease Diseases 0.000 description 3
- 230000002401 inhibitory effect Effects 0.000 description 3
- 150000002500 ions Chemical class 0.000 description 3
- 238000011031 large-scale manufacturing process Methods 0.000 description 3
- 229960003376 levofloxacin Drugs 0.000 description 3
- 231100000053 low toxicity Toxicity 0.000 description 3
- 238000004020 luminiscence type Methods 0.000 description 3
- 210000001161 mammalian embryo Anatomy 0.000 description 3
- 108010083942 mannopine synthase Proteins 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 239000011159 matrix material Substances 0.000 description 3
- 229960002260 meropenem Drugs 0.000 description 3
- DMJNNHOOLUXYBV-PQTSNVLCSA-N meropenem Chemical compound C=1([C@H](C)[C@@H]2[C@H](C(N2C=1C(O)=O)=O)[C@H](O)C)S[C@@H]1CN[C@H](C(=O)N(C)C)C1 DMJNNHOOLUXYBV-PQTSNVLCSA-N 0.000 description 3
- 230000002503 metabolic effect Effects 0.000 description 3
- 230000000877 morphologic effect Effects 0.000 description 3
- 239000013642 negative control Substances 0.000 description 3
- 210000004940 nucleus Anatomy 0.000 description 3
- 210000003463 organelle Anatomy 0.000 description 3
- 238000010647 peptide synthesis reaction Methods 0.000 description 3
- 239000012071 phase Substances 0.000 description 3
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 3
- 230000008488 polyadenylation Effects 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 230000010076 replication Effects 0.000 description 3
- 238000004007 reversed phase HPLC Methods 0.000 description 3
- 230000003248 secreting effect Effects 0.000 description 3
- 238000000926 separation method Methods 0.000 description 3
- TXBNDGDMWKVRQW-UHFFFAOYSA-M sodium;2-[[1,3-dihydroxy-2-(hydroxymethyl)propan-2-yl]azaniumyl]acetate;dodecyl sulfate Chemical compound [Na+].OCC(CO)(CO)NCC(O)=O.CCCCCCCCCCCCOS([O-])(=O)=O TXBNDGDMWKVRQW-UHFFFAOYSA-M 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- 229960005404 sulfamethoxazole Drugs 0.000 description 3
- JLKIGFTWXXRPMT-UHFFFAOYSA-N sulphamethoxazole Chemical compound O1C(C)=CC(NS(=O)(=O)C=2C=CC(N)=CC=2)=N1 JLKIGFTWXXRPMT-UHFFFAOYSA-N 0.000 description 3
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 3
- 239000001974 tryptic soy broth Substances 0.000 description 3
- 238000005406 washing Methods 0.000 description 3
- -1 13 arginine Chemical class 0.000 description 2
- FWBHETKCLVMNFS-UHFFFAOYSA-N 4',6-Diamino-2-phenylindol Chemical compound C1=CC(C(=N)N)=CC=C1C1=CC2=CC=C(C(N)=N)C=C2N1 FWBHETKCLVMNFS-UHFFFAOYSA-N 0.000 description 2
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 2
- 241000219317 Amaranthaceae Species 0.000 description 2
- 239000004475 Arginine Substances 0.000 description 2
- 241000208838 Asteraceae Species 0.000 description 2
- 241000743776 Brachypodium distachyon Species 0.000 description 2
- 241000219193 Brassicaceae Species 0.000 description 2
- 101000708016 Caenorhabditis elegans Sentrin-specific protease Proteins 0.000 description 2
- 241000283707 Capra Species 0.000 description 2
- 241000723655 Cowpea mosaic virus Species 0.000 description 2
- SRBFZHDQGSBBOR-IOVATXLUSA-N D-xylopyranose Chemical compound O[C@@H]1COC(O)[C@H](O)[C@H]1O SRBFZHDQGSBBOR-IOVATXLUSA-N 0.000 description 2
- 241000588914 Enterobacter Species 0.000 description 2
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 2
- 108060001084 Luciferase Proteins 0.000 description 2
- 239000005089 Luciferase Substances 0.000 description 2
- 244000061323 Lycopersicon pimpinellifolium Species 0.000 description 2
- 235000002541 Lycopersicon pimpinellifolium Nutrition 0.000 description 2
- 229920002274 Nalgene Polymers 0.000 description 2
- 241000283973 Oryctolagus cuniculus Species 0.000 description 2
- 229930040373 Paraformaldehyde Natural products 0.000 description 2
- 101710189920 Peptidyl-alpha-hydroxyglycine alpha-amidating lyase Proteins 0.000 description 2
- KPKZJLCSROULON-QKGLWVMZSA-N Phalloidin Chemical compound N1C(=O)[C@@H]([C@@H](O)C)NC(=O)[C@H](C)NC(=O)[C@H](C[C@@](C)(O)CO)NC(=O)[C@H](C2)NC(=O)[C@H](C)NC(=O)[C@@H]3C[C@H](O)CN3C(=O)[C@@H]1CSC1=C2C2=CC=CC=C2N1 KPKZJLCSROULON-QKGLWVMZSA-N 0.000 description 2
- 241000209504 Poaceae Species 0.000 description 2
- 108010029485 Protein Isoforms Proteins 0.000 description 2
- 102000001708 Protein Isoforms Human genes 0.000 description 2
- 108010076504 Protein Sorting Signals Proteins 0.000 description 2
- 241000589517 Pseudomonas aeruginosa Species 0.000 description 2
- 101000959116 Rattus norvegicus Peptidyl-alpha-hydroxyglycine alpha-amidating lyase Proteins 0.000 description 2
- 239000012505 Superdex™ Substances 0.000 description 2
- 239000013504 Triton X-100 Substances 0.000 description 2
- 229920004890 Triton X-100 Polymers 0.000 description 2
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 2
- YVNQAIFQFWTPLQ-UHFFFAOYSA-O [4-[[4-(4-ethoxyanilino)phenyl]-[4-[ethyl-[(3-sulfophenyl)methyl]amino]-2-methylphenyl]methylidene]-3-methylcyclohexa-2,5-dien-1-ylidene]-ethyl-[(3-sulfophenyl)methyl]azanium Chemical compound C1=CC(OCC)=CC=C1NC1=CC=C(C(=C2C(=CC(C=C2)=[N+](CC)CC=2C=C(C=CC=2)S(O)(=O)=O)C)C=2C(=CC(=CC=2)N(CC)CC=2C=C(C=CC=2)S(O)(=O)=O)C)C=C1 YVNQAIFQFWTPLQ-UHFFFAOYSA-O 0.000 description 2
- OJOBTAOGJIWAGB-UHFFFAOYSA-N acetosyringone Chemical compound COC1=CC(C(C)=O)=CC(OC)=C1O OJOBTAOGJIWAGB-UHFFFAOYSA-N 0.000 description 2
- 229940059260 amidate Drugs 0.000 description 2
- 229940126575 aminoglycoside Drugs 0.000 description 2
- 239000004599 antimicrobial Substances 0.000 description 2
- ODKSFYDXXFIFQN-UHFFFAOYSA-N arginine Natural products OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 description 2
- 244000052616 bacterial pathogen Species 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 238000002815 broth microdilution Methods 0.000 description 2
- 239000007853 buffer solution Substances 0.000 description 2
- 239000007978 cacodylate buffer Substances 0.000 description 2
- 239000004202 carbamide Substances 0.000 description 2
- 230000004663 cell proliferation Effects 0.000 description 2
- 230000003833 cell viability Effects 0.000 description 2
- 235000013339 cereals Nutrition 0.000 description 2
- 150000003841 chloride salts Chemical class 0.000 description 2
- 238000011210 chromatographic step Methods 0.000 description 2
- 230000004186 co-expression Effects 0.000 description 2
- 230000000295 complement effect Effects 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 230000009089 cytolysis Effects 0.000 description 2
- 210000004292 cytoskeleton Anatomy 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000018109 developmental process Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000000502 dialysis Methods 0.000 description 2
- 231100000673 dose–response relationship Toxicity 0.000 description 2
- 238000001378 electrochemiluminescence detection Methods 0.000 description 2
- 238000002330 electrospray ionisation mass spectrometry Methods 0.000 description 2
- 210000002472 endoplasmic reticulum Anatomy 0.000 description 2
- NPUKDXXFDDZOKR-LLVKDONJSA-N etomidate Chemical compound CCOC(=O)C1=CN=CN1[C@H](C)C1=CC=CC=C1 NPUKDXXFDDZOKR-LLVKDONJSA-N 0.000 description 2
- 210000003527 eukaryotic cell Anatomy 0.000 description 2
- 238000000855 fermentation Methods 0.000 description 2
- 230000004151 fermentation Effects 0.000 description 2
- 108010021843 fluorescent protein 583 Proteins 0.000 description 2
- 235000019253 formic acid Nutrition 0.000 description 2
- 230000004927 fusion Effects 0.000 description 2
- 239000001963 growth medium Substances 0.000 description 2
- 239000000383 hazardous chemical Substances 0.000 description 2
- 125000000487 histidyl group Chemical group [H]N([H])C(C(=O)O*)C([H])([H])C1=C([H])N([H])C([H])=N1 0.000 description 2
- 238000003384 imaging method Methods 0.000 description 2
- 230000002519 immonomodulatory effect Effects 0.000 description 2
- 238000012744 immunostaining Methods 0.000 description 2
- 239000003112 inhibitor Substances 0.000 description 2
- 239000002054 inoculum Substances 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 210000003734 kidney Anatomy 0.000 description 2
- 230000000670 limiting effect Effects 0.000 description 2
- 238000011068 loading method Methods 0.000 description 2
- 230000033001 locomotion Effects 0.000 description 2
- 230000014759 maintenance of location Effects 0.000 description 2
- 238000007726 management method Methods 0.000 description 2
- 231100000252 nontoxic Toxicity 0.000 description 2
- 230000003000 nontoxic effect Effects 0.000 description 2
- 229920002866 paraformaldehyde Polymers 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 230000035699 permeability Effects 0.000 description 2
- 230000008635 plant growth Effects 0.000 description 2
- 229920002401 polyacrylamide Polymers 0.000 description 2
- 229920002704 polyhistidine Polymers 0.000 description 2
- 239000013641 positive control Substances 0.000 description 2
- 239000002243 precursor Substances 0.000 description 2
- 230000000644 propagated effect Effects 0.000 description 2
- 238000001742 protein purification Methods 0.000 description 2
- 230000017854 proteolysis Effects 0.000 description 2
- 230000006337 proteolytic cleavage Effects 0.000 description 2
- 230000002441 reversible effect Effects 0.000 description 2
- 235000009566 rice Nutrition 0.000 description 2
- YGSDEFSMJLZEOE-UHFFFAOYSA-N salicylic acid Chemical compound OC(=O)C1=CC=CC=C1O YGSDEFSMJLZEOE-UHFFFAOYSA-N 0.000 description 2
- 238000007480 sanger sequencing Methods 0.000 description 2
- 238000001878 scanning electron micrograph Methods 0.000 description 2
- 230000028327 secretion Effects 0.000 description 2
- 230000007226 seed germination Effects 0.000 description 2
- 239000006152 selective media Substances 0.000 description 2
- 210000002966 serum Anatomy 0.000 description 2
- 238000004088 simulation Methods 0.000 description 2
- IHQKEDIOMGYHEB-UHFFFAOYSA-M sodium dimethylarsinate Chemical compound [Na+].C[As](C)([O-])=O IHQKEDIOMGYHEB-UHFFFAOYSA-M 0.000 description 2
- 239000002689 soil Substances 0.000 description 2
- 239000007790 solid phase Substances 0.000 description 2
- 238000000527 sonication Methods 0.000 description 2
- UCSJYZPVAKXKNQ-HZYVHMACSA-N streptomycin Chemical compound CN[C@H]1[C@H](O)[C@@H](O)[C@H](CO)O[C@H]1O[C@@H]1[C@](C=O)(O)[C@H](C)O[C@H]1O[C@@H]1[C@@H](NC(N)=N)[C@H](O)[C@@H](NC(N)=N)[C@H](O)[C@H]1O UCSJYZPVAKXKNQ-HZYVHMACSA-N 0.000 description 2
- 238000013518 transcription Methods 0.000 description 2
- 230000035897 transcription Effects 0.000 description 2
- 108010050327 trypticase-soy broth Proteins 0.000 description 2
- 125000000430 tryptophan group Chemical group [H]N([H])C(C(=O)O*)C([H])([H])C1=C([H])N([H])C2=C([H])C([H])=C([H])C([H])=C12 0.000 description 2
- 229960005486 vaccine Drugs 0.000 description 2
- 108091005957 yellow fluorescent proteins Proteins 0.000 description 2
- MRXDGVXSWIXTQL-HYHFHBMOSA-N (2s)-2-[[(1s)-1-(2-amino-1,4,5,6-tetrahydropyrimidin-6-yl)-2-[[(2s)-4-methyl-1-oxo-1-[[(2s)-1-oxo-3-phenylpropan-2-yl]amino]pentan-2-yl]amino]-2-oxoethyl]carbamoylamino]-3-phenylpropanoic acid Chemical compound C([C@H](NC(=O)N[C@H](C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC=1C=CC=CC=1)C=O)C1NC(N)=NCC1)C(O)=O)C1=CC=CC=C1 MRXDGVXSWIXTQL-HYHFHBMOSA-N 0.000 description 1
- AUTOLBMXDDTRRT-JGVFFNPUSA-N (4R,5S)-dethiobiotin Chemical compound C[C@@H]1NC(=O)N[C@@H]1CCCCCC(O)=O AUTOLBMXDDTRRT-JGVFFNPUSA-N 0.000 description 1
- 239000005971 1-naphthylacetic acid Substances 0.000 description 1
- SXGZJKUKBWWHRA-UHFFFAOYSA-N 2-(N-morpholiniumyl)ethanesulfonate Chemical compound [O-]S(=O)(=O)CC[NH+]1CCOCC1 SXGZJKUKBWWHRA-UHFFFAOYSA-N 0.000 description 1
- MSWZFWKMSRAUBD-IVMDWMLBSA-N 2-amino-2-deoxy-D-glucopyranose Chemical compound N[C@H]1C(O)O[C@H](CO)[C@@H](O)[C@@H]1O MSWZFWKMSRAUBD-IVMDWMLBSA-N 0.000 description 1
- IIDAJRNSZSFFCB-UHFFFAOYSA-N 4-amino-5-methoxy-2-methylbenzenesulfonamide Chemical compound COC1=CC(S(N)(=O)=O)=C(C)C=C1N IIDAJRNSZSFFCB-UHFFFAOYSA-N 0.000 description 1
- BGWLYQZDNFIFRX-UHFFFAOYSA-N 5-[3-[2-[3-(3,8-diamino-6-phenylphenanthridin-5-ium-5-yl)propylamino]ethylamino]propyl]-6-phenylphenanthridin-5-ium-3,8-diamine;dichloride Chemical compound [Cl-].[Cl-].C=1C(N)=CC=C(C2=CC=C(N)C=C2[N+]=2CCCNCCNCCC[N+]=3C4=CC(N)=CC=C4C4=CC=C(N)C=C4C=3C=3C=CC=CC=3)C=1C=2C1=CC=CC=C1 BGWLYQZDNFIFRX-UHFFFAOYSA-N 0.000 description 1
- 101150107168 AMP gene Proteins 0.000 description 1
- 230000002407 ATP formation Effects 0.000 description 1
- ZKHQWZAMYRWXGA-KQYNXXCUSA-J ATP(4-) Chemical compound C1=NC=2C(N)=NC=NC=2N1[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OP([O-])([O-])=O)[C@@H](O)[C@H]1O ZKHQWZAMYRWXGA-KQYNXXCUSA-J 0.000 description 1
- HJCMDXDYPOUFDY-WHFBIAKZSA-N Ala-Gln Chemical compound C[C@H](N)C(=O)N[C@H](C(O)=O)CCC(N)=O HJCMDXDYPOUFDY-WHFBIAKZSA-N 0.000 description 1
- IPWKGIFRRBGCJO-IMJSIDKUSA-N Ala-Ser Chemical compound C[C@H]([NH3+])C(=O)N[C@@H](CO)C([O-])=O IPWKGIFRRBGCJO-IMJSIDKUSA-N 0.000 description 1
- 241000123646 Allioideae Species 0.000 description 1
- 241000234270 Amaryllidaceae Species 0.000 description 1
- 101000700937 Amsacta albistriga Sex-specific storage protein 1 Proteins 0.000 description 1
- 241000242757 Anthozoa Species 0.000 description 1
- 108010087765 Antipain Proteins 0.000 description 1
- 241000208173 Apiaceae Species 0.000 description 1
- 241000208327 Apocynaceae Species 0.000 description 1
- 108010039627 Aprotinin Proteins 0.000 description 1
- 108010077805 Bacterial Proteins Proteins 0.000 description 1
- KHBQMWCZKVMBLN-UHFFFAOYSA-N Benzenesulfonamide Chemical compound NS(=O)(=O)C1=CC=CC=C1 KHBQMWCZKVMBLN-UHFFFAOYSA-N 0.000 description 1
- 241001072256 Boraginaceae Species 0.000 description 1
- 241000589174 Bradyrhizobium japonicum Species 0.000 description 1
- 101100084595 Caenorhabditis elegans pam-1 gene Proteins 0.000 description 1
- 241000208671 Campanulaceae Species 0.000 description 1
- 108090000565 Capsid Proteins Proteins 0.000 description 1
- 235000014653 Carica parviflora Nutrition 0.000 description 1
- 102000014914 Carrier Proteins Human genes 0.000 description 1
- 108010078791 Carrier Proteins Proteins 0.000 description 1
- 241000219321 Caryophyllaceae Species 0.000 description 1
- 101800003223 Cecropin-A Proteins 0.000 description 1
- 229930186147 Cephalosporin Natural products 0.000 description 1
- GHXZTYHSJHQHIJ-UHFFFAOYSA-N Chlorhexidine Chemical compound C=1C=C(Cl)C=CC=1NC(N)=NC(N)=NCCCCCCN=C(N)N=C(N)NC1=CC=C(Cl)C=C1 GHXZTYHSJHQHIJ-UHFFFAOYSA-N 0.000 description 1
- OLVPQBGMUGIKIW-UHFFFAOYSA-N Chymostatin Natural products C=1C=CC=CC=1CC(C=O)NC(=O)C(C(C)CC)NC(=O)C(C1NC(N)=NCC1)NC(=O)NC(C(O)=O)CC1=CC=CC=C1 OLVPQBGMUGIKIW-UHFFFAOYSA-N 0.000 description 1
- 241000243321 Cnidaria Species 0.000 description 1
- 108020004635 Complementary DNA Proteins 0.000 description 1
- 235000002787 Coriandrum sativum Nutrition 0.000 description 1
- 244000018436 Coriandrum sativum Species 0.000 description 1
- 101710190853 Cruciferin Proteins 0.000 description 1
- 241000195493 Cryptophyta Species 0.000 description 1
- 241000219104 Cucurbitaceae Species 0.000 description 1
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 1
- 150000008574 D-amino acids Chemical class 0.000 description 1
- WQZGKKKJIJFFOK-QTVWNMPRSA-N D-mannopyranose Chemical compound OC[C@H]1OC(O)[C@@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-QTVWNMPRSA-N 0.000 description 1
- 241000006867 Discosoma Species 0.000 description 1
- 206010059866 Drug resistance Diseases 0.000 description 1
- 239000006144 Dulbecco’s modified Eagle's medium Substances 0.000 description 1
- 238000001061 Dunnett's test Methods 0.000 description 1
- YQYJSBFKSSDGFO-UHFFFAOYSA-N Epihygromycin Natural products OC1C(O)C(C(=O)C)OC1OC(C(=C1)O)=CC=C1C=C(C)C(=O)NC1C(O)C(O)C2OCOC2C1O YQYJSBFKSSDGFO-UHFFFAOYSA-N 0.000 description 1
- 241001198387 Escherichia coli BL21(DE3) Species 0.000 description 1
- 241000221017 Euphorbiaceae Species 0.000 description 1
- 241000220485 Fabaceae Species 0.000 description 1
- 229930091371 Fructose Natural products 0.000 description 1
- 239000005715 Fructose Substances 0.000 description 1
- RFSUNEUAIZKAJO-ARQDHWQXSA-N Fructose Chemical compound OC[C@H]1O[C@](O)(CO)[C@@H](O)[C@@H]1O RFSUNEUAIZKAJO-ARQDHWQXSA-N 0.000 description 1
- 101710186901 Globulin 1 Proteins 0.000 description 1
- 102100041034 Glucosamine-6-phosphate isomerase 1 Human genes 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- 108010060309 Glucuronidase Proteins 0.000 description 1
- SXRSQZLOMIGNAQ-UHFFFAOYSA-N Glutaraldehyde Chemical compound O=CCCCC=O SXRSQZLOMIGNAQ-UHFFFAOYSA-N 0.000 description 1
- BCCRXDTUTZHDEU-VKHMYHEASA-N Gly-Ser Chemical compound NCC(=O)N[C@@H](CO)C(O)=O BCCRXDTUTZHDEU-VKHMYHEASA-N 0.000 description 1
- 239000005562 Glyphosate Substances 0.000 description 1
- 108010026389 Gramicidin Proteins 0.000 description 1
- 108091006013 HA-tagged proteins Proteins 0.000 description 1
- 239000007995 HEPES buffer Substances 0.000 description 1
- 241000169101 Hyacinthaceae Species 0.000 description 1
- 101100049353 Hypocrea virens (strain Gv29-8 / FGSC 10586) virC gene Proteins 0.000 description 1
- 101100484788 Hypocrea virens (strain Gv29-8 / FGSC 10586) virD gene Proteins 0.000 description 1
- 101100484795 Hypocrea virens (strain Gv29-8 / FGSC 10586) virE gene Proteins 0.000 description 1
- 238000012404 In vitro experiment Methods 0.000 description 1
- 108010025815 Kanamycin Kinase Proteins 0.000 description 1
- 108010009384 L-Iditol 2-Dehydrogenase Proteins 0.000 description 1
- ODKSFYDXXFIFQN-BYPYZUCNSA-P L-argininium(2+) Chemical compound NC(=[NH2+])NCCC[C@H]([NH3+])C(O)=O ODKSFYDXXFIFQN-BYPYZUCNSA-P 0.000 description 1
- ROHFNLRQFUQHCH-YFKPBYRVSA-N L-leucine Chemical compound CC(C)C[C@H](N)C(O)=O ROHFNLRQFUQHCH-YFKPBYRVSA-N 0.000 description 1
- KZSNJWFQEVHDMF-BYPYZUCNSA-N L-valine Chemical compound CC(C)[C@H](N)C(O)=O KZSNJWFQEVHDMF-BYPYZUCNSA-N 0.000 description 1
- 241000207923 Lamiaceae Species 0.000 description 1
- ROHFNLRQFUQHCH-UHFFFAOYSA-N Leucine Natural products CC(C)CC(N)C(O)=O ROHFNLRQFUQHCH-UHFFFAOYSA-N 0.000 description 1
- GDBQQVLCIARPGH-UHFFFAOYSA-N Leupeptin Natural products CC(C)CC(NC(C)=O)C(=O)NC(CC(C)C)C(=O)NC(C=O)CCCN=C(N)N GDBQQVLCIARPGH-UHFFFAOYSA-N 0.000 description 1
- 102000003960 Ligases Human genes 0.000 description 1
- 108090000364 Ligases Proteins 0.000 description 1
- 241000234280 Liliaceae Species 0.000 description 1
- 241000209510 Liliopsida Species 0.000 description 1
- 241000208202 Linaceae Species 0.000 description 1
- 108010028921 Lipopeptides Proteins 0.000 description 1
- 235000008755 Lupinus mutabilis Nutrition 0.000 description 1
- 240000005265 Lupinus mutabilis Species 0.000 description 1
- 239000007987 MES buffer Substances 0.000 description 1
- 241000219071 Malvaceae Species 0.000 description 1
- 241000427649 Melongena Species 0.000 description 1
- 108010085220 Multiprotein Complexes Proteins 0.000 description 1
- 102000007474 Multiprotein Complexes Human genes 0.000 description 1
- 102000016943 Muramidase Human genes 0.000 description 1
- 108010014251 Muramidase Proteins 0.000 description 1
- 102000018463 Myo-Inositol-1-Phosphate Synthase Human genes 0.000 description 1
- 108091000020 Myo-Inositol-1-Phosphate Synthase Proteins 0.000 description 1
- 241001442129 Myosotis Species 0.000 description 1
- 108010062010 N-Acetylmuramoyl-L-alanine Amidase Proteins 0.000 description 1
- NWBJYWHLCVSVIJ-UHFFFAOYSA-N N-benzyladenine Chemical compound N=1C=NC=2NC=NC=2C=1NCC1=CC=CC=C1 NWBJYWHLCVSVIJ-UHFFFAOYSA-N 0.000 description 1
- 101710202365 Napin Proteins 0.000 description 1
- 206010028980 Neoplasm Diseases 0.000 description 1
- 206010029155 Nephropathy toxic Diseases 0.000 description 1
- 206010067482 No adverse event Diseases 0.000 description 1
- 101710089395 Oleosin Proteins 0.000 description 1
- 241000283977 Oryctolagus Species 0.000 description 1
- 240000008346 Oryza glaberrima Species 0.000 description 1
- 206010034133 Pathogen resistance Diseases 0.000 description 1
- 229930182555 Penicillin Natural products 0.000 description 1
- JGSARLDLIJGVTE-MBNYWOFBSA-N Penicillin G Chemical compound N([C@H]1[C@H]2SC([C@@H](N2C1=O)C(O)=O)(C)C)C(=O)CC1=CC=CC=C1 JGSARLDLIJGVTE-MBNYWOFBSA-N 0.000 description 1
- 108010009711 Phalloidine Proteins 0.000 description 1
- 101000870887 Phaseolus vulgaris Glycine-rich cell wall structural protein 1.8 Proteins 0.000 description 1
- IAJOBQBIJHVGMQ-UHFFFAOYSA-N Phosphinothricin Natural products CP(O)(=O)CCC(N)C(O)=O IAJOBQBIJHVGMQ-UHFFFAOYSA-N 0.000 description 1
- 241000390166 Physaria Species 0.000 description 1
- 241001483078 Phyto Species 0.000 description 1
- 241000219505 Phytolaccaceae Species 0.000 description 1
- 241000218641 Pinaceae Species 0.000 description 1
- 235000011613 Pinus brutia Nutrition 0.000 description 1
- 108010064851 Plant Proteins Proteins 0.000 description 1
- 241000013557 Plantaginaceae Species 0.000 description 1
- 108010040201 Polymyxins Proteins 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 229920001213 Polysorbate 20 Polymers 0.000 description 1
- 241000589516 Pseudomonas Species 0.000 description 1
- 101150084101 RNA2 gene Proteins 0.000 description 1
- 101100378960 Rattus norvegicus Pam gene Proteins 0.000 description 1
- 108010008281 Recombinant Fusion Proteins Proteins 0.000 description 1
- 102000007056 Recombinant Fusion Proteins Human genes 0.000 description 1
- 102000002278 Ribosomal Proteins Human genes 0.000 description 1
- 108010000605 Ribosomal Proteins Proteins 0.000 description 1
- 235000004789 Rosa xanthina Nutrition 0.000 description 1
- 241000220222 Rosaceae Species 0.000 description 1
- 101100353432 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) PRP2 gene Proteins 0.000 description 1
- 108010016634 Seed Storage Proteins Proteins 0.000 description 1
- 208000034177 Self-improving collodion baby Diseases 0.000 description 1
- 101100018379 Shigella flexneri icsA gene Proteins 0.000 description 1
- 108020004682 Single-Stranded DNA Proteins 0.000 description 1
- 241000208292 Solanaceae Species 0.000 description 1
- 102100026974 Sorbitol dehydrogenase Human genes 0.000 description 1
- 235000009337 Spinacia oleracea Nutrition 0.000 description 1
- 244000300264 Spinacia oleracea Species 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- 108700025695 Suppressor Genes Proteins 0.000 description 1
- 108700005078 Synthetic Genes Proteins 0.000 description 1
- 239000004098 Tetracycline Substances 0.000 description 1
- 244000042324 Trifolium repens Species 0.000 description 1
- 235000010729 Trifolium repens Nutrition 0.000 description 1
- 235000021307 Triticum Nutrition 0.000 description 1
- 241000209140 Triticum Species 0.000 description 1
- 241000208236 Tropaeolaceae Species 0.000 description 1
- 102000044159 Ubiquitin Human genes 0.000 description 1
- 108090000848 Ubiquitin Proteins 0.000 description 1
- KZSNJWFQEVHDMF-UHFFFAOYSA-N Valine Natural products CC(C)C(N)C(O)=O KZSNJWFQEVHDMF-UHFFFAOYSA-N 0.000 description 1
- 241001106476 Violaceae Species 0.000 description 1
- 101100476911 Yersinia enterocolitica yscW gene Proteins 0.000 description 1
- 101100398736 Yersinia pestis lcrF gene Proteins 0.000 description 1
- 101001036768 Zea mays Glucose-1-phosphate adenylyltransferase large subunit 1, chloroplastic/amyloplastic Proteins 0.000 description 1
- 101001040871 Zea mays Glutelin-2 Proteins 0.000 description 1
- 101000662549 Zea mays Sucrose synthase 1 Proteins 0.000 description 1
- 101150067314 aadA gene Proteins 0.000 description 1
- 238000002835 absorbance Methods 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 101150063416 add gene Proteins 0.000 description 1
- 239000003463 adsorbent Substances 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 125000000539 amino acid group Chemical group 0.000 description 1
- 125000000129 anionic group Chemical group 0.000 description 1
- 230000011641 antimicrobial peptide production Effects 0.000 description 1
- SDNYTAYICBFYFH-TUFLPTIASA-N antipain Chemical compound NC(N)=NCCC[C@@H](C=O)NC(=O)[C@H](C(C)C)NC(=O)[C@H](CCCN=C(N)N)NC(=O)N[C@H](C(O)=O)CC1=CC=CC=C1 SDNYTAYICBFYFH-TUFLPTIASA-N 0.000 description 1
- 238000003782 apoptosis assay Methods 0.000 description 1
- 229960004405 aprotinin Drugs 0.000 description 1
- PYMYPHUHKUWMLA-UHFFFAOYSA-N arabinose Natural products OCC(O)C(O)C(O)C=O PYMYPHUHKUWMLA-UHFFFAOYSA-N 0.000 description 1
- 125000000637 arginyl group Chemical group N[C@@H](CCCNC(N)=N)C(=O)* 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 101150103518 bar gene Proteins 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- SRBFZHDQGSBBOR-UHFFFAOYSA-N beta-D-Pyranose-Lyxose Natural products OC1COC(O)C(O)C1O SRBFZHDQGSBBOR-UHFFFAOYSA-N 0.000 description 1
- MSWZFWKMSRAUBD-UHFFFAOYSA-N beta-D-galactosamine Natural products NC1C(O)OC(CO)C(O)C1O MSWZFWKMSRAUBD-UHFFFAOYSA-N 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 239000002551 biofuel Substances 0.000 description 1
- 230000004071 biological effect Effects 0.000 description 1
- 229920001222 biopolymer Polymers 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 108091005948 blue fluorescent proteins Proteins 0.000 description 1
- BQRGNLJZBFXNCZ-UHFFFAOYSA-N calcein am Chemical compound O1C(=O)C2=CC=CC=C2C21C1=CC(CN(CC(=O)OCOC(C)=O)CC(=O)OCOC(C)=O)=C(OC(C)=O)C=C1OC1=C2C=C(CN(CC(=O)OCOC(C)=O)CC(=O)OCOC(=O)C)C(OC(C)=O)=C1 BQRGNLJZBFXNCZ-UHFFFAOYSA-N 0.000 description 1
- HCQPHKMLKXOJSR-IRCPFGJUSA-N cecropin-a Chemical compound C([C@@H](C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCCCN)C(=O)N[C@H](C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCCCN)C(=O)N[C@H](C(=O)NCC(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@H](C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(O)=O)C(=O)NCC(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](C)C(=O)NCC(=O)N1[C@@H](CCC1)C(=O)N[C@@H](C)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](C)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](C(C)C)C(=O)NCC(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](C)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](C)C(=O)N[C@@H](CCCCN)C(N)=O)[C@@H](C)CC)C(C)C)[C@@H](C)CC)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CCCCN)NC(=O)[C@H](CC=1C2=CC=CC=C2NC=1)NC(=O)[C@@H](N)CCCCN)C1=CC=CC=C1 HCQPHKMLKXOJSR-IRCPFGJUSA-N 0.000 description 1
- 239000006143 cell culture medium Substances 0.000 description 1
- 230000030833 cell death Effects 0.000 description 1
- 239000013592 cell lysate Substances 0.000 description 1
- 238000001516 cell proliferation assay Methods 0.000 description 1
- 238000003570 cell viability assay Methods 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 108010040093 cellulose synthase Proteins 0.000 description 1
- 229940124587 cephalosporin Drugs 0.000 description 1
- 150000001780 cephalosporins Chemical class 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- KAFGYXORACVKTE-UEDJBKKJSA-N chembl503567 Chemical compound C([C@H]1C(=O)N[C@H]2CSSC[C@H](NC(=O)[C@H](CC=3C=CC=CC=3)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CCCNC(N)=N)NC2=O)C(=O)N[C@H](C(=O)N[C@@H](CSSC[C@@H](C(N1)=O)NC(=O)[C@@H](NC(=O)[C@H](CCCNC(N)=N)NC(=O)CNC(=O)CNC(=O)[C@@H](N)CCCNC(N)=N)CC(C)C)C(=O)N[C@@H](C(C)C)C(=O)NCC(=O)N[C@@H](CCCNC(N)=N)C(O)=O)C(C)C)C1=CC=C(O)C=C1 KAFGYXORACVKTE-UEDJBKKJSA-N 0.000 description 1
- 229960005091 chloramphenicol Drugs 0.000 description 1
- WIIZWVCIJKGZOK-RKDXNWHRSA-N chloramphenicol Chemical compound ClC(Cl)C(=O)N[C@H](CO)[C@H](O)C1=CC=C([N+]([O-])=O)C=C1 WIIZWVCIJKGZOK-RKDXNWHRSA-N 0.000 description 1
- 229960003260 chlorhexidine Drugs 0.000 description 1
- 239000013611 chromosomal DNA Substances 0.000 description 1
- 230000002759 chromosomal effect Effects 0.000 description 1
- 108010086192 chymostatin Proteins 0.000 description 1
- 229960001127 colistin sulfate Drugs 0.000 description 1
- 230000002860 competitive effect Effects 0.000 description 1
- 239000002299 complementary DNA Substances 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- NKLPQNGYXWVELD-UHFFFAOYSA-M coomassie brilliant blue Chemical compound [Na+].C1=CC(OCC)=CC=C1NC1=CC=C(C(=C2C=CC(C=C2)=[N+](CC)CC=2C=C(C=CC=2)S([O-])(=O)=O)C=2C=CC(=CC=2)N(CC)CC=2C=C(C=CC=2)S([O-])(=O)=O)C=C1 NKLPQNGYXWVELD-UHFFFAOYSA-M 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 210000004748 cultured cell Anatomy 0.000 description 1
- 108010082025 cyan fluorescent protein Proteins 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- UQHKFADEQIVWID-UHFFFAOYSA-N cytokinin Natural products C1=NC=2C(NCC=C(CO)C)=NC=NC=2N1C1CC(O)C(CO)O1 UQHKFADEQIVWID-UHFFFAOYSA-N 0.000 description 1
- 239000004062 cytokinin Substances 0.000 description 1
- 231100000433 cytotoxic Toxicity 0.000 description 1
- 230000001472 cytotoxic effect Effects 0.000 description 1
- 238000002784 cytotoxicity assay Methods 0.000 description 1
- 231100000263 cytotoxicity test Toxicity 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 238000007405 data analysis Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 239000003599 detergent Substances 0.000 description 1
- 230000029087 digestion Effects 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 229940042399 direct acting antivirals protease inhibitors Drugs 0.000 description 1
- 230000003828 downregulation Effects 0.000 description 1
- 238000007876 drug discovery Methods 0.000 description 1
- 235000005489 dwarf bean Nutrition 0.000 description 1
- 238000001962 electrophoresis Methods 0.000 description 1
- 238000010828 elution Methods 0.000 description 1
- 239000003623 enhancer Substances 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 241001233957 eudicotyledons Species 0.000 description 1
- 210000001723 extracellular space Anatomy 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000011536 extraction buffer Substances 0.000 description 1
- 239000000834 fixative Substances 0.000 description 1
- 229940124307 fluoroquinolone Drugs 0.000 description 1
- 239000012634 fragment Substances 0.000 description 1
- 238000004108 freeze drying Methods 0.000 description 1
- 238000002523 gelfiltration Methods 0.000 description 1
- 238000007429 general method Methods 0.000 description 1
- 239000012362 glacial acetic acid Substances 0.000 description 1
- 229960002442 glucosamine Drugs 0.000 description 1
- 108010022717 glucosamine-6-phosphate isomerase Proteins 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- 239000006481 glucose medium Substances 0.000 description 1
- IAJOBQBIJHVGMQ-BYPYZUCNSA-N glufosinate-P Chemical compound CP(O)(=O)CC[C@H](N)C(O)=O IAJOBQBIJHVGMQ-BYPYZUCNSA-N 0.000 description 1
- XDDAORKBJWWYJS-UHFFFAOYSA-N glyphosate Chemical compound OC(=O)CNCP(O)(O)=O XDDAORKBJWWYJS-UHFFFAOYSA-N 0.000 description 1
- 229940097068 glyphosate Drugs 0.000 description 1
- 210000002288 golgi apparatus Anatomy 0.000 description 1
- IUAYMJGZBVDSGL-XNNAEKOYSA-N gramicidin S Chemical compound C([C@@H]1C(=O)N2CCC[C@H]2C(=O)N[C@H](C(=O)N[C@@H](CCCN)C(=O)N[C@H](C(N[C@H](CC=2C=CC=CC=2)C(=O)N2CCC[C@H]2C(=O)N[C@H](C(=O)N[C@@H](CCCN)C(=O)N[C@@H](CC(C)C)C(=O)N1)C(C)C)=O)CC(C)C)C(C)C)C1=CC=CC=C1 IUAYMJGZBVDSGL-XNNAEKOYSA-N 0.000 description 1
- 229950009774 gramicidin s Drugs 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 230000009643 growth defect Effects 0.000 description 1
- 239000000122 growth hormone Substances 0.000 description 1
- 230000009036 growth inhibition Effects 0.000 description 1
- 238000003306 harvesting Methods 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 230000002363 herbicidal effect Effects 0.000 description 1
- 238000009396 hybridization Methods 0.000 description 1
- 230000000640 hydroxylating effect Effects 0.000 description 1
- 239000012135 ice-cold extraction buffer Substances 0.000 description 1
- 210000000987 immune system Anatomy 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- ZPNFWUPYTFPOJU-LPYSRVMUSA-N iniprol Chemical compound C([C@H]1C(=O)NCC(=O)NCC(=O)N[C@H]2CSSC[C@H]3C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](C)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@H](C(N[C@H](C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC=4C=CC(O)=CC=4)C(=O)N[C@@H](CC=4C=CC=CC=4)C(=O)N[C@@H](CC=4C=CC(O)=CC=4)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](C)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](C)C(=O)NCC(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CSSC[C@H](NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](C)NC(=O)[C@H](CO)NC(=O)[C@H](CCCCN)NC(=O)[C@H](CC=4C=CC=CC=4)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CCCCN)NC(=O)[C@H](C)NC(=O)[C@H](CCCNC(N)=N)NC2=O)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CSSC[C@H](NC(=O)[C@H](CC=2C=CC=CC=2)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H]2N(CCC2)C(=O)[C@@H](N)CCCNC(N)=N)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(O)=O)C(=O)N2[C@@H](CCC2)C(=O)N2[C@@H](CCC2)C(=O)N[C@@H](CC=2C=CC(O)=CC=2)C(=O)N[C@@H]([C@@H](C)O)C(=O)NCC(=O)N2[C@@H](CCC2)C(=O)N3)C(=O)NCC(=O)NCC(=O)N[C@@H](C)C(O)=O)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@H](C(=O)N[C@@H](CC=2C=CC=CC=2)C(=O)N[C@H](C(=O)N1)C(C)C)[C@@H](C)O)[C@@H](C)CC)=O)[C@@H](C)CC)C1=CC=C(O)C=C1 ZPNFWUPYTFPOJU-LPYSRVMUSA-N 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 239000000543 intermediate Substances 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 238000003367 kinetic assay Methods 0.000 description 1
- 235000021374 legumes Nutrition 0.000 description 1
- GDBQQVLCIARPGH-ULQDDVLXSA-N leupeptin Chemical compound CC(C)C[C@H](NC(C)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@H](C=O)CCCN=C(N)N GDBQQVLCIARPGH-ULQDDVLXSA-N 0.000 description 1
- 108010052968 leupeptin Proteins 0.000 description 1
- 238000009630 liquid culture Methods 0.000 description 1
- 239000012160 loading buffer Substances 0.000 description 1
- 125000003588 lysine group Chemical group [H]N([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])(N([H])[H])C(*)=O 0.000 description 1
- 239000012139 lysis buffer Substances 0.000 description 1
- 239000004325 lysozyme Substances 0.000 description 1
- 229960000274 lysozyme Drugs 0.000 description 1
- 235000010335 lysozyme Nutrition 0.000 description 1
- 239000003120 macrolide antibiotic agent Substances 0.000 description 1
- 229920002521 macromolecule Polymers 0.000 description 1
- 230000008176 mammary development Effects 0.000 description 1
- 230000035800 maturation Effects 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000010197 meta-analysis Methods 0.000 description 1
- 238000000520 microinjection Methods 0.000 description 1
- 238000000386 microscopy Methods 0.000 description 1
- 210000003470 mitochondria Anatomy 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 239000003068 molecular probe Substances 0.000 description 1
- 239000004570 mortar (masonry) Substances 0.000 description 1
- 239000010841 municipal wastewater Substances 0.000 description 1
- 238000002703 mutagenesis Methods 0.000 description 1
- 231100000350 mutagenesis Toxicity 0.000 description 1
- ZESIAEVDVPWEKB-ORCFLVBFSA-N n-[(2s)-4-amino-1-[[(2s,3r)-1-[[(2s)-4-amino-1-oxo-1-[[(3s,6s,9s,12s,15r,18s,21s)-6,9,18-tris(2-aminoethyl)-3-[(1r)-1-hydroxyethyl]-12,15-bis(2-methylpropyl)-2,5,8,11,14,17,20-heptaoxo-1,4,7,10,13,16,19-heptazacyclotricos-21-yl]amino]butan-2-yl]amino]-3-h Chemical compound OS(O)(=O)=O.OS(O)(=O)=O.CC(C)CCCCC(=O)N[C@@H](CCN)C(=O)N[C@H]([C@@H](C)O)CN[C@@H](CCN)C(=O)N[C@H]1CCNC(=O)[C@H]([C@@H](C)O)NC(=O)[C@H](CCN)NC(=O)[C@H](CCN)NC(=O)[C@H](CC(C)C)NC(=O)[C@@H](CC(C)C)NC(=O)[C@H](CCN)NC1=O.CCC(C)CCCCC(=O)N[C@@H](CCN)C(=O)N[C@H]([C@@H](C)O)CN[C@@H](CCN)C(=O)N[C@H]1CCNC(=O)[C@H]([C@@H](C)O)NC(=O)[C@H](CCN)NC(=O)[C@H](CCN)NC(=O)[C@H](CC(C)C)NC(=O)[C@@H](CC(C)C)NC(=O)[C@H](CCN)NC1=O ZESIAEVDVPWEKB-ORCFLVBFSA-N 0.000 description 1
- 238000002663 nebulization Methods 0.000 description 1
- 230000007694 nephrotoxicity Effects 0.000 description 1
- 231100000417 nephrotoxicity Toxicity 0.000 description 1
- 108010058731 nopaline synthase Proteins 0.000 description 1
- 239000002773 nucleotide Substances 0.000 description 1
- 125000003729 nucleotide group Chemical group 0.000 description 1
- 229920002113 octoxynol Polymers 0.000 description 1
- 238000001543 one-way ANOVA Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 229910000489 osmium tetroxide Inorganic materials 0.000 description 1
- 239000012285 osmium tetroxide Substances 0.000 description 1
- 238000007427 paired t-test Methods 0.000 description 1
- FJKROLUGYXJWQN-UHFFFAOYSA-N papa-hydroxy-benzoic acid Natural products OC(=O)C1=CC=C(O)C=C1 FJKROLUGYXJWQN-UHFFFAOYSA-N 0.000 description 1
- 239000012188 paraffin wax Substances 0.000 description 1
- 229940049954 penicillin Drugs 0.000 description 1
- 229950000964 pepstatin Drugs 0.000 description 1
- 108010091212 pepstatin Proteins 0.000 description 1
- FAXGPCHRFPCXOO-LXTPJMTPSA-N pepstatin A Chemical compound OC(=O)C[C@H](O)[C@H](CC(C)C)NC(=O)[C@H](C)NC(=O)C[C@H](O)[C@H](CC(C)C)NC(=O)[C@H](C(C)C)NC(=O)[C@H](C(C)C)NC(=O)CC(C)C FAXGPCHRFPCXOO-LXTPJMTPSA-N 0.000 description 1
- 230000006919 peptide aggregation Effects 0.000 description 1
- 230000006228 peptide amidation Effects 0.000 description 1
- 238000010635 peptide amidation reaction Methods 0.000 description 1
- 230000035479 physiological effects, processes and functions Effects 0.000 description 1
- FFNMBRCFFADNAO-UHFFFAOYSA-N pirenzepine hydrochloride Chemical compound [H+].[H+].[Cl-].[Cl-].C1CN(C)CCN1CC(=O)N1C2=NC=CC=C2NC(=O)C2=CC=CC=C21 FFNMBRCFFADNAO-UHFFFAOYSA-N 0.000 description 1
- 108700041893 plant SUMO Proteins 0.000 description 1
- 230000008121 plant development Effects 0.000 description 1
- 235000021118 plant-derived protein Nutrition 0.000 description 1
- 230000004260 plant-type cell wall biogenesis Effects 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 239000002798 polar solvent Substances 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 239000000256 polyoxyethylene sorbitan monolaurate Substances 0.000 description 1
- 235000010486 polyoxyethylene sorbitan monolaurate Nutrition 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920000131 polyvinylidene Polymers 0.000 description 1
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 230000004481 post-translational protein modification Effects 0.000 description 1
- 230000032361 posttranscriptional gene silencing Effects 0.000 description 1
- 239000000276 potassium ferrocyanide Substances 0.000 description 1
- 239000008057 potassium phosphate buffer Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 125000002924 primary amino group Chemical class [H]N([H])* 0.000 description 1
- 230000019525 primary metabolic process Effects 0.000 description 1
- 230000005522 programmed cell death Effects 0.000 description 1
- 230000000135 prohibitive effect Effects 0.000 description 1
- 230000035755 proliferation Effects 0.000 description 1
- 108010032966 protegrin-1 Proteins 0.000 description 1
- 238000001243 protein synthesis Methods 0.000 description 1
- 230000005180 public health Effects 0.000 description 1
- 238000011002 quantification Methods 0.000 description 1
- 239000011535 reaction buffer Substances 0.000 description 1
- 108010054624 red fluorescent protein Proteins 0.000 description 1
- 230000003362 replicative effect Effects 0.000 description 1
- 230000001850 reproductive effect Effects 0.000 description 1
- 210000004994 reproductive system Anatomy 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 238000004366 reverse phase liquid chromatography Methods 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 108700038288 rhodamine-phalloidin Proteins 0.000 description 1
- 229960004889 salicylic acid Drugs 0.000 description 1
- 238000013341 scale-up Methods 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 230000008117 seed development Effects 0.000 description 1
- 208000003665 self-healing collodion baby Diseases 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 239000010865 sewage Substances 0.000 description 1
- 230000001568 sexual effect Effects 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000000600 sorbitol Substances 0.000 description 1
- 108010048090 soybean lectin Proteins 0.000 description 1
- 229960000268 spectinomycin Drugs 0.000 description 1
- UNFWWIHTNXNPBV-WXKVUWSESA-N spectinomycin Chemical compound O([C@@H]1[C@@H](NC)[C@@H](O)[C@H]([C@@H]([C@H]1O1)O)NC)[C@]2(O)[C@H]1O[C@H](C)CC2=O UNFWWIHTNXNPBV-WXKVUWSESA-N 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 230000010473 stable expression Effects 0.000 description 1
- 239000012192 staining solution Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- 238000007619 statistical method Methods 0.000 description 1
- 239000008223 sterile water Substances 0.000 description 1
- 150000003431 steroids Chemical class 0.000 description 1
- 239000011550 stock solution Substances 0.000 description 1
- 239000012536 storage buffer Substances 0.000 description 1
- 229960005322 streptomycin Drugs 0.000 description 1
- 229940124530 sulfonamide Drugs 0.000 description 1
- 150000003456 sulfonamides Chemical class 0.000 description 1
- 229910021653 sulphate ion Inorganic materials 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 101150065190 term gene Proteins 0.000 description 1
- 229960002180 tetracycline Drugs 0.000 description 1
- 229930101283 tetracycline Natural products 0.000 description 1
- 235000019364 tetracycline Nutrition 0.000 description 1
- 150000003522 tetracyclines Chemical class 0.000 description 1
- XOGGUFAVLNCTRS-UHFFFAOYSA-N tetrapotassium;iron(2+);hexacyanide Chemical compound [K+].[K+].[K+].[K+].[Fe+2].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-] XOGGUFAVLNCTRS-UHFFFAOYSA-N 0.000 description 1
- 229940126585 therapeutic drug Drugs 0.000 description 1
- 229940027257 timentin Drugs 0.000 description 1
- 230000005030 transcription termination Effects 0.000 description 1
- 238000001890 transfection Methods 0.000 description 1
- 238000000844 transformation Methods 0.000 description 1
- 238000011426 transformation method Methods 0.000 description 1
- 238000003146 transient transfection Methods 0.000 description 1
- GPRLSGONYQIRFK-MNYXATJNSA-N triton Chemical compound [3H+] GPRLSGONYQIRFK-MNYXATJNSA-N 0.000 description 1
- 239000004474 valine Substances 0.000 description 1
- 235000013311 vegetables Nutrition 0.000 description 1
- 230000035899 viability Effects 0.000 description 1
- 101150027375 virA gene Proteins 0.000 description 1
- 101150076562 virB gene Proteins 0.000 description 1
- 101150103224 virF gene Proteins 0.000 description 1
- 101150033532 virG gene Proteins 0.000 description 1
- 239000013603 viral vector Substances 0.000 description 1
- 230000001018 virulence Effects 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- 238000012800 visualization Methods 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- 210000005253 yeast cell Anatomy 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/82—Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
- C12N15/8241—Phenotypically and genetically modified plants via recombinant DNA technology
- C12N15/8242—Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
- C12N15/8257—Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits for the production of primary gene products, e.g. pharmaceutical products, interferon
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/82—Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
- C12N15/8216—Methods for controlling, regulating or enhancing expression of transgenes in plant cells
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/0004—Oxidoreductases (1.)
- C12N9/0071—Oxidoreductases (1.) acting on paired donors with incorporation of molecular oxygen (1.14)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y114/00—Oxidoreductases acting on paired donors, with incorporation or reduction of molecular oxygen (1.14)
- C12Y114/17—Oxidoreductases acting on paired donors, with incorporation or reduction of molecular oxygen (1.14) with reduced ascorbate as one donor, and incorporation of one atom of oxygen (1.14.17)
- C12Y114/17003—Peptidylglycine monooxygenase (1.14.17.3)
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2319/00—Fusion polypeptide
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2319/00—Fusion polypeptide
- C07K2319/20—Fusion polypeptide containing a tag with affinity for a non-protein ligand
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2319/00—Fusion polypeptide
- C07K2319/20—Fusion polypeptide containing a tag with affinity for a non-protein ligand
- C07K2319/22—Fusion polypeptide containing a tag with affinity for a non-protein ligand containing a Strep-tag
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2319/00—Fusion polypeptide
- C07K2319/40—Fusion polypeptide containing a tag for immunodetection, or an epitope for immunisation
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2319/00—Fusion polypeptide
- C07K2319/40—Fusion polypeptide containing a tag for immunodetection, or an epitope for immunisation
- C07K2319/41—Fusion polypeptide containing a tag for immunodetection, or an epitope for immunisation containing a Myc-tag
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2319/00—Fusion polypeptide
- C07K2319/40—Fusion polypeptide containing a tag for immunodetection, or an epitope for immunisation
- C07K2319/42—Fusion polypeptide containing a tag for immunodetection, or an epitope for immunisation containing a HA(hemagglutinin)-tag
Definitions
- This invention is generally in the field of antimicrobial peptide production in planta.
- AMPs Antimicrobial peptides
- HDPs host defense peptides
- AMPs evolved as part of the immune systems in many species and kill bacterial cells (including drug-resistant strains) 1 by interacting with their membranes followed by multimodal mechanisms that can include membrane perturbation, inhibition of cell wall synthesis and inhibition of internal targets including synthesis of macromolecules, 2,3 acting more rapidly than classical antibiotics, 4 and limiting the evolution of drug resistance.
- 5,6 AMPs can also exhibit potent activity against bacterial biofilms, independent of AMP activity, 7 and diverse immunomodulatory effects. 8
- the pervasive collateral sensitivity of AMPs towards drugresistant bacterial strains, 9 and their marked functional synergism with current antibiotics 10 underscores their potential use as effective therapeutic drugs.
- the development of clinically translated AMPs has only recently begun to accelerate.
- AMPs are particularly challenging and costly to manufacture synthetically, slowing down their clinical translation.
- Conventional AMP manufacturing relies on solid-phase peptide synthesis (SPPS) with a cost between $100 and $600 per gram, 2 although certain efficiencies can be gained by optimizing large-scale synthesis that help bring down costs.
- SPPS solid-phase peptide synthesis
- solid-phase peptide synthesis suffers from the prohibitive limitation of peptide length, which should be no more than 50 amino acids, 14 the presence of hydrophobic peptides that tend to aggregate in the solvents used for synthesis, 15 and the need to use hazardous chemicals and solvents throughout the peptide synthesis and purification procedures. 16
- Synthetic biology offers the promise of sustainable, scalable, and cost-effective production of AMPs, based on genetically engineered organisms.
- AMPs can be produced in bacterial or yeast cells and purified to homogeneity, the use of plants as a production host for complex biologies is deemed safer, demands less infrastructure, and has the potential for rapid scaling-up of production.
- producing proteins in plants is estimated to cost 10- to 50-times less than E. coli fermentation.
- 21 In planta production of peptides has proven difficult, presumably due to proteolysis by plant proteases.
- various strategies have been deployed, such as the downregulation of genes encoding interfering plant proteases 22 or restricting AMP production to a specific organelle. 23 Despite these strategies, the typical yields from plant-produced peptides have generally been low. 24 ’ 25
- compositions and methods for the controlled in planta production of amidated AMPs are disclosed.
- the disclosed methods use a targeted combination of (a) stable and (b) transient expression modules in transgenic plants.
- the bifunctional peptidylglycine a-amidating monooxygenase (PAM) enzyme preferably from rats (Rattus norvegicus) is used to introduce the mammalian C-terminal amidation pathway into plants, for example, N. benthamiana plants.
- PAM monooxygenase
- a first aspect relates to heterologous production of amidated antimicrobial peptide in plant expressed as mutated SUMO-fused domain.
- the nucleic acid sequences are also comprised of cleavable linkers which can be cleaved orthogonally by the orthogonal protease SENP EUH protease, flexible linker sequences allowing independent movement of N and C terminal, and the presence of C terminal glycine residue which is required as a substrate for amidation.
- the sequences are typically expressed transiently and are not integrated into the host cell chromosome.
- AMPs preferably, cationic AMPs in plants
- a purification tag such as the eight amino-acid Strep-tag II sequence is added to the AMPs for high-affinity binding to the engineered streptavidin Strep-Tactin.
- the construct is designed to encode a fusion protein containing a purification tag, an optional epitope such as a hemagglutinin (HA) epitope, for example, human influenza hemagglutinin epitope, an optional linker, for example, GGSGGS (SE ID NO: 54); a cleavage sequence such as small ubiquitin-related modifier (bdSUMO) containing mutations at SUMO-interacting positions (bdSUMOEul) and the AMP sequence of interest, with a terminal glycine residue (hereinafter, AMP-fusion protein expression construct).
- a hemagglutinin (HA) epitope for example, human influenza hemagglutinin epitope
- an optional linker for example, GGSGGS (SE ID NO: 54
- a cleavage sequence such as small ubiquitin-related modifier (bdSUMO) containing mutations at SUMO-interacting positions (bdSUMOEul) and the AMP sequence of interest, with
- Exemplary AMP sequences with a terminal glycine residue include 1018-G (VRLIVAVRIWRRG) (SEQ ID NO:51), 1002-G (VQRWLIVWRIRKG) (SEQ ID NO:52), and 3002-G (ILVRWIRWRIQWG) (SEQ ID NO:53).
- Epitope tagging is a method of expressing proteins whereby an epitope for a specific monoclonal antibody is fused to a target protein using recombinant DNA techniques. The fusion protein can then be detected and/or purified using a monoclonal antibody specific for the epitope tag.
- a vector containing an AMP-fusion protein expression construct and a vector containing a construct encoding PAM are transiently co-expressed in a plant.
- a vector containing an AMP-fusion protein expression construct is transiently expressed in a plant stably expressing PAM.
- the plant is engineered for cytosolic accumulation of the expression product i.e., the AMP fusion protein.
- a second aspect includes transient expression of PAM1, PAM2 and PAM3 enzymes from Rattus norvegicus. These enzyme sequences are expressed transiently and not integrated into the host the cell chromosome.
- a third aspect include the generation of PAM1 transgenic plants, wherein the enzyme sequence is integrated into the plant host cell chromosome using, preferably, by Agrobacterial- mediated delivery.
- Transgenic plant cell which include one or more nucleic acid sequences containing the AMP-fusion protein construct and encoding an AMP-fusion protein and/or one or more nucleic acid sequences encoding PAM, are also provided.
- a fourth aspect relates to the large-scale purification of SENP EuH protease enzyme from an E. coli host.
- a fifth aspect relates a peptide purification method from plants employing high- performance liquid chromatography methods to obtain peptide as chloride salts, which are nontoxic compared to antimicrobial peptide produced as Tri-flouroacetic acid salts.
- FIGs. 1A-1G shows establishment of a SynBio chassis for in planta expression of AMPs.
- FIG. 1A is a schematic diagram of the AMP expression cassette for in planta expression, using the backbone of the pEAQ-HT vector.
- Strep-II high affinity strep-tag II
- HA human influenza hemagglutinin epitope
- linker flexible GGSGGS (SEQ ID NO:54) linker
- bdSUMO Eul small ubiquitin-related modifier (bdSUMO) from Brachypodium distachyon containing mutations at SUMO-in teracting positions
- AMP1, AMP2 and AMP3 with a terminal glycine residue.
- IB is a flowchart summarizing the plant-based production and purification of biologically active AMPs.
- the individual plasmids are transformed into Agrobacterium tumefaciens and infiltrated into Nicotiana benthamiana; leaves are harvested at 6 days post infiltration (dpi); total protein is harvested and applied to Strep-Tactin Superflow resin.
- His-tagged SENP EUH is removed using Ni-affinity chromatography and isolated AMPs are further purified by size-exclusion chromatography (SEC).
- SEC size-exclusion chromatography
- the pooled SEC fractions are applied to a reverse-phase high-performance liquid chromatograph (RP-HPLC) for final purification of AMPs.
- RP-HPLC reverse-phase high-performance liquid chromatograph
- FIG. ID is an immunoblot confirmation of purified SUMO-fused AMPs.
- the separated proteins were transferred onto a polyvinylidene difluoride membrane and probed with a monoclonal anti-HA antibody for detection of bdSUMO Eul -AMPs ( ⁇ 15.5 kDa).
- Total proteins extracted from non-infiltrated leaves served as negative control, NTC; HA-tagged protein was used as a positive control, PTC. Two independent blots were performed with similar results. The arrowhead indicates the expected size of protein.
- FIG. IE is a gel shift assay for AMP release. Proteins were separated on a 18% Tricine-SDS gel to detect the release of the AMP peptide ( ⁇ 1.5-1.7 kDa) from the bdSUMO Eul domain ( ⁇ I4 kDa). The arrowheads indicate the uncleaved (top arrowhead) and cleaved proteins (bottom arrowhead) respectively.
- FIG. IF is an RP-HPLC purification of AMPs. Pooled fractions from SEC were separated on a ZORBAX RX-C8 column using an acetonitrile gradient. Purified AMPs were separated on a 18% Tricine-SDS gel. Two independent Tricine-SDS -PAGE gels were performed with similar results.
- FIG. 1G is a mass analysis of plant-purified AMPs using ESI-MS.
- the y-axis shows the signal intensity, and the x-axis displays the m/z value of each peptide.
- the AMP peak values were added to the mass chromatographs.
- Black arrowheads indicate the expected size of peptides.
- FIGs. 2A-2E show plant-based platform for production of amidated AMPs.
- FIG. 2A is a schematic diagram of chimeric cassettes with different variants of bifunctional rat PAMs and the different domains: PHM (peptidylglycine a-hydroxylating monooxygenase domain); PAL (peptidyl-a-hydroxyglycine a-amidating lyase domain); A (region encoded by exon 16 separating the PHM and PHL domains); T (transmembrane domain); C (cytoplasmic domain). The HA epitope was added for immunodetection of PAMs.
- FIG. 2B shows in planta transient expression of PAM enzymes. Each plasmid was individually co-infiltrated in N.
- FIG. 2C shows in planta transient co-expression of AMPs and PAM enzymes. Constructs encoding AMPs and PAMs were transiently co-expressed in N.
- FIG. 2D shows in planta amidation of AMPs in transgenic plants expressing PAM1.
- Transgenic N. benthamiana lines (T4 generation) overexpressing a PAM1 variant were infiltrated with constructs encoding glycine-extended AMPs.
- AMPs were isolated and subjected to separation in RP-HPLC using 9.4 x 250 mm ZORBAX RX-C8 with an acetonitrile gradient from 20 to 80% in 0.01 M HC1 and monitored at the 215 nm wavelength.
- Purified peptides were eluted as a double peak, with the major peak belonging to amidated peptide with retention times of 10.2 min (AMP1), 9.7 min (AMP2), 10.2 min (AMP3) and the minor peak belonging to the non-amidated form with retention times 9.5 min (AMP1), 9.6 min (AMP2) and 9.7 min (AMP3).
- FIG. 2E shows confirmation of AMP amidation via ESLMS. Mass analysis of purified AMPs isolated from the PAM transgenic plants showing major peak belonging to amidated AMPs along the minor non- amidated peak.
- FIGs. 3A-3B show that plant-purified peptides display low toxicity in mammalian cells
- FIG. 3A shows representative dose-response curves
- FIGs. 4A-4F show experimental validation of antimicrobial activity of plant purified AMP1 against ESKAPE pathogens and their prevention of biofilm formation.
- FIG. 4A-4C show that purified peptides exhibit a similar efficacy as synthetic peptides.
- 10 6 colonyforming units (CFU)/ml of each ESKAPE E. coli PI-7, MRS A USA300, P. aeruginosa, K. pneumoniae, A. junii, E.
- coli PI-7 in OD600 at a concentration of pp: 50 pg/ml, sp: 50 pg/ml, >90% of inhibition of MRSA USA300 (pp: 25 pg/ml, sp: 25 pg/ml), P. aeruginosa (pp: 25 pg, sp: 25 pg), K. pneumoniae (pp: 6.25 pg/ml, sp: 6.25 pg/ml), A. junii (pp: 50 pg/ml, pp: 12.5 pg/ml ), E.
- FIG. 4D-4F show bactericidal activity of synthetic and purified peptide for the prevention of biofilm formation after 24 h of incubation in biofilm medium containing various concentrations of peptides. Results are expressed as biofilm mass, measured using crystal violet staining, in arbitrary units (au). Data are mean ⁇ SD of three independent experiments performed in duplicates.
- the purified AMP1 abolish >90% of MRSA USA300 biofilms at 12.5 pg/ml, P.
- FIGs. 5A-5F show that plant purified peptide AMP1 causes rapid membrane permeabilization and killing of MRSA USA300.
- FIG. 5A-5F show that plant purified peptide AMP1 causes rapid membrane permeabilization and killing of MRSA USA300.
- FIG. 5A shows antimicrobial activity (expressed as a minimal inhibitory concentration [MIC] of plant purified AMP1 and vancomycin, evaluated against 10 6 CFU/ml of MRSA USA300.
- FIG. 5D shows percentage of PI- positive MRSA USA300 was calculated after addition of antimicrobial agents until their respective time points.
- FIG. 5E shows scanning electron micrographs of MRSA USA300 treated with either PBS or 2x MIC of plant purified AMP1.
- FIG. 5F shows mean cell width, as measured from SEM images by manually tracing the dimensions of individual cells. A standard two-tailed paired t test for analyzing the significance in the size of bacteria cells before (control) and after peptide treatment was applied. Data are means ⁇ SD from three independent experiments.
- FIGs. 6A-6B show that purified peptides synergize with AZM by increasing the membrane permeability of carbapenem-resistant E. coli PI-7.
- FIGs. 6A and 6B show time -kill curves (FIG. 6A) and prevention of biofilm formation assay (FIG. 6B) in E. coli PI-7.
- Data are means ⁇ SD and represent the average of duplicates from 3 independent experiments.
- FIG. 7A-7F Establishment of a SynBio chassis for in planta expression of AMPs.
- FIG. 7A Cleaved peptide fractions were run on a 18% Tricine-SDS-PAGE with gel loading dye containing bromophenol blue or without bromophenol blue. Native low molecular- weight peptides migrated to the bottom of the gel and the 32.6-kDa protease band can be seen at the top of the gel. Protein extracts obtained from plants infiltrated with empty pEAQ-HT vector was used as negative control.
- FIG. 7B Cleaved peptide fractions were run on a 18% Tricine-SDS-PAGE with gel loading dye containing bromophenol blue or without bromophenol blue. Native low molecular- weight peptides migrated to the bottom of the gel and the 32.6-kDa protease band can be seen at the top of the gel. Protein extracts obtained from plants infiltrated with empty pEAQ-HT vector was used
- Cleaved AMP fractions were purified using size exclusion chromatography (SEC) in buffer containing 150 mM NaCl, 5% (v/v) CH3CN, 0.01 M HC1 and analyzed on 18% Tricine-SDS-PAGE gel. Two independent Tricine-SDS- PAGE have been performed with similar results.
- FIG. 7C Pooled SEC fractions were run on a 9.4 x 250 mm ZORBAX RX-C8 column and monitored at the two wavelengths 215 nm and 280 nm.
- FIG. 7D Pooled SEC fractions were run on a 9.4 x 250 mm ZORBAX RX-C8 column and monitored at the two wavelengths 215 nm and 280 nm.
- FIG. 7E The immunoblot was stripped and reprobed with a monoclonal anti-GFP antibody to test HA- tagged SUMO-GFP accumulation. Two independent blots have been performed with similar results.
- FIG. 7F Table showing concentration of proteins recovered at each step in the downstream process for in planta peptide purification. The black arrowheads indicate to the corresponding proteins and peptides.
- FIG. 8A- 8B Wild type extract activity against ESKAPE pathogens and their characterization using ESI-MS.
- FIG. 8A Protein extract obtained from wild type N. benthamiana were subjected to the same purification procedure and dissolved in the peptide buffer containing 0.025% (v/v) acetic acid and 0.1% [w/v] bovine serum albumin (BSA). The activity was determined by incubating with ESKAPE pathogens for 24 h followed by absorbance readings at OD600.
- E. coli PI-7 100 pg/mL sodium azide
- MRSA USA300 40 pM colistin
- P. aeruginosa 40 pM colistin
- FIG. 8B Mass analysis of wild type N. benthamiana extract using ESI- MS. The y-axis shows the signal intensity, and the x-axis displays the m/z value. Source data are provided as a Source Data file.
- FIG. 10A-10F show experimental validation of antimicrobial activity of plant purified AMP2 against ESKAPE pathogens and their prevention of biofilm formation.
- FIG. 10A- 10D Plant-produced and synthetic peptides have the same efficacy in bacterial growth inhibition.
- CFU colony-forming units
- coli PI-7 in OD600 at a concentration of pp: 50pg/mL, sp: 50 pg/mL, >90% of inhibition of MRSA USA300 (pp: 25 pg/mL, sp: 12.5 pg/mL), K. pneumoniae (pp: 25 pg/mL, sp: 6.25 pg/mL), A. junii (pp: 25 pg/mL, pp: 12.5 pg/mL), E. faecalis (pp: 50 pg/mL, sp: 50 pg/mL), P. aeruginosa (pp: 25 pg/mL, sp: 12.5 pg/mL).
- FIG. 10E-10F Bactericidal activity of purified peptides against prevention of biofilms after 24 h of incubation in biofilm media containing various concentrations of peptides. Results are expressed as biofilm mass, measured using crystal violet staining, in arbitrary units (au). Values are medians of two independent experiments. *, significantly different (*P ⁇ 0.05, **P ⁇ 0.01, and ***P ⁇ 0.001) compared to control (0 pg/mL), as calculated using the two-tailed Mann-Whitney rank sum test.
- Source data are provided as a Source Data file.
- FIG. 11A-11D show the experimental validation of antimicrobial activity of plant purified peptide AMP3 against ESKAPE pathogens and their prevention of biofilm formation.
- FIG.ll -11B Plant-produced peptides are effective against ESKAPE pathogens. For each concentration of peptide, 10 6 colony-forming units (CFU)/mL of each ESKAPE pathogens were treated with 100, 50, 25, 12.5, 6.25, 3.215, 1.56 pg/mL of peptides in cation- adjusted Mueller-Hinton broth for 24 h. Percentage inhibition was up to 30% reduction for carbapenem-resistant E.
- CFU colony-forming units
- FIG. 11C and 11D Bactericidal activity of purified peptides against prevention of biofilms after 24 h of incubation in biofilm medium containing various concentrations of peptides.
- Results are expressed as biofilm mass, measured using crystal violet staining, in arbitrary units (au). Values are medians of two independent experiments. *, significantly different (*P ⁇ 0.05, **P ⁇ 0.01, and ***P ⁇ 0.001) compared to control (0 pg/mL), as calculated using the two- tailed Mann- Whitney rank sum test.
- FIG. 12 shows gating strategy for flow cytometry-based analysis of PI accumulation in MRSA USA300 cells .
- Cells were washed, suspended in 500 DL of 1 x PBS and analyzed on BD LSRFortessaTM Cell Analyzer. Cells were gated on forward and side scatter profiles. Positive and negative cell populations were gated based on staining the fluorescently-PI dye. At least 1000 events were analyzed. Control cells showed negligible or very low accumulation of PI stain.
- FIG. 13 shows base-case techno-economic analysis for industrial scale production of AMPs in plants.
- FIG. 14 shows base-case techno-economic analysis for industrial scale production of AMPs in plants. Downstream process flowsheet for N. benthamiana base case scenario in the SuperPro Designer model with a production capacity at 300 Kg/year.
- the peptides are 1018-G (VRLIVAVRIWRRG) (SEQ ID NO:51), 1002-G (VQRWLIVWRIRKG) (SEQ ID NO:52), and 3002-G (ILVRWIRWRIQWG) (SEQ ID NO:53) designated as AMP1, AMP2 and AMP3 respectively, which differ from the parent sequences by having an additional Gly at the C- terminus.
- the examples demonstrate successful production of both the non-amidated Gly precursors as well as the final PAM processed amidated AMP counterparts.
- a titer for these amidated peptides of 1.4 mg per 20 g of transgenic plant tissue, was attained.
- agroinfiltration refers to a method in plant biology to transfer genetic cassettes from Agrobacterium into a plant.
- a suspension of Agrobacterium tumefaciens is injected into a plant leaf, where it transfers the desired gene to plant cells.
- the benefit of agroinfiltration when compared to traditional plant transformation is speed and convenience.
- cell refers to a membrane -bound biological unit capable of replication or division.
- construct refers to a recombinant genetic molecule having one or more isolated polynucleotide sequences. Genetic constructs used for transgene expression in a host organism include a series of cassettes including units with (in the 5 ’-3’ direction), a promoter sequence; a sequence encoding a gene of interest; and a termination sequence. The construct may also include selectable marker gene(s) and other regulatory elements for expression.
- a “cultivar” refers to a cultivated variety.
- derivative species, germplasm or variety refers to any plant species, germplasm or variety that is produced using a stated species, variety, cultivar, or germplasm, using standard procedures of sexual hybridization, recombinant DNA technology, tissue culture, mutagenesis, or a combination of any one or more said procedures.
- expression refers to the process by which a polynucleotide is transcribed from a DNA template (such as into and mRNA or other RNA transcript) and/or the process by which a transcribed mRNA is subsequently translated into peptides, polypeptides, or proteins.
- Transcripts and encoded polypeptides may be collectively referred to as “gene product.” If the polynucleotide is derived from genomic DNA, expression may include splicing of the mRNA in a eukaryotic cell.
- expression vector refers to a vector that includes one or more expression control sequences.
- expression control sequence refers to a DNA sequence that controls and regulates the transcription and/or translation of another DNA sequence.
- Control sequences that are suitable for prokaryotes include a promoter, optionally an operator sequence, a ribosome binding site, and the like.
- expression vector refers to a vector that includes one or more expression control sequences regardless of the origin of the sequence (prokaryote or eukaryote).
- gene refers to a DNA sequence that encodes through its template or messenger RNA a sequence of amino acids characteristic of a specific peptide, polypeptide, or protein.
- gene also refers to a DNA sequence that encodes an RNA product.
- gene as used herein with reference to genomic DNA includes intervening, non-coding regions as well as regulatory regions and can include 5’ and 3’ ends.
- germplasm refers to one or more phenotypic characteristics, or one or more genes encoding said one or more phenotypic characteristics, capable of being transmitted between generations.
- genome as used herein, referring to a plant cell encompasses not only chromosomal DNA found within the nucleus, but organelle DNA found within subcellular components (e.g., mitochondria, or plastid) of the cell.
- heterologous means from another host.
- the other host can be the same or different species.
- plant is used in its broadest sense. It includes, but is not limited to, any species of woody, ornamental or decorative crop or cereal, and fruit or vegetable plant. It also refers to a plurality of plant cells that are largely differentiated into a structure that is present at any stage of a plant’s development. Such structures include, but are not limited to, a fruit, shoot, stem, leaf, flower petal, etc.
- plant cell refers to a structural and physiological unit of a plant, comprising a protoplast and a cell wall.
- the plant cell may be in form of an isolated single cell or a cultured cell, or as a part of higher organized unit such as, for example, plant tissue, a plant organ, or a whole plant.
- plant cell culture refers to cultures of plant units such as, for example, protoplasts, cell culture cells, cells in plant tissues, pollen, pollen tubes, ovules, embryo sacs, zygotes and embryos at various stages of development.
- plant material refers to leaves, stems, roots, flowers or flower parts, fruits, pollen, egg cells, zygotes, seeds, cuttings, cell or tissue cultures, or any other part or product of a plant.
- plant organ refers to a distinct and visibly structured and differentiated part of a plant such as a root, stem, leaf, flower bud, or embryo.
- plant part or “part of a plant” can include, but is not limited to cuttings, cells, protoplasts, cell tissue cultures, callus (calli), cell clumps, embryos, stamens, pollen, anthers, pistils, ovules, flowers, seed, petals, leaves, stems, and roots.
- plant tissue includes differentiated and undifferentiated tissues of plants including those present in roots, shoots, leaves, pollen, seeds and tumors, as well as cells in culture (e.g., single cells, protoplasts, embryos, callus, etc.). Plant tissue may be in planta, in organ culture, tissue culture, or cell culture.
- plant part refers to a plant structure, a plant organ, or a plant tissue.
- promoter refers to a regulatory nucleic acid sequence, typically located upstream (5’) of a gene or protein coding sequence that, in conjunction with various elements, is responsible for regulating the expression of the gene or protein coding sequence.
- progenitor refers to any of the species, varieties, cultivars, or germplasm, from which a plant is derived.
- “Stable expression” as used herein relates to the introduction of genetic material into chromosomes of the targeted cell where it integrates and becomes a permanent component of the genetic material in that cell. Gene expression after stable introduction can permanently alter the characteristics of the cell and its progeny arising by replication leading to stable transformation.
- stable refers to the introduction of gene(s) into the chromosome of the targeted cell where it integrates and becomes a permanent component of the genetic material in that cell. Gene expression after stable transformation/transfection can permanently alter the characteristics of the cell leading to stable transformation.
- An episomal transformation is a variant of stable transformation in which the introduced gene is not incorporated in the host cell chromosomes but rather is replicated as an extrachromosomal element. This can lead to stable transformation of the characteristics of a cell.
- Transiently refers to the introduction of a gene into a cell to express the nucleic acid, e.g., the cell expresses specific proteins, peptides or RNA, etc. The introduced gene is not integrated into the host cell genome and is accordingly eliminated from the cell over a period of time. Transient expression relates to the expression of a gene product during a period of transient transfection.
- transgenic plant/cell refers to a plant/cell that contains recombinant genetic material which has been introduced into the plant/cell in question (or into progenitors of the plant) by human manipulation.
- a plant that is grown from a plant cell into which recombinant DNA is introduced by transformation is a transgenic plant, as are all offspring of that plant that contain the introduced transgene (whether produced sexually or asexually).
- transgenic plant encompasses the entire plant or tree and parts of the plant or tree, for instance grains, seeds, flowers, leaves, roots, fruit, pollen, stems etc.
- transgene refers to an artificial gene, manipulated in the molecular biology lab that incorporate all appropriate elements critical for gene expression generally derived from a different species.
- transformed refers to a host organism such as a bacterium or a plant into which a exogenous nucleic acid molecule has been introduced.
- vector refers to a replicon, such as a plasmid, phage, or cosmid, into which another DNA segment may be inserted so as to bring about the replication of the inserted segment.
- the vectors can be expression vectors.
- COMPOSITIONS Genetically modified constructs containing a gene encoding AMP of to be introduced into a plant, plant vectors including the constructs, as well as plant/plant parts genetically engineered using the disclosed constructs and vectors, alone or additionally, genetically engineered to express with the bifunctional PAM enzymes encompassing the peptidylglycine a- hydroxylating monooxygenase (PHM) domain, peptidyl-a-hydroxylglycine a-amidating lyase (PHL) domain, the transmembrane domain, and the cytosolic region, are disclosed.
- the AMP is positively charged.
- AMPs are typically small peptides, ranging from about 5 to 50 amino acids, but can be as large as over 100 amino acids. Most AMPs are positively charged (+2 to +9) due to their high proportions of arginine and lysine residues, although negatively charged AMPs do also exist. In a preferred embodiment, the AMP is positively charged.
- Exemplary AMPs include, but are not limited to SEQ ID NO:51, SEQ IDNO:52, SEQ ID NO:53, FK13 (Human) (Phe-Lys-Arg-Ile-Val-Gln-Arg-Ile-Lys-Asp-Phe-Leu-Arg)(SEQ ID NO:55), Guavanin 2, WLBU2, CONGA, DBS1, Mastoparan 4,1, cancrin, which has an amino acid sequence of GS AQPYKQLHKVVNWDPYG (SEQ ID NO:65), etc., reviewed in Huan, et al., Front.
- WLBU2 is an engineered cationic AMP with promising antibacterial activity. It is composed of 24 amino acids including; 13 arginine, 8 valine and 3 tryptophan residues (RRWVRRVRRWVRRVVRVVRRWVRR) (SEQ ID NO: 68) (Salem, et al., Turk J Pharm Sci. 2022;19(l):l 10-116), Deslouches, et al., doi.org/10.1128/aac.49.8.3208-3216.2005).
- Nucleic acid constructs which include expression cassettes designed to encode a fusion protein containing a purification tag, an optional epitope such as a hemagglutinin (HA) epitope, for example, human influenza hemagglutinin epitope, an optional linker, for example, GGSGGS (SE ID NO: 54) linker; a cleavage sequence such as small ubiquitin-related modifier (bdSUMO) containing mutations at SUMO-interacting positions (bdSUMOEul) and the AMP sequence of interest, with a terminal glycine residue (hereinafter, AMP-fusion protein expression construct), to be introduced into a plant cell are disclosed.
- an optional epitope such as a hemagglutinin (HA) epitope, for example, human influenza hemagglutinin epitope
- an optional linker for example, GGSGGS (SE ID NO: 54) linker
- a cleavage sequence such as small ubiquitin-related modifier (b
- linker used to separate moieties in a fusion protein can be used, and preferably include flexible peptides or polypeptides.
- a “flexible linker” herein refers to a peptide or polypeptide containing two or more amino acid residues joined by peptide bond(s) that provides increased rotational freedom for two polypeptides linked thereby than the two linked polypeptides would have in the absence of the flexible linker.
- Exemplary flexible peptides/polypeptides include, but are not limited to, the amino acid sequences Gly-Ser, Gly-Ser- Gly-Ser (SEQ ID NO:57), Ala-Ser, Gly-Gly-Gly-Ser (SEQ ID NO:58), (Gly4-Ser)3 (SEQ ID NO:59), and (Gly4-Ser)4 (SEQ ID NO:60), GSGSGSGS (SEQ ID NO:61), SGSG (SEQ ID NO:62), CGGSGSGSG (SEQ ID NO:63) or GSGC (SEQ ID NO:64).
- exemplary a purification tags include, but are not limited to c-myc, polyhistidine, or FlagTM (Kodak), polyhistidine affinity tag, also known as the His-tag or Hise, usually consists of six consecutive histidine residues, but can vary in length from two to ten histidine residues; glutathione S-transferase (GST); Maltose binding protein (MBP), calmodulin binding peptide (CBP); the intein-chitin binding domain (intein-CBD), the streptavidin tag, etc.
- GST glutathione S-transferase
- MBP Maltose binding protein
- CBP calmodulin binding peptide
- intein-CBD the intein-chitin binding domain
- streptavidin tag etc.
- the nucleic acid construct is operably linked to a promoter, in a suitable expression vector.
- a nucleic acid sequence or polynucleotide is “operably linked” when it is placed into a functional relationship with another nucleic acid sequence.
- DNA for a presequence or secretory leader is operably linked to DNA for a polypeptide if it is expressed as a preprotein that participates in the secretion of the polypeptide
- a promoter or enhancer is operably linked to a coding sequence if it affects the transcription of the sequence
- a ribosome binding site is operably linked to a coding sequence if it is positioned so as to facilitate translation.
- operably linked means that the DNA sequences being linked are contiguous and, in the case of a secretory leader, contiguous and in reading frame. Linking can be accomplished by ligation at convenient restriction sites. If such sites do not exist, synthetic oligonucleotide adaptors or linkers are used in accordance with conventional practice.
- the expression vector can be any expression vector suitable for plant transformation, such as a plasmid or a plant viral vector, such as Tobacco mosaic virus.
- plasmid plasmid
- vector plasmid
- cassette as used herein refer to an extra chromosomal element often carrying genes that are not part of the central metabolism of the cell, and usually in the form of double- stranded DNA.
- Such elements may be autonomously replicating sequences, genome integrating sequences, phage, or nucleotide sequences, in linear or circular form, of a single- or doublestranded DNA or RNA, derived from any source, in which a number of nucleotide sequences have been joined or recombined into a unique construction which is capable of introducing a polynucleotide of interest into a cell.
- promoters suitable for use in the constructs of this disclosure are functional in plants.
- Plant promoters can be selected to control the expression of the transgene in different plant tissues or organelles for all of which methods are known to those skilled in the art (Gasser & Fraley, Science 244:1293-99 (1989)).
- promoters are selected from those of eukaryotic or synthetic origin that are known to yield high levels of expression in plant and algae cytosol.
- promoters are selected from those of plant or prokaryotic origin that are known to yield high expression in plastids.
- the promoters are inducible. Inducible plant promoters are known in the art.
- the promoter is an egg cell-specific promoter.
- promoters are publicly known. These include constitutive promoters, inducible promoters, tissue- and cell-specific promoters and developmentally -regulated promoters. Exemplary promoters and fusion promoters are described, e.g., in U.S. Pat. No. 6,717,034, which is herein incorporated by reference in its entirety.
- Suitable constitutive promoters for nuclear-encoded expression include, for example, the core promoter of the Rsyn7 promoter and other constitutive promoters disclosed in U.S. Pat. No. 6,072,050; the core CAMV 35S promoter, (Odell et al. (1985) Nature 313:810-812); rice actin (McElroy et al. (1990) Plant Cell 2:163-171); ubiquitin (Christensen et al. (1989) Plant Mol. Biol. 12:619-632 and Christensen et al. (1992) Plant Mol. Biol. 18:675-689); pEMU (Last et al. (1991) Theor. Appl. Genet.
- Tissue-preferred promoters can be used to target a gene expression within a particular tissue such as seed, leaf or root tissue.
- Tissue-preferred promoters include Yamamoto et al. (1997) Plant J. 12(2)255-265; Kawamata et al. (1997) Plant Cell Physiol. 38(7):792-803; Hansen et al (1997) Mol. Gen. Genet. 254(3):337-343; Russell et al. (1997) Transgenic Res. 6(2): 157- 168; Rinehart et al. (1996) Plant Physiol. 112(3): 1331 - 1341 ; Van Camp et al (1996) Plant Physiol. 112(2):525-535; Canevascini et al.
- seed-preferred promoters include both “seed- specific” promoters (those promoters active during seed development such as promoters of seed storage proteins) as well as “seedgerminating” promoters (those promoters active during seed germination). See Thompson et al. (1989) BioEssays 10:108.
- seed-preferred promoters include, but are not limited to, Ciml (cytokinin-induced message); cZ19Bl (maize 19 kDa zein); milps (myo-inositol- 1 -phosphate synthase); and celA (cellulose synthase).
- Gama-zein is a preferred endosperm-specific promoter.
- Glob-1 is a preferred embryo-specific promoter.
- seed-specific promoters include, but are not limited to, bean P-phaseolin, napin P-conglycinin, soybean lectin, cruciferin, oleosin, the Lesquerella hydroxylase promoter, and the like.
- seed-specific promoters include, but are not limited to, maize 15 kDa zein, 22 kDa zein, 27 kDa zein, g-zein, waxy, shrunken 1, shrunken 2, globulin 1, etc. Additional seed specific promoters useful for practicing this invention are described in the Examples disclosed herein.
- Eeaf-specific promoters are known in the art. See, for example, Yamamoto et al. (1997) Plant J. 12(2):255-265; Kwon et al. (1994) Plant Physiol. 105:357-67; Yamamoto et al. (1994) Plant Cell Physiol. 35(5):773-778; Gotor et al. (1993) Plant J. 3:509-18; Orozco et al. (1993) Plant Mol. Biol. 23(6): 1129-1138; and Matsuoka et al. (1993) Proc. Natl. Acad. Sci. USA 90(20):9586-9590.
- Root-preferred promoters are known and may be selected from the many available from the literature or isolated de novo from various compatible species. See, for example, Hire et al. (1992) Plant Mol. Biol. 20(2): 207-218 (soybean root-specific glutamine synthetase gene); Keller and Baumgartner (1991) Plant Cell 3(10): 1051-1061 (root-specific control element in the GRP 1.8 gene of French bean); Sanger et al. (1990) Plant Mol. Biol. 14(3):433-443 (root-specific promoter of the mannopine synthase (MAS) gene of Agrobacterium tumefaciens); and Miao et al.
- MAS mannopine synthase
- Plant Cell 3( 1 ):1 l'-22 full-length cDNA clone encoding cytosolic glutamine synthetase (GS), which is expressed in roots and root nodules of soybean. See also U.S. Patent Nos. 5,837,876; 5,750,386; 5,633,363; 5,459,252; 5,401,836; 5,110,732; and 5,023,179.
- Chemical-regulated promoters can be used to modulate the expression of a gene in a plant through the application of an exogenous chemical regulator.
- the promoter may be a chemical-inducible promoter, where application of the chemical induces gene expression, or a chemical-repressible promoter, where application of the chemical represses gene expression.
- Chemical-inducible promoters are known in the art and include, but are not limited to, the maize ln2-2 promoter, which is activated by benzenesulfonamide herbicide safeners, the maize GST promoter, which is activated by hydrophobic electrophilic compounds that are used as pre-emergent herbicides, and the tobacco PR-1 a promoter, which is activated by salicylic acid.
- promoters of interest include steroid-responsive promoters (see, for example, the glucocorticoid-inducible promoter in Schena et al. Proc. Natl. Acad. Sci. USA 88: 10421-10425 (1991) and McNellis et al. Plant J. 14(2):247-257( 1998)) and tetracyclineinducible and tetracycline -repressible promoters (see, for example, Gatz et al. Mol. Gen. Genet. 227:229-237 (1991), and U.S. Pat. Nos. 5,814,618 and 5,789,156), herein incorporated by reference in their entirety.
- a polyadenylation signal refers to any sequence that can result in polyadenylation of the mRNA in the nucleus prior to export of the mRNA to the cytosol, such as the 3’ region of nopaline synthase (Bevan, et al. Nucleic Acids Res. 1983, 11, 369-385).
- Genetic constructs may encode a selectable marker to enable selection of transformation events. There are many methods that have been described for the selection of transformed plants [for review see (Miki et al., Journal of Biotechnology, 2004, 107, 193-232) and references incorporated within]. Selectable marker genes that have been used extensively in plants include the neomycin phosphotransferase gene nptll (U.S. Patent Nos. 5,034,322, U.S. 5,530,196), hygromycin resistance gene (U.S. Patent No. 5,668,298), the bar gene encoding resistance to phosphinothricin (U.S. Patent No.
- 5,767,378 describes the use of mannose or xylose for the positive selection of transgenic plants. Methods for positive selection using sorbitol dehydrogenase to convert sorbitol to fructose for plant growth have also been described (WO 2010/102293). Screenable marker genes include the beta-glucuronidase gene (Jefferson et al., 1987, EMBO J. 6: 3901- 3907; U.S. Patent No. 5,268,463) and native or modified green fluorescent protein gene (Cubitt et al., 1995, Trends Biochem. Sci. 20: 448-455; Pan et al., 1996, Plant Physiol. 112: 893-900).
- Transformation events can also be selected through visualization of fluorescent proteins such as the fluorescent proteins from the nonbioluminescent Anthozoa species which include DsRed, a red fluorescent protein from the Discosoma genus of coral (Matz et al. (1999), Nat Biotechnol 17: 969-73).
- DsRed a red fluorescent protein from the Discosoma genus of coral
- An improved version of the DsRed protein has been developed (Bevis and Glick (2002), Nat Biotech 20: 83-87) for reducing aggregation of the protein.
- Visual selection can also be performed with the yellow fluorescent proteins (YFP) including the variant with accelerated maturation of the signal (Nagai, T. et al.
- a transgenic plant includes, for example, a plant that comprises within its genome an exogenous polynucleotide introduced by a transformation step.
- the exogenous polynucleotide can be stably integrated within the genome such that the polynucleotide is passed on to successive generations.
- the exogenous polynucleotide may be integrated into the genome alone or as part of a recombinant DNA construct.
- a transgenic plant can also comprise more than one heterologous polynucleotide within its genome. Each exogenous polynucleotide may confer a different trait to the transgenic plant.
- a heterologous polynucleotide can include a sequence that originates from a foreign species, or, if from the same species, can be substantially modified from its native form.
- Suitable plant families include but are not limited to, Alliaceae, Amaranthaceae, Amaryllidaceae, Apocynaceae, Asteraceae, Boraginaceae, Brassicaceae, Campanulaceae, Caryophyllaceae, Chenopodiaceae, Compositae, Cruciferae, Cucurbitaceae, Euphorbiaceae, Fabaceae, Gramineae, Hyacinthaceae, Labiatae, Leguminosae-Papilionoideae, Liliaceae, Linaceae, Malvaceae, Phytolaccaceae, Poaceae, Pinaceae, Rosaceae, Scrophulariaceae, Solanaceae, Tropaeolaceae, Umbelliferae and Violaceae.
- Such plants include, but are not limited to. Allium cepa, Amaranthus caudatus, Amaranthus retroflexus, Antirrhinum majus, Arabidopsis thaliana, Arachis hypogaea, Artemisia sp., Avena sativa, Bellis perennis, Beta vulgaris, Brassica campestris, Brassica campestris ssp. Napus, Brassica campestris ssp.
- Pekinensis Brassica juncea, Calendula officinalis, Capsella bursa-pastoris, Capsicum annuum, Catharanthus roseus, Chemanthus cheiri, Chenopodium album, Chenopodium, amaranticolor, Chenopodium foetidum, Chenopodium quinoa, Coriandrum sativum, Cucumis melo, Cucumis sativus, Glycine max, Gomphrena globosa, Gossypium hirsutum cv.
- Fig. 1A An exemplary vector is shown in Fig. 1A, and it can be used to transiently express the genes of interest as exemplified herein.
- the vector can include or exclude the HA epitope shown in Fig. 1.
- a construct coding for the PAM can introduced into plant leaves callus, seed or embryonic tissue. Stably-transformed plants (events) are then recovered. Briefly, vectors containing the various PAM genes are introduced into Agrobacterium (Agrobacterium tumefaciens) strain GV3101 by electroporation. Stable Agrobacterium- mediated leaf disc transformation can be performed according to a previously described standard protocol. 89 Transgenic plants are propagated until the homozygous T4 generation and are screened using immunoblot for accumulation of the PAM protein.
- transgenic plants are selected on a known substrate such as Murashige and Skoog (MS) (Sigma) medium containing 100 pg/ml kanamycin in a growth chamber with the temperature set to 28 °C and a 13-h light/11- h dark regime.
- MS Murashige and Skoog
- One- week-old seedlings can be acclimatized and transferred to soil in greenhouse with the temperature set to -28-30 °C for continued growth until maturity.
- a vector containing an AMP-fusion protein expression construct and a vector containing a construct encoding PAM are transiently co-expressed in a plant.
- a vector containing an AMP-fusion protein expression construct is transiently expressed in a plant stably expressing PAM, for example, PAM1, PAM2 or PAM3 from Rattus norvegicus.
- the plant is engineered for cytosolic accumulation of the expression product i.e., the AMP fusion protein.
- the plant transformation method does not employ a whole virus such as, Tobacco mosaic virus as the vector for introducing nucleic acid constructs into a plant.
- a method for large-scale purification of SENP EuH protease enzyme from an E. coli hos the method of which is exemplified below under “Purification of SENPEuH protease” and incorporated herein by reference.
- a peptide purification method from plants employing high-performance liquid chromatography methods to obtain peptide as chloride salts, which are non-toxic compared to antimicrobial peptide produced as Tri-flouroacetic acid salts the method of which is exemplified below under “Large-scale purification of peptides”, and incorporated herein by reference.
- the method includes protein purification via reverse-phase high-performance liquid chromatography (RP-HPLC), which served as an additional desalting step, using acetonitrile as the organic modifier and HC1 as ion-pairing agent rather than traditional trifluoro-acetic acid that has inherent toxicity and would need to be exchanged for a biocompatible ion.
- RP-HPLC reverse-phase high-performance liquid chromatography
- SEC size exclusion chromatography
- Transformation protocols as well as protocols for introducing nucleotide sequences into plants may vary depending on the type of plant or plant cell targeted for transformation.
- the disclosed methods do not include plastid transformation/ the constructions do not include additional targeting sequences for plasmid expression of periplasmic secretion of the expressed protein.
- the constructs used herein do not include nucleic acid sequences encoding a periplasmic targeting signal and an antimicrobial peptide.
- Periplasmic targeting signal peptide sequences generally derived from a protein that is secreted in a Gram negative bacterium (U.S. Patent No. 7,579005).
- Suitable methods of introducing nucleotide sequences into plant cells and subsequent insertion into the plant genome include microinjection, electroporation, Agrobacterium-mediated transformation (Townsend et al., U.S. Pat. No. 5,563,055; Zhao et al. WO US98/01268), direct gene transfer (Paszkowski et al. (1984) EMBO J. 3:2717-2722), and ballistic particle acceleration (see, for example, Sanford et al., U.S. Pat. No. 4,945,050; Tomes et al. (1995) Plant Cell, Tissue, and Organ Culture: Fundamental Methods, ed.
- a preferred method is an agrobacterium mediated transformation, exemplified in the Examples of this application, the method of which is incorporated herein.
- the A. tumefaciens-mediated plant genetic transformation process requires the presence of two genetic components located on the bacterial Ti-plasmid.
- the first essential component is the T-DNA, defined by conserved 25-base pair imperfect repeats at the ends of the T-region called border sequences.
- the second is the virulence (vir) region, which is composed of at least seven major loci (virA, virB, virC, virD, virE, virF, and virG) encoding components of the bacterial protein machinery mediating T-DNA processing and transfer.
- the VirA and VirG proteins are two-component regulators that activate the expression of other vir genes on the Ti-plasmid.
- the VirB, VirC, VirD, VirE and perhaps VirF are involved in the processing, transfer, and integration of the T-DNA from A. tumefaciens into a plant cell (Hwang et al., 2017 doi.org/10.1199/tab.O186).
- a suspension of Agrobacterium tumefaciens is injected into a plant leaf, where it transfers the desired gene to plant cells.
- the first step of the protocol is to introduce a gene of interest to a strain of Agrobacterium. Subsequently the strain is grown in a liquid culture and the resulting bacteria are washed and suspended into a suitable buffer solution. This solution is then placed in a syringe (without a needle). The tip of the syringe is pressed against the underside of a leaf while simultaneously applying gentle counterpressure to the other side of the leaf. The Agrobacterium solution is then injected into the airspaces inside the leaf. Vacuum infiltration is another way to penetrate Agrobacterium deep into plant tissue.
- leaf disks, leaves, or whole plants are submerged in a beaker containing the solution, and the beaker is placed in a vacuum chamber.
- the vacuum is then applied, forcing air out of the stomata.
- the pressure difference forces solution through the stomata and into the mesophyll.
- the following procedures can be used to obtain a transformed plant expressing the transgenes: select the plant cells that have been transformed on a selective medium; regenerate the plant cells that have been transformed to produce differentiated plants; select transformed plants expressing the transgene producing the desired level of desired polypeptide(s) in the desired tissue and cellular location.
- the cells that have been transformed may be grown into plants in accordance with conventional techniques. See, for example, McCormick et al. Plant Cell Reports 5:81-84(1986). These plants may then be grown, and either pollinated with the same transformed variety or different varieties, and the resulting hybrid having constitutive expression of the desired phenotypic characteristic identified. Two or more generations may be grown to ensure that constitutive expression of the desired phenotypic characteristic is stably maintained and inherited and then seeds harvested to ensure constitutive expression of the desired phenotypic characteristic has been achieved.
- the engineered SUMO Eul module was previously shown to resist proteolytic cleavage by endogenous deSUMOylases in eukaryotic cell lysates, facilitating the isolation of protein complexes from eukaryotic extracts A
- the sequences of AMP genes were codon-optimized to increase the translational efficiency in the production host Nicotiana benthamiana.
- Each synthetic gB locks template was PCR amplified with primers that added Agel and Xhol restriction sites to the 5’ and 3’ ends of the PCR product, respectively, for subsequent cloning into the Agel/Xhol- digested Cowpea mosaic virus-based vector pEAQ-HT (Leaf Expression Systems, Norwich, UK).
- oligonucleotides were purchased from Integrated DNA Technologies (IDT, Leuven, Belgium) and were HPLC-purified by the manufacturer. Sequences of the oligonucleotides are listed in the T able Below.
- Plasmids encoding the rat variants of PAM enzymes were kindly provided by Prof. Betty Eipper, University of Connecticut Health Center, USA.
- the coding sequence encoding the bifunctional PAM enzymes encompassing the peptidylglycine a-hydroxylating monooxygenase (PHM) domain, l-rz- hydroxylglycine a-amidating lyase (PHL) domain, the transmembrane domain, and the cytosolic region were amplified from plasmid DNA.
- the PAM2 variant lacks exon 16 located adj acent to the sequence encoding the protease-sensitive region separating the PHM and PHL domain, whereas PAM3 variant lacks the sequence encoding trans- membrane domain.
- Public database used for rat PAM enzyme sequence include UniProt (www.uniprot.org/uniprotkb/ A0A8I5ZMRl/entry).
- the forward primer was preceded by the four nucleotides CACC.
- the reverse primer contained unique restriction sites for Hindlll and Xbal to ligate the annealed HA primers with overhanging sticky ends complimentary to Hindll l/Xbal.
- the subcloned vectors containing the PAM-HA construct were verified by Sanger sequencing using overlapping primers.
- the inserts were recombined into the plant transformation vector pK2GW7 using Gateway cloning to drive the expression of PAM genes under the control of the constitutively active cauliflower mosaic virus (CaMV) 35 S promoter.
- CaMV constitutively active cauliflower mosaic virus
- the pK2GW7 binary vectors containing the various PAM genes generated above were introduced into Agrobacterium (Agrobacterium tumefaciens) strain GV3101 by electroporation. Stable Agrobacterium- mediated leaf disc transformation was performed according to a standard protocol 89 . Briefly, 2-week-old Nicotiana benthamiana leaf explants infiltrated with Agrobacterium containing PAM genes in MES buffer (10 mM 2-[N- morpholino] -ethanesulfonic acid, pH 5.6, 10 mM MgCL.
- MES buffer 10 mM 2-[N- morpholino] -ethanesulfonic acid, pH 5.6, 10 mM MgCL.
- kanamycin-resistant lines forming proper roots were acclimatized to the soil in greenhouse under plastic domes with the temperature set to -28-30 °C for continued growth until maturity.
- Transgenic plants were propagated until the homozygous T4 generation and were screened using immunoblot for accumulation of the PAM protein.
- a plasmid encoding the Brachypodium distachyon mutated protease His-TEV- SENP EUH was purchased from Addgene (plasmid number 149689) and transformed into E. coli BL21 (DE3) pLysS cells (New England Biolabs Inc., Hitchin, England).
- SENP1 EUH protease was produced by growing bacteria into 2 L of Terrific broth (IBI Scientific) containing kanamycin. Cells were grown at 37 °C until reaching an GD600 of 0.5-0.7; protein production was induced by the addition of isopropyl-[3-D-thiogalactopyranoside (IPTG) at a final concentration of 0.3 mM.
- the cells were grown at 18 °C for 19 h, harvested by centrifugation at 5,500 x g for 15 min at 4 °C, then resuspended in ice- chilled lysis buffer (50 mM Tris-HCl pH 7.5, 300 mM NaCl, 4.5 mM MgCL. 5% [v/v] glycerol, 20 mM imidazole, 100 mM PMSF and complete EDTA-free protease inhibitor cocktail tablet/50 mL [Roche, UK]).
- ice- chilled lysis buffer 50 mM Tris-HCl pH 7.5, 300 mM NaCl, 4.5 mM MgCL. 5% [v/v] glycerol, 20 mM imidazole, 100 mM PMSF and complete EDTA-free protease inhibitor cocktail tablet/50 mL [Roche, UK]).
- the cells were subjected to lysis using lysozyme (Sigma) at a con- centration of 1 mg/mL on ice for 1 h, followed by mechanical disruption using sonication (Qsonica Q700). Cell debris were then removed by centrifugation at 10,000 x g for 40 min at 4 °C and the decanted supernatant was passed through a Nalgene disposable bottle top filter with a 0.45-pm membrane (Thermo Fisher Scientific, USA).
- the filtered supernatant was loaded onto a 5-mL HisTrapTM HP column (GE Healthcare Biosciences) pre-equilibrated with buffer A (50 mM Tris- HC1 pH 7.5, 500 mM NaCl, 20 mM imidazole, 5% [v/v] glycerol) using an AKTA pure instrument (UNICORN 6.3, GE Healthcare Biosciences).
- buffer A 50 mM Tris- HC1 pH 7.5, 500 mM NaCl, 20 mM imidazole, 5% [v/v] glycerol
- AKTA pure instrument UNICORN 6.3, GE Healthcare Biosciences
- the fractions containing the SENP EUH protease was analyzed using SDS-PAGE, pooled, and dialyzed overnight in Snakeskin-pleated dialysis tubing (Thermo Fisher Scientific, USA) against dialysis buffer (25 mM Tris pH 7.5, 100 mM NaCl, 1 mM DTT, 10% [v/v] glycerol).
- dialysis buffer 25 mM Tris pH 7.5, 100 mM NaCl, 1 mM DTT, 10% [v/v] glycerol.
- the dialyzed sample was concentrated to 1 mL using centrifugal filters with a membrane NMWL of 10-kDa (Millipore, USA).
- the concentrated protein was then loaded onto a HiLoad 16/600 Superdex 200 pg gel filtration column (GE Healthcare Biosciences) equilibrated with storage buffer (25 mM Tris pH 7.5, 100 mM NaCl, 1 mM DTT, 10% [v/v] glycerol). Fractions containing the protease were pooled, flash-frozen in liquid nitrogen and stored at -80 °C until use.
- Leaves infiltrated with each AMP construct were harvested 6 days post-infiltration and ground in liquid nitrogen to a fine powder with pre-cooled mortars and pestles.
- Total proteins were extracted from the leaf powder by the addition of 2-3 x (w/v) ice-cold extraction buffer (100 mM Tris-HCl pH 8.0, 150 mM NaCl, 1 mM EDTA, 3 mM DTT, 4% [w/v] polyvinylpolypyrrolidone [PVPP], 0.1% [v/v] Triton X- 100, 100 mM PMSF and Complete EDTA-free protease inhibitor cocktail tablet/30 mL [Roche, UK]), followed by mechanical disruption using sonication at 30% amplitude.
- 2-3 ice-cold extraction buffer 100 mM Tris-HCl pH 8.0, 150 mM NaCl, 1 mM EDTA, 3 mM DTT, 4% [w/v] polyvinylpolypyrrolidone
- the phenol adsorbent polymer PVPP is highly insoluble in polar solvents, it was directly added to the ground leaf powder.
- the slurry was completely squeezed through 2-3 layers of Miracloth, clarified by centrifugation at 10,000 x g for 1 h at 4 °C and filtered through a Nalgene disposable bottle top filter with a 0.45-pm membrane (Thermo Fisher Scientific, USA).
- the filtered supernatant was applied to 5 mL of Strep-Tactin Superflow resin (Qiagen, Hilden, Germany) in gravity flow Econocolumns® (BioRad), incubated for 2 hr at 4 °C with gentle rotation, followed by resin washes with buffer (100 mM Tris-HCl pH 8.0, 150 mM NaCl, 1 mM EDTA, 3 mM DTT) to remove loosely bound proteins. After washing the resin, it was immediately resuspended in SUMO digestion buffer (45 mM Tris-HCl pH 7.5, 2 mM MgCh, 250 mM NaCl, 10 mM DTT, 0.1% [v/v] NP-40).
- Recombinant AMPs were released under native form by overnight cleavage with 17 pg of purified SENP EUH protease in the presence of 1 M Urea at 4 °C under gentle rotation. Urea was added to the protease reaction buffer for precise cleavage of the peptide and to prevent any nonspecific activity. Cleaved AMPs were collected and loaded onto a 5- mL HisTrapTM HP column (GE Healthcare Biosciences) using buffer A (50 mM Tris-HCl pH 7.5, 300 mM NaCl, 20 mM imidazole) via AKTA pure (GE Health- care Biosciences) to remove His-tagged SENP EUH protease.
- buffer A 50 mM Tris-HCl pH 7.5, 300 mM NaCl, 20 mM imidazole
- the wave- lengths used to monitor the cleaved peptides were 215 nm (peptide bond absorbs light at 215 nm) and 280 nm since all three prototypical AMPs have an aromatic-side chain of tryptophans that absorbs light in the UV range of 250-290 nm, thereby providing a convenient means for peptide detection.
- Flow- through fractions that were devoid of protease but contained the native AMPs were collected and immediately freeze-dried in a lyophilizer to concentrate the fractions.
- the lyophilized extract was then resuspended in size-exclusion chromatography (SEC) buffer (5% [v/v] HPLC-grade CH3CN, 0.01 M HC1 and 150 mM NaCl) and centrifuged at 10,000 g maintained at room temperature for 10 min.
- SEC size-exclusion chromatography
- the cleared supernatant was injected in a 1.5-mL loop, loaded onto a SEC-buffer pre-equilibrated Superdex 30 Increase 3.2/300 (GE Healthcare Biosciences) with a flow rate of 0.01 mL/min, monitored at 215 nm/280 nm and eluted in SEC buffer.
- ESI-TOF-MS of peptides Mass identification of peptides was carried using a MicroTOF-Q spec- trometer (Broker Daltonics, Inc, Germany). The machine was calibrated in positive ionization mode using 1 % (v/v) formic acid in acetonitrile/HPLC-grade water solution (CH3CN/H2O, 50/50, v/v). Dried peptide samples were dissolved in solvent containing 50% (v/v) CH3CN and 1% (v/v) formic acid and injected into the ESI source using a stainless-steel needle syringe at a flow rate of 10 pL/min.
- Data were acquired by the TOF analyzer (Compass for otofSeries 1.7 Version 3.4, Bruker Daltonics GmbH) at a rate of 1 acquisition/sec from m/z 200 to m/z 2000.
- the optimized voltage was set to +3 kV for the capillary and dry nitrogen gas heated to 150 °C was used for better nebulization.
- Data were acquired and processed with the Compass DataAnalysis software (Bruker Compass DataAnalysis 4.2 SR2, Bruker Daltonics GmbH).
- azithromycin (Cat. no. PZ0007), colistin sulfate (Cat. no. C4461), meropenem (Cat. no. PHR1772), ceftazidime (Cat. no. C3809), vancomycin sulphate (Cat. no. 861987), sulfamethoxazole (Cat. no. S7507), gentamicin (Cat. no. G1914), kanamycin (Cat. no. BP861), levofloxacin (Cat. no. 28266), ciprofloxacin (Cat. no. 17850) were purchased from Sigma.
- the stock solutions of antibiotics were prepared in molecular biology grade 1 x phosphate-buffered saline (PBS) (Corning Inc., Corning NY, USA). In case of azithromycin, trace amounts of glacial acetic acid was added for complete solubility. Synthetic QCed peptides AMP1, AMP2 were kindly provided by Prof. Robert Hancock (University of British Columbia, Canada). Peptides were dissolved in endotoxin-free sterile water (Corning Inc., Corning NY, USA) containing 0.025% (v/v) acetic acid and 0.1% [w/v] bovine serum albumin (BSA) for in vitro experiments.
- PBS molecular biology grade 1 x phosphate-buffered saline
- the pathogenic strains used in this study were carbapenem-resistant Escherichia coli PI-7 (a New Delhi metallo-P-lactamase -positive strain previously isolated from municipal wastewater in Saudi Arabia), methicillin-resistant Staphylococcus aureus USA300, extended- spectrum P-lactamase-producing Klebsiella pneumoniae ATCC 700603, Acinetobacter Junii DSMZ 14968, Pseudomonas aeruginosa ATCC 9027, Enterobacter faecalis ATCC 29212.
- Pathogenic Escherichia coli PI-7 was grown in UB broth containing 8 pg/rnU meropenem, methicillin-resistant Staphylococcus aureus USA300 was grown in tryptic soy broth (TSB; Difco, Detroit) containing 10 pg/mL chlor- amphenicol, while all remaining strains were grown in UB broth with-out any antibiotic added.
- TLB tryptic soy broth
- MIC Minimal inhibitory concentration
- All plant expression constructs carried the sequence encoding a triple N-terminal hemagglutinin (HA)-epitope tag to analyze production abundance by immunoblot. Leaves were harvested post-infiltration and total protein was extracted from 100 mg of sample using extraction buffer (100 mM Tris-HCl pH 8, 5 mM EDTA, 150 mM NaCl, 10 mM DTT, 0.5% [v/v] Triton X-100 along with protease inhibitor cocktails consisting of 1 mM PMSF, 15 pg/mL leupeptin, 1 pg/mL aprotinin, 1 pg/mL pepstatin, 5 pg/mL antipain, 5 pg/mL chymostatin, 2 mM NaiVCh.
- extraction buffer 100 mM Tris-HCl pH 8, 5 mM EDTA, 150 mM NaCl, 10 mM DTT, 0.5% [v/v] Triton X-100
- a mid-logarithmic growth-phase culture was diluted to 1 x 10 8 CFU/mL in Ca-MHB and was exposed to antimicrobial agents for the estimated time as evaluated in time-kill kinetic assay for each respective agent.
- Twenty microliters of propidium iodide (PI, Molecular Probes, Invitrogen) with a final concentration of 1 pg/mL were then added to the cells and incubated in the dark for 30 min.
- the percent influx of PI stain was then analyzed using a BD LSRFortessaTM Cell Analyzer (BD FACS- Diva Software, Version 6.2, BD Biosciences, San Jose, CA, USA) and calculated using FlowJo 10.6.2 software (BD Biosciences).
- HEK-293 cells Human embryonic kidney 293 (HEK-293) cells (Thermo Fisher Scientific, Cat. no. 51-0035) were cultured in 75 T flasks and incubated in a humidified incubator maintained at 37 °C with 5% (v/v) CO2 using DMEM/high-glucose medium supplemented with Glutamax, 10% (v/v) fetal bovine serum (FBS), and 1% (w/v) penicillin/streptomycin (GIBCO, Thermo Fisher Scientific, USA). The culture medium was replaced every 2 days until the cells reached 80% confluency. Cells were sub- cultured and seeded at a density of IxlO 4 cells per well in 96 well-plates.
- each peptide 50 pg/mL was added to the cells. After 2 days of incubation, 2 mM of calcein AM and 4 mM ethidium homodimer- 1 (LIVE/DEAD® Viability/Cytotoxicity Kit, Life TechnologiesTM) was added to the wells and incubated for 40 min in the dark. Before imaging, the staining solution was removed, and fresh PBS was added. Stained cells were imaged under an inverted confocal microscope (Zeiss Microscope, Germany).
- a CellTiter-Glo® luminescent 3D cell viability assay was used to determine proliferation of cells according to the amount of ATP produced as an indicator of cellular metabolic activity.
- About IxlO 4 of cells were seeded per well of a 96-well plate. Then, 50 pg/mL of each peptide was added to the cells. After the incubation time, the kit was equilibrated at room temperature for approximately 30 min.
- CellTiter-Glo® Reagent equal to the volume of cell culture medium present in each well was added. The contents were mixed for 5 min and then incubated for 30 min. After incubation, the luminescence was recorded using a plate reader (PHERAstar FS, Germany).
- Immunostaining was performed after the incubation of each peptide with cells for 84 hr as described previously 91 . Briefly, cells were fixed with 4% (w/v) paraformaldehyde solution for 30 min and incubated in cold cytoskeleton buffer (3 mM MgCL, 300 mM sucrose and 0.5% [v/v] Triton X-100 in PBS) for 5 min for permeabilization. The permeabilized cells were incubated in blocking buffer solution (5% [v/v] FBS, 0.1% [v.v] Tween-20, and 0.02% [w/v] sodium azide in PBS) for 30 min at 37 °C.
- blocking buffer solution 5% [v/v] FBS, 0.1% [v.v] Tween-20, and 0.02% [w/v] sodium azide in PBS
- F-Actin, rhodamine -phalloidin (1:300) was added to the cells that were then incubated at room temperature in the dark for 1 h, followed by washing three times with IX PBS. Further, the cells were incubated in DAPI (1:2,000) in water for five min to counterstain the nucleus before the DAPI solution was removed by washing with IX PBS. The stained cells were observed and imaged using a laser scanning con- focal microscope (Leica Application Suite X, Leica Stellaris Confocal Microscope, Germany).
- a mid-logarithmic growth-phase culture was diluted in BM2 medium (62 mM potassium phosphate buffer, pH 7, 7 mM (NH ⁇ SCL, 2 mM MgSCL, 10 pM FeSCh and 0.4% [w/v] glucose) to IxlO 8 CFU/mL and 90 pL of this suspension was seeded in polypropylene microtiter plates (Corning Inc., Corning NY, USA). Bacterial cells were then exposed to varying concentration of AMPs (100 pg/mL to 1.56 pg/mL) and grown overnight at 37 °C in a humidified atmosphere. As an untreated control, bacteria were exposed to BM2 medium without any peptide.
- biofilms were fixed with 100% methanol for 15 min, washed with PBS and finally air-dried. Dried biofilms were stained with 1% (w/v) crystal violet (Sigma) for 30 min, washed with PBS, and solubilized in 95% (v/v) ethanol for 1 h.
- the optical density at 595 nm was recorded using TECAN Infinite 200 PRO series (Tecan i-control 2; 2.0.10.0, Austria, a measure of biofilm mass.
- Untreated bacterial cells were prepared in Ca-MHB and fixed overnight with modified Karnovsky’s fixative (2.5% [w/v] glutaraldehyde and 2% [w/v] paraformaldehyde in 0.1 M sodium cacodylate buffer, pH 7.35) at 4 °C.
- modified Karnovsky’s fixative (2.5% [w/v] glutaraldehyde and 2% [w/v] paraformaldehyde in 0.1 M sodium cacodylate buffer, pH 7.35) at 4 °C.
- peptide-treated cells suspended cells were filtered using a commercial 50-mL vacuum filter with a 0.22-pm pore-size membrane (Corning Inc., Corning NY, USA) and directly used for fixation.
- specimens were post-fixed with 1.5% (w/v) potassium ferrocyanide, and 1% (w/v) osmium tetroxide prepared in 0.1 M sodium cacodylate buffer, dehydrated through a graded ethanol series, dried using a critical point dryer (CPD300, Leica, Germany) and sputter- coated with a 10-nm thick platinum layer. All specimens were imaged using a FEI Nova Nano 630 SEM (SmartSEM Version 6.09, Serial Number Merlin-61-95, Oregon, USA) equipped with an Everhart- Thornley detector (ETD) and through a lens detector (TLD) operating at 3 kV.
- ETD Everhart- Thornley detector
- TLD lens detector
- inert protein tags juxta posed by cleavage sequences for the tag release were selected for use in the engineered peptide constructs. Cytosolic accumulation was selected to avoid adding a targeting signal before the desired AMPs.
- flexible linker GGGSGGGS was added to preserve the functionality of the fused protein, by allowing independent movement of the N and C portions (Fig. 1A).
- AMPs selected for this study harbor leucine and arginine residues at their N termini, which would normally make them more susceptible to protease degradation via the N-end rule pathway 48,49 .
- AMPs can take on the characteristics of a signal peptide due to their high hydrophobicity and strong positive charge 50 , and are prone to degradation by the proteases of the secretory path- way between the endoplasmic reticulum (ER) and the Golgi apparatus 51 .
- SUMO Eul an engineered version of the plant SUMO (Small Ubiquitin-like Modifier) domain termed SUMO Eul was added to the N terminus of the target amino acid sequences of the HDP to increase peptide stability and solubility in the plant cytosol while also ensuring exact cleavage site production without extra residues.
- SUMO EU1 domain contains three amino acid changes that render it resistant to degradation except by its cognate SUMO-specific protease, SENP EUH53 .
- this cleavage reaction leaves no residual amino acids 54-56 , thus allowing release of AMPs in their native form, concomitantly averting the elution of non-specific background binders 53 .
- the protease was previously reported to be efficient in cleaving domains of proteins immobilized on cellulose beads in vitro or within the confined environment of cells in vivo 57 , thereby demonstrating the robustness and precise activity of protease.
- a C-terminal glycine residue was added to all AMPs as a substrate for eventual PAM-mediated amidation (Fig. 1A).
- pEAQ-HT carrying parts of genomic RNA2 from cowpea mosaic virus (Fig. 1A), which facilitates hypertranslation of heterologous constructs in plants, and allows the production of AMPs at high titer in the infected leaves.
- Fig. 1A cowpea mosaic virus
- the vector used here can be readily delivered into leaves using Agrobacterium, and it does not pose a risk of biocontamination to the environment since it is harboring a deconstructed virus backbone.
- pEAQ-HT also harbors a P19 post-transcriptional gene silencing suppressor gene, further enhancing gene expression levels.
- Fig. IB The purification protocol summarized in Fig. IB was utilized. Agrobacteria harboring the /WP-cx pressing constructs was infiltrated into the leaves of N benthamiana at an ODeoo of 0.5. Six days later, total extracts from the infiltrated leaves were probed for protein accumulation by SDS-PAGE (Fig. 1C) and immunoblotting (Fig. ID). During protein purification, polyvinylpolypyrrolidone was added to sequester phenolic contaminants and prevent unwanted proteolysis with a cocktail of protease inhibitors. Solubilized SUMO Eul - AMPs was purified by Strep-tag II affinity chromatography and eluted using 2.5 mM d- desthiobiotin.
- SEC size exclusion chromatography
- PAM enzymes stably accumulated and amidated transiently expressed glycine- extended AMPs in plants
- the PAM cDNAs from the rat genome were then subcloned and expressed individually in N. benthamiana.
- the encoded PAM enzymes had both PHL and PAM domains, and PAM transcripts often undergo alternative splicing resulting in either integral membrane-bound (PAM1/2) or soluble (PAM3) forms of the enzyme63.
- the coding sequence of each PAM isoform was cloned into the binary vector pK2GW7 and transiently expressed individually in N. benthamiana leaves (Fig. 2A). Following confirmation of expression (Fig. 2B), the ability of each PAM isoform was assessed to amidate glycine- extended AMPs in planta via co-expression by immunoblotting from total protein extracts using anti-HA antibodies.
- Recombinant proteins produced in E. coli are generally contaminated with endotoxin, which greatly limits their use as bacterially produced therapeutics.
- AMPs themselves have an inherent risk of collateral toxicity due to their ability to disrupt mammalian cellular membranes, 8 which often needs to be carefully verified when preparing AMP-based therapeutics before clinical studies.
- Plant-produced AMPs demonstrated robust killing of ESKAPE pathogens and prevented the formation of their biofilms
- E. coli PI-7 Escherichia coli PI-7; MRSA USA300: Methicillin resistant Staphylococcus aureus
- P. aeruginosa Pseudomonas aeruginosa
- K. pneumoniae Klebsiella pneumoniae
- A. junii Acinetobacter junii
- E. faecalis Enterobacter faecalis
- E. coli PI-7 Escherichia coli PI-7; MRSA USA300: Methicillin resistant Staphylococcus aureus USA300; P. aeruginosa: Pseudomonas aueruginosa; K. pneumoniae: Klebsiella pneumoniae; A. junii: Acinetobacter junii; E. faecalis: Enterobacterfaecalis
- Extracts obtained from wild type N. benthamiana didn’t exhibit any inhibition in the growth of ESKAPE pathogens (data now shown).
- purified AMP1 was slightly effective against E. coli PI-7 (50 pg/ml), a BSL-2 class pathogen and antibiotic-resistant strain, 70 against which colistin is the last resort antibiotic and drug of choice for treatment.
- the three peptides were also efficacious at preventing K. pneumoniae (Fig. 4D, 4F and Fig. 9, 10D, 11 A, and 11B), A. junii (Fig. 4D and 4F, Fig. 9, 10D, 11A and 11B), E. faecalis (Fig. 4D, 4F and 9, 10D, 11 A and 1 IB), and P. aeruginosa (Fig. 4D and 4E, and Fig. 9, 10C, 11 A and 1 IB) biofilm formation, reflecting the widespread and robust antimicrobial activity of plant-produced peptides.
- Plant-produced AMP1 permeabilized the bacterial membrane, and killed cells
- Bacterial killing by synthetic AMP1 involves interaction with the bacterial outer membrane, followed by cytoplasmic membrane interaction/permeabilization. 72 To ascertain the mode of action of plant purified AMP1, its killing kinetics on the community-acquired multi-drug resistant clinical isolate MRSA USA300 strain in Ca-MHB (cation-adjusted Mueller-Hinton broth) was determined. Vancomycin (last resort antibiotic that is effective against MRSA USA300) was used as a control that kills bacteria independently of membrane lysis. At a concentration of 2 x MIC, the plant purified AMP1 completely killed an inoculum of 10 8 colony-forming units (CFUs) of bacterial cells within 30-60 min of treatment (Fig. 5A and 5B), as observed previously for the native peptide. In contrast, the control antibiotic vancomycin required >2.5 h for bacterial killing, as expected.
- CFUs colony-forming units
- AMP1 was >50% (53.1%) as compared to control (Fig. 5D and Fig. 14), suggesting membrane permeabilization while vancomycin, a cell-wall biosynthesis inhibitor, showed negligible PI accumulation (1.5%) (Fig. 5C and 5D).
- SEM scanning electron microscopy
- Colistin is usually a last resort antibiotic for carbapenem-resistant infections, 73 but its pharmacokinetics properties bring major risks for dose-dependent nephrotoxicity and uncertainties in optimal dosing. 74 To investigate whether plant-purified peptides could act synergistically with other antibiotics against which E. coli PI-7 has developed resistance, susceptible antibiotics were screened for, using the standard broth-dilution method. E.
- coli PI-7 was highly resistant to gentamicin, kanamycin, ceftazidime, sulfamethoxazole, levofloxacin, ciprofloxacin (>350 pM), azithromycin (312.5 pM), but susceptible to colistin (20 pM) (Tabe 1).
- E. coli PI-7 isolated from sewage water MIC- Mean inhibitory concentration expressed in micromolar concentration. Antibiotic resistance profile of E. coli PI-7 showing that the strain is resistant to antibiotics belonging to the fluoroquinolone class (MIC for levofloxacin and ciprofloxacin: >350 pM), macrolide (MIC for Azi- thromycin: 312.5 p M), cephalosporin (MIC for ceftazidime: >350 pM), aminoglycoside (MIC for gentamicin and kanamycin: >350 pM), sulfonamide (MIC for sulfamethoxazole: >350 pM) but highly susceptible to polymyxin (MIC for colistin: 20 pM).
- Source data are provided as a Source Data file.
- Table 4 Unit cost of electricity, labor and utilities referred to the Saudi Arabian.
- the base case scenario assumes to produce 91 batches a year with each upstream processing batch yielding 9,520 kg N. benthamiana plant FW containing 9.52 kg AMP, assuming an expression level of 1 g AMP per Kg plant FW.
- the upstream processing steps (37% of total cost, Fig. 12) include growing the plants, large-scale preparation of agrobacteria, vacuum-based infiltration, and post-infiltration incubation.
- the downstream processing steps (67% of total cost, Fig. 13) involve harvesting leaves, homogenizing whole tissues, and extraction, retrieval, and chromatography-based purification of bulk AMPs.
- the SuperPro Designer® 13.0 software computed the cost of goods sold (COGS) at $74/g for amidated AMP (Table 5). Table 5. Prices of reagents used in the production of peptides adapted from
- the final cost encompasses all materials (both raw and consumables), as well as the production costs for the additional chromatography step and protease purification from the E. coli strain that can secrete the target enzyme in the base case scenario. Additionally, the cost of each reagent used has been added in Table 6, and the general COGS using different host chassis (E. coli 18 ’ 16 , mammalian cells 77 ) is summarized in Table 7.
- Table 7 Table showing economic capital investment, operating expenditures (with and without depreciation) and calculated the cost of goods sold (COGS) for plantbased AMP production scenario.
- AMPs constitute a promising alternative, since they possess potent antimicrobial and antibiofilm activity even against multi-drug resistant pathogens. 79 Despite decades of research and longstanding promise, no AMPs have been approved by the FDA, except cyclic lipopeptides and gramicidin S, although a few clinical trials have taken place or are underway.
- N. Benthamiana plants overexpressing rat PAM1 were used to catalyze amidation in planta. These plants tolerated the stable integration of rat PAM1 and exhibited no obvious morphological defects.
- PAM1 plants were phenotypically normal and retained the ability to produce PAM1 at least up to the T4 generation, although they did produce far fewer seeds for an unknown reason. This effect on the reproductive system should however not constitute a major limitation for biotechnological applications. While efficient peptide amidation has been achieved so far in transgenic rabbits (Oryctolagus cunicidus), 36 this approach requires a sizeable investment in centralized facilities for transgenesis, in contrast to plant transgenesis, which can be performed with minimal infrastructure. Besides, transgenic rabbits producing amidated peptides were reported to have precocious mammary development and reproductive problems. 86
- plant-produced peptides exhibited marked synergism with azithromycin in curtailing the growth rate of carbapenem-resistant strain E. coli PI-7, potentially adding another antibiotic to clinical management for this strain for which colistin is the last resort drug.
- the protocol disclosed herein yielded a substantial amount of pure amidated AMPs (> 90%), and this prompted computation of the scalability of this process for industrial-scale production of AMPs
- the techno-economic analysis simulation estimated the total cost of goods sold (COGS) at $74/g for plant-based production of AMPs. This cost is quite competitive considering that chemical synthesis of the same peptide was priced at $95.29/mg (based on a price quote from a commercial company) and compared against the COGS of E. coli produced cationic peptides produced in batches which ranges from $44.5-$268.16/mg.
Landscapes
- Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Zoology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Wood Science & Technology (AREA)
- General Engineering & Computer Science (AREA)
- Biotechnology (AREA)
- Biomedical Technology (AREA)
- Molecular Biology (AREA)
- General Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- Microbiology (AREA)
- Medicinal Chemistry (AREA)
- Cell Biology (AREA)
- Physics & Mathematics (AREA)
- Biophysics (AREA)
- Plant Pathology (AREA)
- Pharmacology & Pharmacy (AREA)
- Peptides Or Proteins (AREA)
- Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
Abstract
La présente invention concerne des compositions et des procédés pour la production maîtrisée in planta d'AMP amidés. Les procédés divulgués utilisent une combinaison ciblée de modules d'expression (a) stables/transitoires et (b) transitoires dans des plantes transgéniques. L'enzyme bifonctionnelle peptidylglycine a-amidante mono-oxygénase (PAM) est utilisée pour introduire la voie d'amidation C-terminale des mammifères dans les plantes et une construction conçue pour coder une protéine de fusion contenant une étiquette de purification, un lieur; une séquence de clivage telle qu'un petit modificateur lié à l'ubiquitine (bdSUMO) contenant des mutations à des positions d'interaction avec SUMO (bdSUMOEul) et la séquence AMP d'intérêt, avec un résidu glycine terminal. Cette stratégie permet d'accumuler des niveaux considérables d'AMPS dans les plantes transgéniques, par comparaison avec les plantes non transgéniques, ainsi qu'avec les procédés précédemment divulgués d'expression des AMP dans les plantes.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US202363484445P | 2023-02-10 | 2023-02-10 | |
US63/484,445 | 2023-02-10 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024166076A1 true WO2024166076A1 (fr) | 2024-08-15 |
Family
ID=89983025
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/IB2024/051292 WO2024166076A1 (fr) | 2023-02-10 | 2024-02-12 | Production recombinée de peptides antimicrobiens in planta |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2024166076A1 (fr) |
Citations (38)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4535060A (en) | 1983-01-05 | 1985-08-13 | Calgene, Inc. | Inhibition resistant 5-enolpyruvyl-3-phosphoshikimate synthetase, production and use |
US4945050A (en) | 1984-11-13 | 1990-07-31 | Cornell Research Foundation, Inc. | Method for transporting substances into living cells and tissues and apparatus therefor |
US5023179A (en) | 1988-11-14 | 1991-06-11 | Eric Lam | Promoter enhancer element for gene expression in plant roots |
US5034322A (en) | 1983-01-17 | 1991-07-23 | Monsanto Company | Chimeric genes suitable for expression in plant cells |
US5073675A (en) | 1989-05-26 | 1991-12-17 | Dna Plant Technology Corporation | Method of introducing spectinomycin resistance into plants |
US5110732A (en) | 1989-03-14 | 1992-05-05 | The Rockefeller University | Selective gene expression in plants |
EP0530129A1 (fr) | 1991-08-28 | 1993-03-03 | Sandoz Ltd. | Méthode pour la sélection de cellules transformées génétiquement et composés à utiliser dans cette méthode |
US5268463A (en) | 1986-11-11 | 1993-12-07 | Jefferson Richard A | Plant promoter α-glucuronidase gene construct |
US5276268A (en) | 1986-08-23 | 1994-01-04 | Hoechst Aktiengesellschaft | Phosphinothricin-resistance gene, and its use |
US5399680A (en) | 1991-05-22 | 1995-03-21 | The Salk Institute For Biological Studies | Rice chitinase promoter |
US5401836A (en) | 1992-07-16 | 1995-03-28 | Pioneer Hi-Bre International, Inc. | Brassica regulatory sequence for root-specific or root-abundant gene expression |
US5459252A (en) | 1991-01-31 | 1995-10-17 | North Carolina State University | Root specific gene promoter |
US5463175A (en) | 1990-06-25 | 1995-10-31 | Monsanto Company | Glyphosate tolerant plants |
US5466785A (en) | 1990-04-12 | 1995-11-14 | Ciba-Geigy Corporation | Tissue-preferential promoters |
US5530196A (en) | 1983-01-17 | 1996-06-25 | Monsanto Company | Chimeric genes for transforming plant cells using viral promoters |
US5563055A (en) | 1992-07-27 | 1996-10-08 | Pioneer Hi-Bred International, Inc. | Method of Agrobacterium-mediated transformation of cultured soybean cells |
US5569597A (en) | 1985-05-13 | 1996-10-29 | Ciba Geigy Corp. | Methods of inserting viral DNA into plant material |
US5604121A (en) | 1991-08-27 | 1997-02-18 | Agricultural Genetics Company Limited | Proteins with insecticidal properties against homopteran insects and their use in plant protection |
US5608142A (en) | 1986-12-03 | 1997-03-04 | Agracetus, Inc. | Insecticidal cotton plants |
US5608149A (en) | 1990-06-18 | 1997-03-04 | Monsanto Company | Enhanced starch biosynthesis in tomatoes |
US5608144A (en) | 1994-08-12 | 1997-03-04 | Dna Plant Technology Corp. | Plant group 2 promoters and uses thereof |
US5633363A (en) | 1994-06-03 | 1997-05-27 | Iowa State University, Research Foundation In | Root preferential promoter |
US5659026A (en) | 1995-03-24 | 1997-08-19 | Pioneer Hi-Bred International | ALS3 promoter |
US5668298A (en) | 1984-12-24 | 1997-09-16 | Eli Lilly And Company | Selectable marker for development of vectors and transformation systems in plants |
US5750386A (en) | 1991-10-04 | 1998-05-12 | North Carolina State University | Pathogen-resistant transgenic plants |
US5767378A (en) | 1993-03-02 | 1998-06-16 | Novartis Ag | Mannose or xylose based positive selection |
US5789156A (en) | 1993-06-14 | 1998-08-04 | Basf Ag | Tetracycline-regulated transcriptional inhibitors |
US5814618A (en) | 1993-06-14 | 1998-09-29 | Basf Aktiengesellschaft | Methods for regulating gene expression |
US5837876A (en) | 1995-07-28 | 1998-11-17 | North Carolina State University | Root cortex specific gene promoter |
US6072050A (en) | 1996-06-11 | 2000-06-06 | Pioneer Hi-Bred International, Inc. | Synthetic promoters |
US6444878B1 (en) | 1997-02-07 | 2002-09-03 | Danisco A/S | Method of plant selection using glucosamine-6-phosphate deaminase |
US6717034B2 (en) | 2001-03-30 | 2004-04-06 | Mendel Biotechnology, Inc. | Method for modifying plant biomass |
US7045684B1 (en) | 2002-08-19 | 2006-05-16 | Mertec, Llc | Glyphosate-resistant plants |
WO2008140582A2 (fr) * | 2006-11-22 | 2008-11-20 | Emory University | Production de peptides anti-microbiens |
US7579005B2 (en) | 2005-11-28 | 2009-08-25 | E. I. Du Pont De Nemours And Company | Process for recombinant expression and purification of antimicrobial peptides using periplasmic targeting signals as precipitable hydrophobic tags |
WO2010102293A1 (fr) | 2009-03-06 | 2010-09-10 | Metabolix, Inc. | Méthode de sélection positive de plantes au moyen de la sorbitol déshydrogénase |
US9801268B2 (en) | 2012-07-10 | 2017-10-24 | Endress + Hauser Gmbh + Co. Kg | Circuit board equipped with a high-frequency component emitting interference waves |
WO2019052588A1 (fr) * | 2017-09-18 | 2019-03-21 | Usovsko A.S. | Procédé de production de plantes d'orge produisant des peptides antimicrobiens |
-
2024
- 2024-02-12 WO PCT/IB2024/051292 patent/WO2024166076A1/fr unknown
Patent Citations (38)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4535060A (en) | 1983-01-05 | 1985-08-13 | Calgene, Inc. | Inhibition resistant 5-enolpyruvyl-3-phosphoshikimate synthetase, production and use |
US5530196A (en) | 1983-01-17 | 1996-06-25 | Monsanto Company | Chimeric genes for transforming plant cells using viral promoters |
US5034322A (en) | 1983-01-17 | 1991-07-23 | Monsanto Company | Chimeric genes suitable for expression in plant cells |
US4945050A (en) | 1984-11-13 | 1990-07-31 | Cornell Research Foundation, Inc. | Method for transporting substances into living cells and tissues and apparatus therefor |
US5668298A (en) | 1984-12-24 | 1997-09-16 | Eli Lilly And Company | Selectable marker for development of vectors and transformation systems in plants |
US5569597A (en) | 1985-05-13 | 1996-10-29 | Ciba Geigy Corp. | Methods of inserting viral DNA into plant material |
US5276268A (en) | 1986-08-23 | 1994-01-04 | Hoechst Aktiengesellschaft | Phosphinothricin-resistance gene, and its use |
US5268463A (en) | 1986-11-11 | 1993-12-07 | Jefferson Richard A | Plant promoter α-glucuronidase gene construct |
US5608142A (en) | 1986-12-03 | 1997-03-04 | Agracetus, Inc. | Insecticidal cotton plants |
US5023179A (en) | 1988-11-14 | 1991-06-11 | Eric Lam | Promoter enhancer element for gene expression in plant roots |
US5110732A (en) | 1989-03-14 | 1992-05-05 | The Rockefeller University | Selective gene expression in plants |
US5073675A (en) | 1989-05-26 | 1991-12-17 | Dna Plant Technology Corporation | Method of introducing spectinomycin resistance into plants |
US5466785A (en) | 1990-04-12 | 1995-11-14 | Ciba-Geigy Corporation | Tissue-preferential promoters |
US5608149A (en) | 1990-06-18 | 1997-03-04 | Monsanto Company | Enhanced starch biosynthesis in tomatoes |
US5463175A (en) | 1990-06-25 | 1995-10-31 | Monsanto Company | Glyphosate tolerant plants |
US5459252A (en) | 1991-01-31 | 1995-10-17 | North Carolina State University | Root specific gene promoter |
US5399680A (en) | 1991-05-22 | 1995-03-21 | The Salk Institute For Biological Studies | Rice chitinase promoter |
US5604121A (en) | 1991-08-27 | 1997-02-18 | Agricultural Genetics Company Limited | Proteins with insecticidal properties against homopteran insects and their use in plant protection |
EP0530129A1 (fr) | 1991-08-28 | 1993-03-03 | Sandoz Ltd. | Méthode pour la sélection de cellules transformées génétiquement et composés à utiliser dans cette méthode |
US5750386A (en) | 1991-10-04 | 1998-05-12 | North Carolina State University | Pathogen-resistant transgenic plants |
US5401836A (en) | 1992-07-16 | 1995-03-28 | Pioneer Hi-Bre International, Inc. | Brassica regulatory sequence for root-specific or root-abundant gene expression |
US5563055A (en) | 1992-07-27 | 1996-10-08 | Pioneer Hi-Bred International, Inc. | Method of Agrobacterium-mediated transformation of cultured soybean cells |
US5767378A (en) | 1993-03-02 | 1998-06-16 | Novartis Ag | Mannose or xylose based positive selection |
US5814618A (en) | 1993-06-14 | 1998-09-29 | Basf Aktiengesellschaft | Methods for regulating gene expression |
US5789156A (en) | 1993-06-14 | 1998-08-04 | Basf Ag | Tetracycline-regulated transcriptional inhibitors |
US5633363A (en) | 1994-06-03 | 1997-05-27 | Iowa State University, Research Foundation In | Root preferential promoter |
US5608144A (en) | 1994-08-12 | 1997-03-04 | Dna Plant Technology Corp. | Plant group 2 promoters and uses thereof |
US5659026A (en) | 1995-03-24 | 1997-08-19 | Pioneer Hi-Bred International | ALS3 promoter |
US5837876A (en) | 1995-07-28 | 1998-11-17 | North Carolina State University | Root cortex specific gene promoter |
US6072050A (en) | 1996-06-11 | 2000-06-06 | Pioneer Hi-Bred International, Inc. | Synthetic promoters |
US6444878B1 (en) | 1997-02-07 | 2002-09-03 | Danisco A/S | Method of plant selection using glucosamine-6-phosphate deaminase |
US6717034B2 (en) | 2001-03-30 | 2004-04-06 | Mendel Biotechnology, Inc. | Method for modifying plant biomass |
US7045684B1 (en) | 2002-08-19 | 2006-05-16 | Mertec, Llc | Glyphosate-resistant plants |
US7579005B2 (en) | 2005-11-28 | 2009-08-25 | E. I. Du Pont De Nemours And Company | Process for recombinant expression and purification of antimicrobial peptides using periplasmic targeting signals as precipitable hydrophobic tags |
WO2008140582A2 (fr) * | 2006-11-22 | 2008-11-20 | Emory University | Production de peptides anti-microbiens |
WO2010102293A1 (fr) | 2009-03-06 | 2010-09-10 | Metabolix, Inc. | Méthode de sélection positive de plantes au moyen de la sorbitol déshydrogénase |
US9801268B2 (en) | 2012-07-10 | 2017-10-24 | Endress + Hauser Gmbh + Co. Kg | Circuit board equipped with a high-frequency component emitting interference waves |
WO2019052588A1 (fr) * | 2017-09-18 | 2019-03-21 | Usovsko A.S. | Procédé de production de plantes d'orge produisant des peptides antimicrobiens |
Non-Patent Citations (136)
Title |
---|
"A simple and general method for transferring genes into plants", SCIENCE, vol. 227, 1985, pages 1229 - 1231 |
AJIKUMAR ET AL., J PEPT SCI, vol. 7, 2001, pages 641 - 649 |
ALSHEHRI ET AL., BIOMACROMOLECULES, vol. 22, 2021, pages 2094 - 2106 |
ARTURO VERA RODRIGUEZ ET AL: "Engineered SUMO/protease system identifies Pdr6 as a bidirectional nuclear transport receptor", THE JOURNAL OF CELL BIOLOGY, vol. 218, no. 6, 25 April 2019 (2019-04-25), US, pages 2006 - 2020, XP055683348, ISSN: 0021-9525, DOI: 10.1083/jcb.201812091 * |
BISWAS ET AL., EXPERT REV ANTI INFECT THER, vol. 10, 2012, pages 917 - 934 |
BOMMARIUS ET AL., PEPTIDES, vol. 31, 2010, pages 1957 - 1965 |
BUNDO ET AL., BMC PLANT BIOL, vol. 14, 2014, pages 102 |
BUTT ET AL., PROTEIN EXPR PURIF, vol. 43, 2005, pages 1 - 9 |
CANEVASCINI ET AL., PLANT PHYSIOL., vol. 112, no. 2, 1996, pages 1331 - 1341 |
CAO ET AL., ACS SYNTH BIOL, vol. 7, 2018, pages 896 - 902 |
CARLA MORASSUTTI ET AL: "Production of a recombinant antimicrobial peptide in transgenic plants using a modified VMA intein expression system", FEBS LETTERS, ELSEVIER, AMSTERDAM, NL, vol. 519, 25 April 2002 (2002-04-25), pages 141 - 146, XP071243215, ISSN: 0014-5793, DOI: 10.1016/S0014-5793(02)02741-2 * |
CARY ET AL., PLANT SCI, vol. 154, 2000, pages 171 - 181 |
CHRISTENSEN ET AL., PLANT MOL. BIOL, vol. 12, 1989, pages 619 - 632 |
CHRISTENSEN ET AL., PLANT MOL. BIOL, vol. 20, no. 2, 1992, pages 207 - 218 |
CORNISH ET AL., AM J PHYSIOL, vol. 277, 1999, pages 779 - 783 |
CUBITT ET AL., TRENDS BIOCHEM. SCI, vol. 20, 1995, pages 448 - 455 |
DAS ET AL., NAT BIOMED ENG, vol. 5, 2021, pages 613 - 623 |
DAVISVIERSTRA, PLANT MOLECULAR BIOLOGY, vol. 36, 1998, pages 521 - 528 |
DE BREIJ ET AL., SCI TRANSL MED, vol. 10, 2018 |
DELEO ET AL., LANCET, vol. 375, 2010, pages 1557 - 1568 |
DESLOUCHES ET AL., ANTIMICROB AGENTS CHEMOTHER, vol. 49, 2005, pages 3208 - 3216 |
DESLOUCHES ET AL., J ANTIMICROB CHEMOTHER, vol. 60, 2007, pages 669 - 672 |
DESLOUCHES, J MED MICROBIOL, vol. 65, 2016, pages 554 - 565 |
DI ET AL., SCI ADV, vol. 6, 2020, pages eaay6817 |
DORAN ET AL., TRENDS BIOTECHNOL, vol. 24, 2006, pages 426 - 432 |
ECKER ET AL., MABS, vol. 7, 2015, pages 9 - 14 |
ECKERT RANDAL ET AL: "Adding selectivity to antimicrobial peptides: Rational design of a multidomain peptide against Pseudomonas spp", ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, AMERICAN SOCIETY FOR MICROBIOLOGY, US, vol. 50, no. 4, 1 April 2006 (2006-04-01), pages 1480 - 1488, XP002570504, ISSN: 0066-4804, DOI: 10.1128/AAC.50.4.1480-1488.2006 * |
EIPPER ET AL., ANNU REV NEUROSCI, vol. 15, 1992, pages 57 - 85 |
EIPPER ET AL., ANNU REV PHYSIOL, vol. 50, pages 333 - 344 |
EIPPER ET AL., J BIOL CHEM, vol. 267, 1992, pages 4008 - 4015 |
ERIK STRANDBERG ET AL., PURE APPL. CHEM, vol. 79, 2007, pages 717 - 2007 |
ERIKSON ET AL., NAT BIOTECHNOL, vol. 22, 2004, pages 455 - 8 |
FANTNER ET AL., NAT NANOTECHNOL, vol. 5, 2010, pages 280 - 285 |
FAYE ET AL., VACCINE, vol. 23, 2005, pages 1770 - 1778 |
FERREIRA ET AL., BIOTECHNOL BIOFUELS, vol. 11, 2018 |
FUJIKI ET AL., VIROLOGY, vol. 381, 2008, pages 136 - 142 |
GAGLIONE ET AL., N BIOTECHNOL, vol. 51, 2019, pages 39 - 48 |
GASSERFRALEY, SCIENCE, vol. 244, 1989, pages 1293 - 99 |
GATZ ET AL., MOL. GEN. GENET, vol. 227, 1991, pages 229 - 237 |
GHIDEY ET AL., N BIOTECHNOL, vol. 56, 2020, pages 63 - 70 |
GUEVARA-GARCIA ET AL., PLANT J, vol. 3, no. 3, 1993, pages 509 - 505 |
HAKANSSON ET AL., FRONT CELL INFECT MICROBIOL, vol. 9, 2019, pages 174 |
HANCOCK ET AL., NAT BIOTECHNOL, vol. 24, 2006, pages 1551 - 1557 |
HANCOCK ET AL., NAT REV IMMUNOL, vol. 16, 2016, pages 321 - 334 |
HANEY ET AL., SCI REP, vol. 8, 2018, pages 1871 |
HANSEN ET AL., MOL. GEN. GENET, vol. 254, no. 3, 1997, pages 337 - 343 |
HOELSCHER ET AL., NAT COMMUN, vol. 13, 2022, pages 5856 |
HUAN ET AL., FRONT. MICROBIOL., vol. 11, 2020, Retrieved from the Internet <URL:https://doi.org/10.3389/fmicb.2020.582779> |
ISIDRO-LLOBET ET AL., J ORG CHEM, vol. 84, 2019, pages 4615 - 4628 |
ISLAM ET AL., PLANT BIOTECHNOL J, vol. 17, 2019, pages 1094 - 1105 |
JEFFERSON ET AL., EMBO J., vol. 6, 1987, pages 3901 - 3907 |
JIALE ET AL., AMB EXPRESS, vol. 11, 2021, pages 49 |
KAUFMANN ET AL., SCI REP, vol. 11, 2021, pages 15791 |
KAWAMATA ET AL., PLANT CELL PHYSIOL., vol. 38, no. 7, 1997, pages 792 - 803 |
KHALIL ET AL., NAT REV GENET, vol. 11, 2010, pages 367 - 379 |
KIM DA SOL ET AL: "A new prokaryotic expression vector for the expression of antimicrobial peptide abaecin using SUMO fusion tag", BMC BIOTECHNOLOGY, vol. 19, no. 1, 1 December 2019 (2019-12-01), XP093140649, ISSN: 1472-6750, Retrieved from the Internet <URL:https://bmcbiotechnol.biomedcentral.com/counter/pdf/10.1186/s12896-019-0506-x.pdf> DOI: 10.1186/s12896-019-0506-x * |
KINTSES ET AL., NAT MICROBIOL, vol. 4, 2019, pages 447 - 458 |
KONG ET AL., D NAT BIOMED ENG, vol. 4, 2020, pages 560 - 571 |
KUO ET AL., METHODS MOL BIOL, vol. 1177, 2014, pages 71 - 80 |
KUSNADI ET AL., BIOTECHNOL BIOENG, vol. 56, 1997, pages 473 - 484 |
KWON ET AL., PLANT PHYSIOL., vol. 105, 1994, pages 357 - 67 |
LAST, THEOR. APPL. GENET, vol. 81, 1991, pages 581 - 588 |
LAZAR ET AL., NAT MICROBIOL, vol. 3, 2018, pages 718 - 731 |
LEE ET AL., BIOCHEM J, vol. 334, no. 1, 1998, pages 99 - 105 |
LEE ET AL., PLANT BIOTECHNOL J, vol. 9, 2011, pages 100 - 115 |
LI, PROTEIN EXPR PURIF, vol. 80, 2011, pages 260 - 267 |
LICO ET AL., PLANT CELL REP, vol. 31, 2012, pages 439 - 451 |
LIN ET AL., EBIOMEDICINE, vol. 2, 2015, pages 690 - 698 |
LIN ET AL., INT J ANTIMICROB AGENTS, vol. 52, 2018, pages 667 - 672 |
MA ET AL., NAT REV GENET, vol. 4, 2003, pages 794 - 805 |
MAGANA ET AL., LANCET INFECT DIS, vol. 20 |
MAGNUSDOTTIR ET AL., TRENDS BIOTECHNOL, vol. 31, pages 572 - 580 |
MALAKHOV ET AL., J STRUCT FUNCT GENOMICS, vol. 5, 2004, pages 75 - 86 |
MANSOUR ET AL., J PEPT SCI, vol. 21, 2015, pages 323 - 329 |
MANTILLA-CALDERON ET AL., ANTIMICROB AGENTS CHEMOTHER, vol. 60, 2016, pages 5223 - 5231 |
MARTHA V.L. RAY: "In Vitro Amidation of an Escherichia coli Produced Precursor Peptide", BIO/TECHNOLOGY, vol. 11, 1 January 1993 (1993-01-01), pages 64 - 70, XP093159924 * |
MATSUOKA ET AL., PROC NATL. ACAD. SCI. USA, vol. 90, no. 20, 1993, pages 9586 - 9590 |
MATSUOKA ET AL., PROC. NATL. ACAD. SCI. USA, vol. 88, no. 20, 1991, pages 10421 - 10425 |
MATZ ET AL., NAT BIOTECHNOL, vol. 17, 1999, pages 969 - 73 |
MCCABE ET AL., BIOTECHNOLOGY, vol. 6, 1988, pages 923 - 926 |
MCCORMICK ET AL., PLANT CELL REPORTS, vol. 5, 1986, pages 81 - 84 |
MCELROY ET AL., PLANT CELL, vol. 2, 1990, pages 163 - 171 |
MCKEE ET AL., NAT BIOTECHNOL, vol. 16, 1998, pages 647 - 651 |
MCNELLIS ET AL., PLANT J, vol. 14, no. 2, 1998, pages 247 - 257 |
MIAO ET AL., PLANT CELL, vol. 3, no. 10, 1991, pages 1051 - 1061 |
MIKI ET AL., JOURNAL OF BIOTECHNOLOGY, vol. 107, 2004, pages 193 - 232 |
MOGK ET AL., TRENDS CELL BIOL, vol. 17, 2007, pages 165 - 172 |
MOORE ET AL., PEPT RES, vol. 7, 1994, pages 265 - 269 |
MOR ET AL., J BIOL CHEM, vol. 269, 1994, pages 31635 - 31641 |
MUTTENTHALER ET AL., NAT REV DRUG DISCOV, vol. 20, 2021, pages 309 - 325 |
NAGAI, T ET AL., NAT BIOTECH, vol. 20, 2002, pages 87 - 90 |
NANDI ET AL., MABS, vol. 8, 2016, pages 1456 - 1466 |
NIJNIK ET AL., J IMMUNOL, vol. 184, 2010, pages 2539 - 2550 |
NOMURA ET AL., REGEN THER, vol. 7, 2017, pages 45 - 51 |
ODELL ET AL., NATURE, vol. 313, 1985, pages 810 - 812 |
OKAMOTO ET AL., PLANT CELL PHYSIOL, vol. 39, 1998, pages 57 - 63 |
OROZCO ET AL., PLANT MOL. BIOL, vol. 23, no. 6, 1993, pages 1129 - 1138 |
PASZKOWSKI ET AL., EMBO J., vol. 3, 1984, pages 2717 - 2722 |
PATINO-RODRIGUEZ ET AL., PLANT CELL TISS ORG, vol. 115, 2013, pages 99 - 106 |
PEROUTKA ET AL., PROTEIN SCI, vol. 17, 2008, pages 1586 - 1595 |
PRICE ET AL., EUR J HOSP PHARM, vol. 23, 2016, pages 245 - 247 |
RAIBAUT ET AL., TOP CURR CHEM, vol. 363, 2015, pages 103 - 154 |
RAY ET AL., BIOTECHNOLOGY (N Y, vol. 11, 1993, pages 64 - 70 |
ROBERT ET AL., PLANT BIOTECHNOL J, vol. 13, 2015, pages 1169 - 1179 |
ROBERTSON, NAT BIOTECHNOL, vol. 21, 2003, pages 470 - 471 |
RODRIGUEZ ET AL., J CELL BIOL, vol. 218, 2019, pages 2006 - 2020 |
RUSSELL ET AL., TRANSGENIC RES, vol. 6, no. 2, 1997, pages 157 - 168 |
SAINSBURY ET AL., PLANT BIOTECHNOL J, vol. 7, 2009, pages 682 - 693 |
SAKOULAS ET AL., J MOL MED (BERL, vol. 92, 2014, pages 139 - 149 |
SALEM ET AL., TURK J PHARM SCI, vol. 19, no. 1, 2022, pages 110 - 116 |
SANGER ET AL., PLANT MOL. BIOL, vol. 14, no. 3, 1990, pages 433 - 443 |
SAWYER ET AL.: "ACS Symposium Series", vol. 1417, 2022, AMERICAN CHEMICAL SOCIETY,, article "Peptide Drug Discovery Raison d'Etre: Engineering Mindset, Design Rules and Screening Tools", pages: 1 - 25 |
SCHMIDT ET AL., NAT PROTOC, vol. 2, 2007, pages 1528 - 1535 |
SCHOLTHOF ET AL., ANNU REV PHYTOPATHOL, vol. 34, 1996, pages 299 - 323 |
SCHWARZ ET AL., PLOS ONE, vol. 9, 2014, pages e113840 |
SEUNG-BUM LEE ET AL: "Expression and characterization of antimicrobial peptides Retrocyclin-101 and Protegrin-1 in chloroplasts to control viral and bacterial infections : Plant-made antimicrobial peptides", PLANT BIOTECHNOLOGY JOURNAL, vol. 9, no. 1, 6 December 2010 (2010-12-06), GB, pages 100 - 115, XP055383042, ISSN: 1467-7644, DOI: 10.1111/j.1467-7652.2010.00538.x * |
SHAHID CHAUDHARY: "Efficient in planta production of amidated antimicrobial peptides that are active against drug-resistant ESKAPE pathogens", NATURE COMMUNICATIONS, vol. 14, no. 1, 16 March 2023 (2023-03-16), UK, XP093159854, ISSN: 2041-1723, Retrieved from the Internet <URL:https://www.nature.com/articles/s41467-023-37003-z> DOI: 10.1038/s41467-023-37003-z * |
SHEEN ET AL., PLANT J, vol. 8, 1995, pages 777 - 84 |
SIEPRAWSKA-LUPA ET AL., ANTIMICROB AGENTS CHEMOTHER, vol. 48, 2004, pages 4673 - 4679 |
SIMPSON ET AL., PLANT MOL BIOL, vol. 32, 1996, pages 1 - 41 |
SPAPEN ET AL., ANN INTENSIVE CARE, vol. 1, 2011, pages 14 |
STARR ET AL., BIOCHIM BIOPHYS ACTA BIOMEMBR, vol. 1859, 2017, pages 2319 - 2326 |
STARR ET AL., PROC NATL ACAD SCI USA, vol. 117, 2020, pages 8437 - 8448 |
THOMPSON, BIOESSAYS, vol. 10, 1989, pages 108 |
TOMES ET AL.: "Plant Cell, Tissue, and Organ Culture", 1995, SPRINGER-VERLAG, article "Fundamental Methods" |
TZFIRA ET AL., PLANT MOLECULAR BIOLOGY, vol. 57, 2005, pages 503 - 516 |
VARSHAVSKY ET AL., GENES CELLS, vol. 2, 1997, pages 13 - 28 |
VERKHUSHA ET AL., NAT BIOTECH, vol. 22, 2004, pages 289 - 296 |
VIANA ET AL., BIOPOLYMERS, vol. 98, 2012, pages 416 - 427 |
YAMAMOTO ET AL., PLANT CELL PHYSIOL., vol. 35, no. 5, 1994, pages 773 - 778 |
YAMAMOTO ET AL., PLANT J, vol. 12, no. 2, 1997, pages 255 - 265 |
YANG ET AL., JAM CHEM SOC, vol. 139, 2017, pages 5351 - 5358 |
YU ET AL., PROC BIOL SCI, vol. 285, 2018 |
ZASLOFF, BIOCHIM BIOPHYS ACTA, vol. 1788, 2009, pages 1693 - 1694 |
ZEITLER, B ET AL., PLANT MOL BIOL, vol. 81, 2013, pages 259 - 272 |
ZHEN LIU: "Cloning, Co-Expression with an Amidating Enzyme, and Activity of the Scorpion Toxin BmK ITa1 cDNA in Insect Cells", MOLECULAR BIOTECHNOLOGY, vol. 24, no. 1, 1 May 2003 (2003-05-01), New York, pages 21 - 26, XP093159913, ISSN: 1073-6085, DOI: 10.1385/MB:24:1:21 * |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Bartetzko et al. | The Xanthomonas campestris pv. vesicatoria type III effector protein XopJ inhibits protein secretion: evidence for interference with cell wall–associated defense responses | |
EP2809148B1 (fr) | Peptides synthétiques de transit des chloroplastes dérivés de brassica | |
Choi et al. | Tobacco NtLTP1, a glandular‐specific lipid transfer protein, is required for lipid secretion from glandular trichomes | |
US11208667B2 (en) | Means and methods for regulating secondary metabolite production in plants | |
CA2653404C (fr) | Vehicule d'expression multigenique | |
Romano et al. | Plant immunophilins: functional versatility beyond protein maturation | |
AU2008241364B2 (en) | Modified plant defensin | |
Jeong et al. | Purification and characterization of Arabidopsis thaliana oligosaccharyltransferase complexes from the native host: a protein super‐expression system for structural studies | |
Kim et al. | The RNase activity of rice probenazole-induced protein1 (PBZ1) plays a key role in cell death in plants | |
PT1305437E (pt) | Expressão de polipéptidos biologicamente activos na lentilha de água | |
US11292819B2 (en) | Engineering pathogen resistance in plants | |
AU2002302547B2 (en) | The use of genes encoding abc transporters to stimulate the production of secondary metabolites in biological cells | |
Company et al. | The production of recombinant cationic α‐helical antimicrobial peptides in plant cells induces the formation of protein bodies derived from the endoplasmic reticulum | |
CA2870538A1 (fr) | Peptides synthetiques de transit vers les chloroplastes provenant de brassica | |
WO2024166076A1 (fr) | Production recombinée de peptides antimicrobiens in planta | |
Moeller et al. | A bacterial signal peptide is functional in plants and directs proteins to the secretory pathway | |
Wycliffe et al. | Continuous expression in tobacco leaves of a Brassica napus PEND homologue blocks differentiation of plastids and development of palisade cells | |
NZ580505A (en) | Modified plant defensin comprising a signal peptide, a mature domain from a Class I defensin and a C-terminal propeptide tail from a Class II plant defensin | |
WO2011112891A2 (fr) | Peptides défensifs chez les plantes | |
Amara | Abiotic stress in plants: Late Embryogenesis Abundant proteins | |
KR20230133078A (ko) | 식물에서 생산된 Factor C의 sushi domain을 포함하는 재조합 단백질을 이용한 엔도톡신 LPS 제거 방법 | |
Yansong | Subcellular Localization of GFP Fusions with the Seven Vacuolar Sorting Receptors of Arabidopsis thaliana to Prevacuolar Compartments in Transgenic Tobacco BY-2 Cells | |
Patel | Functional analysis of the nuclear envelope-associated protein MAF1 and preliminary investigation of the coiled-coil protein TMD1 | |
Huber | Localization and characterization of the protease DEG10 in Arabidopsis thaliana | |
WO2019063992A1 (fr) | Inhibiteurs de protéase |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 24706206 Country of ref document: EP Kind code of ref document: A1 |