WO2024157679A1 - Silicone-modified epoxy resin, coating composition, and article coated with said coating composition - Google Patents
Silicone-modified epoxy resin, coating composition, and article coated with said coating composition Download PDFInfo
- Publication number
- WO2024157679A1 WO2024157679A1 PCT/JP2023/045836 JP2023045836W WO2024157679A1 WO 2024157679 A1 WO2024157679 A1 WO 2024157679A1 JP 2023045836 W JP2023045836 W JP 2023045836W WO 2024157679 A1 WO2024157679 A1 WO 2024157679A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- epoxy resin
- silicone
- modified epoxy
- units
- coating composition
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G59/00—Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
- C08G59/14—Polycondensates modified by chemical after-treatment
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G81/00—Macromolecular compounds obtained by interreacting polymers in the absence of monomers, e.g. block polymers
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D163/00—Coating compositions based on epoxy resins; Coating compositions based on derivatives of epoxy resins
Definitions
- the present invention relates to a silicone-modified epoxy resin, a coating composition, and an article coated with the coating composition.
- the method of applying a protective resin coating to the surface of metal components is widely used to impart heat resistance and corrosion resistance (weather resistance) to industrial metal components such as steel plates for automobiles, steel pipes for gas pipelines, and metal building materials, as well as household metal components such as frying pans and barbecue grills.
- Epoxy resin protective coatings are commonly used for motorcycle mufflers and steel pipes for gas pipelines, which require particularly high heat and corrosion resistance.
- a silicone-modified epoxy resin, which is modified with silicone, is known as one of the above epoxy resins (for example, Patent Document 1), and this silicone-modified epoxy resin has improved heat resistance by introducing a siloxane bond, which has high bond strength, into the epoxy resin.
- the epoxy resin in Patent Document 1 is a silicone-modified epoxy resin in which epoxy resin is modified with a reactive organosilane, but its heat resistance does not reach 500°C, and its performance cannot be said to be sufficient.
- the heat resistance of the epoxy resin itself can be increased by making it highly cross-linked, but increasing the epoxy equivalent to achieve highly cross-linked resins also increases the viscosity, which poses the problem of significantly reducing compatibility with pigments that impart various functions to the coating, such as extender pigments and anti-rust pigments. If compatibility between the epoxy resin and the pigment cannot be guaranteed, voids will form in the resulting coating, compromising the heat resistance of the coating. For this reason, there is naturally an upper limit to the epoxy equivalent of epoxy resins for coating.
- the problem that the present invention aims to solve is to provide a silicone-modified epoxy resin that can produce a cured product that exhibits high heat resistance, and a coating composition that contains the resin.
- the present invention relates to the following silicone-modified epoxy resins, etc. 1. Silicone-modified epoxy resins having an epoxy equivalent in the range of 1,000 to 3,000 g/equivalent and having an alkyl group having 10 or more carbon atoms. 2. The silicone-modified epoxy resin according to 1, which has a bisphenol structure. 3. The silicone-modified epoxy resin according to 1 or 2, having an acid value in the range of 1 to 10 mgKOH/g. 4. The silicone-modified epoxy resin according to any one of 1 to 3, which comprises, as reaction components, an epoxy resin having a hydroxyl group, a silicone compound having a silanol group, and a fatty acid. 5.
- the silicone-modified epoxy resin according to 4 wherein the epoxy resin having a hydroxyl group is a bisphenol-type epoxy resin having a hydroxyl group.
- the silicone compound having a silanol group is a silicone compound having one or more siloxy units selected from R 3 SiO 1/2 units (M units), SiO 4/2 units (Q units), R 2 SiO 2/2 units (D units) and RSiO 3/2 units (T units)
- R is an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, a phenyl group or a hydroxyl group
- a coating composition comprising the silicone-modified epoxy resin according to any one of 1 to 8 and a pigment. 10.
- the present invention provides a silicone-modified epoxy resin that exhibits high heat resistance.
- the present invention provides a coating composition that can provide a coating exhibiting high heat resistance.
- the present invention is not limited to the following embodiment, and can be implemented by making appropriate modifications within the scope that does not impair the effects of the present invention.
- the compounds in the present specification may be derived from fossil resources or biological resources.
- the silicone-modified epoxy resin of the present invention has an epoxy equivalent in the range of 1,000 to 3,000 g/equivalent and has an alkyl group having 10 or more carbon atoms.
- the introduction of an alkyl group having 10 or more carbon atoms can suppress an increase in viscosity. Furthermore, the introduction of an alkyl group having 10 or more carbon atoms can ensure compatibility with pigments, which will be described later.
- the silicone-modified epoxy resin has at least one alkyl group having 10 or more carbon atoms.
- at least one of the terminal epoxy groups of the silicone-modified epoxy resin is preferably substituted with an alkyl group having 10 or more carbon atoms. That is, the silicone-modified epoxy resin of the present invention preferably has an alkyl group having 10 or more carbon atoms at at least one terminal.
- the alkyl group having 10 or more carbon atoms contained in the silicone-modified epoxy resin of the present invention is preferably an alkyl group having 12 to 22 carbon atoms, and more preferably an alkyl group having 12 to 18 carbon atoms.
- the alkyl group having 10 or more carbon atoms contained in the silicone-modified epoxy resin of the present invention may be either a branched alkyl group or a linear alkyl group, but is preferably a linear alkyl group.
- the silicone-modified epoxy resin of the present invention may have an epoxy equivalent in the range of 1,000 to 3,000 g/equivalent, preferably in the range of 1,000 to 2,500 g/equivalent, and more preferably in the range of 1,000 to 2,200 g/equivalent.
- the epoxy equivalent of the silicone-modified epoxy resin of the present invention is evaluated by the method described in the Examples.
- the acid value of the silicone-modified epoxy resin of the present invention is, for example, in the range of 1 to 10 mgKOH/g, preferably in the range of 1 to 8 mgKOH/g, more preferably in the range of 1 to 7 mgKOH/g, and even more preferably in the range of 1 to 6 mgKOH/g.
- the acid value of the silicone-modified epoxy resin of the present invention is evaluated by the method described in the Examples.
- the number average molecular weight of the silicone modified epoxy resin of the present invention is, for example, in the range of 500 to 10,000, preferably in the range of 1,000 to 8,000, and more preferably in the range of 1,000 to 6,000.
- the weight average molecular weight of the silicone modified epoxy resin of the present invention is, for example, in the range of 10,000 to 50,000, and preferably in the range of 20,000 to 40,000.
- the number average molecular weight and weight average molecular weight of the silicone-modified epoxy resin of the present invention are evaluated by the method described in the Examples.
- the silicone-modified epoxy resin of the present invention preferably comprises an epoxy resin having a hydroxyl group, a silicone compound having a silanol group, and a fatty acid as reaction components.
- reactive components refers to components that constitute the structure of the silicone-modified epoxy resin, and does not include solvents or catalysts that do not constitute the structure of the silicone-modified epoxy resin. Each component will be described below.
- the epoxy resin is a resin having at least one epoxy group in the molecule, and examples thereof include bisphenol type epoxy resins such as bisphenol A type, bisphenol F type, bisphenol E type, bisphenol B type, bisphenol S type, bisphenol AD type, bisphenol AP type, bisphenol BP type, etc.; novolac type epoxy resins such as phenol novolac type and cresol novolac type; resorcinol type epoxy resins; aromatic epoxy resins such as trisphenolmethane triglycidyl ether; naphthalene type epoxy resins; fluorene type epoxy resins; and biphenyl type epoxy resins.
- the epoxy resin having a hydroxyl group of the present invention is, for example, the above-mentioned epoxy resin which further has a hydroxyl group.
- the epoxy resin having a hydroxyl group is preferably a bisphenol A type epoxy resin having a hydroxyl group, and more preferably a compound represented by the following general formula (A-1).
- X is a bisphenol structure represented by the following general formula (A-2): n is the number of repetitions.
- the multiple R 1 's when there are multiple R 1 's, the multiple R 1 's may be the same as or different from each other. Similarly, when there are multiple R 2 's, the multiple R 2 's may be the same as or different from each other.
- the epoxy resin having a hydroxyl group is, for example, a compound represented by the above general formula (A-1)
- the epoxy group of the compound represented by general formula (A-1) reacts with a fatty acid to introduce an alkyl group at the terminal.
- the epoxy equivalent of the hydroxyl group-containing epoxy resin is preferably in the range of 300 to 3,000 g/equivalent, more preferably in the range of 450 to 3,000 g/equivalent, and more preferably in the range of 600 to 3,000 g/equivalent.
- the epoxy equivalent is the weight of an epoxy resin required to obtain 1 mol of epoxy groups, and is measured by the method described in the examples.
- the epoxy resins having hydroxyl groups used have an average epoxy equivalent in the range of 1,000 to 3,000 g/equivalent.
- the average epoxy equivalent calculated by (total weight of epoxy resins)/ ⁇ (amount of epoxy resin 1 used/epoxy equivalent of epoxy resin 1)+(amount of epoxy resin 2 used/epoxy equivalent of epoxy resin 2) ⁇ is in the range of 1,000 to 3,000.
- the epoxy resin having a hydroxyl group may be a commercially available product, such as EPICLON 1055, EPICLON 3040, EPICLON 3050, EPICLON 4050, EPICLON 7050 (all manufactured by DIC Corporation), LAPOX P-62, LAPOX P-5 (all manufactured by ATUL INDIA), E-20 (epoxy equivalent: 455-555 g/Eq), E-21 (epoxy equivalent: 480-580 g/Eq), E-42 (epoxy equivalent: 230-280 g/Eq), E-44 (epoxy equivalent: 210-240 g/Eq), E-51 (epoxy equivalent: 184-194 g/Eq) (all manufactured by Sinopec Corporation).
- EPICLON 1055 EPICLON 3040, EPICLON 3050, EPICLON 4050, EPICLON 7050
- LAPOX P-62, LAPOX P-5 all manufactured by ATUL INDIA
- E-20 epoxy equivalent: 455
- silicone compound having a silanol group reacts with a hydroxyl group of an epoxy resin, and thereby a crosslinked structure is formed that crosslinks epoxy resins together.
- the silicone compound having a silanol group is preferably a silicone compound having two or more silanol groups, and more preferably a silicone compound having one or more siloxy units selected from R 3 SiO 1/2 units (M units), SiO 4/2 units (Q units), R 2 SiO 2/2 units (D units) and RSiO 3/2 units (T units) (R is an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, a phenyl group or a hydroxyl group), and is a compound having two or more silanol groups.
- the silicone compound having a silanol group is a silicone compound having one or more siloxy units selected from R 3 SiO 1/2 units (M units), SiO 4/2 units (Q units), R 2 SiO 2/2 units (D units) and RSiO 3/2 units (T units)
- R is an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, a phenyl group or a hydroxyl group
- the proportion of the phenyl groups in R in the siloxy units is preferably 50 mol % or more.
- the ratio of phenyl groups in R in the siloxy unit 50 mol % or more it is possible to improve heat resistance.
- the proportion of phenyl groups in the siloxy units can be confirmed by Fourier transform infrared spectroscopy (FTIR), and the upper limit of the proportion of phenyl groups in the siloxy units is, for example, 80 mol %.
- silicone compound having a silanol group a commercially available product can be used, and examples of the commercially available product include DOWSIL RSN-6018, DOWSIL RSN-0220, and DOWSIL 3040 (all manufactured by The Dow Chemical Company).
- the proportion of phenyl groups in R in the siloxy unit in the above commercially available products is 73 mol % for DOWSIL RSN-6018, 67 mol % for DOWSIL RSN-0220, and 50 mol % for DOWSIL 3040.
- the fatty acid is preferably a saturated fatty acid having 11 to 22 carbon atoms, more preferably a straight-chain saturated fatty acid having 11 to 22 carbon atoms, and even more preferably a straight-chain saturated fatty acid having 11 to 18 carbon atoms.
- Fatty acids may be used alone or in combination of two or more.
- fatty acids include undecylic acid, lauric acid, tridecylic acid, myristic acid, pentadecylic acid, palmitic acid, margaric acid, stearic acid, nonadecylic acid, arachidic acid, heneicosylic acid, and behenic acid.
- Oils containing fatty acids may also be used as reaction components.
- the fats and oils include hydrogenated coconut oil fatty acids, hydrogenated palm kernel oil fatty acids, hydrogenated palm oil fatty acids, hydrogenated olive oil fatty acids, hydrogenated castor oil fatty acids, hydrogenated rapeseed oil fatty acids, etc. These are obtained by hydrolyzing and hydrogenating oils obtained from coconut, palm kernel, palm, olive, castor, and rapeseed, respectively, and all of them are mixtures of two or more types of long-chain aliphatic monocarboxylic acids.
- the silicone-modified epoxy resin of the present invention preferably contains as reaction components an epoxy resin having a hydroxyl group, a silicone compound having a silanol group, and a fatty acid, and may further contain components other than these as long as the effects of the present invention are not impaired.
- the silicone-modified epoxy resin of the present invention is preferably a reaction product of an epoxy resin having a hydroxyl group, a silicone compound having a silanol group, and a fatty acid.
- the mixing ratio of the silicone compound having a silanol group is, for example, in the range of 50 to 100 parts by mass, preferably in the range of 60 to 90 parts by mass, and more preferably in the range of 70 to 85 parts by mass, per 100 parts by mass of the epoxy resin having a hydroxyl group.
- the mixing ratio of the fatty acid is, for example, in the range of 1 to 10 parts by mass, preferably in the range of 1 to 7 parts by mass, more preferably in the range of 1 to 5 parts by mass, and even more preferably in the range of 3 to 4 parts by mass, per 100 parts by mass of the epoxy resin having a hydroxyl group.
- the proportions of each component in the reaction components are preferably in the range of 30 to 60 parts by mass of epoxy resin having hydroxyl groups, 20 to 50 parts by mass of silanol-modified silicone compound, and 1 to 5 parts by mass of fatty acid.
- the reaction of an epoxy resin having a hydroxyl group, a silicone compound having a silanol group, and a fatty acid can be carried out by a known method.
- the silicone-modified epoxy resin of the present invention can be prepared by heating a reaction system containing an epoxy resin having a hydroxyl group, a silicone compound having a silanol group, and a fatty acid.
- the silicone-modified epoxy resin of the present invention can also be prepared by reacting an epoxy resin having a hydroxyl group with a silicone compound having a silanol group to form a silicone-modified epoxy resin, and then reacting the silicone-modified epoxy resin with a fatty acid.
- the coating composition of the present invention contains the silicone-modified epoxy resin of the present invention and a pigment, and is used, for example, by dissolving it in a solvent.
- Examples of the solvent for the coating composition of the present invention include alcohol solvents such as methanol, ethanol, propanol, n-butanol, iso-butanol, tert-butanol, and 3-methoxybutanol; glycol solvents such as ethylene glycol and propylene glycol; glycol ether solvents such as ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, ethylene glycol dimethyl ether, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol dibutyl ether, propylene glycol monomethyl ether, propylene glycol monopropyl ether, propylene glycol monobutyl ether, propylene glycol dimethyl ether, dipropylene glycol monomethyl ether, and dipropylene glycol dimethyl ether; glycol ester solvents such as ethylene glycol monoethyl ether acetate, propy
- the solvent is used so that the solids concentration is, for example, 10 to 80 mass %, and preferably so that the solids concentration is 50 to 70 mass %.
- the coating composition of the present invention can ensure sufficient pigment compatibility.
- the above pigments include, for example, those called “extender pigments” and those called “anti-rust pigments.” Extender pigments are pigments that are blended with the resin composition for the purpose of modifying the resin composition (increasing the amount, coloring properties, drying properties, etc.), while anti-rust pigments are pigments that are blended with the resin composition to increase the corrosion resistance.
- extender pigments include barium sulfate, barium carbonate, calcium carbonate, magnesium oxide, magnesium carbonate, magnesium hydroxide, barium titanate, calcium hydroxide, calcium sulfite, calcium sulfate, calcium oxide, calcium silicate, titanium oxide, silica, zeolite, and talc.
- anti-rust pigments include phosphates, hydrogen phosphates, phosphosilicates, borosilicates, borates, metaborates, molybdates, chromates, polyphosphates, etc., of one or more metals selected from the group consisting of calcium, strontium, barium, zinc, aluminum, and magnesium.
- the coating composition of the present invention may contain at least one of an extender pigment and an anti-rust pigment.
- the coating composition may contain one kind of extender pigment or two or more kinds of extender pigments.
- the coating composition may contain one kind of rust-preventive pigment or two or more kinds of extender pigments.
- the total content of the extender pigment and the anti-rust pigment is, for example, in the range of 20 to 80 parts by mass, and preferably in the range of 30 to 70 parts by mass, per 100 parts by mass of the silicone-modified epoxy resin of the present invention.
- the coating composition of the present invention may be in the form of a one-liquid paint that does not use a curing agent, or in the form of a multi-liquid paint that uses a curing agent.
- the curing agent may be a polyisocyanate compound, a melamine compound, an epoxy compound, an oxazoline compound, a carbodiimide compound, or the like.
- the coating composition of the present invention may further contain various additives, such as metal driers (which play a role in promoting the oxidative polymerization of carbon-carbon double bonds in the resin), waxes, surfactants, stabilizers, flow regulators, dyes, leveling agents, rheology control agents, UV absorbers, antioxidants, plasticizers, antistatic agents, defoamers, viscosity modifiers, light resistance stabilizers, weather resistance stabilizers, heat resistance stabilizers, pigment dispersants, thermosetting resins, and thermoplastic resins, as necessary.
- additives can be used.
- the coating composition of the present invention may be applied directly to the object to be coated, or a primer coating material suitable for the object to be coated may be applied first, and then the coating composition of the present invention may be applied.
- Materials of the items to be coated include various metals such as iron, copper, zinc, aluminum, magnesium, etc. and their alloys; plastic substrates such as polycarbonate (PC), acrylonitrile-butadiene-styrene copolymer (ABS), PC-ABS polymer alloy, polymethyl methacrylate (PMMA), polyethylene terephthalate (PET), polyamide (PA), polypropylene (PP), fiberglass, carbon fiber, etc., and fiber-reinforced plastic (FRP) containing fillers; glass, etc.
- PC polycarbonate
- ABS acrylonitrile-butadiene-styrene copolymer
- PC-ABS polymer alloy polymethyl methacrylate
- PMMA polyethylene terephthalate
- PA polyamide
- PP polypropylene
- fiberglass carbon fiber, etc.
- FRP fiber-reinforced plastic
- any known method can be used to apply the coating composition of the present invention, and the method will vary depending on the article to be coated. Examples include methods using a gravure coater, roll coater, comma coater, knife coater, air knife coater, curtain coater, kiss coater, shower coater, wheeler coater, spin coater, dipping, screen printing, spraying, applicator, bar coater, brush, roller, etc.
- a known method can be used as a method for curing the coating composition of the present invention after application.
- the conditions are adjusted as appropriate depending on the presence or absence of a curing agent, the desired film thickness, and the like, but for example, a method of heating and curing for a certain period of time within a temperature range of about 120 to 350° C. can be used.
- Examples of articles having a cured coating film of the coating composition of the present invention include the housings and internal parts of home appliances such as televisions, refrigerators, washing machines, and air conditioners; the housings and internal parts of electronic devices such as smartphones, mobile phones, tablet devices, personal computers, digital cameras, and game consoles; the housings of office equipment such as printers and facsimiles; leisure and sports goods; interior and exterior materials for various vehicles such as automobiles, ships, and railway cars; industrial machinery; interior and exterior materials for buildings such as exterior walls, roofs, glass, and decorative panels; and civil engineering materials such as soundproofing walls and drainage ditches.
- home appliances such as televisions, refrigerators, washing machines, and air conditioners
- electronic devices such as smartphones, mobile phones, tablet devices, personal computers, digital cameras, and game consoles
- the housings of office equipment such as printers and facsimiles
- leisure and sports goods interior and exterior materials for various vehicles such as automobiles, ships, and railway cars
- industrial machinery interior and exterior materials for buildings such as exterior walls, roofs, glass
- the acid value, hydroxyl value and epoxy equivalent were evaluated by the following methods.
- Method for measuring acid value The measurement was performed according to a method in accordance with JIS K0070-1992.
- Method for measuring hydroxyl value The measurement was performed according to a method in accordance with JIS K0070-1992.
- Method for measuring epoxy equivalent Measurement was performed according to a method in accordance with JIS K7236-2009.
- the number average molecular weight and weight average molecular weight of the epoxy resin are values calculated in terms of polystyrene based on GPC measurement, and the measurement conditions are as follows.
- Measurement equipment Tosoh Corporation's high-speed GPC equipment "HLC-8320GPC”
- Data processing Tosoh Corporation's "EcoSEC Data Analysis Version 1.07"
- Developing solvent tetrahydrofuran Flow rate: 0.35 mL/min
- Measurement sample 7.5 mg
- the physical properties of the obtained silicone modified epoxy resin A-1 were as follows: Acid value: 4.9 mg KOH / g Epoxy equivalent: 2,000g/Eq Number average molecular weight: 5,000 Weight average molecular weight: 35,000 Decomposition temperature: 420°C
- the physical properties of the obtained silicone modified epoxy resin B-2 were as follows: Epoxy equivalent: 1,996g/Eq Number average molecular weight: 2,500 Weight average molecular weight: 10,000 Decomposition temperature: 300°C
- Example 1 and Comparative Examples 1-2 Preparation of Coating Composition, Formation of Coating Film, and Evaluation
- silicone-modified epoxy resins produced, coating compositions were prepared according to the blending patterns shown in Tables 1 and 2, and the prepared coating compositions were applied to the substrates shown in Tables 1 and 2 to form coating films.
- the resulting coating films were evaluated as follows. The results are shown in Tables 1 and 2.
- the coating film was formed by applying the coating composition to a substrate with a bar coater to a thickness of 20 ⁇ m, and then baking and heating at 270°C for 10 minutes to form a coating film.
- the coating film was evaluated after being left to stand for one day at room temperature of 25°C.
- the prepared coating composition was stored at room temperature of 25° C. for 3 months, and a coating film was formed using the coating composition after storage by the above-mentioned method.
- the obtained coating film was visually evaluated according to the following criteria.
- C The coating does not adhere to the substrate.
- the gloss of the coating film formed on the substrate was measured at any five points at an incident angle of 60° and a reflection angle of 60° using a gloss meter Micro-Tri-Gloss (manufactured by BYK), and the measured values were taken as gloss values.
- the gloss value is an index of pigment dispersion, with a higher value indicating that the pigment is better dispersed.
- the coating film formed on the substrate was evaluated for its adhesion to the substrate according to JIS K-5400:1990. Specifically, 1 mm-wide cuts were made on the coating film with a cutter to make 100 squares, and cellophane tape was applied so as to cover all the squares, which were then quickly peeled off. The number of squares remaining in contact after the test was expressed as a percentage. In terms of substrate adhesion, 100% means that no coating film peeled off, and 0% means that the coating film was completely peeled off. Adhesion of 95% or more can be considered to be sufficient for practical use.
- the coating film formed on the substrate was measured for Koenig hardness in accordance with ISO1522.
- the coated substrate was placed in a ceramic oven and heated at 600° C. for 10 minutes. After heating, the coated substrate was immersed in water at room temperature. This process was repeated five times. After five cycles, the coating surface of the coated substrate was visually inspected and evaluated according to the following criteria: A: No scratches, discoloration, or blisters on the coating surface. B: At least one of scratches, discoloration, and blisters on the coating surface. C: The coating is completely damaged.
- Tables 1 and 2 show that high heat resistance is obtained for coatings made using a paint composition containing silicone-modified epoxy resin A-1 with an alkyl group. On the other hand, sufficient heat resistance is not obtained for coatings made using a paint composition containing silicone-modified epoxy resin B-1 (without an alkyl group). In coatings made using a paint composition containing silicone-modified epoxy resin B-2 (without an alkyl group), the high epoxy equivalent of silicone-modified epoxy resin B-2 results in insufficient compatibility with the pigment, causing the coating to lose gloss. In addition, due to insufficient pigment dispersion, voids are expected to form in the coating, and heat resistance is not obtained.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Polymers & Plastics (AREA)
- Medicinal Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- General Chemical & Material Sciences (AREA)
- Wood Science & Technology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Epoxy Resins (AREA)
- Paints Or Removers (AREA)
Abstract
Description
本発明は、シリコーン変性エポキシ樹脂、コーティング組成物および当該コーティング組成物でコーティングされた物品に関する。 The present invention relates to a silicone-modified epoxy resin, a coating composition, and an article coated with the coating composition.
自動車用鋼板、ガスパイプライン用鋼管、建築用金属資材などの産業用金属部材、フライパン、バーベキューグリルなどの家庭用金属部材に耐熱性および耐腐食性(耐候性)を付与する方法として、金属部材の表面を樹脂で保護コーティングする方法が広く採用されている。 The method of applying a protective resin coating to the surface of metal components is widely used to impart heat resistance and corrosion resistance (weather resistance) to industrial metal components such as steel plates for automobiles, steel pipes for gas pipelines, and metal building materials, as well as household metal components such as frying pans and barbecue grills.
特に高い耐熱性と耐腐食性を必要とするバイクマフラーやガスパイプライン用鋼管では、エポキシ樹脂による保護コーティングが一般的になされている。 Epoxy resin protective coatings are commonly used for motorcycle mufflers and steel pipes for gas pipelines, which require particularly high heat and corrosion resistance.
上記エポキシ樹脂としては、シリコーンで変性したシリコーン変性エポキシ樹脂が知られており(例えば特許文献1)、当該シリコーン変性エポキシ樹脂は、エポキシ樹脂に結合強度が高いシロキサン結合を導入することによって耐熱性を高めている。 A silicone-modified epoxy resin, which is modified with silicone, is known as one of the above epoxy resins (for example, Patent Document 1), and this silicone-modified epoxy resin has improved heat resistance by introducing a siloxane bond, which has high bond strength, into the epoxy resin.
特許文献1のエポキシ樹脂は、エポキシ樹脂を反応性オルガノシランで修飾したシリコーン変性エポキシ樹脂であるが、耐熱性は500℃に達しておらず十分とは言えない性能であった。 The epoxy resin in Patent Document 1 is a silicone-modified epoxy resin in which epoxy resin is modified with a reactive organosilane, but its heat resistance does not reach 500°C, and its performance cannot be said to be sufficient.
エポキシ樹脂自体の耐熱性を高めるには高架橋とすればよいが、高架橋とするためにエポキシ当量を高めると粘度も高くなり、体質顔料、防錆顔料といったコーティングに各種機能を付与する顔料との相溶性が著しく低下する問題があった。エポキシ樹脂と顔料との相溶性が担保できない場合には、得られるコーティング中に空隙が生じ、コーティングの耐熱性が損なわれてしまう。このためコーティング用エポキシ樹脂のエポキシ当量にはおのずとその上限があった。 The heat resistance of the epoxy resin itself can be increased by making it highly cross-linked, but increasing the epoxy equivalent to achieve highly cross-linked resins also increases the viscosity, which poses the problem of significantly reducing compatibility with pigments that impart various functions to the coating, such as extender pigments and anti-rust pigments. If compatibility between the epoxy resin and the pigment cannot be guaranteed, voids will form in the resulting coating, compromising the heat resistance of the coating. For this reason, there is naturally an upper limit to the epoxy equivalent of epoxy resins for coating.
本発明が解決しようとする課題は、得られる硬化物が高い耐熱性を示すことができるシリコーン変性エポキシ樹脂および当該樹脂を含有するコーティング組成物を提供することである。 The problem that the present invention aims to solve is to provide a silicone-modified epoxy resin that can produce a cured product that exhibits high heat resistance, and a coating composition that contains the resin.
本発明者らは、上記課題を解決するため鋭意検討を行った結果、シリコーン変性エポキシ樹脂に炭素原子数10以上のアルキル基を導入することで高粘度化を抑制し、且つ、顔料との相溶性も担保できることを見出し、本発明を完成させた。 As a result of extensive research into solving the above problems, the inventors discovered that by introducing an alkyl group having 10 or more carbon atoms into a silicone-modified epoxy resin, it is possible to prevent the resin from becoming too viscous and ensure compatibility with pigments, thus completing the present invention.
すなわち、本発明は、以下のシリコーン変性エポキシ樹脂等に関するものである。
1.エポキシ当量が1,000~3,000g/当量の範囲であり、炭素原子数10以上のアルキル基を有するシリコーン変性エポキシ樹脂。
2.ビスフェノール構造を有する1に記載のシリコーン変性エポキシ樹脂。
3.酸価が1~10mgKOH/gの範囲である1又は2に記載のシリコーン変性エポキシ樹脂。
4.水酸基を有するエポキシ樹脂と、シラノール基を有するシリコーン化合物と、脂肪酸とを反応成分とする1~3のいずれかに記載のシリコーン変性エポキシ樹脂。
5.前記水酸基を有するエポキシ樹脂が、水酸基を有するビスフェノール型エポキシ樹脂である4に記載のシリコーン変性エポキシ樹脂。
6.前記シラノール基を有するシリコーン化合物が、R3SiO1/2単位(M単位)、SiO4/2単位(Q単位)、R2SiO2/2単位(D単位)およびRSiO3/2単位(T単位)(Rは炭素原子数1~6のアルキル基、炭素原子数1~6のアルコキシ基、フェニル基又は水酸基である)から選択される1以上のシロキシ単位を有するシリコーン化合物であって、2以上のシラノール基を有し、前記シロキシ単位中のRにおけるフェニル基の割合が50モル%以上である4又は5に記載のシリコーン変性エポキシ樹脂。
7.前記脂肪酸が炭素原子数11~22の飽和脂肪酸である4~6のいずれかに記載のシリコーン変性エポキシ樹脂。
8.前記反応成分において、前記エポキシ樹脂が30~60質量部の範囲であり、前記シラノール基を有するシリコーン化合物が20~50質量部の範囲であり、前記脂肪酸が1~5質量部の範囲である4~7のいずれかに記載のシリコーン変性エポキシ樹脂。
9.1~8のいずれかに記載のシリコーン変性エポキシ樹脂および顔料を含有するコーティング組成物。
10.9に記載のコーティング組成物の硬化物。
11.9に記載のコーティング組成物の硬化物でコーティングされた物品。
12.9に記載のコーティング組成物の硬化物でコーティングされた金属部材。
That is, the present invention relates to the following silicone-modified epoxy resins, etc.
1. Silicone-modified epoxy resins having an epoxy equivalent in the range of 1,000 to 3,000 g/equivalent and having an alkyl group having 10 or more carbon atoms.
2. The silicone-modified epoxy resin according to 1, which has a bisphenol structure.
3. The silicone-modified epoxy resin according to 1 or 2, having an acid value in the range of 1 to 10 mgKOH/g.
4. The silicone-modified epoxy resin according to any one of 1 to 3, which comprises, as reaction components, an epoxy resin having a hydroxyl group, a silicone compound having a silanol group, and a fatty acid.
5. The silicone-modified epoxy resin according to 4, wherein the epoxy resin having a hydroxyl group is a bisphenol-type epoxy resin having a hydroxyl group.
6. The silicone-modified epoxy resin according to 4 or 5, wherein the silicone compound having a silanol group is a silicone compound having one or more siloxy units selected from R 3 SiO 1/2 units (M units), SiO 4/2 units (Q units), R 2 SiO 2/2 units (D units) and RSiO 3/2 units (T units) (R is an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, a phenyl group or a hydroxyl group), has two or more silanol groups and the proportion of phenyl groups in R in the siloxy units is 50 mol % or more.
7. The silicone-modified epoxy resin according to any one of 4 to 6, wherein the fatty acid is a saturated fatty acid having 11 to 22 carbon atoms.
8. The silicone-modified epoxy resin according to any one of 4 to 7, wherein, in the reaction components, the epoxy resin is in the range of 30 to 60 parts by mass, the silicone compound having a silanol group is in the range of 20 to 50 parts by mass, and the fatty acid is in the range of 1 to 5 parts by mass.
9. A coating composition comprising the silicone-modified epoxy resin according to any one of 1 to 8 and a pigment.
10. A cured product of the coating composition described in 9.
11. An article coated with the cured coating composition described in 9.
12. A metal member coated with the cured product of the coating composition described in 9.
本発明により、高い耐熱性を示すことができるシリコーン変性エポキシ樹脂が提供できる。
本発明により、高い耐熱性を示すコーティングが得られるコーティング組成物が提供できる。
The present invention provides a silicone-modified epoxy resin that exhibits high heat resistance.
The present invention provides a coating composition that can provide a coating exhibiting high heat resistance.
以下、本発明の一実施形態について説明する。本発明は、以下の実施形態に限定されるものではなく、本発明の効果を損なわない範囲で適宜変更を加えて実施することができる。
尚、本明細書中の化合物は、化石資源由来であってもよく、生物資源由来であってもよい。
An embodiment of the present invention will be described below. The present invention is not limited to the following embodiment, and can be implemented by making appropriate modifications within the scope that does not impair the effects of the present invention.
The compounds in the present specification may be derived from fossil resources or biological resources.
[シリコーン変性エポキシ樹脂]
本発明のシリコーン変性エポキシ樹脂は、エポキシ当量が1,000~3,000g/当量の範囲であり、炭素原子数10以上のアルキル基を有する。
本発明のシリコーン変性エポキシ樹脂においては、高いエポキシ当量であるにもかかわらず、炭素原子数10以上のアルキル基を導入することで高粘度化を抑制できる。また、炭素原子数10以上のアルキル基を導入することで後述する顔料との相溶性も担保することができる。
[Silicone-modified epoxy resin]
The silicone-modified epoxy resin of the present invention has an epoxy equivalent in the range of 1,000 to 3,000 g/equivalent and has an alkyl group having 10 or more carbon atoms.
In the silicone-modified epoxy resin of the present invention, despite its high epoxy equivalent, the introduction of an alkyl group having 10 or more carbon atoms can suppress an increase in viscosity. Furthermore, the introduction of an alkyl group having 10 or more carbon atoms can ensure compatibility with pigments, which will be described later.
尚、本発明において「炭素原子数10以上のアルキル基を有する」とは、シリコーン変性エポキシ樹脂が少なくとも1つの炭素原子数10以上のアルキル基を有していることを意味する。
本発明においては、好ましくはシリコーン変性エポキシ樹脂の末端エポキシ基の少なくとも1つに炭素原子数10以上のアルキル基が置換している。即ち、本発明のシリコーン変性エポキシ樹脂は、好ましくは少なくとも一方の末端に炭素原子数10以上のアルキル基を有する。
In the present invention, "having an alkyl group having 10 or more carbon atoms" means that the silicone-modified epoxy resin has at least one alkyl group having 10 or more carbon atoms.
In the present invention, at least one of the terminal epoxy groups of the silicone-modified epoxy resin is preferably substituted with an alkyl group having 10 or more carbon atoms. That is, the silicone-modified epoxy resin of the present invention preferably has an alkyl group having 10 or more carbon atoms at at least one terminal.
本発明のシリコーン変性エポキシ樹脂が有する炭素原子数10以上のアルキル基は、好ましくは炭素原子数12~22のアルキル基であり、より好ましくは炭素原子数12~18のアルキル基である。
本発明のシリコーン変性エポキシ樹脂が有する炭素原子数10以上のアルキル基は、分岐アルキル基および直鎖アルキル基のどちらでもよいが、好ましくは直鎖アルキル基である。
The alkyl group having 10 or more carbon atoms contained in the silicone-modified epoxy resin of the present invention is preferably an alkyl group having 12 to 22 carbon atoms, and more preferably an alkyl group having 12 to 18 carbon atoms.
The alkyl group having 10 or more carbon atoms contained in the silicone-modified epoxy resin of the present invention may be either a branched alkyl group or a linear alkyl group, but is preferably a linear alkyl group.
本発明のシリコーン変性エポキシ樹脂は、エポキシ当量が1,000~3,000g/当量の範囲であればよく、好ましくはエポキシ当量が1,000~2,500g/当量の範囲であり、より好ましくはエポキシ当量が1,000~2,200g/当量の範囲である。
本発明のシリコーン変性エポキシ樹脂のエポキシ当量は実施例に記載の方法により評価する。
The silicone-modified epoxy resin of the present invention may have an epoxy equivalent in the range of 1,000 to 3,000 g/equivalent, preferably in the range of 1,000 to 2,500 g/equivalent, and more preferably in the range of 1,000 to 2,200 g/equivalent.
The epoxy equivalent of the silicone-modified epoxy resin of the present invention is evaluated by the method described in the Examples.
本発明のシリコーン変性エポキシ樹脂の酸価は、例えば1~10mgKOH/gの範囲であり、好ましくは1~8mgKOH/gの範囲であり、より好ましくは1~7mgKOH/gの範囲であり、さらに好ましくは1~6mgKOH/gの範囲である。
本発明のシリコーン変性エポキシ樹脂の酸価は、実施例に記載の方法により評価する。
The acid value of the silicone-modified epoxy resin of the present invention is, for example, in the range of 1 to 10 mgKOH/g, preferably in the range of 1 to 8 mgKOH/g, more preferably in the range of 1 to 7 mgKOH/g, and even more preferably in the range of 1 to 6 mgKOH/g.
The acid value of the silicone-modified epoxy resin of the present invention is evaluated by the method described in the Examples.
本発明のシリコーン変性エポキシ樹脂の数平均分子量は特に制限されないが、例えば500~10,000の範囲であり、好ましくは1,000~8,000の範囲であり、より好ましくは1,000~6,000の範囲である。
本発明のシリコーン変性エポキシ樹脂の重量平均分子量は特に制限されないが、例えば10,000~50,000の範囲であり、好ましくは20,000~40,000の範囲である。
本発明のシリコーン変性エポキシ樹脂の数平均分子量および重量平均分子量は、実施例に記載の方法により評価する。
There are no particular limitations on the number average molecular weight of the silicone modified epoxy resin of the present invention, but it is, for example, in the range of 500 to 10,000, preferably in the range of 1,000 to 8,000, and more preferably in the range of 1,000 to 6,000.
There are no particular limitations on the weight average molecular weight of the silicone modified epoxy resin of the present invention, but it is, for example, in the range of 10,000 to 50,000, and preferably in the range of 20,000 to 40,000.
The number average molecular weight and weight average molecular weight of the silicone-modified epoxy resin of the present invention are evaluated by the method described in the Examples.
本発明のシリコーン変性エポキシ樹脂は、好ましくは水酸基を有するエポキシ樹脂と、シラノール基を有するシリコーン化合物と、脂肪酸とを反応成分とする。
ここで「反応成分」とは、シリコーン変性エポキシ樹脂の構造を構成する成分という意味であり、シリコーン変性エポキシ樹脂の構造を構成しない溶媒や触媒を含まない意味である。
以下、各成分について説明する。
The silicone-modified epoxy resin of the present invention preferably comprises an epoxy resin having a hydroxyl group, a silicone compound having a silanol group, and a fatty acid as reaction components.
The term "reactive components" as used herein refers to components that constitute the structure of the silicone-modified epoxy resin, and does not include solvents or catalysts that do not constitute the structure of the silicone-modified epoxy resin.
Each component will be described below.
(水酸基を有するエポキシ樹脂)
エポキシ樹脂は、分子中に少なくとも1個のエポキシ基を有する樹脂であり、例えば、ビスフェノールA型、ビスフェノールF型、ビスフェノールE型、ビスフェノールB型、ビスフェノールS型、ビスフェノールAD型、ビスフェノールAP型、ビスフェノールBP型等のビスフェノール型エポキシ樹脂;フェノールノボラック型、クレゾールノボラック型等のノボラック型エポキシ樹脂;レゾルシノール型エポキシ樹脂;トリスフェノールメタントリグリシジルエーテル等の芳香族エポキシ樹脂;ナフタレン型エポキシ樹脂;フルオレン型エポキシ樹脂;ビフェニル型エポキシ樹脂等が挙げられる
本発明の水酸基を有するエポキシ樹脂は、例えば上記エポキシ樹脂であって、さらに水酸基を有するエポキシ樹脂である。
(Epoxy resin having hydroxyl group)
The epoxy resin is a resin having at least one epoxy group in the molecule, and examples thereof include bisphenol type epoxy resins such as bisphenol A type, bisphenol F type, bisphenol E type, bisphenol B type, bisphenol S type, bisphenol AD type, bisphenol AP type, bisphenol BP type, etc.; novolac type epoxy resins such as phenol novolac type and cresol novolac type; resorcinol type epoxy resins; aromatic epoxy resins such as trisphenolmethane triglycidyl ether; naphthalene type epoxy resins; fluorene type epoxy resins; and biphenyl type epoxy resins. The epoxy resin having a hydroxyl group of the present invention is, for example, the above-mentioned epoxy resin which further has a hydroxyl group.
水酸基を有するエポキシ樹脂は、好ましくは水酸基を有するビスフェノールA型エポキシ樹脂であり、より好ましくは下記一般式(A-1)で表される化合物である。 The epoxy resin having a hydroxyl group is preferably a bisphenol A type epoxy resin having a hydroxyl group, and more preferably a compound represented by the following general formula (A-1).
Xは、下記一般式(A-2)で表されるビスフェノール構造であり、
nは繰り返し数である。)
X is a bisphenol structure represented by the following general formula (A-2):
n is the number of repetitions.)
R1およびR2は、それぞれ独立に、炭素原子数1~4のアルキル基又は炭素原子数1~4のアルコキシ基であり、
n1およびn2は、それぞれ独立に、0~4の範囲の整数であり、
Lは、単結合、炭素原子数1~6のアルキレン基、エーテル結合(-O-)、ケトン結合(-C(=O)-)、エステル結合(-C(=O)O-、スルフィド結合(-S-)又はスルホニル結合(-SO2-)である。)
R 1 and R 2 each independently represent an alkyl group having 1 to 4 carbon atoms or an alkoxy group having 1 to 4 carbon atoms;
n1 and n2 each independently represent an integer ranging from 0 to 4;
L is a single bond, an alkylene group having 1 to 6 carbon atoms, an ether bond (-O-), a ketone bond (-C(=O)-), an ester bond (-C(=O)O-, a sulfide bond (-S-) or a sulfonyl bond (-SO 2 -).
一般式(A-2)において、R1が複数の場合、複数のR1は互いに同じでもよく、異なってもよい。同様に、R2が複数の場合、複数のR2は互いに同じでもよく、異なってもよい。 In the general formula (A-2), when there are multiple R 1 's, the multiple R 1 's may be the same as or different from each other. Similarly, when there are multiple R 2 's, the multiple R 2 's may be the same as or different from each other.
水酸基を有するエポキシ樹脂が例えば前記一般式(A-1)で表される化合物である場合、一般式(A-1)で表される化合物のエポキシ基と脂肪酸とが反応して、末端にアルキル基が導入される。 When the epoxy resin having a hydroxyl group is, for example, a compound represented by the above general formula (A-1), the epoxy group of the compound represented by general formula (A-1) reacts with a fatty acid to introduce an alkyl group at the terminal.
水酸基を有するエポキシ樹脂のエポキシ当量は、好ましくは300~3,000g/当量の範囲であり、より好ましくは450~3,000g/当量の範囲であり、より好ましくは600~3,000g/当量の範囲である。
尚、エポキシ当量はエポキシ基1mol量を得るのに必要なエポキシ樹脂の重量であり、実施例に記載の方法により測定する。
The epoxy equivalent of the hydroxyl group-containing epoxy resin is preferably in the range of 300 to 3,000 g/equivalent, more preferably in the range of 450 to 3,000 g/equivalent, and more preferably in the range of 600 to 3,000 g/equivalent.
The epoxy equivalent is the weight of an epoxy resin required to obtain 1 mol of epoxy groups, and is measured by the method described in the examples.
本発明では、使用する水酸基を有するエポキシ樹脂の平均のエポキシ当量が1,000~3,000g/当量の範囲に入るように用いるとよい。例えば2種類の水酸基を有するエポキシ樹脂を用いる場合、(エポキシ樹脂の合計重量)/{(エポキシ樹脂1の使用量/エポキシ樹脂1のエポキシ当量)+(エポキシ樹脂2の使用量/エポキシ樹脂2のエポキシ当量)}で算出される平均エポキシ当量が1,000~3,000の範囲に入るように使用するとよい。 In the present invention, it is recommended that the epoxy resins having hydroxyl groups used have an average epoxy equivalent in the range of 1,000 to 3,000 g/equivalent. For example, when using epoxy resins having two types of hydroxyl groups, it is recommended that they are used so that the average epoxy equivalent calculated by (total weight of epoxy resins)/{(amount of epoxy resin 1 used/epoxy equivalent of epoxy resin 1)+(amount of epoxy resin 2 used/epoxy equivalent of epoxy resin 2)} is in the range of 1,000 to 3,000.
水酸基を有するエポキシ樹脂は市販品を用いてもよく、当該市販品としてはEPICLON 1055、EPICLON 3040、EPICLON 3050、EPICLON 4050、EPICLON 7050(いずれもDIC株式会社製)、LAPOX P-62、LAPOX P-5(いずれもATUL INDIA社製)、E-20(エポキシ当量455~555g/Eq)、E-21(エポキシ当量480~580g/Eq)、E-42(エポキシ当量230~280g/Eq)、E-44(エポキシ当量210~240g/Eq)、E-51(エポキシ当量184~194g/Eq)(いずれもシノペック社製)等が挙げられる。 The epoxy resin having a hydroxyl group may be a commercially available product, such as EPICLON 1055, EPICLON 3040, EPICLON 3050, EPICLON 4050, EPICLON 7050 (all manufactured by DIC Corporation), LAPOX P-62, LAPOX P-5 (all manufactured by ATUL INDIA), E-20 (epoxy equivalent: 455-555 g/Eq), E-21 (epoxy equivalent: 480-580 g/Eq), E-42 (epoxy equivalent: 230-280 g/Eq), E-44 (epoxy equivalent: 210-240 g/Eq), E-51 (epoxy equivalent: 184-194 g/Eq) (all manufactured by Sinopec Corporation).
(シラノール基を有するシリコーン化合物)
シラノール基を有するシリコーン化合物は、前記シラノール基がエポキシ樹脂の水酸基と反応して、エポキシ樹脂同士を架橋する架橋構造を形成することができる。
(Silicone Compound Having Silanol Group)
In the silicone compound having a silanol group, the silanol group reacts with a hydroxyl group of an epoxy resin, and thereby a crosslinked structure is formed that crosslinks epoxy resins together.
シラノール基を有するシリコーン化合物は、好ましくはシラノール基を2以上有するシリコーン化合物であり、より好ましくはR3SiO1/2単位(M単位)、SiO4/2単位(Q単位)、R2SiO2/2単位(D単位)およびRSiO3/2単位(T単位)(Rは炭素原子数1~6のアルキル基、炭素原子数1~6のアルコキシ基、フェニル基又は水酸基である)から選択される1以上のシロキシ単位を有するシリコーン化合物であって、2以上のシラノール基を有する化合物である。 The silicone compound having a silanol group is preferably a silicone compound having two or more silanol groups, and more preferably a silicone compound having one or more siloxy units selected from R 3 SiO 1/2 units (M units), SiO 4/2 units (Q units), R 2 SiO 2/2 units (D units) and RSiO 3/2 units (T units) (R is an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, a phenyl group or a hydroxyl group), and is a compound having two or more silanol groups.
シラノール基を有するシリコーン化合物が、R3SiO1/2単位(M単位)、SiO4/2単位(Q単位)、R2SiO2/2単位(D単位)およびRSiO3/2単位(T単位)(Rは炭素原子数1~6のアルキル基、炭素原子数1~6のアルコキシ基、フェニル基又は水酸基である)から選択される1以上のシロキシ単位を有するシリコーン化合物であって、2以上のシラノール基を有する化合物である場合、好ましくは前記シロキシ単位中のRにおける前記フェニル基の割合が50mol%以上である。 When the silicone compound having a silanol group is a silicone compound having one or more siloxy units selected from R 3 SiO 1/2 units (M units), SiO 4/2 units (Q units), R 2 SiO 2/2 units (D units) and RSiO 3/2 units (T units) (R is an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, a phenyl group or a hydroxyl group) and has two or more silanol groups, the proportion of the phenyl groups in R in the siloxy units is preferably 50 mol % or more.
前記シロキシ単位中のRにおけるフェニル基の割合を50mol%以上とすることで、耐熱性を向上させることができる。
シロキシ単位中のフェニル基の割合はフーリエ変換赤外線分光法(FTIR)で確認することができ、シロキシ単位中のフェニル基の割合の上限は例えば80mol%である。
By making the ratio of phenyl groups in R in the siloxy unit 50 mol % or more, it is possible to improve heat resistance.
The proportion of phenyl groups in the siloxy units can be confirmed by Fourier transform infrared spectroscopy (FTIR), and the upper limit of the proportion of phenyl groups in the siloxy units is, for example, 80 mol %.
シラノール基を有するシリコーン化合物は市販品を用いることができ、当該市販品としてはDOWSIL RSN-6018、DOWSIL RSN-0220、DOWSIL 3040(いずれもダウケミカル社製)等が挙げられる。
尚、上記市販品におけるシロキシ単位中のRにおけるフェニル基の割合は、DOWSIL RSN-6018で73mol%、DOWSIL RSN-0220で67mol%、DOWSIL 3040で50mol%である。
As the silicone compound having a silanol group, a commercially available product can be used, and examples of the commercially available product include DOWSIL RSN-6018, DOWSIL RSN-0220, and DOWSIL 3040 (all manufactured by The Dow Chemical Company).
The proportion of phenyl groups in R in the siloxy unit in the above commercially available products is 73 mol % for DOWSIL RSN-6018, 67 mol % for DOWSIL RSN-0220, and 50 mol % for DOWSIL 3040.
(脂肪酸)
脂肪酸は、好ましくは炭素原子数11~22の飽和脂肪酸であり、より好ましくは炭素原子数11~22の直鎖飽和脂肪酸であり、さらに好ましくは炭素原子数11~18の直鎖飽和脂肪酸である。
(fatty acid)
The fatty acid is preferably a saturated fatty acid having 11 to 22 carbon atoms, more preferably a straight-chain saturated fatty acid having 11 to 22 carbon atoms, and even more preferably a straight-chain saturated fatty acid having 11 to 18 carbon atoms.
脂肪酸は、1種単独で使用してもよく、2種以上を併用してもよい。 Fatty acids may be used alone or in combination of two or more.
脂肪酸の具体例としては、ウンデシル酸、ラウリン酸、トリデシル酸、ミリスチン酸、ペンタデシル酸、パルミチン酸、マルガリン酸、ステアリン酸、ノナデシル酸、アラキジン酸、ヘンイコシル酸、ベヘン酸等が挙げられる。 Specific examples of fatty acids include undecylic acid, lauric acid, tridecylic acid, myristic acid, pentadecylic acid, palmitic acid, margaric acid, stearic acid, nonadecylic acid, arachidic acid, heneicosylic acid, and behenic acid.
反応成分として、脂肪酸を含有する油を使用してもよい。
上記脂としては、水添ヤシ油脂肪酸、水添パーム核油脂肪酸、水添パーム油脂肪酸、水添オリーブ油脂肪酸、水添ヒマシ油脂肪酸、水添ナタネ油脂肪酸等が挙げられる。これらは、それぞれヤシ、パーム核、パーム、オリーブ、ヒマシ、ナタネから得られる油剤を加水分解及び水素添加して得られるものであり、いずれも2種以上の長鎖脂肪族モノカルボン酸の混合物である。
Oils containing fatty acids may also be used as reaction components.
Examples of the fats and oils include hydrogenated coconut oil fatty acids, hydrogenated palm kernel oil fatty acids, hydrogenated palm oil fatty acids, hydrogenated olive oil fatty acids, hydrogenated castor oil fatty acids, hydrogenated rapeseed oil fatty acids, etc. These are obtained by hydrolyzing and hydrogenating oils obtained from coconut, palm kernel, palm, olive, castor, and rapeseed, respectively, and all of them are mixtures of two or more types of long-chain aliphatic monocarboxylic acids.
本発明のシリコーン変性エポキシ樹脂は、水酸基を有するエポキシ樹脂と、シラノール基を有するシリコーン化合物と、脂肪酸とを反応成分とするとよく、本発明の効果を損なわない範囲で、これら以外の成分をさらに用いてもよい。
本発明のシリコーン変性エポキシ樹脂は、好ましくは水酸基を有するエポキシ樹脂と、シラノール基を有するシリコーン化合物と、脂肪酸との反応物である。
The silicone-modified epoxy resin of the present invention preferably contains as reaction components an epoxy resin having a hydroxyl group, a silicone compound having a silanol group, and a fatty acid, and may further contain components other than these as long as the effects of the present invention are not impaired.
The silicone-modified epoxy resin of the present invention is preferably a reaction product of an epoxy resin having a hydroxyl group, a silicone compound having a silanol group, and a fatty acid.
シラノール基を有するシリコーン化合物の配合割合は、水酸基を有するエポキシ樹脂100質量部に対して、例えば50~100質量部の範囲であり、好ましくは60~90質量部の範囲であり、より好ましくは70~85質量部の範囲である。 The mixing ratio of the silicone compound having a silanol group is, for example, in the range of 50 to 100 parts by mass, preferably in the range of 60 to 90 parts by mass, and more preferably in the range of 70 to 85 parts by mass, per 100 parts by mass of the epoxy resin having a hydroxyl group.
脂肪酸の配合割合は、水酸基を有するエポキシ樹脂100質量部に対して、例えば1~10質量部の範囲であり、好ましくは1~7質量部の範囲であり、より好ましくは1~5質量部の範囲であり、さらに好ましくは3~4質量部の範囲である。 The mixing ratio of the fatty acid is, for example, in the range of 1 to 10 parts by mass, preferably in the range of 1 to 7 parts by mass, more preferably in the range of 1 to 5 parts by mass, and even more preferably in the range of 3 to 4 parts by mass, per 100 parts by mass of the epoxy resin having a hydroxyl group.
反応成分における各成分の配合割合は、好ましくは水酸基を有するエポキシ樹脂を30~60質量部の範囲とし、シラノール変性シリコーン化合物が20~50質量部の範囲とし、脂肪酸を1~5質量部の範囲とする。 The proportions of each component in the reaction components are preferably in the range of 30 to 60 parts by mass of epoxy resin having hydroxyl groups, 20 to 50 parts by mass of silanol-modified silicone compound, and 1 to 5 parts by mass of fatty acid.
水酸基を有するエポキシ樹脂、シラノール基を有するシリコーン化合物および脂肪酸の反応は公知の方法で実施でき、例えば水酸基を有するエポキシ樹脂、シラノール基を有するシリコーン化合物および脂肪酸を含む反応系を加熱することにより本発明のシリコーン変性エポキシ樹脂を調製することができる。また、例えば水酸基を有するエポキシ樹脂、シラノール基を有するシリコーン化合物とを反応させてシリコーン変性エポキシ樹脂とし、さらに脂肪酸を反応させることによっても本発明のシリコーン変性エポキシ樹脂を調製することができる。 The reaction of an epoxy resin having a hydroxyl group, a silicone compound having a silanol group, and a fatty acid can be carried out by a known method. For example, the silicone-modified epoxy resin of the present invention can be prepared by heating a reaction system containing an epoxy resin having a hydroxyl group, a silicone compound having a silanol group, and a fatty acid. The silicone-modified epoxy resin of the present invention can also be prepared by reacting an epoxy resin having a hydroxyl group with a silicone compound having a silanol group to form a silicone-modified epoxy resin, and then reacting the silicone-modified epoxy resin with a fatty acid.
[コーティング組成物]
本発明のコーティング組成物は本発明のシリコーン変性エポキシ樹脂および顔料を含有し、例えば溶媒に溶解して使用される。
[Coating composition]
The coating composition of the present invention contains the silicone-modified epoxy resin of the present invention and a pigment, and is used, for example, by dissolving it in a solvent.
本発明のコーティング組成物の溶媒としては、例えばメタノール、エタノール、プロパノール、n-ブタノール、iso-ブタノール、tert-ブタノール、3-メトキシブタノール等のアルコール溶媒;エチレングリコール、プロピレングリコール等のグリコール溶媒;エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、エチレングリコールジメチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールジブチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノプロピルエーテル、プロピレングリコールモノブチルエーテル、プロピレングリコールジメチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールジメチルエーテル等のグリコールエーテル溶媒;エチレングリコールモノエチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノブチルエーテルアセテート等のグリコールエステル溶媒;アセトン、メチルエチルケトン、メチルイソブチルケトン等のケトン溶媒;ジメチルホルムアミド、ジメチルアセトアミド、N-メチルピロリドン、ジメチルスルホキシド、テトラヒドロフラン等が挙げられる。
溶媒は1種単独で用いてもよく、2種以上を併用してもよい。
Examples of the solvent for the coating composition of the present invention include alcohol solvents such as methanol, ethanol, propanol, n-butanol, iso-butanol, tert-butanol, and 3-methoxybutanol; glycol solvents such as ethylene glycol and propylene glycol; glycol ether solvents such as ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, ethylene glycol dimethyl ether, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol dibutyl ether, propylene glycol monomethyl ether, propylene glycol monopropyl ether, propylene glycol monobutyl ether, propylene glycol dimethyl ether, dipropylene glycol monomethyl ether, and dipropylene glycol dimethyl ether; glycol ester solvents such as ethylene glycol monoethyl ether acetate, propylene glycol monomethyl ether acetate, diethylene glycol monoethyl ether acetate, and diethylene glycol monobutyl ether acetate; ketone solvents such as acetone, methyl ethyl ketone, and methyl isobutyl ketone; dimethylformamide, dimethylacetamide, N-methylpyrrolidone, dimethylsulfoxide, and tetrahydrofuran.
The solvent may be used alone or in combination of two or more kinds.
本発明のコーティング組成物では、溶媒を例えば固形分濃度が10~80質量%となるように使用するとよく、好ましくは固形分濃度が50~70質量%となるように使用する。 In the coating composition of the present invention, the solvent is used so that the solids concentration is, for example, 10 to 80 mass %, and preferably so that the solids concentration is 50 to 70 mass %.
本発明のコーティング組成物は、十分な顔料相溶性を担保することができる。
上記顔料には例えば「体質顔料」と呼ばれるものと「防錆顔料」と呼ばれるものがあり、体質顔料とは、樹脂組成物の改質(増量、着色性、乾燥性等)を目的として配合される顔料であり、防錆顔料とは、樹脂組成物の耐食性を高めるために配合される顔料である。
The coating composition of the present invention can ensure sufficient pigment compatibility.
The above pigments include, for example, those called "extender pigments" and those called "anti-rust pigments." Extender pigments are pigments that are blended with the resin composition for the purpose of modifying the resin composition (increasing the amount, coloring properties, drying properties, etc.), while anti-rust pigments are pigments that are blended with the resin composition to increase the corrosion resistance.
体質顔料の具体例としては、硫酸バリウム、炭酸バリウム、炭酸カルシウム、酸化マグネシウム、炭酸マグネシウム、水酸化マグネシウム、チタン酸バリウム、水酸化カルシウム、亜硫酸カルシウム、硫酸カルシウム、酸化カルシウム、ケイ酸カルシウム、酸化チタン、シリカ、ゼオライト、タルク等が挙げられる。 Specific examples of extender pigments include barium sulfate, barium carbonate, calcium carbonate, magnesium oxide, magnesium carbonate, magnesium hydroxide, barium titanate, calcium hydroxide, calcium sulfite, calcium sulfate, calcium oxide, calcium silicate, titanium oxide, silica, zeolite, and talc.
防錆顔料の具体例としては、カルシウム、ストロンチウム、バリウム、亜鉛、アルミニウムおよびマグネシウムからなる群から選択される1種以上の金属のリン酸塩、リン酸水素塩、リン珪酸塩、ホウ珪酸塩、ホウ酸塩、メタホウ酸塩、モリブデン酸塩、クロム酸塩、ポリリン酸塩等が挙げられる。 Specific examples of anti-rust pigments include phosphates, hydrogen phosphates, phosphosilicates, borosilicates, borates, metaborates, molybdates, chromates, polyphosphates, etc., of one or more metals selected from the group consisting of calcium, strontium, barium, zinc, aluminum, and magnesium.
本発明のコーティング組成物は、体質顔料および防錆顔料の少なくとも一方を含有すればよい。
コーティング組成物が含有する体質顔料は1種単独でもよく、2種以上でもよい。同様に、コーティング組成物が含有する防錆顔料は1種単独でもよく、2種以上でもよい。
The coating composition of the present invention may contain at least one of an extender pigment and an anti-rust pigment.
The coating composition may contain one kind of extender pigment or two or more kinds of extender pigments. Similarly, the coating composition may contain one kind of rust-preventive pigment or two or more kinds of extender pigments.
本発明のコーティング組成物が体質顔料および/又は防錆顔料を含有する場合、体質顔料および防錆顔料の合計含有量(顔料の含有量)は、本発明のシリコーン変性エポキシ樹脂100質量部に対して、例えば20~80質量部の範囲であり、好ましくは30~70質量部の範囲である。 When the coating composition of the present invention contains an extender pigment and/or an anti-rust pigment, the total content of the extender pigment and the anti-rust pigment (pigment content) is, for example, in the range of 20 to 80 parts by mass, and preferably in the range of 30 to 70 parts by mass, per 100 parts by mass of the silicone-modified epoxy resin of the present invention.
(その他成分)
本発明のコーティング組成物は、硬化剤を使用しない一液型塗料の形態であってもよいし、硬化剤を使用する多液型塗料の形態であってもよい。
(Other ingredients)
The coating composition of the present invention may be in the form of a one-liquid paint that does not use a curing agent, or in the form of a multi-liquid paint that uses a curing agent.
前記硬化剤としては、ポリイソシアネート化合物、メラミン化合物、エポキシ化合物、オキサゾリン化合物、カルボジイミド化合物等が挙げられる。 The curing agent may be a polyisocyanate compound, a melamine compound, an epoxy compound, an oxazoline compound, a carbodiimide compound, or the like.
本発明のコーティング組成物は、必要に応じて、金属ドライヤー(樹脂中の炭素炭素二重結合の酸化重合を促進する役割を担う)、ワックス、界面活性剤、安定剤、流動調整剤、染料、レベリング剤、レオロジーコントロール剤、紫外線吸収剤、酸化防止剤、可塑剤、帯電防止剤、消泡剤、粘度調整剤、耐光安定剤、耐候安定剤、耐熱安定剤、顔料分散剤、熱硬化性樹脂、熱可塑性樹脂等の各種添加剤をさらに含有してもよい。これらは公知のものが使用できる。 The coating composition of the present invention may further contain various additives, such as metal driers (which play a role in promoting the oxidative polymerization of carbon-carbon double bonds in the resin), waxes, surfactants, stabilizers, flow regulators, dyes, leveling agents, rheology control agents, UV absorbers, antioxidants, plasticizers, antistatic agents, defoamers, viscosity modifiers, light resistance stabilizers, weather resistance stabilizers, heat resistance stabilizers, pigment dispersants, thermosetting resins, and thermoplastic resins, as necessary. Publicly known additives can be used.
本発明のコーティング組成物は、被塗装物となる物品に、直接塗装してもよいし、被塗装物に適合したプライマー塗材を塗装してから、本発明のコーティング組成物を塗装してもよい。 The coating composition of the present invention may be applied directly to the object to be coated, or a primer coating material suitable for the object to be coated may be applied first, and then the coating composition of the present invention may be applied.
被塗装物となる物品の材質としては、鉄、銅、亜鉛、アルミニウム、マグネシウム等の各種金属およびこれらの合金;ポリカーボネート(PC)、アクリロニトリル-ブタジエン-スチレン共重合体(ABS)、PC-ABSのポリマーアロイ、ポリメチルメタクリレート(PMMA)、ポリエチレンテレフタレート(PET)、ポリアミド(PA)、ポリプロピレン(PP)、ガラス繊維、炭素繊維等のフィラーを入れた繊維強化プラスチック(FRP)等のプラスチック基材;ガラスなどが挙げられる。 Materials of the items to be coated include various metals such as iron, copper, zinc, aluminum, magnesium, etc. and their alloys; plastic substrates such as polycarbonate (PC), acrylonitrile-butadiene-styrene copolymer (ABS), PC-ABS polymer alloy, polymethyl methacrylate (PMMA), polyethylene terephthalate (PET), polyamide (PA), polypropylene (PP), fiberglass, carbon fiber, etc., and fiber-reinforced plastic (FRP) containing fillers; glass, etc.
本発明のコーティング組成物の塗装方法としては、公知の方法が採用でき、塗装する物品により異なるが、例えば、グラビアコーター、ロールコーター、コンマコーター、ナイフコーター、エアナイフコーター、カーテンコーター、キスコーター、シャワーコーター、ホイーラーコーター、スピンコーター、ディッピング、スクリーン印刷、スプレー、アプリケーター、バーコーター、刷毛、ローラー等の方法が挙げられる。 Any known method can be used to apply the coating composition of the present invention, and the method will vary depending on the article to be coated. Examples include methods using a gravure coater, roll coater, comma coater, knife coater, air knife coater, curtain coater, kiss coater, shower coater, wheeler coater, spin coater, dipping, screen printing, spraying, applicator, bar coater, brush, roller, etc.
本発明のコーティング組成物の塗装後の硬化方法についても公知の方法が採用できる。
硬化剤の有無や目的とする膜厚等によって条件は適宜調整されるが、例えば120~350℃程度の温度範囲で一定時間加熱硬化させる方法が採用できる。
As a method for curing the coating composition of the present invention after application, a known method can be used.
The conditions are adjusted as appropriate depending on the presence or absence of a curing agent, the desired film thickness, and the like, but for example, a method of heating and curing for a certain period of time within a temperature range of about 120 to 350° C. can be used.
本発明のコーティング組成物の硬化塗膜を有する物品としては、例えば、テレビ、冷蔵庫、洗濯機、エアコン等の家電製品の筐体および内部部品;スマートフォン、携帯電話、タブレット端末、パソコン、デジタルカメラ、ゲーム機等の電子機器の筐体および内部部品;プリンター、ファクシミリ等のOA機器の筐体;レジャースポーツ用品;自動車、船舶、鉄道車輌等の各種車輌の内外装材;産業機械;外壁、屋根、ガラス、化粧板等の建築物の内外装材;防音壁、排水溝等の土木部材などが挙げられる。 Examples of articles having a cured coating film of the coating composition of the present invention include the housings and internal parts of home appliances such as televisions, refrigerators, washing machines, and air conditioners; the housings and internal parts of electronic devices such as smartphones, mobile phones, tablet devices, personal computers, digital cameras, and game consoles; the housings of office equipment such as printers and facsimiles; leisure and sports goods; interior and exterior materials for various vehicles such as automobiles, ships, and railway cars; industrial machinery; interior and exterior materials for buildings such as exterior walls, roofs, glass, and decorative panels; and civil engineering materials such as soundproofing walls and drainage ditches.
以下、実施例と比較例とにより、本発明を具体的に説明する。
尚、本発明は下記実施例に限定されない。
The present invention will be specifically described below with reference to examples and comparative examples.
However, the present invention is not limited to the following examples.
本願実施例において、酸価、水酸基価およびエポキシ当量の値は、下記方法により評価した値である。
[酸価の測定方法]
JIS K0070-1992に準じた方法により測定した。
[水酸基価の測定方法]
JIS K0070-1992に準じた方法により測定した。
[エポキシ当量の測定方法]
JIS K7236-2009に準じた方法により測定した。
In the examples of the present application, the acid value, hydroxyl value and epoxy equivalent were evaluated by the following methods.
[Method for measuring acid value]
The measurement was performed according to a method in accordance with JIS K0070-1992.
[Method for measuring hydroxyl value]
The measurement was performed according to a method in accordance with JIS K0070-1992.
[Method for measuring epoxy equivalent]
Measurement was performed according to a method in accordance with JIS K7236-2009.
本願実施例において、エポキシ樹脂の数平均分子量および重量平均分子量は、GPC測定に基づきポリスチレン換算した値であり、測定条件は下記の通りである。
[GPC測定条件]
測定装置:東ソー株式会社製高速GPC装置「HLC-8320GPC」
カラム:東ソー株式会社製「TSK GURADCOLUMN SuperHZ-L」+東ソー株式会社製「TSK gel SuperHZM-M」+東ソー株式会社製「TSK gel SuperHZM-M」+東ソー株式会社製「TSK gel SuperHZ-2000」+東ソー株式会社製「TSK gel SuperHZ-2000」
検出器:RI(示差屈折計)
データ処理:東ソー株式会社製「EcoSEC Data Analysis バージョン1.07」
カラム温度:40℃
展開溶媒:テトラヒドロフラン
流速:0.35mL/分
測定試料:試料7.5mgを10mlのテトラヒドロフランに溶解し、得られた溶液をマイクロフィルターでろ過したものを測定試料とした。
試料注入量:20μl
標準試料:前記「HLC-8320GPC」の測定マニュアルに準拠して、分子量が既知の下記の単分散ポリスチレンを用いた。
In the examples of the present application, the number average molecular weight and weight average molecular weight of the epoxy resin are values calculated in terms of polystyrene based on GPC measurement, and the measurement conditions are as follows.
[GPC measurement conditions]
Measurement equipment: Tosoh Corporation's high-speed GPC equipment "HLC-8320GPC"
Column: "TSK GURADCLUMN SuperHZ-L" manufactured by Tosoh Corporation + "TSK gel SuperHZM-M" manufactured by Tosoh Corporation + "TSK gel SuperHZM-M" manufactured by Tosoh Corporation + "TSK gel SuperHZ-2000" manufactured by Tosoh Corporation + "TSK gel SuperHZ-2000" manufactured by Tosoh Corporation
Detector: RI (differential refractometer)
Data processing: Tosoh Corporation's "EcoSEC Data Analysis Version 1.07"
Column temperature: 40°C
Developing solvent: tetrahydrofuran Flow rate: 0.35 mL/min Measurement sample: 7.5 mg of a sample was dissolved in 10 ml of tetrahydrofuran, and the resulting solution was filtered through a microfilter to prepare a measurement sample.
Sample injection volume: 20 μl
Standard sample: In accordance with the measurement manual for the above-mentioned "HLC-8320GPC," the following monodisperse polystyrene with known molecular weight was used.
(単分散ポリスチレン)
東ソー株式会社製「A-300」
東ソー株式会社製「A-500」
東ソー株式会社製「A-1000」
東ソー株式会社製「A-2500」
東ソー株式会社製「A-5000」
東ソー株式会社製「F-1」
東ソー株式会社製「F-2」
東ソー株式会社製「F-4」
東ソー株式会社製「F-10」
東ソー株式会社製「F-20」
東ソー株式会社製「F-40」
東ソー株式会社製「F-80」
東ソー株式会社製「F-128」
東ソー株式会社製「F-288」
(Monodisperse polystyrene)
"A-300" manufactured by Tosoh Corporation
"A-500" manufactured by Tosoh Corporation
"A-1000" manufactured by Tosoh Corporation
"A-2500" manufactured by Tosoh Corporation
"A-5000" manufactured by Tosoh Corporation
"F-1" manufactured by Tosoh Corporation
"F-2" manufactured by Tosoh Corporation
"F-4" manufactured by Tosoh Corporation
"F-10" manufactured by Tosoh Corporation
"F-20" manufactured by Tosoh Corporation
"F-40" manufactured by Tosoh Corporation
"F-80" manufactured by Tosoh Corporation
"F-128" manufactured by Tosoh Corporation
"F-288" manufactured by Tosoh Corporation
(合成実施例1:アルキル基を有するシリコーン変性エポキシ樹脂A-1の調製)
攪拌機、温度計、温度調節装置および窒素導入管を装備した4つ口フラスコに、ビスフェノールA型エポキシ樹脂「EPICLON 3050」(DIC株式会社製、エポキシ当量740~860g/Eq)17.0質量部、ビスフェノールA型エポキシ樹脂「EPICLON 7050」(DIC株式会社製、エポキシ当量1750~2100g/Eq)11.0質量部、ラウリン酸(花王株式会社製)1.0質量部、シラノール変性シリコーン化合物「DOWSIL RSN 6018」(ダウコーニング社製)23.0質量部および溶媒としてオルソキシレン16.0質量部を仕込んだ。これらを溶融、攪拌しながら130~140℃まで昇温し、同温度を維持して脱水しながら3~4時間反応させた。反応終了後、減圧してオルソキシレンを留去し、メトキシプロピルアセテートで希釈して、末端にアルキル基を有するシリコーン変性エポキシ樹脂A-1(不揮発分51質量%)を得た。
(Synthesis Example 1: Preparation of Silicone-Modified Epoxy Resin A-1 Having Alkyl Groups)
A four-neck flask equipped with a stirrer, a thermometer, a temperature controller and a nitrogen inlet tube was charged with 17.0 parts by mass of bisphenol A type epoxy resin "EPICLON 3050" (DIC Corporation, epoxy equivalent 740-860 g/Eq), 11.0 parts by mass of bisphenol A type epoxy resin "EPICLON 7050" (DIC Corporation, epoxy equivalent 1750-2100 g/Eq), 1.0 parts by mass of lauric acid (Kao Corporation), 23.0 parts by mass of silanol-modified silicone compound "DOWSIL RSN 6018" (Dow Corning Corporation) and 16.0 parts by mass of ortho-xylene as a solvent. These were melted and heated to 130-140°C while stirring, and reacted for 3-4 hours while maintaining the same temperature and dehydrating. After the reaction was completed, the pressure was reduced to remove ortho-xylene, and the residue was diluted with methoxypropyl acetate to obtain a silicone-modified epoxy resin A-1 (non-volatile content 51% by mass) having alkyl groups at the ends.
得られたシリコーン変性エポキシ樹脂A-1の物性は以下の通りであった:
酸価 :4.9mgKOH/g
エポキシ当量 :2,000g/Eq
数平均分子量 :5,000
重量平均分子量:35,000
分解温度 :420℃
The physical properties of the obtained silicone modified epoxy resin A-1 were as follows:
Acid value: 4.9 mg KOH / g
Epoxy equivalent: 2,000g/Eq
Number average molecular weight: 5,000
Weight average molecular weight: 35,000
Decomposition temperature: 420℃
(合成比較例1:シリコーン変性エポキシ樹脂B-1の調製)
攪拌機、温度計、温度調節装置及び窒素導入管を装備した4つ口フラスコに、ビスフェノールA型エポキシ樹脂「EPICLON 1055」(DIC株式会社製、エポキシ当量450~500g/Eq)15.0質量部、シラノール変性シリコーン化合物「DOWSIL RSN 6018」(ダウコーニング社製)25.0質量部および溶媒としてシクロヘキサノン/酢酸ブチル混合溶媒(シクロヘキサノン:酢酸ブチル=50:50(質量))25.0質量部を仕込んだ。これらを溶融、攪拌しながら75℃まで昇温し、触媒としてナフテン酸亜鉛を0.05g質量部添加して、125℃まで昇温し、同温度を維持して脱水しながら5時間反応させてシリコーン変性エポキシ樹脂B-1(不揮発分50質量%)を得た。
(Synthesis Comparative Example 1: Preparation of Silicone Modified Epoxy Resin B-1)
A four-neck flask equipped with a stirrer, a thermometer, a temperature controller, and a nitrogen inlet tube was charged with 15.0 parts by mass of bisphenol A type epoxy resin "EPICLON 1055" (DIC Corporation, epoxy equivalent 450 to 500 g/Eq), 25.0 parts by mass of silanol-modified silicone compound "DOWSIL RSN 6018" (Dow Corning Corporation), and 25.0 parts by mass of a cyclohexanone/butyl acetate mixed solvent (cyclohexanone: butyl acetate = 50: 50 (mass)) as a solvent. These were melted and heated to 75 ° C. while stirring, 0.05 g parts by mass of zinc naphthenate was added as a catalyst, the temperature was raised to 125 ° C., and the reaction was continued for 5 hours while maintaining the same temperature and dehydrating to obtain a silicone-modified epoxy resin B-1 (non-volatile content 50% by mass).
得られたシリコーン変性エポキシ樹脂B-1の物性は以下の通りであった:
エポキシ当量 :475g/Eq
数平均分子量 :1,200
重量平均分子量:15,000
分解温度 :360℃
The physical properties of the resulting silicone-modified epoxy resin B-1 were as follows:
Epoxy equivalent: 475g/Eq
Number average molecular weight: 1,200
Weight average molecular weight: 15,000
Decomposition temperature: 360℃
(合成比較例2:シリコーン変性エポキシ樹脂B-2の調製)
攪拌機、温度計、温度調節装置および窒素導入管を装備した4つ口フラスコに、ビスフェノールA型エポキシ樹脂(DIC株式会社製「EPICLON 3050」)17.0質量部、ビスフェノールA型エポキシ樹脂(DIC株式会社製「EPICLON 7050」)11.0質量部、シラノール変性シリコーン化合物(ダウコーニング社製「DOWSIL RSN 6018」)24.0質量部および溶媒としてオルソキシレン16.0質量部を仕込んだ。これらを溶融、攪拌しながら130~140℃まで昇温し、同温度を維持して脱水しながら3~4時間反応させた。反応終了後、減圧してオルソキシレンを留去し、メトキシプロピルアセテートで希釈して、シリコーン変性エポキシ樹脂B-2(不揮発分50質量%)を得た。
(Synthesis Comparative Example 2: Preparation of Silicone Modified Epoxy Resin B-2)
A four-neck flask equipped with a stirrer, a thermometer, a temperature controller and a nitrogen inlet tube was charged with 17.0 parts by mass of bisphenol A type epoxy resin (DIC Corporation "EPICLON 3050"), 11.0 parts by mass of bisphenol A type epoxy resin (DIC Corporation "EPICLON 7050"), 24.0 parts by mass of a silanol-modified silicone compound (Dow Corning Corporation "DOWSIL RSN 6018") and 16.0 parts by mass of ortho-xylene as a solvent. These were melted and heated to 130-140°C while stirring, and reacted for 3-4 hours while maintaining the same temperature and dehydrating. After the reaction was completed, the pressure was reduced to distill off ortho-xylene, and the mixture was diluted with methoxypropyl acetate to obtain a silicone-modified epoxy resin B-2 (non-volatile content 50% by mass).
得られたシリコーン変性エポキシ樹脂B-2の物性は以下の通りであった:
エポキシ当量 :1,996g/Eq
数平均分子量 :2,500
重量平均分子量:10,000
分解温度 :300℃
The physical properties of the obtained silicone modified epoxy resin B-2 were as follows:
Epoxy equivalent: 1,996g/Eq
Number average molecular weight: 2,500
Weight average molecular weight: 10,000
Decomposition temperature: 300℃
(実施例1および比較例1-2:塗料組成物の調製、塗膜の形成および評価)
製造したシリコーン変性エポキシ樹脂を用いて表1および2に示す配合パターンで塗料を調製し、調製した塗料組成物を表1および2に示す基材に塗布して塗膜を形成した。得られた塗膜について以下の評価を行った。結果を表1および2に示す。
(Example 1 and Comparative Examples 1-2: Preparation of Coating Composition, Formation of Coating Film, and Evaluation)
Using the silicone-modified epoxy resins produced, coating compositions were prepared according to the blending patterns shown in Tables 1 and 2, and the prepared coating compositions were applied to the substrates shown in Tables 1 and 2 to form coating films. The resulting coating films were evaluated as follows. The results are shown in Tables 1 and 2.
尚、上記塗膜の形成は、具体的には、塗料組成物を膜厚20μmとなるようにバーコーターで基材上に塗装し、焼き付け270℃で10分間加熱処理することで塗膜を形成した。塗膜の評価は室温25℃で1日間静置した後のものを使用している。 The coating film was formed by applying the coating composition to a substrate with a bar coater to a thickness of 20 μm, and then baking and heating at 270°C for 10 minutes to form a coating film. The coating film was evaluated after being left to stand for one day at room temperature of 25°C.
(配合パターンI)
表1および2に示すシリコーン変性エポキシ樹脂28.26質量部、酸化チタン(Chemours社製「Ti-Pure R-960」)28.26質量部および溶剤としてプロピレングリコールモノメチルエーテルアセテート14.79質量部を混合し、ペイントシェイカーで90分間練肉して練肉ベースを得た。得られた練肉ベースに、さらに表1および2に示すシリコーン変性エポキシ樹脂28.26質量部、シリコーン系レベリング剤(ALLNEX社製「Modaflow 2100」)0.43質量部およびプロピレングリコールモノメチルエーテルアセテート14.79質量部を加えて混合して、不揮発分57質量%、顔料質量濃度50質量%の塗料組成物を調製した。
(Mixture Pattern I)
28.26 parts by mass of the silicone-modified epoxy resin shown in Tables 1 and 2, 28.26 parts by mass of titanium oxide ("Ti-Pure R-960" manufactured by Chemours) and 14.79 parts by mass of propylene glycol monomethyl ether acetate as a solvent were mixed and kneaded for 90 minutes with a paint shaker to obtain a kneaded base. 28.26 parts by mass of the silicone-modified epoxy resin shown in Tables 1 and 2, 0.43 parts by mass of a silicone-based leveling agent ("Modaflow 2100" manufactured by ALLNEX) and 14.79 parts by mass of propylene glycol monomethyl ether acetate were further added to the obtained kneaded base and mixed to prepare a coating composition with a non-volatile content of 57% by mass and a pigment mass concentration of 50% by mass.
(配合パターンII)
表1および2に示すシリコーン変性エポキシ樹脂28.22質量部、酸化チタン(Chemours社製「Ti-Pure R-960」)28.22質量部、カーボンブラック(三菱ケミカル株式会社製「カーボンブラック1000」)および溶剤としてプロピレングリコールモノメチルエーテルアセテート14.77質量部を混合し、ペイントシェイカーで90分間練肉して練肉ベースを得た。得られた練肉ベースに、さらに表1および2に示すシリコーン変性エポキシ樹脂28.22質量部、シリコーン系レベリング剤(ALLNEX社製「Modaflow 2100」)0.43質量部およびプロピレングリコールモノメチルエーテルアセテート14.79質量部を加えて混合して、不揮発分57質量%、顔料質量濃度50質量%の塗料組成物を調製した。
(Mixing Pattern II)
28.22 parts by mass of the silicone-modified epoxy resin shown in Tables 1 and 2, 28.22 parts by mass of titanium oxide ("Ti-Pure R-960" manufactured by Chemours), 28.22 parts by mass of carbon black ("Carbon Black 1000" manufactured by Mitsubishi Chemical Corporation) and 14.77 parts by mass of propylene glycol monomethyl ether acetate as a solvent were mixed and kneaded for 90 minutes with a paint shaker to obtain a kneaded base. 28.22 parts by mass of the silicone-modified epoxy resin shown in Tables 1 and 2, 0.43 parts by mass of a silicone-based leveling agent ("Modaflow 2100" manufactured by ALLNEX) and 14.79 parts by mass of propylene glycol monomethyl ether acetate were further added and mixed to the obtained kneaded base to prepare a coating composition having a non-volatile content of 57% by mass and a pigment mass concentration of 50% by mass.
(保存安定性)
調製した塗料組成物を室温25℃で3か月間保存し、保存後の塗料組成物を用いて上記の方法で塗膜を形成し、得られた塗膜を目視で下記基準で評価した。
A:塗膜表面にブリスター(泡膨れ)および変色(黄変化など)が確認されない
B:塗膜表面にブリスター(泡膨れ)および/又は変色(黄変化など)が確認される
C:塗膜が基材に密着しない
(Storage stability)
The prepared coating composition was stored at room temperature of 25° C. for 3 months, and a coating film was formed using the coating composition after storage by the above-mentioned method. The obtained coating film was visually evaluated according to the following criteria.
A: No blisters (bubble swelling) or discoloration (yellowing, etc.) are observed on the coating surface. B: Blisters (bubble swelling) and/or discoloration (yellowing, etc.) are observed on the coating surface. C: The coating does not adhere to the substrate.
(光沢値)
基板上に成膜した塗膜について、光沢計Micro-Tri-Gloss(BYK社製)を用いて入射角60°および反射角60°の光沢を任意の5点で測定し、その測定値を光沢値とした。
尚、光沢値は顔料分散の指標であり、高い値ほど顔料が良く分散していることを示す。
(Gloss value)
The gloss of the coating film formed on the substrate was measured at any five points at an incident angle of 60° and a reflection angle of 60° using a gloss meter Micro-Tri-Gloss (manufactured by BYK), and the measured values were taken as gloss values.
The gloss value is an index of pigment dispersion, with a higher value indicating that the pigment is better dispersed.
(基材密着性)
基板上に成膜した塗膜について、JIS K-5400:1990に基づいて基材密着性を評価した。具体的には塗膜の上にカッターで1mm幅の切込みを入れ碁盤目の数を100個とし、全ての碁盤目を覆うようにセロハンテープを貼り付け、素早く引き剥がした。試験後に密着して残っている碁盤目の数をパーセント表示した。
基材密着性において、100%は塗膜の剥離箇所が無かったことを意味し、0%は塗膜が全て剥離したことを意味する。95%以上の付着が認められれば実用上差支えない性能であると見做すことができる。
(Adhesion to substrate)
The coating film formed on the substrate was evaluated for its adhesion to the substrate according to JIS K-5400:1990. Specifically, 1 mm-wide cuts were made on the coating film with a cutter to make 100 squares, and cellophane tape was applied so as to cover all the squares, which were then quickly peeled off. The number of squares remaining in contact after the test was expressed as a percentage.
In terms of substrate adhesion, 100% means that no coating film peeled off, and 0% means that the coating film was completely peeled off. Adhesion of 95% or more can be considered to be sufficient for practical use.
(ケーニッヒ硬度)
基板上に成膜した塗膜について、ケーニッヒ(Koenig)硬度をISO1522に準じて測定した。
(Konig hardness)
The coating film formed on the substrate was measured for Koenig hardness in accordance with ISO1522.
(鉛筆硬度)
基板上に成膜した塗膜について、鉛筆硬度をEN13523-4に準じて測定した。
(Pencil hardness)
The pencil hardness of the coating film formed on the substrate was measured in accordance with EN13523-4.
(耐熱性)
塗膜基板をセラミックオープンに入れ、600℃で10分間加熱し、加熱後の塗膜基板を室温の水に浸すという作業を5回繰り返した。5回繰り返した後の塗膜基板の塗膜表面を目視で確認し、以下の基準で評価した:
A:塗膜表面に傷、変色、ブリスターなし
B:塗膜表面に傷、変色およびブリスターの少なくとも1つがある
C:塗膜が全損
(Heat-resistant)
The coated substrate was placed in a ceramic oven and heated at 600° C. for 10 minutes. After heating, the coated substrate was immersed in water at room temperature. This process was repeated five times. After five cycles, the coating surface of the coated substrate was visually inspected and evaluated according to the following criteria:
A: No scratches, discoloration, or blisters on the coating surface. B: At least one of scratches, discoloration, and blisters on the coating surface. C: The coating is completely damaged.
(加熱後基材密着性)
耐熱性評価で「A(塗膜表面に傷、変色、ブリスターなし)」評価となったものについて、上記基材密着性評価を再度行った。
(Adhesion to substrate after heating)
Those that were rated "A (no scratches, discoloration or blisters on the coating surface)" in the heat resistance evaluation were subjected to the above-mentioned substrate adhesion evaluation again.
表1および2から、アルキル基を有するシリコーン変性エポキシ樹脂A-1を含有する塗料組成物を用いた塗膜は高い耐熱性が得られていることが分かる。一方、(アルキル基を有さない)シリコーン変性エポキシ樹脂B-1を含有する塗料組成物を用いた塗膜では十分な耐熱性が得られていないことが分かる。(アルキル基を有さない)シリコーン変性エポキシ樹脂B-2を含有する塗料組成物を用いた塗膜では、シリコーン変性エポキシ樹脂B-2のエポキシ当量が高いために顔料との相溶性が不十分となって塗膜の光沢が失われている。また、顔料分散が不十分であるため、塗膜中に空隙が生じていると予想され、耐熱性も得られていない。 Tables 1 and 2 show that high heat resistance is obtained for coatings made using a paint composition containing silicone-modified epoxy resin A-1 with an alkyl group. On the other hand, sufficient heat resistance is not obtained for coatings made using a paint composition containing silicone-modified epoxy resin B-1 (without an alkyl group). In coatings made using a paint composition containing silicone-modified epoxy resin B-2 (without an alkyl group), the high epoxy equivalent of silicone-modified epoxy resin B-2 results in insufficient compatibility with the pigment, causing the coating to lose gloss. In addition, due to insufficient pigment dispersion, voids are expected to form in the coating, and heat resistance is not obtained.
Claims (12)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2024557167A JP7622915B2 (en) | 2023-01-26 | 2023-12-21 | Silicone-modified epoxy resin, coating composition, and article coated with said coating composition |
CN202380081483.XA CN120265685A (en) | 2023-01-26 | 2023-12-21 | Silicone-modified epoxy resin, coating composition and article coated with the coating composition |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2023-010165 | 2023-01-26 | ||
JP2023010165 | 2023-01-26 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024157679A1 true WO2024157679A1 (en) | 2024-08-02 |
Family
ID=91970416
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2023/045836 WO2024157679A1 (en) | 2023-01-26 | 2023-12-21 | Silicone-modified epoxy resin, coating composition, and article coated with said coating composition |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP7622915B2 (en) |
CN (1) | CN120265685A (en) |
WO (1) | WO2024157679A1 (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06287306A (en) * | 1993-03-31 | 1994-10-11 | Toray Ind Inc | Preparation of epoxidized organopolysiloxane, resin additive, and semiconductor-sealing epoxy resin composition |
JPH09118752A (en) * | 1996-08-30 | 1997-05-06 | Toray Ind Inc | Production of epoxy organopolysiloxane |
JP2008223004A (en) * | 2007-02-16 | 2008-09-25 | Sumitomo Bakelite Co Ltd | Epoxy resin composition for semiconductor encapsulation and semiconductor device |
JP2011153196A (en) * | 2010-01-26 | 2011-08-11 | Panasonic Electric Works Co Ltd | Epoxy resin composition for sealing semiconductor |
WO2013035740A1 (en) * | 2011-09-09 | 2013-03-14 | 日本化薬株式会社 | Curable resin composition for sealing optical semiconductor element and cured product thereof |
-
2023
- 2023-12-21 CN CN202380081483.XA patent/CN120265685A/en active Pending
- 2023-12-21 WO PCT/JP2023/045836 patent/WO2024157679A1/en active Application Filing
- 2023-12-21 JP JP2024557167A patent/JP7622915B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06287306A (en) * | 1993-03-31 | 1994-10-11 | Toray Ind Inc | Preparation of epoxidized organopolysiloxane, resin additive, and semiconductor-sealing epoxy resin composition |
JPH09118752A (en) * | 1996-08-30 | 1997-05-06 | Toray Ind Inc | Production of epoxy organopolysiloxane |
JP2008223004A (en) * | 2007-02-16 | 2008-09-25 | Sumitomo Bakelite Co Ltd | Epoxy resin composition for semiconductor encapsulation and semiconductor device |
JP2011153196A (en) * | 2010-01-26 | 2011-08-11 | Panasonic Electric Works Co Ltd | Epoxy resin composition for sealing semiconductor |
WO2013035740A1 (en) * | 2011-09-09 | 2013-03-14 | 日本化薬株式会社 | Curable resin composition for sealing optical semiconductor element and cured product thereof |
Also Published As
Publication number | Publication date |
---|---|
CN120265685A (en) | 2025-07-04 |
JP7622915B2 (en) | 2025-01-28 |
JPWO2024157679A1 (en) | 2024-08-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2670809A1 (en) | Multi-phase self-stratifying coating exhibiting gradient behavior | |
US11674039B2 (en) | Polyamideimide resin composition and flourine-based coating material | |
CN105838160B (en) | Coating composition and its lubricating and wear-resisting polytetrafluoroethylene (PTFE) rubber coating of preparation | |
JP7569623B2 (en) | Aqueous polyorganosiloxane hybrid dispersion | |
CN101353419A (en) | Unsaturated polyesters | |
CN105199511A (en) | Varnish for stainless steel substrate and preparation method and application of varnish | |
JPH09507261A (en) | Optically transparent hydrophobic coating composition | |
KR101131888B1 (en) | Paint composition for plastics and method of preparing the same | |
JP7622915B2 (en) | Silicone-modified epoxy resin, coating composition, and article coated with said coating composition | |
CN111234192B (en) | Preparation method of organic silicon modified saturated polyester resin with high weather resistance | |
EP3898852A1 (en) | Ambient cure high temperature protective coating | |
CN110724414A (en) | Stain-resistant high-temperature-resistant water-based paint and preparation method thereof | |
Özgümüş et al. | Synthesis of novel silicone modified acrylic resins and their film properties | |
Sun et al. | Preparation and properties of an organic–inorganic hybrid materials based on fluorinated block copolymer | |
Yang et al. | Effects of fluorine and silicon components on the hydrophobicity failure behavior of acrylic polyurethane coatings | |
CN100549091C (en) | Composition epoxy resin and epoxy-polysiloxane coating composition | |
TW202212505A (en) | Coating material composition | |
JPS62277475A (en) | Coating material composition | |
CN112390916B (en) | Acrylic acid modified polyester resin and preparation method thereof | |
JP2945949B2 (en) | Room-temperature-curable coating sol composition and method for producing fluorocopolymer / silica glass hybrid using the same | |
CN119119829B (en) | A modified polysiloxane epoxy coating and preparation method thereof | |
Küçükoğlu et al. | A novel type of Si‐containing acrylic resins: Synthesis, characterization, and film properties | |
EP4230668A1 (en) | Epoxy ester resin, vinyl-modified epoxy ester resin, resin composition, paint, and article coated with the paint | |
JP7279780B2 (en) | Polyamideimide resin composition and method for producing polyamideimide resin | |
JP6677995B2 (en) | Resin composition for paint |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23918633 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2024557167 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2501004535 Country of ref document: TH |