WO2024164278A1 - 基于多面板同时传输的上行通信方法及装置 - Google Patents

基于多面板同时传输的上行通信方法及装置 Download PDF

Info

Publication number
WO2024164278A1
WO2024164278A1 PCT/CN2023/075296 CN2023075296W WO2024164278A1 WO 2024164278 A1 WO2024164278 A1 WO 2024164278A1 CN 2023075296 W CN2023075296 W CN 2023075296W WO 2024164278 A1 WO2024164278 A1 WO 2024164278A1
Authority
WO
WIPO (PCT)
Prior art keywords
pusch transmission
transmission
dmrs port
pusch
dmrs
Prior art date
Application number
PCT/CN2023/075296
Other languages
English (en)
French (fr)
Inventor
高雪媛
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to CN202380008190.9A priority Critical patent/CN116349196A/zh
Priority to PCT/CN2023/075296 priority patent/WO2024164278A1/zh
Publication of WO2024164278A1 publication Critical patent/WO2024164278A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • H04W72/232Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal the control data signalling from the physical layer, e.g. DCI signalling

Definitions

  • the present application relates to the field of communication technology, and in particular to an uplink communication method and device based on simultaneous transmission of multiple panels.
  • CoMP Coordinated Multiple Point transmission
  • Rel18 considers simultaneous transmission enhancement of multiple transmission and reception points (Multi Transmission and Reception Point, M-TRP) based on multi-panel terminal devices for the Physical Uplink Shared Channel (PUSCH)/Physical Uplink Control Channel (PUCCH).
  • M-TRP Multi Transmission and Reception Point
  • PUSCH Physical Uplink Shared Channel
  • PUCCH Physical Uplink Control Channel
  • the first aspect of the present application provides an uplink communication method based on simultaneous transmission of multiple panels, the method being executed by a terminal device, and the method comprising:
  • Receive first indication information sent by a network device where the first indication information is used to indicate a total demodulation reference signal DMRS port for physical uplink shared channel PUSCH transmission, wherein the PUSCH transmission is based on single downlink control information DCI spatial division multiplexing SDM multi-antenna panel simultaneous transmission STxMP;
  • the second indication information is used to indicate the number of transmission layers RANK information corresponding to the multiple PUSCH transmission opportunities of the PUSCH, wherein the multiple PUSCH transmission opportunities are transmitted in directions corresponding to the multiple transmission configuration indication TCI states and/or the transmission reception points TRP;
  • the second aspect of the present application provides an uplink communication method based on simultaneous transmission of multiple panels, the method being executed by a network device, and the method comprising:
  • first indication information is used to indicate a total demodulation reference signal DMRS port for physical uplink shared channel PUSCH transmission, wherein the PUSCH transmission is based on a single downlink control information DCI spatial division multiplexing SDM multi-antenna panel simultaneous transmission STxMP;
  • the second indication information is used to indicate the transmission layer number RANK information corresponding to the multiple PUSCH transmission opportunities of the PUSCH, wherein the multiple PUSCH transmission opportunities are transmitted in the directions corresponding to the multiple transmission configuration indications TCI states and/or the sending and receiving points TRP.
  • the third aspect of the present application provides an uplink communication device based on simultaneous transmission of multiple panels, the device comprising:
  • a transceiver unit configured to receive first indication information sent by a network device, wherein the first indication information is used to indicate a total demodulation reference signal DMRS port for physical uplink shared channel PUSCH transmission, wherein the PUSCH transmission is based on a single downlink control information DCI spatial division multiplexing SDM multi-antenna panel simultaneous transmission STxMP;
  • the transceiver unit is further configured to receive second indication information sent by the network device, wherein the second indication information is used to indicate the RANK information of the number of transmission layers corresponding to the multiple PUSCH transmission opportunities of the PUSCH, wherein the multiple PUSCH transmission opportunities are transmitted in the directions corresponding to the multiple transmission configuration indication TCI states and/or the transmission reception points TRP;
  • the processing unit is used to determine the DMRS port corresponding to each PUSCH transmission opportunity.
  • the fourth aspect of the present application provides an uplink communication device based on simultaneous transmission of multiple panels, the device comprising:
  • a transceiver unit configured to send first indication information to a terminal device, wherein the first indication information is used to indicate a total demodulation reference signal DMRS port for physical uplink shared channel PUSCH transmission, wherein the PUSCH transmission is based on a single downlink control information DCI spatial division multiplexing SDM multi-antenna panel simultaneous transmission STxMP;
  • the transceiver unit is also used to send second indication information to the terminal device, and the second indication information is used to indicate the transmission layer number RANK information corresponding to the multiple PUSCH transmission opportunities of the PUSCH, wherein the multiple PUSCH transmission opportunities are transmitted in the directions corresponding to the multiple transmission configuration indications TCI states and/or sending and receiving points TRP.
  • the fifth aspect embodiment of the present application proposes a communication device, which includes a processor and a memory, wherein the memory stores a computer program, and the processor executes the computer program stored in the memory so that the device performs the uplink communication method based on simultaneous transmission of multiple panels described in the first aspect embodiment.
  • the sixth aspect embodiment of the present application proposes a communication device, which includes a processor and a memory, wherein the memory stores a computer program, and the processor executes the computer program stored in the memory so that the device performs the uplink communication method based on simultaneous transmission of multiple panels described in the second aspect embodiment.
  • the seventh aspect embodiment of the present application proposes a communication device, which includes a processor and an interface circuit, the interface circuit is used to receive code instructions and transmit them to the processor, and the processor is used to run the code instructions to enable the device to execute the uplink communication method based on simultaneous transmission of multiple panels described in the first aspect embodiment above.
  • An eighth aspect embodiment of the present application proposes a communication device, which includes a processor and an interface circuit, wherein the interface circuit is used to receive code instructions and transmit them to the processor, and the processor is used to run the code instructions to enable the device to execute the uplink communication method based on simultaneous transmission of multiple panels described in the second aspect embodiment.
  • a ninth aspect of the present application provides a computer-readable storage medium for storing instructions. When the instructions are executed, the uplink communication method based on simultaneous transmission of multiple panels described in the first aspect of the present application is implemented.
  • the tenth aspect embodiment of the present application proposes a computer-readable storage medium for storing instructions.
  • the instructions When the instructions are executed, the uplink communication method based on simultaneous transmission of multiple panels described in the second aspect embodiment is implemented.
  • the eleventh embodiment of the present application proposes a computer program, which, when executed on a computer, enables the computer to execute the uplink communication method based on simultaneous transmission of multiple panels described in the first embodiment.
  • the twelfth aspect of the present application proposes a computer program, which, when executed on a computer, enables the computer to execute the uplink communication method based on simultaneous transmission of multiple panels described in the second aspect of the present application.
  • An uplink communication method and device based on simultaneous transmission of multiple panels provided in an embodiment of the present application, by receiving first indication information sent by a network device, the first indication information is used to indicate a total demodulation reference signal DMRS port for physical uplink shared channel PUSCH transmission, wherein the PUSCH transmission is based on spatial division multiplexing SDM multi-antenna panel simultaneous transmission STxMP of single downlink control information DCI, receiving second indication information sent by the network device, the second indication information is used to indicate the transmission layer number RANK information corresponding to multiple PUSCH transmission opportunities of the PUSCH, wherein the multiple PUSCH transmission opportunities are transmitted in directions corresponding to multiple transmission configuration indications TCI states and/or sending and receiving points TRP, determining the DMRS port corresponding to each PUSCH transmission opportunity, being able to flexibly configure the DMRS port used for transmission, effectively reducing transmission interference between multiple antenna panels, and effectively improving the reliability and robustness of transmission, Improve system communication efficiency.
  • FIG. 1a is a schematic diagram of the architecture of a communication system provided in an embodiment of the present application.
  • FIG1b is a logic diagram of a method for implementing single DCI multi-panel transmission according to an embodiment of the present application
  • FIG2 is a schematic flow chart of an uplink communication method based on simultaneous transmission of multiple panels provided in an embodiment of the present application
  • FIG3a is a schematic diagram of a DMRS pattern in which the configuration type is type 1 and occupies 1 symbol in the time domain;
  • FIG3b is a schematic diagram of a DMRS pattern in which the configuration type is type 1 and occupies 2 symbols in the time domain;
  • FIG3c is a schematic diagram of a DMRS pattern in which the configuration type is type2 and occupies 1 symbol in the time domain;
  • FIG3d is a schematic diagram of a DMRS pattern in which the configuration type is type2 and occupies 2 symbols in the time domain;
  • FIG4 is a flow chart of an uplink communication method based on simultaneous transmission of multiple panels provided in an embodiment of the present application
  • FIG5 is a schematic flow chart of an uplink communication method based on simultaneous transmission of multiple panels provided in an embodiment of the present application
  • FIG6 is a flow chart of an uplink communication method based on simultaneous transmission of multiple panels provided in an embodiment of the present application
  • FIG. 7 is a schematic structural diagram of an uplink communication device based on simultaneous transmission of multiple panels provided in an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of an uplink communication device based on simultaneous transmission of multiple panels provided in an embodiment of the present application
  • FIG. 9 is a schematic structural diagram of another uplink communication device based on simultaneous transmission of multiple panels provided in an embodiment of the present application.
  • FIG. 10 is a schematic diagram of the structure of a chip provided in an embodiment of the present disclosure.
  • first, second, third, etc. may be used to describe various information in the embodiments of the present application, these information should not be limited to these terms. These terms are only used to distinguish the same type of information from each other.
  • first information may also be referred to as the second information, and similarly, the second information may also be referred to as the first information.
  • the words "if” and “if” as used herein may be interpreted as "at" or "when" or "in response to determination".
  • Figure 1a is a schematic diagram of the architecture of a communication system provided in an embodiment of the present application.
  • the communication system may include, but is not limited to, a network device and a terminal device.
  • the number and form of devices shown in Figure 1a are only used as examples and do not constitute a limitation on the embodiments of the present application. In actual applications, two or more network devices and two or more terminal devices may be included.
  • the communication system shown in Figure 1a takes a network device 101 and a terminal device 102 as an example.
  • LTE Long Term Evolution
  • 5G new air interface system 5G new air interface system
  • other future new mobile communication systems 5G new air interface system
  • the network device 101 in the embodiment of the present application is an entity on the network side for transmitting or receiving signals.
  • the network device 101 may be an evolved NodeB (eNB), a transmission point (TRP), a next generation NodeB (gNB) in an NR system, a base station in other future mobile communication systems, or an access node in a wireless fidelity (WiFi) system.
  • eNB evolved NodeB
  • TRP transmission point
  • gNB next generation NodeB
  • WiFi wireless fidelity
  • the embodiment of the present application does not limit the specific technology and specific device form adopted by the network device.
  • the network device provided in the embodiment of the present application may be composed of a centralized unit (CU) and a distributed unit (DU), wherein the CU may also be referred to as a control unit (Control Unit).
  • CU centralized unit
  • DU distributed unit
  • Control Unit Control Unit
  • the CU-DU structure may be used to split the protocol layer of a network device, such as a base station, and the functions of some protocol layers are placed in the CU for centralized control, and the functions of the remaining part or all of the protocol layers are distributed in the DU, and the DU is centrally controlled by the CU.
  • a network device such as a base station
  • the terminal device 102 in the embodiment of the present application is an entity on the user side for receiving or transmitting signals, such as a mobile phone.
  • the terminal device may also be referred to as a terminal device (terminal), user equipment (UE), mobile station (MS), mobile terminal (MT), etc.
  • the terminal device may be a car with communication function, a smart car, a mobile phone, an Internet of Things (IoT) terminal, a wearable device, a tablet computer (Pad), a computer with wireless transceiver function, a virtual reality (VR) terminal device, an augmented reality (AR) terminal device, a wireless terminal device in industrial control (Industrial Control), a wireless terminal device in self-driving, a wireless terminal device in remote medical surgery, a wireless terminal device in smart grid (Smart Grid), a wireless terminal device in transportation safety (Transportation Safety), a wireless terminal device in smart city (Smart City), a wireless terminal device in smart home (Smart Home), etc.
  • the embodiments of the present application do not limit the specific technology and specific device form adopted by the terminal device.
  • CoMP Coordinated Multiple Point transmission
  • multi-point cooperative transmission technology can be divided into coherent and incoherent transmission.
  • coherent transmission each data layer is mapped to multiple TRPs/panels through a weighted vector.
  • incoherent transmission each data stream is only mapped to part of the TRP/panel.
  • Coherent transmission has higher requirements for the synchronization between transmission points and the transmission capacity of the backhaul link, and is therefore more sensitive to many non-ideal factors in real deployment conditions. Relatively speaking, incoherent transmission is less affected by the above factors, so it is the key consideration for multi-point transmission technology.
  • Rel 18 has a physical uplink shared channel (PUSCH)/physical uplink control signal
  • PUSCH physical uplink shared channel
  • PUCCH Physical Uplink Control Channel
  • M-TRP Multi Transmission and Reception Point
  • multiple panel terminals are used for simultaneous uplink transmission to increase the uplink rate and further improve the reliability of transmission.
  • the transmission can be scheduled based on a DCI carried by a PDCCH channel, or different DCIs carried by different PDCCHs can be considered for separate scheduling.
  • the synchronous transmission scheme currently considered is mainly based on space division multiplexing (Space Division Multiplexing, SDM) or frequency division multiplexing (Frequency Division Multiplexing, FDM) without using panel channel transmission.
  • Figure 1b is a logical schematic diagram of a multi-panel transmission implementation based on a single downlink control information (Downlink Control Information, DCI; single DCI, single DCI, S-DCI) provided by the present application.
  • DCI Downlink Control Information
  • the multi-panel implementation of the terminal generally configures multiple physical panels, and the capabilities of different panels may also be different.
  • the multiple panels may have different numbers of sounding reference signal (SRS) ports, or the maximum number of data transmission layers supported by the multiple panels may not be the same.
  • SRS sounding reference signal
  • one panel supports a maximum of 2 layers of transmission
  • another panel supports a maximum of 4 layers of transmission.
  • the network scheduler will determine whether the terminal is currently suitable for simultaneous uplink transmission of multiple panels. If the terminal is currently suitable for simultaneous uplink transmission of multiple panels and is scheduled at the same time, the network will directly or indirectly indicate the relevant transmission parameters, including terminal-specific beam indication information, the number of data layers used for transmission, and the allocation of demodulation reference signal (DMRS) ports used, as well as precoding indication information.
  • DMRS demodulation reference signal
  • the DMRS port indication problem under S-DCI scheduling that is, how to determine which DMRS ports are used to send PUSCH on different panels.
  • the data channel Physical Downlink Shared Channel (PDSCH)/PUSCH
  • the data layer of data transmission corresponds to the DMRS port used for demodulation.
  • the communication system described in the embodiment of the present application is for more clearly illustrating the technical solution of the embodiment of the present application, and does not constitute a limitation on the technical solution provided in the embodiment of the present application.
  • Ordinary technicians in this field can know that with the evolution of the system architecture and the emergence of new business scenarios, the technical solution provided in the embodiment of the present application is also applicable to similar technical problems.
  • Figure 2 is a flow chart of an uplink communication method based on simultaneous transmission of multiple panels provided in an embodiment of the present application. It should be noted that the uplink communication method based on simultaneous transmission of multiple panels in an embodiment of the present application is executed by a terminal device. The method can be executed independently or in combination with any other embodiment of the present application. As shown in Figure 2, the method may include the following steps:
  • Step 201 Receive first indication information sent by a network device, where the first indication information is used to indicate a total DMRS port used for PUSCH transmission.
  • the PUSCH transmission is based on space division multiplexing (SDM) of single downlink control information (Downlink Control Information, DCI; single DCI, single DCI, S-DCI) and simultaneous transmission from multiple antenna panels (Simultaneous Transmission from Multiple Panels, STxMP).
  • SDM space division multiplexing
  • the S-DCI-based SDM uplink STxMP scheme includes: different parts of a transmission block (TB) of PUSCH are sent to two different TRPs on the same time-frequency resources through their corresponding DMRS ports or port combinations allocated on different panels, and different panels/TRPs/transmission occasions (TO) are associated with different transmission configuration indication (TCI) states, i.e. beams.
  • TCI transmission configuration indication
  • the TO of PUSCH refers to the different data layers of a transport block of PUSCH facing different TRPs through different panels of the terminal. It is sent on the same time-frequency resources, where the part of the PUSCH data layer transmitted on the transmission link of each panel-TRP corresponds to a PUSCH transmission opportunity.
  • a terminal device is capable of receiving first indication information sent by a network device, and the first indication information can be used to indicate the total DMRS ports allocated by the network side for PUSCH transmission.
  • the maximum number of transmission layers of the PUSCH is 4.
  • the first indication information may be DCI.
  • the first indication information may be an antenna ports indication field in the DCI.
  • the DMRS design for data channels (PUSCH/PDSCH) in the current NR system mainly includes the following aspects:
  • Front-load DMRS In each scheduling time unit, the first appearance of DMRS should be as close to the scheduling start point as possible.
  • the use of front-load DMRS helps the receiving side to quickly estimate the channel and perform reception detection, which is important for reducing latency and supporting the so-called self-contained structure.
  • front-load DMRS can occupy up to two consecutive orthogonal frequency division multiplexing (OFDM) symbols.
  • Additional DMRS For low mobility scenarios, front-load DMRS can achieve channel estimation performance that meets demodulation requirements with lower overhead. However, the dynamic range of mobile speeds considered by the NR system is very large, and high-speed mobile scenarios must also be considered. In addition to front-load DMRS, in medium/high-speed scenarios, more DMRS symbols need to be inserted within the scheduling duration to meet the estimation accuracy of channel time variability. To address this issue, the NR system adopts a DMRS structure that combines front-load DMRS with additional DMRS with configurable time domain density. The pattern of each group of additional DMRS is a repetition of the front-load DMRS.
  • the pattern design of front-load DMRS is the basis of DMRS design.
  • the design ideas of front-load DMRS are divided into two categories, of which the first category (type 1) is based on COMB (comb code) + OCC (Orthogonal Cover Code) structure design, and the second category (type 2) is based on FDM + OCC structure design.
  • the front-load DMRS can be configured to a maximum of two OFDM symbols.
  • TD-OCC Time Domain-OCC
  • Figure 3a is a schematic diagram of a DMRS pattern with a configuration type of type1 and occupying 1 symbol in the time domain
  • Figure 3b is a schematic diagram of a DMRS pattern with a configuration type of type1 and occupying 2 symbols in the time domain
  • Figure 3c is a schematic diagram of a DMRS pattern with a configuration type of type2 and occupying 1 symbol in the time domain
  • Figure 3d is a schematic diagram of a DMRS pattern with a configuration type of type2 and occupying 2 symbols in the time domain.
  • the DMRS ports occupying the same time-frequency domain resources in the figure need to be distinguished by code division multiplexing and belong to the same code division multiplexing (CDM) group.
  • CDM code division multiplexing
  • DMRS ports 0 and 1 belong to the same DMRS CDM group
  • DMRS ports 2 and 3 belong to the same DMRS CDM group
  • DMRS ports 4 and 5 belong to the same DMRS CDM group.
  • DMRS ports 0, 1, 6, and 7 belong to the same DMRS CDM group
  • DMRS ports 2, 3, 8, and 9 belong to the same DMRS CDM group
  • DMRS Ports 4, 5, 10, and 11 belong to the same CDM group of DMRS.
  • the DMRS port allocation of different parameter configurations under the uplink OFDM with cyclic prefix (CP-OFDM) waveform is shown in the following tables.
  • the first indication information can be a code point in an indication field in the DCI, and different code points indicate different allocated DMRS ports (for example, when the DMRS type is 1, the number of symbols occupied by the pre-DMRS is 1, and the number of data transmission layers is 2, the first indication information takes a value of 0 to indicate that the total DMRS ports allocated to the PUSCH are the DMRS ports numbered 0 and 1, and the DMRS ports numbered 0 and 1 belong to the same CDM group; for another example, when the DMRS type is 1, the number of symbols occupied by the pre-DMRS is 1, and the number of data transmission layers is 3, the first indication information takes a value of 0 to indicate that the total DMRS ports allocated to the PUSCH are the DMRS ports numbered 0, 1, and 2, and the DMRS
  • Step 202 Receive second indication information sent by the network device, where the second indication information is used to indicate the number of transmission layers corresponding to a plurality of PUSCH transmission opportunities of the PUSCH.
  • the multiple PUSCH transmission opportunities are transmitted in the directions corresponding to multiple TCI states and/or TRPs.
  • the terminal device is capable of receiving the second indication information sent by the network device, and determining the transmission layer number information corresponding to the multiple PUSCH transmission opportunities of the PUSCH according to the indication of the second indication information.
  • the second indication information may be an SRS resource set indication (SRS resource set indicator).
  • SRS resource set indicator SRS resource set indicator
  • the PUSCH transmission timing corresponds to at least one of the following:
  • SRS resource set Sounding reference signal SRS resource set (SRS resource set);
  • TPMI Precoding Matrix Indicator
  • each SRI indication field indicates the SRS resources in the SRS resource set associated with the SRI field for a TRP.
  • the two SRI indication fields will correspond to different PUSCH transmission timings.
  • the transmission scheduling of single TRP and multiple TRPs can be dynamically indicated by the indication field indicated by the SRS resource set.
  • the number of transmission layers of the PUSCH transmission opportunity corresponding to the first SRI indication field or the first TPMI indication field in the two SRI/TPMI indication fields is R1
  • the number of transmission layers of the PUSCH transmission opportunity corresponding to the second SRI indication field or the second TPMI indication field in the two SRI/TPMI indication fields is R2
  • the second indication information can be used to indicate R1 and R2.
  • the PUSCH transmission timing corresponds to the SRI indication field, and the associated SRS resource set is indicated by the SRI indication field; in the non-codebook-based PUSCH transmission, the PUSCH transmission timing corresponds to the TPMI indication field, and the associated SRS resource set is indicated by the TPMI indication field.
  • the second indication information may indicate information about the number of transmission layers corresponding to the multiple transmission opportunities respectively, or may indicate combined information about the number of transmission layers corresponding to the multiple transmission opportunities in combination.
  • the second indication information can combine the PUSCH transmission timing corresponding to the first SRI/TPMI indication field and the transmission layer number information of the PUSCH transmission timing corresponding to the second SRI/TPMI indication field, that is, indicating the combination information of R1 and R2, for example, indicating that the transmission layer number combination information corresponding to the two transmission timings is ⁇ R1, R2 ⁇ .
  • the correspondence between the multiple PUSCH transmission opportunities and the SRI field or the TPMI field is predefined.
  • the correspondence between the multiple PUSCH transmission opportunities and the SRI field or the TPMI field is indicated by an indication field of an SRS resource set indication.
  • the correspondence between the multiple PUSCH transmission opportunities and the SRI field or the TPMI field is:
  • a PUSCH transmission timing transmitted in a first direction corresponds to the first SRI region or the first TPMI region;
  • a PUSCH transmission timing transmitted in the second direction corresponds to the second SRI region or the second TPMI region;
  • the first direction is the direction corresponding to the first TCI state and/or the first TRP
  • the second direction is the direction corresponding to the second TCI state and/or the second TRP.
  • the correspondence between the multiple PUSCH transmission opportunities and the SRI field or the TPMI field is:
  • a PUSCH transmission timing transmitted in the first direction corresponds to the second SRI field or the second TPMI field;
  • a PUSCH transmission timing transmitted in the second direction corresponds to the first SRI field or the first TPMI field;
  • the first direction is the direction corresponding to the first TCI state and/or the first TRP
  • the second direction is the direction corresponding to the second TCI state and/or the second TRP.
  • the second indication information is an SRS resource set indication
  • the first code point included in the second indication information (SRS resource set indication) is used to indicate that the number of transmission layers is combination information of ⁇ R1, R2 ⁇ , wherein the PUSCH transmission opportunity with the transmission layer number of R1 is transmitted in the first direction, and the PUSCH transmission opportunity with the transmission layer number of R2 is transmitted in the second direction;
  • the second code point included in the indication field of the SRS resource set indication is used to indicate the combination information of the transmission layer number ⁇ R2, R1 ⁇ , wherein the PUSCH transmission opportunity of the transmission layer number R2 is transmitted in the first direction, and the PUSCH transmission opportunity of the transmission layer number R1 is transmitted in the second direction;
  • the first direction is the direction corresponding to the first TCI state and/or the first TRP
  • the second direction is the direction corresponding to the second TCI state and/or the second TRP.
  • the first indication information and the second indication information may be the same indication information or different indication information.
  • Step 203 determine the DMRS port corresponding to each PUSCH transmission opportunity.
  • the terminal device can determine the DMRS port corresponding to each PUSCH transmission opportunity.
  • the terminal device may determine the DMRS port corresponding to each PUSCH transmission opportunity based on a fixed rule.
  • the fixed rule may be to determine the DMRS port corresponding to each PUSCH transmission opportunity according to the order of the DMRS port numbers.
  • the terminal device can determine whether the DMRS port indicated by the first indication information belongs to the same DMRS CDM group.
  • a first DMRS port corresponding to the first PUSCH transmission opportunity and a second DMRS port corresponding to the second PUSCH transmission opportunity are determined, wherein the number of ports of the first DMRS port is equal to the number of transmission layers corresponding to the first PUSCH transmission opportunity, and the number of ports of the second DMRS port is equal to the number of transmission layers corresponding to the first PUSCH transmission opportunity.
  • the number is equal to the number of transmission layers corresponding to the second PUSCH transmission opportunity, and the first DMRS ports belong to the same CDM group, and the second DMRS port belongs to another CDM group.
  • a first DMRS port corresponding to the first PUSCH transmission opportunity and a second DMRS port corresponding to the second PUSCH transmission opportunity are determined, wherein the port number of the first DMRS port is equal to the number of transmission layers corresponding to the first PUSCH transmission opportunity, the port number of the second DMRS port is equal to the number of transmission layers corresponding to the second PUSCH, and the first DMRS port is an adjacent DMRS port after arranging the numbers of the DMRS ports indicated by the first indication information in a first order, and the second DMRS port is the remaining DMRS port.
  • a first DMRS port corresponding to the first PUSCH transmission opportunity and a second DMRS port corresponding to the second PUSCH transmission opportunity are determined, wherein the number of ports of the first DMRS port is equal to the number of transmission layers corresponding to the first PUSCH transmission opportunity, the number of ports of the second DMRS port is equal to the number of transmission layers corresponding to the second PUSCH transmission opportunity, and the first DMRS port is an adjacent DMRS port after arranging the numbers of the DMRS ports indicated by the first indication information in a first order, and the second DMRS port is the remaining DMRS port.
  • the first indication information is used to indicate the total demodulation reference signal DMRS port used for physical uplink shared channel PUSCH transmission, wherein the PUSCH transmission is based on the spatial division multiplexing SDM multi-antenna panel of the single downlink control information DCI to simultaneously transmit STxMP
  • the second indication information is used to indicate the transmission layer number RANK information corresponding to the multiple PUSCH transmission opportunities of the PUSCH, wherein the multiple PUSCH transmission opportunities are transmitted in the directions corresponding to the multiple transmission configuration indications TCI states and/or the sending and receiving points TRP, and determining the DMRS port corresponding to each PUSCH transmission opportunity
  • the DMRS port used for transmission can be flexibly configured, which effectively reduces the transmission interference between the multiple antenna panels, effectively improves the reliability and robustness of the transmission, and improves the system communication efficiency.
  • Figure 4 is a flow chart of an uplink communication method based on simultaneous transmission of multiple panels provided in an embodiment of the present application. It should be noted that the uplink communication method based on simultaneous transmission of multiple panels in an embodiment of the present application is executed by a terminal device. The method can be executed independently or in combination with any other embodiment of the present application. As shown in Figure 4, the method may include the following steps:
  • Step 401 Receive first indication information sent by a network device, where the first indication information is used to indicate a total DMRS port used for PUSCH transmission.
  • the PUSCH transmission is based on the S-DCI SDM multi-antenna panel simultaneous transmission STxMP.
  • a terminal device is capable of receiving first indication information sent by a network device, and the first indication information can be used to indicate the total DMRS ports allocated by the network side for PUSCH transmission.
  • the maximum number of transmission layers of the PUSCH is 4.
  • the number of total DMRS ports indicated by the first indication information is equal to the number of transmission layers of the PUSCH.
  • the first indication information may be DCI.
  • Step 402 Receive second indication information sent by the network device, where the second indication information is used to indicate transmission layer number combination information corresponding to a plurality of PUSCH transmission opportunities of the PUSCH.
  • the multiple PUSCH transmission opportunities are transmitted in the directions corresponding to multiple TCI states and/or TRPs.
  • the terminal device is capable of receiving the second indication information sent by the network device, and determining the transmission layer number information corresponding to the multiple PUSCH transmission opportunities of the PUSCH according to the indication of the second indication information.
  • the second indication information may be combined to indicate the combination information of the number of transmission layers corresponding to the multiple transmission opportunities.
  • the second indication information may be an SRS resource set indication (SRS resource set indicator).
  • SRS resource set indicator SRS resource set indicator
  • the PUSCH transmission timing corresponds to at least one of the following:
  • Codeword Codeword; panel; SRS resource set; SRI indication field; TPMI indication field; transmit receive point TRP; used to indicate the TCI status of the beam.
  • two SRI indication fields and/or two TPMI indication fields are included.
  • the number of transmission layers of the PUSCH transmission opportunity corresponding to the first SRI indication field or the first TPMI indication field in the two SRI/TPMI indication fields is R1
  • the number of transmission layers of the PUSCH transmission opportunity corresponding to the second SRI indication field or the second TPMI indication field in the two SRI/TPMI indication fields is R2
  • the second indication information can be used to indicate the combination information of R1 and R2.
  • the PUSCH transmission timing corresponds to the SRI indication field, and the associated SRS resource set is indicated by the SRI indication field; in the non-codebook-based PUSCH transmission, the PUSCH transmission timing corresponds to the TPMI indication field, and the associated SRS resource set is indicated by the TPMI indication field.
  • the correspondence between the multiple PUSCH transmission opportunities and the SRI field or the TPMI field is predefined.
  • the correspondence between the multiple PUSCH transmission opportunities and the SRI field or the TPMI field is indicated by an indication field of an SRS resource set indication.
  • the correspondence between the multiple PUSCH transmission opportunities and the SRI field or the TPMI field is:
  • a PUSCH transmission timing transmitted in a first direction corresponds to the first SRI region or the first TPMI region;
  • a PUSCH transmission timing transmitted in the second direction corresponds to the second SRI region or the second TPMI region;
  • the first direction is the direction corresponding to the first TCI state and/or the first TRP
  • the second direction is the direction corresponding to the second TCI state and/or the second TRP.
  • the correspondence between the multiple PUSCH transmission opportunities and the SRI field or the TPMI field is:
  • a PUSCH transmission timing transmitted in the first direction corresponds to the second SRI field or the second TPMI field;
  • a PUSCH transmission timing transmitted in the second direction corresponds to the first SRI field or the first TPMI field;
  • the first direction is the direction corresponding to the first TCI state and/or the first TRP
  • the second direction is the direction corresponding to the second TCI state and/or the second TRP.
  • the second indication information is an SRS resource set indication
  • the first code point included in the second indication information (SRS resource set indication) is used to indicate that the number of transmission layers is combination information of ⁇ R1, R2 ⁇ , wherein the PUSCH transmission opportunity with the transmission layer number of R1 is transmitted in the first direction, and the PUSCH transmission opportunity with the transmission layer number of R2 is transmitted in the second direction;
  • the second code point included in the indication field of the SRS resource set indication is used to indicate the combination information of the transmission layer number ⁇ R2, R1 ⁇ , wherein the PUSCH transmission opportunity of the transmission layer number R2 is transmitted in the first direction, and the PUSCH transmission opportunity of the transmission layer number R1 is transmitted in the second direction;
  • the first direction is the direction corresponding to the first TCI state and/or the first TRP
  • the second direction is the direction corresponding to the second TCI state and/or the second TRP.
  • the indication field of the SRS resource set indication may include multiple code points.
  • the indication field indicated by the SRS resource set includes a first code point (such as code point "10" or code point "11", etc.) which is used to indicate that the PUSCH transmission opportunity corresponding to the first SRI field or the first TPMI field is transmitted in the first direction, and the number of transmission layers of the PUSCH transmission opportunity is R1; the PUSCH transmission opportunity corresponding to the second SRI field or the second TPMI field is transmitted in the second direction, and the number of transmission layers of the PUSCH transmission opportunity is R2.
  • a first code point such as code point "10" or code point "11", etc.
  • the second code point (such as code point "11" or code point "10", etc.) included in the indication field indicated by the SRS resource set is used to indicate that the PUSCH transmission opportunity corresponding to the first SRI field or the first TPMI field is transmitted in the second direction, and the number of transmission layers of the PUSCH transmission opportunity is R1; the PUSCH transmission opportunity corresponding to the second SRI field or the second TPMI field is transmitted in the first direction, and the number of transmission layers of the PUSCH transmission opportunity is R2.
  • the first direction is the direction corresponding to the first TCI state and/or the first TRP
  • the second direction is the direction corresponding to the second TCI state and/or the second TRP.
  • R1+R2 is equal to the number of transmission layers of the PUSCH.
  • Step 403 determine whether the DMRS ports indicated by the first indication information belong to the same DMRS code division multiplexing CDM group.
  • the terminal device can determine whether each DMRS port indicated by the first indication information belongs to the same DMRS CDM group.
  • Step 404 when the DMRS ports indicated by the first indication information do not belong to the same CDM group, determine the first DMRS port corresponding to the first PUSCH transmission opportunity and the second DMRS port corresponding to the second PUSCH transmission opportunity, wherein the first DMRS port belongs to the same CDM group and the second DMRS port belongs to another CDM group.
  • the number of first DMRS ports is equal to the number of transmission layers corresponding to the first PUSCH transmission opportunity
  • the number of second DMRS ports is equal to the number of transmission layers corresponding to the second PUSCH.
  • the first PUSCH transmission opportunity may correspond to the first SRI domain/first TPMI domain, and the second PUSCH transmission opportunity may correspond to the second SRI domain/second TPMI domain; or the second PUSCH transmission opportunity may correspond to the first SRI domain/first TPMI domain, and the first PUSCH transmission opportunity may correspond to the second SRI domain/second TPMI domain.
  • the terminal device when it is determined that the DMRS ports indicated by the first indication information do not belong to the same CDM group, the terminal device can divide the DMRS ports indicated by the first indication information according to the CDM group and allocate the DMRS ports belonging to the same CDM group to a PUSCH transmission opportunity.
  • the number of transmission layers of PUSCH is 3, the number of transmission layers of the first PUSCH transmission opportunity is 2, and the number of transmission layers of the second PUSCH transmission opportunity is 1.
  • the DMRS ports indicated by the first indication information are 0, 1, 2, where ports ⁇ 0, 1 ⁇ belong to the same CDM group, and port ⁇ 2 ⁇ belongs to another CDM group. Then the DMRS ports corresponding to the first PUSCH transmission opportunity are the DMRS ports numbered 0 and 1, and the DMRS port corresponding to the second PUSCH transmission opportunity is the DMRS port numbered 2.
  • the first PUSCH transmission opportunity can correspond to the first SRI domain/first TPMI domain, or the second SRI domain/second TPMI domain.
  • the first PUSCH transmission opportunity can be transmitted in the direction corresponding to the first TCI state and/or the first TRP, or in the direction corresponding to the second TCI state and/or the second TRP.
  • Step 405 when the DMRS ports indicated by the first indication information belong to the same CDM group, determine the first DMRS port corresponding to the first PUSCH transmission opportunity and the second DMRS port corresponding to the second PUSCH transmission opportunity, wherein the first DMRS port is the adjacent DMRS port after the numbers of the DMRS ports indicated by the first indication information are arranged in a first sequence, and the second DMRS port is the remaining DMRS port.
  • the number of first DMRS ports is equal to the number of transmission layers corresponding to the first PUSCH transmission opportunity
  • the number of second DMRS ports is equal to the number of transmission layers corresponding to the second PUSCH.
  • the first PUSCH transmission opportunity may correspond to the first SRI domain/first TPMI domain, and the second PUSCH transmission opportunity may correspond to the second SRI domain/second TPMI domain; or the second PUSCH transmission opportunity may correspond to the first SRI domain/first TPMI domain, and the first PUSCH transmission opportunity may correspond to the second SRI domain/second TPMI domain.
  • the terminal device when it is determined that the DMRS ports indicated by the first indication information belong to the same CDM group, the terminal device can assign adjacent DMRS ports indicated by the first indication information to a PUSCH transmission opportunity according to the first order of numbering.
  • the number of transmission layers of PUSCH is 3, the number of transmission layers of the first PUSCH transmission opportunity is 2, and the number of transmission layers of the second PUSCH transmission opportunity is 1.
  • the DMRS ports indicated by the first indication information are 0, 1, and 6, which belong to the same CDM group.
  • the first order can be sorted from small to large, then the DMRS ports corresponding to the first PUSCH transmission opportunity are the DMRS ports numbered 0 and 1, and the DMRS ports corresponding to the second PUSCH transmission opportunity are the DMRS ports numbered 6.
  • the first order can also be sorted from large to small, then the DMRS ports corresponding to the first PUSCH transmission opportunity are the DMRS ports numbered 1 and 6, and the DMRS ports corresponding to the second PUSCH transmission opportunity are the DMRS port numbered 0.
  • the first indication information is used to indicate the total DMRS port used for PUSCH transmission
  • receiving the second indication information sent by the network device the second indication information is used to indicate the transmission layer number combination information corresponding to the multiple PUSCH transmission opportunities of the PUSCH, and judging whether the DMRS ports indicated by the first indication information belong to the same DMRS code division multiplexing CDM group, and when the DMRS ports indicated by the first indication information do not belong to the same CDM group, determining the first DMRS port corresponding to the first PUSCH transmission opportunity and the second DMRS port corresponding to the second PUSCH transmission opportunity, wherein the first DMRS port belongs to the same CDM group, and the second DMRS port belongs to Another CDM group, when the DMRS ports indicated by the first indication information belong to the same CDM group, determines the first DMRS port corresponding to the first PUSCH transmission opportunity and the second DMRS port corresponding to the second PUSCH transmission opportunity, wherein
  • the DMRS ports used for transmission can be flexibly configured, and the DMRS ports of the same CDM group can be used to transmit a PUSCH transmission opportunity, which more effectively reduces the transmission interference between multiple antenna panels, improves the reliability and robustness of transmission, improves the system communication efficiency, and achieves better transmission effect.
  • Figure 5 is a flowchart of an uplink communication method based on simultaneous transmission of multiple panels provided in an embodiment of the present application. It should be noted that the uplink communication method based on simultaneous transmission of multiple panels in an embodiment of the present application is executed by a terminal device. The method can be executed independently or in combination with any other embodiment of the present application. As shown in Figure 5, the method may include the following steps:
  • Step 501 Receive first indication information sent by a network device, where the first indication information is used to indicate a total DMRS port used for PUSCH transmission.
  • Step 502 Receive second indication information sent by the network device, where the second indication information is used to indicate transmission layer number combination information corresponding to a plurality of PUSCH transmission opportunities of the PUSCH.
  • Step 503 determine whether the DMRS ports indicated by the first indication information belong to the same DMRS code division multiplexing CDM group.
  • step 501 and step 503 can be implemented in any way in the embodiments of the present application.
  • the embodiment of the present application does not limit this and will not be repeated.
  • Step 504 when the DMRS ports indicated by the first indication information do not belong to the same CDM group, determine the first A first DMRS port corresponding to a PUSCH transmission timing and a second DMRS port corresponding to a second PUSCH transmission timing, wherein the first DMRS port is an adjacent DMRS port after the numbers of the DMRS ports indicated by the first indication information are arranged in a first order, and the second DMRS port is the remaining DMRS port.
  • the number of first DMRS ports is equal to the number of transmission layers corresponding to the first PUSCH transmission opportunity
  • the number of second DMRS ports is equal to the number of transmission layers corresponding to the second PUSCH.
  • the first PUSCH transmission opportunity may correspond to the first SRI domain/first TPMI domain, and the second PUSCH transmission opportunity may correspond to the second SRI domain/second TPMI domain; or the second PUSCH transmission opportunity may correspond to the first SRI domain/first TPMI domain, and the first PUSCH transmission opportunity may correspond to the second SRI domain/second TPMI domain.
  • the terminal device when it is determined that the DMRS ports indicated by the first indication information do not belong to the same CDM group, the terminal device can assign adjacent DMRS ports indicated by the first indication information to a PUSCH transmission opportunity according to the first order of numbering.
  • the number of transmission layers of PUSCH is 3, the number of transmission layers of the first PUSCH transmission opportunity is 2, and the number of transmission layers of the second PUSCH transmission opportunity is 1.
  • the DMRS ports indicated by the first indication information are 0, 1, and 6, which belong to the same CDM group.
  • the first order can be sorted from small to large, then the DMRS ports corresponding to the first PUSCH transmission opportunity are the DMRS ports numbered 0 and 1, and the DMRS ports corresponding to the second PUSCH transmission opportunity are the DMRS ports numbered 6.
  • the first order can also be sorted from large to small, then the DMRS ports corresponding to the first PUSCH transmission opportunity are the DMRS ports numbered 1 and 6, and the DMRS ports corresponding to the second PUSCH transmission opportunity are the DMRS port numbered 0.
  • the first PUSCH transmission opportunity can correspond to the first SRI domain/first TPMI domain, or the second SRI domain/second TPMI domain.
  • the first PUSCH transmission opportunity can be transmitted in the direction corresponding to the first TCI state and/or the first TRP, or in the direction corresponding to the second TCI state and/or the second TRP.
  • Step 505 when the DMRS ports indicated by the first indication information belong to the same CDM group, determine the first DMRS port corresponding to the first PUSCH transmission opportunity and the second DMRS port corresponding to the second PUSCH transmission opportunity, wherein the first DMRS port is the adjacent DMRS port after the numbers of the DMRS ports indicated by the first indication information are arranged in a first sequence, and the second DMRS port is the remaining DMRS port.
  • the number of first DMRS ports is equal to the number of transmission layers corresponding to the first PUSCH transmission opportunity
  • the number of second DMRS ports is equal to the number of transmission layers corresponding to the second PUSCH.
  • the first PUSCH transmission opportunity may correspond to the first SRI domain/first TPMI domain, and the second PUSCH transmission opportunity may correspond to the second SRI domain/second TPMI domain; or the second PUSCH transmission opportunity may correspond to the first SRI domain/first TPMI domain, and the first PUSCH transmission opportunity may correspond to the second SRI domain/second TPMI domain.
  • the terminal device when it is determined that the DMRS ports indicated by the first indication information belong to the same CDM group, the terminal device can assign adjacent DMRS ports indicated by the first indication information to a PUSCH transmission opportunity according to the first order of numbering.
  • the number of transmission layers of PUSCH is 3, the number of transmission layers of the first PUSCH transmission opportunity is 2, and the number of transmission layers of the second PUSCH transmission opportunity is 1.
  • the DMRS ports indicated by the first indication information are 0, 1, and 6, which belong to the same CDM group.
  • the first order can be sorted from small to large, then the DMRS ports corresponding to the first PUSCH transmission opportunity are the DMRS ports numbered 0 and 1, and the DMRS ports corresponding to the second PUSCH transmission opportunity are the DMRS ports numbered 6.
  • the first order can also be sorted from large to small, then the DMRS ports corresponding to the first PUSCH transmission opportunity are the DMRS ports numbered 1 and 6, and the DMRS ports corresponding to the second PUSCH transmission opportunity are The DMRS port number is 0.
  • the first PUSCH transmission opportunity can correspond to the first SRI domain/first TPMI domain, or the second SRI domain/second TPMI domain.
  • the first PUSCH transmission opportunity can be transmitted in the direction corresponding to the first TCI state and/or the first TRP, or in the direction corresponding to the second TCI state and/or the second TRP.
  • the first indication information is used to indicate the total DMRS port used for PUSCH transmission
  • the second indication information is used to indicate the transmission layer number combination information corresponding to multiple PUSCH transmission opportunities of the PUSCH, and judging whether the DMRS ports indicated by the first indication information belong to the same DMRS code division multiplexing CDM group, when the DMRS ports indicated by the first indication information do not belong to the same CDM group, determining the first DMRS port corresponding to the first PUSCH transmission opportunity and the second DMRS port corresponding to the second PUSCH transmission opportunity, wherein the first DMRS port is the DMRS indicated by the first indication information.
  • the adjacent DMRS ports are sorted, and the second DMRS port is the remaining DMRS port.
  • the first DMRS port corresponding to the first PUSCH transmission opportunity and the second DMRS port corresponding to the second PUSCH transmission opportunity are determined, wherein the first DMRS port is the DMRS port indicated by the first indication information.
  • the adjacent DMRS ports are sorted, and the second DMRS port is the remaining DMRS port.
  • the DMRS ports used for transmission can be flexibly configured, which effectively reduces transmission interference between multiple antenna panels, effectively improves transmission reliability and robustness, and improves system communication efficiency.
  • the second indication information may indicate that the number of transmission layers of the first PUSCH transmission opportunity is R1, and the number of transmission layers of the second PUSCH transmission opportunity is R2.
  • the first PUSCH transmission opportunity is a transmission opportunity corresponding to the first SRI domain/first TPMI domain
  • the second PUSCH transmission opportunity is a transmission opportunity corresponding to the second SRI domain/second TPMI domain.
  • the first PUSCH transmission opportunity is transmitted in the first direction (the direction corresponding to the first TCI state and/or the first TRP)
  • the second PUSCH transmission opportunity is transmitted in the second direction (the direction corresponding to the second TCI state and/or the second TRP).
  • the terminal device determines the DMRS ports corresponding to the first PUSCH transmission timing and the second PUSCH transmission timing respectively, and the terminal device can determine whether the DMRS ports indicated by the first indication information belong to the same CDM group.
  • the multiple DMRS ports can be divided according to the CDM group, R1 DMRS ports belonging to the same CDM group can be allocated to the first PUSCH transmission opportunity, and R2 DMRS ports belonging to another CDM group can be allocated to the second PUSCH transmission opportunity.
  • the DMRS ports indicated by the first indication information do not belong to the same CDM group
  • the DMRS ports indicated by the first indication information can also be arranged in the first order of the number, and the adjacent R1 (for example, the first R1 after sorting from small to large, or the first R1 after sorting from large to small, etc.) DMRS ports are allocated to the first PUSCH transmission opportunity, and the remaining R2 DMRS ports are allocated to the second PUSCH transmission opportunity.
  • the DMRS ports indicated by the first indication information can be arranged in the first order of the numbering, and the adjacent R1 (for example, the first R1 after sorting from small to large, or the first R1 after sorting from large to small, etc.) DMRS ports are allocated to the first PUSCH transmission opportunity, and the remaining R2 DMRS ports are allocated to the second PUSCH transmission opportunity.
  • the adjacent R1 for example, the first R1 after sorting from small to large, or the first R1 after sorting from large to small, etc.
  • the second indication information may indicate that the number of transmission layers of the first PUSCH transmission opportunity is R1, and the number of transmission layers of the second PUSCH transmission opportunity is R2.
  • the number of transmission layers of the transmission opportunity is R2.
  • the first PUSCH transmission opportunity is a transmission opportunity corresponding to the first SRI domain/first TPMI domain
  • the second PUSCH transmission opportunity is a transmission opportunity corresponding to the second SRI domain/second TPMI domain.
  • the first PUSCH transmission opportunity is transmitted in the second direction (the direction corresponding to the second TCI state and/or the second TRP)
  • the second PUSCH transmission opportunity is transmitted in the first direction (the direction corresponding to the first TCI state and/or the first TRP).
  • the terminal device determines the DMRS ports corresponding to the first PUSCH transmission timing and the second PUSCH transmission timing respectively, and the terminal device can determine whether the DMRS ports indicated by the first indication information belong to the same CDM group.
  • the multiple DMRS ports can be divided according to the CDM group, R1 DMRS ports belonging to the same CDM group can be allocated to the first PUSCH transmission opportunity, and R2 DMRS ports belonging to another CDM group can be allocated to the second PUSCH transmission opportunity.
  • the DMRS ports indicated by the first indication information do not belong to the same CDM group
  • the DMRS ports indicated by the first indication information can also be arranged in the first order of the number, and the adjacent R1 (for example, the first R1 after sorting from small to large, or the first R1 after sorting from large to small, etc.) DMRS ports are allocated to the first PUSCH transmission opportunity, and the remaining R2 DMRS ports are allocated to the second PUSCH transmission opportunity.
  • the DMRS ports indicated by the first indication information can be arranged in the first order of the numbering, and the adjacent R1 (for example, the first R1 after sorting from small to large, or the first R1 after sorting from large to small, etc.) DMRS ports are allocated to the first PUSCH transmission opportunity, and the remaining R2 DMRS ports are allocated to the second PUSCH transmission opportunity.
  • the adjacent R1 for example, the first R1 after sorting from small to large, or the first R1 after sorting from large to small, etc.
  • Figure 6 is a flowchart of an uplink communication method based on simultaneous transmission of multiple panels provided in an embodiment of the present application. It should be noted that the uplink communication method based on simultaneous transmission of multiple panels in an embodiment of the present application is executed by a network device. The method can be executed independently or in combination with any other embodiment of the present application. As shown in Figure 6, the method may include the following steps:
  • Step 601 Send first indication information to a terminal device, where the first indication information is used to indicate a total DMRS port used for PUSCH transmission.
  • the PUSCH transmission is based on the spatial division multiplexing SDM of a single DCI and the simultaneous transmission of STxMP by multiple antenna panels.
  • the S-DCI-based SDM uplink STxMP scheme includes: different parts of a transport block TB of PUSCH are respectively sent to two different TRPs on the same time-frequency resources through their respective corresponding DMRS ports or port combinations allocated on different panels, and different panels/TRPs/transmission opportunities are respectively associated with different TCI states, i.e. beams.
  • TO of PUSCH means that different data layers of a transmission block of PUSCH are sent on the same time-frequency resources through different panels of the terminal to different TRPs, and the part of the PUSCH data layer transmitted on the transmission link of each panel-TRP corresponds to a PUSCH transmission opportunity.
  • a terminal device is capable of receiving first indication information sent by a network device, and the first indication information can be used to indicate the total DMRS ports allocated by the network side for PUSCH transmission.
  • the maximum number of transmission layers of the PUSCH is 4.
  • the first indication information may be DCI.
  • the first indication information may be an antenna ports indication field in the DCI.
  • CP-OFDM uplink cyclic prefix OFDM
  • the first indication information may be a code point in an indication field in the DCI, and different code points indicate different allocated DMRS ports (for example, when the DMRS type is 1, the number of symbols occupied by the pre-DMRS is 1, and the number of data transmission layers is 2, the first indication information takes a value of 0 to indicate that the total DMRS ports allocated to PUSCH are DMRS ports numbered 0 and 1, and the DMRS ports numbered 0 and 1 belong to the same CDM group; for another example, when the DMRS type is 1, the number of symbols occupied by the pre-DMRS is 1, and the number of data transmission layers is 3, the first indication information takes a value of 0 to indicate that the total DMRS ports allocated to PUSCH are DMRS ports numbered 0, 1, and 2, and the DMRS ports numbered 0 and 1 belong to the same CDM group, and the DMRS port numbered 2 belongs to another CDM group).
  • Step 602 Send second indication information to the terminal device, where the second indication information is used to indicate the number of transmission layers corresponding to the multiple PUSCH transmission opportunities of the PUSCH.
  • the multiple PUSCH transmission opportunities are transmitted in the directions corresponding to multiple TCI states and/or TRPs.
  • the terminal device is capable of receiving the second indication information sent by the network device, and determining the transmission layer number information corresponding to the multiple PUSCH transmission opportunities of the PUSCH according to the indication of the second indication information.
  • SRS resource set Sounding reference signal SRS resource set (SRS resource set);
  • TPMI Precoding Matrix Indicator
  • each SRI indication field indicates the SRS resources in the SRS resource set associated with the SRI field for a TRP.
  • the two SRI indication fields will correspond to different PUSCH transmission timings.
  • the transmission scheduling of single TRP and multiple TRPs can be dynamically indicated by the indication field indicated by the SRS resource set.
  • the number of transmission layers of the PUSCH transmission opportunity corresponding to the first SRI indication field or the first TPMI indication field in the two SRI/TPMI indication fields is R1
  • the number of transmission layers of the PUSCH transmission opportunity corresponding to the second SRI indication field or the second TPMI indication field in the two SRI/TPMI indication fields is R2
  • the second indication information can be used to indicate R1 and R2.
  • the PUSCH transmission timing corresponds to the SRI indication field, and the associated SRS resource set is indicated by the SRI indication field; in the non-codebook-based PUSCH transmission, the PUSCH transmission timing corresponds to the TPMI indication field, and the associated SRS resource set is indicated by the TPMI indication field.
  • the second indication information may indicate information about the number of transmission layers corresponding to the multiple transmission opportunities respectively, or may indicate combined information about the number of transmission layers corresponding to the multiple transmission opportunities in combination.
  • the second indication information can combine the PUSCH transmission timing corresponding to the first SRI/TPMI indication field and the transmission layer number information of the PUSCH transmission timing corresponding to the second SRI/TPMI indication field, that is, indicating the combination information of R1 and R2, for example, indicating that the transmission layer number combination information corresponding to the two transmission timings is ⁇ R1, R2 ⁇ .
  • the correspondence between the multiple PUSCH transmission opportunities and the SRI field or the TPMI field is predefined.
  • the correspondence between the multiple PUSCH transmission opportunities and the SRI field or the TPMI field is indicated by an indication field of an SRS resource set indication.
  • the correspondence between the multiple PUSCH transmission opportunities and the SRI field or the TPMI field is:
  • a PUSCH transmission timing transmitted in a first direction corresponds to the first SRI region or the first TPMI region;
  • a PUSCH transmission timing transmitted in the second direction corresponds to the second SRI region or the second TPMI region;
  • the first direction is the direction corresponding to the first TCI state and/or the first TRP
  • the second direction is the direction corresponding to the second TCI state and/or the second TRP.
  • the correspondence between the multiple PUSCH transmission opportunities and the SRI field or the TPMI field is:
  • a PUSCH transmission timing transmitted in the first direction corresponds to the second SRI field or the second TPMI field;
  • a PUSCH transmission timing transmitted in the second direction corresponds to the first SRI field or the first TPMI field;
  • the first direction is the direction corresponding to the first TCI state and/or the first TRP
  • the second direction is the direction corresponding to the second TCI state and/or the second TRP.
  • the second indication information is an SRS resource set indication
  • the first code point included in the second indication information (SRS resource set indication) is used to indicate that the number of transmission layers is combination information of ⁇ R1, R2 ⁇ , wherein the PUSCH transmission opportunity with the transmission layer number of R1 is transmitted in the first direction, and the PUSCH transmission opportunity with the transmission layer number of R2 is transmitted in the second direction;
  • the second code point included in the indication field of the SRS resource set indication is used to indicate the combination information of the transmission layer number ⁇ R2, R1 ⁇ , wherein the PUSCH transmission opportunity of the transmission layer number R2 is transmitted in the first direction, and the PUSCH transmission opportunity of the transmission layer number R1 is transmitted in the second direction;
  • the first direction is the direction corresponding to the first TCI state and/or the first TRP
  • the second direction is the direction corresponding to the second TCI state and/or the second TRP.
  • the first indication information and the second indication information may be the same indication information or different indication information.
  • the DMRS port corresponding to each PUSCH transmission opportunity is determined by the terminal device.
  • the terminal device may determine the DMRS port corresponding to each PUSCH transmission opportunity based on a fixed rule.
  • the terminal device can determine whether the DMRS port indicated by the first indication information belongs to the same DMRS CDM group.
  • a first DMRS port corresponding to the first PUSCH transmission opportunity and a second DMRS port corresponding to the second PUSCH transmission opportunity are determined, wherein the port number of the first DMRS port is equal to the number of transmission layers corresponding to the first PUSCH transmission opportunity, the port number of the second DMRS port is equal to the number of transmission layers corresponding to the second PUSCH transmission opportunity, and the first DMRS port belongs to the same CDM group, and the second DMRS port belongs to another CDM group.
  • a first DMRS port corresponding to the first PUSCH transmission opportunity and a second DMRS port corresponding to the second PUSCH transmission opportunity are determined, wherein the number of ports of the first DMRS port is equal to the number of transmission layers corresponding to the first PUSCH transmission opportunity, the number of ports of the second DMRS port is equal to the number of transmission layers corresponding to the second PUSCH, and the first DMRS port is the DMRS port indicated by the first indication information.
  • the adjacent DMRS ports are sorted, and the second DMRS port is the remaining DMRS port.
  • a first DMRS port corresponding to the first PUSCH transmission opportunity and a second DMRS port corresponding to the second PUSCH transmission opportunity are determined, wherein the port number of the first DMRS port is equal to the number of transmission layers corresponding to the first PUSCH transmission opportunity, the port number of the second DMRS port is equal to the number of transmission layers corresponding to the second PUSCH transmission opportunity, and the first DMRS port is an adjacent DMRS port after arranging the numbers of the DMRS ports indicated by the first indication information in a first order, and the second DMRS port is the remaining DMRS port.
  • the first indication information is used to indicate the total demodulation reference signal DMRS port used for physical uplink shared channel PUSCH transmission, wherein the PUSCH transmission is based on the spatial division multiplexing SDM multi-antenna panel of the single downlink control information DCI to simultaneously transmit STxMP
  • the second indication information is used to indicate the transmission layer number RANK information corresponding to the multiple PUSCH transmission opportunities of the PUSCH, wherein the multiple PUSCH transmission opportunities are transmitted in the directions corresponding to the multiple transmission configuration indications TCI states and/or the sending and receiving points TRP, and the DMRS ports used for transmission can be flexibly configured, which effectively reduces the transmission interference between the multiple antenna panels, effectively improves the transmission reliability and robustness, and improves the system communication efficiency.
  • the present application also provides an uplink communication device based on simultaneous transmission of multiple panels. Since the uplink communication device based on simultaneous transmission of multiple panels provided in the embodiments of the present application corresponds to the methods provided in the above-mentioned embodiments, the implementation method of the uplink communication method based on simultaneous transmission of multiple panels is also applicable to the uplink communication device based on simultaneous transmission of multiple panels provided in the following embodiments, and will not be described in detail in the following embodiments.
  • FIG. 7 is a schematic diagram of the structure of an uplink communication device based on simultaneous transmission of multiple panels provided in an embodiment of the present application.
  • the uplink communication device 700 based on multi-panel simultaneous transmission includes: a transceiver unit 710 and a processing unit 720, wherein:
  • the transceiver unit 710 is used to receive first indication information sent by a network device, where the first indication information is used to indicate a total demodulation reference signal DMRS port for physical uplink shared channel PUSCH transmission, wherein the PUSCH transmission is based on a single downlink control information DCI spatial division multiplexing SDM multi-antenna panel simultaneous transmission STxMP;
  • the transceiver unit 710 is further configured to receive second indication information sent by the network device, where the second indication information is used to indicate the number of transmission layers RANK information corresponding to the multiple PUSCH transmission opportunities of the PUSCH, wherein the multiple PUSCH transmission opportunities are transmitted in directions corresponding to the multiple transmission configuration indication TCI states and/or the transmission reception points TRP;
  • the processing unit 720 is configured to determine the DMRS port corresponding to each PUSCH transmission opportunity.
  • the PUSCH transmission timing corresponds to at least one of the following:
  • SRS resource indication SRI indication field
  • the second indication information is used to indicate combination information of the transmission layer numbers R1 and R2.
  • a PUSCH transmission timing transmitted in a first direction corresponds to the first SRI region or the first TPMI region;
  • a PUSCH transmission timing transmitted in the second direction corresponds to the second SRI region or the second TPMI region;
  • the first direction is the direction corresponding to the first TCI state and/or the first TRP
  • the second direction is the direction corresponding to the second TCI state and/or the second TRP.
  • the correspondence between the multiple PUSCH transmission opportunities and the SRI field or the TPMI field is:
  • a PUSCH transmission timing transmitted in the first direction corresponds to the second SRI field or the second TPMI field;
  • a PUSCH transmission timing transmitted in the second direction corresponds to the first SRI field or the first TPMI field;
  • the first direction is the direction corresponding to the first TCI state and/or the first TRP
  • the second direction is the direction corresponding to the second TCI state and/or the second TRP.
  • the first code point included in the indication field of the SRS resource set indication is used to indicate the combination information of the transmission layer number ⁇ R1, R2 ⁇ , wherein the PUSCH transmission opportunity with the transmission layer number R1 is transmitted in the first direction, and the PUSCH transmission opportunity with the transmission layer number R2 is transmitted in the second direction;
  • the second code point included in the indication field of the SRS resource set indication is used to indicate the combination information of the transmission layer number ⁇ R2, R1 ⁇ , wherein the PUSCH transmission opportunity of the transmission layer number R2 is transmitted in the first direction, and the PUSCH transmission opportunity of the transmission layer number R1 is transmitted in the second direction;
  • the first direction is a direction corresponding to the first TCI state and/or the first TRP
  • the second direction is a direction corresponding to the second TCI state and/or the second TRP.
  • the maximum number of transmission layers of the PUSCH is 4.
  • processing unit 720 is specifically configured to:
  • a first DMRS port corresponding to a first PUSCH transmission opportunity and a second DMRS port corresponding to a second PUSCH transmission opportunity are determined, wherein the number of ports of the first DMRS port is equal to the number of transmission layers corresponding to the first PUSCH transmission opportunity, the number of ports of the second DMRS port is equal to the number of transmission layers corresponding to the second PUSCH transmission opportunity, and the first DMRS port belongs to the same CDM group, and the second DMRS port belongs to another CDM group.
  • processing unit 720 is specifically configured to:
  • a first DMRS port corresponding to a first PUSCH transmission opportunity and a second DMRS port corresponding to a second PUSCH transmission opportunity are determined, wherein the number of ports of the first DMRS port is equal to the number of transmission layers corresponding to the first PUSCH transmission opportunity, the number of ports of the second DMRS port is equal to the number of transmission layers corresponding to the second PUSCH, and the first DMRS port is an adjacent DMRS port after the numbers of the DMRS ports indicated by the first indication information are arranged in a first order, and the second DMRS port is the remaining DMRS port.
  • processing unit 720 is specifically configured to:
  • a first DMRS port corresponding to the first PUSCH transmission opportunity and a second DMRS port corresponding to the second PUSCH transmission opportunity are determined, wherein the port number of the first DMRS port is equal to the number of transmission layers corresponding to the first PUSCH transmission opportunity, the port number of the second DMRS port is equal to the number of transmission layers corresponding to the second PUSCH transmission opportunity, and the first DMRS port is an adjacent DMRS port after the numbers of the DMRS ports indicated by the first indication information are arranged in a first order, and the second DMRS port is the remaining DMRS port.
  • the uplink communication device based on simultaneous transmission of multiple panels in this embodiment can receive the first indication information sent by the network device, and the first indication information is used to indicate the total demodulation reference signal DMRS port used for physical uplink shared channel PUSCH transmission, wherein the PUSCH transmission is based on the spatial division multiplexing SDM multi-antenna panel simultaneous transmission STxMP of single downlink control information DCI, and receive the second indication information sent by the network device, and the second indication information is used to indicate the transmission layer number RANK information corresponding to multiple PUSCH transmission opportunities of the PUSCH, wherein the multiple PUSCH transmission opportunities are transmitted in the directions corresponding to multiple transmission configuration indications TCI states and/or sending and receiving points TRP, determine the DMRS port corresponding to each PUSCH transmission opportunity, and can flexibly configure the DMRS port used for transmission, effectively reduce the transmission interference between multiple antenna panels, effectively improve the reliability and robustness of transmission, and improve the system communication efficiency.
  • FIG. 8 is a schematic diagram of the structure of an uplink communication device based on simultaneous transmission of multiple panels provided in an embodiment of the present application.
  • the uplink communication device 800 based on simultaneous transmission of multiple panels includes: a transceiver unit 810, wherein:
  • the transceiver unit 810 is used to send first indication information to the terminal device, where the first indication information is used to indicate the total demodulation reference signal DMRS port for physical uplink shared channel PUSCH transmission, wherein the PUSCH transmission is based on the spatial division multiplexing SDM multi-antenna panel simultaneous transmission STxMP of single downlink control information DCI;
  • the transceiver unit 810 is also used to send second indication information to the terminal device, and the second indication information is used to indicate the transmission layer number RANK information corresponding to the multiple PUSCH transmission opportunities of the PUSCH, wherein the multiple PUSCH transmission opportunities are transmitted in the directions corresponding to the multiple transmission configuration indications TCI states and/or the sending and receiving points TRP.
  • the PUSCH transmission timing corresponds to at least one of the following:
  • SRS resource indication SRI indication field
  • the number of transmission layers of the PUSCH transmission opportunity corresponding to the first SRI indication field or the first TPMI indication field is R1
  • the number of transmission layers of the PUSCH transmission opportunity corresponding to the second SRI indication field or the second TPMI indication field is R2
  • the second indication information is used to indicate R1 and R2.
  • the second indication information is used to indicate combination information of the transmission layer numbers R1 and R2.
  • the correspondence between the multiple PUSCH transmission opportunities and the SRI domain or the TPMI domain is predefined; or, the correspondence between the multiple PUSCH transmission opportunities and the SRI domain or the TPMI domain is indicated by an indication domain indicated by an SRS resource set.
  • the correspondence between the multiple PUSCH transmission opportunities and the SRI field or the TPMI field is:
  • a PUSCH transmission timing transmitted in a first direction corresponds to the first SRI region or the first TPMI region;
  • a PUSCH transmission timing transmitted in the second direction corresponds to the second SRI region or the second TPMI region;
  • the first direction is the direction corresponding to the first TCI state and/or the first TRP
  • the second direction is the direction corresponding to the second TCI state and/or the second TRP.
  • the correspondence between the multiple PUSCH transmission opportunities and the SRI field or the TPMI field is:
  • a PUSCH transmission timing transmitted in the first direction corresponds to the second SRI field or the second TPMI field;
  • a PUSCH transmission timing transmitted in the second direction corresponds to the first SRI field or the first TPMI field;
  • the first direction is the direction corresponding to the first TCI state and/or the first TRP
  • the second direction is the direction corresponding to the second TCI state and/or the second TRP.
  • the first code point included in the SRS resource set indication indication field is used to indicate the combination information of the transmission layer number ⁇ R1, R2 ⁇ , wherein the PUSCH transmission opportunity with the transmission layer number R1 is transmitted in the first direction, and the PUSCH transmission opportunity with the transmission layer number R2 is transmitted in the second direction;
  • the second code point included in the SRS resource set indication indication field is used to indicate the combination information of the transmission layer number ⁇ R2, R1 ⁇ , wherein the PUSCH transmission opportunity of the transmission layer number R2 is transmitted in the first direction, and the PUSCH transmission opportunity of the transmission layer number R1 is transmitted in the second direction;
  • the first direction is a direction corresponding to the first TCI state and/or the first TRP
  • the second direction is a direction corresponding to the second TCI state and/or the second TRP.
  • the maximum number of transmission layers of the PUSCH is 4.
  • the first PUSCH transmission opportunity corresponds to the first DMRS port
  • the second PUSCH transmission opportunity corresponds to the second DMRS port
  • the port number of the first DMRS port is equal to the number of transmission layers corresponding to the first PUSCH transmission opportunity
  • the port number of the second DMRS port is equal to the number of transmission layers corresponding to the second PUSCH transmission opportunity
  • the first DMRS port belongs to the same CDM group
  • the second DMRS port belongs to another CDM group.
  • the first PUSCH transmission opportunity corresponds to the first DMRS port
  • the second PUSCH transmission opportunity corresponds to the second DMRS port
  • the port number of the first DMRS port is equal to the number of transmission layers corresponding to the first PUSCH transmission opportunity
  • the port number of the second DMRS port is equal to the number of transmission layers corresponding to the second PUSCH
  • the first DMRS port is the adjacent DMRS port after arranging the numbers of the DMRS ports indicated by the first indication information in a first order
  • the second DMRS port is the remaining DMRS port.
  • the first PUSCH transmission opportunity corresponds to the first DMRS port
  • the second PUSCH transmission opportunity corresponds to the second DMRS port
  • the port number of the first DMRS port is equal to the number of transmission layers corresponding to the first PUSCH transmission opportunity
  • the port number of the second DMRS port is equal to the number of transmission layers corresponding to the second PUSCH transmission opportunity
  • the first DMRS port is the adjacent DMRS port after arranging the numbers of the DMRS ports indicated by the first indication information in a first order
  • the second DMRS port is the remaining DMRS port.
  • the uplink communication device based on simultaneous transmission of multiple panels in this embodiment can send a first indication information to the terminal device, where the first indication information is used to indicate the total demodulation reference signal DMRS port for physical uplink shared channel PUSCH transmission, wherein the PUSCH transmission is based on the spatial division multiplexing SDM multi-antenna panel simultaneous transmission STxMP of single downlink control information DCI, and send a second indication information to the terminal device, where the second indication information is used to indicate the number of transmission layers corresponding to the multiple PUSCH transmission opportunities of the PUSCH RANK combination information, wherein the multiple PUSCH transmission opportunities are transmitted in the direction corresponding to the multiple transmission configuration indications TCI states and/or the sending and receiving points TRP, and the DMRS ports corresponding to the respective PUSCH transmission opportunities are determined by the terminal device based on the first rule, and the DMRS ports used for transmission can be flexibly configured, thereby effectively reducing the transmission interference between multiple antenna panels, effectively improving the reliability and robustness of the transmission, and improving
  • the embodiments of the present application also propose a communication device, including: a processor and a memory, the memory storing a computer program, and the processor executing the computer program stored in the memory so that the device executes the method shown in the embodiments of Figures 2 to 5.
  • the embodiments of the present application also propose a communication device, including: a processor and a memory, the memory storing a computer program, and the processor executing the computer program stored in the memory so that the device executes the method shown in the embodiment of Figure 6.
  • the embodiments of the present application also propose a communication device, including: a processor and an interface circuit, the interface circuit is used to receive code instructions and transmit them to the processor, and the processor is used to run the code instructions to execute the methods shown in the embodiments of Figures 2 to 5.
  • the embodiment of the present application also proposes a communication device, including: a processor and an interface circuit, the interface circuit is used to receive code instructions and transmit them to the processor, and the processor is used to run the code instructions to execute the method shown in the embodiment of Figure 6.
  • FIG. 9 is a schematic diagram of the structure of another uplink communication device based on simultaneous transmission of multiple panels provided in an embodiment of the present disclosure.
  • the uplink communication device 900 based on simultaneous transmission of multiple panels can be a network device, or a terminal device, or a chip, a chip system, or a processor that supports the network device to implement the above method, or a chip, a chip system, or a processor that supports the terminal device to implement the above method.
  • the device can be used to implement the method described in the above method embodiment, and the details can be referred to the description in the above method embodiment.
  • the uplink communication device 900 based on simultaneous transmission of multiple panels may include one or more processors 901.
  • the processor 901 may be a general-purpose processor or a dedicated processor, etc. For example, it may be a baseband processor or a central processing unit.
  • the baseband processor may be used to process the communication protocol and the communication data
  • the central processing unit may be used to control the uplink communication device based on simultaneous transmission of multiple panels (such as a base station, a baseband chip, a terminal device, a terminal device chip, a DU or a CU, etc.), execute a computer program, and process the data of the computer program.
  • the uplink communication device 900 based on simultaneous transmission of multiple panels may further include one or more memories 902, on which a computer program 903 may be stored, and the processor 901 executes the computer program 903, so that the uplink communication device 900 based on simultaneous transmission of multiple panels performs the method described in the above method embodiment.
  • the computer program 903 may be solidified in the processor 901, in which case the processor 901 may be implemented by hardware.
  • data may also be stored in the memory 902.
  • the uplink communication device 900 based on simultaneous transmission of multiple panels and the memory 902 may be provided separately or integrated together.
  • the uplink communication device 900 based on simultaneous transmission of multiple panels may further include a transceiver 905 and an antenna 906.
  • the transceiver 905 may be referred to as a transceiver unit, a transceiver, or a transceiver circuit, etc., for implementing a transceiver function.
  • the transceiver 905 may include a receiver and a transmitter, the receiver may be referred to as a receiver or a receiving circuit, etc., for implementing a receiving function; the transmitter may be referred to as a transmitter or a transmitting circuit, etc., for implementing a transmitting function.
  • the uplink communication device 900 based on simultaneous transmission of multiple panels may further include one or more interface circuits 907.
  • the interface circuit 907 is used to receive code instructions and transmit them to the processor 901.
  • the processor 901 executes the code instructions to enable the uplink communication device 900 based on simultaneous transmission of multiple panels to perform the method described in the above method embodiment.
  • the processor 901 may include a transceiver for implementing receiving and sending functions.
  • the transceiver may be a transceiver circuit, an interface, or an interface circuit.
  • the transceiver circuit, interface, or interface circuit for implementing the receiving and sending functions may be separate or integrated.
  • the above-mentioned transceiver circuit, interface, or interface circuit may be used for reading and writing code/data, or the above-mentioned transceiver circuit, interface, or interface circuit may be used for transmitting or delivering signals.
  • the uplink communication device 900 based on simultaneous transmission of multiple panels may include a circuit, which may implement the functions of sending or receiving or communicating in the aforementioned method embodiment.
  • the processor and transceiver described in the present disclosure may be implemented in an integrated circuit (IC), an analog IC, a radio frequency integrated circuit RFIC, a mixed signal IC, an application specific integrated circuit (ASIC), a printed circuit board (PCB), an electronic device, etc.
  • the processor and transceiver may also be manufactured using various IC process technologies, such as complementary metal oxide semiconductor (CMOS), N-type metal oxide semiconductor (nMetal-oxide-semiconductor, NMOS), P-type metal oxide semiconductor (positive channel metal oxide semiconductor, PMOS), bipolar junction transistor (bipolar junction transistor, BJT), bipolar CMOS (BiCMOS), silicon germanium (SiGe), gallium arsenide (GaAs), etc.
  • CMOS complementary metal oxide semiconductor
  • N-type metal oxide semiconductor nMetal-oxide-semiconductor
  • PMOS bipolar junction transistor
  • BJT bipolar CMOS
  • SiGe silicon germanium
  • GaAs gallium arsenide
  • the uplink communication device based on simultaneous transmission of multiple panels in the above embodiments may be a network device or a terminal device, but the scope of the uplink communication device based on simultaneous transmission of multiple panels described in the present disclosure is not limited thereto, and the structure of the uplink communication device based on simultaneous transmission of multiple panels may not be limited by FIG. 7-FIG. 8.
  • the uplink communication device based on simultaneous transmission of multiple panels may be an independent device or may be part of a larger device.
  • the uplink communication device based on simultaneous transmission of multiple panels may be:
  • the IC set may also include a storage component for storing data and computer programs;
  • ASIC such as modem
  • the uplink communication device based on simultaneous transmission of multiple panels can be a chip or a chip system
  • the structural schematic diagram of the chip shown in Figure 10 includes a processor 1001 and an interface 1002.
  • the number of processors 1001 can be one or more, and the number of interfaces 1002 can be multiple.
  • Interface 1002 used for code instructions and transmission to the processor
  • the processor 1001 is configured to execute code instructions to perform the methods shown in FIGS. 2 to 8 .
  • Interface 1002 used for code instructions and transmission to the processor
  • the processor 1001 is configured to run code instructions to execute the method shown in FIG. 9 .
  • the chip further includes a memory 1003, and the memory 1003 is used to store necessary computer programs and data.
  • the embodiments of the present disclosure also provide a communication system, which includes the uplink communication device based on simultaneous transmission of multiple panels as a terminal device in the embodiments of Figures 7-8 and the uplink communication device based on simultaneous transmission of multiple panels as a network device, or the uplink communication device based on simultaneous transmission of multiple panels as a terminal device in the embodiment of Figure 9 and the uplink communication device based on simultaneous transmission of multiple panels as a network device.
  • the present disclosure also provides a readable storage medium having instructions stored thereon, which implement the functions of any of the above method embodiments when executed by a computer.
  • the present disclosure also provides a computer program product, which implements the functions of any of the above method embodiments when executed by a computer.
  • the computer program product includes one or more computer programs.
  • the computer can be a general-purpose computer, a special-purpose computer, a computer network, or other programmable device.
  • the computer program can be stored in a computer-readable storage medium, or transmitted from one computer-readable storage medium to another computer-readable storage medium.
  • the computer program can be transmitted from a website site, computer, server or data center by wired (e.g., coaxial cable, optical fiber, digital subscriber line (digital subscriber line, DSL)) or wireless (e.g., infrared, wireless, microwave, etc.) mode to another website site, computer, server or data center.
  • the computer-readable storage medium can be any available medium that can be accessed by a computer or a data storage device such as a server or data center that contains one or more available media integrated.
  • Available media can be magnetic media (e.g., floppy disks, hard disks, tapes), optical media (e.g., high-density digital video discs (DVD)), or semiconductor media (e.g., solid state disks (SSD)), etc.
  • magnetic media e.g., floppy disks, hard disks, tapes
  • optical media e.g., high-density digital video discs (DVD)
  • DVD digital video discs
  • semiconductor media e.g., solid state disks (SSD)
  • At least one in the present disclosure may also be described as one or more, and a plurality may be two, three, four or more, which is not limited in the present disclosure.
  • the technical features in the technical feature are distinguished by “first”, “second”, “third”, “A”, “B”, “C” and “D”, etc., and there is no order of precedence or size between the technical features described by the "first”, “second”, “third”, “A”, “B”, “C” and “D”.
  • the corresponding relationships shown in the tables in the present disclosure can be configured or predefined.
  • the values of the information in each table are only examples and can be configured as other values, which are not limited by the present disclosure.
  • the corresponding relationships shown in some rows may not be configured.
  • appropriate deformation adjustments can be made based on the above table, such as splitting, merging, etc.
  • the names of the parameters shown in the titles of the above tables can also use other names that can be understood by the communication device, and the values or representations of the parameters can also be other values or representations that can be understood by the communication device.
  • other data structures can also be used, such as arrays, queues, containers, stacks, linear lists, pointers, linked lists, trees, graphs, structures, classes, heaps, hash tables or hash tables.
  • the predefined in the present disclosure may be understood as defined, predefined, stored, pre-stored, pre-negotiated, pre-configured, solidified, or pre-burned.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例公开了一种基于多面板同时传输的上行通信方法及装置,通过接收网络设备发送的第一指示信息,该第一指示信息用于指示用于PUSCH传输的解调参考信号DMRS端口,其中,该PUSCH传输是基于单DCI的空分复用多天线面板同时传输,接收该网络设备发送的第二指示信息,该第二指示信息用于指示该PUSCH的多个PUSCH传输时机分别对应的传输层数信息,其中,该多个PUSCH传输时机是在多个TCI状态和/或TRP对应的方向上传输的,确定该各PUSCH传输时机对应的DMRS端口,能够灵活配置传输使用的DMRS端口,有效降低了多天线面板之间的传输干扰,有效提高传输的可靠性和鲁棒性,提高系统通信效率。

Description

基于多面板同时传输的上行通信方法及装置 技术领域
本申请涉及通信技术领域,特别涉及一种基于多面板同时传输的上行通信方法及装置。
背景技术
为了改善小区边缘的覆盖,在服务区内提供更为均衡的服务质量,多点协作传输(Coordinated Multiple Point transmission,CoMP)技术在NR(New Radio,新空口)系统中仍然是一种重要的技术手段。从保障链路连接鲁棒性的角度出发,也可以利用多个发送接收点(Transmission and Reception Point,TRP)或面板(panel)之间的协作,从多个角度的多个波束进行发送/接收,从而降低阻挡效应带来的不利影响。
目前,Rel18对于物理上行共享信道(Physical Uplink Shared Channel,PUSCH)/物理上行控制信道(Physical Uplink Control Channel,PUCCH)考虑基于多面板终端设备多个发送接收点(MultiTransmission and Reception Point,M-TRP)的同时传输增强。
发明内容
本申请第一方面实施例提出了一种基于多面板同时传输的上行通信方法,所述方法由终端设备执行,所述方法包括:
接收网络设备发送的第一指示信息,所述第一指示信息用于指示用于物理上行共享信道PUSCH传输的总的解调参考信号DMRS端口,其中,所述PUSCH传输是基于单下行控制信息DCI的空分复用SDM多天线面板同时传输STxMP;
接收所述网络设备发送的第二指示信息,所述第二指示信息用于指示所述PUSCH的多个PUSCH传输时机分别对应的传输层数RANK信息,其中,所述多个PUSCH传输时机是在多个传输配置指示TCI状态和/或发送接收点TRP对应的方向上传输的;
确定所述各PUSCH传输时机对应的DMRS端口。
本申请第二方面实施例提出了一种基于多面板同时传输的上行通信方法,所述方法由网络设备执行,所述方法包括:
向终端设备发送第一指示信息,所述第一指示信息用于指示用于物理上行共享信道PUSCH传输的总的解调参考信号DMRS端口,其中,所述PUSCH传输是基于单下行控制信息DCI的空分复用SDM多天线面板同时传输STxMP;
向所述终端设备发送第二指示信息,所述第二指示信息用于指示所述PUSCH的多个PUSCH传输时机分别对应的传输层数RANK信息,其中,所述多个PUSCH传输时机是在多个传输配置指示TCI状态和/或发送接收点TRP对应的方向上传输的。
本申请第三方面实施例提出了一种基于多面板同时传输的上行通信装置,所述装置包括:
收发单元,用于接收网络设备发送的第一指示信息,所述第一指示信息用于指示用于物理上行共享信道PUSCH传输的总的解调参考信号DMRS端口,其中,所述PUSCH传输是基于单下行控制信息DCI的空分复用SDM多天线面板同时传输STxMP;
所述收发单元,还用于接收所述网络设备发送的第二指示信息,所述第二指示信息用于指示所述 PUSCH的多个PUSCH传输时机分别对应的传输层数RANK信息,其中,所述多个PUSCH传输时机是在多个传输配置指示TCI状态和/或发送接收点TRP对应的方向上传输的;
处理单元,用于确定所述各PUSCH传输时机对应的DMRS端口。
本申请第四方面实施例提出了一种基于多面板同时传输的上行通信装置,所述装置包括:
收发单元,用于向终端设备发送第一指示信息,所述第一指示信息用于指示用于物理上行共享信道PUSCH传输的总的解调参考信号DMRS端口,其中,所述PUSCH传输是基于单下行控制信息DCI的空分复用SDM多天线面板同时传输STxMP;
所述收发单元,还用于向所述终端设备发送第二指示信息,所述第二指示信息用于指示所述PUSCH的多个PUSCH传输时机分别对应的传输层数RANK信息,其中,所述多个PUSCH传输时机是在多个传输配置指示TCI状态和/或发送接收点TRP对应的方向上传输的。
本申请第五方面实施例提出了一种通信装置,所述装置包括处理器和存储器,所述存储器中存储有计算机程序,所述处理器执行所述存储器中存储的计算机程序,以使所述装置执行上述第一方面实施例所述的基于多面板同时传输的上行通信方法。
本申请第六方面实施例提出了一种通信装置,所述装置包括处理器和存储器,所述存储器中存储有计算机程序,所述处理器执行所述存储器中存储的计算机程序,以使所述装置执行上述第二方面实施例所述的基于多面板同时传输的上行通信方法。
本申请第七方面实施例提出了一种通信装置,该装置包括处理器和接口电路,该接口电路用于接收代码指令并传输至该处理器,该处理器用于运行所述代码指令以使该装置执行上述第一方面实施例所述的基于多面板同时传输的上行通信方法。
本申请第八方面实施例提出了一种通信装置,该装置包括处理器和接口电路,该接口电路用于接收代码指令并传输至该处理器,该处理器用于运行所述代码指令以使该装置执行上述第二方面实施例所述的基于多面板同时传输的上行通信方法。
本申请第九方面实施例提出了一种计算机可读存储介质,用于存储有指令,当所述指令被执行时,使上述第一方面实施例所述的基于多面板同时传输的上行通信方法被实现。
本申请第十方面实施例提出了一种计算机可读存储介质,用于存储有指令,当所述指令被执行时,使上述第二方面实施例所述的基于多面板同时传输的上行通信方法被实现。
本申请第十一方面实施例提出了一种计算机程序,当其在计算机上运行时,使得计算机执行第一方面实施例所述的基于多面板同时传输的上行通信方法。
本申请第十二方面实施例提出了一种计算机程序,当其在计算机上运行时,使得计算机执行第二方面实施例所述的基于多面板同时传输的上行通信方法。
本申请实施例提供的一种基于多面板同时传输的上行通信方法及装置,通过接收网络设备发送的第一指示信息,该第一指示信息用于指示用于物理上行共享信道PUSCH传输的总的解调参考信号DMRS端口,其中,该PUSCH传输是基于单下行控制信息DCI的空分复用SDM多天线面板同时传输STxMP,接收该网络设备发送的第二指示信息,该第二指示信息用于指示该PUSCH的多个PUSCH传输时机分别对应的传输层数RANK信息,其中,该多个PUSCH传输时机是在多个传输配置指示TCI状态和/或发送接收点TRP对应的方向上传输的,确定该各PUSCH传输时机对应的DMRS端口,能够灵活配置传输使用的DMRS端口,有效降低了多天线面板之间的传输干扰,有效提高传输的可靠性和鲁棒性, 提高系统通信效率。
本申请附加的方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本申请的实践了解到。
附图说明
为了更清楚地说明本申请实施例或背景技术中的技术方案,下面将对本申请实施例或背景技术中所需要使用的附图进行说明。
图1a为本申请实施例提供的一种通信系统的架构示意图;
图1b为本申请实施例提供的一种基于单DCI多panel发送实现的逻辑示意图;
图2是本申请实施例提供的一种基于多面板同时传输的上行通信方法的流程示意图;
图3a是配置类型为type1且时域上占用1个符号的DMRS图样示意图;
图3b是配置类型为type1且时域上占用2个符号的DMRS图样示意图;
图3c是配置类型为type2且时域上占用1个符号的DMRS图样示意图;
图3d是配置类型为type2且时域上占用2个符号的DMRS图样示意图;
图4是本申请实施例提供的一种基于多面板同时传输的上行通信方法的流程示意图;
图5是本申请实施例提供的一种基于多面板同时传输的上行通信方法的流程示意图;
图6是本申请实施例提供的一种基于多面板同时传输的上行通信方法的流程示意图;
图7是本申请实施例提供的一种基于多面板同时传输的上行通信装置的结构示意图;
图8是本申请实施例提供的一种基于多面板同时传输的上行通信装置的结构示意图;
图9是本申请实施例提供的另一种基于多面板同时传输的上行通信装置的结构示意图;
图10是本公开实施例提供的一种芯片的结构示意图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本申请实施例相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本申请实施例的一些方面相一致的装置和方法的例子。
在本申请实施例使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本申请实施例。在本申请实施例和所附权利要求书中所使用的单数形式的“一种”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。
应当理解,尽管在本申请实施例可能采用术语第一、第二、第三等来描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开。例如,在不脱离本申请实施例范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。取决于语境,如在此所使用的词语“如果”及“若”可以被解释成为“在……时”或“当……时”或“响应于确定”。
下面详细描述本申请的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的要素。下面通过参考附图描述的实施例是示例性的,旨在用于解释本申请,而不能理 解为对本申请的限制。
为了更好的理解本申请实施例公开的一种基于多面板同时传输的上行通信方法,下面首先对本申请实施例适用的通信系统进行描述。
请参见图1a,图1a为本申请实施例提供的一种通信系统的架构示意图。该通信系统可包括但不限于一个网络设备和一个终端设备,图1a所示的设备数量和形态仅用于举例并不构成对本申请实施例的限定,实际应用中可以包括两个或两个以上的网络设备和两个或两个以上的终端设备。图1a所示的通信系统以包括一个网络设备101和一个终端设备102为例。
需要说明的是,本申请实施例的技术方案可以应用于各种通信系统。例如:长期演进(Long Term Evolution,LTE)系统、第五代移动通信系统、5G新空口系统,或者其他未来的新型移动通信系统等。
本申请实施例中的网络设备101是网络侧的一种用于发射或接收信号的实体。例如,网络设备101和可以为演进型基站(Evolved NodeB,eNB)、传输点(Transmission Reception Point,TRP)、NR系统中的下一代基站(Next Generation NodeB,gNB)、其他未来移动通信系统中的基站或无线保真(Wireless Fidelity,WiFi)系统中的接入节点等。本申请的实施例对网络设备所采用的具体技术和具体设备形态不做限定。本申请实施例提供的网络设备可以是由集中单元(Central Unit,CU)与分布式单元(Distributed Unit,DU)组成的,其中,CU也可以称为控制单元(Control Unit),采用CU-DU的结构可以将网络设备,例如基站的协议层拆分开,部分协议层的功能放在CU集中控制,剩下部分或全部协议层的功能分布在DU中,由CU集中控制DU。
本申请实施例中的终端设备102是用户侧的一种用于接收或发射信号的实体,如手机。终端设备也可以称为终端设备(terminal)、用户设备(user equipment,UE)、移动台(Mobile Station,MS)、移动终端设备(Mobile Terminal,MT)等。终端设备可以是具备通信功能的汽车、智能汽车、手机(Mobile Phone)、物联网(Internet of Things,IoT)终端、穿戴式设备、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(Virtual Reality,VR)终端设备、增强现实(Augmented Reality,AR)终端设备、工业控制(Industrial Control)中的无线终端设备、无人驾驶(Self-Driving)中的无线终端设备、远程手术(Remote Medical Surgery)中的无线终端设备、智能电网(Smart Grid)中的无线终端设备、运输安全(Transportation Safety)中的无线终端设备、智慧城市(Smart City)中的无线终端设备、智慧家庭(Smart Home)中的无线终端设备等等。本申请的实施例对终端设备所采用的具体技术和具体设备形态不做限定。
为了改善小区边缘的覆盖,在服务区内提供更为均衡的服务质量,多点协作传输(Coordinated Multiple Point transmission,CoMP)技术在NR(New Radio,新空口)系统中仍然是一种重要的技术手段。从保障链路连接鲁棒性的角度出发,也可以利用多个TRP(Transmission/Reception Point,传输/接收点)或面板之间的协作,从多个角度的多个波束进行传输/接收,从而降低阻挡效应带来的不利影响。
根据发送信号流到多个TRP/面板上的映射关系,多点协作传输技术可以分为相干和非相干传输两种。其中,相干传输时,每个数据层会通过加权向量映射到多个TRP/面板之上。而非相干传输时,每个数据流只映射到部分的TRP/面板上。相干传输对于传输点之间的同步以及回程链路的传输能力有着更高的要求,因而对现实部署条件中的很多非理想因素较为敏感。相对而言,非相干传输受上述因素的影响较小,因此是多点传输技术的重点考虑方案。
目前,Rel 18对于物理上行共享信道(Physical Uplink Shared Channel,PUSCH)/物理上行控制信 道(Physical Uplink Control Channel,PUCCH)考虑基于多面板(panel)终端设备多个发送接收点(MultiTransmission and Reception Point,M-TRP)的同时传输增强。
也就是,主要是考虑在Multi-TRP场景下,利用多panel终端进行上行同时传输来提高上行速率,并进一步提高传输的可靠性。传输可以基于一个PDCCH信道承载的一个DCI进行调度,也可以考虑基于不同PDCCH承载的不同DCI分别调度。目前考虑的同步传输方案主要是不用Panel的信道发送基于空分复用(Space Division Multiplexing,SDM)或者频分复用(Frequency Division Multiplexing,FDM)来实现的。如图1b所示,图1b是本申请提供的一种基于单下行控制信息(Downlink Control Information,DCI;单DCI,single DCI,S-DCI)的多panel发送实现的逻辑示意图。
终端多panel实现一般会配置多个物理panel,不同的panel的能力可能也不相同,比如,该多个panel可能具备不同的探测参考信号(Sounding Reference Signal,SRS)端口数,或者该多个panel支持的最大数据传输层数也不一定相同,比如一个panel支持最大2层的传输,另一个panel支持最大4层的传输。网络调度器会判断终端当前是否适合多Panel的上行同时传输,如果终端当前适合多panel的上行同时传输同时被调度,则网络会直接或间接指示相关的传输参数,包括终端具体波束指示信息,传输使用的数据层数,以及使用的解调参考信号(Demodulation Reference Signal,DMRS)端口分配情况,以及预编码的指示信息等。在本申请各实施例中,主要需要确定在S-DCI调度下的DMRS端口指示问题,即如何确定不同panel上的PUSCH分别采用哪些DMRS端口来进行发送。其中,需要说明的是,对于NR系统中的数据信道(物理下行共享信道(PhysicalDownlink Shared Channel,PDSCH)/PUSCH),数据传输的数据层与解调使用的DMRS端口相对应。
可以理解的是,本申请实施例描述的通信系统是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着系统架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
下面结合附图对本申请所提供的基于多面板同时传输的上行通信方法及其装置进行详细地介绍。
请参见图2,图2是本申请实施例提供的一种基于多面板同时传输的上行通信方法的流程示意图。需要说明的是,本申请实施例的基于多面板同时传输的上行通信方法由终端设备执行。该方法可以独立执行,也可以结合本申请任意一个其他实施例一起被执行。如图2所示,该方法可以包括如下步骤:
步骤201,接收网络设备发送的第一指示信息,该第一指示信息用于指示用于PUSCH传输的总的DMRS端口。
在本申请实施例中,该PUSCH传输是基于单下行控制信息(Downlink Control Information,DCI;单DCI,single DCI,S-DCI)的空分复用(Space Division Multiplexing,SDM)多天线面板同时传输(Simultaneous Transmission from Multiple Panels,STxMP)。
其中,需要说明的是,在Rel 18中,对于基于S-DCI的SDM上行STxMP方案包括:PUSCH的一个传输块(Transmission Block,TB)的不同部分分别通过不同panel上分配的各自对应的DMRS端口或端口组合分别面向两个不同的TRP在相同的时频资源上进行发送,不同的panel/TRP/传输时机(Transmission Occasion,TO)分别和不同的传输配置指示(Transmission Configuration Indication,TCI)状态(state)即波束相关联。
其中,PUSCH的TO是指PUSCH的一个传输块的不同数据层通过终端不同panel面向不同的TRP 在相同时频资源上进行发送,其中每个panel-TRP的传输链路上传输的部分PUSCH数据层对应一个PUSCH传输时机。
在本申请实施例中,终端设备能够接收网络设备发送的第一指示信息,该第一指示信息能够用于指示网络侧分配给用于PUSCH传输的总的DMRS端口。
在本申请各实施例中,该PUSCH的传输层数最大为4。
可选地,该第一指示信息可以为DCI。
进一步地,该第一指示信息可以为DCI中的天线端口(antenna ports)指示域。
需要说明的是,目前NR系统中对于数据信道(PUSCH/PDSCH)的DMRS设计主要包含以下几个方面:
(1)前置DMRS(front-loadDMRS):在每个调度时间单位内,DMRS首次出现的位置应当尽可能地靠近调度的起始点。front-loadDMRS的使用,有助于接收侧快速估计信道并进行接收检测,对于降低时延并支持所谓的自包含结构具有重要的作用。取决于总共的正交DMRS端口数,front-loadDMRS最多可以占用两个连续的正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)符号。
(2)附加DMRS(additionalDMRS):对于低移动性场景,front-loadDMRS能以较低的开销获得满足解调需求的信道估计性能。但是,NR系统所考虑的移动速度动态范围很大,还需考虑高速移动的场景,除了front-loadDMRS之外,在中/高速场景之中,还需要在调度持续时间内安插更多的DMRS符号,以满足对信道时变性的估计精度。针对这一问题,NR系统中采用了front-load DMRS与时域密度可配置的additionalDMRS相结合的DMRS结构。每一组additionalDMRS的图样都是front-loadDMRS的重复。
在每个调度时间单位内,如果存在additionalDMRS,则每组additionalDMRS的图样均与front-loadDMRS保持一致。因此,front-loadDMRS的图样设计是DMRS设计的基础。front-load DMRS的设计思路分为两类,其中第一类(type1)是基于COMB(梳状码)+OCC(Orthogonal Cover Code,正交覆盖码)结构设计的,第二类(type2)是基于FDM+OCC结构设计的。
取决于传输所使用的正交端口数,front-loadDMRS最多可以配置为两个OFDM符号。考虑到功率利用效率的因素,使用两个符号的front-loadDMRS时,在频域CS或OCC基础之上,又在时域使用了TD-OCC(Time Domain-OCC,时域正交覆盖码)。
两种配置类型(configurationtype)的front-loadDMRS图样如图3a至3d所示。其中,图3a是配置类型为type1且时域上占用1个符号的DMRS图样示意图,图3b是配置类型为type1且时域上占用2个符号的DMRS图样示意图,图3c是配置类型为type2且时域上占用1个符号的DMRS图样示意图,图3d是配置类型为type2且时域上占用2个符号的DMRS图样示意图。
可以理解的是,图中占用相同时频域资源的DMRS端口需要通过码分复用来区分,属于同一个码分复用(Code Division Multiplexing,CDM)组。可见,如图3a所示的图样中,DMRS端口0,1属于同一个DMRS的CDM组,DMRS端口2,3属于同一个DMRS的CDM组。类似的,如图3b所示的图样中,DMRS端口0,1,4,5属于同一个DMRS的CDM组,DMRS端口2,3,6,7属于同一个DMRS的CDM组。如图3c所示的图样中,DMRS端口0,1属于同一个DMRS的CDM组,DMRS端口2,3属于同一个DMRS的CDM组,DMRS端口4,5属于同一个DMRS的CDM组。如图3d所示的图样中,DMRS端口0,1,6,7属于同一个DMRS的CDM组,DMRS端口2,3,8,9属于同一个DMRS的CDM组,DMRS 端口4,5,10,11属于同一个DMRS的CDM组。
在本申请实施例中,作为一种示例,上行带循环前缀的OFDM(CP-OFDM)波形下的不同参数配置的DMRS端口分配如下各表所示。可选地,第一指示信息可以为DCI中的一个指示域中的码点,不同的码点指示分配的不同DMRS端口(比如,在DMRS类型为1,前置DMRS占用的符号数量为1,且数据传输层数为2的情况下,第一指示信息取值为0用于指示分配给PUSCH的总的DMRS端口为编号为0和1的DMRS端口,且编号为0和1的DMRS端口属于同一个CDM组;再比如,在DMRS类型为1,前置DMRS占用的符号数量为1,且数据传输层数为3的情况下,第一指示信息取值为0用于指示分配给PUSCH的总的DMRS端口为编号为0,1,2的DMRS端口,且编号为0和1的DMRS端口属于同一个CDM组,编号为2的DMRS端口属于另一个CDM组)。
表1:DMRS类型dmrs-Type=1,最大符号长度maxLength=1,数据传输层数rank=1
表2:dmrs-Type=1,maxLength=1,rank=2
表3:dmrs-Type=1,maxLength=1,rank=3
表4:dmrs-Type=1,maxLength=1,rank=4
表5:dmrs-Type=1,maxLength=2,rank=1

表6:dmrs-Type=1,maxLength=2,rank=2
表7:dmrs-Type=1,maxLength=2,rank=3
表8:dmrs-Type=1,maxLength=2,rank=4
表9:dmrs-Type=2,maxLength=1,rank=1
表10:dmrs-Type=2,maxLength=1,rank=2
表11:dmrs-Type=2,maxLength=1,rank=3

表12:dmrs-Type=2,maxLength=1,rank=4
表13:dmrs-Type=2,maxLength=2,rank=1

表14:dmrs-Type=2,maxLength=2,rank=2
表15:dmrs-Type=2,maxLength=2,rank=3
表16:dmrs-Type=2,maxLength=2,rank=4
可以理解的是,上述各个表格中的每一个元素都是独立存在的,这些元素被示例性的列在同一张表格中,但是并不代表表格中的所有元素必须根据表格中所示的同时存在。其中每一个元素的值,是不依赖于表格中任何其他元素值。因此本领域内技术人员可以理解,该表格中的每一个元素的取值都是一个独立的实施例。
步骤202,接收该网络设备发送的第二指示信息,该第二指示信息用于指示该PUSCH的多个PUSCH传输时机分别对应的传输层数信息。
其中,该多个PUSCH传输时机是在多个TCI状态和/或TRP对应的方向上传输的。
在本申请实施例中,终端设备能够接收网络设备发送的第二指示信息,并根据该第二指示信息的指示确定该PUSCH的多个PUSCH传输时机分别对应的传输层数信息。
可选地,该第二指示信息可以为SRS资源集合指示(SRS resource set indicator)。
在本申请实施例中,该PUSCH传输时机与以下中的至少一种存在对应关系:
码字(codeword,CW);
面板(panel);
探测参考信号SRS资源集合(SRS resource set);
SRS资源指示SRI(SRS Resource Indicator)指示域;
传输预编码矩阵指示TPMI(Transmit Precoding Matrix Indicator)指示域;
发送接收点TRP;
用于指示波束的TCI状态。
在M-TRP传输中,支持两个SRS资源集合,因此在DCI中包含与两个SRS资源集合关联的两个SRI域,每个SRI指示域为一个TRP指示该SRI域关联的SRS资源集合中的SRS资源。两个SRI指示域会对应不同的PUSCH传输时机。可以通过SRS资源集合指示的指示域来动态指示单TRP和多TRP的传输调度。
在一些实施方式中,两个SRI/TPMI指示域中的第一SRI指示域或第一TPMI指示域对应的PUSCH传输时机的传输层数为R1,两个SRI/TPMI指示域中的第二SRI指示域或第二TPMI指示域对应的PUSCH传输时机的传输层数为R2,该第二指示信息能够用于指示该R1和R2。
其中,可以理解的是,在基于码本的PUSCH传输中,该PUSCH传输时机与SRI指示域对应,通过SRI指示域指示关联的SRS资源集合;在基于非码本的PUSCH传输中,该PUSCH传输时机与TPMI指示域对应,通过TPMI指示域指示关联的SRS资源集合。
在一些实施方式中,该第二指示信息可以分别指示该多个传输时机对应的传输层数信息,也可以组合指示该多个传输时机对应的传输层数的组合信息。
作为一种示例,该第二指示信息可以组合指示第一SRI/TPMI指示域对应的PUSCH传输时机以及,第二SRI/TPMI指示域对应的PUSCH传输时机的传输层数信息,也就是指示该R1和R2的组合信息,比如指示两个传输时机对应的传输层数组合信息为{R1,R2}。
在一些实施方式中,该多个PUSCH传输时机与该SRI域或该TPMI域之间的对应关系是预定义的。
在一些实施方式中,该多个PUSCH传输时机与该SRI域或该TPMI域之间的对应关系是由SRS资源集合指示的指示域指示的。
作为一种可能的实施方式,该多个PUSCH传输时机与该SRI域或该TPMI域之间的对应关系为:
在第一方向上传输的PUSCH传输时机与该第一SRI域或该第一TPMI域对应;
在第二方向上传输的PUSCH传输时机与该第二SRI域或该第二TPMI域对应;
其中,该第一方向为第一TCI状态和/或第一TRP对应的方向,该第二方向为第二TCI状态和/或第二TRP对应的方向。
作为另一种可能的实施方式,该多个PUSCH传输时机与该SRI域或该TPMI域之间的对应关系为:
在第一方向上传输的PUSCH传输时机与该第二SRI域或该第二TPMI域对应;
在第二方向上传输的PUSCH传输时机与该第一SRI域或该第一TPMI域对应;
其中,该第一方向为第一TCI状态和/或第一TRP对应的方向,该第二方向为第二TCI状态和/或第二TRP对应的方向。
在一些实施方式中,该第二指示信息为SRS资源集合指示,该第二指示信息(SRS资源集合指示)包括的第一码点用于指示该传输层数为{R1,R2}的组合信息,其中,该传输层数为R1的PUSCH传输时机在第一方向上传输,该传输层数为R2的PUSCH传输时机在第二方向上传输;
该SRS资源集合指示的指示域包括的第二码点用于指示该传输层数为{R2,R1}的组合信息,其中,该传输层数为R2的PUSCH传输时机在第一方向上传输,该传输层数为R1的PUSCH传输时机在第二方向上传输;
其中,该第一方向为第一TCI状态和/或第一TRP对应的方向,该第二方向为第二TCI状态和/或第二TRP对应的方向。
在本申请各实施例中,该第一指示信息和该第二指示信息可以为同一指示信息,也可以为不同的指示信息。
步骤203,确定各PUSCH传输时机对应的DMRS端口。
在本申请实施例中,终端设备能够确定各个PUSCH传输时机对应的DMRS端口。
在一些实施方式中,终端设备可以基于一个固定规则确定各个PUSCH传输时机对应的DMRS端口。
可选地,该固定规则可以为按照DMRS端口的编号的排序,确定各个PUSCH传输时机对应的DMRS端口。
在一些实施方式中,终端设备能够判断该第一指示信息指示的DMRS端口是否属于同一个DMRS的CDM组。
可选地,在该第一指示信息指示的各个DMRS端口不属于同一个CDM组的情况下,确定第一PUSCH传输时机对应的第一DMRS端口以及第二PUSCH传输时机对应的第二DMRS端口,其中,该第一DMRS端口的端口数量等于该第一PUSCH传输时机对应的传输层数,该第二DMRS端口的端口 数量等于该第二PUSCH传输时机对应的传输层数,且该第一DMRS端口属于同一CDM组,该第二DMRS端口属于另一CDM组。
可选地,在该第一指示信息指示的各个DMRS端口不属于同一个CDM组的情况下,确定第一PUSCH传输时机对应的第一DMRS端口以及第二PUSCH传输时机对应的第二DMRS端口,其中,该第一DMRS端口的端口数量等于该第一PUSCH传输时机对应的传输层数,该第二DMRS端口的端口数量等于该第二PUSCH对应的传输层数,且该第一DMRS端口是将该第一指示信息指示的DMRS端口的编号按照第一顺序排列后,排序相邻的DMRS端口,该第二DMRS端口为剩余的DMRS端口。
可选地,在该第一指示信息指示的各个DMRS端口属于同一个CDM组的情况下,确定第一PUSCH传输时机对应的第一DMRS端口以及第二PUSCH传输时机对应的第二DMRS端口,其中,该第一DMRS端口的端口数量等于该第一PUSCH传输时机对应的传输层数,该第二DMRS端口的端口数量等于该第二PUSCH传输时机对应的传输层数,且该第一DMRS端口是将该第一指示信息指示的DMRS端口的编号按照第一顺序排列后,排序相邻的DMRS端口,该第二DMRS端口为剩余的DMRS端口。
综上,通过接收网络设备发送的第一指示信息,该第一指示信息用于指示用于物理上行共享信道PUSCH传输的总的解调参考信号DMRS端口,其中,该PUSCH传输是基于单下行控制信息DCI的空分复用SDM多天线面板同时传输STxMP,接收该网络设备发送的第二指示信息,该第二指示信息用于指示该PUSCH的多个PUSCH传输时机分别对应的传输层数RANK信息,其中,该多个PUSCH传输时机是在多个传输配置指示TCI状态和/或发送接收点TRP对应的方向上传输的,确定该各PUSCH传输时机对应的DMRS端口,能够灵活配置传输使用的DMRS端口,有效降低了多天线面板之间的传输干扰,有效提高传输的可靠性和鲁棒性,提高系统通信效率。
请参见图4,图4是本申请实施例提供的一种基于多面板同时传输的上行通信方法的流程示意图。需要说明的是,本申请实施例的基于多面板同时传输的上行通信方法由终端设备执行。该方法可以独立执行,也可以结合本申请任意一个其他实施例一起被执行。如图4所示,该方法可以包括如下步骤:
步骤401,接收网络设备发送的第一指示信息,该第一指示信息用于指示用于PUSCH传输的总的DMRS端口。
在本申请实施例中,该PUSCH传输是基于S-DCI的SDM多天线面板同时传输STxMP。
在本申请实施例中,终端设备能够接收网络设备发送的第一指示信息,该第一指示信息能够用于指示网络侧分配给用于PUSCH传输的总的DMRS端口。
在本申请各实施例中,该PUSCH的传输层数最大为4。
可以理解的是,第一指示信息指示的总的DMRS端口的端口数量等于该PUSCH的传输层数。
可选地,该第一指示信息可以为DCI。
步骤402,接收该网络设备发送的第二指示信息,该第二指示信息用于指示该PUSCH的多个PUSCH传输时机分别对应的传输层数组合信息。
其中,该多个PUSCH传输时机是在多个TCI状态和/或TRP对应的方向上传输的。
在本申请实施例中,终端设备能够接收网络设备发送的第二指示信息,并根据该第二指示信息的指示确定该PUSCH的多个PUSCH传输时机分别对应的传输层数信息。
在本申请实施例中,该第二指示信息可以组合指示该多个传输时机对应的传输层数的组合信息。
可选地,该第二指示信息可以为SRS资源集合指示(SRS resource set indicator)。
在本申请实施例中,该PUSCH传输时机与以下中的至少一种存在对应关系:
码字;面板;SRS资源集合;SRI指示域;TPMI指示域;发送接收点TRP;用于指示波束的TCI状态。
在本申请实施例中,包括两个SRI指示域和/或两个TPMI指示域。两个SRI/TPMI指示域中的第一SRI指示域或第一TPMI指示域对应的PUSCH传输时机的传输层数为R1,两个SRI/TPMI指示域中的第二SRI指示域或第二TPMI指示域对应的PUSCH传输时机的传输层数为R2,该第二指示信息能够用于指示该R1和R2的组合信息。
其中,可以理解的是,在基于码本的PUSCH传输中,该PUSCH传输时机与SRI指示域对应,通过SRI指示域指示关联的SRS资源集合;在基于非码本的PUSCH传输中,该PUSCH传输时机与TPMI指示域对应,通过TPMI指示域指示关联的SRS资源集合。
在一些实施方式中,该多个PUSCH传输时机与该SRI域或该TPMI域之间的对应关系是预定义的。
在一些实施方式中,该多个PUSCH传输时机与该SRI域或该TPMI域之间的对应关系是由SRS资源集合指示的指示域指示的。
作为一种可能的实施方式,该多个PUSCH传输时机与该SRI域或该TPMI域之间的对应关系为:
在第一方向上传输的PUSCH传输时机与该第一SRI域或该第一TPMI域对应;
在第二方向上传输的PUSCH传输时机与该第二SRI域或该第二TPMI域对应;
其中,该第一方向为第一TCI状态和/或第一TRP对应的方向,该第二方向为第二TCI状态和/或第二TRP对应的方向。
作为另一种可能的实施方式,该多个PUSCH传输时机与该SRI域或该TPMI域之间的对应关系为:
在第一方向上传输的PUSCH传输时机与该第二SRI域或该第二TPMI域对应;
在第二方向上传输的PUSCH传输时机与该第一SRI域或该第一TPMI域对应;
其中,该第一方向为第一TCI状态和/或第一TRP对应的方向,该第二方向为第二TCI状态和/或第二TRP对应的方向。
在一些实施方式中,该第二指示信息为SRS资源集合指示,该第二指示信息(SRS资源集合指示)包括的第一码点用于指示该传输层数为{R1,R2}的组合信息,其中,该传输层数为R1的PUSCH传输时机在第一方向上传输,该传输层数为R2的PUSCH传输时机在第二方向上传输;
该SRS资源集合指示的指示域包括的第二码点用于指示该传输层数为{R2,R1}的组合信息,其中,该传输层数为R2的PUSCH传输时机在第一方向上传输,该传输层数为R1的PUSCH传输时机在第二方向上传输;
其中,该第一方向为第一TCI状态和/或第一TRP对应的方向,该第二方向为第二TCI状态和/或第二TRP对应的方向。
可以理解的是,SRS资源集合指示的指示域可以包括多个码点。
作为一种示例,该SRS资源集合指示的指示域包括的第一码点(比如码点“10”或码点“11”等等)用于指示,第一SRI域或第一TPMI域对应的PUSCH传输时机在第一方向上传输,该PUSCH传输时机的传输层数为R1;第二SRI域或第二TPMI域对应的PUSCH传输时机在第二方向上传输,该PUSCH传输时机的传输层数为R2。
该SRS资源集合指示的指示域包括的第二码点(比如码点“11”或码点“10”等等)用于指示,第一SRI域或第一TPMI域对应的PUSCH传输时机在第二方向上传输,该PUSCH传输时机的传输层数为R1;第二SRI域或第二TPMI域对应的PUSCH传输时机在第一方向上传输,该PUSCH传输时机的传输层数为R2。
其中,该第一方向为第一TCI状态和/或第一TRP对应的方向,该第二方向为第二TCI状态和/或第二TRP对应的方向。
可以理解的是,R1+R2等于该PUSCH的传输层数。
步骤403,判断第一指示信息指示的各个DMRS端口是否属于同一个DMRS的码分复用CDM组。
在本申请实施例中,终端设备能够判断第一指示信息指示的各个DMRS端口是否属于同一个DMRS的CDM组。
步骤404,在该第一指示信息指示的各个DMRS端口不属于同一个CDM组的情况下,确定第一PUSCH传输时机对应的第一DMRS端口以及第二PUSCH传输时机对应的第二DMRS端口,其中,该第一DMRS端口属于同一CDM组,该第二DMRS端口属于另一CDM组。
其中,可以理解的是,第一DMRS端口的端口数量等于第一PUSCH传输时机对应的传输层数,第二DMRS端口的端口数量等于第二PUSCH对应的传输层数。
另外可以理解的是,可以是第一PUSCH传输时机对应第一SRI域/第一TPMI域,第二PUSCH传输时机对应第二SRI域/第二TPMI域;也可以是第二PUSCH传输时机对应第一SRI域/第一TPMI域,第一PUSCH传输时机对应第二SRI域/第二TPMI域。
在本申请实施例中,在确定该第一指示信息指示的各个DMRS端口不属于同一个CDM组的情况下,终端设备能够将该第一指示信息指示的各个DMRS端口按照CDM组进行划分,将属于同一CDM组的DMRS端口分配给一个PUSCH传输时机。
作为一种示例,PUSCH的传输层数为3,第一PUSCH传输时机的传输层数为2,第二PUSCH传输时机的传输层数为1。第一指示信息指示的DMRS端口为0,1,2,其中,端口{0,1}属于同一CDM组,端口{2}属于另一CDM组。则第一PUSCH传输时机对应的DMRS端口为编号为0和1的DMRS端口,第二PUSCH传输时机对应的DMRS端口为编号为2的DMRS端口。
可以理解的是,该第一PUSCH传输时机可以对应第一SRI域/第一TPMI域,也可以对应第二SRI域/第二TPMI域。该第一PUSCH传输时机可以是在第一TCI状态和/或第一TRP对应的方向上传输,也可以是在第二TCI状态和/或第二TRP对应的方向上传输。
步骤405,在该第一指示信息指示的各个DMRS端口属于同一个CDM组的情况下,确定第一PUSCH传输时机对应的第一DMRS端口以及第二PUSCH传输时机对应的第二DMRS端口,其中,该第一DMRS端口是将该第一指示信息指示的DMRS端口的编号按照第一顺序排列后,排序相邻的DMRS端口,该第二DMRS端口为剩余的DMRS端口。
其中,可以理解的是,第一DMRS端口的端口数量等于第一PUSCH传输时机对应的传输层数,第二DMRS端口的端口数量等于第二PUSCH对应的传输层数。
另外可以理解的是,可以是第一PUSCH传输时机对应第一SRI域/第一TPMI域,第二PUSCH传输时机对应第二SRI域/第二TPMI域;也可以是第二PUSCH传输时机对应第一SRI域/第一TPMI域,第一PUSCH传输时机对应第二SRI域/第二TPMI域。
在本申请实施例中,在确定该第一指示信息指示的各个DMRS端口属于同一个CDM组的情况下,终端设备能够将该第一指示信息指示的各个DMRS端口按照编号的第一顺序,将排序相邻的DMRS端口分配给一个PUSCH传输时机。
作为一种示例,PUSCH的传输层数为3,第一PUSCH传输时机的传输层数为2,第二PUSCH传输时机的传输层数为1。第一指示信息指示的DMRS端口为0,1,6,属于同一CDM组。第一顺序可以为从小到大排序,则第一PUSCH传输时机对应的DMRS端口为编号为0和1的DMRS端口,第二PUSCH传输时机对应的DMRS端口为编号为6的DMRS端口。第一顺序也可以为从大到小排序,则第一PUSCH传输时机对应的DMRS端口为编号为1和6的DMRS端口,第二PUSCH传输时机对应的DMRS端口为编号为0的DMRS端口。
可以理解的是,该第一PUSCH传输时机可以对应第一SRI域/第一TPMI域,也可以对应第二SRI域/第二TPMI域。该第一PUSCH传输时机可以是在第一TCI状态和/或第一TRP对应的方向上传输,也可以是在第二TCI状态和/或第二TRP对应的方向上传输。
综上,通过接收网络设备发送的第一指示信息,该第一指示信息用于指示用于PUSCH传输的总的DMRS端口,接收该网络设备发送的第二指示信息,该第二指示信息用于指示该PUSCH的多个PUSCH传输时机分别对应的传输层数组合信息,判断所述第一指示信息指示的各个DMRS端口是否属于同一个DMRS的码分复用CDM组,在该第一指示信息指示的各个DMRS端口不属于同一个CDM组的情况下,确定第一PUSCH传输时机对应的第一DMRS端口以及第二PUSCH传输时机对应的第二DMRS端口,其中,该第一DMRS端口属于同一CDM组,该第二DMRS端口属于另一CDM组,在该第一指示信息指示的各个DMRS端口属于同一个CDM组的情况下,确定第一PUSCH传输时机对应的第一DMRS端口以及第二PUSCH传输时机对应的第二DMRS端口,其中,该第一DMRS端口是将该第一指示信息指示的DMRS端口的编号按照第一顺序排列后,排序相邻的DMRS端口,该第二DMRS端口为剩余的DMRS端口,能够灵活配置传输使用的DMRS端口,且能够使用同一个CDM组的DMRS端口来传输一个PUSCH传输时机,更加有效地降低了多天线面板之间的传输干扰,提高传输的可靠性和鲁棒性,提高系统通信效率,达到更好的传输效果。
请参见图5,图5是本申请实施例提供的一种基于多面板同时传输的上行通信方法的流程示意图。需要说明的是,本申请实施例的基于多面板同时传输的上行通信方法由终端设备执行。该方法可以独立执行,也可以结合本申请任意一个其他实施例一起被执行。如图5所示,该方法可以包括如下步骤:
步骤501,接收网络设备发送的第一指示信息,该第一指示信息用于指示用于PUSCH传输的总的DMRS端口。
步骤502,接收该网络设备发送的第二指示信息,该第二指示信息用于指示该PUSCH的多个PUSCH传输时机分别对应的传输层数组合信息。
步骤503,判断所述第一指示信息指示的各个DMRS端口是否属于同一个DMRS的码分复用CDM组。
在本申请实施例中,步骤501和步骤503可以采用本申请的各实施例中的任一种方式实现,本申请实施例并不对此作出限定,也不再赘述。
步骤504,在该第一指示信息指示的各个DMRS端口不属于同一个CDM组的情况下,确定第一 PUSCH传输时机对应的第一DMRS端口以及第二PUSCH传输时机对应的第二DMRS端口,其中,该第一DMRS端口是将该第一指示信息指示的DMRS端口的编号按照第一顺序排列后,排序相邻的DMRS端口,该第二DMRS端口为剩余的DMRS端口。
其中,可以理解的是,第一DMRS端口的端口数量等于第一PUSCH传输时机对应的传输层数,第二DMRS端口的端口数量等于第二PUSCH对应的传输层数。
另外可以理解的是,可以是第一PUSCH传输时机对应第一SRI域/第一TPMI域,第二PUSCH传输时机对应第二SRI域/第二TPMI域;也可以是第二PUSCH传输时机对应第一SRI域/第一TPMI域,第一PUSCH传输时机对应第二SRI域/第二TPMI域。
在本申请实施例中,在确定该第一指示信息指示的各个DMRS端口不属于同一个CDM组的情况下,终端设备能够将该第一指示信息指示的各个DMRS端口按照编号的第一顺序,将排序相邻的DMRS端口分配给一个PUSCH传输时机。
作为一种示例,PUSCH的传输层数为3,第一PUSCH传输时机的传输层数为2,第二PUSCH传输时机的传输层数为1。第一指示信息指示的DMRS端口为0,1,6,属于同一CDM组。第一顺序可以为从小到大排序,则第一PUSCH传输时机对应的DMRS端口为编号为0和1的DMRS端口,第二PUSCH传输时机对应的DMRS端口为编号为6的DMRS端口。第一顺序也可以为从大到小排序,则第一PUSCH传输时机对应的DMRS端口为编号为1和6的DMRS端口,第二PUSCH传输时机对应的DMRS端口为编号为0的DMRS端口。
可以理解的是,该第一PUSCH传输时机可以对应第一SRI域/第一TPMI域,也可以对应第二SRI域/第二TPMI域。该第一PUSCH传输时机可以是在第一TCI状态和/或第一TRP对应的方向上传输,也可以是在第二TCI状态和/或第二TRP对应的方向上传输。
步骤505,在该第一指示信息指示的各个DMRS端口属于同一个CDM组的情况下,确定第一PUSCH传输时机对应的第一DMRS端口以及第二PUSCH传输时机对应的第二DMRS端口,其中,该第一DMRS端口是将该第一指示信息指示的DMRS端口的编号按照第一顺序排列后,排序相邻的DMRS端口,该第二DMRS端口为剩余的DMRS端口。
其中,可以理解的是,第一DMRS端口的端口数量等于第一PUSCH传输时机对应的传输层数,第二DMRS端口的端口数量等于第二PUSCH对应的传输层数。
另外可以理解的是,可以是第一PUSCH传输时机对应第一SRI域/第一TPMI域,第二PUSCH传输时机对应第二SRI域/第二TPMI域;也可以是第二PUSCH传输时机对应第一SRI域/第一TPMI域,第一PUSCH传输时机对应第二SRI域/第二TPMI域。
在本申请实施例中,在确定该第一指示信息指示的各个DMRS端口属于同一个CDM组的情况下,终端设备能够将该第一指示信息指示的各个DMRS端口按照编号的第一顺序,将排序相邻的DMRS端口分配给一个PUSCH传输时机。
作为一种示例,PUSCH的传输层数为3,第一PUSCH传输时机的传输层数为2,第二PUSCH传输时机的传输层数为1。第一指示信息指示的DMRS端口为0,1,6,属于同一CDM组。第一顺序可以为从小到大排序,则第一PUSCH传输时机对应的DMRS端口为编号为0和1的DMRS端口,第二PUSCH传输时机对应的DMRS端口为编号为6的DMRS端口。第一顺序也可以为从大到小排序,则第一PUSCH传输时机对应的DMRS端口为编号为1和6的DMRS端口,第二PUSCH传输时机对应的DMRS端口 为编号为0的DMRS端口。
可以理解的是,该第一PUSCH传输时机可以对应第一SRI域/第一TPMI域,也可以对应第二SRI域/第二TPMI域。该第一PUSCH传输时机可以是在第一TCI状态和/或第一TRP对应的方向上传输,也可以是在第二TCI状态和/或第二TRP对应的方向上传输。
综上,通过接收网络设备发送的第一指示信息,该第一指示信息用于指示用于PUSCH传输的总的DMRS端口,接收该网络设备发送的第二指示信息,该第二指示信息用于指示该PUSCH的多个PUSCH传输时机分别对应的传输层数组合信息,判断所述第一指示信息指示的各个DMRS端口是否属于同一个DMRS的码分复用CDM组,在该第一指示信息指示的各个DMRS端口不属于同一个CDM组的情况下,确定第一PUSCH传输时机对应的第一DMRS端口以及第二PUSCH传输时机对应的第二DMRS端口,其中,该第一DMRS端口是将该第一指示信息指示的DMRS端口的编号按照第一顺序排列后,排序相邻的DMRS端口,该第二DMRS端口为剩余的DMRS端口,在该第一指示信息指示的各个DMRS端口属于同一个CDM组的情况下,确定第一PUSCH传输时机对应的第一DMRS端口以及第二PUSCH传输时机对应的第二DMRS端口,其中,该第一DMRS端口是将该第一指示信息指示的DMRS端口的编号按照第一顺序排列后,排序相邻的DMRS端口,该第二DMRS端口为剩余的DMRS端口,能够灵活配置传输使用的DMRS端口,有效降低了多天线面板之间的传输干扰,有效提高传输的可靠性和鲁棒性,提高系统通信效率。
在本申请实施例中,作为一种示例,第二指示信息可以指示第一PUSCH传输时机的传输层数为R1,第二PUSCH传输时机的传输层数为R2。该第一PUSCH传输时机是与第一SRI域/第一TPMI域对应的传输时机,该第二PUSCH传输时机是与第二SRI域/第二TPMI域对应的传输时机。该第一PUSCH传输时机是在第一方向上(第一TCI状态和/或第一TRP对应的方向)传输的,该第二PUSCH传输时机是在第二方向(第二TCI状态和/或第二TRP对应的方向)上传输的。
终端设备确定该第一PUSCH传输时机和该第二PUSCH传输时机分别对应的DMRS端口,终端设备可以判断第一指示信息指示的各个DMRS端口是否属于同一个CDM组。
在第一指示信息指示的各个DMRS端口不属于同一个CDM组的情况下,可以将该多个DMRS端口按照CDM组进行划分,将R1个属于同一个CDM组的DMRS端口分配给第一PUSCH传输时机,将R2个属于另一个CDM组的DMRS端口分配给第二PUSCH传输时机。
在第一指示信息指示的各个DMRS端口不属于同一个CDM组的情况下,也可以将第一指示信息指示的DMRS端口按照编号的第一顺序进行排列,排序相邻的R1个(比如可以是从小到大排序后前R1个,也可以是从大到小排序后前R1个等等)DMRS端口分配给第一PUSCH传输时机,剩余的R2个DMRS端口分配给第二PUSCH传输时机。
在第一指示信息指示的各个DMRS端口属于同一个CDM组的情况下,可以将第一指示信息指示的DMRS端口按照编号的第一顺序进行排列,排序相邻的R1个(比如可以是从小到大排序后前R1个,也可以是从大到小排序后前R1个等等)DMRS端口分配给第一PUSCH传输时机,剩余的R2个DMRS端口分配给第二PUSCH传输时机。
作为另一种示例,第二指示信息可以指示第一PUSCH传输时机的传输层数为R1,第二PUSCH传 输时机的传输层数为R2。该第一PUSCH传输时机是与第一SRI域/第一TPMI域对应的传输时机,该第二PUSCH传输时机是与第二SRI域/第二TPMI域对应的传输时机。该第一PUSCH传输时机是在第二方向(第二TCI状态和/或第二TRP对应的方向)上传输的,该第二PUSCH传输时机是在第一方向(第一TCI状态和/或第一TRP对应的方向)上传输的。
终端设备确定该第一PUSCH传输时机和该第二PUSCH传输时机分别对应的DMRS端口,终端设备可以判断第一指示信息指示的各个DMRS端口是否属于同一个CDM组。
在第一指示信息指示的各个DMRS端口不属于同一个CDM组的情况下,可以将该多个DMRS端口按照CDM组进行划分,将R1个属于同一个CDM组的DMRS端口分配给第一PUSCH传输时机,将R2个属于另一个CDM组的DMRS端口分配给第二PUSCH传输时机。
在第一指示信息指示的各个DMRS端口不属于同一个CDM组的情况下,也可以将第一指示信息指示的DMRS端口按照编号的第一顺序进行排列,排序相邻的R1个(比如可以是从小到大排序后前R1个,也可以是从大到小排序后前R1个等等)DMRS端口分配给第一PUSCH传输时机,剩余的R2个DMRS端口分配给第二PUSCH传输时机。
在第一指示信息指示的各个DMRS端口属于同一个CDM组的情况下,可以将第一指示信息指示的DMRS端口按照编号的第一顺序进行排列,排序相邻的R1个(比如可以是从小到大排序后前R1个,也可以是从大到小排序后前R1个等等)DMRS端口分配给第一PUSCH传输时机,剩余的R2个DMRS端口分配给第二PUSCH传输时机。
请参见图6,图6是本申请实施例提供的一种基于多面板同时传输的上行通信方法的流程示意图。需要说明的是,本申请实施例的基于多面板同时传输的上行通信方法由网络设备执行。该方法可以独立执行,也可以结合本申请任意一个其他实施例一起被执行。如图6所示,该方法可以包括如下步骤:
步骤601,向终端设备发送第一指示信息,该第一指示信息用于指示用于PUSCH传输的总的DMRS端口。
在本申请实施例中,该PUSCH传输是基于单DCI的空分复用SDM多天线面板同时传输STxMP。
其中,需要说明的是,在Rel 18中,对于基于S-DCI的SDM上行STxMP方案包括:PUSCH的一个传输块TB的不同部分分别通过不同panel上分配的各自对应的DMRS端口或端口组合分别面向两个不同的TRP在相同的时频资源上进行发送,不同的panel/TRP/传输时机分别和不同的TCI状态(state)即波束相关联。
其中,PUSCH的TO是指PUSCH的一个传输块的不同数据层通过终端不同panel面向不同的TRP在相同时频资源上进行发送,其中每个panel-TRP的传输链路上传输的部分PUSCH数据层对应一个PUSCH传输时机。
在本申请实施例中,终端设备能够接收网络设备发送的第一指示信息,该第一指示信息能够用于指示网络侧分配给用于PUSCH传输的总的DMRS端口。
在本申请各实施例中,该PUSCH的传输层数最大为4。
可选地,该第一指示信息可以为DCI。
进一步地,该第一指示信息可以为DCI中的天线端口(antenna ports)指示域。
在本申请实施例中,作为一种示例,上行带循环前缀的OFDM(CP-OFDM)波形下的不同参数配 置的DMRS端口分配可以如本申请前述实施例中的各个表格所示,在此不再赘述。
可选地,第一指示信息可以为DCI中的一个指示域中的码点,不同的码点指示分配的不同DMRS端口(比如,在DMRS类型为1,前置DMRS占用的符号数量为1,且数据传输层数为2的情况下,第一指示信息取值为0用于指示分配给PUSCH的总的DMRS端口为编号为0和1的DMRS端口,且编号为0和1的DMRS端口属于同一个CDM组;再比如,在DMRS类型为1,前置DMRS占用的符号数量为1,且数据传输层数为3的情况下,第一指示信息取值为0用于指示分配给PUSCH的总的DMRS端口为编号为0,1,2的DMRS端口,且编号为0和1的DMRS端口属于同一个CDM组,编号为2的DMRS端口属于另一个CDM组)。
步骤602,向该终端设备发送第二指示信息,该第二指示信息用于指示该PUSCH的多个PUSCH传输时机分别对应的传输层数信息。
其中,该多个PUSCH传输时机是在多个TCI状态和/或TRP对应的方向上传输的。
在本申请实施例中,终端设备能够接收网络设备发送的第二指示信息,并根据该第二指示信息的指示确定该PUSCH的多个PUSCH传输时机分别对应的传输层数信息。
可选地,该第二指示信息可以为SRS资源集合指示(SRS resource set indicator)。
在本申请实施例中,该PUSCH传输时机与以下中的至少一种存在对应关系:
码字(codeword,CW);
面板(panel);
探测参考信号SRS资源集合(SRS resource set);
SRS资源指示SRI(SRS Resource Indicator)指示域;
传输预编码矩阵指示TPMI(Transmit Precoding Matrix Indicator)指示域;
发送接收点TRP;
用于指示波束的TCI状态。
在M-TRP传输中,支持两个SRS资源集合,因此在DCI中包含与两个SRS资源集合关联的两个SRI域,每个SRI指示域为一个TRP指示该SRI域关联的SRS资源集合中的SRS资源。两个SRI指示域会对应不同的PUSCH传输时机。可以通过SRS资源集合指示的指示域来动态指示单TRP和多TRP的传输调度。
在一些实施方式中,两个SRI/TPMI指示域中的第一SRI指示域或第一TPMI指示域对应的PUSCH传输时机的传输层数为R1,两个SRI/TPMI指示域中的第二SRI指示域或第二TPMI指示域对应的PUSCH传输时机的传输层数为R2,该第二指示信息能够用于指示该R1和R2。
其中,可以理解的是,在基于码本的PUSCH传输中,该PUSCH传输时机与SRI指示域对应,通过SRI指示域指示关联的SRS资源集合;在基于非码本的PUSCH传输中,该PUSCH传输时机与TPMI指示域对应,通过TPMI指示域指示关联的SRS资源集合。
在一些实施方式中,该第二指示信息可以分别指示该多个传输时机对应的传输层数信息,也可以组合指示该多个传输时机对应的传输层数的组合信息。
作为一种示例,该第二指示信息可以组合指示第一SRI/TPMI指示域对应的PUSCH传输时机以及,第二SRI/TPMI指示域对应的PUSCH传输时机的传输层数信息,也就是指示该R1和R2的组合信息,比如指示两个传输时机对应的传输层数组合信息为{R1,R2}。
在一些实施方式中,该多个PUSCH传输时机与该SRI域或该TPMI域之间的对应关系是预定义的。
在一些实施方式中,该多个PUSCH传输时机与该SRI域或该TPMI域之间的对应关系是由SRS资源集合指示的指示域指示的。
作为一种可能的实施方式,该多个PUSCH传输时机与该SRI域或该TPMI域之间的对应关系为:
在第一方向上传输的PUSCH传输时机与该第一SRI域或该第一TPMI域对应;
在第二方向上传输的PUSCH传输时机与该第二SRI域或该第二TPMI域对应;
其中,该第一方向为第一TCI状态和/或第一TRP对应的方向,该第二方向为第二TCI状态和/或第二TRP对应的方向。
作为另一种可能的实施方式,该多个PUSCH传输时机与该SRI域或该TPMI域之间的对应关系为:
在第一方向上传输的PUSCH传输时机与该第二SRI域或该第二TPMI域对应;
在第二方向上传输的PUSCH传输时机与该第一SRI域或该第一TPMI域对应;
其中,该第一方向为第一TCI状态和/或第一TRP对应的方向,该第二方向为第二TCI状态和/或第二TRP对应的方向。
在一些实施方式中,该第二指示信息为SRS资源集合指示,该第二指示信息(SRS资源集合指示)包括的第一码点用于指示该传输层数为{R1,R2}的组合信息,其中,该传输层数为R1的PUSCH传输时机在第一方向上传输,该传输层数为R2的PUSCH传输时机在第二方向上传输;
该SRS资源集合指示的指示域包括的第二码点用于指示该传输层数为{R2,R1}的组合信息,其中,该传输层数为R2的PUSCH传输时机在第一方向上传输,该传输层数为R1的PUSCH传输时机在第二方向上传输;
其中,该第一方向为第一TCI状态和/或第一TRP对应的方向,该第二方向为第二TCI状态和/或第二TRP对应的方向。
在本申请各实施例中,该第一指示信息和该第二指示信息可以为同一指示信息,也可以为不同的指示信息。
在本申请实施例中,该各个PUSCH传输时机对应的DMRS端口是终端设备确定的。
在一些实施方式中,终端设备可以基于一个固定规则确定各个PUSCH传输时机对应的DMRS端口。
在一些实施方式中,终端设备能够判断该第一指示信息指示的DMRS端口是否属于同一个DMRS的CDM组。
可选地,在该第一指示信息指示的各个DMRS端口不属于同一个CDM组的情况下,确定第一PUSCH传输时机对应的第一DMRS端口以及第二PUSCH传输时机对应的第二DMRS端口,其中,该第一DMRS端口的端口数量等于该第一PUSCH传输时机对应的传输层数,该第二DMRS端口的端口数量等于该第二PUSCH传输时机对应的传输层数,且该第一DMRS端口属于同一CDM组,该第二DMRS端口属于另一CDM组。
可选地,在该第一指示信息指示的各个DMRS端口不属于同一个CDM组的情况下,确定第一PUSCH传输时机对应的第一DMRS端口以及第二PUSCH传输时机对应的第二DMRS端口,其中,该第一DMRS端口的端口数量等于该第一PUSCH传输时机对应的传输层数,该第二DMRS端口的端口数量等于该第二PUSCH对应的传输层数,且该第一DMRS端口是将该第一指示信息指示的DMRS端 口的编号按照第一顺序排列后,排序相邻的DMRS端口,该第二DMRS端口为剩余的DMRS端口。
可选地,在该第一指示信息指示的各个DMRS端口属于同一个CDM组的情况下,确定第一PUSCH传输时机对应的第一DMRS端口以及第二PUSCH传输时机对应的第二DMRS端口,其中,该第一DMRS端口的端口数量等于该第一PUSCH传输时机对应的传输层数,该第二DMRS端口的端口数量等于该第二PUSCH传输时机对应的传输层数,且该第一DMRS端口是将该第一指示信息指示的DMRS端口的编号按照第一顺序排列后,排序相邻的DMRS端口,该第二DMRS端口为剩余的DMRS端口。
综上,通过向终端设备发送第一指示信息,该第一指示信息用于指示用于物理上行共享信道PUSCH传输的总的解调参考信号DMRS端口,其中,该PUSCH传输是基于单下行控制信息DCI的空分复用SDM多天线面板同时传输STxMP,向该终端设备发送第二指示信息,该第二指示信息用于指示该PUSCH的多个PUSCH传输时机分别对应的传输层数RANK信息,其中,该多个PUSCH传输时机是在多个传输配置指示TCI状态和/或发送接收点TRP对应的方向上传输的,能够灵活配置传输使用的DMRS端口,有效降低了多天线面板之间的传输干扰,有效提高传输的可靠性和鲁棒性,提高系统通信效率。
与上述几种实施例提供的基于多面板同时传输的上行通信方法相对应,本申请还提供一种基于多面板同时传输的上行通信装置,由于本申请实施例提供的基于多面板同时传输的上行通信装置与上述几种实施例提供的方法相对应,因此在基于多面板同时传输的上行通信方法的实施方式也适用于下述实施例提供的基于多面板同时传输的上行通信装置,在下述实施例中不再详细描述。
请参见图7,图7为本申请实施例提供的一种基于多面板同时传输的上行通信装置的结构示意图。
如图7所示,该基于多面板同时传输的上行通信装置700包括:收发单元710和处理单元720,其中:
收发单元710,用于接收网络设备发送的第一指示信息,该第一指示信息用于指示用于物理上行共享信道PUSCH传输的总的解调参考信号DMRS端口,其中,该PUSCH传输是基于单下行控制信息DCI的空分复用SDM多天线面板同时传输STxMP;
该收发单元710,还用于接收该网络设备发送的第二指示信息,该第二指示信息用于指示该PUSCH的多个PUSCH传输时机分别对应的传输层数RANK信息,其中,该多个PUSCH传输时机是在多个传输配置指示TCI状态和/或发送接收点TRP对应的方向上传输的;
处理单元720,用于确定该各PUSCH传输时机对应的DMRS端口。
可选地,该PUSCH传输时机与以下中的至少一种存在对应关系:
码字;
面板;
探测参考信号SRS资源集合;
SRS资源指示SRI指示域;
传输预编码矩阵指示TPMI指示域;
发送接收点TRP;
用于指示波束的TCI状态。
可选地,第一SRI指示域或第一TPMI指示域对应的PUSCH传输时机的传输层数为R1,第二SRI 指示域或第二TPMI指示域对应的PUSCH传输时机的传输层数为R2,该第二指示信息用于指示该R1和R2。
可选地,该第二指示信息用于指示该传输层数R1和R2的组合信息。
可选地,该多个PUSCH传输时机与该SRI域或该TPMI域之间的对应关系是预定义的;或者,该多个PUSCH传输时机与该SRI域或该TPMI域之间的对应关系是由SRS资源集合指示的指示域指示的。
可选地,该多个PUSCH传输时机与该SRI域或该TPMI域之间的对应关系为:
在第一方向上传输的PUSCH传输时机与该第一SRI域或该第一TPMI域对应;
在第二方向上传输的PUSCH传输时机与该第二SRI域或该第二TPMI域对应;
其中,该第一方向为第一TCI状态和/或第一TRP对应的方向,该第二方向为第二TCI状态和/或第二TRP对应的方向。
可选地,该多个PUSCH传输时机与该SRI域或该TPMI域之间的对应关系为:
在第一方向上传输的PUSCH传输时机与该第二SRI域或该第二TPMI域对应;
在第二方向上传输的PUSCH传输时机与该第一SRI域或该第一TPMI域对应;
其中,该第一方向为第一TCI状态和/或第一TRP对应的方向,该第二方向为第二TCI状态和/或第二TRP对应的方向。
可选地,该SRS资源集合指示的指示域包括的第一码点用于指示该传输层数为{R1,R2}的组合信息,其中,该传输层数为R1的PUSCH传输时机在第一方向上传输,该传输层数为R2的PUSCH传输时机在第二方向上传输;
该SRS资源集合指示的指示域包括的第二码点用于指示该传输层数为{R2,R1}的组合信息,其中,该传输层数为R2的PUSCH传输时机在第一方向上传输,该传输层数为R1的PUSCH传输时机在第二方向上传输;
该第一方向为第一TCI状态和/或第一TRP对应的方向,该第二方向为第二TCI状态和/或第二TRP对应的方向。
可选地,该PUSCH的传输层数最大为4。
可选地,该处理单元720具体用于:
在该第一指示信息指示的各个DMRS端口不属于同一个CDM组的情况下,确定第一PUSCH传输时机对应的第一DMRS端口以及第二PUSCH传输时机对应的第二DMRS端口,其中,该第一DMRS端口的端口数量等于该第一PUSCH传输时机对应的传输层数,该第二DMRS端口的端口数量等于该第二PUSCH传输时机对应的传输层数,且该第一DMRS端口属于同一CDM组,该第二DMRS端口属于另一CDM组。
可选地,该处理单元720具体用于:
在该第一指示信息指示的各个DMRS端口不属于同一个CDM组的情况下,确定第一PUSCH传输时机对应的第一DMRS端口以及第二PUSCH传输时机对应的第二DMRS端口,其中,该第一DMRS端口的端口数量等于该第一PUSCH传输时机对应的传输层数,该第二DMRS端口的端口数量等于该第二PUSCH对应的传输层数,且该第一DMRS端口是将该第一指示信息指示的DMRS端口的编号按照第一顺序排列后,排序相邻的DMRS端口,该第二DMRS端口为剩余的DMRS端口。
可选地,该处理单元720具体用于:
在该第一指示信息指示的各个DMRS端口属于同一个CDM组的情况下,确定第一PUSCH传输时机对应的第一DMRS端口以及第二PUSCH传输时机对应的第二DMRS端口,其中,该第一DMRS端口的端口数量等于该第一PUSCH传输时机对应的传输层数,该第二DMRS端口的端口数量等于该第二PUSCH传输时机对应的传输层数,且该第一DMRS端口是将该第一指示信息指示的DMRS端口的编号按照第一顺序排列后,排序相邻的DMRS端口,该第二DMRS端口为剩余的DMRS端口。
本实施例的基于多面板同时传输的上行通信装置,可以通过接收网络设备发送的第一指示信息,该第一指示信息用于指示用于物理上行共享信道PUSCH传输的总的解调参考信号DMRS端口,其中,该PUSCH传输是基于单下行控制信息DCI的空分复用SDM多天线面板同时传输STxMP,接收该网络设备发送的第二指示信息,该第二指示信息用于指示该PUSCH的多个PUSCH传输时机分别对应的传输层数RANK信息,其中,该多个PUSCH传输时机是在多个传输配置指示TCI状态和/或发送接收点TRP对应的方向上传输的,确定该各PUSCH传输时机对应的DMRS端口,能够灵活配置传输使用的DMRS端口,有效降低了多天线面板之间的传输干扰,有效提高传输的可靠性和鲁棒性,提高系统通信效率。
请参见图8,图8为本申请实施例提供的一种基于多面板同时传输的上行通信装置的结构示意图。
如图8所示,该基于多面板同时传输的上行通信装置800包括:收发单元810,其中:
收发单元810,用于向终端设备发送第一指示信息,该第一指示信息用于指示用于物理上行共享信道PUSCH传输的总的解调参考信号DMRS端口,其中,该PUSCH传输是基于单下行控制信息DCI的空分复用SDM多天线面板同时传输STxMP;
该收发单元810,还用于向该终端设备发送第二指示信息,该第二指示信息用于指示该PUSCH的多个PUSCH传输时机分别对应的传输层数RANK信息,其中,该多个PUSCH传输时机是在多个传输配置指示TCI状态和/或发送接收点TRP对应的方向上传输的。
可选地,该PUSCH传输时机与以下中的至少一种存在对应关系:
码字;
面板;
探测参考信号SRS资源集合;
SRS资源指示SRI指示域;
传输预编码矩阵指示TPMI指示域;
发送接收点TRP;
用于指示波束的TCI状态。
可选地,第一SRI指示域或第一TPMI指示域对应的PUSCH传输时机的传输层数为R1,第二SRI指示域或第二TPMI指示域对应的PUSCH传输时机的传输层数为R2,该第二指示信息用于指示该R1和R2。
可选地,该第二指示信息用于指示该传输层数R1和R2的组合信息。
可选地,该多个PUSCH传输时机与该SRI域或该TPMI域之间的对应关系是预定义的;或者,该多个PUSCH传输时机与该SRI域或该TPMI域之间的对应关系是由SRS资源集合指示的指示域指示的。
可选地,该多个PUSCH传输时机与该SRI域或该TPMI域之间的对应关系为:
在第一方向上传输的PUSCH传输时机与该第一SRI域或该第一TPMI域对应;
在第二方向上传输的PUSCH传输时机与该第二SRI域或该第二TPMI域对应;
其中,该第一方向为第一TCI状态和/或第一TRP对应的方向,该第二方向为第二TCI状态和/或第二TRP对应的方向。
可选地,该多个PUSCH传输时机与该SRI域或该TPMI域之间的对应关系为:
在第一方向上传输的PUSCH传输时机与该第二SRI域或该第二TPMI域对应;
在第二方向上传输的PUSCH传输时机与该第一SRI域或该第一TPMI域对应;
其中,该第一方向为第一TCI状态和/或第一TRP对应的方向,该第二方向为第二TCI状态和/或第二TRP对应的方向。
可选地,该SRS资源集合指示指示域包括的第一码点用于指示该传输层数为{R1,R2}的组合信息,其中,该传输层数为R1的PUSCH传输时机在第一方向上传输,该传输层数为R2的PUSCH传输时机在第二方向上传输;
该SRS资源集合指示指示域包括的第二码点用于指示该传输层数为{R2,R1}的组合信息,其中,该传输层数为R2的PUSCH传输时机在第一方向上传输,该传输层数为R1的PUSCH传输时机在第二方向上传输;
该第一方向为第一TCI状态和/或第一TRP对应的方向,该第二方向为第二TCI状态和/或第二TRP对应的方向。
可选地,该PUSCH的传输层数最大为4。
可选地,在该第一指示信息指示的各个DMRS端口不属于同一个CDM组的情况下,第一PUSCH传输时机对应第一DMRS端口,第二PUSCH传输时机对应第二DMRS端口,其中,该第一DMRS端口的端口数量等于该第一PUSCH传输时机对应的传输层数,该第二DMRS端口的端口数量等于该第二PUSCH传输时机对应的传输层数,且该第一DMRS端口属于同一CDM组,该第二DMRS端口属于另一CDM组。
可选地,在该第一指示信息指示的各个DMRS端口不属于同一个CDM组的情况下,第一PUSCH传输时机对应第一DMRS端口,第二PUSCH传输时机对应第二DMRS端口,其中,该第一DMRS端口的端口数量等于该第一PUSCH传输时机对应的传输层数,该第二DMRS端口的端口数量等于该第二PUSCH对应的传输层数,且该第一DMRS端口是将该第一指示信息指示的DMRS端口的编号按照第一顺序排列后,排序相邻的DMRS端口,该第二DMRS端口为剩余的DMRS端口。
可选地,在该第一指示信息指示的各个DMRS端口属于同一个CDM组的情况下,第一PUSCH传输时机对应第一DMRS端口,第二PUSCH传输时机对应第二DMRS端口,其中,该第一DMRS端口的端口数量等于该第一PUSCH传输时机对应的传输层数,该第二DMRS端口的端口数量等于该第二PUSCH传输时机对应的传输层数,且该第一DMRS端口是将该第一指示信息指示的DMRS端口的编号按照第一顺序排列后,排序相邻的DMRS端口,该第二DMRS端口为剩余的DMRS端口。
本实施例的基于多面板同时传输的上行通信装置,可以通过向终端设备发送第一指示信息,该第一指示信息用于指示用于物理上行共享信道PUSCH传输的总的解调参考信号DMRS端口,其中,该PUSCH传输是基于单下行控制信息DCI的空分复用SDM多天线面板同时传输STxMP,向该终端设备发送第二指示信息,该第二指示信息用于指示该PUSCH的多个PUSCH传输时机分别对应的传输层数 RANK组合信息,其中,该多个PUSCH传输时机是在多个传输配置指示TCI状态和/或发送接收点TRP对应的方向上传输的,该各PUSCH传输时机对应的DMRS端口是该终端设备基于第一规则确定的,能够灵活配置传输使用的DMRS端口,有效降低了多天线面板之间的传输干扰,有效提高传输的可靠性和鲁棒性,提高系统通信效率。
为了实现上述实施例,本申请实施例还提出一种通信装置,包括:处理器和存储器,存储器中存储有计算机程序,处理器执行所述存储器中存储的计算机程序,以使装置执行图2至图5实施例所示的方法。
为了实现上述实施例,本申请实施例还提出一种通信装置,包括:处理器和存储器,存储器中存储有计算机程序,处理器执行所述存储器中存储的计算机程序,以使装置执行图6实施例所示的方法。
为了实现上述实施例,本申请实施例还提出一种通信装置,包括:处理器和接口电路,接口电路,用于接收代码指令并传输至处理器,处理器,用于运行所述代码指令以执行图2至图5实施例所示的方法。
为了实现上述实施例,本申请实施例还提出一种通信装置,包括:处理器和接口电路,接口电路,用于接收代码指令并传输至处理器,处理器,用于运行所述代码指令以执行图6实施例所示的方法。
请参见图9,图9是本公开实施例提供的另一种基于多面板同时传输的上行通信装置的结构示意图。基于多面板同时传输的上行通信装置900可以是网络设备,也可以是终端设备,也可以是支持网络设备实现上述方法的芯片、芯片系统、或处理器等,还可以是支持终端设备实现上述方法的芯片、芯片系统、或处理器等。该装置可用于实现上述方法实施例中描述的方法,具体可以参见上述方法实施例中的说明。
基于多面板同时传输的上行通信装置900可以包括一个或多个处理器901。处理器901可以是通用处理器或者专用处理器等。例如可以是基带处理器或中央处理器。基带处理器可以用于对通信协议以及通信数据进行处理,中央处理器可以用于对基于多面板同时传输的上行通信装置(如,基站、基带芯片,终端设备、终端设备芯片,DU或CU等)进行控制,执行计算机程序,处理计算机程序的数据。
可选的,基于多面板同时传输的上行通信装置900中还可以包括一个或多个存储器902,其上可以存有计算机程序903,处理器901执行计算机程序903,以使得基于多面板同时传输的上行通信装置900执行上述方法实施例中描述的方法。计算机程序903可能固化在处理器901中,该种情况下,处理器901可能由硬件实现。
可选的,存储器902中还可以存储有数据。基于多面板同时传输的上行通信装置900和存储器902可以单独设置,也可以集成在一起。
可选的,基于多面板同时传输的上行通信装置900还可以包括收发器905、天线906。收发器905可以称为收发单元、收发机、或收发电路等,用于实现收发功能。收发器905可以包括接收器和发送器,接收器可以称为接收机或接收电路等,用于实现接收功能;发送器可以称为发送机或发送电路等,用于实现发送功能。
可选的,基于多面板同时传输的上行通信装置900中还可以包括一个或多个接口电路907。接口电路907用于接收代码指令并传输至处理器901。处理器901运行代码指令以使基于多面板同时传输的上行通信装置900执行上述方法实施例中描述的方法。
在一种实现方式中,处理器901中可以包括用于实现接收和发送功能的收发器。例如该收发器可以是收发电路,或者是接口,或者是接口电路。用于实现接收和发送功能的收发电路、接口或接口电路可以是分开的,也可以集成在一起。上述收发电路、接口或接口电路可以用于代码/数据的读写,或者,上述收发电路、接口或接口电路可以用于信号的传输或传递。
在一种实现方式中,基于多面板同时传输的上行通信装置900可以包括电路,电路可以实现前述方法实施例中发送或接收或者通信的功能。本公开中描述的处理器和收发器可实现在集成电路(integrated circuit,IC)、模拟IC、射频集成电路RFIC、混合信号IC、专用集成电路(application specific integrated circuit,ASIC)、印刷电路板(printed circuit board,PCB)、电子设备等上。该处理器和收发器也可以用各种IC工艺技术来制造,例如互补金属氧化物半导体(complementary metal oxide semiconductor,CMOS)、N型金属氧化物半导体(nMetal-oxide-semiconductor,NMOS)、P型金属氧化物半导体(positive channel metal oxide semiconductor,PMOS)、双极结型晶体管(bipolar junction transistor,BJT)、双极CMOS(BiCMOS)、硅锗(SiGe)、砷化镓(GaAs)等。
以上实施例描述中的基于多面板同时传输的上行通信装置可以是网络设备或者终端设备,但本公开中描述的基于多面板同时传输的上行通信装置的范围并不限于此,而且基于多面板同时传输的上行通信装置的结构可以不受图7-图8的限制。基于多面板同时传输的上行通信装置可以是独立的设备或者可以是较大设备的一部分。例如基于多面板同时传输的上行通信装置可以是:
(1)独立的集成电路IC,或芯片,或,芯片系统或子系统;
(2)具有一个或多个IC的集合,可选的,该IC集合也可以包括用于存储数据,计算机程序的存储部件;
(3)ASIC,例如调制解调器(Modem);
(4)可嵌入在其他设备内的模块;
(5)接收机、终端设备、智能终端设备、蜂窝电话、无线设备、手持机、移动单元、车载设备、网络设备、云设备、人工智能设备等等;
(6)其他等等。
对于基于多面板同时传输的上行通信装置可以是芯片或芯片系统的情况,可参见图10所示的芯片的结构示意图。图10所示的芯片包括处理器1001和接口1002。其中,处理器1001的数量可以是一个或多个,接口1002的数量可以是多个。
对于芯片用于实现本公开实施例中终端设备的功能的情况:
接口1002,用于代码指令并传输至处理器;
处理器1001,用于运行代码指令以执行如图2至图8的方法。
对于芯片用于实现本公开实施例中网络设备的功能的情况:
接口1002,用于代码指令并传输至处理器;
处理器1001,用于运行代码指令以执行如图9的方法。
可选的,芯片还包括存储器1003,存储器1003用于存储必要的计算机程序和数据。
本领域技术人员还可以了解到本公开实施例列出的各种说明性逻辑块(illustrative logical block)和步骤(step)可以通过电子硬件、电脑软件,或两者的结合进行实现。这样的功能是通过硬件还是软件来实现取决于特定的应用和整个系统的设计要求。本领域技术人员可以对于每种特定的应用,可以使用 各种方法实现的功能,但这种实现不应被理解为超出本公开实施例保护的范围。
本公开实施例还提供一种通信系统,该系统包括前述图7-图8实施例中作为终端设备的基于多面板同时传输的上行通信装置和作为网络设备的基于多面板同时传输的上行通信装置,或者,该系统包括前述图9实施例中作为终端设备的基于多面板同时传输的上行通信装置和作为网络设备的基于多面板同时传输的上行通信装置。
本公开还提供一种可读存储介质,其上存储有指令,该指令被计算机执行时实现上述任一方法实施例的功能。
本公开还提供一种计算机程序产品,该计算机程序产品被计算机执行时实现上述任一方法实施例的功能。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。计算机程序产品包括一个或多个计算机程序。在计算机上加载和执行计算机程序时,全部或部分地产生按照本公开实施例的流程或功能。计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。计算机程序可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,计算机程序可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,高密度数字视频光盘(digital video disc,DVD))、或者半导体介质(例如,固态硬盘(solid state disk,SSD))等。
本领域普通技术人员可以理解:本公开中涉及的第一、第二等各种数字编号仅为描述方便进行的区分,并不用来限制本公开实施例的范围,也表示先后顺序。
本公开中的至少一个还可以描述为一个或多个,多个可以是两个、三个、四个或者更多个,本公开不做限制。在本公开实施例中,对于一种技术特征,通过“第一”、“第二”、“第三”、“A”、“B”、“C”和“D”等区分该种技术特征中的技术特征,该“第一”、“第二”、“第三”、“A”、“B”、“C”和“D”描述的技术特征间无先后顺序或者大小顺序。
本公开中各表所示的对应关系可以被配置,也可以是预定义的。各表中的信息的取值仅仅是举例,可以配置为其他值,本公开并不限定。在配置信息与各参数的对应关系时,并不一定要求必须配置各表中示意出的所有对应关系。例如,本公开中的表格中,某些行示出的对应关系也可以不配置。又例如,可以基于上述表格做适当的变形调整,例如,拆分,合并等等。上述各表中标题示出参数的名称也可以采用通信装置可理解的其他名称,其参数的取值或表示方式也可以通信装置可理解的其他取值或表示方式。上述各表在实现时,也可以采用其他的数据结构,例如可以采用数组、队列、容器、栈、线性表、指针、链表、树、图、结构体、类、堆、散列表或哈希表等。
本公开中的预定义可以理解为定义、预先定义、存储、预存储、预协商、预配置、固化、或预烧制。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实 现所描述的功能,但是这种实现不应认为超出本公开的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
应当理解,可以使用上面所示的各种形式的流程,重新排序、增加或删除步骤。例如,本公开实施例中记载的各步骤可以并行地执行也可以顺序地执行也可以不同的次序执行,只要能够实现本发明公开的技术方案所期望的结果,本文在此不进行限制。
上述具体实施方式,并不构成对本发明保护范围的限制。本领域技术人员应该明白的是,根据设计要求和其他因素,可以进行各种修改、组合、子组合和替代。任何在本发明的精神和原则之内所作的修改、等同替换和改进等,均应包含在本发明保护范围之内。

Claims (29)

  1. 一种基于多面板同时传输的上行通信方法,其特征在于,所述方法由终端设备执行,所述方法包括:
    接收网络设备发送的第一指示信息,所述第一指示信息用于指示用于物理上行共享信道PUSCH传输的总的解调参考信号DMRS端口,其中,所述PUSCH传输是基于单下行控制信息DCI的空分复用SDM多天线面板同时传输STxMP;
    接收所述网络设备发送的第二指示信息,所述第二指示信息用于指示所述PUSCH的多个PUSCH传输时机分别对应的传输层数RANK信息,其中,所述多个PUSCH传输时机是在多个传输配置指示TCI状态和/或发送接收点TRP对应的方向上传输的;
    确定所述各PUSCH传输时机对应的DMRS端口。
  2. 根据权利要求1所述的方法,其特征在于,所述PUSCH传输时机与以下中的至少一种存在对应关系:
    码字;
    面板;
    探测参考信号SRS资源集合;
    SRS资源指示SRI指示域;
    传输预编码矩阵指示TPMI指示域;
    发送接收点TRP;
    用于指示波束的TCI状态。
  3. 根据权利要求2所述的方法,其特征在于,第一SRI指示域或第一TPMI指示域对应的PUSCH传输时机的传输层数为R1,第二SRI指示域或第二TPMI指示域对应的PUSCH传输时机的传输层数为R2,所述第二指示信息用于指示所述R1和R2。
  4. 根据权利要求3所述的方法,其特征在于,所述第二指示信息用于指示所述传输层数R1和R2的组合信息。
  5. 根据权利要求3所述的方法,其特征在于,所述多个PUSCH传输时机与所述SRI域或所述TPMI域之间的对应关系是预定义的;或者,所述多个PUSCH传输时机与所述SRI域或所述TPMI域之间的对应关系是由SRS资源集合指示的指示域指示的。
  6. 根据权利要求5所述的方法,其特征在于,所述多个PUSCH传输时机与所述SRI域或所述TPMI域之间的对应关系为:
    在第一方向上传输的PUSCH传输时机与所述第一SRI域或所述第一TPMI域对应;
    在第二方向上传输的PUSCH传输时机与所述第二SRI域或所述第二TPMI域对应;
    其中,所述第一方向为第一TCI状态和/或第一TRP对应的方向,所述第二方向为第二TCI状态和/或第二TRP对应的方向。
  7. 根据权利要求5所述的方法,其特征在于,所述多个PUSCH传输时机与所述SRI域或所述TPMI域之间的对应关系为:
    在第一方向上传输的PUSCH传输时机与所述第二SRI域或所述第二TPMI域对应;
    在第二方向上传输的PUSCH传输时机与所述第一SRI域或所述第一TPMI域对应;
    其中,所述第一方向为第一TCI状态和/或第一TRP对应的方向,所述第二方向为第二TCI状态和/或第二TRP对应的方向。
  8. 根据权利要求3-5任一项所述的方法,其特征在于,
    所述SRS资源集合指示的指示域包括的第一码点用于指示所述传输层数为{R1,R2}的组合信息,其中,所述传输层数为R1的PUSCH传输时机在第一方向上传输,所述传输层数为R2的PUSCH传输时机在第二方向上传输;
    所述SRS资源集合指示的指示域包括的第二码点用于指示所述传输层数为{R2,R1}的组合信息,其中,所述传输层数为R2的PUSCH传输时机在第一方向上传输,所述传输层数为R1的PUSCH传输时机在第二方向上传输;
    所述第一方向为第一TCI状态和/或第一TRP对应的方向,所述第二方向为第二TCI状态和/或第二TRP对应的方向。
  9. 根据权利要求1-8任一项所述的方法,其特征在于,所述PUSCH的传输层数最大为4。
  10. 根据权利要求9所述的方法,其特征在于,所述确定所述各PUSCH传输时机对应的DMRS端口,包括:
    在所述第一指示信息指示的各个DMRS端口不属于同一个CDM组的情况下,确定第一PUSCH传输时机对应的第一DMRS端口以及第二PUSCH传输时机对应的第二DMRS端口,其中,所述第一DMRS端口的端口数量等于所述第一PUSCH传输时机对应的传输层数,所述第二DMRS端口的端口数量等于所述第二PUSCH传输时机对应的传输层数,且所述第一DMRS端口属于同一CDM组,所述第二DMRS端口属于另一CDM组。
  11. 根据权利要求9所述的方法,其特征在于,所述确定所述各PUSCH传输时机对应的DMRS端口,包括:
    在所述第一指示信息指示的各个DMRS端口不属于同一个CDM组的情况下,确定第一PUSCH传输时机对应的第一DMRS端口以及第二PUSCH传输时机对应的第二DMRS端口,其中,所述第一DMRS端口的端口数量等于所述第一PUSCH传输时机对应的传输层数,所述第二DMRS端口的端口数量等于所述第二PUSCH对应的传输层数,且所述第一DMRS端口是将所述第一指示信息指示的DMRS端口的编号按照第一顺序排列后,排序相邻的DMRS端口,所述第二DMRS端口为剩余的DMRS 端口。
  12. 根据权利要求9所述的方法,其特征在于,所述确定所述各PUSCH传输时机对应的DMRS端口,包括:
    在所述第一指示信息指示的各个DMRS端口属于同一个CDM组的情况下,确定第一PUSCH传输时机对应的第一DMRS端口以及第二PUSCH传输时机对应的第二DMRS端口,其中,所述第一DMRS端口的端口数量等于所述第一PUSCH传输时机对应的传输层数,所述第二DMRS端口的端口数量等于所述第二PUSCH传输时机对应的传输层数,且所述第一DMRS端口是将所述第一指示信息指示的DMRS端口的编号按照第一顺序排列后,排序相邻的DMRS端口,所述第二DMRS端口为剩余的DMRS端口。
  13. 一种基于多面板同时传输的上行通信方法,其特征在于,所述方法由网络设备执行,所述方法包括:
    向终端设备发送第一指示信息,所述第一指示信息用于指示用于物理上行共享信道PUSCH传输的总的解调参考信号DMRS端口,其中,所述PUSCH传输是基于单下行控制信息DCI的空分复用SDM多天线面板同时传输STxMP;
    向所述终端设备发送第二指示信息,所述第二指示信息用于指示所述PUSCH的多个PUSCH传输时机分别对应的传输层数RANK信息,其中,所述多个PUSCH传输时机是在多个传输配置指示TCI状态和/或发送接收点TRP对应的方向上传输的。
  14. 根据权利要求13所述的方法,其特征在于,所述PUSCH传输时机与以下中的至少一种存在对应关系:
    码字;
    面板;
    探测参考信号SRS资源集合;
    SRS资源指示SRI指示域;
    传输预编码矩阵指示TPMI指示域;
    发送接收点TRP;
    用于指示波束的TCI状态。
  15. 根据权利要求14所述的方法,其特征在于,第一SRI指示域或第一TPMI指示域对应的PUSCH传输时机的传输层数为R1,第二SRI指示域或第二TPMI指示域对应的PUSCH传输时机的传输层数为R2,所述第二指示信息用于指示所述R1和R2。
  16. 根据权利要求15所述的方法,其特征在于,所述第二指示信息用于指示所述传输层数R1和R2的组合信息。
  17. 根据权利要求15所述的方法,其特征在于,所述多个PUSCH传输时机与所述SRI域或所述TPMI域之间的对应关系是预定义的;或者,所述多个PUSCH传输时机与所述SRI域或所述TPMI域之间的对应关系是由SRS资源集合指示的指示域指示的。
  18. 根据权利要求17所述的方法,其特征在于,所述多个PUSCH传输时机与所述SRI域或所述TPMI域之间的对应关系为:
    在第一方向上传输的PUSCH传输时机与所述第一SRI域或所述第一TPMI域对应;
    在第二方向上传输的PUSCH传输时机与所述第二SRI域或所述第二TPMI域对应;
    其中,所述第一方向为第一TCI状态和/或第一TRP对应的方向,所述第二方向为第二TCI状态和/或第二TRP对应的方向。
  19. 根据权利要求17所述的方法,其特征在于,所述多个PUSCH传输时机与所述SRI域或所述TPMI域之间的对应关系为:
    在第一方向上传输的PUSCH传输时机与所述第二SRI域或所述第二TPMI域对应;
    在第二方向上传输的PUSCH传输时机与所述第一SRI域或所述第一TPMI域对应;
    其中,所述第一方向为第一TCI状态和/或第一TRP对应的方向,所述第二方向为第二TCI状态和/或第二TRP对应的方向。
  20. 根据权利要求15-17任一项所述的方法,其特征在于,
    所述SRS资源集合指示指示域包括的第一码点用于指示所述传输层数为{R1,R2}的组合信息,其中,所述传输层数为R1的PUSCH传输时机在第一方向上传输,所述传输层数为R2的PUSCH传输时机在第二方向上传输;
    所述SRS资源集合指示指示域包括的第二码点用于指示所述传输层数为{R2,R1}的组合信息,其中,所述传输层数为R2的PUSCH传输时机在第一方向上传输,所述传输层数为R1的PUSCH传输时机在第二方向上传输;
    所述第一方向为第一TCI状态和/或第一TRP对应的方向,所述第二方向为第二TCI状态和/或第二TRP对应的方向。
  21. 根据权利要求13-20任一项所述的方法,其特征在于,所述PUSCH的传输层数最大为4。
  22. 根据权利要求21所述的方法,其特征在于,
    在所述第一指示信息指示的各个DMRS端口不属于同一个CDM组的情况下,第一PUSCH传输时机对应第一DMRS端口,第二PUSCH传输时机对应第二DMRS端口,其中,所述第一DMRS端口的端口数量等于所述第一PUSCH传输时机对应的传输层数,所述第二DMRS端口的端口数量等于所述第二PUSCH传输时机对应的传输层数,且所述第一DMRS端口属于同一CDM组,所述第二DMRS端口属于另一CDM组。
  23. 根据权利要求21所述的方法,其特征在于,
    在所述第一指示信息指示的各个DMRS端口不属于同一个CDM组的情况下,第一PUSCH传输时机对应第一DMRS端口,第二PUSCH传输时机对应第二DMRS端口,其中,所述第一DMRS端口的端口数量等于所述第一PUSCH传输时机对应的传输层数,所述第二DMRS端口的端口数量等于所述第二PUSCH对应的传输层数,且所述第一DMRS端口是将所述第一指示信息指示的DMRS端口的编号按照第一顺序排列后,排序相邻的DMRS端口,所述第二DMRS端口为剩余的DMRS端口。
  24. 根据权利要求21所述的方法,其特征在于,
    在所述第一指示信息指示的各个DMRS端口属于同一个CDM组的情况下,第一PUSCH传输时机对应第一DMRS端口,第二PUSCH传输时机对应第二DMRS端口,其中,所述第一DMRS端口的端口数量等于所述第一PUSCH传输时机对应的传输层数,所述第二DMRS端口的端口数量等于所述第二PUSCH传输时机对应的传输层数,且所述第一DMRS端口是将所述第一指示信息指示的DMRS端口的编号按照第一顺序排列后,排序相邻的DMRS端口,所述第二DMRS端口为剩余的DMRS端口。
  25. 一种基于多面板同时传输的上行通信装置,其特征在于,所述装置应用于终端设备执行,所述装置包括:
    收发单元,用于接收网络设备发送的第一指示信息,所述第一指示信息用于指示用于物理上行共享信道PUSCH传输的总的解调参考信号DMRS端口,其中,所述PUSCH传输是基于单下行控制信息DCI的空分复用SDM多天线面板同时传输STxMP;
    所述收发单元,还用于接收所述网络设备发送的第二指示信息,所述第二指示信息用于指示所述PUSCH的多个PUSCH传输时机分别对应的传输层数RANK信息,其中,所述多个PUSCH传输时机是在多个传输配置指示TCI状态和/或发送接收点TRP对应的方向上传输的;
    处理单元,用于确定所述各PUSCH传输时机对应的DMRS端口。
  26. 一种基于多面板同时传输的上行通信装置,其特征在于,所述装置应用于网络设备,所述装置包括:
    收发单元,用于向终端设备发送第一指示信息,所述第一指示信息用于指示用于物理上行共享信道PUSCH传输的总的解调参考信号DMRS端口,其中,所述PUSCH传输是基于单下行控制信息DCI的空分复用SDM多天线面板同时传输STxMP;
    所述收发单元,还用于向所述终端设备发送第二指示信息,所述第二指示信息用于指示所述PUSCH的多个PUSCH传输时机分别对应的传输层数RANK信息,其中,所述多个PUSCH传输时机是在多个传输配置指示TCI状态和/或发送接收点TRP对应的方向上传输的。
  27. 一种通信装置,其特征在于,所述装置包括处理器和存储器,所述存储器中存储有计算机程序,所述处理器执行所述存储器中存储的计算机程序,以使所述装置执行如权利要求1至12中任一项所述的方法,或者,执行如权利要求13至24中任一项所述的方法。
  28. 一种通信装置,其特征在于,包括:处理器和接口电路;
    所述接口电路,用于接收代码指令并传输至所述处理器;
    所述处理器,用于运行所述代码指令以执行如权利要求1至12中任一项所述的方法,或者,执行如权利要求13至24中任一项所述的方法。
  29. 一种计算机可读存储介质,用于存储有指令,当所述指令被执行时,使如权利要求1至12任一项所述的方法被实现,或者,使如权利要求13至24中任一项所述的方法被实现。
PCT/CN2023/075296 2023-02-09 2023-02-09 基于多面板同时传输的上行通信方法及装置 WO2024164278A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202380008190.9A CN116349196A (zh) 2023-02-09 2023-02-09 基于多面板同时传输的上行通信方法及装置
PCT/CN2023/075296 WO2024164278A1 (zh) 2023-02-09 2023-02-09 基于多面板同时传输的上行通信方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2023/075296 WO2024164278A1 (zh) 2023-02-09 2023-02-09 基于多面板同时传输的上行通信方法及装置

Publications (1)

Publication Number Publication Date
WO2024164278A1 true WO2024164278A1 (zh) 2024-08-15

Family

ID=86893456

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/075296 WO2024164278A1 (zh) 2023-02-09 2023-02-09 基于多面板同时传输的上行通信方法及装置

Country Status (2)

Country Link
CN (1) CN116349196A (zh)
WO (1) WO2024164278A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110535589A (zh) * 2018-09-27 2019-12-03 中兴通讯股份有限公司 指示方法、信息确定方法、装置、基站、终端及存储介质
CN114257354A (zh) * 2020-09-22 2022-03-29 中国移动通信有限公司研究院 一种传输方法、终端设备及网络侧设备
WO2023272514A1 (zh) * 2021-06-29 2023-01-05 北京小米移动软件有限公司 上行传输方法、装置、设备及可读存储介质
WO2023002611A1 (ja) * 2021-07-21 2023-01-26 株式会社Nttドコモ 端末、無線通信方法及び基地局

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110535589A (zh) * 2018-09-27 2019-12-03 中兴通讯股份有限公司 指示方法、信息确定方法、装置、基站、终端及存储介质
CN114257354A (zh) * 2020-09-22 2022-03-29 中国移动通信有限公司研究院 一种传输方法、终端设备及网络侧设备
WO2023272514A1 (zh) * 2021-06-29 2023-01-05 北京小米移动软件有限公司 上行传输方法、装置、设备及可读存储介质
WO2023002611A1 (ja) * 2021-07-21 2023-01-26 株式会社Nttドコモ 端末、無線通信方法及び基地局

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZTE: "Multi-TRP enhancements for PUCCH and PUSCH", 3GPP DRAFT; R1-2104586, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20210510 - 20210527, 12 May 2021 (2021-05-12), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP052010880 *

Also Published As

Publication number Publication date
CN116349196A (zh) 2023-06-27

Similar Documents

Publication Publication Date Title
WO2021254506A1 (zh) 上行传输方法及相关装置
WO2019029662A1 (zh) 信息传输的方法和通信装置
US20220183029A1 (en) Method for sending and receiving control information, apparatus, and system
WO2024156094A1 (zh) 上行传输控制方法及装置
WO2020019871A1 (zh) 数据发送的方法及装置
WO2024050776A1 (zh) 一种信息确定方法/装置/设备及存储介质
WO2024164278A1 (zh) 基于多面板同时传输的上行通信方法及装置
US20210099220A1 (en) Communications in spatial streams
WO2024087221A1 (zh) 传输配置指示tci状态指示方法及装置
WO2024164279A1 (zh) 上行相位跟踪参考信号ptrs的传输方法及通信装置
WO2023178622A1 (zh) 一种dmrs端口指示方法及其装置
WO2024016184A1 (zh) 一种上行解调参考信号端口确定方法及其装置
WO2024031578A1 (zh) 信道发送方法、信道接收方法、装置、设备及存储介质
WO2024077619A1 (zh) 一种信息确定方法/装置/设备及存储介质
WO2024077620A1 (zh) 物理下行共享信道pdsch传输方法及装置
WO2024103266A1 (zh) 一种映射方法、装置、设备及存储介质
WO2023193279A1 (zh) 频域资源配置方法及装置
WO2024168919A1 (zh) 物理下行控制信道pdcch处理方法及装置
WO2023231036A1 (zh) 一种传输块的处理方法及其装置
WO2023193270A1 (zh) 频域资源配置方法及装置
WO2023231037A1 (zh) 一种数据链路层l2的缓冲器大小的确定方法及其装置
WO2023206569A1 (zh) 多天线面板协作传输的解调参考信号端口分配方法及装置
WO2024092822A1 (zh) 指示方法、装置、设备及芯片系统
WO2024031577A1 (zh) 时域资源分配方法、装置、设备及存储介质
WO2024168928A1 (zh) 通信控制方法、装置及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23920486

Country of ref document: EP

Kind code of ref document: A1