WO2024164810A1 - 轨道车辆对标停车控制方法、装置及计算机存储介质 - Google Patents

轨道车辆对标停车控制方法、装置及计算机存储介质 Download PDF

Info

Publication number
WO2024164810A1
WO2024164810A1 PCT/CN2024/072475 CN2024072475W WO2024164810A1 WO 2024164810 A1 WO2024164810 A1 WO 2024164810A1 CN 2024072475 W CN2024072475 W CN 2024072475W WO 2024164810 A1 WO2024164810 A1 WO 2024164810A1
Authority
WO
WIPO (PCT)
Prior art keywords
rail vehicle
wheelset
deceleration
braking force
angular velocity
Prior art date
Application number
PCT/CN2024/072475
Other languages
English (en)
French (fr)
Inventor
孙洋山
陈孟夏
Original Assignee
克诺尔车辆设备(苏州)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 克诺尔车辆设备(苏州)有限公司 filed Critical 克诺尔车辆设备(苏州)有限公司
Publication of WO2024164810A1 publication Critical patent/WO2024164810A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61HBRAKES OR OTHER RETARDING DEVICES SPECIALLY ADAPTED FOR RAIL VEHICLES; ARRANGEMENT OR DISPOSITION THEREOF IN RAIL VEHICLES
    • B61H11/00Applications or arrangements of braking or retarding apparatus not otherwise provided for; Combinations of apparatus of different kinds or types
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/74Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with electrical assistance or drive
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present invention relates to the field of railways and rail transportation, and in particular to a method and device for controlling a rail vehicle to stop according to a standard, and a computer storage medium.
  • the braking types for rail transit vehicles are generally divided into emergency braking, rapid braking and normal braking.
  • Urban rail vehicle trains usually use normal braking, and normal braking generally adopts electric-air hybrid braking, that is, electric braking takes priority, and air braking compensates for the principle.
  • electric-air hybrid braking that is, electric braking takes priority, and air braking compensates for the principle.
  • the electric braking performance of the motor is attenuated.
  • electric-air conversion will be performed, and air braking will take over the electric braking of the vehicle.
  • the air brake has completed more than 90% of the expected compressed air action.
  • the vehicle signal system is mainly used to calculate the required deceleration of the vehicle according to the distance between the vehicle and the target point, and then sent to the braking system through the train control system TCMS for braking to ensure that the position of the vehicle door stop and the corresponding position of the platform screen door can be aligned.
  • the above method has the following disadvantages: first, calculating the deceleration based on the distance requires estimating the distance between the current vehicle and the target based on work experience, which will inevitably increase the error during the operation. Second, the braking system directly brakes after receiving the braking command, and fails to adjust the corresponding braking force in real time according to the current vehicle deceleration value, that is, the closed-loop control of the braking system is not formed.
  • One of the purposes of the present invention is to provide a method for controlling the parking of a rail vehicle in accordance with a target, so as to solve the technical problems in the prior art that a closed-loop control of a braking system cannot be formed and the error is large.
  • One of the purposes of the present invention is to provide a rail vehicle parking control device.
  • One of the objects of the present invention is to provide a computer storage medium.
  • the present invention provides a rail vehicle parking control method, comprising: determining whether the rail vehicle meets the state transition condition; if so, recording the sampling cycle time The linear velocity variation of the wheelset of the rail vehicle , according to the sampling period The linear velocity variation Calculate the actual deceleration value ; According to the actual deceleration value Theoretical deceleration value , determine the deceleration compensation amount of the rail vehicle , and according to the deceleration compensation amount , determine and adjust the braking force output according to the corresponding braking force compensation amount, and control the rail vehicle to stop at the target.
  • the state transition condition includes that the rail vehicle has not coasted and/or the rail vehicle has completed the electric-to-air conversion.
  • the state transition condition includes that the rail vehicle has not skidded;
  • the "determining whether the rail vehicle satisfies the state transition condition” specifically includes: detecting the angular velocity of the first wheelset and the angular velocity of the second wheelset of the rail vehicle, and determining whether the difference between the angular velocity of the first wheelset and the angular velocity of the second wheelset is within a preset range; if so, determining that the rail vehicle has not skidded.
  • the state transition condition includes that the rail vehicle has completed the electric-to-air conversion; the "determining whether the rail vehicle meets the state transition condition" specifically includes: detecting the driving speed of the rail vehicle within a preset time length, and determining whether the current driving speed falls within a preset low speed range; if so, it is determined that the rail vehicle has completed the electric-to-air conversion and is in an air braking state.
  • the "recording sampling cycle time The linear velocity variation of the wheelset of the rail vehicle” Specifically include: recording sampling cycle time The angular velocity change of the wheelset of the rail vehicle According to the angular velocity change Calculate the linear velocity variation .
  • the "recording sampling cycle time The angular velocity change of the wheelset of the rail vehicle” Specifically include: recording sampling cycle time The change in the number of axle revolutions of the wheelset of the rail vehicle , according to the change in the shaft speed , calculate the angular velocity change ;
  • R is the radius of the wheel in the wheelset.
  • one embodiment of the present invention provides a rail vehicle marking parking control device, the control device includes a marking parking control module, which includes a memory and a processor, the memory may be a computer program running on the processor, and the processor implements the steps of the above-mentioned rail vehicle marking parking control method when executing the computer program.
  • a marking parking control module which includes a memory and a processor
  • the memory may be a computer program running on the processor
  • the processor implements the steps of the above-mentioned rail vehicle marking parking control method when executing the computer program.
  • control device further includes a braking system, which is controlled by the processor and is used to output air braking force to the first wheel pair and the second wheel pair.
  • the control device also includes: a first axis number sensor, which is communicatively connected to the processor, for detecting the first axis speed of the first wheelset and transmitting the first axis speed data to the processor; a second axis number sensor, which is communicatively connected to the processor, for detecting the second axis speed of the second wheelset and transmitting the second axis speed data to the processor.
  • the present invention also provides a computer storage medium, which stores a computer program, and when the computer program is run, the device where the computer storage medium is located executes the steps of the above-mentioned rail vehicle marking parking control method.
  • the embodiments of the present invention have at least one of the following beneficial effects:
  • the present invention adopts a rail vehicle target parking control method, which only records the linear velocity change of the wheelset of the rail vehicle within the sampling period to calculate the corresponding actual deceleration value, and determines the deceleration compensation of the rail vehicle according to the size relationship between the actual deceleration value and the theoretical deceleration value given by the braking system, and determines the corresponding braking force compensation according to the deceleration compensation, and adjusts the output of the air braking force accordingly to control the rail vehicle to target parking.
  • the control method and device are simple and easy to implement, and the deceleration value is calculated by periodically measuring the actual data of the vehicle wheelset, the data has high accuracy, small error, and realizes closed-loop control of the braking system.
  • FIG. 1 is a schematic diagram of the steps of a method for controlling a rail vehicle to stop at a designated location in one embodiment of the present invention.
  • FIG. 2 is a schematic diagram of the conversion process between electric braking and air braking of a rail vehicle in one embodiment of the present invention.
  • FIG. 3 is a schematic diagram of a rail vehicle parking control device according to an embodiment of the present invention.
  • the so-called standard parking means that when the train stops at the station, the train door is aligned with the platform screen door, so that the vehicle can park smoothly and safely at the corresponding station.
  • This is not only convenient for passengers to get on and off the train, but also convenient for safety protection at the parking point of the vehicle to ensure the safety of passengers. Therefore, the realization of standard parking in the field of rail vehicles has a relatively important practical significance.
  • the present invention provides a rail vehicle parking control method, as shown in FIG1 , which specifically includes the following steps:
  • Step S1 determining whether the rail vehicle meets the state transition condition.
  • step S2 If yes, jump to step S2 and record the sampling cycle time
  • the linear velocity variation of the wheelset of the rail vehicle according to the sampling cycle time
  • the linear velocity variation Calculate the actual deceleration value .
  • Step S3 according to the actual deceleration value Theoretical deceleration value , determine the deceleration compensation amount of the rail vehicle , and according to the deceleration compensation amount , determine and adjust the braking force output according to the corresponding braking force compensation amount, and control the rail vehicle to stop at the target.
  • the actual deceleration value of the rail vehicle is calculated by recording the actual operation data of the wheelset, and the data is highly accurate, avoiding the error caused by empirical calculation; furthermore, the output of the braking force is dynamically adjusted according to the actual operation data of the periodically detected vehicle, realizing the closed-loop control of the braking system.
  • the state transition condition may further include that the rail vehicle is not coasting, the rail vehicle has completed the electric-to-air conversion, or both that the rail vehicle is not coasting and has completed the electric-to-air conversion.
  • step S1 can specifically include:
  • Step S111 detecting the angular velocity of the first wheelset and the angular velocity of the second wheelset of the rail vehicle, and determining whether the difference between the angular velocity of the first wheelset and the angular velocity of the second wheelset is within a preset range;
  • step S112 determines that the rail vehicle is not sliding.
  • the process is simple and easy to implement, and based on actual data detection, the data accuracy is high.
  • step S1 can specifically include: detecting the deceleration value of the first wheelset and the deceleration value of the second wheelset of the rail vehicle, and judging whether the deceleration value of the first wheelset and the deceleration value of the second wheelset do not exceed the preset value; if so, the braking system judges that the rail vehicle does not slide.
  • step S1 may include:
  • Step S121 detecting the travel speed of the rail vehicle within a preset time length, and determining whether the current travel speed falls within a preset low speed range;
  • step S122 determines that the rail vehicle has completed the electric-to-air conversion and is in the air braking state.
  • the preset low speed range is preferably lower than 5 km/h.
  • the train monitoring and management system TCMS sends an electric brake exit signal to the traction system and the brake system, and controls the air brake to start taking over the braking activity of the urban rail vehicle. Therefore, the electric brake system or the electric-air hybrid brake system will reduce the output of the braking force, and the air brake system will increase the output of the braking force, and finally maintain it at the preset braking force output target value.
  • the electric brake ED system starts braking during the time period t1 to t3, and the vehicle speed is reduced to a certain range (i.e., the low speed range).
  • the electric-air conversion i.e., the state conversion
  • the performance of the electric brake ED system gradually decays, and the air brake EP system starts to start, gradually taking over the work of the electric brake ED system until the vehicle braking force reaches the target value.
  • the brake system completes the conversion between electric braking and air braking, and after time t4, all control is performed by the air brake system.
  • the present invention provides a detailed step S2, which uses an operation relationship to replace the actual detection of the sensor, thereby reducing the device dependence.
  • the "recording sampling cycle time" in step S2 The linear velocity variation of the wheelset of the rail vehicle " part, which may specifically include:
  • Step S21 record the sampling cycle time The angular velocity change of the wheelset of the rail vehicle ;
  • Step S22 according to the angular velocity variation Calculate the linear velocity variation .
  • the linear velocity change is calculated by actually collecting the angular velocity change of the wheelset of the rail vehicle, which is simple and easy to implement, has high data reliability, and has a small error in the calculation result.
  • the implementation method is specifically: during the sampling cycle time The angular velocity changes of the first wheelset of the rail vehicle are recorded respectively. and the angular velocity change of the second wheel pair According to the change in angular velocity of the first wheel pair and the angular velocity change of the second wheel pair Calculate the linear velocity change of the first wheel pair and the linear velocity change of the second wheel pair Based on this, the actual deceleration values corresponding to the two wheel pairs can be calculated, thereby improving the accuracy of the braking force compensation amount finally generated.
  • the angular velocity changes of the wheelsets of the rail vehicle can be recorded as
  • the linear velocity changes of the wheelsets are recorded as In this way, based on the linear velocity change of the wheelset of the rail vehicle and data sampling cycle time , the actual deceleration value of the current rail vehicle can be calculated .
  • the angular velocity change and linear velocity change of the rail vehicle mentioned above can be obtained by sampling period time The average values of the angular velocity changes and the linear velocity changes of the first wheel pair and the second wheel pair.
  • steps S21 to S22 can also be applied alternatively to step S1.
  • the "recording sampling cycle time" in step S2 The linear velocity variation of the wheelset of the rail vehicle " may specifically include:
  • the linear velocity variation of the wheelset of the rail vehicle can be Angular velocity change through the wheelset To convert it.
  • R is the radius of the wheel in the wheelset.
  • the process of obtaining the linear speed can be ultimately converted into a process of measuring the number of revolutions per unit time, which greatly reduces the structural complexity and dependence on sensor accuracy, improves the accuracy of the calculation of the final actual deceleration value, and facilitates the subsequent adjustment of the braking force output.
  • step S2 "according to the sampling cycle time
  • the linear velocity variation Calculate the actual deceleration value " may specifically include:
  • the theoretical deceleration value Characterizes the braking deceleration requirement for the braking system.
  • the theoretical deceleration value It can come from the train monitoring and control system TCMS, which can control the braking process in a controlled or automated manner, especially the distribution of braking force.
  • the theoretical deceleration value It can be received in the form of a numerical value or in the form of brake level information.
  • the brake level includes multiple types, and each level type can have a corresponding braking force and deceleration value. In this way, the theoretical deceleration value can be obtained by analyzing the brake level information or the deceleration numerical information. .
  • the deceleration compensation amount The theoretical deceleration value can be and actual deceleration value
  • the deceleration compensation amount is determined by the difference between Can reflect the actual deceleration value
  • the theoretical deceleration value representing the target deceleration The difference between the theoretical deceleration value and the theoretical deceleration value is calculated to adjust the braking force output accordingly.
  • Actual deceleration value , and the deceleration compensation of the rail vehicle at least it can satisfy:
  • the brake system Before step S3, the brake system has an initial braking force output regardless of whether it is in the electric-air hybrid brake output state or the air brake output state.
  • the braking force compensation amount can be added to the initial braking force to generate a
  • the braking force output may also be reduced at this initial braking force, generating a Braking force output.
  • step S3 "according to the deceleration compensation amount , determining and applying a corresponding braking force, and controlling the rail vehicle to stop at a target location” may specifically include:
  • Step S31 determining the deceleration compensation amount Is it greater than or equal to the compensation reference value A?
  • step S32 control the braking system in the rail vehicle to increase the air braking force output, the increase is equal to the deceleration change The corresponding braking force compensation amount;
  • step S33 the brake system is controlled to reduce the air brake force output by an amount corresponding to the deceleration change.
  • Corresponding braking force compensation In this way, according to the deceleration compensation of the current rail vehicle and the size of the compensation reference value, the air braking force output result can be dynamically adjusted, with strong flexibility and good braking effect.
  • the compensation reference value A is adapted to the deceleration performance and quality of the rail vehicle itself, and the user can preset it, or realize dynamic adaptive configuration based on this corresponding relationship.
  • the deceleration compensation amount calculated is is based on the sampling cycle time This is achieved by actually detecting the real-time data of the rail vehicle during this period. If the deceleration compensation amount calculated and fed back through steps S1 to S3 is There is no corresponding braking force compensation or deceleration compensation When the train monitoring control signal TCMS does not feed back the corresponding braking force compensation to the braking system due to certain conditions not being met, the next sampling cycle is entered after step S3, and the above steps S1 to S3 are repeated until the rail vehicle completes parking and the speed is reduced to 0.
  • the actual deceleration value corresponding to the rail vehicle is calculated by periodically detecting the linear velocity change of the wheelset of the rail vehicle, and then compared with the theoretical deceleration value.
  • the deceleration compensation amount of the rail vehicle is determined according to the comparison result, and the corresponding braking force compensation amount is further determined according to the deceleration compensation amount, and the output of the braking force is adjusted according to the braking force compensation amount to control the parking of the rail vehicle according to the target.
  • the actual deceleration value is calculated by recording the actual operating data of the wheelset of the rail vehicle, and the data has high accuracy, avoiding the error caused by calculating the target distance based on experience; further, the braking force is adjusted dynamically and in real time according to the periodic detection data to realize the closed-loop control of the braking system.
  • the present invention further provides a rail vehicle alignment parking control device, which can implement a rail vehicle alignment parking control method by measuring through an actual measurement method.
  • the control device is designed based on a rail vehicle.
  • the rail vehicle used for testing is a train set to simulate actual operation.
  • the rail vehicle can also be designed as other multi-train sets as needed.
  • the control device includes a benchmarking control module 3, which includes a memory and a processor.
  • the memory stores a computer program that can be run on the processor.
  • the processor executes the program, the steps of the rail vehicle benchmarking parking control method described in any of the technical solutions above are implemented.
  • the control device also includes a braking system, which is not limited to an air braking system, but may also be an electric-air hybrid braking system. As long as air braking can be achieved, the present invention does not make any specific limitation on this.
  • the brake system is controlled by the processor and is used to output air braking force to the first wheel pair 1 and the second wheel pair 2 of the rail vehicle.
  • the brake system can adopt the common braking method in the prior art, that is, electric-air hybrid braking, that is, the principle of electric braking priority and air braking compensation.
  • the braking system also includes a first axis number sensor 4, which is communicatively connected to the processor, and is used to detect the first axis speed of the first wheel pair 1 within a sampling period and send the first axis speed data to the processor; and a second axis number sensor 5, which is communicatively connected to the processor, and is used to detect the second axis speed of the second wheel pair 2 within the sampling period and send the second axis speed data to the processor.
  • a first axis number sensor 4 which is communicatively connected to the processor, and is used to detect the first axis speed of the first wheel pair 1 within a sampling period and send the first axis speed data to the processor
  • a second axis number sensor 5 which is communicatively connected to the processor, and is used to detect the second axis speed of the second wheel pair 2 within the sampling period and send the second axis speed data to the processor.
  • basic braking elements 6 are provided at the first wheelset 1 and the first wheelset 2, and the braking control unit 7 outputs braking force to the first wheelset 1 and the second wheelset 2 of the rail vehicle by controlling the basic braking elements 6.
  • the first axle number sensor 4 and the second axle number sensor 5 are respectively provided at the axle ends of the first wheelset 1 and the second wheelset 3, and are used to detect the axle rotation numbers of the first wheelset 1 and the second wheelset 2 within the sampling period, so that the angular velocity of the wheel rotation can be accurately detected.
  • the benchmarking control module 3 When the benchmarking control module 3 detects that the current rail vehicle's travel speed falls within the preset low speed range within the preset time length, and detects that the first wheel pair 1 and the second wheel pair 2 do not slip, the benchmarking control module 3 automatically controls or manually controls the first axle number sensor 4 and the second axle number sensor 5 to detect that the first wheel pair 1 and the second wheel pair 2 do not slip.
  • the shaft revolutions of the first wheel pair 1 and the shaft revolutions of the second wheel pair 2 are detected and recorded respectively, and the shaft revolution data are transmitted to the benchmarking control module 3, and detected, analyzed and calculated by the processor.
  • the adoption cycle time and shaft speed change Based on the definition of angular velocity and the relationship between angular velocity and linear velocity, the actual deceleration value of the rail vehicle in the current cycle time is calculated. Combined with the magnitude relationship with the theoretical deceleration value, the braking force compensation amount corresponding to the deceleration compensation amount output by the air brake system is determined, and the braking force output is adjusted accordingly.
  • the present invention also provides a computer storage medium, in which a computer program is stored, and when the computer program is run, the device where the computer storage medium is located executes the steps of the rail vehicle alignment parking control method described in any of the technical solutions above.
  • the present invention detects the change in the number of shaft revolutions of the first wheelset and the second wheelset of the rail vehicle within the sampling period, calculates the change in the linear velocity of the first wheelset and the second wheelset, further calculates the actual deceleration value, and then determines the braking force compensation corresponding to the deceleration difference in combination with the theoretical deceleration value, and further controls the braking system in the rail vehicle to increase or reduce the air braking force output based on the comparison result between the deceleration compensation amount and the compensation reference value.
  • the control method and device are simple and easy to implement, and the benchmark control method is calculated by measuring the actual data, with high data accuracy and small error.
  • the braking force is adjusted in real time and dynamically until the vehicle stops at the benchmark, thereby realizing closed-loop control of the braking system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Regulating Braking Force (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

一种轨道车辆对标停车控制方法,该方法包括:判断车辆是否满足状态转换条件;若是,则记录采样周期(ΔT)内车辆轮对线速度变化量(ΔV),根据采样周期与线速度变化量计算得到实际减速度值;根据实际减速值与理论减速度值,确定制动力补偿量。该方法提高了轨道车辆对标停车的准确性,形成制动系统的闭环控制。

Description

轨道车辆对标停车控制方法、装置及计算机存储介质 技术领域
本发明涉及铁路及轨道交通领域,具体地涉及一种轨道车辆对标停车控制方法、装置及计算机存储介质。
背景技术
在城市轨道交通车辆中,由于轨道车辆的运营都是采用ATO(Automatic Train Operation,自动驾驶系统),而且站台停车基本都是采用站台屏蔽门和列车车门对齐的方式,所以当车辆进站停车时对于车辆的对标停车精度要求较为严苛,通常是以目标距离为基准,上下0.3m浮动。
目前对于轨道交通车辆的制动类型一般分为紧急制动、快速制动和常用制动。城市轨道车辆列车通常情况下采用常用制动,而常用制动一般采用的是电空混合制动,即电制动优先,空气制动补偿补足的原则。在车辆低速运行的情况下,电机的电制动性能有所衰减,此时将进行电空转换,由空气制动接管车辆的电制动。当完成电空转换后,空气制动已经完成了90%以上的预期压缩空气的动作,此时主要是利用车辆信号系统根据车辆距离目标点位的距离计算出车辆所需要的减速度,再通过列车控制系统TCMS发送给制动系统进行制动,保证车辆车门停靠的位置和站台屏蔽门相应位置能对齐。
上述方法存在以下缺点,一是根据距离计算减速度需要根据工作经验来预估当前车辆距目标的距离大小,这种操作势必会增大操作过程中误差。二是制动系统接收制动指令后直接进行制动,未能根据当前车辆的减速值实时调整对应的制动力,即未形成制动系统的闭环控制。
发明内容
本发明的目的之一在于提供一种轨道车辆对标停车控制方法,以解决现有技术中未能形成制动系统的闭环控制、误差大的技术问题。
本发明的目的之一在于提供一种轨道车辆对标停车控制装置。
本发明的目的之一在于提供一种计算机存储介质。
为了实现上述发明目的之一,本发明提供一种轨道车辆对标停车控制方法,包括:判断轨道车辆是否满足状态转换条件;若是,则记录采样周期时间 内所述轨道车辆的轮对的线速度变化量 ,根据所述采样周期 与所述线速度变化量 计算得到实际减速度值 ;根据所述实际减速值 与理论减速度值 ,确定所述轨道车辆的减速度补偿量 ,并根据所述减速度补偿量 ,确定并根据对应的制动力补偿量调整制动力输出,控制所述轨道车辆对标停车。
作为本发明一实施方式的进一步改进,所述状态转换条件包括轨道车辆未发生滑行和/或轨道车辆已完成电空转换。
作为本发明一实施方式的进一步改进,“所述状态转换条件包括轨道车辆未发生滑行;所述“判断轨道车辆是否满足状态转换条件”具体包括:检测所述轨道车辆的第一轮对的角速度和第二轮对的角速度,判断所述第一轮对的角速度和所述第二轮对的角速度的差值是否在预设范围内;若是,则判定所述轨道车辆未发生滑行。
作为本发明一实施方式的进一步改进,所述状态转换条件包括轨道车辆已完成电空转换;所述“判断轨道车辆是否满足状态转换条件”具体包括:检测所述轨道车辆在预设时间长度内的行驶速度,判断所述当前行驶速度是否落入预设低速范围内;若是,则判定所述轨道车辆已完成电空转换,处于空气制动状态。
作为本发明一实施方式的进一步改进,所述“记录采样周期时间 内所述轨道车辆的轮对的线速度变化量 ”具体包括:记录采样周期时间 内所述轨道车辆的轮对的角速度变化量 ;根据所述角速度变化量 计算得到所述线速度变化量
作为本发明一实施方式的进一步改进,所述“记录采样周期时间 内所述轨道车辆的轮对的角速度变化量 ”具体包括:记录采样周期时间 内所述轨道车辆的轮对的轴转数变化量 ,根据所述轴转数变化量 ,计算所述角速度变化量 ;所述“根据所述实际减速值 与理论减速度值 ,确定所述轨道车辆的减速度补偿量 ”具体包括:所述减速度补偿量 、所述理论减速度值 、所述线速度变化量 、所述采样周期时间 、所述角速度变化量 、所述轴转数变化量 至少满足:
其中,R表示轮对中车轮的半径。
作为本发明一实施方式的进一步改进,所述“根据所述减速度补偿量 ,确定并施加对应的制动力,控制所述轨道车辆对标停车”具体包括:判断所述减速度补偿量 是否大于等于补偿基准值A;若是,则控制轨道车辆中的制动系统提高空气制动力输出,增幅为与所述减速度变化量 对应的制动力补偿量;若否,则控制所述制动系统降低空气制动力输出,降幅为与所述减速度变化量 对应的制动力补偿量。
为实现上述发明目的之一,本发明一实施方式提供一种轨道车辆对标停车控制装置,所述控制装置包括对标停车控制模块,其包括存储器和处理器,所述存储器有可能在所述处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现上述的轨道车辆对标停车控制方法的步骤。
作为本发明一实施方式的进一步改进,所述控制装置还包括制动系统,所述制动系统受所述处理器控制,用于向第一轮对和第二轮对输出空气制动力。
作为本发明一实施方式的进一步改进,所述控制装置还包括:第一轴数传感器,其通讯连接于所述处理器,用于检测第一轮对的第一轴转数,并将第一轴转数数据传输至所述处理器;第二轴数传感器,其通讯连接于所述处理器,用于检测第二轮对的第二轴转数,并将第二轴转数数据传输至所述处理器。
为实现上述发明目的之一,本发明还提供一种计算机存储介质,其中存储有计算机程序,并且所述计算机程序运行时导致所述计算机存储介质的所在设备执行上述轨道车辆对标停车控制方法的步骤。
与现有技术相比,本发明实施例具有如下至少一种有益效果:
本发明采用轨道车辆对标停车控制方法,仅通过记录采样周期时间内所述轨道车辆的轮对的线速度变化量,计算得到对应的实际减速度值,根据所述实际减速度值和制动系统给定的理论减速度值之间的大小关系,确定所述轨道车辆的减速度补偿量,并根据该减速度补偿量确定对应的制动力补偿量,并依此调整空气制动力的输出,控制所述轨道车辆对标停车。本控制方法与装置简单易实现,通过周期性的测量车辆轮对的实际数据计算得到减速度值,数据准确性高,误差小且实现了制动系统的闭环控制。
附图说明
图1是本发明一实施方式中轨道车辆对标停车控制方法的步骤示意图。
图2是本发明一实施方式中轨道车辆电制动和空气制动的转换过程示意图。
图3是本发明一实施方式中轨道车辆对标停车控制装置示意图。
具体实施方式
以下将结合附图所示的具体实施方式对本发明进行详细描述。但这些实施方式并不限制本发明,本领域的普通技术人员根据这些实施方式所做出的结构、方法、或功能上的变换均包含在本发明的保护范围内。
需要说明的是,术语“包括”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。此外,术语“第一”、“第二”等仅用于描述目的,而不能理解为指示或暗示相对重要性。
在轨道交通领域,所述对标停车是指列车在进站停车时,列车的车门与站台的屏蔽门刚好对齐,以使得车辆能平稳安全的停靠到对应的站点。这不仅方便乘客上下车,同时也便于在车辆的停车点进行安全防护,保证乘客的安全出行。故而,在轨道车辆领域实现对标停车具有较为重要的现实意义。
基于此,本发明提供一种轨道车辆对标停车控制方法,如图1所示,具体包括下述步骤:
步骤S1,判断轨道车辆是否满足状态转换条件。
若是,则跳转步骤S2,记录采样周期时间 内所述轨道车辆的轮对的线速度变化量 ,根据所述采样周期时间 与所述线速度变化量 计算得到实际减速度值
步骤S3,根据所述实际减速值 与理论减速度值 ,确定所述轨道车辆的减速度补偿量 ,并根据所述减速度补偿量 ,确定并根据对应的制动力补偿量调整制动力输出,控制所述轨道车辆对标停车。如此,通过记录轮对的实际运行数据计算得到所述轨道车辆的实际减速度值,数据的准确性高,避免了凭借经验推算而产生的误差;再者,根据周期性的检测车辆的实际运行数据来动态调整制动力的输出,实现了制动系统的闭环控制。
如图2所示,在轨道车辆的正常运行过程中,一般包括紧急制动、快速制动和常用制动至少其中之一。对城市轨道车辆列车而言,电空混合形式的常用制动是更为合适的制动手段,此时轨道车辆的制动力以电制动为主体,空气制动作为补充。而在车辆速度降低到一定范围时,准备进行对标的过程中,比如以5km/h至8km/h速度运行时,一种较优实施方式中会发生由电空混合制动到空气制动的转换,此种过程可以定义为一种状态转换。为实现上述状态转换的自适应控制,本发明通过为状态转换过程设定判断条件的方式,实现快速响应和动态调整。
对于步骤S1,所述状态转换条件可进一步包括轨道车辆未发生滑行、轨道车辆已完成电空转换,或同时包括轨道车辆未发生滑行且已完成电空转换。
一方面,对于轨道车辆未发生滑行这一条件,在第一实施例中,可以通过检测轮对的角速度差来实现。具体而言,步骤S1可以具体包括:
步骤S111,检测所述轨道车辆的第一轮对的角速度和第二轮对的角速度,并判断所述第一轮对的角速度和所述第二轮对的角速度的差值是否在预设的范围内;
若是,则跳转步骤S112,判定所述轨道车辆未发生滑行。如此,通过检测轨道车辆的轮对的角速度差来判断车辆是否滑行,该过程简单易实现,同时基于实际的数据检测,数据的准确性较高。
在第二实施例中,可以通过检测轮对的减速度来完成判断。具体而言,步骤S1可以具体包括:检测所述轨道车辆的第一轮对的减速度值和第二轮对的减速度值,并判断所述第一轮对减速度值和第二轮对减速度值是否都未超过预设值;若是,则制动系统判定所述轨道车辆未发生滑行。
另一方面,对于轨道车辆已经完成电空转换这一条件,可以通过检测当前行驶速度来实现。具体地,步骤S1可以包括:
步骤S121,检测所述轨道车辆在预设时间长度内的行驶速度,并判断所述当前行驶速度是否落入预设低速范围内;
若是,则跳转步骤S122,判定所述轨道车辆已完成电空转换,处于空气制动状态。其中,所述预设低速范围优选为低于5km/h。
如此,通过检测轨道车辆的行驶速度确定车辆完成电空转换,规避了列车监控管理系统TCMS与制动系统之间的信号传输时间,且减弱了设备之间的相互依赖性。
在实际应用中,当判断当前轨道车辆的状态已经符合所述状态转换条件时,列车监控管理系统TCMS发出电制动退出信号传递给牵引系统和制动系统,并控制空气制动开始接管城轨车辆的制动活动。故而,电制动系统或电空混合制动系统会降低制动力的输出,空气制动系统会增加制动力的输出,并最终保持在预设的制动力输出目标值处。
具体地,结合图2所示,t1至t3时间段内电制动ED系统开启制动工作,车辆的速度降低到一定范围(也即所述低速度范围)内。当发生电空转换也即状态转换时,在t3至t4时间段内,电制动ED系统性能逐渐衰减,而空气制动EP系统开始启动,逐步接替电制动ED系统的工作,直到车辆制动力达到目标值。在t4时刻,制动系统完成了电制动和空气制动的转换,在t4时刻之后,全部由空气制动系统进行控制。
在空气制动接管过程中,或在轨道车辆发生其他状态转换的过程中,有必要随着制动过程的发展而动态调整制动力的输出,以实现车辆平稳制动且最终对标。
为了降低制动力输出的误差,本发明提供了细化的步骤S2,以利用运算关系替代传感器的实际检测,削弱设备依赖性。
具体地,在一种实施方式中,步骤S2中所述“记录采样周期时间 内所述轨道车辆的轮对的线速度变化量 ”部分,可以具体包括:
步骤S21,记录采样周期时间 内所述轨道车辆的轮对的角速度变化量
步骤S22,根据所述角速度变化量 计算得到所述线速度变化量
如此,通过实际采集轨道车辆的轮对的角速度变化量来计算其线速度变化量,简单易实现、数据可靠性高、计算结果误差小。
在城轨车辆包括两组轮对时,该实施方式具体是:在采样周期时间 内,分别记录所述轨道车辆的第一轮对的角速度变化量 和第二轮对的角速度变化量 。根据所述第一轮对的角速度变化量 和第二轮对的角速度变化量 计算得到所述第一轮对的线速度变化量 和所述第二轮对的线速度变化量 。据此,可以计算得到两轮对分别对应的实际减速度值,提升最终生成的制动力补偿量的精度。
理论上,在所述轨道车辆的第一轮对和第二轮对未发生滑行时, 是相同的,即 亦是相同的。优选地,可以将所述轨道车辆的轮对的角速度变化量都记作 ,而所述轮对的线速度变化量都记作 。如此,基于轨道车辆的轮对的线速度变化量 和数据采样周期时间 ,可以计算得到当前轨道车辆的实际减速度值
可选地,上文所述轨道车辆的角速度变化量和线速度变化量,可取采样周期时间 内所述第一轮对和第二轮对的角速度变化量和线速度变化量的平均值。
当然,除了用于计算实际减速度值 以外,分别检测并计算得到所述轨道车辆的第一轮对和第二轮对的角速度变化量以及对应的线速度变化量,还能够更好地检测当前轨道车辆是否出现滑行情况,也即上述步骤S21至步骤S22,还可以替换地应用于步骤S1中。
在一种优选实施例中,步骤S2中所述“记录采样周期时间 内所述轨道车辆的轮对的线速度变化量 ”可以具体包括:
记录采样周期时间 内所述轨道车辆的轮对的轴转数变化量 ,根据所述轴转数变化量 ,计算所述角速度变化量
进一步地,根据所述轨道车辆的轮对的角速度变化量 与线速度变化量 的关系:
其中,可将所述轨道车辆的轮对的线速度变化量 通过轮对的角速度变化量 来转换得到。
进一步,通过记录采样周期时间 内所述轨道车辆的轮对的轴转数变化量 ,并根据所述轴转数变化量 ,计算所述角速度变化量 速度与所述轮对轴转数变化量 的关系如下:
其中,R表示轮对中车轮的半径。
如此,能够将线速度的获取过程,最终转化为对单位时间内转数的测量过程,大幅降低了结构复杂性和传感器精度的依赖性,提高了最终实际减速度值计算的准确性,有助于后续对制动力输出的调整。
优选地,步骤S2中所述“根据所述采样周期时间 与所述线速度变化量 计算得到实际减速度值 ”可以具体包括:
根据线速度变化量 与采样周期时间 的商,计算得到实际减速度值 ,即:
对于步骤S3,所述理论减速度值 表征对制动系统的制动减速度要求。一方面,所述理论减速度值 可以来自于列车监控控制系统TCMS,其可以受控或自动化地实现对制动过程的控制,特别是对制动力的分配。
另一方面,所述理论减速度值 可以数值的形式,或以制动级位信息的形式被接收。对于后者,所述制动级位包括多种类型,每种级位类型都可以有对应的制动力和减速度值。如此,可以通过分析所述制动级位信息或者是减速度数值信息,得到所述理论减速度值
在一种实施方式中,减速度补偿量 可以通过理论减速度值 和实际减速度值 的差值来确定,如此,减速度补偿量 能够反映实际减速度值 与表征目标减速度的理论减速度值 之间的差距,以便对应生成制动力补偿量来调整制动力输出。具体地,理论减速度值 、实际减速度值 ,以及轨道车辆的减速度补偿量 ,至少可以满足:
在步骤S3之前,制动系统不论处在电空混合制动输出状态,还是处在空气制动输出状态,均有初始制动力输出,所述对应于减速度补偿量 的制动力补偿量,可以是添附于该初始制动力上,生成诸如 的制动力输出,也可以是在该初始制动力有所减损,生成诸如 的制动力输出。
为了适应于不同制动阶段,实现上述两种制动力输出算法之间的自动切换,在一实施方式中,步骤S3中“根据所述减速度补偿量 ,确定并施加对应的制动力,控制所述轨道车辆对标停车”具体可以包括:
步骤S31,判断所述减速度补偿量 是否大于等于补偿基准值A;
若是,则跳转步骤S32,控制轨道车辆中的制动系统提高空气制动力输出,增幅为与所述减速度变化量 对应的制动力补偿量;
若否,则跳转步骤S33,控制所述制动系统降低空气制动力输出,降幅为与所述减速度变化量 对应的制动力补偿量。如此,根据当前轨道车辆的减速度补偿量与补偿基准值的大小,可动态调整空气制动力输出结果,灵活性强、制动效果好。其中,所述补偿基准值A与轨道车辆本身的减速性能和质量相适应,用户可以进行预设,也可以基于此种对应关系实现动态自适应配置。
需要强调地,在执行步骤S1至步骤S3后,计算得到的所述减速度补偿量 ,是依据所述采样周期时间 这段时间内实际检测轨道车辆的实时数据来实现的。若经过步骤S1至步骤S3计算并反馈的减速度补偿量 并无对应的制动力补偿量,或减速度补偿量 因不满足某种条件而列车监控控制信号TCMS不反馈对应的制动力补偿量至制动系统一侧时,则步骤S3之后进入下一采样周期时间,重复执行上述步骤S1至步骤S3,直到所述轨道车辆完成停车,速度降低为0。
至此,本发明提供的一种轨道车辆对标停车控制方法就阐述完了。在轨道车辆满足转换条件后,通过周期性的检测轨道车辆的轮对的线速度变化量来计算所述轨道车辆当前对应的实际减速度值,再与理论减速度值进行比较,根据比较结果确定该轨道车辆的减速度补偿量,并根据所述减速度补偿量,进一步确定对应的制动力补偿量并根据所述制动力补偿量调整制动力的输出,控制所述轨道车辆对标停车。如此,通过记录轨道车辆轮对的实际运行数据计算得到实际减速度值,数据的准确性高,避免了凭借经验推算目标距离而产生的误差;再者,根据周期性的检测数据,并动态实时得调整制动力,实现制动系统的闭环控制。
如图3所示,本发明还提供一种轨道车辆对标停车控制装置,其可通过实测的方法测量实现轨道车辆对标停车控制方法。
控制装置基于轨道车辆设计,具体地,在本实施方式中,用于测试的轨道车辆为一编组列车,以模拟实际运行情况。在其他实施方式中,轨道车辆也可以根据需要设计为其他多编组列车。
控制装置包括对标控制模块3,其包括存储器和和处理器,存储器存储有可在处理器上运行的计算机程序,处理器执行程序时实现前文任一种技术方案所述的轨道车辆对标停车控制方法的步骤。
控制装置还包括制动系统,所述制动系统不限于空气制动系统,还可以是电空混合制动系统,只要能实现空气制动即可,本发明对此不做具体限定。
制动系统受所述处理器控制,用于向所述轨道车辆的第一轮对1和第二轮对2输出空气制动力。优选地,制动系统可以采用现有技术中常用制动方式,即采用电空混合制动,即电制动优先,空气制动补偿补足的原则。
制动系统还包括第一轴数传感器4,其通讯连接于所述处理器,用于在采样周期时间内检测所述第一轮对1的第一轴转数并将所述第一轴转数数据发送至处理器,以及第二轴数传感器5,其通讯连接于所述处理器,用于在所述采样周期时间内检测所述第二轮对2的第二轴转数并将所述第二轴转数数据发送至处理器。
具体地,在本实施方式中,以常用制动为例,第一轮对1和第一轮对2处设置有基础制动元件6,制动控制单元7通过控制基础制动元件6对轨道车辆的第一轮对1和第二轮对2进行制动力的输出,所述第一轴数传感器4和所述第二轴数传感器5分别设于第一轮对1和第二轮对3的轴端,用于检测所述第一轮对1和所述第二轮对2在所述采样周期时间内轮对的轴转数,从而可以准确地检测到车轮旋转的角速度。
下面对一个完整的对标控制流程中控制装置的运行方式进行具体说明:
当对标控制模块3在检测当前轨道车辆在预设时间长度内的行驶速度落入了预设低速范围内,且通过检测第一轮对1和第二轮对2未发生滑行时,对标控制模块3自动控制或人手动控制第一轴数传感器4和第二轴数传感器5,在采样周期时间 内,分别检测并记录第一轮对1的轴转数和第二轮对2的轴转数,并将所述轴转数数据传输至对标控制模块3,通过处理器检测分析并计算。
根据采用周期时间 和轴转数变化量 ,基于角速度的定义以及角速度与线速度之间的关系,计算得到所述轨道车辆当前采用周期时间内的实际减速度值。再结合与理论减速度值的大小关系,确定是空气制动系统输出的减速度补偿量对应的制动力补偿量,以此调整制动力输出。
本发明还提供一种计算机存储介质,其中存储有计算机程序,并且计算机程序运行时导致计算机存储介质的所在设备执行根据前文任一种技术方案所述的轨道车辆对标停车控制方法的步骤。
综上所述,本发明通过检测轨道车辆的第一轮对和第二轮对在采样周期时间内的轴转数变化量,计算得到所述第一轮对和所述第二轮对的线速度变化量,进一步计算得到实际减速度值,再结合理论减速度值确定其减速度差值对应的制动力补偿量,同时根据减速度补偿量与补偿基准值的比较结果,进一步控制轨道车辆中的制动系统是提高空气制动力输出还是降低空气制动力输出。本控制方法与装置简单易实现,对标控制方法通过测量实际数据计算得到,数据准确性高,误差小。另外,通过周期性的检测轴转数数据,实时并动态地调整制动力,直到车辆对标停车,从而实现制动系统的闭环控制。
应当理解,虽然本说明书按照实施方式加以描述,但并非每个实施方式仅包含一个独立的技术方案,说明书的这种叙述方式仅仅是为清楚起见,本领域技术人员应当将说明书作为一个整体,各实施方式中的技术方案也可以经适当组合,形成本领域技术人员可以理解的其他实施方式。
上文所列出的一系列的详细说明仅仅是针对本发明的可行性实施方式的具体说明,它们并非用以限制本发明的保护范围,凡未脱离本发明技艺精神所作的等效实施方式或变更均应包含在本发明的保护范围之内。

Claims (11)

  1. 一种轨道车辆对标停车控制方法,其特征在于,包括:
    判断轨道车辆是否满足状态转换条件;
    若是,则记录采样周期时间 内所述轨道车辆的轮对的线速度变化量 ,根据所述采样周期时间 与所述线速度变化量 计算得到实际减速度值
    根据所述实际减速值 与理论减速度值 ,确定所述轨道车辆的减速度补偿量 ,并根据所述减速度补偿量 ,确定并根据对应的制动力补偿量调整制动力输出,控制所述轨道车辆对标停车。
  2. 根据权利要求1所述的轨道车辆对标停车控制方法,其特征在于,所述状态转换条件包括轨道车辆未发生滑行和/或轨道车辆已完成电空转换。
  3. 根据权利要求2所述的轨道车辆对标停车控制方法,其特征在于,所述状态转换条件包括轨道车辆未发生滑行;所述“判断轨道车辆是否满足状态转换条件”具体包括:
    检测所述轨道车辆的第一轮对的角速度和第二轮对的角速度,判断所述第一轮对的角速度和所述第二轮对的角速度的差值是否在预设范围内;
    若是,则判定所述轨道车辆未发生滑行。
  4. 根据权利要求2所述的轨道车辆对标停车控制方法,其特征在于,所述状态转换条件包括轨道车辆已完成电空转换;所述“判断轨道车辆是否满足状态转换条件”具体包括:
    检测所述轨道车辆在预设时间长度内的行驶速度,判断所述当前行驶速度是否落入预设低速范围内;
    若是,则判定所述轨道车辆已完成电空转换,处于空气制动状态。
  5. 根据权利要求1所述的轨道车辆对标停车控制方法,其特征在于,所述“记录采样周期时间 内所述轨道车辆的轮对的线速度变化量 ”具体包括:
    记录采样周期时间 内所述轨道车辆的轮对的角速度变化量
    根据所述角速度变化量 计算得到所述线速度变化量
  6. 根据权利要求5所述的轨道车辆对标停车控制方法,其特征在于,所述“记录采样周期时间 内所述轨道车辆的轮对的角速度变化量 ”具体包括:
    记录采样周期时间 内所述轨道车辆的轮对的轴转数变化量 ,根据所述轴转数变化量 ,计算所述角速度变化量
    所述“根据所述实际减速值 与理论减速度值 ,确定所述轨道车辆的减速度补偿量 ”具体包括:
    所述减速度补偿量 、所述理论减速度值 、所述线速度变化量 、所述采样周期时间 、所述角速度变化量 、所述轴转数变化量 至少满足:
    其中,R表示轮对中车轮的半径。
  7. 根据权利要求1所述的轨道车辆对标停车控制方法,其特征在于,所述“根据所述减速度补偿量 ,确定并施加对应的制动力,控制所述轨道车辆对标停车”具体包括:
    判断所述减速度补偿量 是否大于等于补偿基准值A;
    若是,则控制轨道车辆中的制动系统提高空气制动力输出,增幅为与所述减速度变化量 对应的制动力补偿量;
    若否,则控制所述制动系统降低空气制动力输出,降幅为与所述减速度变化量 对应的制动力补偿量。
  8. 一种轨道车辆对标停车控制装置,其特征在于,所述控制装置包括对标停车控制模块,其包括存储器和处理器,所述存储器有可能在所述处理器上运行的计算机程序,所述处理器执行所述计算机程序时,实现权利要求1-7中任意一项所述的轨道车辆停车对标控制方法的步骤。
  9. 根据权利要求8所述的轨道车辆对标停车控制装置,其特征在于,所述控制装置还包括制动系统,所述制动系统受所述处理器控制,用于向第一轮对和第二轮对输出空气制动力。
  10. 根据权利要求8所述的轨道车辆对标停车控制装置,其特征在于,所述控制装置还包括:
    第一轴数传感器,其通讯连接于所述处理器,用于检测第一轮对的第一轴转数,并将第一轴转数数据传输至所述处理器;
    第二轴数传感器,其通讯连接于所述处理器,用于检测第二轮对的第二轴转数,并将第二轴转数数据传输至所述处理器。
  11. 一种计算机存储介质,其中存储有计算机程序,并且所述计算机程序运行时导致所述计算机存储介质的所在设备执行根据权利要求1-7中任意一项所述轨道车辆对标停车控制方法的步骤。
PCT/CN2024/072475 2023-02-10 2024-01-16 轨道车辆对标停车控制方法、装置及计算机存储介质 WO2024164810A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202310095786.9A CN116215600B (zh) 2023-02-10 2023-02-10 轨道车辆对标停车控制方法、装置及计算机存储介质
CN202310095786.9 2023-02-10

Publications (1)

Publication Number Publication Date
WO2024164810A1 true WO2024164810A1 (zh) 2024-08-15

Family

ID=86581884

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2024/072475 WO2024164810A1 (zh) 2023-02-10 2024-01-16 轨道车辆对标停车控制方法、装置及计算机存储介质

Country Status (2)

Country Link
CN (1) CN116215600B (zh)
WO (1) WO2024164810A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116215600B (zh) * 2023-02-10 2023-11-28 克诺尔车辆设备(苏州)有限公司 轨道车辆对标停车控制方法、装置及计算机存储介质

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1187517A (en) * 1967-06-01 1970-04-08 Oerliken Maschf Apparatus for Controlling the Pneumatic Braking of a Train
JP2011205738A (ja) * 2010-03-24 2011-10-13 Hitachi Ltd 自動列車運転装置
CN108859781A (zh) * 2018-06-19 2018-11-23 南京中车浦镇海泰制动设备有限公司 轨道车辆制动减速度闭环控制装置及控制方法
CN110395276A (zh) * 2019-06-26 2019-11-01 北京全路通信信号研究设计院集团有限公司 一种检测车辆制动力的控制方法及系统
CN111824093A (zh) * 2020-07-30 2020-10-27 中车株洲电力机车有限公司 轨道交通车辆停车控制方法及系统
CN112477830A (zh) * 2019-09-11 2021-03-12 中车唐山机车车辆有限公司 轨道车辆自动控车的方法及终端设备
CN112590854A (zh) * 2021-01-05 2021-04-02 中车株洲电力机车有限公司 一种地铁车辆空气制动补充方法及装置
CN113085807A (zh) * 2021-04-08 2021-07-09 中车唐山机车车辆有限公司 列车制动方法、装置、电子设备和存储介质
CN116215600A (zh) * 2023-02-10 2023-06-06 克诺尔车辆设备(苏州)有限公司 轨道车辆对标停车控制方法、装置及计算机存储介质

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0031710A1 (en) * 1979-12-31 1981-07-08 Westinghouse Electric Corporation Transit vehicle deceleration control system and method
CN111976782B (zh) * 2019-05-22 2021-11-12 中车株洲电力机车研究所有限公司 一种车辆制动方法、系统及相关组件
CN111559412A (zh) * 2020-06-18 2020-08-21 中车株洲电力机车有限公司 一种基于uwb定位的机车对标方法及系统
CN112721893A (zh) * 2021-01-14 2021-04-30 中车青岛四方机车车辆股份有限公司 电空配合的停车控制方法、系统、存储介质、设备及车辆

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1187517A (en) * 1967-06-01 1970-04-08 Oerliken Maschf Apparatus for Controlling the Pneumatic Braking of a Train
JP2011205738A (ja) * 2010-03-24 2011-10-13 Hitachi Ltd 自動列車運転装置
CN108859781A (zh) * 2018-06-19 2018-11-23 南京中车浦镇海泰制动设备有限公司 轨道车辆制动减速度闭环控制装置及控制方法
CN110395276A (zh) * 2019-06-26 2019-11-01 北京全路通信信号研究设计院集团有限公司 一种检测车辆制动力的控制方法及系统
CN112477830A (zh) * 2019-09-11 2021-03-12 中车唐山机车车辆有限公司 轨道车辆自动控车的方法及终端设备
CN111824093A (zh) * 2020-07-30 2020-10-27 中车株洲电力机车有限公司 轨道交通车辆停车控制方法及系统
CN112590854A (zh) * 2021-01-05 2021-04-02 中车株洲电力机车有限公司 一种地铁车辆空气制动补充方法及装置
WO2022148079A1 (zh) * 2021-01-05 2022-07-14 中车株洲电力机车有限公司 一种地铁车辆空气制动补充方法及装置
CN113085807A (zh) * 2021-04-08 2021-07-09 中车唐山机车车辆有限公司 列车制动方法、装置、电子设备和存储介质
CN116215600A (zh) * 2023-02-10 2023-06-06 克诺尔车辆设备(苏州)有限公司 轨道车辆对标停车控制方法、装置及计算机存储介质

Also Published As

Publication number Publication date
CN116215600A (zh) 2023-06-06
CN116215600B (zh) 2023-11-28

Similar Documents

Publication Publication Date Title
WO2024164810A1 (zh) 轨道车辆对标停车控制方法、装置及计算机存储介质
CN106383247B (zh) 一种地铁车辆轮对在线动态检测系统及车速检测方法
CA2192151C (en) Train brake performance monitor
CN112477831B (zh) 制动控制系统,方法及轨道车辆
JP3827296B2 (ja) 自動列車運転装置
RU2371337C2 (ru) Способ динамического управления тяговым усилием колес локомотива
JP4246919B2 (ja) 鉄道車両の脱線検知方法及び脱線検知装置
CN104379396A (zh) 列车控制装置
US20200385036A1 (en) Method and apparatus for determining changes in the longitudinal dynamic behavior of a railway vehicle
CN104760600B (zh) 一种牵引控制方法、装置及系统
CN108099875A (zh) 一种轨道车辆自适应摩擦系数的制动控制方法
WO2021139409A1 (zh) 一种齿轨列车的制动控制方法及设备
JP2021505859A (ja) 鉄道車両に関する車輪−レール粘着値を決定するシステム及び方法
CN109693653B (zh) 一种机车轮轴防滑保护控制方法
CN108162935A (zh) 一种轨道车辆自适应阻力的制动控制方法
CN110949342A (zh) 一种轨道车辆空气制动停车控制方法及系统
KR101173361B1 (ko) 철도차량 하중 측정장치 및 방법
CN113390495B (zh) 基于场景识别的城市轻轨车辆载荷在线估算方法
JP2012010505A (ja) 列車モニタ・データ伝送システムを有する列車制御装置
CN115092216B (zh) 一种货运列车自动驾驶分布式控制系统
CN115179912B (zh) 一种列车电制动至零速控制装置及方法
JPH03503953A (ja) より正確な列車運転のための改良された車輪摩耗調整を有した列車制御装置
CN114435428B (zh) 一种列车制动曲线确定方法及装置、列车控制方法及系统
CN112347603B (zh) 一种轨道交通车辆平稳舒适性测试评估方法及装置
CN114791366A (zh) 轨道车辆轮轨粘着系数的测量方法、装置及计算机存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 24752668

Country of ref document: EP

Kind code of ref document: A1