WO2024154623A1 - Photodetection device and electronic device - Google Patents

Photodetection device and electronic device Download PDF

Info

Publication number
WO2024154623A1
WO2024154623A1 PCT/JP2024/000277 JP2024000277W WO2024154623A1 WO 2024154623 A1 WO2024154623 A1 WO 2024154623A1 JP 2024000277 W JP2024000277 W JP 2024000277W WO 2024154623 A1 WO2024154623 A1 WO 2024154623A1
Authority
WO
WIPO (PCT)
Prior art keywords
charge
holding unit
unit
photoelectric conversion
conversion element
Prior art date
Application number
PCT/JP2024/000277
Other languages
French (fr)
Japanese (ja)
Inventor
雄馬 小野
Original Assignee
ソニーセミコンダクタソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーセミコンダクタソリューションズ株式会社 filed Critical ソニーセミコンダクタソリューションズ株式会社
Publication of WO2024154623A1 publication Critical patent/WO2024154623A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/50Control of the SSIS exposure
    • H04N25/57Control of the dynamic range
    • H04N25/58Control of the dynamic range involving two or more exposures
    • H04N25/587Control of the dynamic range involving two or more exposures acquired sequentially, e.g. using the combination of odd and even image fields
    • H04N25/589Control of the dynamic range involving two or more exposures acquired sequentially, e.g. using the combination of odd and even image fields with different integration times, e.g. short and long exposures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • H04N25/77Pixel circuitry, e.g. memories, A/D converters, pixel amplifiers, shared circuits or shared components
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • H04N25/77Pixel circuitry, e.g. memories, A/D converters, pixel amplifiers, shared circuits or shared components
    • H04N25/771Pixel circuitry, e.g. memories, A/D converters, pixel amplifiers, shared circuits or shared components comprising storage means other than floating diffusion

Definitions

  • This disclosure relates to a light detection device and an electronic device.
  • Patent Document 1 An imaging device has been proposed that has a global shutter function that exposes all pixels simultaneously when capturing an image of a moving subject (Patent Document 1).
  • Patent Document 1 in order to expand the dynamic range, a holding section is provided that holds charge that overflows from the photoelectric conversion section, separate from the holding section that holds charge for the global shutter.
  • Patent Document 1 cannot hold the charge that has overflowed from the photoelectric conversion unit while the charge is being read out from the holding unit. This causes the problem that exposure cannot be performed during the charge readout period, resulting in a drop in the frame rate.
  • This disclosure provides a photodetector and electronic device that can achieve both an expanded dynamic range and an improved frame rate.
  • a liquid crystal display device comprising a plurality of pixels each having a photoelectric conversion element that accumulates a charge according to the amount of incident light, Each of the plurality of pixels is a charge-voltage converter for converting the charge stored in the photoelectric conversion element into a voltage; a first holding unit that holds the charge accumulated in the photoelectric conversion element; a second holding unit that holds the charges accumulated in the photoelectric conversion element alternately with the first holding unit; a third holding unit that holds the charge accumulated in the photoelectric conversion element at the same timing as other pixels; A light detection device is provided.
  • the other of the first holding unit or the second holding unit may hold the charge accumulated in the photoelectric conversion element.
  • Each of the plurality of pixels may alternately hold charge in the first holding section or the second holding section on a frame-by-frame basis, and may also hold charge in the third holding section for each frame.
  • each of the plurality of pixels outputs, for each frame, a pixel signal of a reset level and a pixel signal corresponding to the charge held in the first holding unit or the second holding unit and the charge held in the third holding unit;
  • the pixel signal of the reset level and the pixel signal according to the charge may be output at different timings.
  • the saturation charge amount of the first holding unit and the second holding unit may be greater than the saturation charge amount of the third holding unit.
  • the charge retention period of the first and second retention units per frame may be longer than the charge retention period of the third retention unit.
  • Each of the plurality of pixels is a first transfer control unit that controls the transfer of charges from the photoelectric conversion element to the first holding unit; a second transfer control unit that controls the transfer of charges from the first holding unit to the charge-voltage conversion unit; a third transfer control unit that controls the transfer of charges from the photoelectric conversion element to the second holding unit;
  • the pixel may further include a fourth transfer control unit that controls the transfer of charges from the second holding unit to the charge-voltage conversion unit.
  • the first transfer control unit or the third transfer control unit may alternately transfer the charge accumulated in the photoelectric conversion element to the first holding unit or the second holding unit on a frame-by-frame basis.
  • the second transfer control unit or the fourth transfer control unit may alternately transfer the charge held in the first holding unit or the second holding unit to the charge-voltage conversion unit on a frame-by-frame basis.
  • a negative bias voltage is supplied to a gate of the third transfer control unit
  • a negative bias voltage may be supplied to the gates of the first transfer control units.
  • Each of the plurality of pixels is a fifth transfer control unit that controls the transfer of charges from the photoelectric conversion element to the third holding unit;
  • the pixel may further include a sixth transfer control unit that controls the transfer of charges from the third holding unit to the charge-voltage conversion unit.
  • the fifth transfer control unit transfers charges from the photoelectric conversion element to the third holding unit at the same timing as other pixels for each frame;
  • the sixth transfer control unit may transfer the charge from the third holding unit to the charge-voltage conversion unit for each frame.
  • the fifth transfer control unit may transfer charges from the photoelectric conversion element to the third holding unit after charges are transferred from the photoelectric conversion element to the first holding unit or the second holding unit for each frame.
  • Each of the plurality of pixels is a fourth holding unit that holds the charge accumulated in the photoelectric conversion element at the same timing as other pixels;
  • Each of the plurality of pixels may alternately hold charge in the first holding unit or the second holding unit on a frame-by-frame basis, and may alternately hold charge in the third holding unit or the fourth holding unit on a frame-by-frame basis.
  • each of the plurality of pixels outputs, for each frame, a pixel signal of a reset level and a pixel signal corresponding to the charges held in the first holding unit and the third holding unit or a pixel signal corresponding to the charges held in the second holding unit or the fourth holding unit;
  • the pixel signal of the reset level and the pixel signal according to the charge may be output at different timings.
  • the saturated charge amount of the first holding unit and the second holding unit may be greater than the saturated charge amount of the third holding unit and the fourth holding unit.
  • the charge retention period of the first and second retention units per frame may be longer than the charge retention period of the third and fourth retention units.
  • Each of the plurality of pixels is a seventh transfer control unit that controls the transfer of charges from the photoelectric conversion element to the third holding unit; an eighth transfer control unit that controls the transfer of charges from the third holding unit to the first holding unit; a ninth transfer control unit that controls the transfer of charges from the first holding unit to the charge-voltage conversion unit; a tenth transfer control unit that controls the transfer of charges from the photoelectric conversion element to the fourth holding unit; an eleventh transfer control unit that controls the transfer of charges from the fourth holding unit to the second holding unit;
  • the pixel may further include a twelfth transfer control unit that controls the transfer of charges from the second holding unit to the charge-voltage conversion unit.
  • the seventh transfer control unit or the tenth transfer control unit alternately transfers the charges accumulated in the photoelectric conversion element to the third holding unit or the fourth holding unit on a frame basis;
  • the eighth transfer control unit or the eleventh transfer control unit alternately transfers charges from the third holding unit or the fourth holding unit to the first holding unit or the second holding unit on a frame-by-frame basis;
  • the ninth transfer control unit or the twelfth transfer control unit may alternately transfer the charges held in the first holding unit or the second holding unit to the charge-voltage conversion unit on a frame-by-frame basis.
  • the present disclosure also provides a method for detecting a light-generating particle beam from a light-generating device, comprising: A processing unit that processes pixel data output from the light detection device,
  • the light detection device includes:
  • the image sensor includes a plurality of pixels each having a photoelectric conversion element that accumulates an electric charge according to the amount of incident light,
  • Each of the plurality of pixels is a charge-voltage converter for converting the charge stored in the photoelectric conversion element into a voltage; a first holding unit that holds the charge accumulated in the photoelectric conversion element; a second holding unit that holds the charges accumulated in the photoelectric conversion element alternately with the first holding unit; a third holding unit that holds the charge accumulated in the photoelectric conversion element at the same timing as other pixels;
  • An electronic device is provided.
  • FIG. 1 is a block diagram of an electronic device according to a first embodiment of the present disclosure.
  • 1 is a block diagram illustrating a configuration example of a light detection device according to a first embodiment of the present disclosure.
  • FIG. 2 is a diagram showing a configuration of a pixel and a peripheral portion according to the first embodiment of the present disclosure.
  • 1 is a diagram showing a first example of a layered structure of a light detection device.
  • FIG. 13 is a diagram showing a second example of a laminated structure of the photodetector. 4 is a timing chart showing an imaging operation by the electronic device.
  • FIG. 2 is a diagram showing an exposure period of a first frame by a pixel according to the first embodiment of the present disclosure.
  • FIG. 2 is a diagram showing a readout period of a first frame by a pixel according to the first embodiment of the present disclosure.
  • FIG. 2 is a diagram showing an exposure period of a second frame after a first frame is read out by a pixel according to the first embodiment of the present disclosure.
  • FIG. 11 is a diagram showing a readout period of a second frame by the pixel of the first embodiment of the present disclosure.
  • 4 is a timing chart showing an imaging operation of a pixel according to the first embodiment of the present disclosure.
  • FIG. 1 is a diagram illustrating the potential barriers of two OF memories.
  • FIG. 1 is a diagram showing a configuration of a pixel and a peripheral portion of a comparative example.
  • FIG. 13 is a diagram showing an exposure period for a pixel of a comparative example.
  • FIG. 13 is a diagram showing a readout period by a pixel of a comparative example.
  • FIG. 11 is a diagram showing a configuration of a pixel and a peripheral portion according to a second embodiment of the present disclosure.
  • FIG. 11 is a diagram showing an exposure period of a first frame by a pixel according to a second embodiment of the present disclosure.
  • 1 is a diagram showing a readout period of a first frame and an exposure period of a second frame by a pixel according to a first embodiment of the present disclosure; 10 is a timing chart showing pixel control in the second embodiment of the present disclosure.
  • 1 is a diagram illustrating an example of a schematic configuration of an endoscopic surgery system.
  • 2 is a block diagram showing an example of the functional configuration of a camera head and a CCU.
  • First Embodiment 1 is a block diagram of an electronic device 1 according to a first embodiment of the present disclosure.
  • the electronic device 1 captures image data and includes an imaging lens 11, a light detection device 2, a processing unit 3, and a control unit 4.
  • the electronic device 1 is assumed to be, for example, a camera mounted on an industrial robot or an in-vehicle camera, but the specific use and configuration of the electronic device 1 are arbitrary.
  • the imaging lens 11 collects the incident light and guides it to the photodetector 2.
  • the photodetector 2 is, for example, a CMOS (Complementary Metal) image sensor, which performs photoelectric conversion on the incident light to capture image data.
  • the photodetector 2 can also generate video data by continuously capturing image data.
  • the image data output from the photodetector 2 is input to the processor 3 via the transmission line 12.
  • the processor 3 performs predetermined image processing on the image data output from the photodetector 2.
  • the electronic device 1 may include a recording unit 5.
  • the recording unit 5 records image data from the light detection device 2.
  • the recording unit 5 may be disposed in a server or the like connected via a network.
  • the control unit 4 controls the imaging timing of the light detection device 2 via the control line 13. For example, the control unit 4 controls the start and end of imaging by the light detection device 2 in response to the operation of a shutter operating member (not shown).
  • FIG. 2 is a block diagram showing an example configuration of the photodetector 2 in the first embodiment of the present disclosure.
  • the photodetector 2 includes a pixel array section 20, a vertical drive circuit 21, a system control circuit 22, and a signal processing section 23.
  • the pixel array section 20 has pixels 30 arranged in multiples in a first direction X and a second direction Y.
  • first direction X the left-right (horizontal) direction in FIG. 2
  • second direction Y the up-down (vertical) direction in FIG. 2
  • a group of pixels 30 arranged in multiples along the first direction X is called a pixel row
  • a group of pixels 30 arranged in multiples along the second direction Y is called a pixel column.
  • Each pixel 30 has a photoelectric conversion element that generates an electric charge according to the amount of incident light.
  • a pixel circuit (not shown in FIG. 1) connected to pixel 30 generates a pixel signal Vimg based on the electric charge of the photoelectric conversion element.
  • the vertical drive circuit 21 is composed of a shift register, an address decoder, etc.
  • the vertical drive circuit 21 drives each pixel 30 of the pixel array section 20, either all pixels at once or on a pixel row basis.
  • the vertical drive circuit 21 discharges electric charge and reads out signals from each pixel 30 and pixel circuit.
  • the photodetector 2 performs a global shutter operation, which is an electronic shutter operation that is performed simultaneously on all pixels.
  • a feature of the global shutter operation is that there is no deviation in the exposure timing for each pixel.
  • a pixel signal Vimg based on the charge accumulated in the photoelectric conversion element in the pixel 30 is read out from the pixel circuit.
  • the period from the electronic shutter operation to the signal readout is also called the exposure period.
  • a pixel signal Vimg corresponding to the amount of light incident on the pixel 30 during the exposure period is read out from the pixel circuit.
  • the system control circuit 22 is composed of a timing generator that generates various timing signals. Based on the various timing signals, the system control circuit 22 controls the read and discharge timing of the vertical drive circuit 21, and controls the drive of the signal processing unit 23.
  • the signal processing unit 23 receives the pixel signal Vimg from each pixel 30 and pixel circuit in the pixel array unit 20.
  • the signal processing unit 23 performs predetermined signal processing on the pixel signal Vimg.
  • the predetermined signal processing includes, for example, analog-to-digital conversion of the pixel signal Vimg and noise removal processing superimposed on the pixel signal Vimg.
  • Correlated double sampling for example, is used as a noise removal process for the pixel signal Vimg.
  • the signal processing unit 23 compares the signal level of the pixel signal Vimg (hereinafter also referred to as the D-phase signal) that corresponds to the amount of incident light with the signal level of a pixel signal (hereinafter also referred to as the P-phase signal) that is at a reset level and does not depend on the amount of incident light. This removes noise (also referred to as kTC noise) that is superimposed on the pixel signal Vimg.
  • FIG. 3 is a diagram showing the configuration of a pixel 30 and its peripheral portion in the first embodiment of the present disclosure.
  • the pixel 30 shown in FIG. 3 outputs a pixel signal Vimg based on the illuminance of incident light.
  • the pixel 30 includes a photoelectric conversion element (PD) 31, a transfer unit 32, and a charge-voltage conversion unit 33.
  • the photoelectric conversion element 31 is, for example, a photodiode (PD) and has an anode and a cathode. Either the anode or the cathode (for example, the cathode) is connected to the transfer unit 32, and the other (for example, the anode) is connected to a predetermined reference voltage (VRLD) node such as a ground voltage.
  • the charge-voltage conversion unit 33 is also called a floating diffusion (FD). The charge resulting from photoelectric conversion and stored in the photoelectric conversion element 31 is transferred to the charge-voltage conversion unit 33 via the transfer unit 32.
  • the amplification transistor Q1, the selection transistor Q2, and the reset transistor Q3 are arranged on the periphery of the pixel 30.
  • the pixel 30 may be interpreted as including at least a part of the amplification transistor Q1, the selection transistor Q2, and the reset transistor Q3 in FIG. 3.
  • the amplification transistor Q1, the selection transistor Q2, and the reset transistor Q3 are referred to as a pixel circuit, and each transistor in the pixel circuit is collectively referred to as a pixel transistor.
  • the amplification transistor Q1, the selection transistor Q2, and the reset transistor Q3 are configured, for example, with NMOS (N-channel Metal-Oxide-Semiconductor) transistors.
  • NMOS N-channel Metal-Oxide-Semiconductor
  • the conductivity type of each transistor exemplified here is arbitrary. Any of the above transistors may be configured, for example, with PMOS (P-channel Metal-Oxide-Semiconductor) transistors.
  • the transfer unit 32 has a GS transistor Q4 (fifth transfer control unit), a GS transistor Q5 (sixth transfer control unit), an OF transistor Q6 (first transfer control unit), an OF transistor Q7 (second transfer control unit), an OF transistor Q8 (third transfer control unit), and an OF transistor Q9 (fourth transfer control unit).
  • the GS transistors Q4 and Q5 are cascode-connected between the photoelectric conversion element 31 and the charge-voltage conversion unit 33.
  • the OF transistors Q6 and Q7 are cascode-connected between the photoelectric conversion element 31 and the charge-voltage conversion unit 33.
  • the OF transistors Q8 and Q9 are cascode-connected between the photoelectric conversion element 31 and the charge-voltage conversion unit 33.
  • a GS memory (third holding unit) Mg is disposed at the connection node between GS transistor Q4 and GS transistor Q5.
  • the GS memory Mg holds the charge transferred from the photoelectric conversion element 31 at the same timing as the other pixels 30 in conjunction with the global shutter operation.
  • the charge in the GS memory Mg is also transferred to the charge-voltage conversion unit 33 during the signal readout period of the pixel 30.
  • GS transistor Q4 transfers charge from photoelectric conversion element 31 to GS memory Mg.
  • signal GS1 input to the gate is at high level, GS transistor Q4 is turned on and transfers charge from photoelectric conversion element 31 to GS memory Mg.
  • GS transistor Q5 transfers charge from GS memory Mg to charge-voltage conversion unit 33.
  • signal GS2 input to the gate is at high level, GS transistor Q5 is turned on and transfers charge from GS memory Mg to charge-voltage conversion unit 33.
  • the charge that exceeds the saturation charge amount of the photoelectric conversion element 31 and overflows from the photoelectric conversion element 31 is also called overflow charge.
  • An OF memory (first holding unit) M1 is disposed at the connection node between the OF transistor Q6 and the OF transistor Q7.
  • the OF memory M1 holds the charge accumulated in the photoelectric conversion element 31. More specifically, the OF memory M1 holds the overflow charge during the exposure period.
  • the charge held by the OF memory M1 is transferred to the charge-voltage conversion unit 33 during the readout period of the signal from the pixel 30.
  • the OF transistor Q6 may be controlled so that no charge is held in the OF memory M1 when the amount of light incident on the pixel 30 is low.
  • the OF transistor Q6 controls the transfer of charge from the photoelectric conversion element 31 to the OF memory M1.
  • the OF transistor Q6 transfers the charge stored in the photoelectric conversion element 31 to the OF memory M1.
  • the voltage level of the signal OF1 may be set to an intermediate voltage level between a high level voltage and a low level voltage.
  • the OF transistor Q6 can transfer only the charge that exceeds the saturation charge amount of the photoelectric conversion element 31 to the OF memory M1.
  • the OF transistor Q7 transfers charge from the OF memory M1 to the charge-voltage conversion unit 33.
  • the OF transistor Q7 is turned on and transfers the charge of the OF memory M1 to the charge-voltage conversion unit 33.
  • An OF memory (second holding unit) M2 is disposed at the connection node between OF transistor Q8 and OF transistor Q9.
  • the OF memory M2 holds the charge transferred from the photoelectric conversion element 31, alternating with the OF memory M1.
  • the saturation charge amount of the OF memories M1 and M2 is set to be larger than the saturation charge amount of the GS memory Mg. This allows the OF memories M1 and M2 to hold charges that cannot be stored in the GS memory Mg, expanding the dynamic range. Note that the saturation charge amount of the OF memories M1 and M2 may be equal to or smaller than the saturation charge amount of the GS memory Mg.
  • OF memories M1 and M2 alternately hold and read charges. That is, while OF memory M1 is transferring charges to charge-voltage conversion unit 33, charges are transferred from photoelectric conversion element 31 to OF memory M2. Also, while OF memory M2 is transferring charges to charge-voltage conversion unit 33, charges are transferred from photoelectric conversion element 31 to OF memory M1.
  • the OF transistor Q8 transfers electric charge from the photoelectric conversion element 31 to the OF memory M2.
  • the signal OF3 input to the gate of the OF transistor Q8 is at a high level
  • the OF transistor Q8 transfers the electric charge stored in the photoelectric conversion element 31 to the OF memory M2.
  • the voltage level of the signal OF3 may be an intermediate voltage level between a high level voltage and a low level voltage, similar to the signal OF1.
  • the OF transistor Q9 transfers charge from the OF memory M2 to the charge-voltage conversion unit 33.
  • the OF transistor Q9 is turned on and transfers the charge of the OF memory M2 to the charge-voltage conversion unit 33.
  • charge is transferred from the GS memory Mg to the charge-voltage conversion unit 33, and charge is transferred from the OF memory M1 or M2.
  • the charge-voltage conversion unit 33 becomes a voltage according to the charge accumulated in the photoelectric conversion element 31.
  • the gate of the amplifier transistor Q1 is at the same voltage as the charge-voltage conversion unit 33, and is used as the input of the source follower circuit.
  • the drain of the amplifier transistor Q1 is connected to the node of the high-voltage power supply VDD, and the source is connected to the selection transistor Q2.
  • the source voltage of the amplifier transistor Q1 changes according to the voltage of the charge-voltage conversion unit 33.
  • the selection transistor Q2 controls the reading of signals from the pixels 30.
  • a selection signal SEL is input to the gate of the selection transistor Q2.
  • the selection transistor Q2 is turned on when the selection signal SEL is at a high level.
  • a pixel signal Vimg with a voltage level according to the voltage of the charge-voltage conversion unit 33 is output from the source of the selection transistor Q2 to the downstream signal processing unit 23, etc.
  • the reset transistor Q3 controls the discharge of charge from pixel 30.
  • the source of the reset transistor Q3 is connected to the charge-voltage conversion unit 33, and the drain is connected to the node of the high-voltage power supply VDD.
  • a reset signal RST is input to the gate of the reset transistor Q3.
  • the reset transistor Q3 is turned on when the reset signal RST is at a high level. This causes the charge in the charge-voltage conversion unit 33 to be discharged to the node of the high-voltage power supply VDD, resetting the charge-voltage conversion unit 33. Resetting the charge-voltage conversion unit 33 makes the pixel 30 available for the next exposure.
  • the photodetector 2 is composed of, for example, two stacked chips.
  • FIG. 4A is a diagram showing a first example of the stacked structure of the photodetector 2.
  • This photodetector 2 comprises a pixel chip 41 and a logic chip 42 stacked on the pixel chip 41. These chips are bonded by vias or the like. Note that these chips may be bonded by Cu-Cu bonding or bumps in addition to vias.
  • the pixel chip 41 for example, a plurality of pixels 30 in the pixel array section 20 and a pixel transistor for each pixel 30 are arranged.
  • the logic chip 42 for example, a vertical drive circuit 21, a system control circuit 22, and a signal processing section 23 are arranged. In the first example of FIG. 4A, it is interpreted that the pixel transistor is included in the pixel 30.
  • the photodetector 2 may be composed of three or more stacked chips.
  • FIG. 4B is a diagram showing a second example of the stacked structure of the photodetector 2.
  • a first pixel chip 43 and a second pixel chip 44 are stacked instead of the pixel chip 41 of FIG. 4A.
  • the pixels 30 are arranged on the first pixel chip 43.
  • the pixel transistors for each pixel 30 are arranged on the second pixel chip 44.
  • pixel transistors are not arranged on the first pixel chip 43, but are arranged on the second pixel chip 44. This allows the photodetector 2a to increase the proportion of the area of the photoelectric conversion element 31 in the chip area, improving sensitivity and enabling the chip to be miniaturized.
  • FIG. 5 is a timing chart showing the imaging operation by the photodetector 2.
  • the left-right direction in FIG. 5 is the time axis direction t.
  • FIG. 5 also shows an example in which the pixel signal Vimg is read out for each pixel row in the pixel array unit 20, which is arranged in a plurality of rows in the second direction Y.
  • the imaging operation by the light detection device 2 is performed in units of frames, synchronized with a predetermined synchronization signal.
  • One frame includes a reset period, an exposure period, and a readout period.
  • each frame a global shutter operation is performed. First, at time Trst, electric charges are simultaneously swept out (reset) from all pixels 30 in the pixel array section 20. The reset enables the pixels 30 to be exposed.
  • the exposure period exposure of all pixels 30 starts simultaneously at time Texp, and exposure of all pixels 30 ends simultaneously at time Trd.
  • the pixel signal Vimg is read out sequentially for each pixel row, starting from time Trd.
  • the global shutter operation of the photodetection device 2 is performed in synchronization with all pixels 30. Furthermore, the global shutter operation is performed in units of frames.
  • the photodetection device 2 is also capable of capturing video by continuously capturing images of multiple frames.
  • FIGS. 6A to 6D are diagrams showing the imaging operation of pixel 30 according to the first embodiment of the present disclosure.
  • FIG. 6A is a diagram showing the imaging operation during the exposure period of the first frame.
  • photoelectric conversion element 31 accumulates charge according to incident light.
  • the charge accumulated in photoelectric conversion element 31 is transferred to GS memory Mg and OF memory M1, and is not transferred to OF memory M2.
  • FIG. 6B shows the readout period of the first frame. During the readout period of the first frame, the charge e in the GS memory Mg and the OF memory M1 is transferred to the charge-voltage converter 33.
  • the charges in the GS memory Mg and the OF memory M1 are reset. This makes the GS memory Mg and the OF memory M1 ready to transfer new charges.
  • FIG. 6C shows the exposure period of the second frame after the first frame is read out.
  • the charge accumulated in the photoelectric conversion element 31 during the exposure period of the second frame is transferred to the GS memory Mg and the OF memory M2, but is not transferred to the OF memory M1.
  • the OF memories M1 and M2 are used alternately for each frame.
  • FIG. 6D shows the readout period of the second frame.
  • the charge e of the GS memory Mg and the OF memory M2 is transferred to the charge-voltage conversion unit 33. Furthermore, the charge accumulated in the photoelectric conversion element 31 during the readout period of the second frame is transferred to the OF memory M1, and not to the OF memory M2. This is because the OF memory M2 is transferring charge to the charge-voltage conversion unit 33.
  • the other OF memory M1 or M2 holds the charge e accumulated in the photoelectric conversion element 31.
  • the pixel 30 of the first embodiment of the present disclosure can read charge and perform exposure in parallel by alternately using the OF memory M1 or M2 to read or transfer charge e. This allows the photodetection device 2 to increase the frame rate.
  • FIG. 7 is a timing chart showing the imaging operation of pixel 30 in the first embodiment of the present disclosure. Times t1 to t24 shown in FIG. 7 include initialization, the exposure period and readout period of the first frame, the exposure period and readout period of the second frame, and the exposure period of the third frame.
  • the pixels 30 are initialized before imaging. Specifically, the reset signal RST, signals GS1 and GS2, signals OF1 and OF2, and signals OF3 and OF4 are all set to a high level for a certain period of time at the same timing. As a result, the charges in the photoelectric conversion element 31, GS memory Mg, OF memory M1, OF memory M2, and charge-voltage conversion unit 33 are discharged to the node of the high-voltage power supply VDD, and the charge-voltage conversion unit 33 becomes the reset level voltage.
  • Times t3 to t5 are the exposure period of the first frame. As shown in FIG. 6A, charge is accumulated in the photoelectric conversion element 31 during the exposure period of the first frame. Between times t3 and t4, signal OF1 goes high and the OF transistor Q6 is turned on, causing the charge accumulated in the photoelectric conversion element 31 to be transferred to the OF memory M1.
  • the OF memory M1 has a larger saturated charge amount than the GS memory Mg. Therefore, in FIG. 7, the period (time t3 to t4) during which the charge accumulated in the photoelectric conversion element 31 is held in the OF memory M1 is longer than the period (time t4 to t5) during which the charge is transferred from the photoelectric conversion element 31 to the GS memory Mg.
  • the OF memory M2 described below.
  • the charge holding period of the OF memory M1 or OF memory M2 in each frame is longer than the charge holding period of the GS memory Mg. This allows the OF memories M1 and M2 to store more charge than the GS memory Mg.
  • Times t5 to t13 are the readout period of the first frame. As shown in FIG. 6B, during the readout period of the first frame, charges are read out from the GS memory Mg and the OF memory M1. Between times t6 and t7, the signals GS2 and OF2 go to low level, and the selection signal SEL goes to high level. This causes a pixel signal (P-phase signal) corresponding to the reset level of the charge-voltage converter 33 to be read out.
  • signal GS2 and selection signal SEL go to high level.
  • GS transistor Q5 When GS transistor Q5 is turned on, the charge in GS memory Mg is transferred to charge-voltage converter 33. As a result, a pixel signal (D-phase signal) corresponding to the charge obtained by adding the charge in GS memory Mg to the charge in charge-voltage converter 33 is read out.
  • the signal OF2 and the selection signal SEL go to high level.
  • the OF transistor Q7 is turned on, and the charge in the OF memory M1 is transferred to the charge-voltage converter 33.
  • a pixel signal (D-phase signal) corresponding to the charge obtained by adding the charge in the OF memory M1 to the charge in the GS memory Mg is read out from the charge-voltage converter 33.
  • the signal OF2, the signal GS2, and the reset signal RST go to high level, and the charges in the GS memory Mg, the OF memory M1, and the charge-voltage conversion unit 33 are discharged to the node of the high-voltage power supply VDD. This causes the charge-voltage conversion unit 33 to go to the reset level voltage.
  • the signal OF2, the signal GS2, and the selection signal SEL go to high level, and a pixel signal (P-phase signal) corresponding to the reset level of the charge-voltage conversion unit 33 is read out.
  • the period from time t5 to t13 is the readout period for the first frame and also the exposure period for the second frame.
  • a high-level signal OF3 is input, and the charge accumulated in the photoelectric conversion element 31 is held in the OF memory M2.
  • Times t13 to t15 are the exposure period for the second frame after the first frame is read out. As shown in FIG. 6C, from time t13 to t14, the charge of the photoelectric conversion element 31 is held in the OF memory M2. From time t14 to t15, the signal OF3 goes low and the signal GS1 goes high. This causes the charge of the photoelectric conversion element 31 to be transferred to the GS memory Mg.
  • Times t15 to t23 are the readout period of the second frame. As shown in FIG. 6D, during the readout period of the second frame, charges are read out from the GS memory Mg and the OF memory M2 by the same control as during the readout period of the first frame.
  • the selection signal SEL goes high, and a pixel signal (P-phase signal) corresponding to the reset level of the charge-voltage conversion unit 33 is read out.
  • the signal GS2 and the selection signal SEL go high, and a pixel signal (D-phase signal) corresponding to the charge obtained by adding the charge of the GS memory Mg to the charge of the charge-voltage conversion unit 33 is read out.
  • signal OF4 and selection signal SEL go high, and a pixel signal (D-phase signal) corresponding to the charge obtained by adding the charge in OF memory M2 to the charge in charge-voltage conversion unit 33 is read out.
  • signal OF4, signal GS2, and reset signal RST go high, and the charges in GS memory Mg, OF memory M2, and charge-voltage conversion unit 33 are swept out.
  • signal OF4, signal GS2, and selection signal SEL go high, and a pixel signal (P-phase signal) corresponding to the reset level of charge-voltage conversion unit 33 is read out.
  • Times t15 to t24 are the readout period for the second frame and the exposure period for the third frame.
  • signal OF1 goes high, causing the charge stored in photoelectric conversion element 31 to be transferred to OF memory M1.
  • the transfer unit 32 transfers charges from the photoelectric conversion element 31 to the charge-voltage conversion unit 33 by controlling each transistor. That is, the OF transistor Q6 or Q8 transfers the charges stored in the photoelectric conversion element 31 to the OF memory M1 or M2 alternately on a frame-by-frame basis. The OF transistor Q7 or Q9 transfers the charges held in the OF memory M1 or M2 alternately on a frame-by-frame basis to the charge-voltage conversion unit 33.
  • the GS transistor Q4 transfers charges from the photoelectric conversion element 31 to the GS memory Mg after the charges have been transferred from the photoelectric conversion element 31 to the OF memory M1 or M2 for each frame.
  • the GS transistor Q5 transfers charges from the GS memory Mg to the charge-voltage conversion unit 33 for each frame.
  • each of the multiple pixels 30 alternately stores charge in the OF memory M1 or M2 on a frame-by-frame basis, and also stores charge in the GS memory Mg for each frame. Note that the transfer of charge from the GS transistor Q4 is performed at the same timing as the other pixels 30 in the pixel array section 20.
  • each of the multiple pixels 30 in the pixel array unit 20 outputs a pixel signal Vimg of the reset level for each frame. Also, each of the multiple pixels 30 outputs a pixel signal Vimg for each frame that corresponds to the charge held in the OF memory M1 or M2 and the charge held in the GS memory Mg at a timing different from the reset level pixel signal Vimg.
  • driving in which two or more frames are executed in parallel with the exposure periods (and readout periods) shifted from each other is also called pipeline driving.
  • FIG. 7 an example is shown in which OF transistors Q6 and Q8 are switched on and off when transferring charge from photoelectric conversion element 31 to OF memories M1 and M2, but the height of the potential barrier of OF memories M1 and M2 may also be controlled.
  • FIG. 8 is a diagram explaining the potential barrier of OF memories M1 and M2.
  • the potential barrier can be made higher by setting the signal OF1 or OF3 input to the gate of either OF transistor Q6 or Q8 to a negative bias voltage.
  • FIG. 8 shows an example in which the signal OF3 input to the gate of OF transistor Q8 is set to a negative bias voltage.
  • the charge accumulated in the photoelectric conversion element 31 is not transferred to the OF memory M2 because the potential barrier is high, but is transferred to the OF memory M1, which has a low potential barrier.
  • FIG. 9 is a diagram showing the configuration of a pixel 100 and its surroundings as a comparative example.
  • the pixel 100 shown in FIG. 9 differs from the pixel 30 in FIG. 3 in that it does not include OF transistors Q8 and Q9 and OF memory M2.
  • FIG. 10A and 10B are diagrams showing an imaging operation by a pixel 100 of a comparative example.
  • FIG. 10A shows an exposure period by the pixel 100.
  • charge e is transferred from the photoelectric conversion element 31 to the GS memory Mg and the OF memory M1.
  • FIG. 10B shows the readout period by pixel 100.
  • charge e is transferred from GS memory Mg and OF memory M1 to charge-voltage converter 33.
  • charge e is accumulated in photoelectric conversion element 31.
  • pixel 100 does not have OF memory M2, it is not possible to start exposure for the next frame while charge is being transferred from OF memory M1 to charge-voltage conversion unit 33. This requires a long interval between exposure periods, which reduces the frame rate.
  • the photodetection device 2 in the first embodiment of the present disclosure has a GS memory Mg and two OF memories M1 and M2 for each pixel 30.
  • the photodetection device 2 alternates between using the OF memories M1 and M2 in addition to the GS memory Mg to transfer charges from the photoelectric conversion element 31. This allows the photodetection device 2 to perform exposure while reading out charges for each frame, thereby increasing the frame rate.
  • the OF memories M1 and M2 expand the dynamic range. In other words, the photodetection device 2 can achieve both an expanded dynamic range and an improved frame rate.
  • Fig. 11 is a diagram showing the configuration of a pixel 30a and a peripheral portion in the second embodiment of the present disclosure.
  • the transfer unit 32 in Fig. 3 includes two OF memories M1 and M2 and one GM memory Mg
  • the transfer unit 32a in Fig. 11 includes two GS memories Mg1 (third holding unit) and Mg2 (fourth holding unit) and two OF memories M1a (first holding unit) and M2a (second holding unit).
  • the transfer unit 32a in FIG. 11 has two GS transistors Q4a and Q5a, and four OF transistors Q6a, Q7a, Q8a, and Q9a.
  • the GS transistor Q4a (seventh transfer control unit), OF transistor Q6a (eighth transfer control unit), and OF transistor Q7a (ninth transfer control unit) in FIG. 11 are cascode-connected between the photoelectric conversion element 31 and the charge-voltage conversion unit 33.
  • a GS memory Mg1 is disposed at the connection node between the OF transistor Q4a and the OF transistor Q6a.
  • An OF memory M1a is disposed at the connection node between the OF transistor Q6a and the OF transistor Q7a.
  • the OF transistor Q4a transfers charge from the photoelectric conversion element 31 to the GS memory Mg1 when the signal GS1 input to its gate is at a high level.
  • the OF transistor Q6a transfers charge from the GS memory Mg1 to the OF memory M1a when the signal OF1 input to its gate is at a high level.
  • the OF transistor Q7a transfers charge from the OF memory M1a to the charge-voltage conversion unit 33 when the signal OF2 input to its gate is at a high level.
  • the GS transistor Q5a (tenth transfer control unit), OF transistor Q8a (eleventh transfer control unit), and OF transistor Q9a (twelfth transfer control unit) in FIG. 11 are cascode-connected between the photoelectric conversion element 31 and the charge-voltage conversion unit 33.
  • a GS memory Mg2 is disposed at the connection node between the OF transistor Q5a and the OF transistor Q8a.
  • An OF memory M2a is disposed at the connection node between the OF transistor Q8a and the OF transistor Q9a.
  • the OF transistor Q5a transfers charge from the photoelectric conversion element 31 to the GS memory Mg2 when the signal GS2 input to its gate is at a high level.
  • the OF transistor Q8a transfers charge from the GS memory Mg2 to the OF memory M2a when the signal OF3 input to its gate is at a high level.
  • the OF transistor Q9a transfers charge from the OF memory M2a to the charge-voltage conversion unit 33 when the signal OF4 input to its gate is at a high level.
  • the transfer unit 32a in FIG. 11 can be provided with two GS memories Mg1 and Mg2 using the same number of transistors as the transfer unit 32 in FIG. 3.
  • the saturation charge amount of OF memories M1a and M2a is greater than the saturation charge amount of GS memories Mg1 and Mg2. Also, as with pixel 30, GS memories Mg1 and Mg2 hold the charge accumulated in the photoelectric conversion element 31 at the same time as other pixels 30a.
  • FIGS. 12A and 12B are diagrams showing the imaging operation by pixel 30a of the second embodiment of the present disclosure.
  • FIG. 12A shows the exposure period of the first frame by pixel 30a.
  • the charge e of the photoelectric conversion element 31 is transferred to the OF memory M1a via the GS memory Mg1.
  • the charge e of the photoelectric conversion element 31 is transferred to the GS memory Mg1.
  • FIG. 12B shows the readout period of the first frame and the exposure period of the second frame by pixel 30a.
  • the charge e in the OF memory M1a and the GS memory Mg1 is transferred to the charge-voltage converter 33.
  • the charge e in the photoelectric conversion element 31 is transferred to the OF memory M2a via the GS memory Mg2, as in FIG. 12A.
  • the OF memory M1a and the GS memory Mg1, and the OF memory M2a and the GS memory Mg2 are alternately used to read and transfer the charge e. That is, as in the first embodiment, the photodetector 2 of the second embodiment can expose the pixel 30a while reading the charge e from the pixel 30a.
  • pixel 30a of the second embodiment has two GS memories Mg1 and Mg2. That is, pixel 30a has the feature that even when either GS memory Mg1 or Mg2 transfers charge e to charge-voltage conversion unit 33, the other GS memory Mg1 or Mg2 can hold charge e of photoelectric conversion element 31. This allows pixel 30a to improve the frame rate compared to pixel 30 of the first embodiment.
  • FIG. 13 is a timing chart showing the control of pixel 30a in the second embodiment of the present disclosure. Times t31 to t55 shown in FIG. 13 include initialization, the exposure period and readout period of the first frame, the exposure period and readout period of the second frame, and the exposure period of the third frame.
  • pixel 30a is initialized before imaging. Specifically, similar to FIG. 7, reset signal RST, signals GS1 and GS2, and signals OF1 to OF4 are set to a high level for a certain period at the same timing. As a result, the charges in photoelectric conversion element 31, GS memories Mg1 and Mg2, OF memories M1a and M2a, and charge-voltage conversion unit 33 are discharged to the node of the high-voltage power supply VDD, and charge-voltage conversion unit 33 becomes the reset level voltage.
  • Times t33 to t35 are the exposure period of the first frame.
  • the charge of the photoelectric conversion element 31 is transferred to the OF memory M1a and the GS memory Mg1.
  • signal GS1 is at a high level and signal OF1 is at a low level. This turns on OF transistor Q4a and turns off OF transistor Q6a, and the charge in photoelectric conversion element 31 is transferred to GS memory Mg1.
  • the charge retention period of the OF memories M1a and M2a per frame is longer than the charge retention period of the GS memories Mg1 and Mg2.
  • Times t35 to t45 are the readout period of the first frame. From time t36 to t37, signals OF1 and OF2 are at low level, and selection signal SEL goes to high level. As a result, a pixel signal (P-phase signal) corresponding to the reset level of charge-voltage conversion unit 33 is read out, similar to FIG. 7.
  • the signal OF2 and the selection signal SEL go to high level.
  • the OF transistor Q7a is turned on, and the charge in the OF memory M1a is transferred to the charge-voltage converter 33.
  • a pixel signal (D-phase signal) corresponding to the charge obtained by adding the charge in the OF memory M1a to the charge in the charge-voltage converter 33 is read out.
  • the reset signal RST goes high. This causes the charge in the charge-voltage converter 33 to be discharged to the node of the high-voltage power supply VDD.
  • signals OF1, OF2 and selection signal SEL go to high level.
  • the charges in GS memory Mg1 and OF memory M1a are transferred to the charge-voltage converter 33.
  • a pixel signal (D-phase signal) corresponding to the charge obtained by adding the charge in OF memory M1a to the charge in GS memory Mg1 is read out from the charge-voltage converter 33.
  • the signals OF1, OF2 and the reset signal RST go to high level, and the charges in the GS memory Mg1, the OF memory M1a and the charge-voltage conversion unit 33 are discharged to the node of the high-voltage power supply VDD. This causes the charge-voltage conversion unit 33 to go to the reset level voltage.
  • signals OF1, OF2 and selection signal SEL go to high level, and a pixel signal (P-phase signal) corresponding to the reset level of the charge-voltage conversion unit 33 is read out.
  • Times t35 to t45 are the readout period for the first frame and also the exposure period for the second frame. From time t35 to t42, signal GS2 goes high and signal OF3 goes high. This causes the charge stored in photoelectric conversion element 31 to be transferred to OF memory M2a. From time t42 to t45, signal GS2 goes high and signal OF3 goes low. This causes the charge in photoelectric conversion element 31 to be transferred to GS memory Mg2.
  • the time t42 when the signal OF3 goes low is set between times t41 and t43 during the readout period of the first frame, but this is not limited to this.
  • the time when the signal OF3 goes low may be set anywhere during the readout period of the first frame.
  • Times t45 to t55 are the readout period for the second frame.
  • charges are read out from the GS memory Mg2 and the OF memory M2a by the same control as during the readout period for the first frame.
  • the selection signal SEL goes high, and a pixel signal (P-phase signal) corresponding to the reset level of the charge-voltage conversion unit 33 is read out.
  • the signal OF4 and the selection signal SEL go high, and a pixel signal (D-phase signal) corresponding to the charge obtained by adding the charge of the OF memory M2a to the charge of the charge-voltage conversion unit 33 is read out.
  • the reset signal RST goes high, and the charge-voltage conversion unit 33 goes to the reset level voltage.
  • the signals OF3, OF4 and the selection signal SEL go high, and a pixel signal (D-phase signal) corresponding to the charge obtained by adding the charge of the OF memory M2a to the charge of the GS memory Mg2 is read out from the charge-voltage conversion unit 33.
  • the signals OF3, OF4 and the reset signal RST go high, and the charge-voltage conversion unit 33 goes to the reset level voltage.
  • the signals OF3, OF4 and the selection signal SEL go high, and a pixel signal (P-phase signal) corresponding to the reset level of the charge-voltage conversion unit 33 is read out.
  • Times t45 to t55 are the readout period for the second frame and also the exposure period for the third frame. From time t45 to t52, signal GS1 goes high and signal OF1 goes high. This causes the charge stored in photoelectric conversion element 31 to be transferred to OF memory M1a. From time t52 to t55, signal GS1 goes high and signal OF1 goes low, and the charge in photoelectric conversion element 31 is transferred to GS memory Mg1.
  • the OF transistor Q4a or Q5a alternately transfers the charge stored in the photoelectric conversion element 31 to the GS memory Mg1 or Mg2 on a frame-by-frame basis.
  • the OF transistor Q6a or Q8a alternately transfers the charge from the GS memory Mg1 or Mg2 to the OF memory M1a or M2a on a frame-by-frame basis.
  • the OF transistor Q7a or Q9a alternately transfers the charge held in the OF memory M1a or M2a to the charge-voltage conversion unit 33 on a frame-by-frame basis.
  • each of the multiple pixels 30a in the pixel array unit 20 alternately holds a charge in the OF memory M1a or M2a on a frame-by-frame basis, and also alternately holds a charge in the GS memory Mg1 or Mg2 on a frame-by-frame basis.
  • the timing chart in FIG. 13 differs from the timing chart in FIG. 7 in that an exposure period for the next frame is provided even when charge is read out from the GS memory Mg1 or Mg2.
  • the pixel 30a of the second embodiment can extend the exposure period during imaging operation compared to the pixel 30 of the first embodiment.
  • the pixel 30a in the second embodiment has two GS memories Mg1 and Mg2 and two OF memories M1a and M2a.
  • the GS memory Mg1 and OF memory M1a, and the GS memory Mg2 and OF memory M2a alternately hold charges from the photoelectric conversion element 31 for each frame.
  • the GS memory Mg1 and OF memory M1a, and the GS memory Mg2 and OF memory M2a alternately transfer the held charges to the charge-voltage conversion unit 33 for each frame. This allows exposure to be performed while the pixel signal is being read out in each frame, and the frame rate can be increased.
  • the pixel 30a in the second embodiment can control the transfer of the two GS memories Mg1 and Mg2 and the two OF memories M1a and M2a with the same number of transistors Q4a to Q9a as the pixel 30 in the first embodiment.
  • the technology according to the present disclosure (the present technology) can be applied to various products.
  • the technology according to the present disclosure may be applied to an endoscopic surgery system.
  • FIG. 14 is a diagram showing an example of the general configuration of an endoscopic surgery system to which the technology disclosed herein (the present technology) can be applied.
  • an operator (doctor) 11131 is shown using an endoscopic surgery system 11000 to perform surgery on a patient 11132 on a patient bed 11133.
  • the endoscopic surgery system 11000 is composed of an endoscope 11100, other surgical tools 11110 such as an insufflation tube 11111 and an energy treatment tool 11112, a support arm device 11120 that supports the endoscope 11100, and a cart 11200 on which various devices for endoscopic surgery are mounted.
  • the endoscope 11100 is composed of a lens barrel 11101, the tip of which is inserted into the body cavity of the patient 11132 at a predetermined length, and a camera head 11102 connected to the base end of the lens barrel 11101.
  • the endoscope 11100 is configured as a so-called rigid scope having a rigid lens barrel 11101, but the endoscope 11100 may also be configured as a so-called flexible scope having a flexible lens barrel.
  • the tip of the tube 11101 has an opening into which an objective lens is fitted.
  • a light source device 11203 is connected to the endoscope 11100, and light generated by the light source device 11203 is guided to the tip of the tube by a light guide extending inside the tube 11101, and is irradiated via the objective lens towards an object to be observed inside the body cavity of the patient 11132.
  • the endoscope 11100 may be a direct-viewing endoscope, an oblique-viewing endoscope, or a side-viewing endoscope.
  • An optical system and an image sensor are provided inside the camera head 11102, and reflected light (observation light) from the object being observed is focused onto the image sensor by the optical system.
  • the image sensor converts the observation light into an electric signal corresponding to the observation light, i.e., an image signal corresponding to the observed image.
  • the image signal is sent to the camera control unit (CCU: Camera Control Unit) 11201 as RAW data.
  • CCU Camera Control Unit
  • the CCU 11201 is composed of a CPU (Central Processing Unit), a GPU (Graphics Processing Unit), etc., and controls the overall operation of the endoscope 11100 and the display device 11202. Furthermore, the CCU 11201 receives an image signal from the camera head 11102, and performs various types of image processing on the image signal, such as development processing (demosaic processing), in order to display an image based on the image signal.
  • a CPU Central Processing Unit
  • GPU Graphics Processing Unit
  • the display device 11202 under the control of the CCU 11201, displays an image based on the image signal that has been subjected to image processing by the CCU 11201.
  • the light source device 11203 is composed of a light source such as an LED (light emitting diode), and supplies illumination light to the endoscope 11100 when photographing the surgical site, etc.
  • a light source such as an LED (light emitting diode)
  • the input device 11204 is an input interface for the endoscopic surgery system 11000.
  • a user can input various information and instructions to the endoscopic surgery system 11000 via the input device 11204.
  • the user inputs an instruction to change the imaging conditions (type of irradiation light, magnification, focal length, etc.) of the endoscope 11100.
  • the treatment tool control device 11205 controls the operation of the energy treatment tool 11112 for cauterizing tissue, incising, sealing blood vessels, etc.
  • the insufflation device 11206 sends gas into the body cavity of the patient 11132 via the insufflation tube 11111 to inflate the body cavity in order to ensure a clear field of view for the endoscope 11100 and to ensure a working space for the surgeon.
  • the recorder 11207 is a device capable of recording various types of information related to the surgery.
  • the printer 11208 is a device capable of printing various types of information related to the surgery in various formats such as text, images, or graphs.
  • the light source device 11203 that supplies illumination light to the endoscope 11100 when photographing the surgical site can be composed of a white light source composed of, for example, an LED, a laser light source, or a combination of these.
  • a white light source composed of, for example, an LED, a laser light source, or a combination of these.
  • the white light source is composed of a combination of RGB laser light sources, the output intensity and output timing of each color (each wavelength) can be controlled with high precision, so that the white balance of the captured image can be adjusted in the light source device 11203.
  • the light source device 11203 may be controlled to change the intensity of the light it outputs at predetermined time intervals.
  • the image sensor of the camera head 11102 may be controlled to acquire images in a time-division manner in synchronization with the timing of the change in the light intensity, and the images may be synthesized to generate an image with a high dynamic range that is free of so-called blackout and whiteout.
  • the light source device 11203 may also be configured to supply light of a predetermined wavelength band corresponding to special light observation.
  • special light observation for example, by utilizing the wavelength dependency of light absorption in body tissue, a narrow band of light is irradiated compared to the light irradiated during normal observation (i.e., white light), and a specific tissue such as blood vessels on the surface of the mucosa is photographed with high contrast, so-called narrow band imaging is performed.
  • fluorescence observation may be performed in which an image is obtained by fluorescence generated by irradiating excitation light.
  • excitation light is irradiated to body tissue and fluorescence from the body tissue is observed (autofluorescence observation), or a reagent such as indocyanine green (ICG) is locally injected into the body tissue and excitation light corresponding to the fluorescence wavelength of the reagent is irradiated to the body tissue to obtain a fluorescent image.
  • the light source device 11203 may be configured to supply narrow band light and/or excitation light corresponding to such special light observation.
  • FIG. 15 is a block diagram showing an example of the functional configuration of the camera head 11102 and CCU 11201 shown in FIG. 14.
  • the camera head 11102 has a lens unit 11401, an imaging unit 11402, a drive unit 11403, a communication unit 11404, and a camera head control unit 11405.
  • the CCU 11201 has a communication unit 11411, an image processing unit 11412, and a control unit 11413.
  • the camera head 11102 and the CCU 11201 are connected to each other via a transmission cable 11400 so that they can communicate with each other.
  • the lens unit 11401 is an optical system provided at the connection with the lens barrel 11101. Observation light taken in from the tip of the lens barrel 11101 is guided to the camera head 11102 and enters the lens unit 11401.
  • the lens unit 11401 is composed of a combination of multiple lenses including a zoom lens and a focus lens.
  • the imaging unit 11402 may have one imaging element (a so-called single-plate type) or multiple imaging elements (a so-called multi-plate type).
  • each imaging element may generate an image signal corresponding to each of RGB, and a color image may be obtained by combining these.
  • the imaging unit 11402 may be configured to have a pair of imaging elements for acquiring image signals for the right eye and the left eye corresponding to a 3D (dimensional) display. By performing a 3D display, the surgeon 11131 can more accurately grasp the depth of the biological tissue in the surgical site.
  • multiple lens units 11401 may be provided corresponding to each imaging element.
  • the imaging unit 11402 does not necessarily have to be provided in the camera head 11102.
  • the imaging unit 11402 may be provided inside the lens barrel 11101, immediately after the objective lens.
  • the driving unit 11403 is composed of an actuator, and moves the zoom lens and focus lens of the lens unit 11401 a predetermined distance along the optical axis under the control of the camera head control unit 11405. This allows the magnification and focus of the image captured by the imaging unit 11402 to be adjusted appropriately.
  • the communication unit 11404 is configured with a communication device for transmitting and receiving various information to and from the CCU 11201.
  • the communication unit 11404 transmits the image signal obtained from the imaging unit 11402 as RAW data to the CCU 11201 via the transmission cable 11400.
  • the communication unit 11404 also receives control signals for controlling the operation of the camera head 11102 from the CCU 11201, and supplies them to the camera head control unit 11405.
  • the control signals include information on the imaging conditions, such as information specifying the frame rate of the captured image, information specifying the exposure value during imaging, and/or information specifying the magnification and focus of the captured image.
  • the imaging conditions such as the frame rate, exposure value, magnification, and focus may be appropriately specified by the user, or may be automatically set by the control unit 11413 of the CCU 11201 based on the acquired image signal.
  • the endoscope 11100 is equipped with the so-called AE (Auto Exposure) function, AF (Auto Focus) function, and AWB (Auto White Balance) function.
  • the camera head control unit 11405 controls the operation of the camera head 11102 based on a control signal from the CCU 11201 received via the communication unit 11404.
  • the communication unit 11411 is configured with a communication device for transmitting and receiving various information to and from the camera head 11102.
  • the communication unit 11411 receives an image signal transmitted from the camera head 11102 via the transmission cable 11400.
  • the communication unit 11411 also transmits to the camera head 11102 a control signal for controlling the operation of the camera head 11102.
  • the image signal and the control signal can be transmitted by electrical communication, optical communication, etc.
  • the image processing unit 11412 performs various image processing operations on the image signal, which is the RAW data transmitted from the camera head 11102.
  • the control unit 11413 performs various controls related to the imaging of the surgical site, etc. by the endoscope 11100, and the display of the captured images obtained by imaging the surgical site, etc. For example, the control unit 11413 generates a control signal for controlling the driving of the camera head 11102.
  • the control unit 11413 also causes the display device 11202 to display the captured image showing the surgical site, etc., based on the image signal that has been image-processed by the image processing unit 11412. At this time, the control unit 11413 may recognize various objects in the captured image using various image recognition techniques. For example, the control unit 11413 can recognize surgical tools such as forceps, specific body parts, bleeding, mist generated when the energy treatment tool 11112 is used, etc., by detecting the shape and color of the edges of objects included in the captured image. When the control unit 11413 causes the display device 11202 to display the captured image, it may use the recognition result to superimpose various types of surgical support information on the image of the surgical site. By superimposing the surgical support information and presenting it to the surgeon 11131, the burden on the surgeon 11131 can be reduced and the surgeon 11131 can proceed with the surgery reliably.
  • various image recognition techniques such as forceps, specific body parts, bleeding, mist generated when the energy treatment tool 11112 is used, etc.
  • the transmission cable 11400 that connects the camera head 11102 and the CCU 11201 is an electrical signal cable that supports electrical signal communication, an optical fiber that supports optical communication, or a composite cable of these.
  • communication is performed wired using a transmission cable 11400, but communication between the camera head 11102 and the CCU 11201 may also be performed wirelessly.
  • the technology disclosed herein can be applied to the camera head 11102 and other components of the configuration described above.
  • the light detection device 2 or electronic device 1 in FIG. 1 can be applied to the imaging unit 11402 of the camera head 11102.
  • a pixel pixel includes a plurality of pixels each having a photoelectric conversion element that accumulates an electric charge according to the amount of incident light, Each of the plurality of pixels is a charge-voltage converter for converting the charge stored in the photoelectric conversion element into a voltage; a first holding unit that holds the charge accumulated in the photoelectric conversion element; a second holding unit that holds the charges accumulated in the photoelectric conversion element alternately with the first holding unit; a third holding unit that holds the charge accumulated in the photoelectric conversion element at the same timing as other pixels; Light detection device.
  • each of the plurality of pixels outputs, for each frame, a pixel signal of a reset level and a pixel signal corresponding to the charge held in the first holding unit or the second holding unit and the charge held in the third holding unit; the pixel signal of the reset level and the pixel signal according to the charge are output at different timings.
  • the optical detection device according to any one of (1) to (3).
  • a saturated charge amount of the first storage unit and the second storage unit is greater than a saturated charge amount of the third storage unit.
  • a charge holding period of the first holding unit and the second holding unit per frame is longer than a charge holding period of the third holding unit.
  • Each of the plurality of pixels comprises: a first transfer control unit that controls the transfer of charges from the photoelectric conversion element to the first holding unit; a second transfer control unit that controls the transfer of charges from the first holding unit to the charge-voltage conversion unit; a third transfer control unit that controls the transfer of charges from the photoelectric conversion element to the second holding unit; a fourth transfer control unit that controls the transfer of charges from the second holding unit to the charge-voltage conversion unit,
  • the optical detection device according to any one of (1) to (6).
  • the first transfer control unit or the third transfer control unit alternately transfers the charges accumulated in the photoelectric conversion element to the first holding unit or the second holding unit on a frame basis.
  • An optical detection device according to (7).
  • the second transfer control unit or the fourth transfer control unit alternately transfers the charges held in the first holding unit or the second holding unit to the charge-voltage conversion unit on a frame basis.
  • An optical detection device according to (7) or (8).
  • the optical detection device according to any one of (7) to (9).
  • Each of the plurality of pixels a fifth transfer control unit that controls the transfer of charges from the photoelectric conversion element to the third holding unit; a sixth transfer control unit that controls the transfer of charges from the third holding unit to the charge-voltage conversion unit; The optical detection device according to any one of (7) to (10).
  • the fifth transfer control unit transfers electric charges from the photoelectric conversion element to the third holding unit at the same timing as other pixels for each frame; the sixth transfer control unit transfers the charge from the third holding unit to the charge-voltage conversion unit for each frame.
  • An optical detection device according to (11).
  • the fifth transfer control unit transfers the charge from the photoelectric conversion element to the third holding unit after the charge is transferred from the photoelectric conversion element to the first holding unit or the second holding unit for each frame.
  • Each of the plurality of pixels includes a fourth holding unit that holds the charge accumulated in the photoelectric conversion element at the same timing as the other pixels, each of the plurality of pixels alternately holds an electric charge in the first holding unit or the second holding unit on a frame-by-frame basis, and alternately holds an electric charge in the third holding unit or the fourth holding unit on a frame-by-frame basis;
  • An optical detection device according to (1) or (2).
  • Each of the plurality of pixels outputs, for each frame, a pixel signal of a reset level and a pixel signal corresponding to the charges held in the first holding unit and the third holding unit, or a pixel signal corresponding to the charges held in the second holding unit or the fourth holding unit; the pixel signal of the reset level and the pixel signal according to the charge are output at different timings.
  • An optical detection device according to (14).
  • a saturated charge amount of the first holding unit and the second holding unit is greater than a saturated charge amount of the third holding unit and the fourth holding unit.
  • a charge holding period of the first holding unit and the second holding unit per frame is longer than a charge holding period of the third holding unit and the fourth holding unit.
  • Each of the plurality of pixels comprises: a seventh transfer control unit that controls the transfer of charges from the photoelectric conversion element to the third holding unit; an eighth transfer control unit that controls the transfer of charges from the third holding unit to the first holding unit; a ninth transfer control unit that controls the transfer of charges from the first holding unit to the charge-voltage conversion unit; a tenth transfer control unit that controls the transfer of charges from the photoelectric conversion element to the fourth holding unit; an eleventh transfer control unit that controls the transfer of charges from the fourth holding unit to the second holding unit; a twelfth transfer control unit that controls the transfer of charges from the second holding unit to the charge-voltage conversion unit; The optical detection device according to any one of (14) to (17).
  • the seventh transfer control unit or the tenth transfer control unit alternately transfers the charges accumulated in the photoelectric conversion element to the third holding unit or the fourth holding unit on a frame basis
  • the eighth transfer control unit or the eleventh transfer control unit alternately transfers charges from the third holding unit or the fourth holding unit to the first holding unit or the second holding unit on a frame-by-frame basis
  • the ninth transfer control unit or the twelfth transfer control unit alternately transfers the charges held in the first holding unit or the second holding unit to the charge-voltage conversion unit on a frame basis
  • An optical detection device according to (18).
  • the light detection device includes:
  • the image sensor includes a plurality of pixels each having a photoelectric conversion element that accumulates an electric charge according to the amount of incident light, Each of the plurality of pixels is a charge-voltage converter for converting the charge stored in the photoelectric conversion element into a voltage; a first holding unit that holds the charge accumulated in the photoelectric conversion element; a second holding unit that holds the charges accumulated in the photoelectric conversion element alternately with the first holding unit; a third holding unit that holds the charge accumulated in the photoelectric conversion element at the same timing as other pixels; Electronics.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

[Problem] To enable both a dynamic range expansion and a frame rate increase. [Solution] This photodetection device comprises: a plurality of pixels each having a photoelectric conversion element that stores charge corresponding to the light intensity of incident light. The plurality of pixels each have: a charge-to-voltage conversion part that converts the charge stored in the photoelectric conversion element into a voltage; a first retention part that retains the charge stored in the photoelectric conversion element; a second retention part that retains, alternately with the first retention part, the charge stored in the photoelectric conversion element; and a third retention part that, using the same timing as another pixel, retains the charge stored in the photoelectric conversion element.

Description

光検出装置及び電子機器Photodetection device and electronic device
 本開示は、光検出装置及び電子機器に関する。 This disclosure relates to a light detection device and an electronic device.
 動きのある被写体を撮像する際に、全画素で同時に露光を行うグローバルシャッタ機能を設けた撮像装置が提案されている(特許文献1)。特許文献1では、ダイナミックレンジを拡大するために、グローバルシャッタ用の電荷を保持する保持部とは別個に、光電変換部から溢れた電荷を保持する保持部を設けている。 An imaging device has been proposed that has a global shutter function that exposes all pixels simultaneously when capturing an image of a moving subject (Patent Document 1). In Patent Document 1, in order to expand the dynamic range, a holding section is provided that holds charge that overflows from the photoelectric conversion section, separate from the holding section that holds charge for the global shutter.
特開2020-178163号公報JP 2020-178163 A
 しかしながら、特許文献1の手法では、保持部から電荷を読み出している最中は、光電変換部から溢れた電荷を保持できない。そのため、電荷の読み出し期間中に露光ができず、フレームレートが低下するという問題がある。 However, the method of Patent Document 1 cannot hold the charge that has overflowed from the photoelectric conversion unit while the charge is being read out from the holding unit. This causes the problem that exposure cannot be performed during the charge readout period, resulting in a drop in the frame rate.
 そこで、本開示では、ダイナミックレンジの拡大とフレームレートの向上を両立できる光検出装置及び電子機器を提供するものである。 This disclosure provides a photodetector and electronic device that can achieve both an expanded dynamic range and an improved frame rate.
 上記の課題を解決するために、本開示によれば、入射光の光量に応じた電荷を蓄積する光電変換素子をそれぞれ有する複数の画素を備え、
 前記複数の画素のそれぞれは、
 前記光電変換素子に蓄積された電荷を電圧に変換する電荷電圧変換部と、
 前記光電変換素子に蓄積された電荷を保持する第1保持部と、
 前記第1保持部と交互に前記光電変換素子に蓄積された電荷を保持する第2保持部と、
 他の画素と同タイミングで前記光電変換素子に蓄積された電荷を保持する第3保持部と、を有する、
 光検出装置が提供される。
In order to solve the above problems, according to the present disclosure, there is provided a liquid crystal display device comprising a plurality of pixels each having a photoelectric conversion element that accumulates a charge according to the amount of incident light,
Each of the plurality of pixels is
a charge-voltage converter for converting the charge stored in the photoelectric conversion element into a voltage;
a first holding unit that holds the charge accumulated in the photoelectric conversion element;
a second holding unit that holds the charges accumulated in the photoelectric conversion element alternately with the first holding unit;
a third holding unit that holds the charge accumulated in the photoelectric conversion element at the same timing as other pixels;
A light detection device is provided.
 前記第1保持部又は前記第2保持部のいずれか一方が前記電荷電圧変換部に電荷を転送する間に、前記第1保持部又は前記第2保持部のいずれか他方は前記光電変換素子に蓄積された電荷を保持してもよい。 While either the first holding unit or the second holding unit transfers charge to the charge-voltage conversion unit, the other of the first holding unit or the second holding unit may hold the charge accumulated in the photoelectric conversion element.
 前記複数の画素のそれぞれは、フレーム単位で交互に前記第1保持部又は前記第2保持部に電荷を保持するとともに、フレームごとに前記第3保持部に電荷を保持してもよい。 Each of the plurality of pixels may alternately hold charge in the first holding section or the second holding section on a frame-by-frame basis, and may also hold charge in the third holding section for each frame.
 前記複数の画素のそれぞれは、フレームごとに、リセットレベルの画素信号と、前記第1保持部又は前記第2保持部に保持された電荷と前記第3保持部に保持された電荷とに応じた画素信号とを出力し、
 前記リセットレベルの画素信号と、前記電荷に応じた画素信号とは互いに異なるタイミングで出力されてもよい。
each of the plurality of pixels outputs, for each frame, a pixel signal of a reset level and a pixel signal corresponding to the charge held in the first holding unit or the second holding unit and the charge held in the third holding unit;
The pixel signal of the reset level and the pixel signal according to the charge may be output at different timings.
 前記第1保持部及び前記第2保持部の飽和電荷量は、前記第3保持部の飽和電荷量よりも大きくてもよい。 The saturation charge amount of the first holding unit and the second holding unit may be greater than the saturation charge amount of the third holding unit.
 フレームごとの前記第1保持部及び前記第2保持部の電荷保持期間は、前記第3保持部の電荷保持期間よりも長くてもよい。 The charge retention period of the first and second retention units per frame may be longer than the charge retention period of the third retention unit.
 前記複数の画素のそれぞれは、
 前記光電変換素子から前記第1保持部に電荷を転送する制御を行う第1転送制御部と、
 前記第1保持部から前記電荷電圧変換部に電荷を転送する制御を行う第2転送制御部と、
 前記光電変換素子から前記第2保持部に電荷を転送する制御を行う第3転送制御部と、
 前記第2保持部から前記電荷電圧変換部に電荷を転送する制御を行う第4転送制御部と、を有してもよい。
Each of the plurality of pixels is
a first transfer control unit that controls the transfer of charges from the photoelectric conversion element to the first holding unit;
a second transfer control unit that controls the transfer of charges from the first holding unit to the charge-voltage conversion unit;
a third transfer control unit that controls the transfer of charges from the photoelectric conversion element to the second holding unit;
The pixel may further include a fourth transfer control unit that controls the transfer of charges from the second holding unit to the charge-voltage conversion unit.
 前記第1転送制御部又は前記第3転送制御部は、フレーム単位で交互に前記光電変換素子に蓄積された電荷を前記第1保持部又は前記第2保持部に転送してもよい。 The first transfer control unit or the third transfer control unit may alternately transfer the charge accumulated in the photoelectric conversion element to the first holding unit or the second holding unit on a frame-by-frame basis.
 前記第2転送制御部又は前記第4転送制御部は、フレーム単位で交互に前記第1保持部又は前記第2保持部に保持された電荷を前記電荷電圧変換部に転送してもよい。 The second transfer control unit or the fourth transfer control unit may alternately transfer the charge held in the first holding unit or the second holding unit to the charge-voltage conversion unit on a frame-by-frame basis.
 前記第1転送制御部が前記光電変換素子から前記第1保持部に電荷を転送する際には、前記第3転送制御部のゲートに負バイアス電圧が供給され、
 前記第3転送制御部が前記光電変換素子から前記第2保持部に電荷を転送する際には、前記第1転送制御部のゲートに負バイアス電圧が供給されてもよい。
When the first transfer control unit transfers charges from the photoelectric conversion element to the first holding unit, a negative bias voltage is supplied to a gate of the third transfer control unit,
When the third transfer control unit transfers the charges from the photoelectric conversion elements to the second holding units, a negative bias voltage may be supplied to the gates of the first transfer control units.
 前記複数の画素のそれぞれは、
 前記光電変換素子から前記第3保持部に電荷を転送する制御を行う第5転送制御部と、
 前記第3保持部から前記電荷電圧変換部に電荷を転送する制御を行う第6転送制御部と、を有してもよい。
Each of the plurality of pixels is
a fifth transfer control unit that controls the transfer of charges from the photoelectric conversion element to the third holding unit;
The pixel may further include a sixth transfer control unit that controls the transfer of charges from the third holding unit to the charge-voltage conversion unit.
 前記第5転送制御部は、フレームごとに他の画素と同タイミングで前記光電変換素子から前記第3保持部に電荷を転送し、
 前記第6転送制御部は、フレームごとに前記第3保持部から前記電荷電圧変換部に電荷を転送してもよい。
the fifth transfer control unit transfers charges from the photoelectric conversion element to the third holding unit at the same timing as other pixels for each frame;
The sixth transfer control unit may transfer the charge from the third holding unit to the charge-voltage conversion unit for each frame.
 前記第5転送制御部は、フレームごとに、前記光電変換素子から前記第1保持部又は前記第2保持部に電荷が転送された後に前記光電変換素子から前記第3保持部に電荷を転送してもよい。 The fifth transfer control unit may transfer charges from the photoelectric conversion element to the third holding unit after charges are transferred from the photoelectric conversion element to the first holding unit or the second holding unit for each frame.
 前記複数の画素のそれぞれは、
 他の画素と同タイミングで前記光電変換素子に蓄積された電荷を保持する第4保持部を備え、
 前記複数の画素のそれぞれは、フレーム単位で交互に前記第1保持部又は前記第2保持部に電荷を保持するとともに、フレーム単位で交互に前記第3保持部又は前記第4保持部に電荷を保持してもよい。
Each of the plurality of pixels is
a fourth holding unit that holds the charge accumulated in the photoelectric conversion element at the same timing as other pixels;
Each of the plurality of pixels may alternately hold charge in the first holding unit or the second holding unit on a frame-by-frame basis, and may alternately hold charge in the third holding unit or the fourth holding unit on a frame-by-frame basis.
 前記複数の画素のそれぞれは、フレームごとに、リセットレベルの画素信号と、前記第1保持部及び前記第3保持部に保持された電荷に応じた画素信号又は前記第2保持部又は前記第4保持部に保持された電荷に応じた画素信号とを出力し、
 前記リセットレベルの画素信号と、前記電荷に応じた画素信号とは互いに異なるタイミングで出力されてもよい。
each of the plurality of pixels outputs, for each frame, a pixel signal of a reset level and a pixel signal corresponding to the charges held in the first holding unit and the third holding unit or a pixel signal corresponding to the charges held in the second holding unit or the fourth holding unit;
The pixel signal of the reset level and the pixel signal according to the charge may be output at different timings.
 前記第1保持部及び前記第2保持部の飽和電荷量は、前記第3保持部及び前記第4保持部の飽和電荷量よりも大きくてもよい。 The saturated charge amount of the first holding unit and the second holding unit may be greater than the saturated charge amount of the third holding unit and the fourth holding unit.
 フレームごとの前記第1保持部及び前記第2保持部の電荷保持期間は、前記第3保持部及び前記第4保持部の電荷保持期間よりも長くてもよい。 The charge retention period of the first and second retention units per frame may be longer than the charge retention period of the third and fourth retention units.
 前記複数の画素のそれぞれは、
 前記光電変換素子から前記第3保持部に電荷を転送する制御を行う第7転送制御部と、
 前記第3保持部から前記第1保持部に電荷を転送する制御を行う第8転送制御部と、
 前記第1保持部から前記電荷電圧変換部に電荷を転送する制御を行う第9転送制御部と、
 前記光電変換素子から前記第4保持部に電荷を転送する制御を行う第10転送制御部と、
 前記第4保持部から前記第2保持部に電荷を転送する制御を行う第11転送制御部と、
 前記第2保持部から前記電荷電圧変換部に電荷を転送する制御を行う第12転送制御部と、を有してもよい。
Each of the plurality of pixels is
a seventh transfer control unit that controls the transfer of charges from the photoelectric conversion element to the third holding unit;
an eighth transfer control unit that controls the transfer of charges from the third holding unit to the first holding unit;
a ninth transfer control unit that controls the transfer of charges from the first holding unit to the charge-voltage conversion unit;
a tenth transfer control unit that controls the transfer of charges from the photoelectric conversion element to the fourth holding unit;
an eleventh transfer control unit that controls the transfer of charges from the fourth holding unit to the second holding unit;
The pixel may further include a twelfth transfer control unit that controls the transfer of charges from the second holding unit to the charge-voltage conversion unit.
 前記第7転送制御部又は前記第10転送制御部は、フレーム単位で交互に前記光電変換素子に蓄積された電荷を前記第3保持部又は前記第4保持部に転送し、
 前記第8転送制御部又は前記第11転送制御部は、フレーム単位で交互に前記第3保持部又は前記第4保持部から前記第1保持部又は前記第2保持部に電荷を転送し、
 前記第9転送制御部又は前記第12転送制御部は、フレーム単位で交互に前記第1保持部又は前記第2保持部に保持された電荷を前記電荷電圧変換部に転送してもよい。
the seventh transfer control unit or the tenth transfer control unit alternately transfers the charges accumulated in the photoelectric conversion element to the third holding unit or the fourth holding unit on a frame basis;
the eighth transfer control unit or the eleventh transfer control unit alternately transfers charges from the third holding unit or the fourth holding unit to the first holding unit or the second holding unit on a frame-by-frame basis;
The ninth transfer control unit or the twelfth transfer control unit may alternately transfer the charges held in the first holding unit or the second holding unit to the charge-voltage conversion unit on a frame-by-frame basis.
 また、本開示によれば、光検出装置と、
 前記光検出装置から出力された画素データを処理する処理部と、を備え、
 前記光検出装置は、
 入射光の光量に応じた電荷を蓄積する光電変換素子をそれぞれ有する複数の画素を備え、
 前記複数の画素のそれぞれは、
 前記光電変換素子に蓄積された電荷を電圧に変換する電荷電圧変換部と、
 前記光電変換素子に蓄積された電荷を保持する第1保持部と、
 前記第1保持部と交互に前記光電変換素子に蓄積された電荷を保持する第2保持部と、
 他の画素と同タイミングで前記光電変換素子に蓄積された電荷を保持する第3保持部と、を有する、
 電子機器が提供される。
The present disclosure also provides a method for detecting a light-generating particle beam from a light-generating device, comprising:
A processing unit that processes pixel data output from the light detection device,
The light detection device includes:
The image sensor includes a plurality of pixels each having a photoelectric conversion element that accumulates an electric charge according to the amount of incident light,
Each of the plurality of pixels is
a charge-voltage converter for converting the charge stored in the photoelectric conversion element into a voltage;
a first holding unit that holds the charge accumulated in the photoelectric conversion element;
a second holding unit that holds the charges accumulated in the photoelectric conversion element alternately with the first holding unit;
a third holding unit that holds the charge accumulated in the photoelectric conversion element at the same timing as other pixels;
An electronic device is provided.
本開示の第1の実施形態における電子機器のブロック図である。FIG. 1 is a block diagram of an electronic device according to a first embodiment of the present disclosure. 本開示の第1の実施形態における光検出装置の構成例を示すブロック図である。1 is a block diagram illustrating a configuration example of a light detection device according to a first embodiment of the present disclosure. 本開示の第1の実施形態における画素及び周辺部の構成を示す図である。FIG. 2 is a diagram showing a configuration of a pixel and a peripheral portion according to the first embodiment of the present disclosure. 光検出装置の積層構造の第1例を示す図である。1 is a diagram showing a first example of a layered structure of a light detection device. 光検出装置の積層構造の第2例を示す図である。FIG. 13 is a diagram showing a second example of a laminated structure of the photodetector. 電子機器による撮像動作を示すタイミングチャートである。4 is a timing chart showing an imaging operation by the electronic device. 本開示の第1の実施形態の画素による第1フレームの露光期間を示す図である。FIG. 2 is a diagram showing an exposure period of a first frame by a pixel according to the first embodiment of the present disclosure. 本開示の第1の実施形態の画素による第1フレームの読出期間を示す図である。FIG. 2 is a diagram showing a readout period of a first frame by a pixel according to the first embodiment of the present disclosure. 本開示の第1の実施形態の画素による第1フレームの読出後の第2フレームの露光期間を示す図である。FIG. 2 is a diagram showing an exposure period of a second frame after a first frame is read out by a pixel according to the first embodiment of the present disclosure. 本開示の第1の実施形態の画素による第2フレームの読出期間を示す図である。FIG. 11 is a diagram showing a readout period of a second frame by the pixel of the first embodiment of the present disclosure. 本開示の第1の実施形態における画素の撮像動作を示すタイミングチャートである。4 is a timing chart showing an imaging operation of a pixel according to the first embodiment of the present disclosure. 2つのOFメモリのポテンシャルの障壁を説明する図である。FIG. 1 is a diagram illustrating the potential barriers of two OF memories. 一比較例の画素及び周辺部の構成を示す図である。FIG. 1 is a diagram showing a configuration of a pixel and a peripheral portion of a comparative example. 一比較例の画素による露光期間を示す図である。FIG. 13 is a diagram showing an exposure period for a pixel of a comparative example. 一比較例の画素による読出期間を示す図である。FIG. 13 is a diagram showing a readout period by a pixel of a comparative example. 本開示の第2の実施形態における画素及び周辺部の構成を示す図である。FIG. 11 is a diagram showing a configuration of a pixel and a peripheral portion according to a second embodiment of the present disclosure. 本開示の第2の実施形態の画素による第1フレームの露光期間を示す図である。FIG. 11 is a diagram showing an exposure period of a first frame by a pixel according to a second embodiment of the present disclosure. 本開示の第1の実施形態の画素による第1フレームの読出期間及び第2フレームの露光期間を示す図である。1 is a diagram showing a readout period of a first frame and an exposure period of a second frame by a pixel according to a first embodiment of the present disclosure; 本開示の第2の実施形態における画素の制御を示すタイミングチャートである。10 is a timing chart showing pixel control in the second embodiment of the present disclosure. 内視鏡手術システムの概略的な構成の一例を示す図である。1 is a diagram illustrating an example of a schematic configuration of an endoscopic surgery system. カメラヘッド及びCCUの機能構成の一例を示すブロック図である。2 is a block diagram showing an example of the functional configuration of a camera head and a CCU. FIG.
 以下、図面を参照して、光検出装置及び電子機器の実施形態について説明する。以下では、光検出装置及び電子機器の主要な構成部分を中心に説明するが、光検出装置及び電子機器には、図示又は説明されていない構成部分や機能が存在しうる。以下の説明は、図示又は説明されていない構成部分や機能を除外するものではない。 Below, embodiments of the light detection device and electronic device are described with reference to the drawings. The following description focuses on the main components of the light detection device and electronic device, but the light detection device and electronic device may have components and functions that are not shown or described. The following description does not exclude components and functions that are not shown or described.
 (第1の実施形態)
 図1は、本開示の第1の実施形態における電子機器1のブロック図である。この電子機器1は、画像データの撮像を行うものであり、撮像レンズ11、光検出装置2、処理部3及び制御部4を備える。電子機器1としては、例えば、産業用ロボットに搭載されるカメラ、又は車載カメラ等が想定されるが、電子機器1の具体的な用途及び構成は任意である。
First Embodiment
1 is a block diagram of an electronic device 1 according to a first embodiment of the present disclosure. The electronic device 1 captures image data and includes an imaging lens 11, a light detection device 2, a processing unit 3, and a control unit 4. The electronic device 1 is assumed to be, for example, a camera mounted on an industrial robot or an in-vehicle camera, but the specific use and configuration of the electronic device 1 are arbitrary.
 撮像レンズ11は、入射光を集光して光検出装置2に導く。光検出装置2は、例えばCMOS(Complementary Metal)イメージセンサであり、入射光を光電変換して画像データの撮像を行う。また、光検出装置2は、連続的に画像データの撮像を行うことにより、動画データを生成することもできる。光検出装置2から出力された画像データは、伝送線12を介して処理部3に入力される。処理部3は、光検出装置2から出力された画像データに対して所定の画像処理を行う。 The imaging lens 11 collects the incident light and guides it to the photodetector 2. The photodetector 2 is, for example, a CMOS (Complementary Metal) image sensor, which performs photoelectric conversion on the incident light to capture image data. The photodetector 2 can also generate video data by continuously capturing image data. The image data output from the photodetector 2 is input to the processor 3 via the transmission line 12. The processor 3 performs predetermined image processing on the image data output from the photodetector 2.
 電子機器1は、記録部5を備えてもよい。記録部5は、光検出装置2からの画像データを記録する。記録部5は、ネットワークを介して接続されるサーバ等に配置されてもよい。 The electronic device 1 may include a recording unit 5. The recording unit 5 records image data from the light detection device 2. The recording unit 5 may be disposed in a server or the like connected via a network.
 制御部4は、制御線13を介して光検出装置2の撮像タイミング等を制御する。例えば、制御部4は非図示のシャッタ操作部材の操作に応じて、光検出装置2の撮像の開始と終了を制御する。 The control unit 4 controls the imaging timing of the light detection device 2 via the control line 13. For example, the control unit 4 controls the start and end of imaging by the light detection device 2 in response to the operation of a shutter operating member (not shown).
 図2は、本開示の第1の実施形態における光検出装置2の構成例を示すブロック図である。光検出装置2は、画素アレイ部20、垂直駆動回路21、システム制御回路22、及び信号処理部23を備える。 FIG. 2 is a block diagram showing an example configuration of the photodetector 2 in the first embodiment of the present disclosure. The photodetector 2 includes a pixel array section 20, a vertical drive circuit 21, a system control circuit 22, and a signal processing section 23.
 画素アレイ部20は、第1方向X及び第2方向Yに複数ずつ配列される画素30を有する。本明細書では、図2の左右(水平)方向を第1方向X、図2の上下(垂直)方向を第2方向Yと呼ぶ。また、第1方向Xに沿って複数配列される一群の画素30を画素行、第2方向Yに沿って複数配列される一群の画素30を画素列と呼ぶ。 The pixel array section 20 has pixels 30 arranged in multiples in a first direction X and a second direction Y. In this specification, the left-right (horizontal) direction in FIG. 2 is called the first direction X, and the up-down (vertical) direction in FIG. 2 is called the second direction Y. A group of pixels 30 arranged in multiples along the first direction X is called a pixel row, and a group of pixels 30 arranged in multiples along the second direction Y is called a pixel column.
 画素30は、それぞれ入射光の光量に応じた電荷を生成する光電変換素子を有する。画素30に接続された図1では不図示の画素回路は、光電変換素子の電荷に基づき、画素信号Vimgを生成する。 Each pixel 30 has a photoelectric conversion element that generates an electric charge according to the amount of incident light. A pixel circuit (not shown in FIG. 1) connected to pixel 30 generates a pixel signal Vimg based on the electric charge of the photoelectric conversion element.
 垂直駆動回路21は、シフトレジスタ、及びアドレスデコーダ等によって構成される。垂直駆動回路21は、画素アレイ部20の各画素30を、全画素同時あるいは画素行単位で駆動する。垂直駆動回路21は、各画素30及び画素回路に対して、電荷の掃き出しと信号の読み出しを行う。 The vertical drive circuit 21 is composed of a shift register, an address decoder, etc. The vertical drive circuit 21 drives each pixel 30 of the pixel array section 20, either all pixels at once or on a pixel row basis. The vertical drive circuit 21 discharges electric charge and reads out signals from each pixel 30 and pixel circuit.
 電荷の掃き出しでは、画素30の光電変換素子から不要な電荷が掃き出される(リセットされる)。これにより、画素30内の光電変換素子は、新たな露光を開始することができる。光電変換素子の電荷を捨てて、新たに露光を開始する(電荷の蓄積を開始する)動作は、電子シャッタ動作とも呼ばれる。 When discharging electric charge, unnecessary electric charge is swept out (reset) from the photoelectric conversion element of pixel 30. This allows the photoelectric conversion element in pixel 30 to start a new exposure. The operation of discarding the charge of the photoelectric conversion element and starting a new exposure (starting the accumulation of electric charge) is also called an electronic shutter operation.
 光検出装置2は、全画素で同時に行う電子シャッタ動作である、グローバルシャッタ動作を行う。グローバルシャッタ動作は、画素ごとに露光するタイミングにずれが生じないという特徴がある。 The photodetector 2 performs a global shutter operation, which is an electronic shutter operation that is performed simultaneously on all pixels. A feature of the global shutter operation is that there is no deviation in the exposure timing for each pixel.
 信号の読み出しにおいては、画素30内の光電変換素子が蓄積する電荷に基づく画素信号Vimgが画素回路から読み出される。電子シャッタ動作から信号の読み出しまでの期間は、露光期間とも呼ばれる。信号の読み出しにおいては、露光期間内に画素30に入射する光量に応じた画素信号Vimgが画素回路から読み出される。 When reading out a signal, a pixel signal Vimg based on the charge accumulated in the photoelectric conversion element in the pixel 30 is read out from the pixel circuit. The period from the electronic shutter operation to the signal readout is also called the exposure period. When reading out a signal, a pixel signal Vimg corresponding to the amount of light incident on the pixel 30 during the exposure period is read out from the pixel circuit.
 システム制御回路22は、各種のタイミング信号を生成するタイミングジェネレータ等によって構成される。システム制御回路22は各種のタイミング信号を基に、垂直駆動回路21の読み出し及び掃き出しタイミングの制御、及び信号処理部23の駆動制御等を行う。 The system control circuit 22 is composed of a timing generator that generates various timing signals. Based on the various timing signals, the system control circuit 22 controls the read and discharge timing of the vertical drive circuit 21, and controls the drive of the signal processing unit 23.
 信号処理部23は、画素アレイ部20内の各画素30及び画素回路より画素信号Vimgが供給される。信号処理部23は、画素信号Vimgに対して所定の信号処理を行う。所定の信号処理には、例えば画素信号Vimgのアナログデジタル変換と、画素信号Vimgに重畳されるノイズ除去処理がある。 The signal processing unit 23 receives the pixel signal Vimg from each pixel 30 and pixel circuit in the pixel array unit 20. The signal processing unit 23 performs predetermined signal processing on the pixel signal Vimg. The predetermined signal processing includes, for example, analog-to-digital conversion of the pixel signal Vimg and noise removal processing superimposed on the pixel signal Vimg.
 画素信号Vimgに対するノイズ除去処理としては、例えばCDS(Correlated Double Sampling;相関二重サンプリング)が用いられる。信号処理部23は、入射光量に応じた画素信号Vimg(以下、D相信号とも呼ぶ)の信号レベルと、入射光量に依存しないリセットレベルの画素信号(以下、P相信号とも呼ぶ)の信号レベルとを比較する。これにより、画素信号Vimgに重畳されるノイズ(kTCノイズとも呼ばれる)が除去される。 Correlated double sampling (CDS), for example, is used as a noise removal process for the pixel signal Vimg. The signal processing unit 23 compares the signal level of the pixel signal Vimg (hereinafter also referred to as the D-phase signal) that corresponds to the amount of incident light with the signal level of a pixel signal (hereinafter also referred to as the P-phase signal) that is at a reset level and does not depend on the amount of incident light. This removes noise (also referred to as kTC noise) that is superimposed on the pixel signal Vimg.
 図3は、本開示の第1の実施形態における画素30及び周辺部の構成を示す図である。図3に示す画素30は、入射光の照度に基づく画素信号Vimgを出力する。画素30は、光電変換素子(PD)31、転送部32、電荷電圧変換部33を備える。光電変換素子31は、例えばフォトダイオード(PD)であり、アノード及びカソードを有する。アノード又はカソードのいずれか一方(例えば、カソード)は転送部32に接続され、他方(例えば、アノード)は、接地電圧等の所定の基準電圧(VRLD)ノードに接続される。電荷電圧変換部33は、フローティングディフュージョン(FD)とも呼ばれる。光電変換素子31に蓄積された光電変換による電荷は、転送部32を介して電荷電圧変換部33に転送される。 FIG. 3 is a diagram showing the configuration of a pixel 30 and its peripheral portion in the first embodiment of the present disclosure. The pixel 30 shown in FIG. 3 outputs a pixel signal Vimg based on the illuminance of incident light. The pixel 30 includes a photoelectric conversion element (PD) 31, a transfer unit 32, and a charge-voltage conversion unit 33. The photoelectric conversion element 31 is, for example, a photodiode (PD) and has an anode and a cathode. Either the anode or the cathode (for example, the cathode) is connected to the transfer unit 32, and the other (for example, the anode) is connected to a predetermined reference voltage (VRLD) node such as a ground voltage. The charge-voltage conversion unit 33 is also called a floating diffusion (FD). The charge resulting from photoelectric conversion and stored in the photoelectric conversion element 31 is transferred to the charge-voltage conversion unit 33 via the transfer unit 32.
 画素30の周辺部には、増幅トランジスタQ1、選択トランジスタQ2、及びリセットトランジスタQ3が配置される。なお画素30は、図3の増幅トランジスタQ1、選択トランジスタQ2、及びリセットトランジスタQ3の少なくとも一部を含むと解釈されてもよい。本明細書では、増幅トランジスタQ1、選択トランジスタQ2、及びリセットトランジスタQ3を画素回路と呼び、画素回路内の各トランジスタを総称して画素トランジスタと呼ぶ。 The amplification transistor Q1, the selection transistor Q2, and the reset transistor Q3 are arranged on the periphery of the pixel 30. Note that the pixel 30 may be interpreted as including at least a part of the amplification transistor Q1, the selection transistor Q2, and the reset transistor Q3 in FIG. 3. In this specification, the amplification transistor Q1, the selection transistor Q2, and the reset transistor Q3 are referred to as a pixel circuit, and each transistor in the pixel circuit is collectively referred to as a pixel transistor.
 本明細書においては、増幅トランジスタQ1、選択トランジスタQ2、リセットトランジスタQ3を、例えばNMOS(N channel Metal-Oxide-Semiconductor)トランジスタで構成する例を説明する。但し、ここで例示した各トランジスタの導電型は任意である。上記のトランジスタのいずれかを、例えばPMOS(P channel Metal-Oxide-Semiconductor)トランジスタで構成してもよい。 In this specification, an example will be described in which the amplification transistor Q1, the selection transistor Q2, and the reset transistor Q3 are configured, for example, with NMOS (N-channel Metal-Oxide-Semiconductor) transistors. However, the conductivity type of each transistor exemplified here is arbitrary. Any of the above transistors may be configured, for example, with PMOS (P-channel Metal-Oxide-Semiconductor) transistors.
 転送部32は、GSトランジスタQ4(第5転送制御部)、GSトランジスタQ5(第6転送制御部)、OFトランジスタQ6(第1転送制御部)、OFトランジスタQ7(第2転送制御部)、OFトランジスタQ8(第3転送制御部)、OFトランジスタQ9(第4転送制御部)を有する。GSトランジスタQ4及びQ5は、光電変換素子31と電荷電圧変換部33との間にカスコード接続される。同様に、OFトランジスタQ6及びQ7は、光電変換素子31と電荷電圧変換部33との間にカスコード接続される。同様に、OFトランジスタQ8及びQ9は、光電変換素子31と電荷電圧変換部33との間にカスコード接続される。 The transfer unit 32 has a GS transistor Q4 (fifth transfer control unit), a GS transistor Q5 (sixth transfer control unit), an OF transistor Q6 (first transfer control unit), an OF transistor Q7 (second transfer control unit), an OF transistor Q8 (third transfer control unit), and an OF transistor Q9 (fourth transfer control unit). The GS transistors Q4 and Q5 are cascode-connected between the photoelectric conversion element 31 and the charge-voltage conversion unit 33. Similarly, the OF transistors Q6 and Q7 are cascode-connected between the photoelectric conversion element 31 and the charge-voltage conversion unit 33. Similarly, the OF transistors Q8 and Q9 are cascode-connected between the photoelectric conversion element 31 and the charge-voltage conversion unit 33.
 GSトランジスタQ4とGSトランジスタQ5との接続ノードには、GSメモリ(第3保持部)Mgが配置される。GSメモリMgは、グローバルシャッタ動作に伴い、他の画素30と同じタイミングで、光電変換素子31から転送された電荷を保持する。またGSメモリMg内の電荷は、画素30の信号の読み出し期間内に、電荷電圧変換部33に転送される。 A GS memory (third holding unit) Mg is disposed at the connection node between GS transistor Q4 and GS transistor Q5. The GS memory Mg holds the charge transferred from the photoelectric conversion element 31 at the same timing as the other pixels 30 in conjunction with the global shutter operation. The charge in the GS memory Mg is also transferred to the charge-voltage conversion unit 33 during the signal readout period of the pixel 30.
 GSトランジスタQ4は、光電変換素子31からGSメモリMgに電荷を転送する。GSトランジスタQ4は、ゲートに入力される信号GS1がハイレベルのときにオンされ、光電変換素子31の電荷をGSメモリMgに転送する。 GS transistor Q4 transfers charge from photoelectric conversion element 31 to GS memory Mg. When signal GS1 input to the gate is at high level, GS transistor Q4 is turned on and transfers charge from photoelectric conversion element 31 to GS memory Mg.
 GSトランジスタQ5は、GSメモリMgから電荷電圧変換部33に電荷を転送する。GSトランジスタQ5は、ゲートに入力される信号GS2がハイレベルのときにオンされ、GSメモリMgの電荷を電荷電圧変換部33に転送する。 GS transistor Q5 transfers charge from GS memory Mg to charge-voltage conversion unit 33. When signal GS2 input to the gate is at high level, GS transistor Q5 is turned on and transfers charge from GS memory Mg to charge-voltage conversion unit 33.
 光電変換素子31の飽和電荷量を超え、光電変換素子31から溢れた電荷は、オーバーフロー電荷とも呼ばれる。 The charge that exceeds the saturation charge amount of the photoelectric conversion element 31 and overflows from the photoelectric conversion element 31 is also called overflow charge.
 OFトランジスタQ6とOFトランジスタQ7との接続ノードには、OFメモリ(第1保持部)M1が配置される。OFメモリM1は、光電変換素子31に蓄積された電荷を保持する。より具体的には、OFメモリM1は、露光期間において、オーバーフロー電荷を保持する。OFメモリM1が保持する電荷は、画素30からの信号の読み出し期間内に電荷電圧変換部33に転送される。なおOFトランジスタQ6は、後述するように、画素30への入射光の光量が低い場合には、OFメモリM1に電荷が保持されないように制御されてもよい。 An OF memory (first holding unit) M1 is disposed at the connection node between the OF transistor Q6 and the OF transistor Q7. The OF memory M1 holds the charge accumulated in the photoelectric conversion element 31. More specifically, the OF memory M1 holds the overflow charge during the exposure period. The charge held by the OF memory M1 is transferred to the charge-voltage conversion unit 33 during the readout period of the signal from the pixel 30. As will be described later, the OF transistor Q6 may be controlled so that no charge is held in the OF memory M1 when the amount of light incident on the pixel 30 is low.
 OFトランジスタQ6は、光電変換素子31からOFメモリM1に電荷を転送する制御を行う。OFトランジスタQ6は、ゲートに入力される信号OF1がハイレベルのときに、光電変換素子31に蓄積された電荷をOFメモリM1に転送する。信号OF1の電圧レベルは、ハイレベル電圧とローレベル電圧の中間の電圧レベルに設定されてもよい。OFトランジスタQ6は、信号OF1が中間の電圧レベルになることにより、光電変換素子31の飽和電荷量を超過する電荷のみをOFメモリM1に転送することができる。 The OF transistor Q6 controls the transfer of charge from the photoelectric conversion element 31 to the OF memory M1. When the signal OF1 input to the gate of the OF transistor Q6 is at a high level, the OF transistor Q6 transfers the charge stored in the photoelectric conversion element 31 to the OF memory M1. The voltage level of the signal OF1 may be set to an intermediate voltage level between a high level voltage and a low level voltage. When the signal OF1 is at an intermediate voltage level, the OF transistor Q6 can transfer only the charge that exceeds the saturation charge amount of the photoelectric conversion element 31 to the OF memory M1.
 OFトランジスタQ7は、OFメモリM1から電荷電圧変換部33に電荷を転送する。OFトランジスタQ7は、ゲートに入力される信号OF2がハイレベルのときにオンされ、OFメモリM1の電荷を電荷電圧変換部33に転送する。 The OF transistor Q7 transfers charge from the OF memory M1 to the charge-voltage conversion unit 33. When the signal OF2 input to the gate of the OF transistor Q7 is at a high level, the OF transistor Q7 is turned on and transfers the charge of the OF memory M1 to the charge-voltage conversion unit 33.
 OFトランジスタQ8とOFトランジスタQ9との接続ノードには、OFメモリ(第2保持部)M2が配置される。OFメモリM2は、OFメモリM1と交互に、光電変換素子31から転送された電荷を保持する。 An OF memory (second holding unit) M2 is disposed at the connection node between OF transistor Q8 and OF transistor Q9. The OF memory M2 holds the charge transferred from the photoelectric conversion element 31, alternating with the OF memory M1.
 本実施形態では、OFメモリM1及びM2の飽和電荷量を、GSメモリMgの飽和電荷量よりも大きくしている。これにより、OFメモリM1及びM2は、GSメモリMgに蓄積できない電荷を保持することができ、ダイナミックレンジを拡大できる。なお、OFメモリM1及びM2の飽和電荷量は、GSメモリMgの飽和電荷量以下でもよい。 In this embodiment, the saturation charge amount of the OF memories M1 and M2 is set to be larger than the saturation charge amount of the GS memory Mg. This allows the OF memories M1 and M2 to hold charges that cannot be stored in the GS memory Mg, expanding the dynamic range. Note that the saturation charge amount of the OF memories M1 and M2 may be equal to or smaller than the saturation charge amount of the GS memory Mg.
 OFメモリM1及びM2は、電荷の保持と読み出しを交互に行う。すなわち、OFメモリM1が電荷電圧変換部33に電荷を転送している間に、OFメモリM2には光電変換素子31から電荷が転送される。また、OFメモリM2が、電荷電圧変換部33に電荷を転送している間に、OFメモリM1には光電変換素子31から電荷が転送される。 OF memories M1 and M2 alternately hold and read charges. That is, while OF memory M1 is transferring charges to charge-voltage conversion unit 33, charges are transferred from photoelectric conversion element 31 to OF memory M2. Also, while OF memory M2 is transferring charges to charge-voltage conversion unit 33, charges are transferred from photoelectric conversion element 31 to OF memory M1.
 OFトランジスタQ8は、光電変換素子31からOFメモリM2に電荷を転送する。OFトランジスタQ8は、ゲートに入力される信号OF3がハイレベルのときに、光電変換素子31に蓄積された電荷をOFメモリM2に転送する。信号OF3の電圧レベルは、信号OF1と同様に、ハイレベル電圧とローレベル電圧の中間の電圧レベルであってもよい。 The OF transistor Q8 transfers electric charge from the photoelectric conversion element 31 to the OF memory M2. When the signal OF3 input to the gate of the OF transistor Q8 is at a high level, the OF transistor Q8 transfers the electric charge stored in the photoelectric conversion element 31 to the OF memory M2. The voltage level of the signal OF3 may be an intermediate voltage level between a high level voltage and a low level voltage, similar to the signal OF1.
 OFトランジスタQ9は、OFメモリM2から電荷電圧変換部33に電荷を転送する。OFトランジスタQ9は、ゲートに入力される信号OF4がハイレベルのときにオンされ、OFメモリM2の電荷を電荷電圧変換部33に転送する。 The OF transistor Q9 transfers charge from the OF memory M2 to the charge-voltage conversion unit 33. When the signal OF4 input to the gate of the OF transistor Q9 is at a high level, the OF transistor Q9 is turned on and transfers the charge of the OF memory M2 to the charge-voltage conversion unit 33.
 電荷電圧変換部33には、信号の読み出し期間において、GSメモリMgから電荷が転送されるとともに、OFメモリM1又はM2から電荷が転送される。これにより電荷電圧変換部33は、光電変換素子31に蓄積された電荷に応じた電圧になる。 During the signal readout period, charge is transferred from the GS memory Mg to the charge-voltage conversion unit 33, and charge is transferred from the OF memory M1 or M2. As a result, the charge-voltage conversion unit 33 becomes a voltage according to the charge accumulated in the photoelectric conversion element 31.
 増幅トランジスタQ1のゲートは、電荷電圧変換部33と同電圧であり、ソースフォロワ回路の入力部として用いられる。増幅トランジスタQ1のドレインは高電圧側電源VDDのノードに、ソースは選択トランジスタQ2にそれぞれ接続される。増幅トランジスタQ1のソース電圧は、電荷電圧変換部33の電圧に応じて変化する。 The gate of the amplifier transistor Q1 is at the same voltage as the charge-voltage conversion unit 33, and is used as the input of the source follower circuit. The drain of the amplifier transistor Q1 is connected to the node of the high-voltage power supply VDD, and the source is connected to the selection transistor Q2. The source voltage of the amplifier transistor Q1 changes according to the voltage of the charge-voltage conversion unit 33.
 選択トランジスタQ2は画素30からの信号の読み出しを制御する。選択トランジスタQ2のゲートには選択信号SELが入力される。選択トランジスタQ2は、選択信号SELがハイレベルのときにオンされる。これにより、選択トランジスタQ2のソースから、電荷電圧変換部33の電圧に応じた電圧レベルの画素信号Vimgが、後段の信号処理部23等に出力される。 The selection transistor Q2 controls the reading of signals from the pixels 30. A selection signal SEL is input to the gate of the selection transistor Q2. The selection transistor Q2 is turned on when the selection signal SEL is at a high level. As a result, a pixel signal Vimg with a voltage level according to the voltage of the charge-voltage conversion unit 33 is output from the source of the selection transistor Q2 to the downstream signal processing unit 23, etc.
 リセットトランジスタQ3は、画素30の電荷の掃き出しを制御する。リセットトランジスタQ3は、ソースが電荷電圧変換部33に、ドレインが高電圧側電源VDDのノードにそれぞれ接続される。リセットトランジスタQ3はゲートにはリセット信号RSTが入力される。リセットトランジスタQ3は、リセット信号RSTがハイレベルのときにオンされる。これにより、電荷電圧変換部33の電荷が高電圧側電源VDDのノードに排出されることで、電荷電圧変換部33はリセットされる。電荷電圧変換部33がリセットされることにより、画素30は次の露光が可能になる。 The reset transistor Q3 controls the discharge of charge from pixel 30. The source of the reset transistor Q3 is connected to the charge-voltage conversion unit 33, and the drain is connected to the node of the high-voltage power supply VDD. A reset signal RST is input to the gate of the reset transistor Q3. The reset transistor Q3 is turned on when the reset signal RST is at a high level. This causes the charge in the charge-voltage conversion unit 33 to be discharged to the node of the high-voltage power supply VDD, resetting the charge-voltage conversion unit 33. Resetting the charge-voltage conversion unit 33 makes the pixel 30 available for the next exposure.
 光検出装置2は、例えば2段の積層チップで構成される。図4Aは、光検出装置2の積層構造の第1例を示す図である。この光検出装置2は、画素チップ41と、画素チップ41に積層されたロジックチップ42とを備える。これらのチップは、ビア等により接合される。なおこれらのチップは、ビアの他、Cu-Cu接合又はバンプにより接合されてもよい。 The photodetector 2 is composed of, for example, two stacked chips. FIG. 4A is a diagram showing a first example of the stacked structure of the photodetector 2. This photodetector 2 comprises a pixel chip 41 and a logic chip 42 stacked on the pixel chip 41. These chips are bonded by vias or the like. Note that these chips may be bonded by Cu-Cu bonding or bumps in addition to vias.
 画素チップ41には、例えば画素アレイ部20内の複数の画素30と、画素30ごとの画素トランジスタとが配置される。ロジックチップ42には、例えば垂直駆動回路21、システム制御回路22及び信号処理部23が配置される。図4Aの第1例では、画素トランジスタが画素30に含まれると解釈される。 In the pixel chip 41, for example, a plurality of pixels 30 in the pixel array section 20 and a pixel transistor for each pixel 30 are arranged. In the logic chip 42, for example, a vertical drive circuit 21, a system control circuit 22, and a signal processing section 23 are arranged. In the first example of FIG. 4A, it is interpreted that the pixel transistor is included in the pixel 30.
 光検出装置2は、3段以上の積層チップで構成されてもよい。図4Bは、光検出装置2の積層構造の第2例を示す図である。図4Bの光検出装置2aには、図4Aの画素チップ41に代わって、第1画素チップ43及び第2画素チップ44が積層されている。第1画素チップ43には画素30が配置される。第2画素チップ44には画素30ごとの画素トランジスタが配置される。 The photodetector 2 may be composed of three or more stacked chips. FIG. 4B is a diagram showing a second example of the stacked structure of the photodetector 2. In the photodetector 2a of FIG. 4B, a first pixel chip 43 and a second pixel chip 44 are stacked instead of the pixel chip 41 of FIG. 4A. The pixels 30 are arranged on the first pixel chip 43. The pixel transistors for each pixel 30 are arranged on the second pixel chip 44.
 図4Bの光検出装置2aでは、第1画素チップ43には画素トランジスタは配置されておらず、第2画素チップ44に配置された構成となっている。これにより光検出装置2aは、チップ面積に占める光電変換素子31の面積の割合を大きくすることができ、感度を向上できるとともに、チップの微細化も可能となる。 In the photodetector 2a in FIG. 4B, pixel transistors are not arranged on the first pixel chip 43, but are arranged on the second pixel chip 44. This allows the photodetector 2a to increase the proportion of the area of the photoelectric conversion element 31 in the chip area, improving sensitivity and enabling the chip to be miniaturized.
 図5は、光検出装置2による撮像動作を示すタイミングチャートである。図5の左右方向は時間軸方向tである。また図5では、第2方向Yに複数配列される画素アレイ部20内の画素行ごとに、画素信号Vimgが読み出される例を示している。 FIG. 5 is a timing chart showing the imaging operation by the photodetector 2. The left-right direction in FIG. 5 is the time axis direction t. FIG. 5 also shows an example in which the pixel signal Vimg is read out for each pixel row in the pixel array unit 20, which is arranged in a plurality of rows in the second direction Y.
 光検出装置2による撮像動作は、所定の同期信号に同期した、フレームを単位として行われる。1つのフレームはリセット、露光期間、及び読出期間を含む。 The imaging operation by the light detection device 2 is performed in units of frames, synchronized with a predetermined synchronization signal. One frame includes a reset period, an exposure period, and a readout period.
 それぞれのフレームでは、グローバルシャッタ動作が行われる。まず、時刻Trstに、画素アレイ部20内の全ての画素30で、同時に電荷の掃き出し(リセット)が行われる。リセットにより、画素30は露光が可能になる。 In each frame, a global shutter operation is performed. First, at time Trst, electric charges are simultaneously swept out (reset) from all pixels 30 in the pixel array section 20. The reset enables the pixels 30 to be exposed.
 露光期間においては、時刻Texpに、全ての画素30は同時に露光が開始され、時刻Trdに、全ての画素30は同時に露光が終了される。読出期間では、時刻Trdから、画素行ごとに順次、画素信号Vimgが読み出される。 During the exposure period, exposure of all pixels 30 starts simultaneously at time Texp, and exposure of all pixels 30 ends simultaneously at time Trd. During the readout period, the pixel signal Vimg is read out sequentially for each pixel row, starting from time Trd.
 上記に示す通り、光検出装置2のグローバルシャッタ動作は、全ての画素30が同期されて行われる。また、グローバルシャッタ動作はフレームを単位として行われる。光検出装置2は、複数のフレームの撮像を連続的に行うことで、動画撮影も可能である。 As described above, the global shutter operation of the photodetection device 2 is performed in synchronization with all pixels 30. Furthermore, the global shutter operation is performed in units of frames. The photodetection device 2 is also capable of capturing video by continuously capturing images of multiple frames.
 図6A~図6Dは、本開示の第1の実施形態による画素30の撮像動作を示す図である。図6Aは、第1フレームの露光期間の撮像動作を示す図である。第1フレームの露光期間内に、光電変換素子31は、入射光に応じた電荷を蓄積する。第1フレームの露光期間には、光電変換素子31に蓄積された電荷は、GSメモリMgとOFメモリM1に転送され、OFメモリM2には転送されない。 FIGS. 6A to 6D are diagrams showing the imaging operation of pixel 30 according to the first embodiment of the present disclosure. FIG. 6A is a diagram showing the imaging operation during the exposure period of the first frame. During the exposure period of the first frame, photoelectric conversion element 31 accumulates charge according to incident light. During the exposure period of the first frame, the charge accumulated in photoelectric conversion element 31 is transferred to GS memory Mg and OF memory M1, and is not transferred to OF memory M2.
 図6Bは、第1フレームの読出期間を示す図である。第1フレームの読出期間には、GSメモリMg及びOFメモリM1の電荷eが、電荷電圧変換部33に転送される。 FIG. 6B shows the readout period of the first frame. During the readout period of the first frame, the charge e in the GS memory Mg and the OF memory M1 is transferred to the charge-voltage converter 33.
 第1フレームの読出期間中も画素30に光が入射され、光電変換素子31は光電変換による電荷を蓄積する。読出期間中に光電変換素子31に蓄積された電荷は、OFメモリM2に転送され、OFメモリM1には転送されない。その理由は、OFメモリM1は電荷電圧変換部33への電荷の転送を行っているためである。 Even during the readout period of the first frame, light is incident on the pixel 30, and the photoelectric conversion element 31 accumulates electric charge due to photoelectric conversion. The electric charge accumulated in the photoelectric conversion element 31 during the readout period is transferred to the OF memory M2, and is not transferred to the OF memory M1. This is because the OF memory M1 is transferring electric charge to the charge-voltage conversion unit 33.
 図6Bに示す第1フレームの読出期間の後に、GSメモリMg及びOFメモリM1内の電荷はリセットされる。これにより、GSメモリMg及びOFメモリM1は、新たに電荷を転送可能な状態になる。 After the readout period of the first frame shown in FIG. 6B, the charges in the GS memory Mg and the OF memory M1 are reset. This makes the GS memory Mg and the OF memory M1 ready to transfer new charges.
 図6Cは、第1フレームの読出後の第2フレームの露光期間を示す図である。第2フレームの露光期間内に光電変換素子31に蓄積された電荷は、GSメモリMgとOFメモリM2に転送され、OFメモリM1には転送されない。このように、OFメモリM1とM2は、フレームごとに交互に使用される。 FIG. 6C shows the exposure period of the second frame after the first frame is read out. The charge accumulated in the photoelectric conversion element 31 during the exposure period of the second frame is transferred to the GS memory Mg and the OF memory M2, but is not transferred to the OF memory M1. In this way, the OF memories M1 and M2 are used alternately for each frame.
 図6Dは、第2フレームの読出期間を示す図である。第2フレームの読出期間には、GSメモリMg及びOFメモリM2の電荷eが電荷電圧変換部33に転送される。また、第2フレームの読出期間中に光電変換素子31に蓄積された電荷は、OFメモリM1に転送され、OFメモリM2には転送されない。その理由は、OFメモリM2は電荷電圧変換部33への電荷の転送を行っているためである。 FIG. 6D shows the readout period of the second frame. During the readout period of the second frame, the charge e of the GS memory Mg and the OF memory M2 is transferred to the charge-voltage conversion unit 33. Furthermore, the charge accumulated in the photoelectric conversion element 31 during the readout period of the second frame is transferred to the OF memory M1, and not to the OF memory M2. This is because the OF memory M2 is transferring charge to the charge-voltage conversion unit 33.
 第3フレームの露光期間以降については、図6A~図6Dの動作が繰り返される。 From the exposure period of the third frame onwards, the operations shown in Figures 6A to 6D are repeated.
 図6A~図6Dに示すように、OFメモリM1又はM2のいずれか一方が電荷電圧変換部33に電荷eを転送する間に、OFメモリM1又はM2のいずれか他方は光電変換素子31に蓄積された電荷eを保持する。本開示の第1の実施形態の画素30は、OFメモリM1又はM2を交互に電荷eの読み出し又は転送に用いることにより、電荷の読出しと露光を並行して行うことができる。これにより光検出装置2は、フレームレートを高速化できる As shown in Figures 6A to 6D, while either OF memory M1 or M2 transfers charge e to the charge-voltage conversion unit 33, the other OF memory M1 or M2 holds the charge e accumulated in the photoelectric conversion element 31. The pixel 30 of the first embodiment of the present disclosure can read charge and perform exposure in parallel by alternately using the OF memory M1 or M2 to read or transfer charge e. This allows the photodetection device 2 to increase the frame rate.
 図7は、本開示の第1の実施形態における画素30の撮像動作を示すタイミングチャートである。図7に示す時刻t1~t24には、初期化、第1フレームの露光期間及び読出期間、第2フレームの露光期間及び読出期間、第3フレームの露光期間が含まれる。 FIG. 7 is a timing chart showing the imaging operation of pixel 30 in the first embodiment of the present disclosure. Times t1 to t24 shown in FIG. 7 include initialization, the exposure period and readout period of the first frame, the exposure period and readout period of the second frame, and the exposure period of the third frame.
 時刻t1~t2においては、撮像前の画素30の初期化が行われる。具体的には、リセット信号RST、信号GS1及びGS2、信号OF1及びOF2、信号OF3及びOF4は同タイミングで一定期間ハイレベルに設定される。これにより、光電変換素子31、GSメモリMg、OFメモリM1、OFメモリM2、電荷電圧変換部33の電荷が、高電圧側電源VDDのノードに排出されて、電荷電圧変換部33はリセットレベルの電圧になる。 Between time t1 and t2, the pixels 30 are initialized before imaging. Specifically, the reset signal RST, signals GS1 and GS2, signals OF1 and OF2, and signals OF3 and OF4 are all set to a high level for a certain period of time at the same timing. As a result, the charges in the photoelectric conversion element 31, GS memory Mg, OF memory M1, OF memory M2, and charge-voltage conversion unit 33 are discharged to the node of the high-voltage power supply VDD, and the charge-voltage conversion unit 33 becomes the reset level voltage.
 時刻t3~t5は、第1フレームの露光期間である。図6Aに示す通り、第1フレームの露光期間に光電変換素子31に電荷が蓄積される。時刻t3~t4において、信号OF1はハイレベルになり、OFトランジスタQ6がオンされることにより、光電変換素子31に蓄積された電荷は、OFメモリM1に転送される。 Times t3 to t5 are the exposure period of the first frame. As shown in FIG. 6A, charge is accumulated in the photoelectric conversion element 31 during the exposure period of the first frame. Between times t3 and t4, signal OF1 goes high and the OF transistor Q6 is turned on, causing the charge accumulated in the photoelectric conversion element 31 to be transferred to the OF memory M1.
 時刻t4~t5において、信号OF1がローレベルになるとともに、信号GS1がハイレベルになる。これにより、OFトランジスタQ6がオフされるとともに、GSトランジスタQ4がオンされ、光電変換素子31の電荷がGSメモリMgに転送される。 From time t4 to t5, the signal OF1 goes low and the signal GS1 goes high. This turns off the OF transistor Q6 and turns on the GS transistor Q4, transferring the charge in the photoelectric conversion element 31 to the GS memory Mg.
 なお、上述の通りOFメモリM1はGSメモリMgよりも大きい飽和電荷量を有する。そこで、図7では、光電変換素子31に蓄積された電荷がOFメモリM1に保持される期間(時刻t3~t4)を、光電変換素子31から電荷がGSメモリMgに転送される期間(時刻t4~t5)よりも長くしている。後述のOFメモリM2についても、同様である。すなわち、各フレームにおけるOFメモリM1又はOFメモリM2の電荷保持期間は、GSメモリMgの電荷保持期間よりも長い。これにより、OFメモリM1及びM2には、GSメモリMgよりも多くの電荷を蓄積できる。 As mentioned above, the OF memory M1 has a larger saturated charge amount than the GS memory Mg. Therefore, in FIG. 7, the period (time t3 to t4) during which the charge accumulated in the photoelectric conversion element 31 is held in the OF memory M1 is longer than the period (time t4 to t5) during which the charge is transferred from the photoelectric conversion element 31 to the GS memory Mg. The same is true for the OF memory M2 described below. In other words, the charge holding period of the OF memory M1 or OF memory M2 in each frame is longer than the charge holding period of the GS memory Mg. This allows the OF memories M1 and M2 to store more charge than the GS memory Mg.
 時刻t5~t13は、第1フレームの読出期間である。図6Bに示す通り、第1フレームの読出期間にGSメモリMg及びOFメモリM1から電荷が読み出される。時刻t6~t7において、信号GS2及び信号OF2がローレベルになるとともに、選択信号SELはハイレベルになる。これにより、電荷電圧変換部33のリセットレベルに応じた画素信号(P相信号)が読み出される。 Times t5 to t13 are the readout period of the first frame. As shown in FIG. 6B, during the readout period of the first frame, charges are read out from the GS memory Mg and the OF memory M1. Between times t6 and t7, the signals GS2 and OF2 go to low level, and the selection signal SEL goes to high level. This causes a pixel signal (P-phase signal) corresponding to the reset level of the charge-voltage converter 33 to be read out.
 時刻t8~t9において、信号GS2及び選択信号SELがハイレベルになる。GSトランジスタQ5がオンされることにより、GSメモリMgの電荷が電荷電圧変換部33に転送される。これにより、電荷電圧変換部33の電荷にGSメモリMgの電荷が加算された電荷に応じた画素信号(D相信号)が読み出される。 Between time t8 and t9, signal GS2 and selection signal SEL go to high level. When GS transistor Q5 is turned on, the charge in GS memory Mg is transferred to charge-voltage converter 33. As a result, a pixel signal (D-phase signal) corresponding to the charge obtained by adding the charge in GS memory Mg to the charge in charge-voltage converter 33 is read out.
 時刻t10~t11において、信号OF2及び選択信号SELはハイレベルになる。OFトランジスタQ7がオンされることにより、OFメモリM1の電荷が電荷電圧変換部33に転送される。これにより、電荷電圧変換部33から、GSメモリMgの電荷にOFメモリM1の電荷がさらに加えられた電荷に応じた画素信号(D相信号)が読み出される。 Between time t10 and t11, the signal OF2 and the selection signal SEL go to high level. The OF transistor Q7 is turned on, and the charge in the OF memory M1 is transferred to the charge-voltage converter 33. As a result, a pixel signal (D-phase signal) corresponding to the charge obtained by adding the charge in the OF memory M1 to the charge in the GS memory Mg is read out from the charge-voltage converter 33.
 時刻t11~t12において、信号OF2、信号GS2及びリセット信号RSTがハイレベルになり、GSメモリMg、OFメモリM1、電荷電圧変換部33の電荷が、高電圧側電源VDDのノードに排出される。これにより、電荷電圧変換部33はリセットレベルの電圧になる。 From time t11 to t12, the signal OF2, the signal GS2, and the reset signal RST go to high level, and the charges in the GS memory Mg, the OF memory M1, and the charge-voltage conversion unit 33 are discharged to the node of the high-voltage power supply VDD. This causes the charge-voltage conversion unit 33 to go to the reset level voltage.
 時刻t12~t13において、信号OF2、信号GS2及び選択信号SELがハイレベルになり、電荷電圧変換部33のリセットレベルに応じた画素信号(P相信号)が読み出される。 Between time t12 and t13, the signal OF2, the signal GS2, and the selection signal SEL go to high level, and a pixel signal (P-phase signal) corresponding to the reset level of the charge-voltage conversion unit 33 is read out.
 時刻t5~t13の期間は、第1フレームの読出期間であるとともに、第2フレームの露光期間でもある。第2フレームの露光期間には、ハイレベルの信号OF3が入力され、光電変換素子31に蓄積された電荷がOFメモリM2に保持される。 The period from time t5 to t13 is the readout period for the first frame and also the exposure period for the second frame. During the exposure period for the second frame, a high-level signal OF3 is input, and the charge accumulated in the photoelectric conversion element 31 is held in the OF memory M2.
 時刻t13~t15は、第1フレームの読出後の第2フレームの露光期間である。図6Cに示す通り、時刻t13~t14において、光電変換素子31の電荷はOFメモリM2に保持される。時刻t14~t15において、信号OF3がローレベルになるとともに、信号GS1がハイレベルになる。これにより、光電変換素子31の電荷がGSメモリMgに転送される。 Times t13 to t15 are the exposure period for the second frame after the first frame is read out. As shown in FIG. 6C, from time t13 to t14, the charge of the photoelectric conversion element 31 is held in the OF memory M2. From time t14 to t15, the signal OF3 goes low and the signal GS1 goes high. This causes the charge of the photoelectric conversion element 31 to be transferred to the GS memory Mg.
 時刻t15~t23は、第2フレームの読出期間である。図6Dに示す通り、第2フレームの読出期間では、第1フレームの読出期間と同様の制御により、GSメモリMg及びOFメモリM2から電荷が読み出される。 Times t15 to t23 are the readout period of the second frame. As shown in FIG. 6D, during the readout period of the second frame, charges are read out from the GS memory Mg and the OF memory M2 by the same control as during the readout period of the first frame.
 すなわち、時刻t16~t17において、選択信号SELはハイレベルになり、電荷電圧変換部33のリセットレベルに応じた画素信号(P相信号)が読み出される。時刻t18~t19において、信号GS2及び選択信号SELがハイレベルになり、電荷電圧変換部33の電荷にGSメモリMgの電荷が加算された電荷に応じた画素信号(D相信号)が読み出される。 That is, from time t16 to t17, the selection signal SEL goes high, and a pixel signal (P-phase signal) corresponding to the reset level of the charge-voltage conversion unit 33 is read out. From time t18 to t19, the signal GS2 and the selection signal SEL go high, and a pixel signal (D-phase signal) corresponding to the charge obtained by adding the charge of the GS memory Mg to the charge of the charge-voltage conversion unit 33 is read out.
 時刻t20~t21において、信号OF4及び選択信号SELがハイレベルになり、電荷電圧変換部33の電荷にOFメモリM2の電荷がさらに加算された電荷に応じた画素信号(D相信号)が読み出される。時刻t21~t22において、信号OF4、信号GS2及びリセット信号RSTがハイレベルになり、GSメモリMg、OFメモリM2、電荷電圧変換部33内の電荷が掃き出される。時刻t22~t23において、信号OF4、信号GS2及び選択信号SELがハイレベルになり、電荷電圧変換部33のリセットレベルに応じた画素信号(P相信号)が読み出される。 From time t20 to t21, signal OF4 and selection signal SEL go high, and a pixel signal (D-phase signal) corresponding to the charge obtained by adding the charge in OF memory M2 to the charge in charge-voltage conversion unit 33 is read out. From time t21 to t22, signal OF4, signal GS2, and reset signal RST go high, and the charges in GS memory Mg, OF memory M2, and charge-voltage conversion unit 33 are swept out. From time t22 to t23, signal OF4, signal GS2, and selection signal SEL go high, and a pixel signal (P-phase signal) corresponding to the reset level of charge-voltage conversion unit 33 is read out.
 時刻t15~t24は、第2フレームの読出期間であるとともに、第3フレームにおける露光期間である。第3フレームの露光期間では、信号OF1がハイレベルになり、光電変換素子31に蓄積された電荷がOFメモリM1に転送させる。 Times t15 to t24 are the readout period for the second frame and the exposure period for the third frame. During the exposure period for the third frame, signal OF1 goes high, causing the charge stored in photoelectric conversion element 31 to be transferred to OF memory M1.
 転送部32は、図7に示すように、各トランジスタの制御により光電変換素子31から電荷電圧変換部33に電荷を転送する。すなわち、OFトランジスタQ6又はQ8は、フレーム単位で交互に光電変換素子31に蓄積された電荷をOFメモリM1又はM2に転送する。OFトランジスタQ7又はQ9は、フレーム単位で交互にOFメモリM1又はM2に保持された電荷を電荷電圧変換部33に転送する。また、GSトランジスタQ4は、フレームごとに、光電変換素子31からOFメモリM1又はM2に電荷が転送された後に、光電変換素子31からGSメモリMgに電荷を転送する。GSトランジスタQ5は、フレームごとにGSメモリMgから電荷電圧変換部33に電荷を転送する。 As shown in FIG. 7, the transfer unit 32 transfers charges from the photoelectric conversion element 31 to the charge-voltage conversion unit 33 by controlling each transistor. That is, the OF transistor Q6 or Q8 transfers the charges stored in the photoelectric conversion element 31 to the OF memory M1 or M2 alternately on a frame-by-frame basis. The OF transistor Q7 or Q9 transfers the charges held in the OF memory M1 or M2 alternately on a frame-by-frame basis to the charge-voltage conversion unit 33. In addition, the GS transistor Q4 transfers charges from the photoelectric conversion element 31 to the GS memory Mg after the charges have been transferred from the photoelectric conversion element 31 to the OF memory M1 or M2 for each frame. The GS transistor Q5 transfers charges from the GS memory Mg to the charge-voltage conversion unit 33 for each frame.
 図7の制御は、画素アレイ部20内の複数の画素30のそれぞれで行われる。すなわち、複数の画素30のそれぞれは、フレーム単位で交互にOFメモリM1又はM2に電荷を保持するとともに、フレームごとにGSメモリMgに電荷を保持する。なお、GSトランジスタQ4の電荷の転送は、画素アレイ部20内の他の画素30と同タイミングで行われる。 The control in FIG. 7 is performed for each of the multiple pixels 30 in the pixel array section 20. That is, each of the multiple pixels 30 alternately stores charge in the OF memory M1 or M2 on a frame-by-frame basis, and also stores charge in the GS memory Mg for each frame. Note that the transfer of charge from the GS transistor Q4 is performed at the same timing as the other pixels 30 in the pixel array section 20.
 また、図7で示すように、画素アレイ部20内の複数の画素30のそれぞれは、フレームごとに、リセットレベルの画素信号Vimgを出力する。また、複数の画素30のそれぞれは、リセットレベルの画素信号Vimgとは異なるタイミングで、OFメモリM1又はM2に保持された電荷とGSメモリMgに保持された電荷とに応じた画素信号Vimgを、フレームごとに出力する。 Also, as shown in FIG. 7, each of the multiple pixels 30 in the pixel array unit 20 outputs a pixel signal Vimg of the reset level for each frame. Also, each of the multiple pixels 30 outputs a pixel signal Vimg for each frame that corresponds to the charge held in the OF memory M1 or M2 and the charge held in the GS memory Mg at a timing different from the reset level pixel signal Vimg.
 図7で示すような、2つ以上のフレームを、露光期間(及び、読出期間)を互いにずらして並行に実行する駆動は、パイプライン駆動とも呼ばれる。 As shown in Figure 7, driving in which two or more frames are executed in parallel with the exposure periods (and readout periods) shifted from each other is also called pipeline driving.
 図7では、光電変換素子31からOFメモリM1、M2に電荷を転送する際に、OFトランジスタQ6、Q8のオンとオフを切り替える例を示すが、OFメモリM1、M2のポテンシャルの障壁の高さを制御してもよい。 In FIG. 7, an example is shown in which OF transistors Q6 and Q8 are switched on and off when transferring charge from photoelectric conversion element 31 to OF memories M1 and M2, but the height of the potential barrier of OF memories M1 and M2 may also be controlled.
 図8はOFメモリM1、M2のポテンシャルの障壁を説明する図である。OFトランジスタQ6、Q8のいずれか一方のゲートに入力される信号OF1又はOF3を負バイアス電圧にすることで、ポテンシャルの障壁を高くすることができる。図8は、OFトランジスタQ8のゲートに入力される信号OF3を負バイアス電圧に設定する例を示している。図8の場合、光電変換素子31に蓄積された電荷は、ポテンシャルの障壁が高いことからOFメモリM2には転送されず、ポテンシャルの障壁が低いOFメモリM1に転送される。 FIG. 8 is a diagram explaining the potential barrier of OF memories M1 and M2. The potential barrier can be made higher by setting the signal OF1 or OF3 input to the gate of either OF transistor Q6 or Q8 to a negative bias voltage. FIG. 8 shows an example in which the signal OF3 input to the gate of OF transistor Q8 is set to a negative bias voltage. In the case of FIG. 8, the charge accumulated in the photoelectric conversion element 31 is not transferred to the OF memory M2 because the potential barrier is high, but is transferred to the OF memory M1, which has a low potential barrier.
 このように、ポテンシャルの障壁の高さを制御することで、光電変換素子31に蓄積された電荷の転送先を切り替えることができる。よって、OFトランジスタQ6、Q8の代わりに、ポテンシャルの障壁の高さを制御する素子構造を設けてもよい。 In this way, by controlling the height of the potential barrier, it is possible to switch the transfer destination of the charge stored in the photoelectric conversion element 31. Therefore, instead of the OF transistors Q6 and Q8, an element structure that controls the height of the potential barrier may be provided.
 図9は、一比較例の画素100及び周辺部の構成を示す図である。図9に示す画素100は、図3の画素30と比較して、OFトランジスタQ8及びQ9と、OFメモリM2とを備えていないという点で異なる。 FIG. 9 is a diagram showing the configuration of a pixel 100 and its surroundings as a comparative example. The pixel 100 shown in FIG. 9 differs from the pixel 30 in FIG. 3 in that it does not include OF transistors Q8 and Q9 and OF memory M2.
 図10A及び図10Bは、一比較例の画素100による撮像動作を示す図である。図10Aでは、画素100による露光期間を示す。図6Aと同様に、露光期間において、光電変換素子31から、GSメモリMg及びOFメモリM1に、電荷eが転送される。 10A and 10B are diagrams showing an imaging operation by a pixel 100 of a comparative example. FIG. 10A shows an exposure period by the pixel 100. As in FIG. 6A, during the exposure period, charge e is transferred from the photoelectric conversion element 31 to the GS memory Mg and the OF memory M1.
 図10Bは、画素100による読出期間を示す。図6Bと同様に、読出期間において、GSメモリMg及びOFメモリM1から、電荷電圧変換部33に、電荷eが転送される。また、画素100においても、光電変換素子31に電荷eが蓄積される。 FIG. 10B shows the readout period by pixel 100. As in FIG. 6B, during the readout period, charge e is transferred from GS memory Mg and OF memory M1 to charge-voltage converter 33. Also, in pixel 100, charge e is accumulated in photoelectric conversion element 31.
 しかし画素100は、OFメモリM2を有さないため、OFメモリM1から電荷電圧変換部33に電荷を転送している最中には、次のフレームの露光を開始することができない。このため、露光期間の間隔を長く取らなければならず、フレームレートが低下してしまう。 However, because pixel 100 does not have OF memory M2, it is not possible to start exposure for the next frame while charge is being transferred from OF memory M1 to charge-voltage conversion unit 33. This requires a long interval between exposure periods, which reduces the frame rate.
 このように、本開示の第1の実施形態における光検出装置2は、画素30ごとにGSメモリMgと、2つのOFメモリM1及びM2を有する。光検出装置2は、フレームごとに、GSメモリMg以外に、OFメモリM1、M2を交互に使って、光電変換素子31からの電荷を転送する。これにより光検出装置2は、フレームごとに電荷を読み出している間に露光を行うことができ、フレームレートを高速化できる。また上述のように、OFメモリM1、M2より、ダイナミックレンジが拡大される。すなわち光検出装置2は、ダイナミックレンジの拡大とフレームレートの向上を両立できる。 In this way, the photodetection device 2 in the first embodiment of the present disclosure has a GS memory Mg and two OF memories M1 and M2 for each pixel 30. For each frame, the photodetection device 2 alternates between using the OF memories M1 and M2 in addition to the GS memory Mg to transfer charges from the photoelectric conversion element 31. This allows the photodetection device 2 to perform exposure while reading out charges for each frame, thereby increasing the frame rate. Also, as described above, the OF memories M1 and M2 expand the dynamic range. In other words, the photodetection device 2 can achieve both an expanded dynamic range and an improved frame rate.
 (第2の実施形態)
 図3の転送部32の構成は一例であり、様々な変形例が考えられる。図11は、本開示の第2の実施形態における画素30a及び周辺部の構成を示す図である。上述の通り図3の転送部32は、2つのOFメモリM1、M2と1つのGMメモリMgを備えるのに対し、図11の転送部32aは、2つのGSメモリMg1(第3保持部)及びMg2(第4保持部)と、2つのOFメモリM1a(第1保持部)及びM2a(第2保持部)を備える。
Second Embodiment
The configuration of the transfer unit 32 in Fig. 3 is an example, and various modified examples are possible. Fig. 11 is a diagram showing the configuration of a pixel 30a and a peripheral portion in the second embodiment of the present disclosure. As described above, the transfer unit 32 in Fig. 3 includes two OF memories M1 and M2 and one GM memory Mg, whereas the transfer unit 32a in Fig. 11 includes two GS memories Mg1 (third holding unit) and Mg2 (fourth holding unit) and two OF memories M1a (first holding unit) and M2a (second holding unit).
 この他、図11の転送部32aは、2つのGSトランジスタQ4a及びQ5aと、4つのOFトランジスタQ6a、Q7a、Q8a、及びQ9aとを有する。図11におけるGSトランジスタQ4a(第7転送制御部)、OFトランジスタQ6a(第8転送制御部)、及びOFトランジスタQ7a(第9転送制御部)は、光電変換素子31と電荷電圧変換部33との間にカスコード接続される。OFトランジスタQ4aとOFトランジスタQ6aとの接続ノードには、GSメモリMg1が配置される。OFトランジスタQ6aとOFトランジスタQ7aとの接続ノードには、OFメモリM1aが配置される。 In addition, the transfer unit 32a in FIG. 11 has two GS transistors Q4a and Q5a, and four OF transistors Q6a, Q7a, Q8a, and Q9a. The GS transistor Q4a (seventh transfer control unit), OF transistor Q6a (eighth transfer control unit), and OF transistor Q7a (ninth transfer control unit) in FIG. 11 are cascode-connected between the photoelectric conversion element 31 and the charge-voltage conversion unit 33. A GS memory Mg1 is disposed at the connection node between the OF transistor Q4a and the OF transistor Q6a. An OF memory M1a is disposed at the connection node between the OF transistor Q6a and the OF transistor Q7a.
 OFトランジスタQ4aは、ゲートに入力される信号GS1がハイレベルのときに、光電変換素子31からGSメモリMg1に電荷を転送する。OFトランジスタQ6aは、ゲートに入力される信号OF1がハイレベルのときに、GSメモリMg1からOFメモリM1aに電荷を転送する。OFトランジスタQ7aは、ゲートに入力される信号OF2がハイレベルのときに、OFメモリM1aから電荷電圧変換部33に電荷を転送する。 The OF transistor Q4a transfers charge from the photoelectric conversion element 31 to the GS memory Mg1 when the signal GS1 input to its gate is at a high level. The OF transistor Q6a transfers charge from the GS memory Mg1 to the OF memory M1a when the signal OF1 input to its gate is at a high level. The OF transistor Q7a transfers charge from the OF memory M1a to the charge-voltage conversion unit 33 when the signal OF2 input to its gate is at a high level.
 図11におけるGSトランジスタQ5a(第10転送制御部)、OFトランジスタQ8a(第11転送制御部)、及びOFトランジスタQ9a(第12転送制御部)は、光電変換素子31と電荷電圧変換部33との間にカスコード接続される。OFトランジスタQ5aとOFトランジスタQ8aとの接続ノードには、GSメモリMg2が配置される。OFトランジスタQ8aとOFトランジスタQ9aとの接続ノードには、OFメモリM2aが配置される。 The GS transistor Q5a (tenth transfer control unit), OF transistor Q8a (eleventh transfer control unit), and OF transistor Q9a (twelfth transfer control unit) in FIG. 11 are cascode-connected between the photoelectric conversion element 31 and the charge-voltage conversion unit 33. A GS memory Mg2 is disposed at the connection node between the OF transistor Q5a and the OF transistor Q8a. An OF memory M2a is disposed at the connection node between the OF transistor Q8a and the OF transistor Q9a.
 OFトランジスタQ5aは、ゲートに入力される信号GS2がハイレベルのときに、光電変換素子31からGSメモリMg2に電荷を転送する。OFトランジスタQ8aは、ゲートに入力される信号OF3がハイレベルのときに、GSメモリMg2からOFメモリM2aに電荷を転送する。OFトランジスタQ9aは、ゲートに入力される信号OF4がハイレベルのときに、OFメモリM2aから電荷電圧変換部33に電荷を転送する。 The OF transistor Q5a transfers charge from the photoelectric conversion element 31 to the GS memory Mg2 when the signal GS2 input to its gate is at a high level. The OF transistor Q8a transfers charge from the GS memory Mg2 to the OF memory M2a when the signal OF3 input to its gate is at a high level. The OF transistor Q9a transfers charge from the OF memory M2a to the charge-voltage conversion unit 33 when the signal OF4 input to its gate is at a high level.
 上記の通り、図11の転送部32aは、図3の転送部32と同じ数のトランジスタで、2つのGSメモリMg1及びMg2を設けることができる。 As described above, the transfer unit 32a in FIG. 11 can be provided with two GS memories Mg1 and Mg2 using the same number of transistors as the transfer unit 32 in FIG. 3.
 図3の画素30と同様に、OFメモリM1a及びM2aの飽和電荷量は、GSメモリMg1及びMg2の飽和電荷量よりも大きいことが望ましい。また画素30と同様に、GSメモリMg1及びMg2は、他の画素30aと同タイミングで光電変換素子31に蓄積された電荷を保持する。 As with pixel 30 in FIG. 3, it is desirable that the saturation charge amount of OF memories M1a and M2a is greater than the saturation charge amount of GS memories Mg1 and Mg2. Also, as with pixel 30, GS memories Mg1 and Mg2 hold the charge accumulated in the photoelectric conversion element 31 at the same time as other pixels 30a.
 図12A及び図12Bは、本開示の第2の実施形態の画素30aによる撮像動作を示す図である。図12Aでは、画素30aによる第1フレームの露光期間を示す。図12Aに示すように、第1フレームでは、光電変換素子31の電荷eは、GSメモリMg1を介して、OFメモリM1aに転送される。また、第1フレームの読出期間の直前において、光電変換素子31の電荷eは、GSメモリMg1に転送される。 FIGS. 12A and 12B are diagrams showing the imaging operation by pixel 30a of the second embodiment of the present disclosure. FIG. 12A shows the exposure period of the first frame by pixel 30a. As shown in FIG. 12A, in the first frame, the charge e of the photoelectric conversion element 31 is transferred to the OF memory M1a via the GS memory Mg1. Also, immediately before the readout period of the first frame, the charge e of the photoelectric conversion element 31 is transferred to the GS memory Mg1.
 図12Bでは、画素30aによる第1フレームの読出期間及び第2フレームの露光期間を示す。第1フレームの読出期間では、OFメモリM1a及びGSメモリMg1の電荷eは、電荷電圧変換部33に転送される。これと並行して、第2フレームの露光期間では、光電変換素子31の電荷eは、図12Aと同様に、GSメモリMg2を介してOFメモリM2aに転送される。 FIG. 12B shows the readout period of the first frame and the exposure period of the second frame by pixel 30a. During the readout period of the first frame, the charge e in the OF memory M1a and the GS memory Mg1 is transferred to the charge-voltage converter 33. In parallel with this, during the exposure period of the second frame, the charge e in the photoelectric conversion element 31 is transferred to the OF memory M2a via the GS memory Mg2, as in FIG. 12A.
 第2フレーム以降においても、第1の実施形態と同様に、OFメモリM1a及びGSメモリMg1と、OFメモリM2a及びGSメモリMg2は、交互に電荷eの読み出しと転送に用いられる。すなわち第2の実施形態の光検出装置2も、第1の実施形態と同じく、画素30aからの電荷eの読み出し中に、画素30aの露光を行える。 Even in the second frame and thereafter, as in the first embodiment, the OF memory M1a and the GS memory Mg1, and the OF memory M2a and the GS memory Mg2 are alternately used to read and transfer the charge e. That is, as in the first embodiment, the photodetector 2 of the second embodiment can expose the pixel 30a while reading the charge e from the pixel 30a.
 上記の通り、第2の実施形態の画素30aは、2つのGSメモリMg1及びMg2を有する。すなわち画素30aには、GSメモリMg1又はMg2のいずれか一方が電荷eを電荷電圧変換部33に転送するときでも、GSメモリMg1又はMg2のいずれか他方は光電変換素子31の電荷eを保持することができるという特徴がある。これにより画素30aは、第1の実施形態の画素30よりもフレームレートを向上させることができる。 As described above, pixel 30a of the second embodiment has two GS memories Mg1 and Mg2. That is, pixel 30a has the feature that even when either GS memory Mg1 or Mg2 transfers charge e to charge-voltage conversion unit 33, the other GS memory Mg1 or Mg2 can hold charge e of photoelectric conversion element 31. This allows pixel 30a to improve the frame rate compared to pixel 30 of the first embodiment.
 図13は、本開示の第2の実施形態における画素30aの制御を示すタイミングチャートである。図13に示す時刻t31~t55には、初期化、第1フレームの露光期間及び読出期間、第2フレームの露光期間及び読出期間、第3フレームの露光期間が含まれる。 FIG. 13 is a timing chart showing the control of pixel 30a in the second embodiment of the present disclosure. Times t31 to t55 shown in FIG. 13 include initialization, the exposure period and readout period of the first frame, the exposure period and readout period of the second frame, and the exposure period of the third frame.
 時刻t31~t32においては、撮像前の画素30aの初期化が行われる。具体的には、図7と同様に、リセット信号RST、信号GS1及びGS2、信号OF1~OF4は同タイミングで一定期間ハイレベルに設定される。これにより、光電変換素子31、GSメモリMg1及びMg2、OFメモリM1a及びM2a、電荷電圧変換部33の電荷が、高電圧側電源VDDのノードに排出されて、電荷電圧変換部33はリセットレベルの電圧になる。 Between time t31 and t32, pixel 30a is initialized before imaging. Specifically, similar to FIG. 7, reset signal RST, signals GS1 and GS2, and signals OF1 to OF4 are set to a high level for a certain period at the same timing. As a result, the charges in photoelectric conversion element 31, GS memories Mg1 and Mg2, OF memories M1a and M2a, and charge-voltage conversion unit 33 are discharged to the node of the high-voltage power supply VDD, and charge-voltage conversion unit 33 becomes the reset level voltage.
 時刻t33~t35は、第1フレームの露光期間である。図13では、第1フレームの露光期間に、光電変換素子31の電荷が、OFメモリM1a及びGSメモリMg1に転送される。 Times t33 to t35 are the exposure period of the first frame. In FIG. 13, during the exposure period of the first frame, the charge of the photoelectric conversion element 31 is transferred to the OF memory M1a and the GS memory Mg1.
 時刻t33~t34において、信号GS1がハイレベルになるとともに、信号OF1がハイレベルになり、OFトランジスタQ4a及びQ6aがオンされることにより、光電変換素子31に蓄積された電荷は、GSメモリMg1を介して、OFメモリM1aに転送される。 From time t33 to t34, signal GS1 goes high, signal OF1 goes high, and OF transistors Q4a and Q6a are turned on, causing the charge stored in photoelectric conversion element 31 to be transferred to OF memory M1a via GS memory Mg1.
 時刻t34~t35において、信号GS1がハイレベルであるとともに、信号OF1がローレベルになる。これにより、OFトランジスタQ4aがオンされるとともにOFトランジスタQ6aがオフされ、光電変換素子31の電荷が、GSメモリMg1に転送される。 From time t34 to t35, signal GS1 is at a high level and signal OF1 is at a low level. This turns on OF transistor Q4a and turns off OF transistor Q6a, and the charge in photoelectric conversion element 31 is transferred to GS memory Mg1.
 なお、図7と同様に、フレームごとのOFメモリM1a及びM2aの電荷保持期間は、GSメモリMg1及びMg2の電荷保持期間よりも長い。 As in FIG. 7, the charge retention period of the OF memories M1a and M2a per frame is longer than the charge retention period of the GS memories Mg1 and Mg2.
 時刻t35~t45は、第1フレームの読出期間である。時刻t36~t37において、信号OF1及びOF2がローレベルの状態であるとともに、選択信号SELがハイレベルになる。これにより、図7と同様に、電荷電圧変換部33のリセットレベルに応じた画素信号(P相信号)が読み出される。 Times t35 to t45 are the readout period of the first frame. From time t36 to t37, signals OF1 and OF2 are at low level, and selection signal SEL goes to high level. As a result, a pixel signal (P-phase signal) corresponding to the reset level of charge-voltage conversion unit 33 is read out, similar to FIG. 7.
 時刻t38~t39において、信号OF2及び選択信号SELがハイレベルになる。OFトランジスタQ7aがオンされることにより、OFメモリM1aの電荷が電荷電圧変換部33に転送される。これにより、電荷電圧変換部33の電荷にOFメモリM1aの電荷が加算された電荷に応じた画素信号(D相信号)が読み出される。 Between time t38 and t39, the signal OF2 and the selection signal SEL go to high level. The OF transistor Q7a is turned on, and the charge in the OF memory M1a is transferred to the charge-voltage converter 33. As a result, a pixel signal (D-phase signal) corresponding to the charge obtained by adding the charge in the OF memory M1a to the charge in the charge-voltage converter 33 is read out.
 時刻t39~t40において、リセット信号RSTがハイレベルになる。これにより、電荷電圧変換部33の電荷は、高電圧側電源VDDのノードに排出される。 From time t39 to t40, the reset signal RST goes high. This causes the charge in the charge-voltage converter 33 to be discharged to the node of the high-voltage power supply VDD.
 時刻t40~t41において、信号OF1、OF2及び選択信号SELがハイレベルになる。OFトランジスタQ6a及びQ7aがオンされることにより、GSメモリMg1及びOFメモリM1aの電荷は、電荷電圧変換部33に転送される。これにより、電荷電圧変換部33から、GSメモリMg1の電荷にOFメモリM1aの電荷がさらに加えられた電荷に応じた画素信号(D相信号)が読み出される。 Between time t40 and t41, signals OF1, OF2 and selection signal SEL go to high level. By turning on OF transistors Q6a and Q7a, the charges in GS memory Mg1 and OF memory M1a are transferred to the charge-voltage converter 33. As a result, a pixel signal (D-phase signal) corresponding to the charge obtained by adding the charge in OF memory M1a to the charge in GS memory Mg1 is read out from the charge-voltage converter 33.
 時刻t41~t43において、信号OF1、OF2及びリセット信号RSTがハイレベルになり、GSメモリMg1、OFメモリM1a、電荷電圧変換部33の電荷は、高電圧側電源VDDのノードに排出される。これにより、電荷電圧変換部33はリセットレベルの電圧になる。 From time t41 to t43, the signals OF1, OF2 and the reset signal RST go to high level, and the charges in the GS memory Mg1, the OF memory M1a and the charge-voltage conversion unit 33 are discharged to the node of the high-voltage power supply VDD. This causes the charge-voltage conversion unit 33 to go to the reset level voltage.
 時刻t43~t44において、信号OF1、OF2及び選択信号SELがハイレベルになり、電荷電圧変換部33のリセットレベルに応じた画素信号(P相信号)が読み出される。 From time t43 to t44, signals OF1, OF2 and selection signal SEL go to high level, and a pixel signal (P-phase signal) corresponding to the reset level of the charge-voltage conversion unit 33 is read out.
 時刻t35~t45は、第1フレームの読出期間であるとともに、第2フレームの露光期間でもある。時刻t35~t42において、信号GS2がハイレベルになるとともに、信号OF3がハイレベルになる。これにより、光電変換素子31に蓄積された電荷は、OFメモリM2aに転送される。時刻t42~t45において、信号GS2がハイレベルであるとともに、信号OF3がローレベルになる。これにより、光電変換素子31の電荷は、GSメモリMg2に転送される。 Times t35 to t45 are the readout period for the first frame and also the exposure period for the second frame. From time t35 to t42, signal GS2 goes high and signal OF3 goes high. This causes the charge stored in photoelectric conversion element 31 to be transferred to OF memory M2a. From time t42 to t45, signal GS2 goes high and signal OF3 goes low. This causes the charge in photoelectric conversion element 31 to be transferred to GS memory Mg2.
 ここで図7では、信号OF3がローレベルになる時刻t42は、第1フレームの読出期間のうち、時刻t41~t43の間に設けられているが、これに限られない。信号OF3がローレベルになる時間は、第1フレームの読出期間中のどこに設けられてもよい。 In FIG. 7, the time t42 when the signal OF3 goes low is set between times t41 and t43 during the readout period of the first frame, but this is not limited to this. The time when the signal OF3 goes low may be set anywhere during the readout period of the first frame.
 時刻t45~t55は、第2フレームにおける読出期間である。第2フレームにおける読出期間では、第1フレームにおける読出期間と同様の制御により、GSメモリMg2及びOFメモリM2aから電荷が読み出される。 Times t45 to t55 are the readout period for the second frame. During the readout period for the second frame, charges are read out from the GS memory Mg2 and the OF memory M2a by the same control as during the readout period for the first frame.
 すなわち、時刻t46~t47において、選択信号SELがハイレベルになり、電荷電圧変換部33のリセットレベルに応じた画素信号(P相信号)が読み出される。時刻t48~t49において、信号OF4及び選択信号SELがハイレベルになり、電荷電圧変換部33の電荷にOFメモリM2aの電荷が加算された電荷に応じた画素信号(D相信号)が読み出される。 That is, from time t46 to t47, the selection signal SEL goes high, and a pixel signal (P-phase signal) corresponding to the reset level of the charge-voltage conversion unit 33 is read out. From time t48 to t49, the signal OF4 and the selection signal SEL go high, and a pixel signal (D-phase signal) corresponding to the charge obtained by adding the charge of the OF memory M2a to the charge of the charge-voltage conversion unit 33 is read out.
 時刻t49~t50において、リセット信号RSTがハイレベルになり、電荷電圧変換部33はリセットレベルの電圧になる。時刻t50~t51において、信号OF3、OF4及び選択信号SELがハイレベルになり、電荷電圧変換部33から、GSメモリMg2の電荷にOFメモリM2aの電荷がさらに加えられた電荷に応じた画素信号(D相信号)が読み出される。時刻t51~t53において、信号OF3、OF4及びリセット信号RSTがハイレベルになり、電荷電圧変換部33はリセットレベルの電圧になる。時刻t53~t54において、信号OF3、OF4及び選択信号SELがハイレベルになり、電荷電圧変換部33のリセットレベルに応じた画素信号(P相信号)が読み出される。 From time t49 to t50, the reset signal RST goes high, and the charge-voltage conversion unit 33 goes to the reset level voltage. From time t50 to t51, the signals OF3, OF4 and the selection signal SEL go high, and a pixel signal (D-phase signal) corresponding to the charge obtained by adding the charge of the OF memory M2a to the charge of the GS memory Mg2 is read out from the charge-voltage conversion unit 33. From time t51 to t53, the signals OF3, OF4 and the reset signal RST go high, and the charge-voltage conversion unit 33 goes to the reset level voltage. From time t53 to t54, the signals OF3, OF4 and the selection signal SEL go high, and a pixel signal (P-phase signal) corresponding to the reset level of the charge-voltage conversion unit 33 is read out.
 時刻t45~t55は、第2フレームの読出期間であるとともに、第3フレームの露光期間でもある。時刻t45~t52において、信号GS1がハイレベルになるとともに、信号OF1がハイレベルになる。これにより、光電変換素子31に蓄積された電荷はOFメモリM1aに転送される。時刻t52~t55において、信号GS1がハイレベルであるとともに、信号OF1がローレベルになり、光電変換素子31の電荷は、GSメモリMg1に転送される。 Times t45 to t55 are the readout period for the second frame and also the exposure period for the third frame. From time t45 to t52, signal GS1 goes high and signal OF1 goes high. This causes the charge stored in photoelectric conversion element 31 to be transferred to OF memory M1a. From time t52 to t55, signal GS1 goes high and signal OF1 goes low, and the charge in photoelectric conversion element 31 is transferred to GS memory Mg1.
 上述の通り、OFトランジスタQ4a又はQ5aは、フレーム単位で交互に光電変換素子31に蓄積された電荷をGSメモリMg1又はMg2に転送する。OFトランジスタQ6a又はQ8aは、フレーム単位で交互にGSメモリMg1又はMg2からOFメモリM1a又はM2aに電荷を転送する。OFトランジスタQ7a又はQ9aは、フレーム単位で交互にOFメモリM1a又はM2aに保持された電荷を電荷電圧変換部33に転送する。また、画素アレイ部20内の複数の画素30aのそれぞれは、フレーム単位で交互にOFメモリM1a又はM2aに電荷を保持するとともに、フレーム単位で交互にGSメモリMg1又はMg2に電荷を保持する。 As described above, the OF transistor Q4a or Q5a alternately transfers the charge stored in the photoelectric conversion element 31 to the GS memory Mg1 or Mg2 on a frame-by-frame basis. The OF transistor Q6a or Q8a alternately transfers the charge from the GS memory Mg1 or Mg2 to the OF memory M1a or M2a on a frame-by-frame basis. The OF transistor Q7a or Q9a alternately transfers the charge held in the OF memory M1a or M2a to the charge-voltage conversion unit 33 on a frame-by-frame basis. In addition, each of the multiple pixels 30a in the pixel array unit 20 alternately holds a charge in the OF memory M1a or M2a on a frame-by-frame basis, and also alternately holds a charge in the GS memory Mg1 or Mg2 on a frame-by-frame basis.
 図13のタイミングチャートは、図7のタイミングチャートと比較して、GSメモリMg1又はMg2から電荷が読み出されるときにも、次のフレームの露光期間が設けられているという点で異なる。すなわち、第2の実施形態の画素30aは、第1の実施形態の画素30と比較して、撮像動作中の露光期間をより拡大することができる。 The timing chart in FIG. 13 differs from the timing chart in FIG. 7 in that an exposure period for the next frame is provided even when charge is read out from the GS memory Mg1 or Mg2. In other words, the pixel 30a of the second embodiment can extend the exposure period during imaging operation compared to the pixel 30 of the first embodiment.
 このように、第2の実施形態における画素30aには、2つのGSメモリMg1及びMg2と、2つのOFメモリM1a及びM2aを有する。GSメモリMg1及びOFメモリM1aと、GSメモリMg2及びOFメモリM2aは、フレームごとに交互に光電変換素子31からの電荷を保持する。また、GSメモリMg1及びOFメモリM1aと、GSメモリMg2及びOFメモリM2aは、フレームごとに交互に保持電荷を電荷電圧変換部33に転送する。これにより、各フレームにおいて、画素信号を読み出している最中に露光を行うことができ、フレームレートを高速化できる。第2の実施形態による画素30aは、第1の実施形態による画素30と同じ数のトランジスタQ4a~Q9aで2つのGSメモリMg1及びMg2と、2つのOFメモリM1a及びM2aの転送を制御できる。 In this way, the pixel 30a in the second embodiment has two GS memories Mg1 and Mg2 and two OF memories M1a and M2a. The GS memory Mg1 and OF memory M1a, and the GS memory Mg2 and OF memory M2a alternately hold charges from the photoelectric conversion element 31 for each frame. In addition, the GS memory Mg1 and OF memory M1a, and the GS memory Mg2 and OF memory M2a alternately transfer the held charges to the charge-voltage conversion unit 33 for each frame. This allows exposure to be performed while the pixel signal is being read out in each frame, and the frame rate can be increased. The pixel 30a in the second embodiment can control the transfer of the two GS memories Mg1 and Mg2 and the two OF memories M1a and M2a with the same number of transistors Q4a to Q9a as the pixel 30 in the first embodiment.
 (応用例)
 本開示に係る技術(本技術)は、様々な製品へ応用することができる。例えば、本開示に係る技術は、内視鏡手術システムに適用されてもよい。
(Application example)
The technology according to the present disclosure (the present technology) can be applied to various products. For example, the technology according to the present disclosure may be applied to an endoscopic surgery system.
 図14は、本開示に係る技術(本技術)が適用され得る内視鏡手術システムの概略的な構成の一例を示す図である。 FIG. 14 is a diagram showing an example of the general configuration of an endoscopic surgery system to which the technology disclosed herein (the present technology) can be applied.
 図14では、術者(医師)11131が、内視鏡手術システム11000を用いて、患者ベッド11133上の患者11132に手術を行っている様子が図示されている。図示するように、内視鏡手術システム11000は、内視鏡11100と、気腹チューブ11111やエネルギー処置具11112等の、その他の術具11110と、内視鏡11100を支持する支持アーム装置11120と、内視鏡下手術のための各種の装置が搭載されたカート11200と、から構成される。 In FIG. 14, an operator (doctor) 11131 is shown using an endoscopic surgery system 11000 to perform surgery on a patient 11132 on a patient bed 11133. As shown in the figure, the endoscopic surgery system 11000 is composed of an endoscope 11100, other surgical tools 11110 such as an insufflation tube 11111 and an energy treatment tool 11112, a support arm device 11120 that supports the endoscope 11100, and a cart 11200 on which various devices for endoscopic surgery are mounted.
 内視鏡11100は、先端から所定の長さの領域が患者11132の体腔内に挿入される鏡筒11101と、鏡筒11101の基端に接続されるカメラヘッド11102と、から構成される。図示する例では、硬性の鏡筒11101を有するいわゆる硬性鏡として構成される内視鏡11100を図示しているが、内視鏡11100は、軟性の鏡筒を有するいわゆる軟性鏡として構成されてもよい。 The endoscope 11100 is composed of a lens barrel 11101, the tip of which is inserted into the body cavity of the patient 11132 at a predetermined length, and a camera head 11102 connected to the base end of the lens barrel 11101. In the illustrated example, the endoscope 11100 is configured as a so-called rigid scope having a rigid lens barrel 11101, but the endoscope 11100 may also be configured as a so-called flexible scope having a flexible lens barrel.
 鏡筒11101の先端には、対物レンズが嵌め込まれた開口部が設けられている。内視鏡11100には光源装置11203が接続されており、当該光源装置11203によって生成された光が、鏡筒11101の内部に延設されるライトガイドによって当該鏡筒の先端まで導光され、対物レンズを介して患者11132の体腔内の観察対象に向かって照射される。なお、内視鏡11100は、直視鏡であってもよいし、斜視鏡又は側視鏡であってもよい。 The tip of the tube 11101 has an opening into which an objective lens is fitted. A light source device 11203 is connected to the endoscope 11100, and light generated by the light source device 11203 is guided to the tip of the tube by a light guide extending inside the tube 11101, and is irradiated via the objective lens towards an object to be observed inside the body cavity of the patient 11132. The endoscope 11100 may be a direct-viewing endoscope, an oblique-viewing endoscope, or a side-viewing endoscope.
 カメラヘッド11102の内部には光学系及び撮像素子が設けられており、観察対象からの反射光(観察光)は当該光学系によって当該撮像素子に集光される。当該撮像素子によって観察光が光電変換され、観察光に対応する電気信号、すなわち観察像に対応する画像信号が生成される。当該画像信号は、RAWデータとしてカメラコントロールユニット(CCU: Camera Control Unit)11201に送信される。 An optical system and an image sensor are provided inside the camera head 11102, and reflected light (observation light) from the object being observed is focused onto the image sensor by the optical system. The image sensor converts the observation light into an electric signal corresponding to the observation light, i.e., an image signal corresponding to the observed image. The image signal is sent to the camera control unit (CCU: Camera Control Unit) 11201 as RAW data.
 CCU11201は、CPU(Central Processing Unit)やGPU(Graphics Processing Unit)等によって構成され、内視鏡11100及び表示装置11202の動作を統括的に制御する。さらに、CCU11201は、カメラヘッド11102から画像信号を受け取り、その画像信号に対して、例えば現像処理(デモザイク処理)等の、当該画像信号に基づく画像を表示するための各種の画像処理を施す。 The CCU 11201 is composed of a CPU (Central Processing Unit), a GPU (Graphics Processing Unit), etc., and controls the overall operation of the endoscope 11100 and the display device 11202. Furthermore, the CCU 11201 receives an image signal from the camera head 11102, and performs various types of image processing on the image signal, such as development processing (demosaic processing), in order to display an image based on the image signal.
 表示装置11202は、CCU11201からの制御により、当該CCU11201によって画像処理が施された画像信号に基づく画像を表示する。 The display device 11202, under the control of the CCU 11201, displays an image based on the image signal that has been subjected to image processing by the CCU 11201.
 光源装置11203は、例えばLED(light emitting diode)等の光源から構成され、術部等を撮影する際の照射光を内視鏡11100に供給する。 The light source device 11203 is composed of a light source such as an LED (light emitting diode), and supplies illumination light to the endoscope 11100 when photographing the surgical site, etc.
 入力装置11204は、内視鏡手術システム11000に対する入力インタフェースである。ユーザは、入力装置11204を介して、内視鏡手術システム11000に対して各種の情報の入力や指示入力を行うことができる。例えば、ユーザは、内視鏡11100による撮像条件(照射光の種類、倍率及び焦点距離等)を変更する旨の指示等を入力する。 The input device 11204 is an input interface for the endoscopic surgery system 11000. A user can input various information and instructions to the endoscopic surgery system 11000 via the input device 11204. For example, the user inputs an instruction to change the imaging conditions (type of irradiation light, magnification, focal length, etc.) of the endoscope 11100.
 処置具制御装置11205は、組織の焼灼、切開又は血管の封止等のためのエネルギー処置具11112の駆動を制御する。気腹装置11206は、内視鏡11100による視野の確保及び術者の作業空間の確保の目的で、患者11132の体腔を膨らめるために、気腹チューブ11111を介して当該体腔内にガスを送り込む。レコーダ11207は、手術に関する各種の情報を記録可能な装置である。プリンタ11208は、手術に関する各種の情報を、テキスト、画像又はグラフ等各種の形式で印刷可能な装置である。 The treatment tool control device 11205 controls the operation of the energy treatment tool 11112 for cauterizing tissue, incising, sealing blood vessels, etc. The insufflation device 11206 sends gas into the body cavity of the patient 11132 via the insufflation tube 11111 to inflate the body cavity in order to ensure a clear field of view for the endoscope 11100 and to ensure a working space for the surgeon. The recorder 11207 is a device capable of recording various types of information related to the surgery. The printer 11208 is a device capable of printing various types of information related to the surgery in various formats such as text, images, or graphs.
 なお、内視鏡11100に術部を撮影する際の照射光を供給する光源装置11203は、例えばLED、レーザ光源又はこれらの組み合わせによって構成される白色光源から構成することができる。RGBレーザ光源の組み合わせにより白色光源が構成される場合には、各色(各波長)の出力強度及び出力タイミングを高精度に制御することができるため、光源装置11203において撮像画像のホワイトバランスの調整を行うことができる。また、この場合には、RGBレーザ光源それぞれからのレーザ光を時分割で観察対象に照射し、その照射タイミングに同期してカメラヘッド11102の撮像素子の駆動を制御することにより、RGBそれぞれに対応した画像を時分割で撮像することも可能である。当該方法によれば、当該撮像素子にカラーフィルタを設けなくても、カラー画像を得ることができる。 The light source device 11203 that supplies illumination light to the endoscope 11100 when photographing the surgical site can be composed of a white light source composed of, for example, an LED, a laser light source, or a combination of these. When the white light source is composed of a combination of RGB laser light sources, the output intensity and output timing of each color (each wavelength) can be controlled with high precision, so that the white balance of the captured image can be adjusted in the light source device 11203. In this case, it is also possible to capture images corresponding to each of the RGB colors in a time-division manner by irradiating the observation object with laser light from each of the RGB laser light sources in a time-division manner and controlling the drive of the image sensor of the camera head 11102 in synchronization with the irradiation timing. According to this method, a color image can be obtained without providing a color filter to the image sensor.
 また、光源装置11203は、出力する光の強度を所定の時間ごとに変更するようにその駆動が制御されてもよい。その光の強度の変更のタイミングに同期してカメラヘッド11102の撮像素子の駆動を制御して時分割で画像を取得し、その画像を合成することにより、いわゆる黒つぶれ及び白とびのない高ダイナミックレンジの画像を生成することができる。 The light source device 11203 may be controlled to change the intensity of the light it outputs at predetermined time intervals. The image sensor of the camera head 11102 may be controlled to acquire images in a time-division manner in synchronization with the timing of the change in the light intensity, and the images may be synthesized to generate an image with a high dynamic range that is free of so-called blackout and whiteout.
 また、光源装置11203は、特殊光観察に対応した所定の波長帯域の光を供給可能に構成されてもよい。特殊光観察では、例えば、体組織における光の吸収の波長依存性を利用して、通常の観察時における照射光(すなわち、白色光)に比べて狭帯域の光を照射することにより、粘膜表層の血管等の所定の組織を高コントラストで撮影する、いわゆる狭帯域光観察(Narrow Band Imaging)が行われる。あるいは、特殊光観察では、励起光を照射することにより発生する蛍光により画像を得る蛍光観察が行われてもよい。蛍光観察では、体組織に励起光を照射し当該体組織からの蛍光を観察すること(自家蛍光観察)、又はインドシアニングリーン(ICG)等の試薬を体組織に局注するとともに当該体組織にその試薬の蛍光波長に対応した励起光を照射し蛍光像を得ること等を行うことができる。光源装置11203は、このような特殊光観察に対応した狭帯域光及び/又は励起光を供給可能に構成され得る。 The light source device 11203 may also be configured to supply light of a predetermined wavelength band corresponding to special light observation. In special light observation, for example, by utilizing the wavelength dependency of light absorption in body tissue, a narrow band of light is irradiated compared to the light irradiated during normal observation (i.e., white light), and a specific tissue such as blood vessels on the surface of the mucosa is photographed with high contrast, so-called narrow band imaging is performed. Alternatively, in special light observation, fluorescence observation may be performed in which an image is obtained by fluorescence generated by irradiating excitation light. In fluorescence observation, excitation light is irradiated to body tissue and fluorescence from the body tissue is observed (autofluorescence observation), or a reagent such as indocyanine green (ICG) is locally injected into the body tissue and excitation light corresponding to the fluorescence wavelength of the reagent is irradiated to the body tissue to obtain a fluorescent image. The light source device 11203 may be configured to supply narrow band light and/or excitation light corresponding to such special light observation.
 図15は、図14に示すカメラヘッド11102及びCCU11201の機能構成の一例を示すブロック図である。 FIG. 15 is a block diagram showing an example of the functional configuration of the camera head 11102 and CCU 11201 shown in FIG. 14.
 カメラヘッド11102は、レンズユニット11401と、撮像部11402と、駆動部11403と、通信部11404と、カメラヘッド制御部11405と、を有する。CCU11201は、通信部11411と、画像処理部11412と、制御部11413と、を有する。カメラヘッド11102とCCU11201とは、伝送ケーブル11400によって互いに通信可能に接続されている。 The camera head 11102 has a lens unit 11401, an imaging unit 11402, a drive unit 11403, a communication unit 11404, and a camera head control unit 11405. The CCU 11201 has a communication unit 11411, an image processing unit 11412, and a control unit 11413. The camera head 11102 and the CCU 11201 are connected to each other via a transmission cable 11400 so that they can communicate with each other.
 レンズユニット11401は、鏡筒11101との接続部に設けられる光学系である。鏡筒11101の先端から取り込まれた観察光は、カメラヘッド11102まで導光され、当該レンズユニット11401に入射する。レンズユニット11401は、ズームレンズ及びフォーカスレンズを含む複数のレンズが組み合わされて構成される。 The lens unit 11401 is an optical system provided at the connection with the lens barrel 11101. Observation light taken in from the tip of the lens barrel 11101 is guided to the camera head 11102 and enters the lens unit 11401. The lens unit 11401 is composed of a combination of multiple lenses including a zoom lens and a focus lens.
 撮像部11402を構成する撮像素子は、1つ(いわゆる単板式)であってもよいし、複数(いわゆる多板式)であってもよい。撮像部11402が多板式で構成される場合には、例えば各撮像素子によってRGBそれぞれに対応する画像信号が生成され、それらが合成されることによりカラー画像が得られてもよい。あるいは、撮像部11402は、3D(dimensional)表示に対応する右目用及び左目用の画像信号をそれぞれ取得するための1対の撮像素子を有するように構成されてもよい。3D表示が行われることにより、術者11131は術部における生体組織の奥行きをより正確に把握することが可能になる。なお、撮像部11402が多板式で構成される場合には、各撮像素子に対応して、レンズユニット11401も複数系統設けられ得る。 The imaging unit 11402 may have one imaging element (a so-called single-plate type) or multiple imaging elements (a so-called multi-plate type). When the imaging unit 11402 is configured as a multi-plate type, for example, each imaging element may generate an image signal corresponding to each of RGB, and a color image may be obtained by combining these. Alternatively, the imaging unit 11402 may be configured to have a pair of imaging elements for acquiring image signals for the right eye and the left eye corresponding to a 3D (dimensional) display. By performing a 3D display, the surgeon 11131 can more accurately grasp the depth of the biological tissue in the surgical site. Note that when the imaging unit 11402 is configured as a multi-plate type, multiple lens units 11401 may be provided corresponding to each imaging element.
 また、撮像部11402は、必ずしもカメラヘッド11102に設けられなくてもよい。例えば、撮像部11402は、鏡筒11101の内部に、対物レンズの直後に設けられてもよい。 Furthermore, the imaging unit 11402 does not necessarily have to be provided in the camera head 11102. For example, the imaging unit 11402 may be provided inside the lens barrel 11101, immediately after the objective lens.
 駆動部11403は、アクチュエータによって構成され、カメラヘッド制御部11405からの制御により、レンズユニット11401のズームレンズ及びフォーカスレンズを光軸に沿って所定の距離だけ移動させる。これにより、撮像部11402による撮像画像の倍率及び焦点が適宜調整され得る。 The driving unit 11403 is composed of an actuator, and moves the zoom lens and focus lens of the lens unit 11401 a predetermined distance along the optical axis under the control of the camera head control unit 11405. This allows the magnification and focus of the image captured by the imaging unit 11402 to be adjusted appropriately.
 通信部11404は、CCU11201との間で各種の情報を送受信するための通信装置によって構成される。通信部11404は、撮像部11402から得た画像信号をRAWデータとして伝送ケーブル11400を介してCCU11201に送信する。 The communication unit 11404 is configured with a communication device for transmitting and receiving various information to and from the CCU 11201. The communication unit 11404 transmits the image signal obtained from the imaging unit 11402 as RAW data to the CCU 11201 via the transmission cable 11400.
 また、通信部11404は、CCU11201から、カメラヘッド11102の駆動を制御するための制御信号を受信し、カメラヘッド制御部11405に供給する。当該制御信号には、例えば、撮像画像のフレームレートを指定する旨の情報、撮像時の露出値を指定する旨の情報、並びに/又は撮像画像の倍率及び焦点を指定する旨の情報等、撮像条件に関する情報が含まれる。 The communication unit 11404 also receives control signals for controlling the operation of the camera head 11102 from the CCU 11201, and supplies them to the camera head control unit 11405. The control signals include information on the imaging conditions, such as information specifying the frame rate of the captured image, information specifying the exposure value during imaging, and/or information specifying the magnification and focus of the captured image.
 なお、上記のフレームレートや露出値、倍率、焦点等の撮像条件は、ユーザによって適宜指定されてもよいし、取得された画像信号に基づいてCCU11201の制御部11413によって自動的に設定されてもよい。後者の場合には、いわゆるAE(Auto Exposure)機能、AF(Auto Focus)機能及びAWB(Auto White Balance)機能が内視鏡11100に搭載されていることになる。 The imaging conditions such as the frame rate, exposure value, magnification, and focus may be appropriately specified by the user, or may be automatically set by the control unit 11413 of the CCU 11201 based on the acquired image signal. In the latter case, the endoscope 11100 is equipped with the so-called AE (Auto Exposure) function, AF (Auto Focus) function, and AWB (Auto White Balance) function.
 カメラヘッド制御部11405は、通信部11404を介して受信したCCU11201からの制御信号に基づいて、カメラヘッド11102の駆動を制御する。 The camera head control unit 11405 controls the operation of the camera head 11102 based on a control signal from the CCU 11201 received via the communication unit 11404.
 通信部11411は、カメラヘッド11102との間で各種の情報を送受信するための通信装置によって構成される。通信部11411は、カメラヘッド11102から、伝送ケーブル11400を介して送信される画像信号を受信する。 The communication unit 11411 is configured with a communication device for transmitting and receiving various information to and from the camera head 11102. The communication unit 11411 receives an image signal transmitted from the camera head 11102 via the transmission cable 11400.
 また、通信部11411は、カメラヘッド11102に対して、カメラヘッド11102の駆動を制御するための制御信号を送信する。画像信号や制御信号は、電気通信や光通信等によって送信することができる。 The communication unit 11411 also transmits to the camera head 11102 a control signal for controlling the operation of the camera head 11102. The image signal and the control signal can be transmitted by electrical communication, optical communication, etc.
 画像処理部11412は、カメラヘッド11102から送信されたRAWデータである画像信号に対して各種の画像処理を施す。 The image processing unit 11412 performs various image processing operations on the image signal, which is the RAW data transmitted from the camera head 11102.
 制御部11413は、内視鏡11100による術部等の撮像、及び、術部等の撮像により得られる撮像画像の表示に関する各種の制御を行う。例えば、制御部11413は、カメラヘッド11102の駆動を制御するための制御信号を生成する。 The control unit 11413 performs various controls related to the imaging of the surgical site, etc. by the endoscope 11100, and the display of the captured images obtained by imaging the surgical site, etc. For example, the control unit 11413 generates a control signal for controlling the driving of the camera head 11102.
 また、制御部11413は、画像処理部11412によって画像処理が施された画像信号に基づいて、術部等が映った撮像画像を表示装置11202に表示させる。この際、制御部11413は、各種の画像認識技術を用いて撮像画像内における各種の物体を認識してもよい。例えば、制御部11413は、撮像画像に含まれる物体のエッジの形状や色等を検出することにより、鉗子等の術具、特定の生体部位、出血、エネルギー処置具11112の使用時のミスト等を認識することができる。制御部11413は、表示装置11202に撮像画像を表示させる際に、その認識結果を用いて、各種の手術支援情報を当該術部の画像に重畳表示させてもよい。手術支援情報が重畳表示され、術者11131に提示されることにより、術者11131の負担を軽減することや、術者11131が確実に手術を進めることが可能になる。 The control unit 11413 also causes the display device 11202 to display the captured image showing the surgical site, etc., based on the image signal that has been image-processed by the image processing unit 11412. At this time, the control unit 11413 may recognize various objects in the captured image using various image recognition techniques. For example, the control unit 11413 can recognize surgical tools such as forceps, specific body parts, bleeding, mist generated when the energy treatment tool 11112 is used, etc., by detecting the shape and color of the edges of objects included in the captured image. When the control unit 11413 causes the display device 11202 to display the captured image, it may use the recognition result to superimpose various types of surgical support information on the image of the surgical site. By superimposing the surgical support information and presenting it to the surgeon 11131, the burden on the surgeon 11131 can be reduced and the surgeon 11131 can proceed with the surgery reliably.
 カメラヘッド11102及びCCU11201を接続する伝送ケーブル11400は、電気信号の通信に対応した電気信号ケーブル、光通信に対応した光ファイバ、又はこれらの複合ケーブルである。 The transmission cable 11400 that connects the camera head 11102 and the CCU 11201 is an electrical signal cable that supports electrical signal communication, an optical fiber that supports optical communication, or a composite cable of these.
 ここで、図示する例では、伝送ケーブル11400を用いて有線で通信が行われていたが、カメラヘッド11102とCCU11201との間の通信は無線で行われてもよい。 In the illustrated example, communication is performed wired using a transmission cable 11400, but communication between the camera head 11102 and the CCU 11201 may also be performed wirelessly.
 以上、本開示に係る技術が適用され得る内視鏡手術システムの一例について説明した。本開示に係る技術は、以上説明した構成のうち、カメラヘッド11102等に適用され得る。具体的には、図1の光検出装置2又は電子機器1は、カメラヘッド11102の撮像部11402に適用することができる。撮像部11402に本開示に係る技術を適用することにより、より鮮明かつ高速に術部画像を得ることができるため、術者が術部を確実に確認することが可能になる。 Above, an example of an endoscopic surgery system to which the technology disclosed herein can be applied has been described. The technology disclosed herein can be applied to the camera head 11102 and other components of the configuration described above. Specifically, the light detection device 2 or electronic device 1 in FIG. 1 can be applied to the imaging unit 11402 of the camera head 11102. By applying the technology disclosed herein to the imaging unit 11402, clearer and faster images of the surgical site can be obtained, allowing the surgeon to reliably confirm the surgical site.
 なお、ここでは、一例として内視鏡手術システムについて説明したが、本開示に係る技術は、その他、例えば、顕微鏡手術システム等に適用されてもよい。 Note that although an endoscopic surgery system has been described here as an example, the technology disclosed herein may also be applied to other systems, such as a microsurgery system.
 なお、本技術は以下のような構成を取ることができる。
(1)入射光の光量に応じた電荷を蓄積する光電変換素子をそれぞれ有する複数の画素を備え、
 前記複数の画素のそれぞれは、
 前記光電変換素子に蓄積された電荷を電圧に変換する電荷電圧変換部と、
 前記光電変換素子に蓄積された電荷を保持する第1保持部と、
 前記第1保持部と交互に前記光電変換素子に蓄積された電荷を保持する第2保持部と、
 他の画素と同タイミングで前記光電変換素子に蓄積された電荷を保持する第3保持部と、を有する、
 光検出装置。
(2)前記第1保持部又は前記第2保持部のいずれか一方が前記電荷電圧変換部に電荷を転送する間に、前記第1保持部又は前記第2保持部のいずれか他方は前記光電変換素子に蓄積された電荷を保持する、
 (1)に記載の光検出装置。
(3)前記複数の画素のそれぞれは、フレーム単位で交互に前記第1保持部又は前記第2保持部に電荷を保持するとともに、フレームごとに前記第3保持部に電荷を保持する、
 (1)又は(2)に記載の光検出装置。
(4)前記複数の画素のそれぞれは、フレームごとに、リセットレベルの画素信号と、前記第1保持部又は前記第2保持部に保持された電荷と前記第3保持部に保持された電荷とに応じた画素信号とを出力し、
 前記リセットレベルの画素信号と、前記電荷に応じた画素信号とは互いに異なるタイミングで出力される、
 (1)乃至(3)のいずれか一項に記載の光検出装置。
(5)前記第1保持部及び前記第2保持部の飽和電荷量は、前記第3保持部の飽和電荷量よりも大きい、
 (1)乃至(4)のいずれか一項に記載の光検出装置。
(6)フレームごとの前記第1保持部及び前記第2保持部の電荷保持期間は、前記第3保持部の電荷保持期間よりも長い、
 (1)乃至(5)のいずれか一項に記載の光検出装置。
(7)前記複数の画素のそれぞれは、
 前記光電変換素子から前記第1保持部に電荷を転送する制御を行う第1転送制御部と、
 前記第1保持部から前記電荷電圧変換部に電荷を転送する制御を行う第2転送制御部と、
 前記光電変換素子から前記第2保持部に電荷を転送する制御を行う第3転送制御部と、
 前記第2保持部から前記電荷電圧変換部に電荷を転送する制御を行う第4転送制御部と、を有する、
 (1)乃至(6)のいずれか一項に記載の光検出装置。
(8)前記第1転送制御部又は前記第3転送制御部は、フレーム単位で交互に前記光電変換素子に蓄積された電荷を前記第1保持部又は前記第2保持部に転送する、
 (7)に記載の光検出装置。
(9)前記第2転送制御部又は前記第4転送制御部は、フレーム単位で交互に前記第1保持部又は前記第2保持部に保持された電荷を前記電荷電圧変換部に転送する、
 (7)又は(8)に記載の光検出装置。
(10)前記第1転送制御部が前記光電変換素子から前記第1保持部に電荷を転送する際には、前記第3転送制御部のゲートに負バイアス電圧が供給され、
 前記第3転送制御部が前記光電変換素子から前記第2保持部に電荷を転送する際には、前記第1転送制御部のゲートに負バイアス電圧が供給される、
 (7)乃至(9)のいずれか一項に記載の光検出装置。
(11)前記複数の画素のそれぞれは、
 前記光電変換素子から前記第3保持部に電荷を転送する制御を行う第5転送制御部と、
 前記第3保持部から前記電荷電圧変換部に電荷を転送する制御を行う第6転送制御部と、を有する、
 (7)乃至(10)のいずれか一項に記載の光検出装置。
(12)前記第5転送制御部は、フレームごとに他の画素と同タイミングで前記光電変換素子から前記第3保持部に電荷を転送し、
 前記第6転送制御部は、フレームごとに前記第3保持部から前記電荷電圧変換部に電荷を転送する、
 (11)に記載の光検出装置。
(13)前記第5転送制御部は、フレームごとに、前記光電変換素子から前記第1保持部又は前記第2保持部に電荷が転送された後に前記光電変換素子から前記第3保持部に電荷を転送する、
 (11)又は(12)に記載の光検出装置。
(14)前記複数の画素のそれぞれは、 他の画素と同タイミングで前記光電変換素子に蓄積された電荷を保持する第4保持部を備え、
 前記複数の画素のそれぞれは、フレーム単位で交互に前記第1保持部又は前記第2保持部に電荷を保持するとともに、フレーム単位で交互に前記第3保持部又は前記第4保持部に電荷を保持する、
 (1)又は(2)に記載の光検出装置。
(15)前記複数の画素のそれぞれは、フレームごとに、リセットレベルの画素信号と、前記第1保持部及び前記第3保持部に保持された電荷に応じた画素信号又は前記第2保持部又は前記第4保持部に保持された電荷に応じた画素信号とを出力し、
 前記リセットレベルの画素信号と、前記電荷に応じた画素信号とは互いに異なるタイミングで出力される、
 (14)に記載の光検出装置。
(16)前記第1保持部及び前記第2保持部の飽和電荷量は、前記第3保持部及び前記第4保持部の飽和電荷量よりも大きい、
 (14)又は(15)に記載の光検出装置。
(17)フレームごとの前記第1保持部及び前記第2保持部の電荷保持期間は、前記第3保持部及び前記第4保持部の電荷保持期間よりも長い、
 (14)乃至(16)のいずれか一項に記載の光検出装置。
(18)前記複数の画素のそれぞれは、
 前記光電変換素子から前記第3保持部に電荷を転送する制御を行う第7転送制御部と、
 前記第3保持部から前記第1保持部に電荷を転送する制御を行う第8転送制御部と、
 前記第1保持部から前記電荷電圧変換部に電荷を転送する制御を行う第9転送制御部と、
 前記光電変換素子から前記第4保持部に電荷を転送する制御を行う第10転送制御部と、
 前記第4保持部から前記第2保持部に電荷を転送する制御を行う第11転送制御部と、
 前記第2保持部から前記電荷電圧変換部に電荷を転送する制御を行う第12転送制御部と、を有する、
 (14)乃至(17)のいずれか一項に記載の光検出装置。
(19)前記第7転送制御部又は前記第10転送制御部は、フレーム単位で交互に前記光電変換素子に蓄積された電荷を前記第3保持部又は前記第4保持部に転送し、
 前記第8転送制御部又は前記第11転送制御部は、フレーム単位で交互に前記第3保持部又は前記第4保持部から前記第1保持部又は前記第2保持部に電荷を転送し、
 前記第9転送制御部又は前記第12転送制御部は、フレーム単位で交互に前記第1保持部又は前記第2保持部に保持された電荷を前記電荷電圧変換部に転送する、
 (18)に記載の光検出装置。
(20)光検出装置と、
 前記光検出装置から出力された画素データを処理する処理部と、を備え、
 前記光検出装置は、
 入射光の光量に応じた電荷を蓄積する光電変換素子をそれぞれ有する複数の画素を備え、
 前記複数の画素のそれぞれは、
 前記光電変換素子に蓄積された電荷を電圧に変換する電荷電圧変換部と、
 前記光電変換素子に蓄積された電荷を保持する第1保持部と、
 前記第1保持部と交互に前記光電変換素子に蓄積された電荷を保持する第2保持部と、
 他の画素と同タイミングで前記光電変換素子に蓄積された電荷を保持する第3保持部と、を有する、
 電子機器。
The present technology can be configured as follows.
(1) A pixel pixel includes a plurality of pixels each having a photoelectric conversion element that accumulates an electric charge according to the amount of incident light,
Each of the plurality of pixels is
a charge-voltage converter for converting the charge stored in the photoelectric conversion element into a voltage;
a first holding unit that holds the charge accumulated in the photoelectric conversion element;
a second holding unit that holds the charges accumulated in the photoelectric conversion element alternately with the first holding unit;
a third holding unit that holds the charge accumulated in the photoelectric conversion element at the same timing as other pixels;
Light detection device.
(2) While one of the first holding unit and the second holding unit transfers the charge to the charge-voltage converter, the other of the first holding unit and the second holding unit holds the charge accumulated in the photoelectric conversion element.
An optical detection device as described in (1).
(3) Each of the plurality of pixels alternately holds an electric charge in the first holding unit or the second holding unit on a frame-by-frame basis, and holds an electric charge in the third holding unit for each frame.
An optical detection device according to (1) or (2).
(4) each of the plurality of pixels outputs, for each frame, a pixel signal of a reset level and a pixel signal corresponding to the charge held in the first holding unit or the second holding unit and the charge held in the third holding unit;
the pixel signal of the reset level and the pixel signal according to the charge are output at different timings.
The optical detection device according to any one of (1) to (3).
(5) A saturated charge amount of the first storage unit and the second storage unit is greater than a saturated charge amount of the third storage unit.
The optical detection device according to any one of (1) to (4).
(6) A charge holding period of the first holding unit and the second holding unit per frame is longer than a charge holding period of the third holding unit.
The optical detection device according to any one of (1) to (5).
(7) Each of the plurality of pixels comprises:
a first transfer control unit that controls the transfer of charges from the photoelectric conversion element to the first holding unit;
a second transfer control unit that controls the transfer of charges from the first holding unit to the charge-voltage conversion unit;
a third transfer control unit that controls the transfer of charges from the photoelectric conversion element to the second holding unit;
a fourth transfer control unit that controls the transfer of charges from the second holding unit to the charge-voltage conversion unit,
The optical detection device according to any one of (1) to (6).
(8) The first transfer control unit or the third transfer control unit alternately transfers the charges accumulated in the photoelectric conversion element to the first holding unit or the second holding unit on a frame basis.
(7) An optical detection device according to (7).
(9) The second transfer control unit or the fourth transfer control unit alternately transfers the charges held in the first holding unit or the second holding unit to the charge-voltage conversion unit on a frame basis.
An optical detection device according to (7) or (8).
(10) When the first transfer control unit transfers electric charges from the photoelectric conversion element to the first holding unit, a negative bias voltage is supplied to a gate of the third transfer control unit;
When the third transfer control unit transfers the electric charge from the photoelectric conversion element to the second holding unit, a negative bias voltage is supplied to a gate of the first transfer control unit.
The optical detection device according to any one of (7) to (9).
(11) Each of the plurality of pixels
a fifth transfer control unit that controls the transfer of charges from the photoelectric conversion element to the third holding unit;
a sixth transfer control unit that controls the transfer of charges from the third holding unit to the charge-voltage conversion unit;
The optical detection device according to any one of (7) to (10).
(12) The fifth transfer control unit transfers electric charges from the photoelectric conversion element to the third holding unit at the same timing as other pixels for each frame;
the sixth transfer control unit transfers the charge from the third holding unit to the charge-voltage conversion unit for each frame.
An optical detection device according to (11).
(13) The fifth transfer control unit transfers the charge from the photoelectric conversion element to the third holding unit after the charge is transferred from the photoelectric conversion element to the first holding unit or the second holding unit for each frame.
The optical detection device according to (11) or (12).
(14) Each of the plurality of pixels includes a fourth holding unit that holds the charge accumulated in the photoelectric conversion element at the same timing as the other pixels,
each of the plurality of pixels alternately holds an electric charge in the first holding unit or the second holding unit on a frame-by-frame basis, and alternately holds an electric charge in the third holding unit or the fourth holding unit on a frame-by-frame basis;
An optical detection device according to (1) or (2).
(15) Each of the plurality of pixels outputs, for each frame, a pixel signal of a reset level and a pixel signal corresponding to the charges held in the first holding unit and the third holding unit, or a pixel signal corresponding to the charges held in the second holding unit or the fourth holding unit;
the pixel signal of the reset level and the pixel signal according to the charge are output at different timings.
An optical detection device according to (14).
(16) A saturated charge amount of the first holding unit and the second holding unit is greater than a saturated charge amount of the third holding unit and the fourth holding unit.
The optical detection device according to (14) or (15).
(17) A charge holding period of the first holding unit and the second holding unit per frame is longer than a charge holding period of the third holding unit and the fourth holding unit.
The optical detection device according to any one of (14) to (16).
(18) Each of the plurality of pixels comprises:
a seventh transfer control unit that controls the transfer of charges from the photoelectric conversion element to the third holding unit;
an eighth transfer control unit that controls the transfer of charges from the third holding unit to the first holding unit;
a ninth transfer control unit that controls the transfer of charges from the first holding unit to the charge-voltage conversion unit;
a tenth transfer control unit that controls the transfer of charges from the photoelectric conversion element to the fourth holding unit;
an eleventh transfer control unit that controls the transfer of charges from the fourth holding unit to the second holding unit;
a twelfth transfer control unit that controls the transfer of charges from the second holding unit to the charge-voltage conversion unit;
The optical detection device according to any one of (14) to (17).
(19) The seventh transfer control unit or the tenth transfer control unit alternately transfers the charges accumulated in the photoelectric conversion element to the third holding unit or the fourth holding unit on a frame basis,
the eighth transfer control unit or the eleventh transfer control unit alternately transfers charges from the third holding unit or the fourth holding unit to the first holding unit or the second holding unit on a frame-by-frame basis;
the ninth transfer control unit or the twelfth transfer control unit alternately transfers the charges held in the first holding unit or the second holding unit to the charge-voltage conversion unit on a frame basis;
(18) An optical detection device according to (18).
(20) a light detection device;
A processing unit that processes pixel data output from the light detection device,
The light detection device includes:
The image sensor includes a plurality of pixels each having a photoelectric conversion element that accumulates an electric charge according to the amount of incident light,
Each of the plurality of pixels is
a charge-voltage converter for converting the charge stored in the photoelectric conversion element into a voltage;
a first holding unit that holds the charge accumulated in the photoelectric conversion element;
a second holding unit that holds the charges accumulated in the photoelectric conversion element alternately with the first holding unit;
a third holding unit that holds the charge accumulated in the photoelectric conversion element at the same timing as other pixels;
Electronics.
 本開示の態様は、上述した個々の実施形態に限定されるものではなく、当業者が想到しうる種々の変形も含むものであり、本開示の効果も上述した内容に限定されない。すなわち、特許請求の範囲に規定された内容およびその均等物から導き出される本開示の概念的な思想と趣旨を逸脱しない範囲で種々の追加、変更および部分的削除が可能である。 The aspects of the present disclosure are not limited to the individual embodiments described above, but include various modifications that may be conceived by a person skilled in the art, and the effects of the present disclosure are not limited to the above. In other words, various additions, modifications, and partial deletions are possible within the scope that does not deviate from the conceptual idea and intent of the present disclosure derived from the contents defined in the claims and their equivalents.
1 電子機器、2、2a 光検出装置、3 処理部、4 制御部、5 記録部、11 撮像レンズ、12 伝送線、13 制御線、20 画素アレイ部、21 垂直駆動回路、22 システム制御回路、23 信号処理部、30、30a、100 画素、31 光電変換素子、32、32a 転送部、33 電荷電圧変換部、41 画素チップ、42 ロジックチップ、43 第1画素チップ、44 第2画素チップ 1 Electronic device, 2, 2a Light detection device, 3 Processing unit, 4 Control unit, 5 Recording unit, 11 Imaging lens, 12 Transmission line, 13 Control line, 20 Pixel array unit, 21 Vertical drive circuit, 22 System control circuit, 23 Signal processing unit, 30, 30a, 100 Pixel, 31 Photoelectric conversion element, 32, 32a Transfer unit, 33 Charge-to-voltage conversion unit, 41 Pixel chip, 42 Logic chip, 43 First pixel chip, 44 Second pixel chip

Claims (20)

  1.  入射光の光量に応じた電荷を蓄積する光電変換素子をそれぞれ有する複数の画素を備え、
     前記複数の画素のそれぞれは、
     前記光電変換素子に蓄積された電荷を電圧に変換する電荷電圧変換部と、
     前記光電変換素子に蓄積された電荷を保持する第1保持部と、
     前記第1保持部と交互に前記光電変換素子に蓄積された電荷を保持する第2保持部と、
     他の画素と同タイミングで前記光電変換素子に蓄積された電荷を保持する第3保持部と、を有する、
     光検出装置。
    The image sensor includes a plurality of pixels each having a photoelectric conversion element that accumulates an electric charge according to the amount of incident light,
    Each of the plurality of pixels is
    a charge-voltage converter for converting the charge stored in the photoelectric conversion element into a voltage;
    a first holding unit that holds the charge accumulated in the photoelectric conversion element;
    a second holding unit that holds the charges accumulated in the photoelectric conversion element alternately with the first holding unit;
    a third holding unit that holds the charge accumulated in the photoelectric conversion element at the same timing as other pixels;
    Light detection device.
  2.  前記第1保持部又は前記第2保持部のいずれか一方が前記電荷電圧変換部に電荷を転送する間に、前記第1保持部又は前記第2保持部のいずれか他方は前記光電変換素子に蓄積された電荷を保持する、
     請求項1に記載の光検出装置。
    While one of the first holding unit and the second holding unit transfers the charge to the charge-voltage converter, the other of the first holding unit and the second holding unit holds the charge accumulated in the photoelectric conversion element.
    2. The optical detection device according to claim 1.
  3.  前記複数の画素のそれぞれは、フレーム単位で交互に前記第1保持部又は前記第2保持部に電荷を保持するとともに、フレームごとに前記第3保持部に電荷を保持する、
     請求項1に記載の光検出装置。
    each of the plurality of pixels alternately holds charge in the first holding unit or the second holding unit on a frame-by-frame basis, and holds charge in the third holding unit on a frame-by-frame basis;
    2. The optical detection device according to claim 1.
  4.  前記複数の画素のそれぞれは、フレームごとに、リセットレベルの画素信号と、前記第1保持部又は前記第2保持部に保持された電荷と前記第3保持部に保持された電荷とに応じた画素信号とを出力し、
     前記リセットレベルの画素信号と、前記電荷に応じた画素信号とは互いに異なるタイミングで出力される、
     請求項1に記載の光検出装置。
    each of the plurality of pixels outputs, for each frame, a pixel signal of a reset level and a pixel signal corresponding to the charge held in the first holding unit or the second holding unit and the charge held in the third holding unit;
    the pixel signal of the reset level and the pixel signal according to the charge are output at different timings.
    2. The optical detection device according to claim 1.
  5.  前記第1保持部及び前記第2保持部の飽和電荷量は、前記第3保持部の飽和電荷量よりも大きい、
     請求項1に記載の光検出装置。
    a saturated charge amount of the first storage unit and the second storage unit is greater than a saturated charge amount of the third storage unit;
    2. The optical detection device according to claim 1.
  6.  フレームごとの前記第1保持部及び前記第2保持部の電荷保持期間は、前記第3保持部の電荷保持期間よりも長い、
     請求項1に記載の光検出装置。
    a charge holding period of the first holding unit and the second holding unit per frame is longer than a charge holding period of the third holding unit;
    2. The optical detection device according to claim 1.
  7.  前記複数の画素のそれぞれは、
     前記光電変換素子から前記第1保持部に電荷を転送する制御を行う第1転送制御部と、
     前記第1保持部から前記電荷電圧変換部に電荷を転送する制御を行う第2転送制御部と、
     前記光電変換素子から前記第2保持部に電荷を転送する制御を行う第3転送制御部と、
     前記第2保持部から前記電荷電圧変換部に電荷を転送する制御を行う第4転送制御部と、を有する、
     請求項1に記載の光検出装置。
    Each of the plurality of pixels is
    a first transfer control unit that controls the transfer of charges from the photoelectric conversion element to the first holding unit;
    a second transfer control unit that controls the transfer of charges from the first holding unit to the charge-voltage conversion unit;
    a third transfer control unit that controls the transfer of charges from the photoelectric conversion element to the second holding unit;
    a fourth transfer control unit that controls the transfer of charges from the second holding unit to the charge-voltage conversion unit,
    2. The optical detection device according to claim 1.
  8.  前記第1転送制御部又は前記第3転送制御部は、フレーム単位で交互に前記光電変換素子に蓄積された電荷を前記第1保持部又は前記第2保持部に転送する、
     請求項7に記載の光検出装置。
    the first transfer control unit or the third transfer control unit alternately transfers the charges accumulated in the photoelectric conversion element to the first holding unit or the second holding unit on a frame basis;
    8. The optical detection device according to claim 7.
  9.  前記第2転送制御部又は前記第4転送制御部は、フレーム単位で交互に前記第1保持部又は前記第2保持部に保持された電荷を前記電荷電圧変換部に転送する、
     請求項7に記載の光検出装置。
    the second transfer control unit or the fourth transfer control unit alternately transfers the charges held in the first holding unit or the second holding unit to the charge-voltage conversion unit on a frame-by-frame basis;
    8. The optical detection device according to claim 7.
  10.  前記第1転送制御部が前記光電変換素子から前記第1保持部に電荷を転送する際には、前記第3転送制御部のゲートに負バイアス電圧が供給され、
     前記第3転送制御部が前記光電変換素子から前記第2保持部に電荷を転送する際には、前記第1転送制御部のゲートに負バイアス電圧が供給される、
     請求項7に記載の光検出装置。
    When the first transfer control unit transfers charges from the photoelectric conversion element to the first holding unit, a negative bias voltage is supplied to a gate of the third transfer control unit,
    When the third transfer control unit transfers the electric charge from the photoelectric conversion element to the second holding unit, a negative bias voltage is supplied to a gate of the first transfer control unit.
    8. The optical detection device according to claim 7.
  11.  前記複数の画素のそれぞれは、
     前記光電変換素子から前記第3保持部に電荷を転送する制御を行う第5転送制御部と、
     前記第3保持部から前記電荷電圧変換部に電荷を転送する制御を行う第6転送制御部と、を有する、
     請求項7に記載の光検出装置。
    Each of the plurality of pixels is
    a fifth transfer control unit that controls the transfer of charges from the photoelectric conversion element to the third holding unit;
    a sixth transfer control unit that controls the transfer of charges from the third holding unit to the charge-voltage conversion unit;
    8. The optical detection device according to claim 7.
  12.  前記第5転送制御部は、フレームごとに他の画素と同タイミングで前記光電変換素子から前記第3保持部に電荷を転送し、
     前記第6転送制御部は、フレームごとに前記第3保持部から前記電荷電圧変換部に電荷を転送する、
     請求項11に記載の光検出装置。
    the fifth transfer control unit transfers charges from the photoelectric conversion element to the third holding unit at the same timing as other pixels for each frame;
    the sixth transfer control unit transfers the charge from the third holding unit to the charge-voltage conversion unit for each frame.
    The optical detection device according to claim 11.
  13.  前記第5転送制御部は、フレームごとに、前記光電変換素子から前記第1保持部又は前記第2保持部に電荷が転送された後に前記光電変換素子から前記第3保持部に電荷を転送する、
     請求項11に記載の光検出装置。
    the fifth transfer control unit transfers the charge from the photoelectric conversion element to the third holding unit after the charge is transferred from the photoelectric conversion element to the first holding unit or the second holding unit for each frame;
    The optical detection device according to claim 11.
  14.  前記複数の画素のそれぞれは、 他の画素と同タイミングで前記光電変換素子に蓄積された電荷を保持する第4保持部を備え、
     前記複数の画素のそれぞれは、フレーム単位で交互に前記第1保持部又は前記第2保持部に電荷を保持するとともに、フレーム単位で交互に前記第3保持部又は前記第4保持部に電荷を保持する、
     請求項1に記載の光検出装置。
    Each of the plurality of pixels includes a fourth holding unit that holds the charge accumulated in the photoelectric conversion element at the same time as the other pixels,
    each of the plurality of pixels alternately holds an electric charge in the first holding unit or the second holding unit on a frame-by-frame basis, and alternately holds an electric charge in the third holding unit or the fourth holding unit on a frame-by-frame basis;
    2. The optical detection device according to claim 1.
  15.  前記複数の画素のそれぞれは、フレームごとに、リセットレベルの画素信号と、前記第1保持部及び前記第3保持部に保持された電荷に応じた画素信号又は前記第2保持部又は前記第4保持部に保持された電荷に応じた画素信号とを出力し、
     前記リセットレベルの画素信号と、前記電荷に応じた画素信号とは互いに異なるタイミングで出力される、
     請求項14に記載の光検出装置。
    each of the plurality of pixels outputs, for each frame, a pixel signal of a reset level and a pixel signal corresponding to the charges held in the first holding unit and the third holding unit or a pixel signal corresponding to the charges held in the second holding unit or the fourth holding unit;
    the pixel signal of the reset level and the pixel signal according to the charge are output at different timings.
    15. The optical detection device of claim 14.
  16.  前記第1保持部及び前記第2保持部の飽和電荷量は、前記第3保持部及び前記第4保持部の飽和電荷量よりも大きい、
     請求項14に記載の光検出装置。
    a saturated charge amount of the first holding unit and the second holding unit is greater than a saturated charge amount of the third holding unit and the fourth holding unit;
    15. The optical detection device of claim 14.
  17.  フレームごとの前記第1保持部及び前記第2保持部の電荷保持期間は、前記第3保持部及び前記第4保持部の電荷保持期間よりも長い、
     請求項14に記載の光検出装置。
    a charge holding period of the first holding unit and the second holding unit per frame is longer than a charge holding period of the third holding unit and the fourth holding unit;
    15. The optical detection device of claim 14.
  18.  前記複数の画素のそれぞれは、 前記光電変換素子から前記第3保持部に電荷を転送する制御を行う第7転送制御部と、 前記第3保持部から前記第1保持部に電荷を転送する制御を行う第8転送制御部と、
     前記第1保持部から前記電荷電圧変換部に電荷を転送する制御を行う第9転送制御部と、
     前記光電変換素子から前記第4保持部に電荷を転送する制御を行う第10転送制御部と、
     前記第4保持部から前記第2保持部に電荷を転送する制御を行う第11転送制御部と、
     前記第2保持部から前記電荷電圧変換部に電荷を転送する制御を行う第12転送制御部と、を有する、
     請求項14に記載の光検出装置。
    Each of the plurality of pixels includes a seventh transfer control unit that controls the transfer of electric charges from the photoelectric conversion element to the third holding unit, and an eighth transfer control unit that controls the transfer of electric charges from the third holding unit to the first holding unit.
    a ninth transfer control unit that controls the transfer of charges from the first holding unit to the charge-voltage conversion unit;
    a tenth transfer control unit that controls the transfer of charges from the photoelectric conversion element to the fourth holding unit;
    an eleventh transfer control unit that controls the transfer of charges from the fourth holding unit to the second holding unit;
    a twelfth transfer control unit that controls the transfer of charges from the second holding unit to the charge-voltage conversion unit;
    15. The optical detection device of claim 14.
  19.  前記第7転送制御部又は前記第10転送制御部は、フレーム単位で交互に前記光電変換素子に蓄積された電荷を前記第3保持部又は前記第4保持部に転送し、
     前記第8転送制御部又は前記第11転送制御部は、フレーム単位で交互に前記第3保持部又は前記第4保持部から前記第1保持部又は前記第2保持部に電荷を転送し、
     前記第9転送制御部又は前記第12転送制御部は、フレーム単位で交互に前記第1保持部又は前記第2保持部に保持された電荷を前記電荷電圧変換部に転送する、
     請求項18に記載の光検出装置。
    the seventh transfer control unit or the tenth transfer control unit alternately transfers the charges accumulated in the photoelectric conversion element to the third holding unit or the fourth holding unit on a frame basis;
    the eighth transfer control unit or the eleventh transfer control unit alternately transfers charges from the third holding unit or the fourth holding unit to the first holding unit or the second holding unit on a frame-by-frame basis;
    the ninth transfer control unit or the twelfth transfer control unit alternately transfers the charges held in the first holding unit or the second holding unit to the charge-voltage conversion unit on a frame basis;
    20. The optical detection device of claim 18.
  20.  光検出装置と、
     前記光検出装置から出力された画素データを処理する処理部と、を備え、
     前記光検出装置は、
     入射光の光量に応じた電荷を蓄積する光電変換素子をそれぞれ有する複数の画素を備え、
     前記複数の画素のそれぞれは、
     前記光電変換素子に蓄積された電荷を電圧に変換する電荷電圧変換部と、
     前記光電変換素子に蓄積された電荷を保持する第1保持部と、
     前記第1保持部と交互に前記光電変換素子に蓄積された電荷を保持する第2保持部と、
     他の画素と同タイミングで前記光電変換素子に蓄積された電荷を保持する第3保持部と、を有する、
     電子機器。
    A photodetector;
    A processing unit that processes pixel data output from the light detection device,
    The light detection device includes:
    The image sensor includes a plurality of pixels each having a photoelectric conversion element that accumulates an electric charge according to the amount of incident light,
    Each of the plurality of pixels is
    a charge-voltage converter for converting the charge stored in the photoelectric conversion element into a voltage;
    a first holding unit that holds the charge accumulated in the photoelectric conversion element;
    a second holding unit that holds the charges accumulated in the photoelectric conversion element alternately with the first holding unit;
    a third holding unit that holds the charge accumulated in the photoelectric conversion element at the same timing as other pixels;
    Electronics.
PCT/JP2024/000277 2023-01-18 2024-01-10 Photodetection device and electronic device WO2024154623A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2023006183 2023-01-18
JP2023-006183 2023-01-18

Publications (1)

Publication Number Publication Date
WO2024154623A1 true WO2024154623A1 (en) 2024-07-25

Family

ID=91955971

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2024/000277 WO2024154623A1 (en) 2023-01-18 2024-01-10 Photodetection device and electronic device

Country Status (1)

Country Link
WO (1) WO2024154623A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130135486A1 (en) * 2011-11-28 2013-05-30 Chung Chun Wan High dynamic range imaging with multi-storage pixels
JP2017183563A (en) * 2016-03-31 2017-10-05 ソニー株式会社 Imaging apparatus, driving method, and electronic apparatus
JP2020127147A (en) * 2019-02-05 2020-08-20 キヤノン株式会社 Photoelectric conversion device
JP2020178163A (en) * 2019-04-15 2020-10-29 キヤノン株式会社 Imaging apparatus and control method of imaging apparatus
CN111885324A (en) * 2020-07-09 2020-11-03 深圳奥辰光电科技有限公司 Image sensor, acquisition module and TOF depth camera

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130135486A1 (en) * 2011-11-28 2013-05-30 Chung Chun Wan High dynamic range imaging with multi-storage pixels
JP2017183563A (en) * 2016-03-31 2017-10-05 ソニー株式会社 Imaging apparatus, driving method, and electronic apparatus
JP2020127147A (en) * 2019-02-05 2020-08-20 キヤノン株式会社 Photoelectric conversion device
JP2020178163A (en) * 2019-04-15 2020-10-29 キヤノン株式会社 Imaging apparatus and control method of imaging apparatus
CN111885324A (en) * 2020-07-09 2020-11-03 深圳奥辰光电科技有限公司 Image sensor, acquisition module and TOF depth camera

Similar Documents

Publication Publication Date Title
EP3557863B1 (en) Solid-state imaging element, and electronic device
CN108738370B (en) Imaging device and electronic device
WO2017163926A1 (en) Image pickup device and electronic apparatus
JP7267940B2 (en) Solid-state imaging device, manufacturing method thereof, and electronic equipment
JP5899172B2 (en) Endoscope device
JP7341141B2 (en) Imaging devices and electronic equipment
WO2019035374A1 (en) Image pickup element and image pickup device
JP2016518880A (en) Rigidly coupled image sensor and endoscope mechanical image rotation
US20220077207A1 (en) Solid-state imaging device and electronic apparatus
WO2020036054A1 (en) Solid-state imaging element and electronic device
WO2017212909A1 (en) Imaging element, imaging device and electronic device
JP2020021987A (en) Imaging apparatus and electronic apparatus
WO2024154623A1 (en) Photodetection device and electronic device
JP6190906B2 (en) Imaging module and endoscope apparatus
WO2020022054A1 (en) Imaging device and electronic equipment
WO2022202277A1 (en) Solid-state imaging device, electronic apparatus, and control method for solid-state imaging device
WO2023074381A1 (en) Imaging element and electronic device
WO2023074382A1 (en) Semiconductor element, imaging element, and electronic apparatus
WO2022264718A1 (en) Imaging element and electronic apparatus
JPWO2020080356A1 (en) Manufacturing method of solid-state image sensor and solid-state image sensor, and electronic equipment
WO2023136169A1 (en) Solid-state imaging device and electronic apparatus
WO2023048235A1 (en) Light detecting element, and light detecting device
EP4358143A1 (en) Imaging element and electronic device
JP2024154558A (en) Photoelectric conversion device, light detection system, moving body, and method for controlling photoelectric conversion device
JP2023162762A (en) Light detection device and amplification circuit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 24744546

Country of ref document: EP

Kind code of ref document: A1