WO2024164324A1 - 颜色转换基板及其制造方法、显示面板 - Google Patents

颜色转换基板及其制造方法、显示面板 Download PDF

Info

Publication number
WO2024164324A1
WO2024164324A1 PCT/CN2023/075498 CN2023075498W WO2024164324A1 WO 2024164324 A1 WO2024164324 A1 WO 2024164324A1 CN 2023075498 W CN2023075498 W CN 2023075498W WO 2024164324 A1 WO2024164324 A1 WO 2024164324A1
Authority
WO
WIPO (PCT)
Prior art keywords
color conversion
pixel openings
substrate
type
openings
Prior art date
Application number
PCT/CN2023/075498
Other languages
English (en)
French (fr)
Inventor
王其云
李在濠
高栋雨
曾诚
白静璐
陈立
魏振业
马璐蔺
Original Assignee
京东方科技集团股份有限公司
成都京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 成都京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to PCT/CN2023/075498 priority Critical patent/WO2024164324A1/zh
Priority to CN202380008036.1A priority patent/CN118786768A/zh
Publication of WO2024164324A1 publication Critical patent/WO2024164324A1/zh

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/856Arrangements for extracting light from the devices comprising reflective means
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/38Devices specially adapted for multicolour light emission comprising colour filters or colour changing media [CCM]

Definitions

  • the present application relates to the field of display technology, and in particular to a color conversion substrate and a manufacturing method thereof, and a display panel.
  • display devices include mobile phones, televisions, tablet computers, laptops, and monitors.
  • Display panels generally include: a display substrate, and a quantum dot conversion layer located on the light-emitting side of the display substrate, which can convert the light emitted by the display substrate into light of other colors.
  • the display substrate can emit blue light
  • the quantum dot conversion layer contains red quantum dots and green quantum dots.
  • the red quantum dots can convert the blue light emitted by the display substrate into red light
  • the green quantum dots can convert the blue light emitted by the display substrate into green light.
  • the light extraction efficiency of the current display panel including the quantum dot conversion layer is low, resulting in low overall brightness of the display panel.
  • the embodiment of the present application provides a color conversion substrate and a manufacturing method thereof, and a display panel, which can solve the problem of low overall brightness of the display panel in the prior art.
  • the technical solution is as follows:
  • a color conversion substrate comprising:
  • a reflective isolation portion located on one side of the substrate, the isolation portion having a plurality of pixel openings, the plurality of pixel openings comprising: a plurality of first-type pixel openings arranged in an array and a plurality of second-type pixel openings arranged in an array, wherein the plurality of rows of the first-type pixel openings and the plurality of rows of the second-type pixel openings are alternately arranged;
  • the color conversion layer comprises a first color conversion pattern, a second color conversion pattern and a transmission pattern, wherein the first color conversion pattern and the transmission pattern are respectively located at different locations.
  • the second color conversion layer is located in the first type of pixel opening;
  • the second pixel openings are not distributed in a first area of the color conversion substrate for distributing the first pixel openings in the same row, and the first pixel openings are not distributed in a second area of the color conversion substrate for distributing the second pixel openings in the same row.
  • the multiple first-type pixel openings and the multiple second-type pixel openings are arranged into multiple columns along the first direction and into multiple rows along the second direction; in the first direction, the distance between two adjacent first-type pixel openings in a row of the first-type pixel openings is greater than the distance between two adjacent second-type pixel openings in a row of the second-type pixel openings.
  • the isolation portion further comprises: at least one first auxiliary opening located between two adjacent first-type pixel openings in a row of the first-type pixel openings, and the at least one first auxiliary opening is also distributed between two adjacent second-type pixel openings in a column of the second-type pixel openings.
  • two first auxiliary openings are arranged side by side between two adjacent first-type pixel openings in a row of the first-type pixel openings;
  • the distance between one of the two first auxiliary openings arranged side by side and an adjacent first-type pixel opening is equal to the distance between the other auxiliary opening and an adjacent first-type pixel opening.
  • a distance between two first auxiliary openings arranged side by side is greater than or equal to a distance between the first-type pixel opening and an adjacent first auxiliary opening.
  • the width of the first auxiliary opening is greater than or equal to the width of the first type of pixel opening.
  • the distance between the first type of pixel opening and the adjacent first auxiliary opening ranges from 10 microns to 25 microns; and/or, in the second direction, the distance between the second type of pixel opening and the adjacent first auxiliary opening ranges from 10 microns to 25 microns.
  • the color conversion substrate further includes: a first blocking portion located in the first auxiliary opening, wherein the light absorption rate of the first blocking portion is greater than the light absorption rate of the isolation portion.
  • the color conversion substrate also includes: a second blocking portion located on one side of the substrate, the second blocking portion having a light absorption rate greater than the light absorption rate of the isolation portion, and the second blocking portion is arranged in the same layer as the isolation portion but is made of different materials, and the orthographic projection of the second blocking portion on the substrate is located between the orthographic projections of two adjacent first-type pixel openings in a row of the first-type pixel openings on the substrate.
  • the orthographic projection of the second blocking portion on the substrate is located between the orthographic projections of the two side-by-side first auxiliary openings on the substrate.
  • the color conversion substrate further comprises: a first auxiliary blocking portion and/or a second auxiliary blocking portion located at one side of the substrate;
  • first auxiliary blocking portion and the second blocking portion are arranged in the same layer and made of the same material, and the orthographic projection of the first auxiliary blocking portion on the substrate is located between the orthographic projections of two adjacent rows of pixel openings on the substrate;
  • the second auxiliary blocking portion is disposed in the same layer and made of the same material as the second blocking portion, and the orthographic projection of the second auxiliary blocking portion on the substrate is located between the orthographic projections of two adjacent columns of the pixel openings on the substrate.
  • the material of the isolation part includes: a gray or white organic material
  • the material of the second blocking part includes: a black organic material
  • the isolation portion further has: a second auxiliary opening, the second auxiliary opening is located between two adjacent first-type pixel openings in a column of the first-type pixel openings, and is located between two adjacent second-type pixel openings in a row of the second-type pixel openings.
  • the width of the second auxiliary opening is greater than or equal to the width of the second type of pixel opening.
  • the distance between the second type of pixel opening and the adjacent second auxiliary opening ranges from 10 microns to 25 microns; and/or, in the second direction, the distance between the first type of pixel opening and the adjacent second auxiliary opening ranges from 10 microns to 25 microns.
  • a row of the first type of pixel openings includes: a plurality of first sub-pixel openings and a plurality of second sub-pixel openings that are alternately distributed, the first sub-pixel openings having the first color conversion pattern distributed therein, and the second sub-pixel openings having the transmission pattern distributed therein.
  • the first color conversion pattern distributed in the first sub-pixel opening comprises: red quantum dots for converting blue light into red light, and scattering particles for scattering light;
  • the transmission pattern distributed in the second sub-pixel opening has: scattering particles for scattering light;
  • the second color conversion pattern distributed in the second type of pixel openings comprises: green quantum dots for converting blue light into green light, and scattering particles for scattering light.
  • the color conversion substrate further comprises: an auxiliary encapsulation layer located on a side of the color conversion layer away from the substrate, and a color resist layer located on a side of the auxiliary light emitting layer away from the substrate;
  • the color resist layer includes: a red color resist block, a green color resist block and a blue color resist block, the orthographic projection of the red color resist block on the substrate covers the orthographic projection of the first sub-pixel opening on the substrate, the orthographic projection of the blue color resist block on the substrate covers the orthographic projection of the second sub-pixel opening on the substrate, and the orthographic projection of the green color resist block on the substrate covers the orthographic projection of the second type of pixel opening on the substrate.
  • a method for manufacturing a color conversion substrate comprising:
  • a reflective isolation portion is formed on one side of the substrate, wherein the isolation portion has a plurality of pixel openings, wherein the plurality of pixel openings include: a plurality of first-type pixel openings arranged in an array and a plurality of second-type pixel openings arranged in an array, wherein the plurality of rows of the first-type pixel openings and the plurality of rows of the second-type pixel openings are alternately arranged;
  • the color conversion layer comprising a first color conversion pattern, a second color conversion pattern and a transmission pattern, the first color conversion pattern and the transmission pattern being respectively located in different first-type pixel openings, and the second color conversion layer being located in the second-type pixel openings;
  • the second pixel openings are not distributed in a first area of the color conversion substrate for distributing the first type of pixel openings in the same row, and the first pixel openings are not distributed in a second area of the color conversion substrate for distributing the second type of pixel openings in the same row.
  • a display panel comprising: a display substrate, and the color conversion substrate
  • a color conversion substrate includes: a substrate, a reflective isolation portion located on one side of the substrate, and a color conversion layer. Since the isolation portion in the color conversion substrate is reflective. Therefore, after the color conversion substrate is integrated into a display panel, light with a large viewing angle can be reflected back to the pixel opening by the isolation portion, so that the light reflected back to the pixel opening can be emitted normally. In this way, the light output efficiency of the display panel can be effectively improved, so that the overall brightness of the display panel is higher.
  • the isolation portion since the multiple rows of first-class pixel openings and the multiple rows of second-class pixel openings in the isolation portion are arranged alternately, and the second pixel openings are not distributed in the first area of the color conversion substrate for distributing the same row of first-class pixel openings, and the first-class pixel openings are not distributed in the second area of the color conversion substrate for distributing the same row of second-class pixel openings.
  • the isolation portion is designed to be reflective, the light absorption of the isolation portion becomes poor, resulting in The light transmittance of the isolation portion becomes stronger, which can also ensure that most of the light emitted from the surroundings of the first type of pixel openings will not pass through the isolation portion to the second type of pixel openings, and most of the light emitted from the surroundings of the second type of pixel openings will not pass through the isolation portion to the first type of pixel openings, thereby effectively reducing the probability of the undesirable phenomenon of cross-color appearing in the display panel integrated with this color conversion substrate, so that the display effect of this display panel is better.
  • FIG1 is a top view of a color conversion substrate provided in an embodiment of the present application.
  • FIG2 is a schematic diagram of the film structure of the color conversion substrate at position A-A' shown in FIG1;
  • FIG3 is a light path diagram of the color conversion substrate shown in FIG2 ;
  • FIG4 is a light path diagram of the color conversion substrate shown in FIG1 ;
  • FIG5 is a top view of another color conversion substrate provided in an embodiment of the present application.
  • FIG6 is a schematic diagram of the film structure of the color conversion substrate at position B-B' shown in FIG5;
  • FIG7 is a top view of another color conversion substrate provided in an embodiment of the present application.
  • FIG8 is a schematic diagram of the film structure of the color conversion substrate at position C-C' shown in FIG7;
  • FIG9 is a top view of a color conversion substrate provided in another embodiment of the present application.
  • FIG10 is a schematic diagram of the film structure of the color conversion substrate at position D-D' shown in FIG9;
  • FIG11 is a top view of another color conversion substrate provided by another embodiment of the present application.
  • FIG12 is a top view of yet another color conversion substrate provided in another embodiment of the present application.
  • FIG13 is a schematic diagram of a film structure of a color conversion substrate provided in yet another embodiment of the present application.
  • FIG14 is a schematic diagram of a film structure of a display panel provided in an embodiment of the present application.
  • FIG. 15 is a schematic diagram of a film layer structure of another display panel provided in an embodiment of the present application.
  • a display panel including a quantum dot conversion layer generally also has an isolation portion.
  • the isolation portion has a plurality of pixel openings, and the quantum dot conversion layer can be distributed in the pixel openings. Since the quantum dot conversion layers distributed in two adjacent pixel openings generally belong to different types of quantum dot conversion layers, for example, the quantum dot conversion layer distributed in one of the two adjacent pixel openings is used to convert blue light into red light, and the quantum dot conversion layer distributed in the other pixel opening is used to convert blue light into green light.
  • the isolation portion between the pixel openings of the two pixels needs to be made of a black organic material.
  • the proportion of light with a large viewing angle (that is, the angle between the emission direction and the normal is large, for example, greater than or equal to 45°) is relatively high, and the light with a large viewing angle is easily absorbed by the black isolation part, resulting in a low light output efficiency of the display panel including the quantum dot conversion layer, and then resulting in the overall low brightness of this display panel.
  • Figure 1 is a top view of a color conversion substrate provided in an embodiment of the present application
  • Figure 2 is a schematic diagram of the film layer structure of the color conversion substrate at A-A' shown in Figure 1.
  • the color conversion substrate 000 may include: a substrate 100, and a reflective isolation portion 200 located on one side of the substrate 100.
  • the isolation portion 200 in the color conversion substrate 000 may have a plurality of pixel openings 200a.
  • the plurality of pixel openings 200a in the isolation portion 200 may include: a plurality of first-type pixel openings 201 arranged in an array and a plurality of second-type pixel openings 202 arranged in an array.
  • the plurality of rows of first-type pixel openings 201 may be arranged alternately with the plurality of rows of second-type pixel openings 202.
  • the plurality of first-type pixel openings 201 may be arranged in an array into a plurality of rows and a plurality of columns, and the plurality of second-type pixel openings 202 may also be arranged in an array into a plurality of rows and a plurality of columns.
  • the plurality of rows of first-type pixel openings 201 may be arranged alternately with the plurality of rows of second-type pixel openings 202, that is, a row of second-type pixel openings 202 is distributed between two adjacent rows of first-type pixel openings 201.
  • first-type pixel openings 201 may be arranged alternately with multiple columns of second-type pixel openings 202 , that is, one column of second-type pixel openings 202 is distributed between two adjacent columns of first-type pixel openings 201 .
  • the color conversion substrate 000 may further include: a color conversion layer 300.
  • the color conversion layer 300 may include: a first color conversion pattern 300a, a second color conversion pattern 300b, and a transmission pattern 300c.
  • the first color conversion pattern 300a and the transmission pattern 300c in the color conversion layer 300 may be located in different first-type pixel openings 201, respectively, and the second color conversion pattern 300b in the color conversion layer 300 may be located in the second-type pixel opening 202.
  • the first color conversion pattern 300a and the second color conversion pattern 300b in the color conversion layer 300 are used to convert the light of a specified color into light of other colors, while the transmissive pattern 300c in the color conversion layer 300 does not convert the light of the specified color.
  • the second pixel openings 202 are not distributed in the first area B1 of the color conversion substrate 000 for distributing the same row of the first type pixel openings 201, and the first type pixel openings 201 are not distributed in the second area B2 of the color conversion substrate 000 for distributing the same row of the second type pixel openings 202. That is, a row (i.e., a row or a column) of the first type pixel openings 201 can be distributed in the first area B1 of the color conversion substrate 000, but the second type pixel openings 202 will not be distributed in the first area B1.
  • a row (i.e., a row or a column) of the second type pixel openings 202 can be distributed in the second area B2 of the color conversion substrate 000, but the first type pixel openings 201 will not be distributed in the second area B2.
  • FIG. 3 is a light path diagram of the color conversion substrate shown in FIG. 2.
  • the light with a large viewing angle can be reflected back to the pixel opening 200a by the isolation part 200, so that the light reflected back to the pixel opening 200a can be normally emitted outward. In this way, the light extraction efficiency of the display panel can be effectively improved, so that the overall brightness of the display panel is higher.
  • the reflectivity of the black isolation part in the related art is usually less than 10%
  • the isolation part 200 in the color conversion substrate 000 can be gray or white to ensure that the isolation part 200 has a certain reflectivity.
  • the material of the isolation part 200 may include: a gray organic material.
  • white particles and black particles can be mixed into a transparent organic material at the same time, or a low concentration of black particles can be mixed into a transparent organic material, and a gray isolation part 200 can be obtained after curing, and the reflectivity of the gray isolation part 200 ranges from 40% to 80%.
  • the material of the isolation part 200 may include: a white organic material.
  • a high concentration of white particles can be mixed into a transparent organic material, and a white isolation part 200 can be obtained after curing, and the reflectivity of the white isolation part 200 ranges from 70% to 90%.
  • the reflectivity of the isolation portion shown in the embodiment of the present application refers to the reflectivity of the isolation portion with a thickness of 10 micrometers to light with a wavelength of 550 nanometers.
  • the light absorption rate of the gray or white isolating portion 200 is lower than that of the black isolating portion, and the light transmittance of the gray or white isolating portion 200 is higher than that of the black isolating portion.
  • the black isolation part has a higher transmittance to light.
  • first-type pixel openings 201 and the multiple rows of second-type pixel openings 202 in the isolation part 200 are arranged alternately, and the second pixel openings 202 are not distributed in the first area B1 of the color conversion substrate 000 for distributing the same row of first-type pixel openings 201, and the first-type pixel openings 201 are not distributed in the second area B2 of the color conversion substrate 000 for distributing the same row of second-type pixel openings 202.
  • the isolation part 200 is designed to be reflective, so that the light absorption of the isolation part 200 is reduced, resulting in the light transmittance of the isolation part 200 being enhanced, it can also be ensured that most of the light emitted from the surroundings of the first-type pixel opening 201 will not pass through the isolation part 200 to the second-type pixel opening 202, and most of the light emitted from the surroundings of the second-type pixel opening 202 will not pass through the isolation part 200 to the first-type pixel opening 201, thereby effectively reducing the probability of the undesirable phenomenon of cross-color appearing in the display panel integrated with such a color conversion substrate 000.
  • FIG4 is a light path diagram of the color conversion substrate shown in FIG1 .
  • the light a1 emitted from the four sides of the first type pixel opening 201 will only be emitted to the adjacent first type pixel opening 201, and will not be emitted to the second type pixel opening 202.
  • the intensity of the light b1 emitted from the corners of the first type pixel opening 201 is much lower than the light a1 emitted from the four sides of the first type pixel opening 201. Therefore, the problem that the light emitted from the four sides of the first type pixel opening 201 will be emitted to the second type pixel opening 202 can be effectively avoided. Similarly, the light a2 emitted from the four sides of the second-type pixel opening 202 will only be emitted to the adjacent second-type pixel opening 202, but not to the first-type pixel opening 201.
  • the color conversion substrate provided in the embodiment of the present application includes: a substrate, a reflective isolation portion located on one side of the substrate, and a color conversion layer. Since the isolation portion in the color conversion substrate is reflective. Therefore, after the color conversion substrate is integrated into the display panel, light with a large viewing angle can be reflected back to the pixel opening by the isolation portion, so that the light reflected back to the pixel opening can be emitted normally. In this way, the light output efficiency of the display panel can be effectively improved, so that the overall brightness of the display panel is higher.
  • the multiple rows of first-type pixel openings and the multiple rows of second-type pixel openings in the isolation portion are The second pixel openings are arranged alternately, and the first area for distributing the first type of pixel openings in the same row in the color conversion substrate is not distributed with the second pixel openings, and the first type of pixel openings are not distributed with the second area for distributing the second type of pixel openings in the same row in the color conversion substrate.
  • the isolation part is designed to be reflective, so that the light absorption of the isolation part is reduced, resulting in the isolation part having stronger light transmittance, it can be ensured that most of the light emitted from the surroundings of the first type of pixel openings will not pass through the isolation part to the second type of pixel openings, and most of the light emitted from the surroundings of the second type of pixel openings will not pass through the isolation part to the first type of pixel openings, thereby effectively reducing the probability of the undesirable phenomenon of cross-color in the display panel integrated with such a color conversion substrate, so that the display effect of such a display panel is better.
  • a plurality of first-type pixel openings 201 and a plurality of second-type pixel openings 202 are arranged in a plurality of columns along the first direction X and in a plurality of rows along the second direction Y.
  • first-type pixel openings 201 may be distributed with a first color conversion pattern 300a, and another portion of the openings may be distributed with a transmission pattern 300c.
  • Each opening in a column of first-type pixel openings 201 may be distributed with either a first color conversion pattern 300a or a transmission pattern 300c.
  • Each second-type pixel opening 201 may be distributed with a second color conversion pattern 300b.
  • a row of first-type pixel openings 201 may include: a plurality of first sub-pixel openings 201a and a plurality of second sub-pixel openings 201b that are alternately distributed. That is, a second sub-pixel opening 201b is distributed between two adjacent first sub-pixel openings 201a in a row of first-type pixel openings 201.
  • the first color conversion pattern 300a may be distributed in the first sub-pixel opening 201a
  • the transmission pattern 300c may be distributed in the second sub-pixel opening 201b.
  • the first color conversion pattern 300a can convert blue light into red light
  • the second color conversion pattern 300b can convert blue light into green light
  • the blue light is still blue light after passing through the transmission pattern 300c.
  • the first color conversion pattern 300a belongs to a part of the red sub-pixel R in the display panel
  • the second color conversion pattern 300b belongs to a part of the green sub-pixel G in the display panel
  • the transmission pattern 300c belongs to a part of the blue sub-pixel B in the display panel.
  • each sub-pixel in the display panel is arranged in RBGG, that is, one red sub-pixel R, one blue sub-pixel B and two green sub-pixels G can form one pixel.
  • the transmission pattern 300c may also be distributed in the second type of pixel opening 202
  • the second color conversion pattern 300b may also be distributed in the second sub-pixel opening 201b
  • the first color conversion pattern 300c may also be distributed in the second sub-pixel opening 201b.
  • the color conversion pattern 300a is still distributed in the first sub-pixel opening 201a.
  • each sub-pixel in the display panel is arranged in RGBB, that is, one red sub-pixel R, one green sub-pixel G and two blue sub-pixels B can form a pixel.
  • the embodiment of the present application is not limited to this. It should be noted that, for the convenience of description, the subsequent embodiments are all described by taking the arrangement of each sub-pixel in the display panel in RBGG as an example.
  • a distance d1 between two adjacent first-type pixel openings 201 in a row of first-type pixel openings 201 is greater than a distance d2 between two adjacent second-type pixel openings 202 in a row of second-type pixel openings 202 .
  • the second pixel openings 202 are not distributed in the first area B1 for distributing the first type pixel openings 201 in the same row in the color conversion substrate 000, and it is ensured that the first type pixel openings 201 are not distributed in the second area B2 for distributing the second type pixel openings 202 in the same row in the color conversion substrate 000, it can be ensured that the probability of cross-color phenomenon between the green sub-pixel G and the red sub-pixel R is low, and it can be ensured that the probability of cross-color phenomenon between the green sub-pixel G and the blue sub-pixel B is low.
  • the first-type pixel openings 201 are arranged on the substrate.
  • the shape of the orthographic projection on the substrate 100 may be a square, and the shape of the orthographic projection of the second type pixel opening 202 on the substrate 100 may be a strip.
  • the side length of the square may be equal to the width of the rectangle, and of course the side length of the square may not be equal to the width of the rectangle, which is not limited in the embodiment of the present application.
  • the shape of the orthographic projection of the pixel opening on the substrate 100 may also be other shapes, such as a circle, an ellipse, or a diamond, etc. This is not limited in the embodiment of the present application.
  • first auxiliary opening 203 between two adjacent first pixel openings 201 in a row of first pixel openings 201, it is possible to ensure that the distance between the first auxiliary opening 203 and the adjacent first pixel opening 201 in the first direction X is small, for example, smaller than the diameter of the ink droplets printed during the inkjet printing process.
  • the ink droplets printed to the side of the isolation portion 200 away from the substrate 100 can smoothly flow into the first pixel opening 201 or the first auxiliary opening 203, so as to ensure that no contaminants after the ink droplets are cured are formed in the area near the first pixel opening 201 on the side of the isolation portion 200 away from the substrate 100, thereby effectively reducing the final preparation of the pattern.
  • the probability of bad pixels appearing in the display panel is low.
  • the width d3 of the first auxiliary opening 203 is greater than or equal to the width d4 of the first type pixel opening 201. In this way, it can be ensured that the ink droplets printed between the first auxiliary opening 203 and the first type pixel opening 201 can flow into the first auxiliary opening 203 or the first pixel opening 201.
  • the distance d5 between the first type pixel opening 201 and the adjacent first auxiliary opening 201 ranges from 10 microns to 25 microns
  • the distance d6 between the second type pixel opening 201 and the adjacent first auxiliary opening 201 ranges from 10 microns to 25 microns.
  • the diameter of the ink droplets printed by the print head is generally about 15 microns to 20 microns.
  • the distance d5 between the first type pixel opening 201 and the adjacent first auxiliary opening 201 is in the range of 10 microns to 25 microns, it can be ensured that the ink droplets printed between the first auxiliary opening 203 and the first type pixel opening 201 can flow into the first auxiliary opening 203 or the first pixel opening 201;
  • the distance d6 between the second type pixel opening 201 and the adjacent first auxiliary opening 201 is in the range of 10 microns to 25 microns, it can be ensured that the ink droplets printed between the first auxiliary opening 203 and the second type pixel opening 202 can flow into the first auxiliary opening 203 or the second pixel opening 202.
  • two first auxiliary openings 203 are arranged side by side between two adjacent first-type pixel openings 201 in a row of first-type pixel openings 201.
  • the distance between one of the two first auxiliary openings 203 arranged side by side and the adjacent first-type pixel opening 201 is equal to the distance between the other first auxiliary opening 203 and the adjacent first-type pixel opening 201.
  • two first auxiliary openings 203 are arranged side by side between the adjacently arranged first sub-pixel opening 201a and the second sub-pixel opening 201b, and in the first direction X, the distance between the first sub-pixel opening 201a and the adjacent first auxiliary opening 203 is equal to the distance between the second sub-pixel opening 201b and the adjacent first auxiliary opening 203.
  • At least part of the ink droplets printed to the side of the isolation portion 200 facing away from the substrate 100 can flow into the second sub-pixel opening 201b, or flow into the first auxiliary opening 203 adjacent to the second sub-pixel opening 201b.
  • the distance d7 between two first auxiliary openings 203 arranged side by side is greater than or equal to the distance between the first type pixel opening 201 and the adjacent first auxiliary opening d5.
  • the overall thickness of the isolation portion 200 distributed between the first sub-pixel opening 201a and the second sub-pixel opening 201b is relatively large, thereby ensuring that the isolation portion 200 between the first sub-pixel opening 201a and the second sub-pixel opening 201b has a low transmittance to light, so as to further reduce the probability of cross-color phenomenon between the red sub-pixel R and the blue sub-pixel B in the display panel.
  • the isolation portion 200 further has: a second auxiliary opening 204.
  • the second auxiliary opening 204 may be located between two adjacent first-type pixel openings 201 in a column of first-type pixel openings 201, and between two adjacent second-type pixel openings 202 in a row of second-type pixel openings 202.
  • the second auxiliary openings 204 may allow ink droplets printed between the second auxiliary openings 204 and the second-type pixel openings 202 to flow into the second auxiliary openings 204 or the second-type pixel openings 202, and may also allow ink droplets printed between the second auxiliary openings 204 and the first-type pixel openings 201 to flow into the first auxiliary openings 203 or the first-type pixel openings 201, thereby further reducing the probability of bad pixels in the finally prepared display panel.
  • the width d8 of the second auxiliary opening 204 is greater than or equal to the width d9 of the second type pixel opening 202. In this way, it can be ensured that the second auxiliary opening 204 and the second type pixel opening 202 are printed.
  • the ink drops between the quasi-pixel openings 202 can all flow into the second auxiliary openings 204 or the second pixel openings 202 .
  • the distance d10 between the second type pixel opening 202 and the adjacent second auxiliary opening 204 is in the range of 10 microns to 25 microns; and/or, in the second direction Y, the distance d11 between the first type pixel opening 201 and the adjacent second auxiliary opening 204 is in the range of 10 microns to 25 microns.
  • the diameter of the ink droplets printed by the print head is generally about 20 microns.
  • the distance d10 between the second-type pixel opening 202 and the adjacent second auxiliary opening 204 is in the range of 10 microns to 25 microns, it can be ensured that the ink droplets printed between the second auxiliary opening 204 and the second-type pixel opening 202 can flow into the second auxiliary opening 204 or the second-type pixel opening 202; when in the second direction Y, the distance d11 between the first-type pixel opening 201 and the adjacent second auxiliary opening 204 is in the range of 10 microns to 25 microns, it can be ensured that the ink droplets printed between the second auxiliary opening 204 and the first-type pixel opening 201 can flow into the second auxiliary opening 204 or the first-type pixel opening 201.
  • a black blocking portion may be provided between the first sub-pixel opening 201a and the second sub-pixel opening 201b. Since the black blocking portion has a high absorption rate of light, the light emitted from the periphery of the first sub-pixel opening 201a that passes through the isolation portion 200 and is emitted to the second sub-pixel opening 201b may be blocked by the blocking portion, and the light emitted from the periphery of the second sub-pixel opening 201b that passes through the isolation portion 200 and is emitted to the first sub-pixel opening 201a may also be blocked by the blocking portion.
  • FIG. 7 is a top view of another color conversion substrate provided in an embodiment of the present application
  • FIG. 8 is a schematic diagram of the film structure of the color conversion substrate shown in FIG. 7 at the C-C' position.
  • the color conversion substrate 000 may also include: a first blocking portion 400 located in the first auxiliary opening 203.
  • the first blocking portion 400 may be black, while the isolation portion 200 may be gray or white. For this reason, the absorption rate of the light by the first blocking portion 400 is greater than the absorption rate of the light by the isolation portion 200.
  • the absorption rate of the light by the first blocking portion 400 is high, and the light emitted from the surroundings of the first sub-pixel opening 201a that passes through the isolation portion 200 and is emitted to the second sub-pixel opening 201b can be blocked by the first blocking portion 400 located in the first auxiliary opening 203, and the light emitted from the surroundings of the second sub-pixel opening 201b can be blocked by the first blocking portion 400.
  • the light emitted from the first sub-pixel opening 201a through the isolation portion 200 can also be blocked by the first blocking portion 400 located in the first auxiliary opening 203. In this way, the probability of cross-color phenomenon between the red sub-pixel R and the blue sub-pixel B in the display panel can be further reduced.
  • the color conversion layer 300 in order to ensure that the probability of printing on the side of the isolation portion 200 facing away from the substrate 100 is low during the process of printing the color conversion layer 300 using the inkjet printing process, the color conversion layer 300 can be first printed using the inkjet printing process, and then the first blocking portion 400 can be filled in the first auxiliary opening 203.
  • the color conversion substrate 000 may also generally include: a color resist layer 700 located on the side of the color conversion layer 300 and the isolation portion 200 away from the substrate 100.
  • the color resist layer 700 may include: a plurality of color resist blocks 701 corresponding to the plurality of pixel openings 200a one by one, and a black matrix 702 located between two adjacent color resist blocks 701.
  • the orthographic projection of each color resist block 701 on the substrate 100 may cover the orthographic projection of the corresponding pixel opening 200a on the substrate 100.
  • Each color resist block 701 in the color resist layer 700 can filter out stray light from the light emitted from the pattern located in the corresponding pixel opening 200a in the color conversion layer 300, and the black matrix 702 in the color resist layer 700 can absorb the light emitted from the side of the color resist block 701 to prevent the display panel from having an undesirable phenomenon of cross-color.
  • the black matrix 702 needs to be formed on the side of the isolation portion 200 facing away from the substrate 100, after the black matrix 702 is formed on the side of the isolation portion 200 facing away from the substrate 100, part of the black matrix 702 will be filled into the first auxiliary opening 203, so that the part of the black matrix 702 located in the first auxiliary opening 203 can serve as the first blocking portion 400.
  • FIG. 9 A second optional implementation is shown in Figures 9 and 10, where Figure 9 is a top view of a color conversion substrate provided in another embodiment of the present application, and Figure 10 is a schematic diagram of the film structure of the color conversion substrate shown in Figure 9 at D-D'.
  • the color conversion substrate 000 may also include: a second blocking portion 500 located on one side of the substrate.
  • the orthographic projection of the second blocking portion 500 on the substrate 100 is located between the orthographic projections of two adjacent first-type pixel openings 201 in a row of first-type pixel openings 201 on the substrate 100. That is, the orthographic projection of the second blocking portion 500 on the substrate 100 is located between the adjacently distributed first sub-pixel openings 201a.
  • the second blocking portion 500 may be black, while the isolating portion 200 may be gray or white. For this reason, the light absorption rate of the second blocking portion 500 is greater than that of the isolating portion 200.
  • the second blocking portion 500 may be in the shape of a long strip, the length direction of the second blocking portion 500 is parallel to the second direction Y, and the length of the second blocking portion 500 is greater than or equal to the width of the first type pixel opening 201 in the second direction Y.
  • the second blocking portion 500 has a high absorption rate for light, and the light emitted from the periphery of the first sub-pixel opening 201a that passes through the isolating portion 200 and is emitted to the second sub-pixel opening 201b can be blocked by the second blocking portion 500, and the light emitted from the periphery of the second sub-pixel opening 201b that passes through the isolating portion
  • the light emitted from the first sub-pixel opening 200 to the first sub-pixel opening 201a can also be blocked by the second blocking portion 500. In this way, the probability of cross-color phenomenon between the red sub-pixel R and the blue sub-pixel B in the display panel can be further reduced.
  • the second blocking part 500 in the color conversion substrate 000 can be arranged in the same layer as the isolation part 200 but with different materials. It should be noted that a certain structure in the embodiment of the present application is arranged in the same layer but with different materials means that: the two structures are simultaneously distributed on one side of a film layer in the color conversion substrate 000, but two different processes are required to form the two structures respectively.
  • the second blocking part 500 is arranged in the same layer as the isolation part 200 but with different materials means that: the second blocking part 500 and the isolation part 200 are simultaneously distributed on one side of the substrate 100, but the second blocking part 500 and the isolation part 200 are formed by two different processes.
  • both the isolation part 200 and the second barrier part 500 are formed on one side of the substrate 100 before the color conversion layer 300 is formed by the inkjet printing process, and the material of the isolation part 200 includes: a gray or white organic material, and the material of the second barrier part 500 includes: a black organic material.
  • a high concentration of black particles can be mixed into a transparent organic material, and the black second barrier part 500 can be obtained after curing.
  • the orthographic projection of the second blocking portion 500 in the color conversion substrate 000 on the substrate 100 may be located between the orthographic projections of the two first auxiliary openings 203 arranged side by side on the substrate 100.
  • the second blocking portion 500 is provided between the two adjacent first-type pixel openings 201 and does not interfere with the first auxiliary openings 203, so that the first auxiliary openings 203 can still effectively avoid the formation of contaminants formed by solidified ink droplets on the side of the isolation portion 200 away from the substrate 100.
  • the color conversion substrate 000 may further include: a first auxiliary blocking portion 601 and/or a second auxiliary blocking portion 602 located on one side of the substrate 100.
  • a first auxiliary blocking portion 601 and/or a second auxiliary blocking portion 602 located on one side of the substrate 100.
  • the first auxiliary blocking portion 601 is disposed on the same layer and made of the same material as the second blocking portion 500.
  • a certain structure disposed on the same layer and made of the same material means that the two structures are simultaneously distributed on one side of a film layer in the color conversion substrate 000, and the two structures need to be formed separately using the same process.
  • the first auxiliary blocking portion 601 is disposed on the same layer as the second blocking portion 500 and The relative materials mean that the first auxiliary blocking portion 601 and the second blocking portion 500 are formed by adopting the same patterning process.
  • the orthographic projection of the first auxiliary blocking portion 601 on the substrate 100 is located between the orthographic projections of two adjacent rows of pixel openings 200a on the substrate 100. That is, the orthographic projection of the first auxiliary blocking portion 601 on the substrate 100 is located between the orthographic projections of a row of adjacently distributed first-type pixel openings 201 and a row of adjacently distributed second-type pixel openings 202 on the substrate 100.
  • the first auxiliary blocking portion 601 may be in the shape of a long strip, and the length direction of the first auxiliary blocking portion 601 is parallel to the first direction X.
  • the first auxiliary blocking portion 601 and the second blocking portion 500 are made of the same material, the first auxiliary blocking portion 601 is also black, and the first auxiliary blocking portion 601 has a high light absorption rate, so that the light emitted from the four corners of the first type pixel opening 201 and directed toward the second type pixel opening 202 can be blocked by the first auxiliary blocking portion 601, and the light emitted from the four corners of the second type pixel opening 202 and directed toward the first type pixel opening 201 can also be blocked by the first auxiliary blocking portion 601.
  • the first auxiliary blocking portion 601 can further avoid the undesirable phenomenon of color cross-talk between the first type pixel opening 201 and the second type pixel opening 202.
  • the second case is a top view of another color conversion substrate provided by another embodiment of the present application.
  • the color conversion substrate 000 includes a second auxiliary blocking portion 602
  • the second auxiliary blocking portion 602 is arranged in the same layer as the second blocking portion 500 and is made of the same material.
  • the orthographic projection of the second auxiliary blocking portion 602 on the substrate 100 is located between the orthographic projections of two adjacent columns of pixel openings 200a on the substrate 100. That is, the orthographic projection of the second auxiliary blocking portion 602 on the substrate 100 is located between the orthographic projections of a column of first-type pixel openings 201 and a column of second-type pixel openings 202 on the substrate 100 that are adjacently distributed.
  • the second auxiliary blocking portion 602 can be in the shape of a long strip, and the length direction of the second auxiliary blocking portion 602 is parallel to the second direction Y.
  • the second auxiliary blocking portion 602 is made of the same material as the second blocking portion 500, the second auxiliary blocking portion 602 is also black, and the second auxiliary blocking portion 602 has a high light absorption rate, so that the light emitted from the four corners of the first type pixel opening 201 and directed toward the second type pixel opening 202 can be blocked by the second auxiliary blocking portion 602, and the light emitted from the four corners of the second type pixel opening 202 and directed toward the first type pixel opening 201 can also be blocked by the second auxiliary blocking portion 602.
  • the second auxiliary blocking portion 602 can further avoid the undesirable phenomenon of color cross-talk between the first type pixel opening 201 and the second type pixel opening 202.
  • the third case is another color provided by another embodiment of the present application.
  • the color conversion substrate 000 includes a first auxiliary blocking portion 601 and a second auxiliary blocking portion 602
  • the first auxiliary blocking portion 601 can be distributed between two adjacent rows of pixel openings 200a
  • the second auxiliary blocking portion 602 can be distributed between two adjacent columns of pixel openings 200a.
  • the structure and function of the first auxiliary blocking portion 601 in this case can refer to the first auxiliary blocking portion 601 in the first case above
  • the structure and function of the second auxiliary blocking portion 602 in this case can refer to the second auxiliary blocking portion 602 in the second case above.
  • the embodiments of the present application will not be repeated here.
  • FIG. 13 is a schematic diagram of a film structure of a color conversion substrate provided by another embodiment of the present application.
  • the first color conversion pattern 300a distributed in the first sub-pixel opening 201a has: red quantum dots 301a for converting blue light into red light, and heat dissipation particles 302 for dissipating heat from the light.
  • the red quantum dots 301a and the heat dissipation particles 302 can be dispersedly arranged in a transparent medium layer 303 located in the first sub-pixel opening 201a.
  • the blue light emitted by the display panel can be converted into red light by the red quantum dots 301a after emitting to the first color conversion pattern 300a distributed in the first sub-pixel opening 201a, and the blue light and the red light can be scattered by the scattering particles 302, so as to ensure that more blue light can be converted into red light by the red quantum dots 301a, and the emission angle of the converted red light can be larger, so as to ensure that the viewing angle of the display panel is larger.
  • the first color conversion pattern 300a distributed in the first sub-pixel opening 201a may be used as a part of the red sub-pixel R of the display panel.
  • the transmission pattern 300c distributed in the second sub-pixel opening 201b has: heat dissipation particles 302 for dissipating heat from light.
  • the heat dissipation particles 302 can be dispersed in the transparent medium layer 303 located in the second sub-pixel opening 201b.
  • the blue light emitted by the display panel can be scattered by the scattering particles 302 after it is emitted to the transmission pattern 300c distributed in the second sub-pixel opening 201b, so as to ensure that the blue light has a larger exit angle, thereby ensuring that the viewing angle of the display panel is larger.
  • the transmission pattern 300c distributed in the second sub-pixel opening 201b can be used as a part of the blue sub-pixel B of the display panel.
  • the second color conversion pattern 300b distributed in the second type of pixel opening 202 has: green quantum dots 301b for converting blue light into green light, and heat dissipation particles 302 for dissipating heat from the light.
  • the green quantum dots 301b and the heat dissipation particles 302 can be dispersed in the transparent medium layer 303 located in the second type of pixel opening 202.
  • the blue light emitted by the display panel can be converted into green light by the green quantum dots 301b after irradiating the second color conversion pattern 300b distributed in the second type of pixel opening 202, and can be converted into green light by the scattering particles 302.
  • the blue light and the green light are scattered to ensure that more blue light can be converted into green light by the green quantum dots 301b, and the emission angle of the converted green light can be larger, so as to ensure that the viewing angle of the display panel is larger.
  • the second color conversion pattern 300b distributed in the second type of pixel opening 202 can be used as a part of the green sub-pixel G of the display panel.
  • the color conversion substrate 000 may further include: an auxiliary encapsulation layer 800 located on the side of the color conversion layer 300 facing away from the substrate 100, and a color resist layer 700 located on the side of the auxiliary encapsulation layer 700 facing away from the substrate 100.
  • the auxiliary encapsulation layer 800 is used to encapsulate the color conversion layer 300 in the color conversion substrate 000, and the auxiliary encapsulation layer 800 can ensure that the color conversion layer 300 will not be corroded by water and oxygen in the external environment.
  • the color resist layer 700 in the color conversion substrate 000 may include a red color resist block 701R, a green color resist block 701G, and a blue color resist block 701B.
  • the orthographic projection of the red color resist block 701R on the substrate 100 covers the orthographic projection of the first sub-pixel opening 201a on the substrate 100, and the red color resist block 701R can filter out light of other colors except red light to ensure that the red sub-pixel R of the display panel can emit pure red light
  • the orthographic projection of the blue color resist block 701B on the substrate 100 covers the orthographic projection of the second sub-pixel opening 201b on the substrate 100, and the blue color resist block 701B can filter out light of other colors except blue light to ensure that the blue sub-pixel B of the display panel can emit pure blue light
  • the orthographic projection of the green color resist block 701G on the substrate 100 covers the orthographic projection of the second type of pixel opening 202 on the substrate 100, and the green color resist block 701G can filter out light of other colors except green light
  • the color resist layer 700 in the color conversion substrate 000 may further include: a black matrix 702 located between two adjacent color resist blocks.
  • the black matrix 702 can effectively prevent the display panel from having a cross-color problem.
  • the color conversion substrate provided in the embodiment of the present application includes: a substrate, a reflective isolation portion located on one side of the substrate, and a color conversion layer. Since the isolation portion in the color conversion substrate is reflective. Therefore, after the color conversion substrate is integrated into the display panel, light with a large viewing angle can be reflected back to the pixel opening by the isolation portion, so that the light reflected back to the pixel opening can be emitted normally. In this way, the light output efficiency of the display panel can be effectively improved, so that the overall brightness of the display panel is higher.
  • the second pixel openings are not distributed in the first area for distributing the same row of the first-class pixel openings in the color conversion substrate, and the second pixel openings are not distributed in the first area for distributing the same row of the second-class pixel openings in the color conversion substrate.
  • the first type of pixel openings are not distributed in the second area.
  • the isolation part is designed to be reflective, so that the light absorption of the isolation part is reduced and the light transmittance of the isolation part is enhanced, it can be ensured that most of the light emitted from the surroundings of the first type of pixel openings will not pass through the isolation part to the second type of pixel openings, and most of the light emitted from the surroundings of the second type of pixel openings will not pass through the isolation part to the first type of pixel openings, thereby effectively reducing the probability of the undesirable phenomenon of cross-color in the display panel integrated with this color conversion substrate, so that the display effect of this display panel is better.
  • the embodiment of the present application also provides a display panel.
  • the display panel may include: a display substrate, and a color conversion substrate provided in the above embodiment.
  • the color conversion substrate may be the color conversion substrate 000 shown in FIG. 1 , FIG. 5 , FIG. 7 , FIG. 9 , FIG. 11 , FIG. 12 , or FIG. 13 .
  • the display panel may be a micro-light emitting diode (micro-LED) display panel, or a mini-light emitting diode (mini-LED) display panel, or an organic light emitting diode (OLED) display panel.
  • micro-LED micro-light emitting diode
  • mini-LED mini-light emitting diode
  • OLED organic light emitting diode
  • FIG. 14 is a schematic diagram of a film layer structure of a display panel provided in an embodiment of the present application.
  • the display substrate 001 in the display panel may be a light-emitting substrate for emitting blue light.
  • the light-emitting device in the light-emitting substrate is: micro-LED or mini-LED.
  • the substrate 100 in the color conversion substrate 000 may be an upper protective layer, and each film layer in the color conversion substrate 000 needs to be prepared on a glass substrate 002.
  • the display substrate 001 in the display panel is arranged opposite to the color conversion substrate 000, and the light-emitting device in the display substrate 001 needs to face the color conversion substrate 000, and the color conversion layer 300 in the color conversion substrate 000 is closer to the display substrate 001 relative to the substrate 100.
  • FIG15 is a schematic diagram of a film structure of another display panel provided in an embodiment of the present application.
  • the display panel is an OLED display panel
  • the display substrate 001 in the display panel may include: an OLED light-emitting device 003 for emitting blue light, and a pixel driving circuit (not marked in the figure) electrically connected to the OLED light-emitting device 003.
  • the OLED light-emitting device 003 may be located on a side of the color conversion layer 300 close to the substrate 100, and the pixel driving circuit may be used to drive the OLED light-emitting device 003 to emit light.
  • the display panel may also include: an encapsulation layer 004 for encapsulating the OLED light-emitting device 003, and the isolation portion 200 in the color conversion substrate 000 may be arranged on a side of the encapsulation layer 004 away from the substrate 001.
  • the embodiment of the present application also provides a display device, which can be any product or component with a display function, such as a mobile phone, a tablet computer, a television, a display, a laptop computer, a digital photo frame, a navigator, etc.
  • the display device may include: a power supply component, and a display panel electrically connected to the power supply component.
  • the display panel may be the display panel in the above embodiment.
  • the display panel may be the display panel shown in FIG. 14 or FIG. 15.
  • the present application also provides a method for manufacturing a color conversion substrate, which is used to prepare the color conversion substrate in the above embodiment.
  • the method for manufacturing the color conversion substrate may include:
  • Step S1 forming a reflective isolation portion on one side of the substrate.
  • the isolation portion has a plurality of pixel openings, the plurality of pixel openings comprising: a plurality of first-type pixel openings arranged in an array and a plurality of second-type pixel openings arranged in an array, the plurality of rows of first-type pixel openings and the plurality of rows of second-type pixel openings being arranged alternately.
  • Step S2 forming a color conversion layer on the substrate with the isolation portion formed thereon.
  • the color conversion layer includes a first color conversion pattern, a second color conversion pattern and a transmission pattern, the first color conversion pattern and the transmission pattern are respectively located in different first-type pixel openings, and the second color conversion layer is located in the second-type pixel opening.
  • the second pixel openings are not distributed in the first area of the color conversion substrate for distributing the first type pixel openings in the same row, and the first pixel openings are not distributed in the second area of the color conversion substrate for distributing the second type pixel openings in the same row.
  • first and second are used for descriptive purposes only and should not be understood as indicating or implying relative importance.
  • plurality refers to two or more than two, unless otherwise clearly defined.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

本申请公开了一种颜色转换基板及其制造方法、显示面板,属于显示技术领域。颜色转换基板包括:衬底,位于衬底一侧的具有反光性的隔离部,以及颜色转换层。由于颜色转换基板中的隔离部具有反光性。因此,在将这种颜色转换基板集成在的显示面板内后,大视角的光线可以被隔离部反射回像素开孔,使得反射回像素开孔的光线能够正常向外出射。如此,可以有效的提高这种显示面板的出光效率,使得这种显示面板的整体亮度较高。

Description

颜色转换基板及其制造方法、显示面板 技术领域
本申请涉及显示技术领域,特别涉及一种颜色转换基板及其制造方法、显示面板。
背景技术
随着显示技术的发展,显示装置的需求和应用范围不断扩大。常用的显示装置有手机、电视机、平板电脑、笔记本电脑和显示器等。
目前,量子点材料作为一种新型发光材料,也被越来越多地用于显示装置中的显示面板内。显示面板通常可以包括:显示基板,以及位于显示基板出光侧的量子点转换层,该量子点转换能够将显示基板发出的光线转换为其它颜色的光线。例如,显示基板可以发出的蓝光,量子点转换层包含红色量子点和绿色量子点,红色量子点能够将显示基板发出的蓝光转换为红光,绿色量子点能够将显示基板发出的蓝光转换为绿光。
然而,目前包含了量子点转换层的显示面板的出光效率较低,导致显示面板的整体亮度偏低。
发明内容
本申请实施例提供了一种颜色转换基板及其制造方法、显示面板。可以解决现有技术的显示面板的整体亮度偏低的问题,所述技术方案如下:
一方面,提供了一种颜色转换基板,包括:
衬底;
位于所述衬底一侧的具有反光性的隔离部,所述隔离部具有多个像素开孔,所述多个像素开孔包括:阵列排布的多个第一类像素开孔和阵列排布的多个第二类像素开孔,多排所述第一类像素开孔和多排所述第二类像素开孔交替排布;
以及,颜色转换层,所述颜色转换层包括第一颜色转换图案、第二颜色转换图案和透射图案,所述第一颜色转换图案和所述透射图案分别位于不同的所 述第一类像素开孔内,所述第二颜色转换层位于所述第二类像素开孔内;
其中,所述颜色转换基板中用于分布同一排所述第一类像素开孔的第一区域内未分布所述第二像素开孔,且所述颜色转换基板中用于分布同一排所述第二类像素开孔的第二区域内未分布所述第一类像素开孔。
可选的,所述多个第一类像素开孔和所述多个第二类像素开孔均沿第一方向排布为多列且沿第二方向排布为多行;在所述第一方向上,一行所述第一类像素开孔中两个相邻的第一类像素开孔之间的距离,大于一行所述第二类像素开孔中两个相邻的第二类像素开孔之间的距离。
可选的,所述隔离部还具有:位于一行所述第一类像素开孔中两个相邻的第一类像素开孔之间的至少一个第一辅助开孔,且所述至少一个第一辅助开孔还分布在一列所述第二类像素开孔中两个相邻的第二类像素开孔之间。
可选的,一行所述第一类像素开孔中两个相邻的第一类像素开孔之间并排分布有两个所述第一辅助开孔;
其中,在所述第一方向上,并排分布的两个所述第一辅助开孔中的一个辅助开孔与相邻的第一类像素开孔之间的距离,等于另一个辅助开孔与相邻的第一类像素开孔之间的距离。
可选的,在所述第一方向上,并排分布的两个所述第一辅助开孔之间的距离,大于或等于所述第一类像素开孔与相邻的第一辅助开孔之间的距离。
可选的,在所述第二方向上,所述第一辅助开孔的宽度大于或等于所述第一类像素开孔的宽度。
可选的,在所述第一方向上,所述第一类像素开孔与相邻的第一辅助开孔之间的距离范围为10微米至25微米;和/或,在所述第二方向上,所述第二类像素开孔与相邻的第一辅助开孔之间的距离范围为10微米至25微米。
可选的,所述颜色转换基板还包括:位于所述第一辅助开孔内的第一阻挡部,所述第一阻挡部对光线的吸收率大于所述隔离部对光线的吸收率。
可选的,所述颜色转换基板还包括:位于所述衬底一侧的第二阻挡部,所述第二阻挡部对光线的吸收率大于所述隔离部对光线的吸收率,且所述第二阻挡部与所述隔离部同层设置但材料不同,所述第二阻挡部在所述衬底上的正投影,位于一行所述第一类像素开孔中两个相邻的第一类像素开孔在所述衬底上的正投影之间。
可选的,当一行所述第一类像素开孔中两个相邻的第一类像素开孔之间并排分布有两个第一辅助开孔时,所述第二阻挡部在所述衬底上的正投影,位于并排分布的两个所述第一辅助开孔在所述衬底上的正投影之间。
可选的,所述颜色转换基板还包括:位于所述衬底一侧的第一辅助阻挡部和/或第二辅助阻挡部;
其中,所述第一辅助阻挡部与所述第二阻挡部同层设置且材料相同,所述第一辅助阻挡部在所述衬底上的正投影,位于两行相邻的所述像素开孔在所述衬底上的正投影之间;
所述第二辅助阻挡部与所述第二阻挡部同层设置且材料相同,所述第二辅助阻挡部在所述衬底上的正投影,位于两列相邻的所述像素开孔在所述衬底上的正投影之间。
可选的,所述隔离部的材料包括:呈灰色或白色的有机材料,所述第二阻挡部的材料包括:呈黑色的有机材料。
可选的,所述隔离部还具有:第二辅助开孔,所述第二辅助开孔位于一列所述第一类像素开孔中两个相邻的第一类像素开孔之间,且位于一行所述第二类像素开孔中两个相邻的第二类像素开孔之间。
可选的,在所述第二方向上,所述第二辅助开孔的宽度大于或等于所述第二类像素开孔的宽度。
可选的,在所述第一方向上,所述第二类像素开孔与相邻的第二辅助开孔之间的距离范围为10微米至25微米;和/或,在所述第二方向上,所述第一类像素开孔与相邻的第二辅助开孔之间的距离范围为10微米至25微米。
可选的,其特征在于,一行所述第一类像素开孔包含:交替分布的多个第一子像素开孔和多个第二子像素开孔,所述第一子像素开孔内分布有所述第一颜色转换图案,所述第二子像素开孔内分布有所述透射图案。
可选的,所述第一子像素开孔内分布的第一颜色转换图案具有:用于将蓝光转换为红光的红色量子点,以及用于对光线进行散射的散射粒子;
所述第二子像素开孔内分布的透射图案具有:用于对光线进行散射的散射粒子;
所述第二类像素开孔内分布的第二颜色转换图案具有:用于将蓝光转换为绿光的绿色量子点,以及用于对光线进行散射的散射粒子。
可选的,所述颜色转换基板还包括:位于所述颜色转换层背离所述衬底一侧的辅助封装层,以及位于所述辅助发光层背离所述衬底一侧的色阻层;
其中,所述色阻层包括:红色色阻块、绿色色阻块和蓝色色阻块,所述红色色阻块在所述衬底上的正投影覆盖所述第一子像素开孔在所述衬底上的正投影,所述蓝色色阻块在所述衬底上的正投影覆盖所述第二子像素开孔在所述衬底上的正投影,所述绿色色阻块在所述衬底上的正投影覆盖所述第二类像素开孔在所述衬底上的正投影。
另一方面,提供了一种颜色转换基板的制造方法,所述方法包括:
在衬底的一侧形成具有反光性的隔离部,所述隔离部具有多个像素开孔,所述多个像素开孔包括:阵列排布的多个第一类像素开孔和阵列排布的多个第二类像素开孔,多排所述第一类像素开孔和多排所述第二类像素开孔交替排布;
在形成有所述隔离部的衬底上形成颜色转换层,所述颜色转换层包括第一颜色转换图案、第二颜色转换图案和透射图案,所述第一颜色转换图案和所述透射图案分别位于不同的所述第一类像素开孔内,所述第二颜色转换层位于所述第二类像素开孔内;
其中,所述颜色转换基板中用于分布同一排所述第一类像素开孔的第一区域内未分布所述第二像素开孔,且所述颜色转换基板中用于分布同一排所述第二类像素开孔的第二区域内未分布所述第一像素开孔。
又一方面,提供了一种显示面板,包括:显示基板,以及上述的颜色转换基板
本申请实施例提供的技术方案带来的有益效果至少包括:
一种颜色转换基板包括:衬底,位于衬底一侧的具有反光性的隔离部,以及颜色转换层。由于颜色转换基板中的隔离部具有反光性。因此,在将这种颜色转换基板集成在的显示面板内后,大视角的光线可以被隔离部反射回像素开孔,使得反射回像素开孔的光线能够正常向外出射。如此,可以有效的提高这种显示面板的出光效率,使得这种显示面板的整体亮度较高。又由于隔离部中的多排第一类像素开孔与多排第二类像素开孔是交替排布的,且颜色转换基板中用于分布同一排第一类像素开孔的第一区域内未分布第二像素开孔,且颜色转换基板中用于分布同一排第二类像素开孔的第二区域内未分布第一类像素开孔。因此,即使将隔离部设计为具有反光性的,使隔离部的吸光性变差,导致 隔离部的透光性变强,也可以保证从第一类像素开孔的四周出射的大部分光线不会不会透过隔离部射向第二类像素开孔,且从第二类像素开孔的四周出射的大部分光线不会不会透过隔离部射向射向第一类像素开孔,进而可以有效的降低集成了这种颜色转换基板的显示面板出现串色的不良现象的概率,使得这种显示面板的显示效果较好。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例提供的一种颜色转换基板的俯视图;
图2是图1示出的颜色转换基板在A-A’处的膜层结构示意图;
图3是图2示出的颜色转换基板的光路图;
图4是图1示出的颜色转换基板的光路图;
图5是本申请实施例提供的另一种颜色转换基板的俯视图;
图6是图5示出的颜色转换基板在B-B’处的膜层结构示意图;
图7是本申请实施例提供的又一种颜色转换基板的俯视图;
图8是图7示出的颜色转换基板在C-C’处的膜层结构示意图;
图9是本申请另一实施例提供的一种颜色转换基板的俯视图;
图10是图9示出的颜色转换基板在D-D’处的膜层结构示意图;
图11是本申请另一实施例提供的另一种颜色转换基板的俯视图;
图12是本申请另一实施例提供的又一种颜色转换基板的俯视图;
图13是本申请又一实施例提供的一种颜色转换基板的膜层结构示意图;
图14是本申请实施例提供的一种显示面板的膜层结构示意图;
图15是本申请实施例提供的另一种显示面板的膜层结构示意图。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施方式作进一步地详细描述。
目前,包含了量子点转换层的显示面板通常还具有隔离部。其中,隔离部具有多个像素开孔,量子点转换层可以分布在像素开孔内。由于两个相邻像素开孔内分布的量子点转换层通常属于不同类型的量子点转换层,例如,两个相邻像素开孔中的一个像素开孔内分布的量子点转换层用于将蓝光转换为红光,另一个像素开孔内分布的量子点转换层用于将蓝光转换为绿光。因此,为了规避从某个像素开孔的侧面出射的光线射向相邻的像素开孔,以导致显示面板出现串色的不良现象,两个像素的像素开孔之间的隔离部需要采用呈黑色的有机材料制成。
然而,在被量子点转换层激发的光线中,大视角的光线(也即出射方向与法线之间的夹角较大,例如大于或等于45°)的占比较高,而大视角的光线极易被呈黑色的隔离部吸收,导致包含了量子点转换层的显示面板的出光效率较低,进而导致这种显示面板的整体亮度偏低。
请参考图1和图2,图1是本申请实施例提供的一种颜色转换基板的俯视图,图2是图1示出的颜色转换基板在A-A’处的膜层结构示意图。颜色转换基板000可以包括:衬底100,以及位于衬底100一侧的具有反光性的隔离部200。
颜色转换基板000中的隔离部200可以具有多个像素开孔200a。其中,隔离部200中的多个像素开孔200a可以包括:阵列排布的多个第一类像素开孔201和阵列排布的多个第二类像素开孔202。这里,多排第一类像素开孔201可以与多排第二类像素开孔202交替排布。示例的,多个第一类像素开孔201可以阵列排布为多行和多列,多个第二类像素开孔202也可以阵列排布为多行和多列。多行第一类像素开孔201可以与多行第二类像素开孔202交替排布,也即,两行相邻的第一类像素开孔201之间分布有一行第二类像素开孔202。同样的,多列第一类像素开孔201可以与多列第二类像素开孔202交替排布,也即,两列相邻的第一类像素开孔201之间分布有一列第二类像素开孔202。
在本申请实施例中,颜色转换基板000还可以包括:颜色转换层300。其中,颜色转换层300可以包括:第一颜色转换图案300a、第二颜色转换图案300b和透射图案300c。这里,颜色转换层300中的第一颜色转换图案300a和透射图案300c可以分别位于不同的第一类像素开孔201内,颜色转换层300中的第二颜色转换图案300b可以位于第二类像素开孔202内。
可选的,颜色转换层300中的第一颜色转换图案300a和第二颜色转换图案300b均用于将指定颜色的光线转换为其他颜色的光线,而颜色转换层300中的透射图案300c不会对指定颜色的光线进行转换。
在本申请中,颜色转换基板000中用于分布同一排第一类像素开孔201的第一区域B1内未分布第二像素开孔202,且颜色转换基板000中用于分布同一排第二类像素开孔202的第二区域B2内未分布第一类像素开孔201。也即是,颜色转换基板000中的第一区域B1内可以分布一排(也即一行或一列)第一类像素开孔201,但这个第一区域B1内不会分布有第二类像素开孔202。同样的,颜色转换基板000中的第二区域B2内可以分布一排(也即一行或一列)第二类像素开孔202,但这个第二区域B2内不会分布有第一类像素开孔201。
在这种情况下,由于颜色转换基板000中的隔离部200具有反光性。因此,在将这种颜色转换基板000集成在的显示面板内后,请参考图3,图3是图2示出的颜色转换基板的光路图,在被颜色转换层300激发的光线中,大视角的光线可以被隔离部200反射回像素开孔200a,使得反射回像素开孔200a的光线能够正常向外出射。如此,可以有效的提高这种显示面板的出光效率,使得这种显示面板的整体亮度较高。
需要说明的是,相关技术中呈黑色的隔离部的反射率通常低于10%,而本申请中,颜色转换基板000中的隔离部200可以呈灰色或白色,以保证该隔离部200具有一定的反光性。在一种可能的实现方式中,当隔离部200呈灰色时,该隔离部200的材料可以包括:呈灰色的有机材料。示例的,可以将白色粒子和黑色粒子同时混合至透明的有机材料中,或者,也可以将低浓度的黑色粒子混合至透明的有机材料中,经过固化即可得到呈灰色的隔离部200,这种呈灰色的隔离部200的反射率的范围为40%至80%。在另一种可能的实现方式中,当隔离部200呈白色时,该隔离部200的材料可以包括:呈白色的有机材料。示例的,可以将高浓度的白色粒子混合至透明的有机材料中,经过固化即可得到呈白色的隔离部200,这种呈白色的隔离部200的反射率的范围为70%至90%。
需要说明的是,本申请实施例示出的隔离部的反射率是指:隔离部在10微米的厚度下,对波长为550纳米的光线的反射率。
这里,呈灰色或白色的隔离部200对光线的吸收率相对于呈黑色的隔离部的对光线的吸收率较低,且呈灰色或白色的隔离部200对光线的透过率相对于 呈黑色的隔离部对光线的透过率较高。但由于隔离部200中的多排第一类像素开孔201与多排第二类像素开孔202是交替排布的,且颜色转换基板000中用于分布同一排第一类像素开孔201的第一区域B1内未分布第二像素开孔202,颜色转换基板000中用于分布同一排第二类像素开孔202的第二区域B2内未分布第一类像素开孔201。因此,即使将隔离部200设计为具有反光性的,使隔离部200的吸光性变差,导致隔离部200的透光性变强,也可以保证从第一类像素开孔201的四周出射的大部分光线不会透过隔离部200射向第二类像素开孔202,且从第二类像素开孔202的四周出射的大部分光线也不会透过隔离部200射向射向第一类像素开孔201,进而可以有效的降低集成了这种颜色转换基板000的显示面板出现串色的不良现象的概率。
例如,第一类像素开孔201在衬底100上的正投影的形状,与第二类像素开孔202在衬底100上的正投影的形状可以均为矩形。在此情况下,如图4所示,图4是图1示出的颜色转换基板的光路图。从第一类像素开孔201的四边出射的光线a1仅会射向相邻的第一类像素开孔201,而不会射向第二类像素开孔202,仅有从第一类像素开孔201的四个角部出射的光线b1会射向第二类像素开孔202,但从第一类像素开孔201的角部出射的光线b1的强度远低于从第一类像素开孔201的四边出射的光线a1,为此,可以有效的规避从第一类像素开孔201的四周出射的光线会射向第二类像素开孔202的问题。同样的,从第二类像素开孔202的四边出射的光线a2仅会射向相邻的第二类像素开孔202,而不会射向第一类像素开孔201,仅有从第二类像素开孔202的四个角部出射的光线b2会射向第一类像素开孔201,但从第二类像素开孔202的角部出射的光线b2的强度远低于从第二类像素开孔202的四边出射的光线a2,为此,可以有效的规避从第二类像素开孔202的四周出射的光线会射向第一类像素开孔201的问题。
综上所述,本申请实施例提供的颜色转换基板,包括:衬底,位于衬底一侧的具有反光性的隔离部,以及颜色转换层。由于颜色转换基板中的隔离部具有反光性。因此,在将这种颜色转换基板集成在的显示面板内后,大视角的光线可以被隔离部反射回像素开孔,使得反射回像素开孔的光线能够正常向外出射。如此,可以有效的提高这种显示面板的出光效率,使得这种显示面板的整体亮度较高。又由于隔离部中的多排第一类像素开孔与多排第二类像素开孔是 交替排布的,且颜色转换基板中用于分布同一排第一类像素开孔的第一区域内未分布第二像素开孔,且颜色转换基板中用于分布同一排第二类像素开孔的第二区域内未分布第一类像素开孔。因此,即使将隔离部设计为具有反光性的,使隔离部的吸光性变差,导致隔离部的透光性变强,也可以保证从第一类像素开孔的四周出射的大部分光线不会不会透过隔离部射向第二类像素开孔,且从第二类像素开孔的四周出射的大部分光线不会不会透过隔离部射向射向第一类像素开孔,进而可以有效的降低集成了这种颜色转换基板的显示面板出现串色的不良现象的概率,使得这种显示面板的显示效果较好。
在本申请实施例中,如图5所示,图5是本申请实施例提供的另一种颜色转换基板的俯视图。多个第一类像素开孔201和多个第二类像素开孔202均沿第一方向X排布为多列,且沿第二方向Y排布为多行。
其中,一行第一类像素开孔201中的一部分开孔内可以分布有第一颜色转换图案300a,另一部分开孔内可以分布有透射图案300c。一列第一类像素开孔201中的各个开孔内要么分布有第一颜色转换图案300a,要么分布有透射图案300c。各个第二类像素开孔201内均可以分布有第二颜色转换图案300b。
示例的,一行第一类像素开孔201可以包含:交替分布的多个第一子像素开孔201a和多个第二子像素开孔201b。也即是,一行第一类像素开孔201中两个相邻的第一子像素开孔201a之间分布有一个第二子像素开孔201b。其中,第一子像素开孔201a内可以分布有第一颜色转换图案300a,第二子像素开孔201b内可以分布有透射图案300c。
例如,第一颜色转换图案300a能够将蓝光转换为红光,第二颜色转换图案300b能够将蓝光转换为绿光,蓝光在经过透射图案300c后仍然为蓝光。在这种情况下,在集成了这种颜色转换基板000的显示面板中,第一颜色转换图案300a属于显示面板中的红色子像素R中的一部分,第二颜色转换图案300b属于显示面板中的绿色子像素G中的一部分,透射图案300c属于显示面板中的蓝色子像素B中的一部分。在这种情况下,显示面板内的各个子像素是采用RBGG的排布方式,也即是,一个红色子像素R、一个蓝色子像素B和两个绿色子像素G能够组成一个像素。
在其他可能的实现方式中,透射图案300c也可以分布在第二类像素开孔202内,第二颜色转换图案300b也可以分布在第二子像素开孔201b内,而第一颜 色转换图案300a仍然分布在第一子像素开孔201a内。在这种情况下,显示面板内的各个子像素是采用RGBB的排布方式,也即是,一个红色子像素R、一个绿色子像素G和两个蓝色子像素B能够组成一个像素。本申请实施例对此不做限定。需要说明的是,为了便于描述后续实施例均是以显示面板内的各个子像素是采用RBGG的排布方式为例进行说明的。
在本申请中,在第一方向X上,一行第一类像素开孔201中两个相邻的第一类像素开孔201之间的距离d1,大于一行第二类像素开孔202中两个相邻的第二类像素开孔202之间的距离d2。
这样,可以保证一行第一类像素开孔201中相邻分布的第一子像素开孔201a和第二子像素开孔201b之间在第一方向X上的距离较大,使得在一行第一类像素开孔201中,从第一子像素开孔201a的四周出射的光线中透过隔离部200射向第二子像素开孔201b的光线强度较低,且从第二子像素开孔201b的四周出射的光线中透过隔离部200射向第一子像素开孔201a的光线强度也较低。如此,可以进一步的降低集成了这种颜色转换基板000的显示面板出现串色的不良现象的概率。
示例的,当显示面板中的子像素采用RBGG的排布方式时,若保证颜色转换基板000中用于分布同一排第一类像素开孔201的第一区域B1内未分布第二像素开孔202,且保证颜色转换基板000中用于分布同一排第二类像素开孔202的第二区域B2内未分布第一类像素开孔201,则可以保证绿色子像素G与红色子像素R之间出现串色现象的概率较低,且可以保证绿色子像素G与蓝色子像素B之间出现串色现象的概率较低。若保证一行第一类像素开孔201中相邻分布的第一子像素开孔201a和第二子像素开孔201b之间的距离较大,则可以保证红色子像素R与蓝色子像素B之间出现串色现象的概率较低。
在本申请中,由于多列第一类像素开孔201与多列第二类像素开孔202是交替排布的。因此,当在第一方向X上,一行第一类像素开孔201中两个相邻的第一类像素开孔201之间的距离d1,大于一行第二类像素开孔202中两个相邻的第二类像素开孔202之间的距离d2时,两列相邻的第一类像素开孔201之间的距离,大于两列相邻的第二类像素开孔202之间的距离。在此种情况下,第二类像素开孔202在第一方向X上的宽度,大于第一类像素开孔201在第一方向X上的宽度。示例的,在一种可能的情况中,第一类像素开孔201在衬底 100上的正投影的形状可以为正方形,第二类像素开孔202在衬底100上的正投影的形状可以为长条形。这里,该正方形的边长可以等于长方形的宽度,当然该正方形的边长也可以不等于长方形的宽度,本申请实施例对此不做限定。需要说明的是,在其他可能的实现方式中,像素开孔在衬底100上饿的正投影的形状也可以为其他形状,例如,圆形、椭圆形或菱形等。本申请实施例对此不做限定。
还需要说明的是,颜色转换层300中位于各个像素开孔200a内的图案通常是采用喷墨打印工艺形成。例如,可以采用打印头将墨滴打印至像素开孔200a内,待墨滴固化后即可形成颜色转换层300。当像素开孔200a在衬底100上的正投影的形状为矩形时,为了更好的让墨滴在像素开孔200a内平铺展开,可以将像素开孔200a在衬底100上的正投影设计为带有圆角的矩形。这样,可以有效的提高在像素开孔200a内形成的颜色转换层300的厚度的均匀性。
当一行第一类像素开孔201中两个相邻的第一类像素开孔201之间在第一方向X上的距离较大,例如,比喷墨打印过程中打印出的墨滴的直径大时,在采用喷墨打印工艺形成颜色转换层300中位于第一类像素开孔201内的图案的过程中,墨滴极易停留在隔离部200背离衬底100的一侧,导致隔离部200背离衬底100的一侧可能会形成由墨滴固化后的污染物,该污染物会影响后续工艺,进而导致最终制备出的显示面板极易出现坏点的不良现象。
为此,在本申请中,如图5和图6所示,图6是图5示出的颜色转换基板在B-B’处的膜层结构示意图。隔离部200还具有:位于一行第一类像素开孔201中两个相邻的第一类像素开孔201之间的至少一个第一辅助开孔203。示例的,一行第一类像素开孔201中相邻分布的第一子像素开孔201a和第二子像素开孔201b之间分布有至少一个第一辅助开孔203。通过在一行第一像素开孔201中两个相邻的第一像素开孔201之间设置第一辅助开孔203,可以保证第一辅助开孔203与相邻的第一像素开孔201之间在第一方向X上的距离较小,例如,比喷墨打印过程中打印出的墨滴的直径小,在采用喷墨打印工艺形成颜色转换层300中位于第一类像素开孔201内的图案的过程中,打印至隔离部200背离衬底100的一侧的至少部分墨滴,能够顺利流入第一像素开孔201或第一辅助开孔203内,以保证隔离部200背离衬底100的一面中位于第一像素开孔201附近的区域内不会形成墨滴固化后的污染物,进而可以有效的降低最终制备出 的显示面板中出现坏点的不良现象的概率较低。
这里,两个相邻的第一类像素开孔201之间的至少一个第一辅助开孔203还分布在一列第二类像素202中两个相邻的第二子像素202开孔之间。同样的,在采用喷墨打印工艺形成颜色转换层300中位于第二类像素开孔202内的图案的过程中,打印至隔离部200背离衬底100的一侧的至少部分墨滴,也能够顺利流入第二像素开孔202或第一辅助开孔203内。
可选的,在第二方向Y上,第一辅助开孔203的宽度d3大于或等于第一类像素开孔201的宽度d4。如此,可以保证打印至第一辅助开孔203与第一类像素开孔201之间的墨滴,均能够流入第一辅助开孔203或第一像素开孔201内。
在本申请中,在第一方向X上,第一类像素开孔201与相邻的第一辅助开孔201之间的距离d5的范围为10微米至25微米,和/或,在第二方向Y上,第二类像素开孔201与相邻的第一辅助开孔201之间的距离d6的范围为10微米至25微米。在这种情况下,由于在采用打印头进行喷墨打印的过程中,打印头打印出的墨滴的直径一般在15微米至20微米左右。因此,当在第一方向X上,第一类像素开孔201与相邻的第一辅助开孔201之间的距离d5的范围为10微米至25微米时,可以保证打印至第一辅助开孔203与第一类像素开孔201之间的墨滴,可以流入第一辅助开孔203或第一像素开孔201内;当在第二方向Y上,第二类像素开孔201与相邻的第一辅助开孔201之间的距离d6的范围为10微米至25微米时,可以保证打印至第一辅助开孔203与第二类像素开孔202之间的墨滴,可以流入第一辅助开孔203或第二像素开孔202内。
可选的,如图5所示,一行第一类像素开孔201中两个相邻的第一类像素开孔201之间并排分布有两个第一辅助开孔203。其中,在第一方向X上,并排分布的两个第一辅助开孔203中的一个第一辅助开孔203与相邻的第一类像素开孔201之间的距离,等于另一个第一辅助开孔203与相邻的第一类像素开孔201之间的距离。也即是,相邻分布的第一子像素开孔201a和第二子像素开孔201b之间并排分布有两个第一辅助开孔203,在第一方向X上,第一子像素开孔201a与相邻的第一辅助开孔203之间的距离,等于第二子像素开孔201b与相邻的第一辅助开孔203之间的距离。这样,在打印颜色转换层300中位于第一子像素开孔201a内的图案的过程中,打印至隔离部200背离衬底100的一侧的至少部分墨滴能够流入第一子像素开孔201a内,或者流入与第一子像素开 孔201a相邻的第一辅助开孔203内;在打印颜色转换层300中位于第二子像素开孔201b内的图案的过程中,打印至隔离部200背离衬底100的一侧的至少部分墨滴能够流入第二子像素开孔201b内,或者流入与第二子像素开孔201b相邻的第一辅助开孔203内。
在这种情况下,可以在保证第一子像素开孔201a与相邻的第一辅助开孔203之间的隔离部200上不会形成由墨滴固化后的污染物,且第二子像素开孔201a与相邻的第一辅助开孔203之间的隔离部200上也不会形成由墨滴固化后的污染物的前提下,增加第一子像素开孔201a与第二子像素开孔201b之间分布的隔离部200的整体厚度,以较低第一子像素开孔201a与第二子像素开孔201b之间的隔离部200对光线的透过率。这里,第一子像素开孔201a与第二子像素开孔201b之间分布的隔离部200的整体厚度为:在第一方向X上,第一子像素开孔201a与相邻的第一辅助开孔203之间的距离,第二子像素开孔201b与相邻的第一辅助开孔203之间的距离,以及两个并排分布的第一辅助开孔203之间的距离之和。
示例的,如图5所示,在第一方向X上,并排分布的两个第一辅助开孔203之间的距离d7,大于或等于第一类像素开孔201与相邻的第一辅助开孔d5之间的距离。如此,可以保证第一子像素开孔201a与第二子像素开孔201b之间分布的隔离部200的整体厚度较大,从而保证第一子像素开孔201a与第二子像素开孔201b之间的隔离部200对光线的透过率较低,以进一步的降低显示面板中红色子像素R和蓝色子像素B之间出现串色现象的概率。
可选的,如图5所示,隔离部200还具有:第二辅助开孔204。其中,第二辅助开孔204可以位于一列第一类像素开孔201中两个相邻的第一类像素开孔201之间,且位于一行第二类像素开孔202中两个相邻的第二类像素开孔202之间。通过第二辅助开孔204可以让打印至第二辅助开孔204与第二类像素开孔202之间的墨滴,流入至第二辅助开孔204或第二类像素开孔202内,也可以让打印至第二辅助开孔204与第一类像素开孔201之间的墨滴,流入至第一辅助开孔203或第一类像素开孔201内,进而可以进一步的降低最终制备出的显示面板中出现坏点的不良现象的概率。
在本申请中,在第二方向Y上,第二辅助开孔204的宽度d8大于或等于第二类像素开孔202的宽度d9。如此,可以保证打印至第二辅助开孔204与第二 类像素开孔202之间的墨滴,均能够流入第二辅助开孔204或第二像素开孔202内。
可选的,在第一方向X上,第二类像素开孔202与相邻的第二辅助开孔204之间的距离d10的范围为10微米至25微米;和/或,在第二方向Y上,第一类像素开孔201与相邻的第二辅助开孔204之间的距离d11的范围为10微米至25微米。在这种情况下,由于在采用打印头进行喷墨打印的过程中,打印头打印出的墨滴的直径一般在20微米左右。因此,当在第一方向X上,第二类像素开孔202与相邻的第二辅助开孔204之间的距离d10的范围为10微米至25微米时,可以保证打印至第二辅助开孔204与第二类像素开孔202之间的墨滴,可以流入第二辅助开孔204或第二类像素开孔202内;当在第二方向Y上,第一类像素开孔201与相邻的第二辅助开孔204之间的距离d11的范围为10微米至25微米时,可以保证打印至第二辅助开孔204与第一类像素开孔201之间的墨滴,可以流入第二辅助开孔204或第一类像素开孔201内。
在本申请实施例中,为了进一步的降低第一子像素开孔201a与第二子像素开孔201b之间出现串色的概率,可以在第一子像素开孔201a与第二子像素开孔201b之间设置呈黑色的阻挡部。由于呈黑色的阻挡部对光线的吸收率较高,因此,从第一子像素开孔201a的四周出射的光线中透过隔离部200射向第二子像素开孔201b的光线可以被该阻挡部遮挡,且从第二子像素开孔201b的四周出射的光线中透过隔离部200射向第一子像素开孔201a的光线也可以被该阻挡部遮挡。这里,在第一子像素开孔201a与第二子像素开孔201b之间设置呈黑色的阻挡部的结构有多种,本申请实施例将以以下两种可选的实现方式为例进行说明:
第一种可选的实现方式,如图7和图8所示,图7是本申请实施例提供的又一种颜色转换基板的俯视图,图8是图7示出的颜色转换基板在C-C’处的膜层结构示意图。颜色转换基板000还可以包括:位于第一辅助开孔203内的第一阻挡部400。这里,第一阻挡部400可以呈黑色,而隔离部200呈灰色或白色,为此,第一阻挡部400对光线的吸收率大于隔离部200对光线的吸收率。这样,可以保证第一阻挡部400对光线的吸收率较高,从第一子像素开孔201a的四周出射的光线中透过隔离部200射向第二子像素开孔201b的光线,可以被位于第一辅助开孔203内的第一阻挡部400遮挡,且从第二子像素开孔201b的四周出 射的光线中透过隔离部200射向第一子像素开孔201a的光线,也可以被位于第一辅助开孔203内的第一阻挡部400遮挡。如此,可以进一步的降低显示面板中的红色子像素R与蓝色子像素B之间出现串色现象的概率。
在本申请实施例中,为了保证在采用喷墨打印工艺打印颜色转换层300的过程中,打印至隔离部200背离衬底100一侧的概率较低,可以先采用喷墨打印工艺打印颜色转换层300,再在第一辅助开孔203内填充第一阻挡部400。
可选的,如图8所示,颜色转换基板000通常还可以还可以包括:位于颜色转换层300和隔离部200背离衬底100一侧的色阻层700。其中,色阻层700可以包括:与多个像素开孔200a一一对应的多个色阻块701,以及位于两个相邻的色阻块701之间的黑矩阵702。每个色阻块701在衬底100上的正投影可以覆盖对应的像素开孔200a在衬底100上的正投影。色阻层700中的每个色阻块701能够滤除从颜色转换层300中位于对应的像素开孔200a内的图案出射的光线中的杂光,色阻层700中的黑矩阵702能够吸收从色阻块701侧面出射的光线,以防止显示面板出现串色的不良现象。在这种情况下,由于黑矩阵702需要在隔离部200背离衬底100的一侧形成,因此,可以在隔离部200背离衬底100的一侧形成黑矩阵702后,黑矩阵702中的部分会填充至第一辅助开孔203内,使得黑矩阵702中位于第一辅助开孔203内的部分可以作为第一阻挡部400。
第二种可选的实现方式,如图9和图10所示,图9是本申请另一实施例提供的一种颜色转换基板的俯视图,图10是图9示出的颜色转换基板在D-D’处的膜层结构示意图。颜色转换基板000还可以包括:位于衬底一侧的第二阻挡部500。其中,第二阻挡部500在衬底100上的正投影,位于一行第一类像素开孔201中两个相邻的第一类像素开孔201在衬底100上的正投影之间。也即是,第二阻挡部500在衬底100上的正投影,位于相邻分布的第一子像素开孔201a
这里,第二阻挡部500可以呈黑色,而隔离部200呈灰色或白色,为此,第二阻挡部500对光线的吸收率大于隔离部200对光线的吸收率。且第二阻挡部500可以呈长条状,该第二阻挡部500的长度方向与第二方向Y平行,且该第二阻挡部500的长度大于或等于第一类像素开孔201在第二方向Y上的宽度。这样,可以保证第二阻挡部500对光线的吸收率较高,从第一子像素开孔201a的四周出射的光线中透过隔离部200射向第二子像素开孔201b的光线可以被第二阻挡部500遮挡,且从第二子像素开孔201b的四周出射的光线中透过隔离部 200射向第一子像素开孔201a的光线也可以被第二阻挡部500遮挡。如此,可以进一步的降低显示面板中的红色子像素R与蓝色子像素B之间出现串色现象的概率。
在本申请中,颜色转换基板000中的第二阻挡部500可以与隔离部200同层设置但材料不同。需要说明的是,本申请实施例中的某个结构同层设置但材料不同是指:这两个结构在颜色转换基板000中是同时分布在一个膜层的一侧上的,但需要采用两次不同的工艺分别形成这两个结构。例如,第二阻挡部500与隔离部200同层设置但材料不同是指:第二阻挡部500与隔离部200是同时分布在衬底100的一侧上的,但第二阻挡部500与隔离部200是采用两次不同的工艺形成的。
示例的,隔离部200与第二阻挡部500均是在采用喷墨打印工艺形成颜色转换层300之前,在衬底100的一侧形成的,隔离部200的材料包括:呈灰色或白色的有机材料,而第二阻挡部500的材料包括:呈黑色的有机材料。示例的,可以将高浓度的黑色粒子混合至透明的有机材料中,经过固化即可得到呈黑色的第二阻挡部500。
可选的,当一行第一类像素开孔201中两个相邻的第一类像素开孔201之间并排分布有两个第一辅助开孔203时,颜色转换基板000中的第二阻挡部500在衬底100上的正投影,可以位于并排分布的两个第一辅助开孔203在衬底100上的正投影之间。在这种情况下,在这两个相邻的第一类像素开孔201之间设置第二阻挡部500并不会干扰第一辅助开孔203,使得通过第一辅助开孔203仍然能够有效的规避在隔离部200背离衬底100的一侧形成由墨滴固化后的污染物。
在本申请实施例中,颜色转换基板000还可以包括:位于衬底100一侧的第一辅助阻挡部601和/或第二辅助阻挡部602。本申请实施例将以以下三种情况为例进行示意性的说明:
第一种情况,如图9所示,当颜色转换基板000包括第一辅助阻挡部601时,第一辅助阻挡部601与第二阻挡部500同层设置且材料相同。需要说明的是,本申请实施例中的某个结构同层设置且材料相同是指:这两个结构在颜色转换基板000中是同时分布在一个膜层的一侧上的,且需要采用同一次工艺分别形成这两个结构。例如,第一辅助阻挡部601与第二阻挡部500同层设置且 材料相对是指:第一辅助阻挡部601与第二阻挡部500是采用同一次构图工艺形成的。
这里,第一辅助阻挡部601在衬底100上的正投影,位于两行相邻的像素开孔200a在衬底100上的正投影之间。也即是,第一辅助阻挡部601在衬底100上的正投影,位于相邻分布的一行第一类像素开孔201和一行第二类像素开孔202在衬底100上的正投影之间。示例的,第一辅助阻挡部601可以呈长条状,且第一辅助阻挡部601的长度方向与第一方向X平行。
在这种情况下,由于第一辅助阻挡部601与第二阻挡部500的材料是相同的。因此,第一辅助阻挡部601也呈黑色,该第一辅助阻挡部601对光线的吸收率较高,使得从第一类像素开孔201的四个角部出射且射向第二类像素开孔202的光线可以被第一辅助阻挡部601遮挡,且从第二类像素开孔202的四个角部出射且射向第一类像素开孔201的光线也可以被第一辅助阻挡部601遮挡。如此,通过第一辅助阻挡部601可以进一步的规避第一类像素开孔201与第二类像素开孔202之间出现出现串色的不良现象。
第二种情况,如图11所示,图11是本申请另一实施例提供的另一种颜色转换基板的俯视图。当颜色转换基板000包括第二辅助阻挡部602时,第二辅助阻挡部602与第二阻挡部500同层设置且材料相同。这里,第二辅助阻挡部602在衬底100上的正投影,位于两列相邻的像素开孔200a在衬底100上的正投影之间。也即是,第二辅助阻挡部602在衬底100上的正投影,位于相邻分布的一列第一类像素开孔201和一列第二类像素开孔202在衬底100上的正投影之间。示例的,第二辅助阻挡部602可以呈长条状,且第二辅助阻挡部602的长度方向与第二方向Y平行。
在这种情况下,由于第二辅助阻挡部602与第二阻挡部500的材料是相同的。因此,第二辅助阻挡部602也呈黑色,该第二辅助阻挡部602对光线的吸收率较高,使得从第一类像素开孔201的四个角部出射且射向第二类像素开孔202的光线可以被第二辅助阻挡部602遮挡,且从第二类像素开孔202的四个角部出射且射向第一类像素开孔201的光线也可以被第二辅助阻挡部602遮挡。如此,通过第二辅助阻挡部602可以进一步的规避第一类像素开孔201与第二类像素开孔202之间出现出现串色的不良现象。
第三种情况,如图12所示,图12是本申请另一实施例提供的又一种颜色 转换基板的俯视图。当颜色转换基板000包括第一辅助阻挡部601和第二辅助阻挡部602时,第一辅助阻挡部601可以分布在两行相邻的像素开孔200a之间,第二辅助阻挡部602可以分布在两列相邻的像素开孔200a之间。需要说明的是,此种情况下的第一辅助阻挡部601的结构和作用可以参考上述第一种情况中的第一辅助阻挡部601,此种情况下的第二辅助阻挡部602的结构和作用可以参考上述第二种情况中的第二辅助阻挡部602。本申请实施例在此不再赘述。
在本申请实施例中,如图13所示,图13是本申请又一实施例提供的一种颜色转换基板的膜层结构示意图。由于第一子像素开孔201a内分布的第一颜色转换图案300a具有:用于将蓝光转换为红光的红色量子点301a,以及用于对光线进行散热的散热粒子302。示例的,红色量子点301a和散热粒子302可以分散设置在位于第一子像素开孔201a内的透明介质层303中。这里,在将颜色转换基板000集成在显示面板内后,显示面板发出的蓝光在射向第一子像素开孔201a内分布的第一颜色转换图案300a后,通过红色量子点301a能够将蓝光转换为红光,通过散射粒子302能够将蓝光和红光进行散射,以保证更多的蓝光能够被红色量子点301a转换为红光,且能够保证转换后的红光的出射角较大,以保证显示面板的可视角度较大。为此,第一子像素开孔201a内分布的第一颜色转换图案300a可以作为显示面板的红色子像素R中的一部分。
第二子像素开孔201b内分布的透射图案300c具有:用于对光线进行散热的散热粒子302。示例的,散热粒子302可以分散设置在位于第二子像素开孔201b内的透明介质层303中。这里,在将颜色转换基板000集成在显示面板内后,显示面板发出的蓝光在射向第二子像素开孔201b内分布的透射图案300c后,通过散射粒子302能够将蓝光进行散射,以保证蓝光的出射角较大,进而保证显示面板的可视角度较大。为此,第二子像素开孔201b内分布的透射图案300c可以作为显示面板的蓝色子像素B中的一部分。
第二类像素开孔202内分布的第二颜色转换图案300b具有:用于将蓝光转换为绿光的绿色量子点301b,以及用于对光线进行散热的散热粒子302。示例的,绿色量子点301b和散热粒子302可以分散设置在位于第二类像素开孔202内的透明介质层303中。这里,在将颜色转换基板000集成在显示面板内后,显示面板发出的蓝光在射向第二类像素开孔202内分布的第二颜色转换图案300b后,通过绿色量子点301b能够将蓝光转换为绿光,通过散射粒子302能够 将蓝光和绿光进行散射,以保证更多的蓝光能够被绿色量子点301b转换为绿光,且能够保证转换后的绿光的出射角较大,以保证显示面板的可视角度较大。为此,第二类像素开孔202内分布的第二颜色转换图案300b可以作为显示面板的绿色子像素G中的一部分。
在本申请实施例中,如图13所示,颜色转换基板000还可以包括:位于颜色转换层300背离衬底100一侧的辅助封装层800,以及位于该辅助封装层700背离衬底100一侧的色阻层700。这里,辅助封装层800用于对颜色转换基板000中的颜色转换层300进行封装,通过辅助封装层800可以保证颜色转换层300不会被外界环境中的水氧侵蚀。
颜色转换基板000中的色阻层700可以包括:红色色阻块701R、绿色色阻块701G和蓝色色阻块701B。其中,红色色阻块701R在衬底100上的正投影覆盖第一子像素开孔201a在衬底100上的正投影,该红色色阻块701R能够滤除除红光以外的其它颜色的光线,以保证显示面板的红色子像素R能够发出纯净的红光;蓝色色阻块701B在衬底100上的正投影覆盖第二子像素开孔201b在衬底100上的正投影,该蓝色色阻块701B能够滤除除蓝光以外的其它颜色的光线,以保证显示面板的蓝色子像素B能够发出纯净的蓝光;绿色色阻块701G在衬底100上的正投影覆盖第二类像素开孔202在衬底100上的正投影,该绿色色阻块701G能够滤除除绿光以外的其它颜色的光线,以保证显示面板的绿色子像素G能够发出纯净的绿光。
在本申请中,颜色转换基板000中的色阻层700还可以包括:位于两个相邻的色阻块之间的黑矩阵702。通过黑矩阵702能够有效的防止显示面板出现串色的不良现象。
综上所述,本申请实施例提供的颜色转换基板,包括:衬底,位于衬底一侧的具有反光性的隔离部,以及颜色转换层。由于颜色转换基板中的隔离部具有反光性。因此,在将这种颜色转换基板集成在的显示面板内后,大视角的光线可以被隔离部反射回像素开孔,使得反射回像素开孔的光线能够正常向外出射。如此,可以有效的提高这种显示面板的出光效率,使得这种显示面板的整体亮度较高。又由于隔离部中的多排第一类像素开孔与多排第二类像素开孔是交替排布的,且颜色转换基板中用于分布同一排第一类像素开孔的第一区域内未分布第二像素开孔,且颜色转换基板中用于分布同一排第二类像素开孔的第 二区域内未分布第一类像素开孔。因此,即使将隔离部设计为具有反光性的,使隔离部的吸光性变差,导致隔离部的透光性变强,也可以保证从第一类像素开孔的四周出射的大部分光线不会不会透过隔离部射向第二类像素开孔,且从第二类像素开孔的四周出射的大部分光线不会不会透过隔离部射向射向第一类像素开孔,进而可以有效的降低集成了这种颜色转换基板的显示面板出现串色的不良现象的概率,使得这种显示面板的显示效果较好。
本申请实施例还提供了一种显示面板。该显示面板可以包括:显示基板,以及上述实施例提供的颜色转换基板。示例的,该颜色转换基板可以为图1、图5、图7、图9、图11、图12或图13示出的颜色转换基板000。
在本申请中,显示面板微型发光二极管(英文:micro-LED)显示面板,也可以为迷你发光二极管(英文:mini-LED)显示面板,还可以为有机发光二极管(OLED,Organic Light-Emitting Diode)显示面板。
在一种可能的实现方式中,如图14所示,图14是本申请实施例提供的一种显示面板的膜层结构示意图。当显示面板为micro-LED显示面板或mini-LED显示面板时,显示面板中的显示基板001可以为用于发蓝光的发光基板。这里,发光基板中的发光器件为:micro-LED或mini-LED。且颜色转换基板000中的衬底100可以为上层保护层,该颜色转换基板000中的各个膜层需要在玻璃基板002上制备得到。在此种情况下,显示面板中的显示基板001与颜色转换基板000相对设置,且显示基板001中的发光器件需要朝向颜色转换基板000,颜色转换基板000中的颜色转换层300相对于衬底100更靠近显示基板001。
在另一种可能的实现方式中,如图15所示,图15是本申请实施例提供的另一种显示面板的膜层结构示意图。当显示面板为OLED显示面板时,显示面板中的显示基板001可以包括:用于发出蓝光的OLED发光器件003,以及与OLED发光器件003电连接的像素驱动电路(图中未标注)。其中,OLED发光器件003可以位于颜色转换层300靠近衬底100的一侧,像素驱动电路可以用于驱动OLED发光器件003发光。在此种情况下,显示面板还可以包括:用于对OLED发光器件003进行封装的封装层004,颜色转换基板000中的隔离部200可以设置在封装层004背离衬底001的一侧。
本申请实施例还提供了一种显示装置,该显示装置可以为:手机、平板电脑、电视机、显示器、笔记本电脑、数码相框、导航仪等任何具有显示功能的产品或部件。该显示装置可以包括:供电组件,以及与供电组件电连接的显示面板。该显示面板可以为上述实施例中的显示面板。例如,该显示面板可以为图14或图15示出的显示面板。
本申请实施例还提供了一种颜色转换基板的制造方法,该方法用于制备上述实施例中的颜色转换基板。该颜色转换基板的制造方法可以包括:
步骤S1、在衬底的一侧形成具有反光性的隔离部。隔离部具有多个像素开孔,多个像素开孔包括:阵列排布的多个第一类像素开孔和阵列排布的多个第二类像素开孔,多排第一类像素开孔和多排第二类像素开孔交替排布。
步骤S2、在形成有隔离部的衬底上形成颜色转换层。颜色转换层包括第一颜色转换图案、第二颜色转换图案和透射图案,第一颜色转换图案和透射图案分别位于不同的第一类像素开孔内,第二颜色转换层位于第二类像素开孔内。
其中,颜色转换基板中用于分布同一排第一类像素开孔的第一区域内未分布第二像素开孔,且颜色转换基板中用于分布同一排第二类像素开孔的第二区域内未分布第一像素开孔。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的颜色转换基板的制造方法的过程,可以参考前述颜色转换基板的结构实施例中的对应部分,在此不再赘述。
需要指出的是,在附图中,为了图示的清晰可能夸大了层和区域的尺寸。而且可以理解,当元件或层被称为在另一元件或层“上”时,它可以直接在其他元件上,或者可以存在中间的层。另外,可以理解,当元件或层被称为在另一元件或层“下”时,它可以直接在其他元件下,或者可以存在一个以上的中间的层或元件。另外,还可以理解,当层或元件被称为在两层或两个元件“之间”时,它可以为两层或两个元件之间唯一的层,或还可以存在一个以上的中间层或元件。通篇相似的参考标记指示相似的元件。
在本申请中,术语“第一”和“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性。术语“多个”指两个或两个以上,除非另有明确的限定。
以上所述仅为本申请的可选的实施例,并不用以限制本申请,凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (20)

  1. 一种颜色转换基板,其特征在于,包括:
    衬底;
    位于所述衬底一侧的具有反光性的隔离部,所述隔离部具有多个像素开孔,所述多个像素开孔包括:阵列排布的多个第一类像素开孔和阵列排布的多个第二类像素开孔,多排所述第一类像素开孔和多排所述第二类像素开孔交替排布;
    以及,颜色转换层,所述颜色转换层包括第一颜色转换图案、第二颜色转换图案和透射图案,所述第一颜色转换图案和所述透射图案分别位于不同的所述第一类像素开孔内,所述第二颜色转换层位于所述第二类像素开孔内;
    其中,所述颜色转换基板中用于分布同一排所述第一类像素开孔的第一区域内未分布所述第二像素开孔,且所述颜色转换基板中用于分布同一排所述第二类像素开孔的第二区域内未分布所述第一类像素开孔。
  2. 根据权利要求1所述的颜色转换基板,其特征在于,所述多个第一类像素开孔和所述多个第二类像素开孔均沿第一方向排布为多列且沿第二方向排布为多行;在所述第一方向上,一行所述第一类像素开孔中两个相邻的第一类像素开孔之间的距离,大于一行所述第二类像素开孔中两个相邻的第二类像素开孔之间的距离。
  3. 根据权利要求2所述的颜色转换基板,其特征在于,所述隔离部还具有:位于一行所述第一类像素开孔中两个相邻的第一类像素开孔之间的至少一个第一辅助开孔,且所述至少一个第一辅助开孔还分布在一列所述第二类像素开孔中两个相邻的第二类像素开孔之间。
  4. 根据权利要求3所述的颜色转换基板,其特征在于,一行所述第一类像素开孔中两个相邻的第一类像素开孔之间并排分布有两个所述第一辅助开孔;
    其中,在所述第一方向上,并排分布的两个所述第一辅助开孔中的一个辅助开孔与相邻的第一类像素开孔之间的距离,等于另一个辅助开孔与相邻的第一类像素开孔之间的距离。
  5. 根据权利要求4所述的颜色转换基板,其特征在于,在所述第一方向上,并排分布的两个所述第一辅助开孔之间的距离,大于或等于所述第一类像素开孔与相邻的第一辅助开孔之间的距离。
  6. 根据权利要求3所述的颜色转换基板,其特征在于,在所述第二方向上,所述第一辅助开孔的宽度大于或等于所述第一类像素开孔的宽度。
  7. 根据权利要求3所述的颜色转换基板,其特征在于,在所述第一方向上,所述第一类像素开孔与相邻的第一辅助开孔之间的距离范围为10微米至25微米;和/或,在所述第二方向上,所述第二类像素开孔与相邻的第一辅助开孔之间的距离范围为10微米至25微米。
  8. 根据权利要求3至7任一所述的颜色转换基板,其特征在于,所述颜色转换基板还包括:位于所述第一辅助开孔内的第一阻挡部,所述第一阻挡部对光线的吸收率大于所述隔离部对光线的吸收率。
  9. 根据权利要求2至7任一所述的颜色转换基板,其特征在于,所述颜色转换基板还包括:位于所述衬底一侧的第二阻挡部,所述第二阻挡部对光线的吸收率大于所述隔离部对光线的吸收率,且所述第二阻挡部与所述隔离部同层设置但材料不同,所述第二阻挡部在所述衬底上的正投影,位于一行所述第一类像素开孔中两个相邻的第一类像素开孔在所述衬底上的正投影之间。
  10. 根据权利要求9所述的颜色转换基板,其特征在于,当一行所述第一类像素开孔中两个相邻的第一类像素开孔之间并排分布有两个第一辅助开孔时,所述第二阻挡部在所述衬底上的正投影,位于并排分布的两个所述第一辅助开孔在所述衬底上的正投影之间。
  11. 根据权利要求9所述的颜色转换基板,其特征在于,所述颜色转换基板还包括:位于所述衬底一侧的第一辅助阻挡部和/或第二辅助阻挡部;
    其中,所述第一辅助阻挡部与所述第二阻挡部同层设置且材料相同,所述第一辅助阻挡部在所述衬底上的正投影,位于两行相邻的所述像素开孔在所述衬底上的正投影之间;
    所述第二辅助阻挡部与所述第二阻挡部同层设置且材料相同,所述第二辅助阻挡部在所述衬底上的正投影,位于两列相邻的所述像素开孔在所述衬底上的正投影之间。
  12. 根据权利要求9所述的颜色转换基板,其特征在于,所述隔离部的材料包括:呈灰色或白色的有机材料,所述第二阻挡部的材料包括:呈黑色的有机材料。
  13. 根据权利要求2-7、10-12任一所述的颜色转换基板,其特征在于,所述隔离部还具有:第二辅助开孔,所述第二辅助开孔位于一列所述第一类像素开孔中两个相邻的第一类像素开孔之间,且位于一行所述第二类像素开孔中两个相邻的第二类像素开孔之间。
  14. 根据权利要求13所述的颜色转换基板,其特征在于,在所述第二方向上,所述第二辅助开孔的宽度大于或等于所述第二类像素开孔的宽度。
  15. 根据权利要求13所述的颜色转换基板,其特征在于,在所述第一方向上,所述第二类像素开孔与相邻的第二辅助开孔之间的距离范围为10微米至25微米;和/或,在所述第二方向上,所述第一类像素开孔与相邻的第二辅助开孔之间的距离范围为10微米至25微米。
  16. 根据权利要求2-7、10-12、14-15任一所述的颜色转换基板,其特征在于,一行所述第一类像素开孔包含:交替分布的多个第一子像素开孔和多个第二子像素开孔,所述第一子像素开孔内分布有所述第一颜色转换图案,所述第二子像素开孔内分布有所述透射图案。
  17. 根据权利要求16所述的颜色转换基板,其特征在于,所述第一子像素开 孔内分布的第一颜色转换图案具有:用于将蓝光转换为红光的红色量子点,以及用于对光线进行散射的散射粒子;
    所述第二子像素开孔内分布的透射图案具有:用于对光线进行散射的散射粒子;
    所述第二类像素开孔内分布的第二颜色转换图案具有:用于将蓝光转换为绿光的绿色量子点,以及用于对光线进行散射的散射粒子。
  18. 根据权利要求17的颜色转换基板,其特征在于,所述颜色转换基板还包括:位于所述颜色转换层背离所述衬底一侧的辅助封装层,以及位于所述辅助发光层背离所述衬底一侧的色阻层;
    其中,所述色阻层包括:红色色阻块、绿色色阻块和蓝色色阻块,所述红色色阻块在所述衬底上的正投影覆盖所述第一子像素开孔在所述衬底上的正投影,所述蓝色色阻块在所述衬底上的正投影覆盖所述第二子像素开孔在所述衬底上的正投影,所述绿色色阻块在所述衬底上的正投影覆盖所述第二类像素开孔在所述衬底上的正投影。
  19. 一种颜色转换基板的制造方法,其特征在于,所述方法包括:
    在衬底的一侧形成具有反光性的隔离部,所述隔离部具有多个像素开孔,所述多个像素开孔包括:阵列排布的多个第一类像素开孔和阵列排布的多个第二类像素开孔,多排所述第一类像素开孔和多排所述第二类像素开孔交替排布;
    在形成有所述隔离部的衬底上形成颜色转换层,所述颜色转换层包括第一颜色转换图案、第二颜色转换图案和透射图案,所述第一颜色转换图案和所述透射图案分别位于不同的所述第一类像素开孔内,所述第二颜色转换层位于所述第二类像素开孔内;
    其中,所述颜色转换基板中用于分布同一排所述第一类像素开孔的第一区域内未分布所述第二像素开孔,且所述颜色转换基板中用于分布同一排所述第二类像素开孔的第二区域内未分布所述第一像素开孔。
  20. 一种显示面板,其特征在于,包括:显示基板,以及权利要求1至18任一所述的颜色转换基板。
PCT/CN2023/075498 2023-02-10 2023-02-10 颜色转换基板及其制造方法、显示面板 WO2024164324A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2023/075498 WO2024164324A1 (zh) 2023-02-10 2023-02-10 颜色转换基板及其制造方法、显示面板
CN202380008036.1A CN118786768A (zh) 2023-02-10 2023-02-10 颜色转换基板及其制造方法、显示面板

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2023/075498 WO2024164324A1 (zh) 2023-02-10 2023-02-10 颜色转换基板及其制造方法、显示面板

Publications (1)

Publication Number Publication Date
WO2024164324A1 true WO2024164324A1 (zh) 2024-08-15

Family

ID=92261888

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/075498 WO2024164324A1 (zh) 2023-02-10 2023-02-10 颜色转换基板及其制造方法、显示面板

Country Status (2)

Country Link
CN (1) CN118786768A (zh)
WO (1) WO2024164324A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160041430A1 (en) * 2014-08-05 2016-02-11 Samsung Display Co., Ltd. Display device
WO2017033771A1 (ja) * 2015-08-21 2017-03-02 シャープ株式会社 発光デバイス、表示装置、照明装置、電子機器
CN112447802A (zh) * 2019-09-03 2021-03-05 三星显示有限公司 显示装置
CN112786661A (zh) * 2019-11-11 2021-05-11 三星显示有限公司 显示面板
CN113555389A (zh) * 2020-04-23 2021-10-26 三星显示有限公司 显示设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160041430A1 (en) * 2014-08-05 2016-02-11 Samsung Display Co., Ltd. Display device
WO2017033771A1 (ja) * 2015-08-21 2017-03-02 シャープ株式会社 発光デバイス、表示装置、照明装置、電子機器
CN112447802A (zh) * 2019-09-03 2021-03-05 三星显示有限公司 显示装置
CN112786661A (zh) * 2019-11-11 2021-05-11 三星显示有限公司 显示面板
CN113555389A (zh) * 2020-04-23 2021-10-26 三星显示有限公司 显示设备

Also Published As

Publication number Publication date
CN118786768A (zh) 2024-10-15

Similar Documents

Publication Publication Date Title
US20210151702A1 (en) Display panel and display device
US11778845B2 (en) Pixel array package structure and display panel
US20230263006A1 (en) Display panel and display device
KR102670429B1 (ko) 백라이트 유닛 및 이를 포함하는 표시 장치
WO2020258864A1 (zh) 色彩转化组件及其制作方法、显示面板
US10978496B2 (en) Pixel array substrate and driving method thereof
US11289544B2 (en) Display device including wavelength conversion patterns having corresponding protruding and indentation pattern parts
CN110875360B (zh) 显示面板
US20230102283A1 (en) Display panel and display device
KR20180101302A (ko) 유기발광 디스플레이 소자 및 그 제조방법
CN108628035A (zh) 光致发光设备
CN215578617U (zh) 一种显示面板和显示装置
CN114038951B (zh) 发光元件的转移方法以及显示面板
CN111415973B (zh) 显示面板及其制备方法
US11402685B2 (en) Display substrate and method for manufacturing the same, and display apparatus
CN112965293A (zh) 一种色转换基板和显示面板
WO2022047929A1 (zh) 彩膜基板及其制作方法、显示面板
WO2024164324A1 (zh) 颜色转换基板及其制造方法、显示面板
WO2024082488A1 (zh) 封装发光单元、显示装置和封装发光单元的制作方法
US10527888B2 (en) Liquid crystal display panel and liquid crystal display device
CN112037674B (zh) 面光源及其制备方法和显示装置
CN115943751A (zh) 显示面板及显示装置
US12133413B2 (en) Display panel and display device
CN216015414U (zh) 一种量子点色转换器件及显示装置
WO2023007823A1 (ja) 発光デバイスおよび画像表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23920532

Country of ref document: EP

Kind code of ref document: A1