WO2024150465A1 - Heat exchanger and outdoor unit - Google Patents

Heat exchanger and outdoor unit Download PDF

Info

Publication number
WO2024150465A1
WO2024150465A1 PCT/JP2023/033370 JP2023033370W WO2024150465A1 WO 2024150465 A1 WO2024150465 A1 WO 2024150465A1 JP 2023033370 W JP2023033370 W JP 2023033370W WO 2024150465 A1 WO2024150465 A1 WO 2024150465A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchanger
refrigerant
header pipe
space
flat tubes
Prior art date
Application number
PCT/JP2023/033370
Other languages
French (fr)
Japanese (ja)
Inventor
良美 林
立慈 川端
章吾 清水
寛 長谷川
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2024150465A1 publication Critical patent/WO2024150465A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/14Heat exchangers specially adapted for separate outdoor units
    • F24F1/18Heat exchangers specially adapted for separate outdoor units characterised by their shape
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/047Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/22Arrangements for directing heat-exchange media into successive compartments, e.g. arrangements of guide plates

Definitions

  • This disclosure relates to a heat exchanger and an outdoor unit.
  • Patent Document 1 discloses a heat exchanger and a refrigeration cycle device that can equalize the refrigerant supplied to the heat transfer tubes.
  • This heat exchanger has a first header, a second header, a plurality of heat transfer tubes, and a partition plate.
  • the first header and the second header extend vertically and are arranged at intervals from each other.
  • the heat transfer tube is connected between the first header and the second header.
  • the connecting tube is connected to the first header and supplies gaseous refrigerant and liquid refrigerant to the inside of the first header.
  • the partition plate extends vertically and divides the inside of the first header into a first space on the connecting tube side and a second space on the heat transfer tube side.
  • the connecting tube has an upper opening and a lower opening at the top and bottom, respectively.
  • a communication passage that communicates between the first space and the second space is formed below the partition plate.
  • the partition plate has a plurality of communication holes in the vertical direction that communicate between the first space and the second space.
  • This disclosure provides a heat exchanger and an outdoor unit that can improve heat exchange performance.
  • the heat exchanger of the present disclosure is a heat exchanger comprising a plurality of flat tubes arranged at a predetermined interval in the vertical direction of a header pipe, and a plurality of the header pipes to which both ends of each of the flat tubes are connected, wherein when the heat exchanger functions as an evaporator, a connecting pipe for supplying a gas-liquid two-phase refrigerant is connected to the lower part of at least one of the header pipes, and a partition plate is provided inside the header pipe to which the connecting pipe is connected, dividing the space into a first space extending in the vertical direction and communicating with the connecting pipe, and a second space communicating with the flat tubes, and the partition plate is provided with a plurality of communication holes communicating between the first space and the second space above the connection position of the connecting pipe.
  • This disclosure makes it possible to improve heat exchange performance.
  • FIG. 1 is a perspective view of an outdoor unit according to a first embodiment of the present disclosure.
  • FIG. 2 is a plan view of the outdoor unit.
  • FIG. 3 is a perspective view of an outdoor heat exchanger.
  • FIG. 4 is a vertical cross-sectional view showing a schematic internal structure of the outdoor heat exchanger.
  • FIG. 5 is a diagram showing a partition plate.
  • FIG. 6 is a cross-sectional view showing a schematic internal structure of the outdoor heat exchanger.
  • FIG. 7 is a diagram showing the performance of a heat exchanger provided with a partition plate and a heat exchanger without a partition plate.
  • FIG. 8 is a vertical cross-sectional view that illustrates an internal structure of an outdoor heat exchanger according to a first modified example.
  • FIG. 9 is a diagram showing a partition plate according to a second modified example.
  • FIG. 10 is a cross-sectional view that illustrates a schematic internal structure of an outdoor heat exchanger according to a second modified example.
  • the flow pattern of the gas-liquid two-phase refrigerant flowing through the connecting pipe changes depending on the operating conditions, so that the header pipe may not separate into gas refrigerant and liquid refrigerant under all operating conditions.
  • the gas-liquid two-phase refrigerant flows into the second space of the header pipe through the lower opening.
  • the amount of liquid refrigerant contributing to heat transfer is greater in the flat tubes located at the lower part than in the flat tubes located at the upper part due to gravity.
  • the present disclosure provides a heat exchanger and an outdoor unit that can improve heat exchange performance.
  • each direction is along the direction of the outdoor unit 1.
  • FIG. 1 is a perspective view of an outdoor unit 1 of an air conditioner according to the present embodiment.
  • the air conditioner of this embodiment includes an indoor heat exchanger housed in an indoor unit, and a refrigeration circuit formed by a compressor 5, an expansion valve, an outdoor heat exchanger 50, etc. housed in an outdoor unit 1.
  • the air conditioner conditions the conditioned space in which the indoor unit is provided by circulating a refrigerant through this refrigeration circuit.
  • the outdoor unit 1 of this embodiment is a so-called side-flow type, or side-blowing type, outdoor unit that draws air in through an outdoor heat exchanger 50 arranged on one side, exchanges heat with the refrigerant, and blows the air out from the other side.
  • Fig. 2 is a plan view showing a schematic diagram of the internal structure of the outdoor unit 1.
  • the edge of the bottom plate 12 forming the lower edge of the front air intake 15 and the side air intake 17, and a predetermined part of the back plate 18 forming the edge of the exhaust port 19 are shown by dashed lines.
  • the direction of air flow by the blower fan 30 is shown by a dashed double-dashed arrow A.
  • the outdoor unit 1 includes a box-shaped housing 10 whose longitudinal direction extends along the left-right direction, as shown in Figures 1 and 2. In this embodiment, each part of the housing 10 is formed from a steel plate.
  • the housing 10 comprises a bottom plate 12 that forms the bottom surface of the housing 10, a top plate 14 that forms the top surface, a front plate 16 that forms the front surface, a back plate 18 that forms the back surface, a left side plate 11 that forms the left side surface, and a right side plate 13 that forms the right side surface.
  • a front air intake 15 is provided on the front panel 16.
  • the front air intake 15 is a rectangular opening through which air is drawn from the outside to the inside of the housing 10.
  • the front air intake 15 is provided at a position closer to the left side panel 11 than to the right side panel 13.
  • a plurality of fastening holes 20, which are through holes, are provided in the front plate 16 at positions close to the edge of the front air intake port 15 on the side of the right side plate 13. These fastening holes 20 are provided so as to be aligned on the same straight line extending along the vertical direction of the housing 10. In this embodiment, three fastening holes 20 are provided in the front plate 16.
  • a side air intake port 17 is provided in the left side plate 11.
  • the side air intake port 17 is a rectangular opening through which air is drawn into the inside of the housing 10.
  • the side air intake port 17 is provided at a position closer to the front plate 16 than to the back plate 18.
  • Three fastening holes 20 are provided on the left side plate 11 near the edge of the side air intake 17 on the rear plate 18 side so as to be aligned in the same straight line extending along the vertical direction of the housing 10.
  • the rear panel 18 is provided with an exhaust port 19.
  • the exhaust port 19 is an opening through which air drawn into the housing 10 is blown out to the outside of the housing 10.
  • the front air intake 15, the side air intake 17, and the exhaust vent 19 may be provided with a filter or a lattice-shaped protective member.
  • the internal space S of the housing 10 is divided into two spaces by a partition plate 21.
  • the partition plate 21 is a plate-like member that extends with a predetermined height dimension along the up-down direction of the housing 10 and also along the front-rear direction of the housing 10.
  • the partition plate 21 is fixed to the housing 10 by having its lower end connected to the bottom plate 12.
  • the partition plate 21 has an end portion located on the front side of the housing 10 connected to the front plate 16, and an end portion located on the rear side of the housing 10 connected to the rear plate 18.
  • two spaces are created inside the housing 10, separated by a partition plate 21: a machine chamber S1 located on the right side of the housing 10, and a blower chamber S2 located on the left side of the housing 10.
  • the machine chamber S1 accommodates the compressor 5, an expansion valve, a header pipe 52 provided in the outdoor heat exchanger 50, components constituting the refrigeration circuit such as refrigerant piping, various electric components, and the like.
  • the blower chamber S2 accommodates the blower fan 30 and the exterior heat exchanger 50 excluding the header pipe 52.
  • the blower fan 30 is an axial flow fan that rotates to introduce air from outside the housing 10 into the blower chamber S2, exchanges heat with the refrigerant flowing through the outdoor heat exchanger 50, and then releases the air back outside the housing 10.
  • the blower fan 30 includes a fan motor 32 and an impeller 34.
  • the fan motor 32 is a drive unit that rotates the impeller 34, and the fan motor 32 includes a drive shaft 36 to which the impeller 34 is attached.
  • the impeller 34 is a rotating part that is rotated by the fan motor 32 to send out air in the axial flow direction.
  • the blower fan 30 is disposed at a position where the impeller 34 faces the exhaust port 19 and where the tip of the drive shaft 36 faces the exhaust port 19 .
  • blower fan 30 when the blower fan 30 is driven to rotate, it causes air to flow from the outside of the outdoor unit 1 into the inside of the housing 10, i.e., into the blower chamber S2. Specifically, as shown by arrow A in FIG. 2, air flows into the blower chamber S2 mainly from the front air intake 15 and the side air intake 17.
  • FIG. 3 is a perspective view showing the outdoor heat exchanger 50.
  • Fig. 3 shows the outdoor heat exchanger 50 formed in a straight line in a plan view.
  • the direction of air flow by the blower fan 30 is indicated by a two-dot chain line arrow A.
  • the outdoor heat exchanger 50 is a heat exchanger in which a flow path through which a refrigerant flows is formed, and which functions as an evaporator that evaporates the refrigerant supplied from the indoor unit, or as a condenser that condenses the refrigerant. As shown in FIG.
  • the outdoor heat exchanger 50 includes a pair of header pipes 52 , a connecting header pipe 54 , a first refrigerant pipe 66 , a second refrigerant pipe 68 , a plurality of flat tubes 62 , and a plurality of fins 64 .
  • all of these members included in the outdoor heat exchanger 50 are formed from so-called aluminum material made of aluminum or an aluminum alloy.
  • Each of the header pipes 52 is a hollow columnar member whose longitudinal direction extends along the up-down direction of the housing 10.
  • each of the header pipes 52 is formed in a cylindrical shape.
  • Each of these header pipes 52 is provided at one end of the outdoor heat exchanger 50 in the longitudinal direction.
  • An internal space SP of the header pipe 52 is provided inside the header pipe 52 .
  • a first refrigerant pipe 66 is connected to one header pipe 52, and a second refrigerant pipe 68 is connected to the other header pipe 52.
  • the first refrigerant pipe 66 and the second refrigerant pipe 68 function as an inlet and an outlet of the refrigerant in the outdoor heat exchanger 50.
  • the first refrigerant pipe 66 is connected to an upper portion of the side surface 51 of one of the header pipes 52.
  • the second refrigerant pipe 68 is connected to a lower portion of the side surface 51 of the other header pipe 52.
  • the second refrigerant pipe 68 corresponds to the “connecting pipe” in this disclosure.
  • the connecting header pipe 54 is a hollow columnar member whose longitudinal direction extends along the up-down direction of the housing 10 .
  • An internal space SQ is provided inside the connection header pipe 54.
  • the connection header pipe 54 is provided at the other end of the outdoor heat exchanger 50 in the longitudinal direction.
  • the flat tubes 62 are long, flat tubular members that have a refrigerant flow path therein through which the refrigerant flows.
  • Each flat tube 62 is arranged along the longitudinal direction of each header pipe 52 and the connecting header pipe 54 so that their respective longitudinal directions are parallel to each other, and each of the two ends of the flat tube 62 is connected to each of the side surfaces 51 of each header pipe 52 and the side surface 53 of the connecting header pipe 54.
  • each of the flat tubes 62 is connected to a predetermined location on the side surface 51 of each header pipe 52 in a row at a predetermined interval along the longitudinal direction of the header pipe 52.
  • the other end of each of the flat tubes 62 is connected to a predetermined location on the side surface 53 of the connecting header pipe 54 in a row at a predetermined interval along the longitudinal direction of the connecting header pipe 54. Therefore, the longitudinal direction of each flat tube 62 coincides with the longitudinal direction of the outdoor heat exchanger 50 .
  • Each flat tube 62 is connected to each header pipe 52 and the connecting header pipe 54 so that their width directions are parallel to each other.
  • the width direction is perpendicular to each of the longitudinal direction of each flat tube 62, the plate thickness direction of each flat tube 62, and the longitudinal direction of each header pipe 52.
  • each header pipe 52 On the side surface 51 of each header pipe 52, the predetermined location to which the flat tubes 62 are connected is located on the opposite side of the internal space SP to the predetermined location to which either the first refrigerant piping 66 or the second refrigerant piping 68 is connected.
  • connection side surface 55 a predetermined location on the side surface 51 of each header pipe 52 where each flat tube 62 is connected
  • a predetermined location on the side surface 53 of the connecting header pipe 54 where each flat tube 62 is connected is referred to as a connection side surface 57
  • a predetermined location on the side surface 51 of each header pipe 52 where either the first refrigerant piping 66 or the second refrigerant piping 68 is connected is referred to as a connection side surface 59. That is, the connection side surface 57 is located on the side surface 51 of each header pipe 52 opposite the connection side surface 59 with the internal space SP interposed therebetween.
  • the flat tubes 62 extending from each of the header pipes 52 are all connected to the connection side surface 57 such that the other ends are aligned in a direction intersecting the longitudinal direction of the connecting header pipe 54 .
  • the flat tubes 62 extending from each of the header pipes 52 are all connected to the connection side surface 57 such that the other ends are aligned in a direction perpendicular to the longitudinal direction of the connecting header pipe 54.
  • the flat tubes 62 aligned in a direction perpendicular to the longitudinal direction of the connecting header pipe 54 are positioned at approximately the same height as each other in the up-down direction of the housing 10.
  • each of the header pipes 52 is connected to the connecting header pipe 54 via the flat tubes 62 .
  • Each flat tube 62 has an opening at both ends. One end of each flat tube 62 opens into the internal space SP, and the other end opens into the internal space SQ.
  • the multiple fins 64 are flat plate members having multiple insertion holes formed on a plane, through which each of the flat tubes 62 can be inserted.
  • Each of the flat tubes 62 is connected to each of the header pipes 52, 54 while being inserted through each of the fins 64. That is, each of the fins 64 is arranged with its longitudinal direction and width direction perpendicular to each of the flat tubes 62. The longitudinal direction of each of the fins 64 arranged in this manner coincides with the longitudinal direction of each of the header pipes 52, 54.
  • the pair of header pipes 52, the connecting header pipe 54, the first refrigerant piping 66, the second refrigerant piping 68, the plurality of flat tubes 62, and the plurality of fins 64 are fixed to each other by so-called brazing using a brazing material.
  • the outdoor heat exchanger 50 is arranged such that its longitudinal direction runs along the front panel 16 and the left side panel 11. Specifically, the header pipe 52 is arranged close to the edge of the front air intake 15 on the right side panel 13 side, and the connecting header pipe 54 is arranged close to the edge of the side air intake 17 on the back panel 18 side. The outdoor heat exchanger 50 is then bent and arranged close to the corner 23 of the housing 10 formed by the front panel 16 and the left side panel 11.
  • the outdoor unit 1 includes a fixing member 70 that fixes the outdoor heat exchanger 50 to the housing 10 .
  • the header pipes 52 included in each of the outdoor heat exchangers 50 are fixed to the front panel 16 by a plurality of fixing members 70.
  • each header pipe 52 is fixed by three fixing members 70.
  • the longitudinal direction of each header pipe 52 and the connecting header pipe 54 are all arranged along the up-down direction of the housing 10 .
  • one header pipe 52 and the flat tubes 62 connected to the header pipe 52 are positioned at a position farther away from the side of the housing 10 than the other header pipe 52 and the flat tubes 62 connected to the header pipe 52, in other words, at a position closer to the blower fan 30.
  • the flat tubes 62 connected to one header pipe 52 are located upstream of the flat tubes 62 connected to the other header pipe 52.
  • each of the flat tubes 62 extending from each of the pair of header pipes 52 is aligned along the direction of air flow by the blower fan 30, which is a direction perpendicular to the longitudinal direction of the connecting header pipe 54.
  • the outdoor heat exchanger 50 is fixed to the housing 10, and most of the flat tubes 62 and fins 64 are exposed from the housing 10 through the front air intake 15 and the side air intake 17. Meanwhile, the header pipe 52 is shielded by the front plate 16, and the connecting header pipe 54 is shielded by the left side plate 11.
  • the partition plate 21 is arranged to pass between the header pipe 52 and the multiple fins 64.
  • the header pipe 52 is arranged in the machine room S1
  • the multiple flat tubes 62, fins 64, and connecting header pipe 54 are arranged in the blower room S2.
  • FIG. 4 is a vertical cross-sectional view that typically illustrates the internal structure of the outdoor heat exchanger 50.
  • a vertical cross-section of the outdoor heat exchanger 50 is shown that is cut along a plane that is parallel to the direction in which the flat tubes 62 extend and that passes through the communication holes 81 of the header pipes 52.
  • a partition plate 80 is provided in the internal space SP of the header pipe 52 to which the second refrigerant pipe 68 is connected.
  • the partition plate 80 is a plate-like member having a predetermined thickness.
  • the partition plate 80 extends over the entire longitudinal direction of the header pipe 52, and both ends abut against the top and bottom surfaces of the header pipe 52.
  • the partition plate 80 is disposed in the internal space SP such that its plane is parallel to the longitudinal direction of the header pipe 52 and the width direction of the flat tubes 62.
  • the internal space SP of the header pipe 52 is divided into a first space SP1 located on the connection side surface 59 side and a second space SP2 located on the connection side surface 55 side.
  • the partition plate 80 is provided in the internal space SP at a position closer to the connection side 59 than to the connection side 55. This makes the first space SP1 smaller than the second space SP2.
  • Fig. 5 is a diagram showing the partition plate 80.
  • Fig. 5 shows a plan view of the partition plate 80 as viewed from the direction in which the flat tubes 62 extend.
  • the flat tubes 62 are indicated by dashed lines
  • the second refrigerant piping 68 is indicated by dashed lines
  • the direction of air flow by the blower fan 30 is indicated by a two-dot chain arrow A.
  • the partition plate 80 extends so as to overlap the entire opening of each of the flat tubes 62 when viewed from the direction in which the flat tubes 62 extend.
  • the partition plate 80 is provided with a communication hole 81 which is a through hole penetrating in the plate thickness direction.
  • the communication hole 81 communicates the first space SP1 and the second space SP2 in the internal space SP.
  • a plurality of communication holes 81 are arranged at predetermined intervals along the longitudinal direction of the header pipe 52. In a plan view, these communication holes 81 have a dimension along the longitudinal direction of the header pipe 52 that is longer than the thickness dimension in the plate thickness direction of the flat tubes 62. This prevents the communication holes 81 from acting as a flow resistance for the refrigerant, and makes it easier for the refrigerant flowing through the header pipe 52 to flow into the communication holes 81.
  • the communication hole 81 is provided in the longitudinal direction of the header pipe 52 above the location to which the second refrigerant piping 68 is connected. That is, the second refrigerant piping 68 and the flat tubes 62 are separated by the partition plate 80 when viewed from the longitudinal direction of the flat tubes 62. This prevents the refrigerant that has flowed from the second refrigerant piping 68 into the header pipe 52 from moving straight and flowing into the flat tubes 62 located near the flow direction of the refrigerant. As a result, in the outdoor heat exchanger 50, the refrigerant that has flowed into the header pipe 52 moves upward along the partition plate 80, preventing drift in the flow due to the arrangement position of the flat tubes 62 in the height direction of the header pipe 52. Furthermore, in the outdoor heat exchanger 50, the refrigerant is prevented from being unevenly distributed to each of the flat tubes 62.
  • the communication hole 81 has a length dimension that is shorter than the opening of the flat tube 62 in a direction perpendicular to the longitudinal direction of the partition plate 80, in other words, in the direction of air flow by the blower fan 30. This makes it possible to easily form the communication hole 81 in the partition plate 80 while suppressing a decrease in the strength and rigidity of the partition plate 80.
  • the communication hole 81 is provided in the width direction of the flat tube 62 at a position overlapping the end located upstream in the direction of air flow by the blower fan 30 when viewed from the direction in which the flat tube 62 extends.
  • This allows the outdoor heat exchanger 50 to preferentially send the refrigerant that has flowed into the header pipe 52 to a location in the flat tube 62 that is upstream in the direction of air flow. Therefore, in the outdoor heat exchanger 50, the refrigerant can be preferentially sent to a location in the flat tube 62 where the air flows before heat exchange with the refrigerant.
  • the outdoor unit 1 starts operating and the compressor 5 is driven.
  • the compressor 5 compresses the refrigerant sealed in the refrigeration circuit, and sends out the gas refrigerant through each refrigerant pipe.
  • this gas refrigerant flows through the piping into the expansion valve, is decompressed by the expansion valve, and flows through the second refrigerant piping 68 into the internal space SP of the other header pipe 52.
  • the refrigerant that flows into the internal space SP flows through each flat tube 62 into the internal space SQ of the connecting header pipe 54.
  • the refrigerant then flows toward the one header pipe 52 through each flat tube 62 connected to one header pipe 52.
  • the refrigerant flowing through the outdoor heat exchanger 50 absorbs heat and evaporates by exchanging heat with the air sent out by the blower fan 30 in the flat tubes 62. That is, the outdoor heat exchanger 50 functions as an evaporator.
  • the refrigerant evaporated in the flat tubes 62 flows into the internal space SP of one of the header pipes 52 , and then returns to the compressor 5 through the first refrigerant pipe 66 .
  • the blower fan 30 starts rotating before the compressor 5.
  • the rotating blower fan 30 causes air to flow from the outside of the outdoor unit 1 into the inside of the housing 10, i.e., into the blower chamber S2.
  • air mainly flows into the blower chamber S2 from the front air intake 15 and the side air intake 17.
  • the air flowing into the blower chamber S2 passes between each of the flat tubes 62 and each of the fins 64 in a direction perpendicular to the longitudinal direction and the up-down direction of the outdoor heat exchanger 50, in other words, along the width direction of the flat tubes 62.
  • the outdoor unit 1 absorbs heat from the outdoor air into the refrigeration circuit and sends it out into the room.
  • the air conditioner performs cooling operation
  • the refrigerant circulates in the refrigeration circuit in the opposite direction to that in heating operation, and the outdoor heat exchanger 50 functions as a condenser.
  • the internal space SP is partitioned into the first space SP1 and the second space SP2 by the partition plate 80. This reduces the flow path cross-sectional area of the header pipe 52.
  • the outdoor heat exchanger 50 functions as an evaporator
  • the gas-liquid two-phase refrigerant flows into the header pipe 52 via the second refrigerant piping 68.
  • the gas-liquid two-phase refrigerant flowing through the second refrigerant piping 68 flows into the first space SP1.
  • a reduction in the flow velocity of the gas-liquid two-phase refrigerant is suppressed.
  • the gas-liquid two-phase refrigerant rises to the top of the header pipe 52, and in the process of rising, it flows from the first space SP1 into the second space SP2 through multiple communication holes 81 provided in the partition plate 80.
  • the refrigerant then flows into the flat tubes 62 located near each of the communication holes 81 while maintaining its flow velocity.
  • the reduction in refrigerant flow velocity is suppressed in the first space SP1 of the header pipe 52, and the gas-liquid two-phase refrigerant is uniformly distributed in the vertical direction of the second space SP2 through the multiple communication holes 81 with the gas-liquid state being homogenized.
  • the outdoor heat exchanger 50 drift caused by the vertical arrangement position of the flat tubes 62 is suppressed.
  • uneven distribution of refrigerant to each of the flat tubes 62 is suppressed, improving heat exchange performance.
  • the communication hole 81 is provided in the width direction of the flat tube 62 at a position overlapping with the end portion located upstream in the air flow direction generated by the blower fan 30 when viewed from the direction in which the flat tube 62 extends.
  • the gas-liquid two-phase refrigerant uniformly distributed in the vertical direction in the second space SP2 of the header pipe 52 can easily flow into the refrigerant flow path located upstream of the air flow in the flat tubes 62 and easily exchange heat with the air. Therefore, in the outdoor heat exchanger 50, even when the air conditioning apparatus performs partial load operation with a small amount of refrigerant circulating, a larger amount of refrigerant can exchange heat with air with a large temperature difference, thereby improving heat exchange performance.
  • FIG. 6 is a cross-sectional view that typically shows the internal structure of the outdoor heat exchanger 50.
  • FIG. 6 a cross-section of the outdoor heat exchanger 50 taken along a plane that is parallel to the bottom surface of the header pipe 52 and passes through the communication hole 81 is shown.
  • the partition plate 80 is provided in a position in the internal space SP closer to the connection side surface 59 than to the connection side surface 55.
  • the liquid refrigerant is likely to be maintained in the space near the end where the inner wall of the header pipe 52 and the partition plate 80 contact each other due to surface tension.
  • the reduction in the flow path cross-sectional area of the first space SP1 suppresses a decrease in the refrigerant flow rate. Therefore, in the first space SP1, the gas refrigerant rises to the top of the header pipe 52 while dragging in the liquid refrigerant on the wall surface. In this rising process, the gas-liquid two-phase refrigerant flows into the second space SP2 through multiple communication holes 81 provided in the partition plate 80.
  • Fig. 7 is a diagram showing the performance of heat exchangers 100 and 150 provided with a partition plate 80, and a heat exchanger 200 in which the partition plate 80 is omitted.
  • the vertical axis represents the heating capacity Y [W]
  • the horizontal axis represents the refrigerant circulation amount X [kg/h].
  • P1 is the heating performance of the heat exchangers 100, 150, and 200 during minimum operation
  • P2 is the heating performance of the heat exchangers 100, 150, and 200 during rated operation
  • P3 is the heating performance of the heat exchangers 100, 150, and 200 during intermediate operation between the minimum operation and the rated operation.
  • the inventors verified the effect of the partition plate 80 on the performance of the outdoor heat exchanger 50 of this embodiment through simulations using heat exchangers 100 and 150 provided with a partition plate 80 as in this embodiment, and a heat exchanger 200 not provided with a partition plate 80.
  • the partition plate 80 provided in the heat exchanger 100 has a plurality of rectangular communication holes 81.
  • the length dimension of these communication holes 81 in a direction perpendicular to the longitudinal direction of the partition plate 80 is approximately the same as the length dimension in the width direction of the flat tubes 62. Furthermore, the length dimension of these communication holes 81 in the longitudinal direction of the partition plate 80 is longer than the length dimension in the plate thickness direction of the flat tubes 62.
  • the total area of the communication holes 81 provided in the partition plate 80 is 655.6 mm2.
  • the partition plate 80 provided in the heat exchanger 150 has a plurality of circular communication holes 81 that are smaller than the communication holes 81 provided in the heat exchanger 100.
  • the length dimension of these communication holes 81 along a direction perpendicular to the longitudinal direction of the partition plate 80 is shorter than the dimension in the width direction of the flat tubes 62.
  • the length dimension of these communication holes 81 along the longitudinal direction of the partition plate 80 is longer than the length dimension in the plate thickness direction of the flat tubes 62.
  • the partition plate 80 provided in the heat exchanger 150 has a greater number of communication holes 81 than the communication holes 81 of the partition plate 80 provided in the heat exchanger 100.
  • the total area of the communication holes 81 provided in the partition plate 80 is 190.9 mm2.
  • the inventors then investigated the performance characteristics of the heat exchangers 100, 150, and 200 with respect to the amount of refrigerant circulating. Specifically, the inventors investigated the performance characteristics of the heat exchangers 100, 150, and 200 during minimum operation, when the amount of refrigerant circulating is at a minimum, during rated operation, when the amount of refrigerant circulating is at a maximum, and during intermediate operation, when the amount of refrigerant circulating is intermediate between minimum operation and rated operation, in an air conditioning system performing heating operation.
  • the heat exchangers 100 and 150 provided with the partition plate 80 exhibited higher capacity values than the heat exchanger 200 not provided with the partition plate 80 at any refrigerant circulation rate. Furthermore, between the heat exchanger 100 and the heat exchanger 150, the heat exchanger 100 exhibited a higher capacity value.
  • the inventors have found that the performance of the outdoor heat exchanger 50 is improved by providing the partition plate 80 .
  • the inventors also found that the performance of the outdoor heat exchanger 50 changes depending on the number, total area, and arrangement position of the communication holes 81, regardless of the shape of the communication holes 81. That is, the inventors found that a larger total area of the communication holes 81 increases the flow path area of the refrigerant and reduces flow path pressure loss, making it easier for the refrigerant to flow from each communication hole 81 to the flat tubes 62, thereby improving heat exchange performance.
  • the outdoor heat exchanger 50 includes a plurality of flat tubes 62 arranged at a predetermined interval in the vertical direction of the header pipe 52, and a plurality of header pipes 52 to which both ends of each flat tube 62 are connected.
  • a second refrigerant pipe 68 that supplies a gas-liquid two-phase refrigerant is connected to at least one lower part of the header pipe 52.
  • a partition plate 80 is provided that extends in the vertical direction and partitions the first space SP1 that communicates with the second refrigerant pipe 68 and the second space SP2 that communicates with the flat tube 62.
  • the partition plate 80 is provided with a plurality of communication holes 81 that communicate between the first space SP1 and the second space SP2 above the connection position of the second refrigerant pipe 68.
  • the two-phase gas-liquid refrigerant rises to the top of the header pipe 52, and in the process of rising, flows from the first space SP1 into the second space SP2 through the multiple communication holes 81 provided in the partition plate 80. Therefore, in the outdoor heat exchanger 50, with the gas-liquid state being homogenized, the two-phase gas-liquid refrigerant is evenly distributed in the vertical direction of the second space SP2 through the multiple communication holes 81, and drift due to the vertical arrangement position of the flat tubes 62 is suppressed. And, in the outdoor heat exchanger 50, uneven distribution of the refrigerant to each of the flat tubes 62 is suppressed, improving heat exchange performance.
  • air may flow along the width direction of the flat tubes 62 , and the communication holes 81 may be provided on the upstream side of the air flow of the flat tubes 62 .
  • the gas-liquid two-phase refrigerant uniformly distributed in the vertical direction in the second space SP2 of the header pipe 52 can easily flow into the refrigerant flow path located upstream of the air flow in the flat tubes 62 and easily exchange heat with the air. Therefore, in the outdoor heat exchanger 50, even when the air conditioning apparatus performs partial load operation with a small amount of refrigerant circulating, a larger amount of refrigerant can exchange heat with air with a large temperature difference, thereby improving heat exchange performance.
  • the partition plate 80 may be provided closer to the wall surface of the header pipe 52 on the side to which the flat tubes 62 are connected than to the wall surface of the header pipe 52 on the side to which the connecting pipes are connected.
  • the gaseous refrigerant rises to the upper part of the header pipe 52 while suppressing a decrease in flow velocity, while entraining the liquid refrigerant on the wall surface, and suppresses drift in flow due to the arrangement position of the flat tubes 62.
  • the outdoor heat exchanger 50 uneven distribution of the refrigerant to the multiple flat tubes 62 is suppressed, and heat exchange performance can be improved.
  • the first embodiment has been described as an example of the technology disclosed in the present application.
  • the technology in the present disclosure is not limited to this, and can be applied to embodiments in which modifications, substitutions, additions, omissions, etc. are made.
  • FIG. 8 is a vertical cross-sectional view that typically shows the internal structure of the outdoor heat exchanger 50 according to the first modified example.
  • the partition plate 180 is provided so as to be inclined from the lower portion to the upper portion so as to approach the connection side surface 55 from the connection side surface 59 .
  • the gas-liquid two-phase refrigerant that flows into the first space SP1 of the header pipe 52 via the second refrigerant piping 68 rises in the first space SP1 along the inclined surface of the partition plate 180.
  • the gas-liquid two-phase refrigerant rises, it flows into the second space SP2 through the multiple communication holes 81 provided in the partition plate 180, and flows into the flat tubes 62 near the communication holes 81 while suppressing a decrease in flow rate.
  • the outdoor heat exchanger 50 can equalize the gas-liquid state of the refrigerant in the first space SP1 and send the refrigerant to the top of the header pipe 52, suppressing drift due to the vertical arrangement position of the flat tubes 62. As a result, the outdoor heat exchanger 50 is prevented from being unevenly distributed to the multiple flat tubes 62, improving heat exchange performance.
  • FIG. 9 is a diagram showing a partition plate 280 according to the second modification.
  • a partition plate 280 is provided in the outdoor heat exchanger 50 of the second modification.
  • the partition plate 280 has communication holes 81 at positions in the width direction of the flat tubes 62 that overlap both ends of the flat tubes 62 when viewed in the longitudinal direction of the flat tubes 62 .
  • FIG. 10 is a cross-sectional view that illustrates a schematic internal structure of the outdoor heat exchanger 50 according to the second modification.
  • liquid refrigerant in the first space SP1, liquid refrigerant is maintained by surface tension in the space near where the inner wall of the header pipe 52 contacts the partition plate 280.
  • the liquid refrigerant flows into the second space SP2 from the communication hole 81 provided at a position approaching the space near where the inner wall of the header pipe 52 contacts the partition plate 280, and flows into the flat tubes 62 near the communication hole 81 while a decrease in flow rate is suppressed.
  • the liquid refrigerant held in the space near where the inner wall of the header pipe 52 meets the partition plate 280 can easily flow into the second space SP2 from the communication holes 81.
  • the refrigerant can be evenly distributed in the vertical direction of the second space SP2, and drift caused by the arrangement position of the flat tubes 62 in the vertical direction is suppressed.
  • uneven distribution to the multiple flat tubes 62 is suppressed, improving heat exchange performance.
  • the outdoor heat exchanger 50 is provided with a connected header pipe 54.
  • the outdoor heat exchanger 50 may be provided with a header pipe that is substantially the same as the header pipe 52.
  • This header pipe is connected to the other end of each of the flat tubes 62 extending from one header pipe 52.
  • each header pipe 52 is connected to the corresponding header pipe via a plurality of flat tubes 62.
  • These header pipes are connected to each other, for example, by piping through which a refrigerant flows.
  • two flat tubes 62 are arranged along the width direction of the flat tube 62, but this is not limited thereto, and for example, three or more may be arranged.
  • a heat exchanger including a plurality of flat tubes arranged at a predetermined interval in the vertical direction of a header pipe, and a plurality of the header pipes to which both ends of each of the flat tubes are connected, wherein, when the heat exchanger functions as an evaporator, a connecting pipe for supplying a gas-liquid two-phase refrigerant is connected to the lower part of at least one of the header pipes, and a partition plate is provided inside the header pipe to which the connecting pipe is connected, dividing the header pipe into a first space extending in the vertical direction and communicating with the connecting pipe, and a second space communicating with the flat tubes, and the partition plate is provided with a plurality of communication holes communicating between the first space and the second space above the connection position of the connecting pipe.
  • the gas-liquid two-phase refrigerant that flows in from the connecting pipe is prevented from flowing perpendicularly to the partition plate in the header pipe, and a decrease in refrigerant flow velocity and gas-liquid separation due to collision with the partition plate are suppressed.
  • This disclosure is applicable to heat exchangers that include flat tubes and a header pipe. Specifically, this disclosure is applicable to heat exchangers that are installed in outdoor units.
  • Outdoor unit 5 Compressor 10 Housing 30 Blower fan 50 Outdoor heat exchanger 51, 53 Side surface 52 Header pipe 54 Connecting header pipe 55, 57, 59 Connection side surface 62 Flat tube 64 Fin 66 First refrigerant piping 68 Second refrigerant piping (connecting pipe) 80, 180, 280 Partition plate 81 Communication hole 100, 150, 200 Heat exchanger S Internal space S1 Machine room S2 Blower room SP, SQ Internal space SP1 First space (first space) SP2 Second space (second space) X Refrigerant circulation volume Y Heating capacity

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Other Air-Conditioning Systems (AREA)

Abstract

Provided are a heat exchanger and an outdoor unit with which heat exchange performance can be improved. This heat exchanger comprises a plurality of flat pipes 62 arranged at prescribed intervals in a vertical direction of a header pipe, and a plurality of header pipes having the two end portions of the flat pipes 62 connected thereto, wherein, when the heat exchanger is functioning as an evaporator: a connecting pipe for supplying a gas-liquid two-phase refrigerant is connected to a lower portion of at least one of the header pipes; the interior of the header pipe to which the connecting pipe is connected is provided with a separating wall plate for partitioning the same into a first space extending in a vertical direction and communicating with the connecting pipe, and a second space communicating with the flat pipes 62; and a plurality of communicating holes providing communication between the first space and the second space are provided in the separating wall plate above a connection position of the connecting pipe.

Description

熱交換器、及び室外機Heat exchanger and outdoor unit
 本開示は、熱交換器、及び室外機に関する。 This disclosure relates to a heat exchanger and an outdoor unit.
 特許文献1は、伝熱管に供給される冷媒の均一化を図ることができる熱交換器及び冷凍サイクル装置を開示する。この熱交換器は、第1ヘッダと、第2ヘッダと、複数の伝熱管と、仕切板と、を持つ。第1ヘッダ及び第2ヘッダは、鉛直方向に延在し、互いに間隔を有して配置されている。伝熱管は、第1ヘッダと第2ヘッダとの間に接続されている。接続管は、第1ヘッダに接続され、第1ヘッダの内部に気体冷媒及び液体冷媒を供給する。仕切板は、鉛直方向に延び、第1ヘッダの内部を接続管側の第1空間と伝熱管側の第2空間とに仕切る。接続管には、上部及び下部にそれぞれ上部開口部及び下部開口部が形成されている。仕切板の下方には、第1空間と第2空間とを連通する連通路が形成されている。仕切板には、第1空間と第2空間とを連通する連通孔が鉛直方向に複数形成されている。 Patent Document 1 discloses a heat exchanger and a refrigeration cycle device that can equalize the refrigerant supplied to the heat transfer tubes. This heat exchanger has a first header, a second header, a plurality of heat transfer tubes, and a partition plate. The first header and the second header extend vertically and are arranged at intervals from each other. The heat transfer tube is connected between the first header and the second header. The connecting tube is connected to the first header and supplies gaseous refrigerant and liquid refrigerant to the inside of the first header. The partition plate extends vertically and divides the inside of the first header into a first space on the connecting tube side and a second space on the heat transfer tube side. The connecting tube has an upper opening and a lower opening at the top and bottom, respectively. A communication passage that communicates between the first space and the second space is formed below the partition plate. The partition plate has a plurality of communication holes in the vertical direction that communicate between the first space and the second space.
特開2004-125210号公報JP 2004-125210 A
 本開示は、熱交換性能を向上できる熱交換器、及び室外機を提供する。 This disclosure provides a heat exchanger and an outdoor unit that can improve heat exchange performance.
 この明細書には、2023年1月11日に出願された日本国特許出願・特願2023-002543の全ての内容が含まれる。
 本開示における熱交換器は、ヘッダパイプの上下方向に所定間隔をもって配列された複数の扁平管と、前記各扁平管の両端部が接続される複数の前記ヘッダパイプと、を備える熱交換器において、前記熱交換器が蒸発器として機能する場合、前記ヘッダパイプの少なくとも1つの下部には、気液二相冷媒を供給する接続管が接続され、前記接続管が接続された前記ヘッダパイプの内部には、上下方向に延在し前記接続管に連通する第1の空間と、前記扁平管に連通する第2の空間と、に仕切る隔壁板が設けられ、前記隔壁板には、前記接続管の接続位置より上方に前記第1の空間と前記第2の空間とを連通する連通孔が複数設けられる。
This specification includes the entire contents of Japanese Patent Application No. 2023-002543 filed on January 11, 2023.
The heat exchanger of the present disclosure is a heat exchanger comprising a plurality of flat tubes arranged at a predetermined interval in the vertical direction of a header pipe, and a plurality of the header pipes to which both ends of each of the flat tubes are connected, wherein when the heat exchanger functions as an evaporator, a connecting pipe for supplying a gas-liquid two-phase refrigerant is connected to the lower part of at least one of the header pipes, and a partition plate is provided inside the header pipe to which the connecting pipe is connected, dividing the space into a first space extending in the vertical direction and communicating with the connecting pipe, and a second space communicating with the flat tubes, and the partition plate is provided with a plurality of communication holes communicating between the first space and the second space above the connection position of the connecting pipe.
 本開示によれば、熱交換性能を向上できる。 This disclosure makes it possible to improve heat exchange performance.
図1は、本開示の実施の形態1に係る室外機の斜視図FIG. 1 is a perspective view of an outdoor unit according to a first embodiment of the present disclosure. 図2は、室外機の平面図FIG. 2 is a plan view of the outdoor unit. 図3は、室外熱交換器の斜視図FIG. 3 is a perspective view of an outdoor heat exchanger. 図4は、室外熱交換器の内部構造を模式的に示す縦断面図FIG. 4 is a vertical cross-sectional view showing a schematic internal structure of the outdoor heat exchanger. 図5は、隔壁板を示す図FIG. 5 is a diagram showing a partition plate. 図6は、室外熱交換器の内部構造を模式的に示す横断面図FIG. 6 is a cross-sectional view showing a schematic internal structure of the outdoor heat exchanger. 図7は、隔壁板が設けられた熱交換器と、隔壁板が省略された熱交換器との性能を示す図FIG. 7 is a diagram showing the performance of a heat exchanger provided with a partition plate and a heat exchanger without a partition plate. 図8は、変形例1に係る室外熱交換器の内部構造を模式的に示す縦断面図FIG. 8 is a vertical cross-sectional view that illustrates an internal structure of an outdoor heat exchanger according to a first modified example. 図9は、変形例2に係る隔壁板を示す図FIG. 9 is a diagram showing a partition plate according to a second modified example. 図10は、変形例2に係る室外熱交換器の内部構造を模式的に示す横断面図FIG. 10 is a cross-sectional view that illustrates a schematic internal structure of an outdoor heat exchanger according to a second modified example.
 (本開示の基礎となった知見等)
 発明者らが本開示に想到するに至った当時、熱交換器において、ヘッダパイプの内部で、気体冷媒と液体冷媒とを意図的に相分離させた後に、気体冷媒をヘッダパイプの上下方向に沿って分配し、液体冷媒と共に扁平管に送り出す技術があった。この熱交換器では、ヘッダパイプの内部空間に隔壁板が設けられることで、気体冷媒及び液体冷媒から成る気液二相冷媒をヘッダパイプに供給する接続管側の第1空間と、扁平管側の第2空間とに当該内部空間が仕切られる。接続管には、上部及び下部にそれぞれ上部開口部及び下部開口部が形成される。これにより、当該熱交換器では、伝熱管に供給される冷媒の均一化を図ることができる。
(The knowledge and other information that formed the basis of this disclosure)
At the time when the inventors came up with the present disclosure, there was a technology in a heat exchanger in which a gas refrigerant and a liquid refrigerant were intentionally phase-separated inside a header pipe, and then the gas refrigerant was distributed along the vertical direction of the header pipe and sent to the flat tubes together with the liquid refrigerant. In this heat exchanger, a partition plate is provided in the internal space of the header pipe, thereby dividing the internal space into a first space on the connecting pipe side that supplies a two-phase gas-liquid refrigerant consisting of gas refrigerant and liquid refrigerant to the header pipe, and a second space on the flat tube side. An upper opening and a lower opening are formed at the upper and lower parts of the connecting pipe, respectively. As a result, in this heat exchanger, the refrigerant supplied to the heat transfer tubes can be made uniform.
 しかしながら、上記のような熱交換器において、接続管を流通する気液二相冷媒は、運転条件によって流動様式が変化するため、ヘッダパイプでは、全ての運転条件において気体冷媒と液体冷媒とに分離されない場合がある。上記のような熱交換器では、下部開口部を通過してヘッダパイプの第2空間へ気液二相冷媒が流入する。これによって、伝熱に寄与する液体冷媒の供給量は、重力により、下方に位置する扁平管の方が上方に位置する扁平管よりも多くなる。このため、上記のような熱交換器では、扁平管の配置高さによって液体冷媒の供給量が偏り、熱交換性能が低下するというと言う課題を発明者らは発見し、その課題を解決するために、本開示の主題を構成するに至った。
 そこで本開示は、熱交換性能を向上できる熱交換器、及び室外機を提供する。
However, in the above-mentioned heat exchanger, the flow pattern of the gas-liquid two-phase refrigerant flowing through the connecting pipe changes depending on the operating conditions, so that the header pipe may not separate into gas refrigerant and liquid refrigerant under all operating conditions. In the above-mentioned heat exchanger, the gas-liquid two-phase refrigerant flows into the second space of the header pipe through the lower opening. As a result, the amount of liquid refrigerant contributing to heat transfer is greater in the flat tubes located at the lower part than in the flat tubes located at the upper part due to gravity. Therefore, the inventors have discovered a problem that the amount of liquid refrigerant supplied in the above-mentioned heat exchanger is biased depending on the arrangement height of the flat tubes, and the heat exchange performance is reduced. In order to solve this problem, the present disclosure has been formed as a subject of the present disclosure.
In view of this, the present disclosure provides a heat exchanger and an outdoor unit that can improve heat exchange performance.
 以下、図面を参照しながら、実施の形態を詳細に説明する。但し、必要以上に詳細な説明は省略する場合がある。例えば、既によく知られた事項の詳細説明、または、実質的に同一の構成に対する重複説明を省略する場合がある。これは、以下の説明が必要以上に冗長になるのを避け、当業者の理解を容易にするためである。
 なお、添付図面および以下の説明は、当業者が本開示を十分に理解するために提供されるのであって、これらにより特許請求の範囲に記載の主題を限定することを意図していない。
Hereinafter, the embodiments will be described in detail with reference to the drawings. However, more detailed explanation than necessary may be omitted. For example, detailed explanation of already well-known matters or duplicate explanation of substantially the same configuration may be omitted. This is to avoid the following explanation becoming more redundant than necessary and to facilitate understanding by those skilled in the art.
It should be noted that the accompanying drawings and the following description are provided to enable those skilled in the art to fully understand the present disclosure, and are not intended to limit the subject matter described in the claims.
 (実施の形態1)
 以下、図1~図6を用いて、実施の形態1を説明する。各図に示す符号FRは、設置面に設置されて通常使用される状態における室外機1の前方を示し、符号UPは、室外機1の上方を示し、符号LHは、室外機1の左方を示す。以下の説明において、各方向は、これらの室外機1の方向に沿った方向である。
(Embodiment 1)
Hereinafter, the first embodiment will be described with reference to Figures 1 to 6. The symbol FR in each figure indicates the front of the outdoor unit 1 when it is installed on an installation surface and in normal use, the symbol UP indicates the upper side of the outdoor unit 1, and the symbol LH indicates the left side of the outdoor unit 1. In the following description, each direction is along the direction of the outdoor unit 1.
 [1-1.構成]
 [1-1-1.室外機の構成]
 図1は、本実施の形態に係る空気調和装置の室外機1の斜視図である。
 本実施の形態の空気調和装置は、室内ユニットに収められた室内熱交換器と、室外機1に収められた圧縮機5や膨張弁、室外熱交換器50等で形成された冷凍回路を備える。空気調和装置は、この冷凍回路に冷媒を流通させることで、室内ユニットが設けられた被調和空間の空調を行うものである。
[1-1. Configuration]
[1-1-1. Configuration of outdoor unit]
FIG. 1 is a perspective view of an outdoor unit 1 of an air conditioner according to the present embodiment.
The air conditioner of this embodiment includes an indoor heat exchanger housed in an indoor unit, and a refrigeration circuit formed by a compressor 5, an expansion valve, an outdoor heat exchanger 50, etc. housed in an outdoor unit 1. The air conditioner conditions the conditioned space in which the indoor unit is provided by circulating a refrigerant through this refrigeration circuit.
 図1に示すように、本実施の形態の室外機1は、側面に配置された室外熱交換器50を通して内部に空気を吸い込み、当該空気を冷媒と熱交換して他の側面から吹き出す、所謂サイドフロー方式、あるいは横吹き型と呼ばれる室外機である。 As shown in FIG. 1, the outdoor unit 1 of this embodiment is a so-called side-flow type, or side-blowing type, outdoor unit that draws air in through an outdoor heat exchanger 50 arranged on one side, exchanges heat with the refrigerant, and blows the air out from the other side.
 図2は、室外機1の内部構造を模式的に示す平面図である。図2では、説明の便宜上、前面吸気口15と側面吸気口17との下縁を形成する底板12の縁部と、排気口19の縁部を形成する背面板18の所定箇所を一点鎖線で示す。図2では、送風ファン30による空気の流れ方向を二点鎖線の矢印Aで示す。
 室外機1は、図1、図2に示すように、長手方向が左右方向に沿って延びる箱状の筐体10を備える。本実施の形態では、筐体10の各部は、いずれも鋼板によって形成される。
 筐体10は、当該筐体10の底面を形成する底板12と、天面を形成する天板14と、前面を形成する前面板16と、背面を形成する背面板18と、左側面を形成する左側板11と、右側面を形成する右側板13とを備える。
Fig. 2 is a plan view showing a schematic diagram of the internal structure of the outdoor unit 1. For ease of explanation, in Fig. 2, the edge of the bottom plate 12 forming the lower edge of the front air intake 15 and the side air intake 17, and a predetermined part of the back plate 18 forming the edge of the exhaust port 19 are shown by dashed lines. In Fig. 2, the direction of air flow by the blower fan 30 is shown by a dashed double-dashed arrow A.
The outdoor unit 1 includes a box-shaped housing 10 whose longitudinal direction extends along the left-right direction, as shown in Figures 1 and 2. In this embodiment, each part of the housing 10 is formed from a steel plate.
The housing 10 comprises a bottom plate 12 that forms the bottom surface of the housing 10, a top plate 14 that forms the top surface, a front plate 16 that forms the front surface, a back plate 18 that forms the back surface, a left side plate 11 that forms the left side surface, and a right side plate 13 that forms the right side surface.
 図1に示すように、前面板16には、前面吸気口15が設けられる。前面吸気口15は、筐体10の外部から内部に空気が吸い込まれる矩形の開口である。前面板16において、前面吸気口15は、右側板13よりも左側板11に接近した位置に設けられる。
 前面板16において、前面吸気口15の右側板13側の縁部に接近した位置には、貫通孔である複数の締結孔20が設けられている。これらの締結孔20は、筐体10の上下方向に沿って延びる同一直線上に並ぶように設けられる。本実施の形態では、前面板16には、3つの締結孔20が設けられる。
1 , a front air intake 15 is provided on the front panel 16. The front air intake 15 is a rectangular opening through which air is drawn from the outside to the inside of the housing 10. On the front panel 16, the front air intake 15 is provided at a position closer to the left side panel 11 than to the right side panel 13.
A plurality of fastening holes 20, which are through holes, are provided in the front plate 16 at positions close to the edge of the front air intake port 15 on the side of the right side plate 13. These fastening holes 20 are provided so as to be aligned on the same straight line extending along the vertical direction of the housing 10. In this embodiment, three fastening holes 20 are provided in the front plate 16.
 左側板11には、側面吸気口17が設けられる。側面吸気口17は、筐体10の内部に空気が吸い込まれる矩形の開口である。左側板11において、側面吸気口17は、背面板18よりも前面板16に接近した位置に設けられる。
 左側板11において、側面吸気口17の背面板18側の縁部に接近した位置には、筐体10の上下方向に沿って延びる同一直線上に並ぶように、3つの締結孔20が設けられている。
A side air intake port 17 is provided in the left side plate 11. The side air intake port 17 is a rectangular opening through which air is drawn into the inside of the housing 10. On the left side plate 11, the side air intake port 17 is provided at a position closer to the front plate 16 than to the back plate 18.
Three fastening holes 20 are provided on the left side plate 11 near the edge of the side air intake 17 on the rear plate 18 side so as to be aligned in the same straight line extending along the vertical direction of the housing 10.
 図2に示すように、背面板18には、排気口19が設けられる。この排気口19は、筐体10の内部に吸い込まれた空気が当該筐体10の外部に吹き出される開口である。
 なお、前面吸気口15や側面吸気口17、及び排気口19には、フィルタや格子状の保護部材が設けられていてもよい。
2, the rear panel 18 is provided with an exhaust port 19. The exhaust port 19 is an opening through which air drawn into the housing 10 is blown out to the outside of the housing 10.
The front air intake 15, the side air intake 17, and the exhaust vent 19 may be provided with a filter or a lattice-shaped protective member.
 筐体10の内部空間Sは、仕切板21によって2つの空間に仕切られる。この仕切板21は、筐体10の上下方向に沿って所定の高さ寸法で延びると共に、筐体10の前後方向に沿って延びる板状部材である。仕切板21は、下端が底板12に連結されることで筐体10に固定される。仕切板21は、筐体10の前面側に位置する端部が前面板16に連結され、筐体10の背面側に位置する端部が背面板18に連結される。
 これによって、筐体10の内部には、仕切板21を挟んで、当該筐体10の右側面側に位置する機械室S1と、当該筐体10の左側面側に位置する送風機室S2との2つの空間が設けられる。
The internal space S of the housing 10 is divided into two spaces by a partition plate 21. The partition plate 21 is a plate-like member that extends with a predetermined height dimension along the up-down direction of the housing 10 and also along the front-rear direction of the housing 10. The partition plate 21 is fixed to the housing 10 by having its lower end connected to the bottom plate 12. The partition plate 21 has an end portion located on the front side of the housing 10 connected to the front plate 16, and an end portion located on the rear side of the housing 10 connected to the rear plate 18.
As a result, two spaces are created inside the housing 10, separated by a partition plate 21: a machine chamber S1 located on the right side of the housing 10, and a blower chamber S2 located on the left side of the housing 10.
 機械室S1には、圧縮機5や、膨張弁、室外熱交換器50が備えるヘッダパイプ52、冷媒配管等の冷凍回路を構成する部材、各種の電気部品等が収められる。
 送風機室S2には、送風ファン30と、ヘッダパイプ52を除く室外熱交換器50とが収められる。
The machine chamber S1 accommodates the compressor 5, an expansion valve, a header pipe 52 provided in the outdoor heat exchanger 50, components constituting the refrigeration circuit such as refrigerant piping, various electric components, and the like.
The blower chamber S2 accommodates the blower fan 30 and the exterior heat exchanger 50 excluding the header pipe 52.
 送風ファン30は、回転駆動することで筐体10の外部から空気を送風機室S2に導入し、室外熱交換器50を流れる冷媒と熱交換させた後、再び筐体10の外部に放出する軸流ファンである。この送風ファン30は、ファンモータ32と羽根車34とを備える。
 ファンモータ32は、羽根車34を回転させる駆動部であり、当該ファンモータ32は、羽根車34が取り付けられる駆動軸36を備えている。
 羽根車34は、ファンモータ32によって回転されることで、軸流方向に空気を送り出す回転部品である。
 送風ファン30は、羽根車34が排気口19に対向し、且つ駆動軸36の先端が排気口19に向かう位置に配置される。
The blower fan 30 is an axial flow fan that rotates to introduce air from outside the housing 10 into the blower chamber S2, exchanges heat with the refrigerant flowing through the outdoor heat exchanger 50, and then releases the air back outside the housing 10. The blower fan 30 includes a fan motor 32 and an impeller 34.
The fan motor 32 is a drive unit that rotates the impeller 34, and the fan motor 32 includes a drive shaft 36 to which the impeller 34 is attached.
The impeller 34 is a rotating part that is rotated by the fan motor 32 to send out air in the axial flow direction.
The blower fan 30 is disposed at a position where the impeller 34 faces the exhaust port 19 and where the tip of the drive shaft 36 faces the exhaust port 19 .
 本実施の形態では、送風ファン30は、回転駆動をすると、空気を室外機1の外部から筐体10の内部、すなわち送風機室S2に流入させる。具体的には、図2の矢印Aで示すように、空気は、主に前面吸気口15、及び側面吸気口17から送風機室S2に流入する。 In this embodiment, when the blower fan 30 is driven to rotate, it causes air to flow from the outside of the outdoor unit 1 into the inside of the housing 10, i.e., into the blower chamber S2. Specifically, as shown by arrow A in FIG. 2, air flows into the blower chamber S2 mainly from the front air intake 15 and the side air intake 17.
 [1-1-2.室外熱交換器の構成]
 図3は、室外熱交換器50を示す斜視図である。図3では、説明の便宜上、平面視で直線状に形成された室外熱交換器50を示す。図3では、送風ファン30による空気の流れ方向を二点鎖線の矢印Aで示す。
 室外熱交換器50は、冷媒が流れる流路が形成され、室内機から供給される冷媒を蒸発させる蒸発器、或いは、冷媒を凝縮させる凝縮器として機能する熱交換器である。
 図3に示すように、室外熱交換器50は、一対のヘッダパイプ52と、連結ヘッダパイプ54と、第1冷媒配管66と、第2冷媒配管68と、複数の扁平管62と、複数のフィン64とを備える。
 本実施の形態において、室外熱交換器50が備えるこれらの部材は、いずれもアルミニウム、あるいはアルミニウム合金を材料とする所謂アルミ材で形成される。
[1-1-2. Configuration of outdoor heat exchanger]
Fig. 3 is a perspective view showing the outdoor heat exchanger 50. For ease of explanation, Fig. 3 shows the outdoor heat exchanger 50 formed in a straight line in a plan view. In Fig. 3, the direction of air flow by the blower fan 30 is indicated by a two-dot chain line arrow A.
The outdoor heat exchanger 50 is a heat exchanger in which a flow path through which a refrigerant flows is formed, and which functions as an evaporator that evaporates the refrigerant supplied from the indoor unit, or as a condenser that condenses the refrigerant.
As shown in FIG. 3 , the outdoor heat exchanger 50 includes a pair of header pipes 52 , a connecting header pipe 54 , a first refrigerant pipe 66 , a second refrigerant pipe 68 , a plurality of flat tubes 62 , and a plurality of fins 64 .
In the present embodiment, all of these members included in the outdoor heat exchanger 50 are formed from so-called aluminum material made of aluminum or an aluminum alloy.
 ヘッダパイプ52の各々は、いずれも筐体10の上下方向に沿って長手方向が延びる中空の柱状部材である。本実施の形態では、ヘッダパイプ52は、いずれも円柱状に形成される。これらのヘッダパイプ52は、室外熱交換器50の長手方向における一端にいずれも設けられる。
 ヘッダパイプ52の内部には、当該ヘッダパイプ52の内部空間SPが設けられる。
Each of the header pipes 52 is a hollow columnar member whose longitudinal direction extends along the up-down direction of the housing 10. In the present embodiment, each of the header pipes 52 is formed in a cylindrical shape. Each of these header pipes 52 is provided at one end of the outdoor heat exchanger 50 in the longitudinal direction.
An internal space SP of the header pipe 52 is provided inside the header pipe 52 .
 一方のヘッダパイプ52には、第1冷媒配管66が接続され、他方のヘッダパイプ52には、第2冷媒配管68が接続される。第1冷媒配管66と第2冷媒配管68とは、室外熱交換器50における冷媒の流入口、または流出口として機能する。
 第1冷媒配管66は、一方のヘッダパイプ52が備える側面51の上部に接続される。第2冷媒配管68は、他方のヘッダパイプ52が備える側面51の下部に接続される。
 第2冷媒配管68は、本開示の「接続管」に相当する。
A first refrigerant pipe 66 is connected to one header pipe 52, and a second refrigerant pipe 68 is connected to the other header pipe 52. The first refrigerant pipe 66 and the second refrigerant pipe 68 function as an inlet and an outlet of the refrigerant in the outdoor heat exchanger 50.
The first refrigerant pipe 66 is connected to an upper portion of the side surface 51 of one of the header pipes 52. The second refrigerant pipe 68 is connected to a lower portion of the side surface 51 of the other header pipe 52.
The second refrigerant pipe 68 corresponds to the “connecting pipe” in this disclosure.
 連結ヘッダパイプ54は、筐体10の上下方向に沿って長手方向が延びる中空の柱状部材である。
 連結ヘッダパイプ54の内部には、内部空間SQが設けられる。連結ヘッダパイプ54は室外熱交換器50の長手方向における他端に設けられる。
The connecting header pipe 54 is a hollow columnar member whose longitudinal direction extends along the up-down direction of the housing 10 .
An internal space SQ is provided inside the connection header pipe 54. The connection header pipe 54 is provided at the other end of the outdoor heat exchanger 50 in the longitudinal direction.
 複数の扁平管62は、内部に冷媒が流れる冷媒流路が設けられる長尺且つ扁平な管状部材である。
 各扁平管62は、各ヘッダパイプ52、及び連結ヘッダパイプ54の長手方向に沿って、それぞれの長手方向が互いに平行となるように並べられた状態で、当該扁平管62の両端のそれぞれが各ヘッダパイプ52の側面51、及び連結ヘッダパイプ54の側面53のそれぞれに接続される。
The flat tubes 62 are long, flat tubular members that have a refrigerant flow path therein through which the refrigerant flows.
Each flat tube 62 is arranged along the longitudinal direction of each header pipe 52 and the connecting header pipe 54 so that their respective longitudinal directions are parallel to each other, and each of the two ends of the flat tube 62 is connected to each of the side surfaces 51 of each header pipe 52 and the side surface 53 of the connecting header pipe 54.
 すなわち、各ヘッダパイプ52の側面51の所定箇所には、当該ヘッダパイプ52の長手方向に沿って、互いに所定の間隔を空けて、各扁平管62の一方の端部の各々が一列に並べて接続される。同様に、連結ヘッダパイプ54の側面53の所定箇所には、連結ヘッダパイプ54の長手方向に沿って、互いに所定の間隔を空けて、各扁平管62の他方の端部の各々が一列に並べて接続される。
 このため、各扁平管62の長手方向は、室外熱交換器50の長手方向に一致する。
That is, one end of each of the flat tubes 62 is connected to a predetermined location on the side surface 51 of each header pipe 52 in a row at a predetermined interval along the longitudinal direction of the header pipe 52. Similarly, the other end of each of the flat tubes 62 is connected to a predetermined location on the side surface 53 of the connecting header pipe 54 in a row at a predetermined interval along the longitudinal direction of the connecting header pipe 54.
Therefore, the longitudinal direction of each flat tube 62 coincides with the longitudinal direction of the outdoor heat exchanger 50 .
 各扁平管62は、それぞれの幅方向が互いに平行となるように各ヘッダパイプ52、及び連結ヘッダパイプ54に接続される。なお、当該幅方向は、各扁平管62の長手方向、各扁平管62の板厚方向、及び各ヘッダパイプ52の長手方向の各々に直交する方向である。 Each flat tube 62 is connected to each header pipe 52 and the connecting header pipe 54 so that their width directions are parallel to each other. The width direction is perpendicular to each of the longitudinal direction of each flat tube 62, the plate thickness direction of each flat tube 62, and the longitudinal direction of each header pipe 52.
 各ヘッダパイプ52の側面51において、複数の扁平管62が接続される所定箇所は、内部空間SPを挟んで、第1冷媒配管66、または第2冷媒配管68のいずれかが接続される所定箇所の反対側に位置する。 On the side surface 51 of each header pipe 52, the predetermined location to which the flat tubes 62 are connected is located on the opposite side of the internal space SP to the predetermined location to which either the first refrigerant piping 66 or the second refrigerant piping 68 is connected.
 以下、本実施の形態では、各ヘッダパイプ52の側面51において、各扁平管62が接続される所定箇所を接続側面55といい、連結ヘッダパイプ54の側面53において、各扁平管62が接続される所定箇所を接続側面57という。また、本実施の形態では、各ヘッダパイプ52の側面51において、第1冷媒配管66、または第2冷媒配管68のいずれかが接続される所定箇所を接続側面59という。
 すなわち、接続側面57は、各ヘッダパイプ52の側面51において、内部空間SPを挟んで、接続側面59の反対側に位置する。
Hereinafter, in this embodiment, a predetermined location on the side surface 51 of each header pipe 52 where each flat tube 62 is connected is referred to as a connection side surface 55, and a predetermined location on the side surface 53 of the connecting header pipe 54 where each flat tube 62 is connected is referred to as a connection side surface 57. Also, in this embodiment, a predetermined location on the side surface 51 of each header pipe 52 where either the first refrigerant piping 66 or the second refrigerant piping 68 is connected is referred to as a connection side surface 59.
That is, the connection side surface 57 is located on the side surface 51 of each header pipe 52 opposite the connection side surface 59 with the internal space SP interposed therebetween.
 ヘッダパイプ52の各々から延びる扁平管62は、他方の端部が連結ヘッダパイプ54の長手方向に交差する方向に並ぶように、いずれも接続側面57に接続される。
 本実施の形態では、ヘッダパイプ52の各々から延びる扁平管62は、他方の端部が連結ヘッダパイプ54の長手方向に直交する方向に並ぶように、いずれも接続側面57に接続される。すなわち、連結ヘッダパイプ54の長手方向に直交する方向に並ぶ扁平管62の各々は、筐体10の上下方向において、互いに略同一の高さに位置する。
 これによって、ヘッダパイプ52の各々は、扁平管62を介して、いずれも連結ヘッダパイプ54に連結される。
The flat tubes 62 extending from each of the header pipes 52 are all connected to the connection side surface 57 such that the other ends are aligned in a direction intersecting the longitudinal direction of the connecting header pipe 54 .
In the present embodiment, the flat tubes 62 extending from each of the header pipes 52 are all connected to the connection side surface 57 such that the other ends are aligned in a direction perpendicular to the longitudinal direction of the connecting header pipe 54. In other words, the flat tubes 62 aligned in a direction perpendicular to the longitudinal direction of the connecting header pipe 54 are positioned at approximately the same height as each other in the up-down direction of the housing 10.
As a result, each of the header pipes 52 is connected to the connecting header pipe 54 via the flat tubes 62 .
 各扁平管62の両端には、いずれも開口が設けられる。各扁平管62の一端は、内部空間SPに開口し、他端は、内部空間SQに開口する。 Each flat tube 62 has an opening at both ends. One end of each flat tube 62 opens into the internal space SP, and the other end opens into the internal space SQ.
 複数のフィン64は、各扁平管62のそれぞれを挿通可能な複数の挿通孔が平面に設けられた平板部材である。各扁平管62は、各フィン64に挿通された状態で、各ヘッダパイプ52、54に接続される。すなわち、各フィン64は、長手方向、及び幅方向が各扁平管62に直交した状態で配置される。このように配置された各フィン64の長手方向は、各ヘッダパイプ52、54の長手方向に一致する。
 本実施の形態では、一対のヘッダパイプ52と、連結ヘッダパイプ54と、第1冷媒配管66と、第2冷媒配管68と、複数の扁平管62と、複数のフィン64とは、ろう材を用いる所謂ろう付けによって互いに固定される。
The multiple fins 64 are flat plate members having multiple insertion holes formed on a plane, through which each of the flat tubes 62 can be inserted. Each of the flat tubes 62 is connected to each of the header pipes 52, 54 while being inserted through each of the fins 64. That is, each of the fins 64 is arranged with its longitudinal direction and width direction perpendicular to each of the flat tubes 62. The longitudinal direction of each of the fins 64 arranged in this manner coincides with the longitudinal direction of each of the header pipes 52, 54.
In this embodiment, the pair of header pipes 52, the connecting header pipe 54, the first refrigerant piping 66, the second refrigerant piping 68, the plurality of flat tubes 62, and the plurality of fins 64 are fixed to each other by so-called brazing using a brazing material.
 送風機室S2において、室外熱交換器50は、長手方向が前面板16と、左側板11とに沿って配置される。具体的には、前面吸気口15の右側板13側の縁部に接近した位置にヘッダパイプ52が配置され、側面吸気口17の背面板18側の縁部に接近した位置に連結ヘッダパイプ54が配置される。そして、室外熱交換器50は、前面板16と左側板11とで形成される筐体10の角部23に接近するように屈曲されて配置される。 In the blower chamber S2, the outdoor heat exchanger 50 is arranged such that its longitudinal direction runs along the front panel 16 and the left side panel 11. Specifically, the header pipe 52 is arranged close to the edge of the front air intake 15 on the right side panel 13 side, and the connecting header pipe 54 is arranged close to the edge of the side air intake 17 on the back panel 18 side. The outdoor heat exchanger 50 is then bent and arranged close to the corner 23 of the housing 10 formed by the front panel 16 and the left side panel 11.
 室外機1は、室外熱交換器50を筐体10に固定する固定部材70を備える。
 具体的には、複数の固定部材70によって、室外熱交換器50の各々が備えるヘッダパイプ52が前面板16に固定される。本実施の形態では、各ヘッダパイプ52は、いずれも3つの固定部材70によって固定される。
 このように筐体10に固定された室外熱交換器50において、各ヘッダパイプ52、及び連結ヘッダパイプ54は、いずれも長手方向が筐体10の上下方向に沿って配置される。
The outdoor unit 1 includes a fixing member 70 that fixes the outdoor heat exchanger 50 to the housing 10 .
Specifically, the header pipes 52 included in each of the outdoor heat exchangers 50 are fixed to the front panel 16 by a plurality of fixing members 70. In the present embodiment, each header pipe 52 is fixed by three fixing members 70.
In the outdoor heat exchanger 50 fixed to the housing 10 in this manner, the longitudinal direction of each header pipe 52 and the connecting header pipe 54 are all arranged along the up-down direction of the housing 10 .
 筐体10に固定された室外熱交換器50において、一方のヘッダパイプ52、及び当該ヘッダパイプ52に接続される扁平管62は、他方のヘッダパイプ52、及び当該ヘッダパイプ52に接続される扁平管62よりも筐体10の側面から離間した位置、換言すれば、送風ファン30に接近する位置に配置される。
 このため、送風ファン30による空気の流れ方向において、一方のヘッダパイプ52に接続される扁平管62は、他方のヘッダパイプ52に接続される扁平管62よりも上流側に位置する。すなわち、一対のヘッダパイプ52の各々から延びる扁平管62の各々は、連結ヘッダパイプ54の長手方向に直交する方向である送風ファン30による空気の流れ方向に沿って並ぶ。
In the outdoor heat exchanger 50 fixed to the housing 10, one header pipe 52 and the flat tubes 62 connected to the header pipe 52 are positioned at a position farther away from the side of the housing 10 than the other header pipe 52 and the flat tubes 62 connected to the header pipe 52, in other words, at a position closer to the blower fan 30.
For this reason, in the direction of air flow by the blower fan 30, the flat tubes 62 connected to one header pipe 52 are located upstream of the flat tubes 62 connected to the other header pipe 52. In other words, each of the flat tubes 62 extending from each of the pair of header pipes 52 is aligned along the direction of air flow by the blower fan 30, which is a direction perpendicular to the longitudinal direction of the connecting header pipe 54.
 筐体10に固定された室外熱交換器50は、図1に示すように、前面吸気口15と側面吸気口17を介して、各扁平管62と複数のフィン64との大部分が筐体10から露出する。一方、ヘッダパイプ52は、前面板16に遮蔽され、連結ヘッダパイプ54は、左側板11に遮蔽される。 As shown in FIG. 1, the outdoor heat exchanger 50 is fixed to the housing 10, and most of the flat tubes 62 and fins 64 are exposed from the housing 10 through the front air intake 15 and the side air intake 17. Meanwhile, the header pipe 52 is shielded by the front plate 16, and the connecting header pipe 54 is shielded by the left side plate 11.
 なお、仕切板21は、ヘッダパイプ52と、複数のフィン64の間を通過するように設けられる。これによって、ヘッダパイプ52は、機械室S1に配置され、複数の扁平管62やフィン64、連結ヘッダパイプ54は、送風機室S2に配置される。 The partition plate 21 is arranged to pass between the header pipe 52 and the multiple fins 64. As a result, the header pipe 52 is arranged in the machine room S1, and the multiple flat tubes 62, fins 64, and connecting header pipe 54 are arranged in the blower room S2.
 [1-1-2.ヘッダパイプの構成]
 図4は、室外熱交換器50の内部構造を模式的に示す縦断面図である。図4では、扁平管62が延びる方向に平行、且つヘッダパイプ52の連通孔81を通る平面で切断した室外熱交換器50の縦断面を示す。
 図4に示すように、第2冷媒配管68が接続されるヘッダパイプ52の内部空間SPには、隔壁板80が設けられる。隔壁板80は、所定の厚さ寸法を備える板状部材である。
[1-1-2. Header pipe configuration]
4 is a vertical cross-sectional view that typically illustrates the internal structure of the outdoor heat exchanger 50. In FIG. 4, a vertical cross-section of the outdoor heat exchanger 50 is shown that is cut along a plane that is parallel to the direction in which the flat tubes 62 extend and that passes through the communication holes 81 of the header pipes 52.
4, a partition plate 80 is provided in the internal space SP of the header pipe 52 to which the second refrigerant pipe 68 is connected. The partition plate 80 is a plate-like member having a predetermined thickness.
 隔壁板80は、ヘッダパイプ52の長手方向全体に亘って延び、両端の各々がヘッダパイプ52の天面、及び底面に当接する。隔壁板80は、ヘッダパイプ52の長手方向と、扁平管62の幅方向とに平面が平行となるように内部空間SPに配置される。
 これによって、ヘッダパイプ52の内部空間SPは、接続側面59側に位置する第1空間SP1と、接続側面55側に位置する第2空間SP2とに仕切られる。
The partition plate 80 extends over the entire longitudinal direction of the header pipe 52, and both ends abut against the top and bottom surfaces of the header pipe 52. The partition plate 80 is disposed in the internal space SP such that its plane is parallel to the longitudinal direction of the header pipe 52 and the width direction of the flat tubes 62.
As a result, the internal space SP of the header pipe 52 is divided into a first space SP1 located on the connection side surface 59 side and a second space SP2 located on the connection side surface 55 side.
 隔壁板80は、内部空間SPにおいて、接続側面55よりも接続側面59に接近する位置に設けられる。これによって、第1空間SP1は、第2空間SP2よりも小さい空間となる。 The partition plate 80 is provided in the internal space SP at a position closer to the connection side 59 than to the connection side 55. This makes the first space SP1 smaller than the second space SP2.
 図5は、隔壁板80を示す図である。図5では、扁平管62が延びる方向から視た隔壁板80の平面を示す。図5では、説明の便宜上、扁平管62を破線で示し、第2冷媒配管68を一点鎖線で示し、送風ファン30による空気の流れ方向を二点鎖線の矢印Aで示す。
 図5に示すように、隔壁板80は、扁平管62が延びる方向から視て、扁平管62の各々の開口全体に重なるように延びる。
Fig. 5 is a diagram showing the partition plate 80. Fig. 5 shows a plan view of the partition plate 80 as viewed from the direction in which the flat tubes 62 extend. For ease of explanation, in Fig. 5, the flat tubes 62 are indicated by dashed lines, the second refrigerant piping 68 is indicated by dashed lines, and the direction of air flow by the blower fan 30 is indicated by a two-dot chain arrow A.
As shown in FIG. 5 , the partition plate 80 extends so as to overlap the entire opening of each of the flat tubes 62 when viewed from the direction in which the flat tubes 62 extend.
 図5に示すように、隔壁板80には、板厚方向に貫通する貫通孔である連通孔81が設けられる。連通孔81は、内部空間SPにおいて、第1空間SP1と、第2空間SP2とを連通させる。
 隔壁板80において、連通孔81は、ヘッダパイプ52の長手方向に沿って、所定の間隔を空けて、複数が並べて設けられる。これらの連通孔81は、平面視で、ヘッダパイプ52の長手方向に沿って、扁平管62の板厚方向の厚さ寸法よりも長い寸法を備える。これによって、連通孔81は、冷媒の流路抵抗となることが抑制され、ヘッダパイプ52を流れる冷媒が連通孔81により流れ込みやすくなる。
5, the partition plate 80 is provided with a communication hole 81 which is a through hole penetrating in the plate thickness direction. The communication hole 81 communicates the first space SP1 and the second space SP2 in the internal space SP.
In the partition plate 80, a plurality of communication holes 81 are arranged at predetermined intervals along the longitudinal direction of the header pipe 52. In a plan view, these communication holes 81 have a dimension along the longitudinal direction of the header pipe 52 that is longer than the thickness dimension in the plate thickness direction of the flat tubes 62. This prevents the communication holes 81 from acting as a flow resistance for the refrigerant, and makes it easier for the refrigerant flowing through the header pipe 52 to flow into the communication holes 81.
 連通孔81は、ヘッダパイプ52の長手方向において、第2冷媒配管68が接続される箇所よりも上方に設けられる。すなわち、第2冷媒配管68と、扁平管62とは、扁平管62の長手方向から視て、隔壁板80に隔てられる。
 これによって、第2冷媒配管68からヘッダパイプ52に流れ込んだ冷媒が直進して、当該冷媒の流れ方向付近に位置する扁平管62に流れ込むことが抑制される。このため、室外熱交換器50では、ヘッダパイプ52に流れ込んだ冷媒が隔壁板80に沿って上方に移動し、ヘッダパイプ52の高さ方向における扁平管62の配置位置による偏流が抑制される。そして、室外熱交換器50では、扁平管62の各々に不均一に冷媒が分配されることが抑制される。
The communication hole 81 is provided in the longitudinal direction of the header pipe 52 above the location to which the second refrigerant piping 68 is connected. That is, the second refrigerant piping 68 and the flat tubes 62 are separated by the partition plate 80 when viewed from the longitudinal direction of the flat tubes 62.
This prevents the refrigerant that has flowed from the second refrigerant piping 68 into the header pipe 52 from moving straight and flowing into the flat tubes 62 located near the flow direction of the refrigerant. As a result, in the outdoor heat exchanger 50, the refrigerant that has flowed into the header pipe 52 moves upward along the partition plate 80, preventing drift in the flow due to the arrangement position of the flat tubes 62 in the height direction of the header pipe 52. Furthermore, in the outdoor heat exchanger 50, the refrigerant is prevented from being unevenly distributed to each of the flat tubes 62.
 連通孔81は、隔壁板80の長手方向に直交する方向、換言すれば送風ファン30による空気の流れ方向において、扁平管62の開口よりも短い長さ寸法を備える。これによって、隔壁板80では、当該隔壁板80の強度や剛性の低下を抑制し、容易に連通孔81を形成可能である。 The communication hole 81 has a length dimension that is shorter than the opening of the flat tube 62 in a direction perpendicular to the longitudinal direction of the partition plate 80, in other words, in the direction of air flow by the blower fan 30. This makes it possible to easily form the communication hole 81 in the partition plate 80 while suppressing a decrease in the strength and rigidity of the partition plate 80.
 連通孔81は、扁平管62の幅方向において、扁平管62が延びる方向から視て、送風ファン30による空気の流れ方向における上流側に位置する端部に重なる位置に設けられる。これによって、室外熱交換器50では、ヘッダパイプ52に流れ込んだ冷媒を、扁平管62において、空気の流れ方向における上流側に位置する箇所に優先的に送り出すことができる。このため、室外熱交換器50では、扁平管62において、冷媒との熱交換前の空気が流れる箇所に優先的に冷媒を送り出すことができる。 The communication hole 81 is provided in the width direction of the flat tube 62 at a position overlapping the end located upstream in the direction of air flow by the blower fan 30 when viewed from the direction in which the flat tube 62 extends. This allows the outdoor heat exchanger 50 to preferentially send the refrigerant that has flowed into the header pipe 52 to a location in the flat tube 62 that is upstream in the direction of air flow. Therefore, in the outdoor heat exchanger 50, the refrigerant can be preferentially sent to a location in the flat tube 62 where the air flows before heat exchange with the refrigerant.
 [1-2.動作]
 以上のように構成された室外機1について、その動作を以下説明する。
[1-2. Operation]
The operation of the outdoor unit 1 configured as above will now be described.
 まず、空気調和装置における冷媒の流れについて説明する。
 空気調和装置が暖房運転を行う場合、室外機1が作動を開始すると、圧縮機5が駆動される。圧縮機5は、冷凍回路に封入された冷媒を圧縮し、各冷媒配管を経由してガス冷媒を送り出す。
First, the flow of refrigerant in the air conditioner will be described.
When the air conditioner performs heating operation, the outdoor unit 1 starts operating and the compressor 5 is driven. The compressor 5 compresses the refrigerant sealed in the refrigeration circuit, and sends out the gas refrigerant through each refrigerant pipe.
 このガス冷媒は、室内熱交換器で熱を放出して凝縮された後、配管を通って膨張弁に流入し、当該膨張弁によって減圧され、第2冷媒配管68を通って他方のヘッダパイプ52の内部空間SPに流入する。内部空間SPに流入した冷媒は、各扁平管62を通って、連結ヘッダパイプ54の内部空間SQに流入する。この後、当該冷媒は、一方のヘッダパイプ52に接続される各扁平管62を通って、一方のヘッダパイプ52に向かって流れる。室外熱交換器50を流れる冷媒は、扁平管62において、送風ファン30により送り出された空気と熱交換をすることで吸熱して蒸発する。すなわち、室外熱交換器50は、蒸発器として機能する。
 扁平管62において蒸発した冷媒は、一方のヘッダパイプ52の内部空間SPに流れ込んだ後に、第1冷媒配管66から圧縮機5に戻る。
After releasing heat and being condensed in the indoor heat exchanger, this gas refrigerant flows through the piping into the expansion valve, is decompressed by the expansion valve, and flows through the second refrigerant piping 68 into the internal space SP of the other header pipe 52. The refrigerant that flows into the internal space SP flows through each flat tube 62 into the internal space SQ of the connecting header pipe 54. The refrigerant then flows toward the one header pipe 52 through each flat tube 62 connected to one header pipe 52. The refrigerant flowing through the outdoor heat exchanger 50 absorbs heat and evaporates by exchanging heat with the air sent out by the blower fan 30 in the flat tubes 62. That is, the outdoor heat exchanger 50 functions as an evaporator.
The refrigerant evaporated in the flat tubes 62 flows into the internal space SP of one of the header pipes 52 , and then returns to the compressor 5 through the first refrigerant pipe 66 .
 室外機1が作動を開始すると、圧縮機5に先行して送風ファン30が回転駆動を開始する。回転駆動する送風ファン30は、空気を室外機1の外部から筐体10の内部、すなわち送風機室S2に流入させる。具体的には、空気は、主に前面吸気口15、及び側面吸気口17から送風機室S2に流入する。送風機室S2に流入する空気は、室外熱交換器50の長手方向と、上下方向に直交する方向、換言すれば扁平管62の幅方向に沿って、各扁平管62と、各フィン64の間を通過する。 When the outdoor unit 1 starts operating, the blower fan 30 starts rotating before the compressor 5. The rotating blower fan 30 causes air to flow from the outside of the outdoor unit 1 into the inside of the housing 10, i.e., into the blower chamber S2. Specifically, air mainly flows into the blower chamber S2 from the front air intake 15 and the side air intake 17. The air flowing into the blower chamber S2 passes between each of the flat tubes 62 and each of the fins 64 in a direction perpendicular to the longitudinal direction and the up-down direction of the outdoor heat exchanger 50, in other words, along the width direction of the flat tubes 62.
 これによって、複数の扁平管62の内部を流れる冷媒と、複数のフィン64の間を流れる空気との熱交換が促進される。
 冷媒と熱交換された空気は、送風ファン30によって、排気口19から筐体10の外部に排出される。
This promotes heat exchange between the refrigerant flowing inside the flat tubes 62 and the air flowing between the fins 64 .
The air that has exchanged heat with the refrigerant is exhausted by the blower fan 30 from the exhaust port 19 to the outside of the housing 10 .
 上述した動作を繰り返すことで、室外機1は、室外の空気から冷凍回路に熱を吸収し、室内に送り出す。
 なお、空気調和装置が冷房運転を行う場合、冷凍回路の冷媒の循環方向は、暖房運転の場合の逆向きとなり、室外熱交換器50は、凝縮器として機能する。
By repeating the above-mentioned operation, the outdoor unit 1 absorbs heat from the outdoor air into the refrigeration circuit and sends it out into the room.
When the air conditioner performs cooling operation, the refrigerant circulates in the refrigeration circuit in the opposite direction to that in heating operation, and the outdoor heat exchanger 50 functions as a condenser.
 上述のように、ヘッダパイプ52において、内部空間SPは、隔壁板80によって、第1空間SP1と第2空間SP2とに区画される。これによって、ヘッダパイプ52では、流路断面積が低減される。
 室外熱交換器50が蒸発器として機能する場合、ヘッダパイプ52には、第2冷媒配管68を介して、気液二相冷媒が流入する。ヘッダパイプ52では、第2冷媒配管68を流れる気液二相冷媒は、第1空間SP1に流れ込む。上述の通り、流路断面積が低減された第1空間SP1では、気液二相冷媒は、流速の低減が抑制される。
As described above, in the header pipe 52, the internal space SP is partitioned into the first space SP1 and the second space SP2 by the partition plate 80. This reduces the flow path cross-sectional area of the header pipe 52.
When the outdoor heat exchanger 50 functions as an evaporator, the gas-liquid two-phase refrigerant flows into the header pipe 52 via the second refrigerant piping 68. In the header pipe 52, the gas-liquid two-phase refrigerant flowing through the second refrigerant piping 68 flows into the first space SP1. As described above, in the first space SP1 in which the flow path cross-sectional area is reduced, a reduction in the flow velocity of the gas-liquid two-phase refrigerant is suppressed.
 これによって、気液二相冷媒は、ヘッダパイプ52の上部まで上昇し、上昇する過程で隔壁板80に設けられた複数の連通孔81を介して、第1空間SP1から、第2空間SP2に流れ込む。そして、当該冷媒は、流速を保った状態で、連通孔81の各々の付近に位置する扁平管62に流入する。 As a result, the gas-liquid two-phase refrigerant rises to the top of the header pipe 52, and in the process of rising, it flows from the first space SP1 into the second space SP2 through multiple communication holes 81 provided in the partition plate 80. The refrigerant then flows into the flat tubes 62 located near each of the communication holes 81 while maintaining its flow velocity.
 このように、室外熱交換器50では、ヘッダパイプ52の第1空間SP1において、冷媒流速の低減が抑制されることで、気液状態が均一化された状態で、複数の連通孔81を介して、第2空間SP2の上下方向に均一に気液二相冷媒が分配される。このため、室外熱交換器50では、扁平管62の上下方向における配置位置による偏流が抑制される。そして、室外熱交換器50では、扁平管62の各々に不均一に冷媒が分配されることが抑制され、熱交換性能を向上できる。 In this way, in the outdoor heat exchanger 50, the reduction in refrigerant flow velocity is suppressed in the first space SP1 of the header pipe 52, and the gas-liquid two-phase refrigerant is uniformly distributed in the vertical direction of the second space SP2 through the multiple communication holes 81 with the gas-liquid state being homogenized. As a result, in the outdoor heat exchanger 50, drift caused by the vertical arrangement position of the flat tubes 62 is suppressed. And, in the outdoor heat exchanger 50, uneven distribution of refrigerant to each of the flat tubes 62 is suppressed, improving heat exchange performance.
 上述の通り、連通孔81は、扁平管62の幅方向において、扁平管62が延びる方向から視て、送風ファン30による空気の流れ方向における上流側に位置する端部に重なる位置に設けられる。
 これによって、ヘッダパイプ52の第2空間SP2において、鉛直方向に均一に分配された気液二相冷媒は、扁平管62の空気流れの上流側に位置する冷媒流路に流れ込みやすくなり、当該空気と熱交換し易くなる。このため、室外熱交換器50では、特に冷媒循環量が少ない部分負荷運転を空気調和装置が行う場合においても、より多くの冷媒を温度差の大きい空気と熱交換することができ、熱交換性能を向上できる。
As described above, the communication hole 81 is provided in the width direction of the flat tube 62 at a position overlapping with the end portion located upstream in the air flow direction generated by the blower fan 30 when viewed from the direction in which the flat tube 62 extends.
As a result, the gas-liquid two-phase refrigerant uniformly distributed in the vertical direction in the second space SP2 of the header pipe 52 can easily flow into the refrigerant flow path located upstream of the air flow in the flat tubes 62 and easily exchange heat with the air. Therefore, in the outdoor heat exchanger 50, even when the air conditioning apparatus performs partial load operation with a small amount of refrigerant circulating, a larger amount of refrigerant can exchange heat with air with a large temperature difference, thereby improving heat exchange performance.
 図6は、室外熱交換器50の内部構造を模式的に示す横断面図である。図6では、ヘッダパイプ52の底面に平行、且つ連通孔81を通る平面で切断した室外熱交換器50の横断面を示す。
 上述の通り、隔壁板80は、内部空間SPにおいて、接続側面55よりも接続側面59に接近する位置に設けられる。図6に示すように、ヘッダパイプ52の第1空間SP1に流入した気液二相冷媒のうち、液体冷媒は、表面張力により、ヘッダパイプ52の内壁と隔壁板80とが接する端部付近の空間に保たれ易くなる。
6 is a cross-sectional view that typically shows the internal structure of the outdoor heat exchanger 50. In FIG. 6, a cross-section of the outdoor heat exchanger 50 taken along a plane that is parallel to the bottom surface of the header pipe 52 and passes through the communication hole 81 is shown.
As described above, the partition plate 80 is provided in a position in the internal space SP closer to the connection side surface 59 than to the connection side surface 55. As shown in Fig. 6, of the gas-liquid two-phase refrigerant that has flowed into the first space SP1 of the header pipe 52, the liquid refrigerant is likely to be maintained in the space near the end where the inner wall of the header pipe 52 and the partition plate 80 contact each other due to surface tension.
 これに対して、ヘッダパイプ52の第1空間SP1に流入した気液二相冷媒のうち、気体冷媒は、第1空間SP1の流路断面積の低減により、冷媒流速の低下が抑制される。このため、第1空間SP1において、気体冷媒は、壁面の液体冷媒を巻き込みながらヘッダパイプ52の上部にまで上昇する。このように上昇する過程で、気液二相冷媒は、隔壁板80に設けられた複数の連通孔81から第2空間SP2に流れ込む。 In contrast, of the gas-liquid two-phase refrigerant that flows into the first space SP1 of the header pipe 52, the reduction in the flow path cross-sectional area of the first space SP1 suppresses a decrease in the refrigerant flow rate. Therefore, in the first space SP1, the gas refrigerant rises to the top of the header pipe 52 while dragging in the liquid refrigerant on the wall surface. In this rising process, the gas-liquid two-phase refrigerant flows into the second space SP2 through multiple communication holes 81 provided in the partition plate 80.
 このように、室外熱交換器50では、ヘッダパイプ52の内壁と隔壁板80とが接する端部付近の空間に液体冷媒が保たれ、ヘッダパイプ52の上下方向に対して、重力影響による気液二相冷媒の相分離が抑制される。さらに、気体冷媒は、壁面の液体冷媒を巻き込みながら流速の低下が抑制されつつ、ヘッダパイプ52の上部まで上昇するため、扁平管62の配置位置による偏流が抑制する。このため、室外熱交換器50では、複数の扁平管62に冷媒が不均一に分配されることが抑制され、熱交換性能を向上できる。 In this way, in the outdoor heat exchanger 50, liquid refrigerant is maintained in the space near the end where the inner wall of the header pipe 52 meets the partition plate 80, and phase separation of the gas-liquid two-phase refrigerant due to gravity is suppressed in the vertical direction of the header pipe 52. Furthermore, the gas refrigerant rises to the top of the header pipe 52 while suppressing a decrease in flow rate as it entrains liquid refrigerant on the wall surface, suppressing flow deviation due to the arrangement position of the flat tubes 62. Therefore, in the outdoor heat exchanger 50, uneven distribution of the refrigerant to the multiple flat tubes 62 is suppressed, improving heat exchange performance.
 次いで、本実施の形態に係る熱交換器の性能を測定した実験について説明する。
 図7は、隔壁板80が設けられた熱交換器100、150と、隔壁板80が省略された熱交換器200の性能を示す図である。図7中、縦軸が暖房能力Y[W]を示し、横軸が冷媒循環量X[kg/h]を示す。
 図7中、P1は、最小運転時における熱交換器100、150、200の暖房性能である。P2は、定格運転時における熱交換器100、150、200の暖房性能である。P3は、最小運転と定格運転との中間の運転時における熱交換器100、150、200の暖房性能である。
Next, an experiment for measuring the performance of the heat exchanger according to this embodiment will be described.
Fig. 7 is a diagram showing the performance of heat exchangers 100 and 150 provided with a partition plate 80, and a heat exchanger 200 in which the partition plate 80 is omitted. In Fig. 7, the vertical axis represents the heating capacity Y [W], and the horizontal axis represents the refrigerant circulation amount X [kg/h].
7, P1 is the heating performance of the heat exchangers 100, 150, and 200 during minimum operation, P2 is the heating performance of the heat exchangers 100, 150, and 200 during rated operation, and P3 is the heating performance of the heat exchangers 100, 150, and 200 during intermediate operation between the minimum operation and the rated operation.
 発明者らは、本実施形態のように、隔壁板80が設けられる熱交換器100、150と、隔壁板80が設けられない熱交換器200とを用いたシミュレーションによって、隔壁板80が本実施形態の室外熱交換器50の性能に与える影響を検証した。 The inventors verified the effect of the partition plate 80 on the performance of the outdoor heat exchanger 50 of this embodiment through simulations using heat exchangers 100 and 150 provided with a partition plate 80 as in this embodiment, and a heat exchanger 200 not provided with a partition plate 80.
 熱交換器100に設けられる隔壁板80では、矩形の連通孔81が複数設けられる。これらの連通孔81は、隔壁板80の長手方向に直交する方向に沿った長さ寸法が扁平管62の幅方向における長さ寸法と略同一である。また、これらの連通孔81は、隔壁板80の長手方向に沿った長さ寸法が扁平管62の板厚方向における長さ寸法よりも長く形成される。当該隔壁板80に設けられる連通孔81は、総面積で655.6mm2である。 The partition plate 80 provided in the heat exchanger 100 has a plurality of rectangular communication holes 81. The length dimension of these communication holes 81 in a direction perpendicular to the longitudinal direction of the partition plate 80 is approximately the same as the length dimension in the width direction of the flat tubes 62. Furthermore, the length dimension of these communication holes 81 in the longitudinal direction of the partition plate 80 is longer than the length dimension in the plate thickness direction of the flat tubes 62. The total area of the communication holes 81 provided in the partition plate 80 is 655.6 mm2.
 熱交換器150に設けられる隔壁板80では、熱交換器100に設けられる連通孔81よりも小さい円形の連通孔81が複数設けられる。これらの連通孔81は、隔壁板80の長手方向に直交する方向に沿った長さ寸法が扁平管62の幅方向における寸法よりも短く形成される。また、これらの連通孔81は、隔壁板80の長手方向に沿った長さ寸法が扁平管62の板厚方向における長さ寸法よりも長く形成される。さらに、熱交換器150に設けられる隔壁板80では、熱交換器100に設けられる隔壁板80の連通孔81よりも多数の連通孔81が設けられる。当該隔壁板80に設けられる連通孔81は、総面積で190.9mm2である。 The partition plate 80 provided in the heat exchanger 150 has a plurality of circular communication holes 81 that are smaller than the communication holes 81 provided in the heat exchanger 100. The length dimension of these communication holes 81 along a direction perpendicular to the longitudinal direction of the partition plate 80 is shorter than the dimension in the width direction of the flat tubes 62. Furthermore, the length dimension of these communication holes 81 along the longitudinal direction of the partition plate 80 is longer than the length dimension in the plate thickness direction of the flat tubes 62. Furthermore, the partition plate 80 provided in the heat exchanger 150 has a greater number of communication holes 81 than the communication holes 81 of the partition plate 80 provided in the heat exchanger 100. The total area of the communication holes 81 provided in the partition plate 80 is 190.9 mm2.
 そして、発明者らは、熱交換器100、150、200について、冷媒循環量に対する能力特性について調べた。具体的には、発明者らは、暖房運転を行う空気調和装置において、冷媒循環量が最小となる最小運転時と、冷媒循環量が最大となる定格運転時と、最小運転時と定格運転時との中間の冷媒循環量となる中間の運転時における熱交換器100、150、200の能力特性について調べた。 The inventors then investigated the performance characteristics of the heat exchangers 100, 150, and 200 with respect to the amount of refrigerant circulating. Specifically, the inventors investigated the performance characteristics of the heat exchangers 100, 150, and 200 during minimum operation, when the amount of refrigerant circulating is at a minimum, during rated operation, when the amount of refrigerant circulating is at a maximum, and during intermediate operation, when the amount of refrigerant circulating is intermediate between minimum operation and rated operation, in an air conditioning system performing heating operation.
 その結果、図7に示すように、いずれの冷媒循環量においても、隔壁板80が設けられる熱交換器100、150は、隔壁板80が設けられない熱交換器200よりも高い能力値を示した。
 また、熱交換器100と、熱交換器150とでは、熱交換器100の方が高い能力値を示した。
As a result, as shown in FIG. 7, the heat exchangers 100 and 150 provided with the partition plate 80 exhibited higher capacity values than the heat exchanger 200 not provided with the partition plate 80 at any refrigerant circulation rate.
Furthermore, between the heat exchanger 100 and the heat exchanger 150, the heat exchanger 100 exhibited a higher capacity value.
 これらの結果から、発明者らは、隔壁板80が設けられることで、室外熱交換器50の性能が向上するという知見を得た。
 また、発明者らは、連通孔81の形状に係らず、連通孔81の個数や総面積と、配置位置によって、室外熱交換器50の性能が変化するという知見を得た。すなわち、発明者らは、連通孔81の総面積が大きい方が冷媒の流路面積が大きくなり、流路圧損が小さいため、それぞれの連通孔81から扁平管62側に流れやすくなり、熱交換性能が向上されるという知見を得た。
From these results, the inventors have found that the performance of the outdoor heat exchanger 50 is improved by providing the partition plate 80 .
The inventors also found that the performance of the outdoor heat exchanger 50 changes depending on the number, total area, and arrangement position of the communication holes 81, regardless of the shape of the communication holes 81. That is, the inventors found that a larger total area of the communication holes 81 increases the flow path area of the refrigerant and reduces flow path pressure loss, making it easier for the refrigerant to flow from each communication hole 81 to the flat tubes 62, thereby improving heat exchange performance.
 [1-3.効果等]
 以上のように、本実施の形態において、室外熱交換器50は、ヘッダパイプ52の上下方向に所定間隔をもって配列された複数の扁平管62と、各扁平管62の両端部が接続される複数のヘッダパイプ52と、を備える。室外熱交換器50が蒸発器として機能する場合、ヘッダパイプ52の少なくとも1つの下部には、気液二相冷媒を供給する第2冷媒配管68が接続される。第2冷媒配管68が接続されたヘッダパイプ52の内部には、上下方向に延在し第2冷媒配管68に連通する第1空間SP1と、扁平管62に連通する第2空間SP2と、に仕切る隔壁板80が設けられる。隔壁板80には、第2冷媒配管68の接続位置より上方に第1空間SP1と第2空間SP2とを連通する連通孔81が複数設けられる。
[1-3. Effects, etc.]
As described above, in this embodiment, the outdoor heat exchanger 50 includes a plurality of flat tubes 62 arranged at a predetermined interval in the vertical direction of the header pipe 52, and a plurality of header pipes 52 to which both ends of each flat tube 62 are connected. When the outdoor heat exchanger 50 functions as an evaporator, a second refrigerant pipe 68 that supplies a gas-liquid two-phase refrigerant is connected to at least one lower part of the header pipe 52. Inside the header pipe 52 to which the second refrigerant pipe 68 is connected, a partition plate 80 is provided that extends in the vertical direction and partitions the first space SP1 that communicates with the second refrigerant pipe 68 and the second space SP2 that communicates with the flat tube 62. The partition plate 80 is provided with a plurality of communication holes 81 that communicate between the first space SP1 and the second space SP2 above the connection position of the second refrigerant pipe 68.
 これにより、第1空間SP1では、気液二相冷媒の流速の低減が抑制され、気液二相冷媒は、ヘッダパイプ52の上部まで上昇し、上昇する過程で隔壁板80に設けられた複数の連通孔81を介して、第1空間SP1から、第2空間SP2に流れ込む。そのため、室外熱交換器50では、気液状態が均一化された状態で、気液二相冷媒が複数の連通孔81を介して第2空間SP2の上下方向に均一に分配され、扁平管62の上下方向における配置位置による偏流が抑制される。そして、室外熱交換器50では、扁平管62の各々に不均一に冷媒が分配されることが抑制され、熱交換性能を向上できる。 As a result, in the first space SP1, a reduction in the flow rate of the two-phase gas-liquid refrigerant is suppressed, and the two-phase gas-liquid refrigerant rises to the top of the header pipe 52, and in the process of rising, flows from the first space SP1 into the second space SP2 through the multiple communication holes 81 provided in the partition plate 80. Therefore, in the outdoor heat exchanger 50, with the gas-liquid state being homogenized, the two-phase gas-liquid refrigerant is evenly distributed in the vertical direction of the second space SP2 through the multiple communication holes 81, and drift due to the vertical arrangement position of the flat tubes 62 is suppressed. And, in the outdoor heat exchanger 50, uneven distribution of the refrigerant to each of the flat tubes 62 is suppressed, improving heat exchange performance.
 本実施の形態のように、室外熱交換器50には、扁平管62の幅方向に沿って空気が流れ、連通孔81は、扁平管62の空気の流れの上流側に設けられてもよい。
 これによって、ヘッダパイプ52の第2空間SP2において鉛直方向に均一に分配された気液二相冷媒は、扁平管62の空気流れの上流側に位置する冷媒流路に流れ込みやすくなり、当該空気と熱交換し易くなる。このため、室外熱交換器50では、特に冷媒循環量が少ない部分負荷運転を空気調和装置が行う場合においても、より多くの冷媒を温度差が大きい空気と熱交換することができ、熱交換性能を向上できる。
As in the present embodiment, in the outdoor heat exchanger 50 , air may flow along the width direction of the flat tubes 62 , and the communication holes 81 may be provided on the upstream side of the air flow of the flat tubes 62 .
As a result, the gas-liquid two-phase refrigerant uniformly distributed in the vertical direction in the second space SP2 of the header pipe 52 can easily flow into the refrigerant flow path located upstream of the air flow in the flat tubes 62 and easily exchange heat with the air. Therefore, in the outdoor heat exchanger 50, even when the air conditioning apparatus performs partial load operation with a small amount of refrigerant circulating, a larger amount of refrigerant can exchange heat with air with a large temperature difference, thereby improving heat exchange performance.
 本実施の形態のように、隔壁板80は、ヘッダパイプ52の接続管が接続される側の壁面よりも、扁平管62が接続される側のヘッダパイプ52の壁面に接近して設けられてもよい。
 これによって、室外熱交換器50では、ヘッダパイプ52の内壁と隔壁板80とが接する端部付近の空間に液体冷媒が保たれ、ヘッダパイプ52の上下方向に対して、重力影響による気液二相冷媒の相分離が抑制される。さらに、気体冷媒は、壁面の液体冷媒を巻き込みながら、流速の低下が抑制されつつヘッダパイプ52の上部まで上昇し、扁平管62の配置位置による偏流が抑制する。このため、室外熱交換器50では、複数の扁平管62に冷媒が不均一に分配されることが抑制され、熱交換性能を向上できる。
As in this embodiment, the partition plate 80 may be provided closer to the wall surface of the header pipe 52 on the side to which the flat tubes 62 are connected than to the wall surface of the header pipe 52 on the side to which the connecting pipes are connected.
As a result, in the outdoor heat exchanger 50, liquid refrigerant is maintained in the space near the end where the inner wall of the header pipe 52 and the partition plate 80 come into contact, and phase separation of the gas-liquid two-phase refrigerant due to the effect of gravity is suppressed in the vertical direction of the header pipe 52. Furthermore, the gaseous refrigerant rises to the upper part of the header pipe 52 while suppressing a decrease in flow velocity, while entraining the liquid refrigerant on the wall surface, and suppresses drift in flow due to the arrangement position of the flat tubes 62. As a result, in the outdoor heat exchanger 50, uneven distribution of the refrigerant to the multiple flat tubes 62 is suppressed, and heat exchange performance can be improved.
 (他の実施の形態)
 以上のように、本出願において開示する技術の例示として、実施の形態1を説明した。しかしながら、本開示における技術は、これに限定されず、変更、置き換え、付加、省略などを行った実施の形態にも適用できる。また、上記実施の形態1で説明した各構成要素を組み合わせて、新たな実施の形態とすることも可能である。
 そこで、以下、他の実施の形態を例示する。
Other Embodiments
As described above, the first embodiment has been described as an example of the technology disclosed in the present application. However, the technology in the present disclosure is not limited to this, and can be applied to embodiments in which modifications, substitutions, additions, omissions, etc. are made. In addition, it is also possible to combine the components described in the first embodiment to create a new embodiment.
Therefore, other embodiments will be exemplified below.
 図8は、変形例1に係る室外熱交換器50の内部構造を模式的に示す縦断面図である。
 図8に示すように、変形例1の室外熱交換器50では、隔壁板180は、下部から上部に向かうにつれて、接続側面59から、接続側面55に近づくように傾斜して設けられる。
FIG. 8 is a vertical cross-sectional view that typically shows the internal structure of the outdoor heat exchanger 50 according to the first modified example.
As shown in FIG. 8 , in the outdoor heat exchanger 50 of the first modified example, the partition plate 180 is provided so as to be inclined from the lower portion to the upper portion so as to approach the connection side surface 55 from the connection side surface 59 .
 これによって、第2冷媒配管68を介してヘッダパイプ52の第1空間SP1に流入した気液二相冷媒は、隔壁板180の傾斜面に沿って第1空間SP1を上昇する。そして、気液二相冷媒は、上昇する過程で隔壁板180に設けられた複数の連通孔81から第2空間SP2に流れ込み、流速の低下が抑制されつつ連通孔81付近の扁平管62に流入する。 As a result, the gas-liquid two-phase refrigerant that flows into the first space SP1 of the header pipe 52 via the second refrigerant piping 68 rises in the first space SP1 along the inclined surface of the partition plate 180. As the gas-liquid two-phase refrigerant rises, it flows into the second space SP2 through the multiple communication holes 81 provided in the partition plate 180, and flows into the flat tubes 62 near the communication holes 81 while suppressing a decrease in flow rate.
 このため、第2冷媒配管68から流入する気液二相冷媒は、ヘッダパイプ内の隔壁板180に対して垂直に流れ込むことが抑制され、隔壁板180に対する衝突による冷媒流速の低下と気液分離が抑制される。特に、冷媒循環量が多く冷媒流速が大きい過負荷運転を空気調和装置が行う場合においても、室外熱交換器50では、第1空間SP1における冷媒の気液状態を均一化し、ヘッダパイプ52の上部にまで冷媒を送り出すことができ、扁平管62の上下方向における配置位置による偏流が抑制される。これにより、室外熱交換器50では、複数の扁平管62に対して不均一に分配されることが抑制され、熱交換性能を向上できる。 As a result, the gas-liquid two-phase refrigerant flowing in from the second refrigerant piping 68 is prevented from flowing vertically into the partition plate 180 in the header pipe, and a decrease in refrigerant flow speed and gas-liquid separation due to collision with the partition plate 180 are suppressed. In particular, even when the air conditioning system is operating under overload with a large refrigerant circulation volume and a high refrigerant flow speed, the outdoor heat exchanger 50 can equalize the gas-liquid state of the refrigerant in the first space SP1 and send the refrigerant to the top of the header pipe 52, suppressing drift due to the vertical arrangement position of the flat tubes 62. As a result, the outdoor heat exchanger 50 is prevented from being unevenly distributed to the multiple flat tubes 62, improving heat exchange performance.
 図9は、変形例2に係る隔壁板280を示す図である。
 図9に示すように、変形例2の室外熱交換器50では、隔壁板280が設けられる。
 隔壁板280には、扁平管62の幅方向において、扁平管62の長手方向から視て、当該扁平管62の両端に重なる位置の各々に、連通孔81が設けられる。
FIG. 9 is a diagram showing a partition plate 280 according to the second modification.
As shown in FIG. 9 , in the outdoor heat exchanger 50 of the second modification, a partition plate 280 is provided.
The partition plate 280 has communication holes 81 at positions in the width direction of the flat tubes 62 that overlap both ends of the flat tubes 62 when viewed in the longitudinal direction of the flat tubes 62 .
 図10は、変形例2に係る室外熱交換器50の内部構造を模式的に示す横断面図である。
 図10に示すように、第1空間SP1には、表面張力によりヘッダパイプ52の内壁と、隔壁板280とが接する付近の空間に液体冷媒が保たれる。当該液体冷媒は、第1空間SP1で気体冷媒と共に上昇する過程で、ヘッダパイプ52の内壁と隔壁板280とがする付近の空間に接近する位置に設けられる連通孔81から第2空間SP2に流れ込み、流速の低下が抑制されつつ、当該連通孔81付近の扁平管62に流入する。
FIG. 10 is a cross-sectional view that illustrates a schematic internal structure of the outdoor heat exchanger 50 according to the second modification.
10, in the first space SP1, liquid refrigerant is maintained by surface tension in the space near where the inner wall of the header pipe 52 contacts the partition plate 280. In the process of rising together with the gaseous refrigerant in the first space SP1, the liquid refrigerant flows into the second space SP2 from the communication hole 81 provided at a position approaching the space near where the inner wall of the header pipe 52 contacts the partition plate 280, and flows into the flat tubes 62 near the communication hole 81 while a decrease in flow rate is suppressed.
 第1空間SP1において、ヘッダパイプ52の内壁と隔壁板280とが接する付近の空間に保持される液体冷媒は、連通孔81から第2空間SP2に流れ込み易くなる。このため、特に冷媒循環量が少ない部分負荷運転時においても、第2空間SP2の上下方向に均一に分配でき、扁平管62の高さ方向における配置位置による偏流が抑制される。これにより、室外熱交換器50では、複数の扁平管62に不均一に分配されることが抑制され、熱交換性能を向上できる。 In the first space SP1, the liquid refrigerant held in the space near where the inner wall of the header pipe 52 meets the partition plate 280 can easily flow into the second space SP2 from the communication holes 81. As a result, even during partial load operation when the amount of refrigerant circulating is small, the refrigerant can be evenly distributed in the vertical direction of the second space SP2, and drift caused by the arrangement position of the flat tubes 62 in the vertical direction is suppressed. As a result, in the outdoor heat exchanger 50, uneven distribution to the multiple flat tubes 62 is suppressed, improving heat exchange performance.
 上述した実施の形態では、室外熱交換器50は、連結ヘッダパイプ54を備えるとした。しかしながらこれに限らず、ヘッダパイプ52と略同一のヘッダパイプを備えていてもよい。このヘッダパイプは、1つのヘッダパイプ52から延びる扁平管62の各々の他端が接続される。本実施の形態のように、2つのヘッダパイプ52を備える場合には、当該ヘッダパイプ52の各々に、複数の扁平管62を介して1つずつ当該ヘッダパイプが接続される。これらのヘッダパイプは、例えば冷媒が流れる配管等によって互いに連結される。 In the embodiment described above, the outdoor heat exchanger 50 is provided with a connected header pipe 54. However, this is not limited, and the outdoor heat exchanger 50 may be provided with a header pipe that is substantially the same as the header pipe 52. This header pipe is connected to the other end of each of the flat tubes 62 extending from one header pipe 52. When two header pipes 52 are provided as in the present embodiment, each header pipe 52 is connected to the corresponding header pipe via a plurality of flat tubes 62. These header pipes are connected to each other, for example, by piping through which a refrigerant flows.
 上述した実施の形態では、扁平管62は、当該扁平管62の幅方向に沿って2つが並べられるとしたが、これに限らず、例えば3つ以上が並べられてもよい。 In the above-described embodiment, two flat tubes 62 are arranged along the width direction of the flat tube 62, but this is not limited thereto, and for example, three or more may be arranged.
 なお、上述の実施の形態は、本開示における技術を例示するためのものであるから、特許請求の範囲またはその均等の範囲において種々の変更、置き換え、付加、省略などを行うことができる。 The above-described embodiments are intended to illustrate the technology disclosed herein, and various modifications, substitutions, additions, omissions, etc. may be made within the scope of the claims or their equivalents.
 (付記)
 以上の実施の形態の記載により、下記の技術が開示される。
(Additional Note)
The above description of the embodiments discloses the following techniques.
 (技術1)ヘッダパイプの上下方向に所定間隔をもって配列された複数の扁平管と、前記各扁平管の両端部が接続される複数の前記ヘッダパイプと、を備える熱交換器において、前記熱交換器が蒸発器として機能する場合、前記ヘッダパイプの少なくとも1つの下部には、気液二相冷媒を供給する接続管が接続され、前記接続管が接続された前記ヘッダパイプの内部には、上下方向に延在し前記接続管に連通する第1の空間と、前記扁平管に連通する第2の空間と、に仕切る隔壁板が設けられ、前記隔壁板には、前記接続管の接続位置より上方に前記第1の空間と前記第2の空間とを連通する連通孔が複数設けられる熱交換器。
 この構成により、第1の空間では、気液二相冷媒の流速の低減が抑制され、気液二相冷媒は、ヘッダパイプの上部まで上昇し、上昇する過程で隔壁板に設けられた複数の連通孔を介して、第1の空間から、第2の空間に流れ込む。そのため、熱交換器では、扁平管の各々に不均一に冷媒が分配されることが抑制され、熱交換性能を向上できる。
(Technology 1) A heat exchanger including a plurality of flat tubes arranged at a predetermined interval in the vertical direction of a header pipe, and a plurality of the header pipes to which both ends of each of the flat tubes are connected, wherein, when the heat exchanger functions as an evaporator, a connecting pipe for supplying a gas-liquid two-phase refrigerant is connected to the lower part of at least one of the header pipes, and a partition plate is provided inside the header pipe to which the connecting pipe is connected, dividing the header pipe into a first space extending in the vertical direction and communicating with the connecting pipe, and a second space communicating with the flat tubes, and the partition plate is provided with a plurality of communication holes communicating between the first space and the second space above the connection position of the connecting pipe.
With this configuration, the reduction in the flow rate of the gas-liquid two-phase refrigerant is suppressed in the first space, and the gas-liquid two-phase refrigerant rises to the top of the header pipe and flows from the first space to the second space through the multiple communication holes provided in the partition plate during the rising process. Therefore, in the heat exchanger, uneven distribution of the refrigerant to each of the flat tubes is suppressed, and the heat exchange performance can be improved.
 (技術2)前記扁平管の幅方向に沿って空気が流れ、前記連通孔は、前記扁平管の空気の流れの上流側に設けられる技術1に記載の熱交換器。
 この構成により、気液二相冷媒は、扁平管の空気流れの上流側に位置する冷媒流路に流れ込みやすくなり、当該空気と熱交換し易くなる。そのため、熱交換器では、特に冷媒循環量が少ない部分負荷運転を空気調和装置が行う場合においても、より多くの冷媒を温度差の大きい空気と熱交換することができ、熱交換性能を向上できる。
(Technology 2) A heat exchanger according to Technology 1, in which air flows along a width direction of the flat tubes, and the communication holes are provided upstream of the air flow of the flat tubes.
With this configuration, the gas-liquid two-phase refrigerant can easily flow into the refrigerant flow path located upstream of the air flow in the flat tubes and easily exchange heat with the air. Therefore, even when the air conditioner is operating at a partial load with a small amount of refrigerant circulating, the heat exchanger can exchange heat with more refrigerant and air with a large temperature difference, improving heat exchange performance.
 (技術3)前記隔壁板は、下部から上部に向かうにつれて、前記ヘッダパイプの前記接続管が接続される側の下方の壁面から、前記扁平管が接続される側の前記ヘッダパイプの壁面に近づくように傾斜して設けられる技術1または技術2に記載の熱交換器。
 この構成により、接続管を介してヘッダパイプの第1の空間に流入した気液二相冷媒は、流速の低下が抑制されつつ隔壁板の傾斜面に沿って第1の空間を上昇し、複数の連通孔から第2の空間に流れ込む。そのため、接続管から流入する気液二相冷媒は、ヘッダパイプ内の隔壁板に対して垂直に流れ込むことが抑制され、隔壁板に対する衝突による冷媒流速の低下と気液分離を抑制する。
(Technology 3) A heat exchanger described in Technology 1 or Technology 2, in which the partition plate is inclined from the bottom to the top so as to approach from the lower wall surface of the header pipe on the side where the connecting pipe is connected to the wall surface of the header pipe on the side where the flat tubes are connected.
With this configuration, the gas-liquid two-phase refrigerant that flows into the first space of the header pipe through the connecting pipe rises in the first space along the inclined surface of the partition plate while suppressing a decrease in flow velocity, and flows into the second space through the multiple communication holes. Therefore, the gas-liquid two-phase refrigerant that flows in from the connecting pipe is prevented from flowing perpendicularly to the partition plate in the header pipe, and a decrease in refrigerant flow velocity and gas-liquid separation due to collision with the partition plate are suppressed.
 (技術4)前記隔壁板は、前記ヘッダパイプの前記接続管が接続される側の壁面よりも、前記扁平管が接続される側の前記ヘッダパイプの壁面に接近して設けられる技術1から技術3のいずれか一項に記載の熱交換器。
 この構成により、熱交換器では、ヘッダパイプの内壁と隔壁板とが接する端部付近の空間に液体冷媒が保たれ、ヘッダパイプの上下方向に対して、重力影響による気液二相冷媒の相分離が抑制される。このため、熱交換器では、複数の扁平管に冷媒が不均一に分配されることが抑制され、熱交換性能を向上できる。
(Technology 4) A heat exchanger described in any one of Technologies 1 to 3, wherein the partition plate is arranged closer to the wall surface of the header pipe on the side to which the flat tubes are connected than to the wall surface of the header pipe on the side to which the connecting pipe is connected.
With this configuration, in the heat exchanger, liquid refrigerant is maintained in the space near the end where the inner wall of the header pipe and the partition plate come into contact, and phase separation of the gas-liquid two-phase refrigerant due to gravity in the vertical direction of the header pipe is suppressed. Therefore, in the heat exchanger, uneven distribution of the refrigerant among the multiple flat tubes is suppressed, and heat exchange performance can be improved.
 (技術5)前記連通孔は、前記扁平管の幅方向の両端に重なる位置に設けられる技術1から技術4のいずれか一項に記載の熱交換器。
 この構成により、第1の空間において、ヘッダパイプの内壁と隔壁板とが接する付近の空間に保持される液体冷媒は、連通孔から第2の空間に流れ込み易くなる。このため、熱交換器では、複数の扁平管に不均一に分配されることが抑制され、熱交換性能を向上できる。
(Technology 5) A heat exchanger according to any one of Technology 1 to Technology 4, wherein the communication holes are provided at positions overlapping both ends of the flat tubes in the width direction.
With this configuration, the liquid refrigerant held in the first space near where the inner wall of the header pipe and the partition plate meet can easily flow into the second space through the communication holes, which prevents the liquid refrigerant from being unevenly distributed among the flat tubes in the heat exchanger, thereby improving the heat exchange performance.
 (技術6)技術1から技術5のいずれか一項に記載の熱交換器を備えることを特徴とする室外機。
 この構成により、室外機は、上述した熱交換器の効果と同様の効果を奏する。
(Technical 6) An outdoor unit comprising the heat exchanger according to any one of Technical 1 to Technical 5.
With this configuration, the outdoor unit achieves the same effects as the heat exchanger described above.
 本開示は、扁平管とヘッダパイプとを備える熱交換器に適用可能である。具体的には、室外機に搭載される熱交換器などに、本開示は適用可能である。 This disclosure is applicable to heat exchangers that include flat tubes and a header pipe. Specifically, this disclosure is applicable to heat exchangers that are installed in outdoor units.
 1 室外機
 5 圧縮機
 10 筐体
 30 送風ファン
 50 室外熱交換器
 51、53 側面
 52 ヘッダパイプ
 54 連結ヘッダパイプ
 55、57、59 接続側面
 62 扁平管
 64 フィン
 66 第1冷媒配管
 68 第2冷媒配管(接続管)
 80、180、280 隔壁板
 81 連通孔
 100、150、200 熱交換器
 S 内部空間
 S1 機械室
 S2 送風機室
 SP、SQ 内部空間
 SP1 第1空間(第1の空間)
 SP2 第2空間(第2の空間)
 X 冷媒循環量
 Y 暖房能力
REFERENCE SIGNS LIST 1 Outdoor unit 5 Compressor 10 Housing 30 Blower fan 50 Outdoor heat exchanger 51, 53 Side surface 52 Header pipe 54 Connecting header pipe 55, 57, 59 Connection side surface 62 Flat tube 64 Fin 66 First refrigerant piping 68 Second refrigerant piping (connecting pipe)
80, 180, 280 Partition plate 81 Communication hole 100, 150, 200 Heat exchanger S Internal space S1 Machine room S2 Blower room SP, SQ Internal space SP1 First space (first space)
SP2 Second space (second space)
X Refrigerant circulation volume Y Heating capacity

Claims (6)

  1.  ヘッダパイプの上下方向に所定間隔をもって配列された複数の扁平管と、前記各扁平管の両端部が接続される複数の前記ヘッダパイプと、を備える熱交換器において、
     前記熱交換器が蒸発器として機能する場合、
     前記ヘッダパイプの少なくとも1つの下部には、気液二相冷媒を供給する接続管が接続され、
     前記接続管が接続された前記ヘッダパイプの内部には、上下方向に延在し前記接続管に連通する第1の空間と、前記扁平管に連通する第2の空間と、に仕切る隔壁板が設けられ、
     前記隔壁板には、前記接続管の接続位置より上方に前記第1の空間と前記第2の空間とを連通する連通孔が複数設けられる
     熱交換器。
    A heat exchanger including a plurality of flat tubes arranged at predetermined intervals in the vertical direction of a header pipe, and a plurality of the header pipes to which both ends of each of the flat tubes are connected,
    When the heat exchanger functions as an evaporator,
    A connection pipe for supplying a gas-liquid two-phase refrigerant is connected to a lower portion of at least one of the header pipes,
    A partition plate is provided inside the header pipe to which the connecting pipe is connected, and divides the header pipe into a first space extending in a vertical direction and communicating with the connecting pipe and a second space communicating with the flat tubes,
    the partition plate is provided with a plurality of communication holes above a connection position of the connecting pipe, the communication holes connecting the first space and the second space.
  2.  前記扁平管の幅方向に沿って空気が流れ、
     前記連通孔は、前記扁平管の空気の流れの上流側に設けられる
     請求項1に記載の熱交換器。
    Air flows along the width direction of the flat tube,
    The heat exchanger according to claim 1 , wherein the communication hole is provided on an upstream side of the flat tube in the air flow direction.
  3.  前記隔壁板は、下部から上部に向かうにつれて、前記ヘッダパイプの前記接続管が接続される側の下方の壁面から、前記扁平管が接続される側の前記ヘッダパイプの壁面に近づくように傾斜して設けられる
     請求項1または請求項2に記載の熱交換器。
    3. The heat exchanger according to claim 1, wherein the partition plate is inclined from the bottom to the top so as to approach a wall surface of the header pipe on a side where the flat tubes are connected, from a lower wall surface of the header pipe on a side where the connecting pipe is connected.
  4.  前記隔壁板は、前記ヘッダパイプの前記接続管が接続される側の壁面よりも、前記扁平管が接続される側の前記ヘッダパイプの壁面に接近して設けられる
     請求項1または請求項2に記載の熱交換器。
    3. The heat exchanger according to claim 1, wherein the partition plate is provided closer to a wall surface of the header pipe on a side to which the flat tubes are connected than to a wall surface of the header pipe on a side to which the connecting pipes are connected.
  5.  前記連通孔は、前記扁平管の幅方向の両端に重なる位置に設けられる
     請求項1または請求項2に記載の熱交換器。
    The heat exchanger according to claim 1 or 2, wherein the communication holes are provided at positions overlapping both ends in a width direction of the flat tubes.
  6.  請求項1または請求項2に記載の熱交換器を備える
     室外機。
    An outdoor unit comprising the heat exchanger according to claim 1 or 2.
PCT/JP2023/033370 2023-01-11 2023-09-13 Heat exchanger and outdoor unit WO2024150465A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2023-002543 2023-01-11
JP2023002543A JP2024098813A (en) 2023-01-11 2023-01-11 Heat exchanger and outdoor unit

Publications (1)

Publication Number Publication Date
WO2024150465A1 true WO2024150465A1 (en) 2024-07-18

Family

ID=91896842

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/033370 WO2024150465A1 (en) 2023-01-11 2023-09-13 Heat exchanger and outdoor unit

Country Status (2)

Country Link
JP (1) JP2024098813A (en)
WO (1) WO2024150465A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100218924A1 (en) * 2004-11-12 2010-09-02 Carrier Corporation Parallel flow evaporator with spiral inlet manifold
JP2014066501A (en) * 2012-09-27 2014-04-17 Daikin Ind Ltd Heat exchanger, and freezer
JP2019074287A (en) * 2017-10-19 2019-05-16 パナソニックIpマネジメント株式会社 Heat exchanger flow divider
WO2019193713A1 (en) * 2018-04-05 2019-10-10 三菱電機株式会社 Distributor and heat exchanger
WO2020217271A1 (en) * 2019-04-22 2020-10-29 三菱電機株式会社 Refrigerant distributor, heat exchanger, and refrigeration cycle device
JP2021148388A (en) * 2020-03-23 2021-09-27 株式会社富士通ゼネラル Heat exchanger
US20220276009A1 (en) * 2019-11-20 2022-09-01 Qingdao Hisense Hitachi Air-conditioning Systems Co., Ltd. Air conditioner

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100218924A1 (en) * 2004-11-12 2010-09-02 Carrier Corporation Parallel flow evaporator with spiral inlet manifold
JP2014066501A (en) * 2012-09-27 2014-04-17 Daikin Ind Ltd Heat exchanger, and freezer
JP2019074287A (en) * 2017-10-19 2019-05-16 パナソニックIpマネジメント株式会社 Heat exchanger flow divider
WO2019193713A1 (en) * 2018-04-05 2019-10-10 三菱電機株式会社 Distributor and heat exchanger
WO2020217271A1 (en) * 2019-04-22 2020-10-29 三菱電機株式会社 Refrigerant distributor, heat exchanger, and refrigeration cycle device
US20220276009A1 (en) * 2019-11-20 2022-09-01 Qingdao Hisense Hitachi Air-conditioning Systems Co., Ltd. Air conditioner
JP2021148388A (en) * 2020-03-23 2021-09-27 株式会社富士通ゼネラル Heat exchanger

Also Published As

Publication number Publication date
JP2024098813A (en) 2024-07-24

Similar Documents

Publication Publication Date Title
EP3745075B1 (en) Indoor heat exchanger and air conditioning device
US10041710B2 (en) Heat exchanger and air conditioner
US20200072478A1 (en) Air-conditioner outdoor heat exchanger and air-conditioner including the same
WO2019077744A1 (en) Air conditioner
JP2016200338A (en) Air conditioner
JP5338883B2 (en) Heat source unit
JP4760542B2 (en) Heat exchanger
JP7228356B2 (en) Heat exchanger and air conditioner provided with the same
JP2004163036A (en) Double row heat exchanger
WO2024150465A1 (en) Heat exchanger and outdoor unit
WO2016071945A1 (en) Indoor unit for air conditioning device
WO2020162096A1 (en) Heat exchanger
JP5681572B2 (en) Air conditioner for vehicles
JP2011102662A (en) Air-conditioning outdoor unit
JP2014081150A (en) Air conditioner
JP2020112274A (en) Heat exchanger
JP4300502B2 (en) Parallel flow type heat exchanger for air conditioning
JP2024046157A (en) Heat exchanger and outdoor unit
WO2016151755A1 (en) Air conditioner
JP4734915B2 (en) Indoor unit of heat exchanger and air conditioner equipped with the same
JP2023168988A (en) Heat exchanger
JP2023168987A (en) Heat exchanger
EP3385100A1 (en) Rooftop unit
JP5885626B2 (en) Outdoor unit of air conditioner and air conditioner provided with the same
JP7155628B2 (en) air conditioner

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23916085

Country of ref document: EP

Kind code of ref document: A1