JP7155628B2 - air conditioner - Google Patents

air conditioner Download PDF

Info

Publication number
JP7155628B2
JP7155628B2 JP2018109655A JP2018109655A JP7155628B2 JP 7155628 B2 JP7155628 B2 JP 7155628B2 JP 2018109655 A JP2018109655 A JP 2018109655A JP 2018109655 A JP2018109655 A JP 2018109655A JP 7155628 B2 JP7155628 B2 JP 7155628B2
Authority
JP
Japan
Prior art keywords
refrigerant
stirring
opening
collision
outdoor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018109655A
Other languages
Japanese (ja)
Other versions
JP2019211184A (en
Inventor
尚起 藤田
幸治 緒方
和樹 須田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu General Ltd
Original Assignee
Fujitsu General Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu General Ltd filed Critical Fujitsu General Ltd
Priority to JP2018109655A priority Critical patent/JP7155628B2/en
Publication of JP2019211184A publication Critical patent/JP2019211184A/en
Application granted granted Critical
Publication of JP7155628B2 publication Critical patent/JP7155628B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Other Air-Conditioning Systems (AREA)

Description

本発明は空気調和機に関し、より詳細には、室外機に配置される室外熱交換器の複数の冷媒パスに冷媒を均一に分流させる技術に関する。 TECHNICAL FIELD The present invention relates to an air conditioner, and more particularly to a technology for uniformly dividing refrigerant into a plurality of refrigerant paths of an outdoor heat exchanger arranged in an outdoor unit.

空気調和機に備えられる熱交換器は、複数本の伝熱管が接続されて形成されたパス(冷媒流路)を複数有し、これら複数のパスを熱交換器の上下方向に配置するものや、熱交換器を通過する空気の流れに対して風上側と風下側に並べて配置するものがある。このような熱交換器では、各々のパスにおける一方の冷媒出入口に、各々のパスから流出する冷媒を合流させる、あるいは、各々のパスへ冷媒を分流する分配器が接続される。 A heat exchanger provided in an air conditioner has a plurality of paths (refrigerant flow paths) formed by connecting a plurality of heat transfer tubes, and the plurality of paths are arranged in the vertical direction of the heat exchanger. , arranged side by side on the windward side and the leeward side with respect to the flow of air passing through the heat exchanger. In such a heat exchanger, one refrigerant inlet/outlet of each path is connected to a distributor that joins the refrigerant flowing out of each path or distributes the refrigerant to each path.

上述した熱交換器が、例えば室外機の室外熱交換器に用いられる場合は、圧縮機、四方弁、室外熱交換器、膨張弁、室内機の室内熱交換器が順次冷媒配管で接続されて冷媒回路が構築される。この場合、室外熱交換器は四方弁と膨張弁の間に配置され、分配器は室外熱交換器と膨張弁の間に配置される。空気調和機が冷房運転を行う場合は、凝縮器として機能する室外熱交換器の各々のパスから流出した冷媒は分配器で合流し、膨張弁を備え室外機内に設けられる冷媒配管(以降、室外機液管と記載する)を介して室内機へと流れる。一方、空気調和機が暖房運転を行う場合は、室外機液管を介して室内機から室外機へと流入した冷媒は、分配器によって蒸発器として機能する室外熱交換器の各々のパスに分流する。 When the heat exchanger described above is used, for example, as an outdoor heat exchanger of an outdoor unit, the compressor, four-way valve, outdoor heat exchanger, expansion valve, and indoor heat exchanger of the indoor unit are connected in order by refrigerant pipes. A refrigerant circuit is constructed. In this case, the outdoor heat exchanger is arranged between the four-way valve and the expansion valve, and the distributor is arranged between the outdoor heat exchanger and the expansion valve. When the air conditioner performs cooling operation, the refrigerant that flows out from each path of the outdoor heat exchanger that functions as a condenser joins at the distributor, and is equipped with an expansion valve and installed in the outdoor unit refrigerant piping (hereinafter referred to as the outdoor It flows to the indoor unit via the machine liquid pipe). On the other hand, when the air conditioner performs heating operation, the refrigerant flowing from the indoor unit to the outdoor unit through the outdoor unit liquid pipe is divided by the distributor into each path of the outdoor heat exchanger functioning as an evaporator. do.

上述した室外熱交換器が蒸発器として機能する場合は、室内機から室外機へ流入して室外熱交換器に流入する冷媒は膨張弁で減圧されて、ガス冷媒と液冷媒とが混在する気液二相状態(以降、気液二相冷媒と記載する場合がある)となっている。このとき、室内機から流入した冷媒を室外熱交換器に導く室外機液管が、室外機の他の構成部品、例えば、圧縮機や四方弁の設置場所との兼ね合いにより途中で折り曲げられていれば、気液二相冷媒が室外機液管を流れて折り曲げられた箇所(以降、折曲部と記載する)を通過する際に遠心力を受けて、液冷媒が室外機液管の内部を偏って流れる。このため、折曲部から室外機液管に流出した気液二相冷媒も、液冷媒が室外機液管の内部を偏って流れる状態となっている。 When the outdoor heat exchanger described above functions as an evaporator, the refrigerant flowing from the indoor unit to the outdoor unit and then into the outdoor heat exchanger is decompressed by the expansion valve, resulting in a mixture of gas refrigerant and liquid refrigerant. It is in a liquid two-phase state (hereinafter sometimes referred to as gas-liquid two-phase refrigerant). At this time, the outdoor unit liquid pipe that guides the refrigerant that has flowed from the indoor unit to the outdoor heat exchanger may be bent halfway due to the installation location of other components of the outdoor unit, such as the compressor and the four-way valve. For example, when the gas-liquid two-phase refrigerant flows through the outdoor unit liquid pipe and passes through a bent portion (hereinafter referred to as a bent portion), the liquid refrigerant is subjected to centrifugal force, and the liquid refrigerant flows inside the outdoor unit liquid pipe. flow sideways. Therefore, the gas-liquid two-phase refrigerant that has flowed out from the bent portion into the outdoor unit liquid pipe is also in a state where the liquid refrigerant flows unevenly inside the outdoor unit liquid pipe.

室外機液管を流れる気液二相冷媒が、液冷媒が室外機液管の内部を偏って流れる状態で分配器によって室外熱交換器の各々のパスに分流された場合は、あるパスでは液冷媒がガス冷媒より多い気液二相冷媒となり、別のパスではガス冷媒が液冷媒より多い気液二相冷媒となる。つまり、あるパスに液冷媒が偏って流れることとなる。なお、この液冷媒の偏りは、室外機液管の折曲部と分配器との距離が遠いほどその程度が小さくなる。これは、室外機液管の折曲部と分配器との距離が遠いほど、折曲部から流出した気液二相冷媒が分配器に到達するまでの間に、折曲部で受けた遠心力の影響が薄れるためである。 If the gas-liquid two-phase refrigerant flowing through the outdoor unit liquid pipe is divided into each path of the outdoor heat exchanger by the distributor while the liquid refrigerant flows unevenly inside the outdoor unit liquid pipe, It becomes a gas-liquid two-phase refrigerant in which the refrigerant is more than the gas refrigerant, and in another pass the gas-liquid two-phase refrigerant is more gas refrigerant than the liquid refrigerant. That is, the liquid refrigerant flows unevenly along a certain path. It should be noted that the degree of this uneven distribution of the liquid refrigerant decreases as the distance between the bent portion of the outdoor unit liquid pipe and the distributor increases. This is because the greater the distance between the bent portion of the outdoor unit liquid pipe and the distributor, the more the gas-liquid two-phase refrigerant that flows out from the bent portion reaches the distributor. This is because the influence of force is weakened.

以上に説明したように、各々のパスに流れる気液二相冷媒のガス冷媒と液冷媒との比率が異なる場合は、各々のパスに流れる気液二相冷媒のガス冷媒と液冷媒との比率が同じである場合と比べて、室外熱交換器で発揮される熱交換能力が低下する恐れがある。そこで、室外熱交換器が蒸発器として機能する際に各々のパスに流れる気液二相冷媒のガス冷媒と液冷媒との比率を均一にする空気調和機が提案されている。例えば、特許文献1には、分配器に流入した気液二相冷媒のガス冷媒と液冷媒との比率を均一にする機能を持つ分配器が提案されている。この分配器(特許文献1では、「冷媒分流器」と記載されている)は、流入した気液二相冷媒を分流させる手前に、分配器に流入した気液二相冷媒を衝突させる衝突壁を設けている。分配器に流入した気液二相冷媒が衝突壁に衝突してガス冷媒と液冷媒とが撹拌・混合されることで、分配器によって分配されて分配器から流出する気液二相冷媒のガス冷媒と液冷媒との比率を均一にしている。 As described above, when the ratio of gas-liquid two-phase refrigerant to liquid refrigerant flowing in each path is different, the ratio of gas-liquid two-phase refrigerant to liquid refrigerant flowing in each path is There is a possibility that the heat exchange capacity exhibited by the outdoor heat exchanger may decrease compared to the case where the values are the same. Therefore, an air conditioner has been proposed in which the ratio of the gas-liquid two-phase refrigerant to the liquid refrigerant flowing through each path is uniform when the outdoor heat exchanger functions as an evaporator. For example, Patent Literature 1 proposes a distributor having a function of equalizing the ratio of gas refrigerant and liquid refrigerant in a gas-liquid two-phase refrigerant flowing into the distributor. This distributor (referred to as a "refrigerant flow divider" in Patent Document 1) has an impingement wall that collides with the gas-liquid two-phase refrigerant that has flowed into the distributor before dividing the flow of the gas-liquid two-phase refrigerant that has flowed into the distributor. is provided. The gas-liquid two-phase refrigerant that has flowed into the distributor collides with the impingement wall, and the gas-liquid two-phase refrigerant and the liquid refrigerant are stirred and mixed, and the gas-liquid two-phase refrigerant gas that flows out of the distributor is distributed by the distributor. The ratio of refrigerant and liquid refrigerant is made uniform.

特開平2-166366号公報JP-A-2-166366

しかし、室外機液管の折曲部と特許文献1の分配器に設けられた衝突壁との距離が近い場合は、分配器に流入する気液二相冷媒が折曲部で受けた遠心力の影響が強く残った状態、つまりは、室外機液管の内部で液冷媒が偏った状態となっているため、分配器に衝突壁を設けても分配器から流出する気液二相冷媒のガス冷媒と液冷媒との比率を均一にできない場合があった。このような問題を回避するためには、前述したように室外機液管の折曲部と分配器との距離を遠くする、すなわち、折曲部以降の室外機液管を長くすればよいが、室外機の他の構成部品の配置場所との兼ね合いや、室外機自体の大きさの制約から、室外機液管の折曲部と分配器との距離を遠くできない場合がある。 However, when the distance between the bent portion of the outdoor unit liquid pipe and the collision wall provided in the distributor of Patent Document 1 is short, the gas-liquid two-phase refrigerant flowing into the distributor receives the centrifugal force at the bent portion. In other words, the liquid refrigerant is unevenly distributed inside the outdoor unit liquid pipe. In some cases, the ratio of gas refrigerant and liquid refrigerant cannot be made uniform. In order to avoid such a problem, as described above, the distance between the bent portion of the outdoor unit liquid pipe and the distributor should be increased, that is, the outdoor unit liquid pipe after the bent portion should be lengthened. In some cases, it may not be possible to increase the distance between the bent portion of the outdoor unit liquid pipe and the distributor due to the location of other components of the outdoor unit and restrictions on the size of the outdoor unit itself.

本発明は以上述べた問題点を解決するものであって、複数のパスを有する室外熱交換器において、各々のパスにおけるガス冷媒と液冷媒との比率を均一にして、室外熱交換器で発揮される熱交換能力を向上させる空気調和機を提供することを目的とする。 The present invention solves the problems described above, and in an outdoor heat exchanger having a plurality of paths, the ratio of gas refrigerant and liquid refrigerant in each path is made uniform, and the outdoor heat exchanger exhibits An object of the present invention is to provide an air conditioner that improves the heat exchange capacity of the air conditioner.

上記の課題を解決するために、本発明の空気調和機は、第一冷媒流路と第二冷媒流路とを備える室外熱交換器を有する室外機と、室外機に冷媒配管で接続される室内機を有する。室外機は、暖房運転時に室内機から室外機に流入した冷媒を室外熱交換器の第一冷媒流路および第二冷媒流路に導く冷媒導入部を有する。冷媒導入部は、冷媒の流れを第一冷媒流路と第二冷媒流路に分流する分岐部と、冷媒を撹拌する第一撹拌部と第二撹拌部とを有し、暖房運転時の冷媒の流れる方向における下流側から上流側へと向かう方向に、分岐部、第一撹拌部、第二撹拌部の順で配置される。 In order to solve the above problems, the air conditioner of the present invention provides an outdoor unit having an outdoor heat exchanger having a first refrigerant flow path and a second refrigerant flow path, and a refrigerant pipe connected to the outdoor unit. It has an indoor unit. The outdoor unit has a refrigerant introduction part that guides the refrigerant that has flowed into the outdoor unit from the indoor unit during heating operation to the first refrigerant flow path and the second refrigerant flow path of the outdoor heat exchanger. The refrigerant introduction part has a branch part that divides the flow of the refrigerant into the first refrigerant flow path and the second refrigerant flow path, and a first stirring part and a second stirring part that stir the refrigerant, and the refrigerant during heating operation The branching part, the first stirring part, and the second stirring part are arranged in this order in the direction from the downstream side to the upstream side in the flow direction of the.

また、本発明の空気調和機は、第一冷媒流路と第二冷媒流路とを備える室外熱交換器を有する室外機と、同室外機に冷媒配管で接続される室内機を有する。室外機は、暖房運転時に室内機から室外機に流入した冷媒を室外熱交換器の第一冷媒流路および第二冷媒流路に導く冷媒導入部を有する。冷媒導入部は、冷媒の流れを第一冷媒流路と第二冷媒流路に分流する分岐部と、第一撹拌部と第二撹拌部とを有する。第一撹拌部は、第一撹拌部に流入した冷媒を衝突させてその流れを反転させる第一衝突部と、第一衝突部によって反転させられた冷媒と第一撹拌部に流入した冷媒とを衝突させる衝突空間とを有する。そして、第二撹拌部は、第二撹拌部に流入した冷媒を衝突させてその流れを反転させる衝突部と、衝突部によって反転させられた冷媒と第二撹拌部に流入した冷媒とを衝突させる衝突空間とを有する。 Further, the air conditioner of the present invention has an outdoor unit having an outdoor heat exchanger having a first refrigerant channel and a second refrigerant channel, and an indoor unit connected to the outdoor unit by refrigerant pipes. The outdoor unit has a refrigerant introduction part that guides the refrigerant that has flowed into the outdoor unit from the indoor unit during heating operation to the first refrigerant flow path and the second refrigerant flow path of the outdoor heat exchanger. The refrigerant introduction part has a branching part that divides the flow of the refrigerant into the first refrigerant flow path and the second refrigerant flow path, and the first stirring part and the second stirring part. The first stirring part has a first collision part that causes the refrigerant that has flowed into the first stirring part to collide and reverses the flow, and the refrigerant reversed by the first collision part and the refrigerant that has flowed into the first stirring part. and a collision space for collision. Then, the second stirring part collides with a collision part that causes the refrigerant that has flowed into the second stirring part to collide and reverses the flow, and causes the refrigerant reversed by the collision part and the refrigerant that has flowed into the second stirring part to collide. and a collision space.

上記のように構成した本発明の空気調和機は、第一撹拌部と第二撹拌部とを有する冷媒導入部を室外熱交換器と室外膨張弁との間に配置することにより、室外熱交換器の複数の冷媒流路に流れる気液二相冷媒のガス冷媒と液冷媒との比率を均一とできるので、室外熱交換器で発揮される熱交換能力の低下を抑制できる。 In the air conditioner of the present invention configured as described above, the refrigerant introduction section having the first stirring section and the second stirring section is arranged between the outdoor heat exchanger and the outdoor expansion valve, thereby performing outdoor heat exchange. Since the ratio of the gas-liquid two-phase refrigerant and the liquid refrigerant in the gas-liquid two-phase refrigerant flowing through the plurality of refrigerant passages of the unit can be made uniform, it is possible to suppress a decrease in the heat exchange capacity exhibited by the outdoor heat exchanger.

本発明の実施形態における、空気調和機の冷媒回路図である。1 is a refrigerant circuit diagram of an air conditioner in an embodiment of the present invention; FIG. 本発明の実施形態における室外機の説明図であり、(A)は室外機内部を上方から見た図面、(B)は)(A)における矢視Y図である。BRIEF DESCRIPTION OF THE DRAWINGS It is explanatory drawing of the outdoor unit in embodiment of this invention, (A) is drawing which looked at the inside of an outdoor unit from upper direction, (B) is arrow Y view in (A). 本発明の実施形態における、冷媒導入部を流れる冷媒の状態の変化を説明する図面である。FIG. 4 is a drawing for explaining changes in the state of refrigerant flowing through a refrigerant introduction portion in the embodiment of the present invention; FIG. 本発明の第2の実施形態における、冷媒導入部を流れる冷媒の状態の変化を説明する図面である。FIG. 10 is a drawing for explaining changes in the state of refrigerant flowing through the refrigerant introduction portion in the second embodiment of the present invention; FIG. 本発明の第3の実施形態における、冷媒導入部を流れる冷媒の状態の変化を説明する図面である。It is a drawing explaining the change of the state of the refrigerant|coolant which flows through a refrigerant|coolant introduction part in the 3rd Embodiment of this invention.

以下、本発明の実施の形態を、添付図面に基づいて詳細に説明する。実施形態としては、室外機と室内機が冷媒配管で接続された空気調和装置を例に挙げて説明する。尚、本発明は以下の実施形態に限定されることはなく、本発明の主旨を逸脱しない範囲で種々変形することが可能である。 BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. As an embodiment, an air conditioner in which an outdoor unit and an indoor unit are connected by refrigerant pipes will be described as an example. The present invention is not limited to the following embodiments, and various modifications can be made without departing from the gist of the present invention.

図1に示すように、本実施例における空気調和機1は、屋外に設置される室外機2と、室外機2に液管4およびガス管5で接続されて屋内に設置される室内機3を備えている。詳細には、液管4は、一端が室外機2の閉鎖弁25に、他端が室内機3の液管接続部33に接続されている。また、ガス管5は、一端が室外機2の閉鎖弁26に、他端が分岐して各々の室内機3のガス管接続部34に接続されている。以上により、空気調和機1の冷媒回路10が構成されている。 As shown in FIG. 1, an air conditioner 1 in this embodiment includes an outdoor unit 2 installed outdoors, and an indoor unit 3 installed indoors connected to the outdoor unit 2 via a liquid pipe 4 and a gas pipe 5. It has Specifically, the liquid pipe 4 has one end connected to the closing valve 25 of the outdoor unit 2 and the other end connected to the liquid pipe connection portion 33 of the indoor unit 3 . One end of the gas pipe 5 is connected to the closing valve 26 of the outdoor unit 2 and the other end is branched and connected to the gas pipe connection portion 34 of each indoor unit 3 . As described above, the refrigerant circuit 10 of the air conditioner 1 is configured.

<室外機の構成>
まずは、室外機2について説明する。室外機2は、圧縮機21と、四方弁22と、室外熱交換器23と、膨張弁24と、液管4の一端が接続された閉鎖弁25と、ガス管5の一端が接続された閉鎖弁26と、アキュムレータ27と、室外ファン28と、冷媒導入部29とを備えている。そして、室外ファン28を除くこれら各々の装置が以下で詳述する各々の冷媒配管で相互に接続されて、冷媒回路10の一部をなす室外機冷媒回路10aを構成している。
<Configuration of outdoor unit>
First, the outdoor unit 2 will be explained. The outdoor unit 2 includes a compressor 21, a four-way valve 22, an outdoor heat exchanger 23, an expansion valve 24, a closing valve 25 to which one end of the liquid pipe 4 is connected, and one end of the gas pipe 5. A closing valve 26 , an accumulator 27 , an outdoor fan 28 , and a coolant introduction portion 29 are provided. These devices, except for the outdoor fan 28, are connected to each other by refrigerant pipes, which will be described in detail below, to form an outdoor unit refrigerant circuit 10a forming a part of the refrigerant circuit 10. FIG.

図2(A)に示すように、室外機2は、前面パネル201と、前面側支柱202と、背面側支柱203と、背面パネル204と、側面パネル205と、底板206と、仕切板207と、図示しない天面パネルで構成される直方体形状の筐体を有する。 As shown in FIG. 2A, the outdoor unit 2 includes a front panel 201, a front support 202, a rear support 203, a rear panel 204, a side panel 205, a bottom plate 206, and a partition plate 207. , has a rectangular parallelepiped housing composed of a top panel (not shown).

前面パネル201は板金で形成され、室外機2の前面のうちの右側の一部(後述する機械室200aの前面)を覆うように配置されている。前面側支柱202は板金をL字状に形成してなり、室外機2の前面の左端に配置されている。そして、前面パネル201の左端と前面側支柱202の間が、室外機2の内部と外部を連通する吹出口212とされており、吹出口212に臨むように室外ファン28が配置されている。 The front panel 201 is formed of sheet metal, and is arranged to cover a portion of the right side of the front surface of the outdoor unit 2 (the front surface of a machine room 200a, which will be described later). The front-side support 202 is formed by forming a sheet metal into an L shape, and is arranged at the left end of the front surface of the outdoor unit 2 . An air outlet 212 is provided between the left end of the front panel 201 and the front support column 202 to communicate the inside and outside of the outdoor unit 2 , and an outdoor fan 28 is arranged to face the air outlet 212 .

背面側支柱203は板金をL字状に形成してなり、室外機2の背面の左端に配置されている。背面パネル204は板金で形成され、室外機2の背面のうちの右側の一部(後述する機械室200aの背面)を覆うように配置されている。そして、前面側支柱202と背面側支柱203の間、および、背面側支柱203と背面パネル204の左端の間のそれぞれが、室外機2の内部と外部を連通する吸込口211とされており、吸込口211に臨むようにL字状に形成された室外熱交換器23が配置されている。 The back-side strut 203 is formed by forming a sheet metal into an L shape, and is arranged at the left end of the back of the outdoor unit 2 . The rear panel 204 is made of sheet metal and arranged to cover a portion of the right side of the rear surface of the outdoor unit 2 (the rear surface of a machine room 200a, which will be described later). Between the front-side support 202 and the rear-side support 203 and between the rear-side support 203 and the left end of the rear panel 204 are suction ports 211 that communicate the inside and outside of the outdoor unit 2, An L-shaped outdoor heat exchanger 23 is arranged so as to face the suction port 211 .

側面パネル205は板金で形成され、室外機2の右側面(後述する機械室200aの右側面)を覆うように配置されている。仕切板207は、板金を略C字状に折り曲げて形成されており、室外機2の筐体内部を機械室200aと熱交換室200bに仕切る。底板206は板金の周縁部を上方に折り曲げて箱状に形成されており、底板206上にこれまで説明した各々のパネルや仕切板207が固定される。 The side panel 205 is made of sheet metal and arranged to cover the right side of the outdoor unit 2 (the right side of the machine room 200a, which will be described later). The partition plate 207 is formed by bending a sheet metal into a substantially C shape, and partitions the interior of the housing of the outdoor unit 2 into a machine chamber 200a and a heat exchange chamber 200b. The bottom plate 206 is formed into a box-like shape by bending the periphery of a sheet metal upward, and each of the panels and the partition plate 207 described above are fixed on the bottom plate 206 .

以上説明した室外機2の筐体内部に、室外機冷媒回路10aを構成する装置が配置される。具体的には、機械室200aには、圧縮機21と四方弁22とアキュムレータ27が配置される。尚、機械室200aには、膨張弁24や閉鎖弁25、26や各々の冷媒配管、図示しない電装品箱等も配置されるが、図2(A)では省略している。一方、熱交換室200bには、室外熱交換器23と室外ファン28が配置される。前述したように、室外熱交換器23は各々の吸込口211に臨むように配置され、室外ファン28は吹出口212に臨むように配置される。また、冷媒導入部29は、機械室200aの背面側下方に配置される。 A device constituting the outdoor unit refrigerant circuit 10a is arranged inside the housing of the outdoor unit 2 described above. Specifically, a compressor 21, a four-way valve 22, and an accumulator 27 are arranged in the machine room 200a. In the machine room 200a, the expansion valve 24, the shutoff valves 25 and 26, refrigerant pipes, and an electric component box (not shown) are also arranged, but they are omitted in FIG. 2(A). On the other hand, the outdoor heat exchanger 23 and the outdoor fan 28 are arranged in the heat exchange chamber 200b. As described above, the outdoor heat exchangers 23 are arranged to face the respective suction ports 211 , and the outdoor fans 28 are arranged to face the air outlets 212 . In addition, the coolant introduction part 29 is arranged below the back side of the machine room 200a.

次に、室外機冷媒回路10aの各々の構成について個別に説明する。圧縮機21は、インバータにより回転数が制御される図示しないモータによって駆動されることで、運転容量を可変できる能力可変型圧縮機である。図1に示すように、圧縮機21の冷媒吐出側は、後述する四方弁22のポートaと吐出管61で接続されている。また、圧縮機21の冷媒吸入側は、アキュムレータ27の冷媒流出側と吸入管66で接続されている。 Next, each configuration of the outdoor unit refrigerant circuit 10a will be individually described. The compressor 21 is a variable capacity compressor that can vary its operating capacity by being driven by a motor (not shown) whose rotational speed is controlled by an inverter. As shown in FIG. 1, the refrigerant discharge side of the compressor 21 is connected to a port a of the four-way valve 22, which will be described later, via a discharge pipe 61. As shown in FIG. The refrigerant suction side of the compressor 21 is connected to the refrigerant outflow side of the accumulator 27 by a suction pipe 66 .

四方弁22は、冷媒の流れる方向を切り換えるための弁であり、a、b、c、dの4つのポートを備えている。ポートaは、上述したように圧縮機21の冷媒吐出側と吐出管61で接続されている。ポートbは、室外熱交換器23の一方の冷媒出入口と冷媒配管62で接続されている。ポートcは、アキュムレータ27の冷媒流入側と冷媒配管65で接続されている。そして、ポートdは、閉鎖弁26と室外機ガス管64で接続されている。 The four-way valve 22 is a valve for switching the direction of refrigerant flow, and has four ports a, b, c, and d. The port a is connected to the refrigerant discharge side of the compressor 21 by the discharge pipe 61 as described above. The port b is connected to one refrigerant inlet/outlet of the outdoor heat exchanger 23 by a refrigerant pipe 62 . The port c is connected to the refrigerant inflow side of the accumulator 27 by the refrigerant pipe 65 . The port d is connected to the closing valve 26 and the outdoor unit gas pipe 64 .

室外熱交換器23は、冷媒と、室外ファン28の回転により熱交換器室200bに取り込まれた外気を熱交換させるものであり、下側パス23a(本発明の第一冷媒流路に相当)と上側パス23b(本発明の第二冷媒流路に相当)の2つの冷媒流路を有する。室外熱交換器23の一方の冷媒出入口は、上述したように四方弁22のポートbと冷媒配管62で接続され、他方の冷媒出入口は冷媒導入部29の一方の冷媒出入口(後述する分岐部29a)に接続されている。室外熱交換器23は、空気調和機1が冷房運転を行う際は凝縮器として機能し、暖房運転を行う際は蒸発器として機能する。尚、室外熱交換器23の構造は、後程詳細に説明する。 The outdoor heat exchanger 23 exchanges heat between the refrigerant and the outside air taken into the heat exchanger chamber 200b by the rotation of the outdoor fan 28, and is a lower path 23a (corresponding to the first refrigerant flow path of the present invention). and an upper path 23b (corresponding to the second refrigerant channel of the present invention). One refrigerant inlet/outlet of the outdoor heat exchanger 23 is connected to the port b of the four-way valve 22 by the refrigerant pipe 62 as described above, and the other refrigerant inlet/outlet is connected to one refrigerant inlet/outlet of the refrigerant introduction part 29 (a branch part 29a to be described later). )It is connected to the. The outdoor heat exchanger 23 functions as a condenser when the air conditioner 1 performs the cooling operation, and functions as an evaporator when the air conditioner 1 performs the heating operation. The structure of the outdoor heat exchanger 23 will be explained later in detail.

冷媒導入部29は、室外熱交換器23の下側パス23aと上側パス23bとから流入した冷媒を合流させて室外機液管63へと流出する、あるいは、室外機液管63から流入した冷媒を室外熱交換器23下側パス23aと上側パス23bとに分流させる。冷媒導入部29の一方の冷媒出入口は前述したように室外熱交換器23の他方の冷媒出入口に接続され、他方の冷媒出入口(後述する第三接続部29f)は室外機液管63で閉鎖弁25に接続されている。尚、冷媒導入部29の構造は、後程詳細に説明する。 The refrigerant introduction part 29 joins the refrigerant that has flowed in from the lower path 23a and the upper path 23b of the outdoor heat exchanger 23 and flows out to the outdoor unit liquid pipe 63, or the refrigerant that has flowed in from the outdoor unit liquid pipe 63. is split between the lower path 23a and the upper path 23b of the outdoor heat exchanger 23. One refrigerant inlet/outlet of the refrigerant introduction part 29 is connected to the other refrigerant inlet/outlet of the outdoor heat exchanger 23 as described above, and the other refrigerant inlet/outlet (third connection part 29f described later) is closed by the outdoor unit liquid pipe 63. 25 is connected. The structure of the coolant introduction portion 29 will be described later in detail.

膨張弁24は、室外機液管63に設けられている。膨張弁24は電子膨張弁であり、室内機3で要求される冷房能力や暖房能力に応じてその開度が調整されることで、室外熱交換器23を流れる冷媒量、および、室内機3(の室内熱交換器31)を流れる冷媒量を調整する。 The expansion valve 24 is provided in the outdoor unit liquid pipe 63 . The expansion valve 24 is an electronic expansion valve. The amount of refrigerant flowing through (indoor heat exchanger 31) is adjusted.

アキュムレータ27は、前述したように、冷媒流入側と四方弁22のポートcが冷媒配管65で接続され、冷媒流出側と圧縮機21の冷媒吸入側が吸入管66で接続されている。アキュムレータ27は、冷媒配管65からアキュムレータ27の内部に流入した気液二相冷媒を冷凍機油を含む液冷媒と、ガス冷媒とに分離し、分離したガス冷媒のみを吸入管66を介して圧縮機21に吸入させる。 As described above, the accumulator 27 has the refrigerant inflow side and the port c of the four-way valve 22 connected by the refrigerant pipe 65 , and the refrigerant outflow side and the refrigerant suction side of the compressor 21 are connected by the suction pipe 66 . The accumulator 27 separates the gas-liquid two-phase refrigerant that has flowed into the accumulator 27 from the refrigerant pipe 65 into a liquid refrigerant containing refrigerating machine oil and a gas refrigerant. 21 to inhale.

室外ファン28は樹脂材で形成されており、前述したように吹出口212に臨むように配置されている。室外ファン28は、熱交換室200bに配置される図示しないファンモータの駆動によって回転することで、各々の吸込口211から熱交換器室200bへ外気を取り込み、室外熱交換器23において冷媒と熱交換した外気を吹出口212から室外機2の外部へ放出する。 The outdoor fan 28 is made of a resin material and arranged so as to face the outlet 212 as described above. The outdoor fan 28 is driven by a fan motor (not shown) arranged in the heat exchange chamber 200b to rotate, thereby taking in outside air from each suction port 211 into the heat exchanger chamber 200b, and causing the refrigerant and heat to flow through the outdoor heat exchanger 23. The exchanged outside air is discharged to the outside of the outdoor unit 2 from the outlet 212 .

以上説明した構成の他に、室外機2には各々の種のセンサが設けられている。図1に示すように、吐出管61には、圧縮機21から吐出される冷媒の圧力を検出する吐出圧力センサ71と、圧縮機21から吐出される冷媒の温度を検出する吐出温度センサ73が設けられている。冷媒配管65におけるアキュムレータ27の冷媒流入側近傍には、圧縮機21に吸入される冷媒の圧力を検出する吸入圧力センサ72と、圧縮機21に吸入される冷媒の温度を検出する吸入温度センサ74とが設けられている。 In addition to the configuration described above, the outdoor unit 2 is provided with various types of sensors. As shown in FIG. 1, the discharge pipe 61 has a discharge pressure sensor 71 for detecting the pressure of the refrigerant discharged from the compressor 21 and a discharge temperature sensor 73 for detecting the temperature of the refrigerant discharged from the compressor 21. is provided. A suction pressure sensor 72 that detects the pressure of the refrigerant sucked into the compressor 21 and a suction temperature sensor 74 that detects the temperature of the refrigerant sucked into the compressor 21 are provided near the refrigerant inflow side of the accumulator 27 in the refrigerant pipe 65 . and are provided.

室外機液管63における膨張弁24と冷媒導入部29との間には、室外熱交換器23に出入りする冷媒の温度を検知するための熱交温度センサ75が設けられている。そして、室外機2の吸込口211付近には、熱交換室200bに流入する外気の温度、すなわち外気温度を検出する外気温度センサ76が備えられている。 A heat exchanger temperature sensor 75 for detecting the temperature of the refrigerant flowing in and out of the outdoor heat exchanger 23 is provided between the expansion valve 24 and the refrigerant introduction portion 29 in the outdoor unit liquid pipe 63 . An outside air temperature sensor 76 that detects the temperature of the outside air flowing into the heat exchange chamber 200b, that is, the outside air temperature, is provided near the intake port 211 of the outdoor unit 2 .

<室内機の構成>
次に図1を用いて、室内機3について説明する。室内機3は、室内熱交換器31と、液管4の他端が接続された液管接続部33と、ガス管5の他端が接続されたガス管接続部34と、室内ファン32を備えている。そして、室内ファン32を除くこれら各々の装置が以下で詳述する各々の冷媒配管で相互に接続されて、冷媒回路10の一部をなす室内機冷媒回路10bを構成している。
<Indoor unit configuration>
Next, the indoor unit 3 will be described with reference to FIG. The indoor unit 3 includes an indoor heat exchanger 31, a liquid pipe connection portion 33 to which the other end of the liquid pipe 4 is connected, a gas pipe connection portion 34 to which the other end of the gas pipe 5 is connected, and an indoor fan 32. I have. These devices excluding the indoor fan 32 are connected to each other by refrigerant pipes, which will be described in detail below, to form an indoor unit refrigerant circuit 10b forming a part of the refrigerant circuit 10. FIG.

室内熱交換器31は、冷媒と、室内ファン32の回転により図示しない吸込口から室内機3の内部に取り込まれた室内空気を熱交換させるものである。室内熱交換器31の一方の冷媒出入口が液管接続部33と室内機液管67で接続され、他方の冷媒出入口がガス管接続部34と室内機ガス管68で接続されている。室内熱交換器31は、室内機3が冷房運転を行う場合は蒸発器として機能し、室内機3が暖房運転を行う場合は凝縮器として機能する。尚、液管接続部33やガス管接続部34では、各々の冷媒配管が溶接やフレアナット等により接続されている。 The indoor heat exchanger 31 exchanges heat between the refrigerant and the indoor air taken into the indoor unit 3 from a suction port (not shown) by the rotation of the indoor fan 32 . One refrigerant inlet/outlet of the indoor heat exchanger 31 is connected with the liquid pipe connection portion 33 and the indoor unit liquid pipe 67 , and the other refrigerant inlet/outlet is connected with the gas pipe connection portion 34 with the indoor unit gas pipe 68 . The indoor heat exchanger 31 functions as an evaporator when the indoor unit 3 performs cooling operation, and functions as a condenser when the indoor unit 3 performs heating operation. At the liquid pipe connection portion 33 and the gas pipe connection portion 34, the respective refrigerant pipes are connected by welding, flare nuts, or the like.

室内ファン32は樹脂材で形成されており、室内熱交換器31の近傍に配置されている。室内ファン31は、図示しないファンモータによって回転することで、図示しない吸込口から室内機3の内部に室内空気を取り込み、室内熱交換器31において冷媒と熱交換した室内空気を図示しない吹出口から室内へ吹き出す。 The indoor fan 32 is made of a resin material and arranged near the indoor heat exchanger 31 . The indoor fan 31 is rotated by a fan motor (not shown) to take indoor air into the interior of the indoor unit 3 from an inlet (not shown), and the indoor air heat-exchanged with the refrigerant in the indoor heat exchanger 31 is discharged from an outlet (not shown). Blow out into the room.

以上説明した構成の他に、室内機3には各々の種のセンサが設けられている。室内機液管67には、室内熱交換器31に出入りする冷媒の温度を検出する液側温度センサ77が設けられている。室内機ガス管68には、室内熱交換器31に出入りする冷媒の温度を検出するガス側温度センサ78が設けられている。そして、室内機3の図示しない吸込口付近には、室内機3の内部に流入する室内空気の温度、すなわち室内温度を検出する室内温度センサ79が備えられている。 In addition to the configuration described above, the indoor unit 3 is provided with various types of sensors. The indoor unit liquid pipe 67 is provided with a liquid side temperature sensor 77 that detects the temperature of the refrigerant flowing in and out of the indoor heat exchanger 31 . The indoor unit gas pipe 68 is provided with a gas-side temperature sensor 78 that detects the temperature of the refrigerant entering and exiting the indoor heat exchanger 31 . An indoor temperature sensor 79 for detecting the temperature of indoor air flowing into the interior of the indoor unit 3, that is, the room temperature, is provided near the suction port (not shown) of the indoor unit 3 .

<空調運転時の動作>
次に、本実施形態における空気調和機1の空調運転時の冷媒回路10における冷媒の流れや各々の装置の動作について、図1を用いて説明する。尚、以下の説明では、空気調和機1が暖房運転を行う場合について説明し、冷房運転を行う場合については詳細な説明を省略する。また、図1における矢印は暖房運転時の冷媒の流れを示している。
<Behavior during air conditioning operation>
Next, the flow of the refrigerant in the refrigerant circuit 10 and the operation of each device during the air conditioning operation of the air conditioner 1 according to the present embodiment will be described with reference to FIG. In the following description, the case where the air conditioner 1 performs the heating operation will be described, and detailed description of the case when the cooling operation is performed will be omitted. Arrows in FIG. 1 indicate the flow of refrigerant during heating operation.

図1に示すように、空気調和機1が暖房運転を行う場合は、四方弁22が実線で示す状態、すなわち、四方弁22のポートaとポートdが連通するよう、また、ポートbとポートcが連通するよう、切り換えられる。これにより、室外熱交換器23が蒸発器として機能するとともに、室内熱交換器31が凝縮器として機能する。 As shown in FIG. 1, when the air conditioner 1 performs the heating operation, the four-way valve 22 is in the state indicated by the solid line, that is, the port a and the port d of the four-way valve 22 are in communication, and the port b and the port are in communication. is switched so that c communicates. Thereby, the outdoor heat exchanger 23 functions as an evaporator, and the indoor heat exchanger 31 functions as a condenser.

圧縮機21から吐出された高圧の冷媒は、吐出管61を流れて四方弁22に流入し、四方弁22から室外機ガス管64、閉鎖弁26、ガス管5、ガス管接続部34の順に流れて室内機3に流入する。室内機3に流入した冷媒は、室内機ガス管68を流れて室内熱交換器31に流入し、室内ファン32の回転により室内機3の内部に取り込まれた室内空気と熱交換を行って凝縮する。このように、室内熱交換器31が凝縮器として機能し、室内熱交換器31で冷媒と熱交換を行って加熱された室内空気が図示しない吹出口から室内に吹き出されることによって、室内機3が設置された室内の暖房が行われる。 The high-pressure refrigerant discharged from the compressor 21 flows through the discharge pipe 61 and into the four-way valve 22, and from the four-way valve 22, the outdoor unit gas pipe 64, the closing valve 26, the gas pipe 5, and the gas pipe connection portion 34 in this order. It flows into the indoor unit 3. The refrigerant that has flowed into the indoor unit 3 flows through the indoor unit gas pipe 68 and into the indoor heat exchanger 31, exchanges heat with the indoor air taken into the indoor unit 3 by the rotation of the indoor fan 32, and condenses. do. In this way, the indoor heat exchanger 31 functions as a condenser, and the indoor air heated by exchanging heat with the refrigerant in the indoor heat exchanger 31 is blown into the room from an air outlet (not shown). The room where 3 is installed is heated.

室内熱交換器31から流出した冷媒は、室内機液管67を流れ液管接続部33を介して液管4に流出する。液管4を流れる冷媒は、閉鎖弁25を介して室外機2に流入する。室外機2に流入した冷媒は室外機液管63を流れ、膨張弁24を通過する際に減圧される。膨張弁24で減圧された冷媒は、冷媒導入部29、室外熱交換器23の順に流れて、室外熱交換器23で室外ファン28の回転によって吸込口211から室外機3の熱交換器室200bに流入する外気と熱交換を行って蒸発する。 The refrigerant flowing out of the indoor heat exchanger 31 flows through the indoor unit liquid pipe 67 and flows out to the liquid pipe 4 via the liquid pipe connection portion 33 . The refrigerant flowing through the liquid pipe 4 flows into the outdoor unit 2 via the closing valve 25 . The refrigerant that has flowed into the outdoor unit 2 flows through the outdoor unit liquid pipe 63 and is decompressed when passing through the expansion valve 24 . The refrigerant decompressed by the expansion valve 24 flows through the refrigerant introduction portion 29 and the outdoor heat exchanger 23 in this order, and the outdoor heat exchanger 23 rotates the outdoor fan 28 to flow from the suction port 211 to the heat exchanger chamber 200b of the outdoor unit 3. It evaporates by exchanging heat with the outside air that flows into it.

室外熱交換器23から冷媒配管62に流出した冷媒は、四方弁22、冷媒配管65と流れてアキュムレータ27に流入し、アキュムレータ27で液冷媒とガス冷媒に分離される。そして、分離されたガス冷媒は、吸入管66を介して圧縮機21に吸入されて再び圧縮される。 The refrigerant flowing out from the outdoor heat exchanger 23 to the refrigerant pipe 62 flows through the four-way valve 22 and the refrigerant pipe 65 and flows into the accumulator 27 where it is separated into liquid refrigerant and gas refrigerant. The separated gas refrigerant is sucked into the compressor 21 through the suction pipe 66 and compressed again.

尚、室内機3が冷房運転を行う場合は、四方弁22が破線で示す状態、すなわち、四方弁22のポートaとポートbが連通するよう、また、ポートcとポートdが連通するよう、切り換えられる。これにより、室外熱交換器23が凝縮器として機能するとともに、室内熱交換器31が蒸発器として機能する。 When the indoor unit 3 performs the cooling operation, the four-way valve 22 is in the state indicated by the dashed line, that is, so that the port a and the port b of the four-way valve 22 are in communication, and the port c and the port d are in communication. can be switched. Thereby, the outdoor heat exchanger 23 functions as a condenser, and the indoor heat exchanger 31 functions as an evaporator.

<室外熱交換器および冷媒導入部の構造>
次に、図2および図3を用いて、室外熱交換器23および冷媒導入部29の構造について詳細に説明する。
<Structure of Outdoor Heat Exchanger and Refrigerant Introduction>
Next, structures of the outdoor heat exchanger 23 and the refrigerant introduction part 29 will be described in detail with reference to FIGS. 2 and 3. FIG.

<室外熱交換器の構造>
図2(A)に示すように、室外熱交換器23は、室外機2を上方から見たときにL字状に形成されて、室外機2の左側面の吸込口211および背面側の吸込口211に臨むように配置される。室外熱交換器23はフィンアンドチューブ型の熱交換器であり、銅やアルミニウム、アルミニウム合金等で形成される直管の中央部をU字形状に折り曲げてなる24本の伝熱管23c(図2(B)では、これらのうち18本を描画している)と、アルミニウムやアルミニウム合金等で板状に形成されて伝熱管23cの長手方向に沿って所定の間隔で配置される複数枚のフィン23dを備えている。
<Outdoor heat exchanger structure>
As shown in FIG. 2A, the outdoor heat exchanger 23 is formed in an L shape when the outdoor unit 2 is viewed from above, and has a suction port 211 on the left side of the outdoor unit 2 and a suction port on the rear side. It is arranged so as to face the mouth 211 . The outdoor heat exchanger 23 is a fin-and-tube type heat exchanger, and includes 24 heat transfer tubes 23c (Fig. 2 18 of these are drawn in (B)), and a plurality of fins formed in a plate shape from aluminum, an aluminum alloy, or the like and arranged at predetermined intervals along the longitudinal direction of the heat transfer tube 23c. 23d.

図2に示すように、24本の伝熱管23cのうちの12本が室外機2の熱交換室200b側に配置されて上側伝熱管23cuとされ、残りの12本が室外機2の各々の吸込口211側に配置されて下側伝熱管23clとされている。上側伝熱管23cuと下側伝熱管23clとは、それぞれが平行に延びて複数枚のフィン23dを貫く構造となっており、各々のフィン23dに挿入された上側伝熱管23cuおよび下側伝熱管23clを機械的に拡管することで、各々のフィン23dと上側伝熱管23cuおよび下側伝熱管23clを密着させている。 As shown in FIG. 2, 12 out of the 24 heat transfer tubes 23c are arranged on the side of the heat exchange chamber 200b of the outdoor unit 2 to serve as the upper heat transfer tubes 23cu, and the remaining 12 are for each of the outdoor units 2. It is arranged on the suction port 211 side and serves as a lower heat transfer tube 23cl. The upper heat transfer tube 23cu and the lower heat transfer tube 23cl have a structure in which each extends in parallel and penetrates a plurality of fins 23d. are mechanically expanded to bring each fin 23d into close contact with the upper heat transfer tube 23cu and the lower heat transfer tube 23cl.

図2(B)に示すように、下側伝熱管23clは上側伝熱管23cuよりも下側に配置されている。また、図2(A)に示すように、上側伝熱管23cuおよび下側伝熱管23clのU字形状に折り曲げた箇所が、室外熱交換器23における室外機2の前面側の端部(後述する冷媒導入部29が接続される側と反対側の端部)に配置される。さらには、上側伝熱管23cuおよび下側伝熱管23clの端部は、室外熱交換器23における後述する冷媒導入部29が接続される側の端部に配置される。 As shown in FIG. 2B, the lower heat transfer tube 23cl is arranged below the upper heat transfer tube 23cu. In addition, as shown in FIG. 2A, the U-shaped bent portion of the upper heat transfer tube 23cu and the lower heat transfer tube 23cl is the end of the outdoor heat exchanger 23 on the front side of the outdoor unit 2 (to be described later). end opposite to the side to which the coolant introduction part 29 is connected). Furthermore, the ends of the upper heat transfer tube 23cu and the lower heat transfer tube 23cl are arranged at the ends of the outdoor heat exchanger 23 on the side to which the later-described refrigerant introduction part 29 is connected.

24本の伝熱管23cのうち、図2(B)に示す実線X、つまり、室外熱交換器23の上下方向の略中央部を境として、実線Xより下側に配置されている6本の上側伝熱管23cuおよび6本の下側伝熱管23clで下側パス23aが形成される。また、実線Xより上側に配置されている6本の上側伝熱管23cuおよび6本の下側伝熱管23clで上側パス23bが形成される。尚、上述した下側パス23aが本発明の第一冷媒流路であり、上側パス23bが本発明の第二冷媒流路である。 Of the 24 heat transfer tubes 23c, the solid line X shown in FIG. A lower pass 23a is formed by the upper heat transfer tube 23cu and the six lower heat transfer tubes 23cl. Also, six upper heat transfer tubes 23cu and six lower heat transfer tubes 23cl arranged above the solid line X form an upper path 23b. The above-described lower path 23a is the first refrigerant flow path of the invention, and the upper path 23b is the second refrigerant flow path of the invention.

下側パス23aは、2本の上側伝熱管23cuおよび2本の下側伝熱管23clを接続したものを1組とした3組の小パス23a1で構成されている。具体的には、各々の小パス23a1において、2本の下側伝熱管23clが図示しないU字形状の管(以降、接続管と記載する)で接続され、2本の上側伝熱管23cuが接続管で接続される。また、2本の上側伝熱管23cuのうちの下方に配置される上側伝熱管23cuと、2本の下側伝熱管23clのうちの下方に配置される下側伝熱管23clとが接続管で接続される。また、2本の上側伝熱管23cuのうちの上方に配置される上側伝熱管23cuが図示しないヘッダを介して冷媒配管62に接続され、2本の下側伝熱管23clのうちの上方に配置される下側伝熱管23clが下部分配器80aを介して後述する冷媒導入部29に接続される。 The lower path 23a is composed of three sets of small paths 23a1, one set of which is formed by connecting two upper heat transfer tubes 23cu and two lower heat transfer tubes 23cl. Specifically, in each small path 23a1, two lower heat transfer tubes 23cl are connected by a not-shown U-shaped tube (hereinafter referred to as a connection tube), and two upper heat transfer tubes 23cu are connected. Connected by pipes. In addition, the upper heat transfer tube 23cu, which is the lower one of the two upper heat transfer tubes 23cu, and the lower heat transfer tube 23cl, which is the lower one of the two lower heat transfer tubes 23cl, are connected by connecting tubes. be done. The upper heat transfer pipe 23cu arranged above the two upper heat transfer pipes 23cu is connected to the refrigerant pipe 62 via a header (not shown), and the upper heat transfer pipe 23cu is arranged above the two lower heat transfer pipes 23cl. The lower heat transfer pipe 23cl is connected to a refrigerant introduction portion 29, which will be described later, through a lower distributor 80a.

以上説明したように、小パス23a1において2本の上側伝熱管23cuおよび2本の下側伝熱管23clが相互に接続されて、図2(B)の示すように、暖房運転時に下部分配器80aから各々の小パス23a1に流入した冷媒が、矢印23afのように各々の小パス23a1を流れて図示しないヘッダを介して冷媒配管62に流出する。尚、矢印23afにおいて、実線部分が上述した接続管で上側伝熱管23cuおよび下側伝熱管23clが相互に接続されている箇所を示し、破線部分が上側伝熱管23cuおよび下側伝熱管23clのU字形状に折り曲げられた箇所を示す。 As described above, the two upper heat transfer tubes 23cu and the two lower heat transfer tubes 23cl are connected to each other in the small path 23a1, and as shown in FIG. Refrigerant that has flowed into each small path 23a1 from , flows through each small path 23a1 as indicated by an arrow 23af, and flows out to the refrigerant pipe 62 via a header (not shown). In addition, in the arrow 23af, the solid line portion indicates the portion where the upper heat transfer pipe 23cu and the lower heat transfer pipe 23cl are connected to each other with the connection pipe described above, and the broken line portion indicates the U of the upper heat transfer pipe 23cu and the lower heat transfer pipe 23cl. It shows the part where it is folded into a letter shape.

上側パス23bは、2本の上側伝熱管23cuおよび2本の下側伝熱管23clを接続したものを1組とした3組の小パス23b1で構成されている。具体的には、各々の小パス23b1において、2本の下側伝熱管23clが接続管で接続され、2本の上側伝熱管23cuが接続管で接続される。また、2本の上側伝熱管23cuのうちの下側に配置される上側伝熱管23cuと、2本の下側伝熱管23clのうちの下側に配置される下側伝熱管23clが接続管で接続される。また、2本の上側伝熱管23cuのうちの上側に配置される上側伝熱管23cuが図示しないヘッダを介して冷媒配管62に接続され、2本の下側伝熱管23clのうちの上側に配置される下側伝熱管23clが上部分配器80bを介して後述する冷媒導入部29に接続される。 The upper path 23b is composed of three sets of small paths 23b1, one set of which is formed by connecting two upper heat transfer tubes 23cu and two lower heat transfer tubes 23cl. Specifically, in each small path 23b1, two lower heat transfer tubes 23cl are connected by connecting pipes, and two upper heat transfer tubes 23cu are connected by connecting pipes. An upper heat transfer tube 23cu arranged on the lower side of the two upper heat transfer tubes 23cu and a lower heat transfer tube 23cl arranged on the lower side of the two lower heat transfer tubes 23cl are connecting tubes. Connected. The upper heat transfer pipe 23cu arranged on the upper side of the two upper heat transfer pipes 23cu is connected to the refrigerant pipe 62 via a header (not shown), and is arranged on the upper side of the two lower heat transfer pipes 23cl. The lower heat transfer pipe 23cl is connected to a refrigerant introduction portion 29, which will be described later, through an upper distributor 80b.

以上説明したように、小パス23b1において2本の上側伝熱管23cuおよび2本の下側伝熱管23clが相互に接続されて、図2(B)の示すように、暖房運転時に上部分配器80bから各々の小パス23b1に流入した冷媒が矢印23bfのように各々の小パス23b1を流れて冷媒配管62に流出する。尚、矢印23bfにおいて、実線部分が上述した接続管で上側伝熱管23cuおよび下側伝熱管23clが相互に接続されている箇所を示し、破線部分が上側伝熱管23cuおよび下側伝熱管23clのU字形状に折り曲げられた箇所を示す。 As described above, the two upper heat transfer tubes 23cu and the two lower heat transfer tubes 23cl are connected to each other in the small path 23b1, and as shown in FIG. Refrigerant that has flowed into each of the small paths 23b1 from , flows through each of the small paths 23b1 as indicated by arrows 23bf and flows out to the refrigerant pipe 62 . In addition, in the arrow 23bf, the solid line portion indicates the portion where the upper heat transfer pipe 23cu and the lower heat transfer pipe 23cl are connected to each other with the connection pipe described above, and the broken line portion indicates the U of the upper heat transfer pipe 23cu and the lower heat transfer pipe 23cl. It shows the part where it is folded into a letter shape.

<冷媒導入部の構造>
次に、本実施形態の特徴部である冷媒導入部29について説明する。冷媒導入部29は、第1開口部と、第2開口部と、衝突部と、衝突空間とを有する撹拌部を2つ備え、暖房運転時に室外機2に流入した気液二相冷媒における液冷媒の偏りを各撹拌部でなくして、室外熱交換器23の各冷媒配管に分配するものである。
<Structure of Refrigerant Introduction Portion>
Next, the refrigerant introduction part 29, which is a characteristic part of this embodiment, will be described. The refrigerant introduction part 29 includes two agitating parts each having a first opening, a second opening, a collision part, and a collision space. Refrigerant is distributed to each refrigerant pipe of the outdoor heat exchanger 23 by removing unevenness of the refrigerant in each agitator.

前述したように、冷媒導入部29は、一方の冷媒出入口は室外熱交換器23の他方の冷媒出入口に接続され、他方の冷媒出入口は室外機液管63で閉鎖弁25に接続されている。図2および図3に示すように、冷媒導入部29は、分岐部29aと、第一接続部29bと、第一撹拌部29cと、第二接続部29dと、第二撹拌部29eと、第三接続部29fとを有する。これら冷媒導入部29を構成する部材は、室外熱交換器23から膨張弁24に向かって、つまり、暖房運転時の冷媒の流れる方向における下流側から上流側に向かって、分岐部29a、第一接続部29b、第一撹拌部29c、第二接続部29d、第二撹拌部29e、第三接続部29fの順に配置されている。 As described above, one refrigerant inlet/outlet of the refrigerant introduction part 29 is connected to the other refrigerant inlet/outlet of the outdoor heat exchanger 23 , and the other refrigerant inlet/outlet is connected to the closing valve 25 via the outdoor unit liquid pipe 63 . As shown in FIGS. 2 and 3, the refrigerant introduction portion 29 includes a branch portion 29a, a first connection portion 29b, a first stirring portion 29c, a second connection portion 29d, a second stirring portion 29e, and a second stirring portion 29e. It has three connection parts 29f. The members constituting these refrigerant introduction portions 29 are divided from the outdoor heat exchanger 23 toward the expansion valve 24, that is, from the downstream side to the upstream side in the direction in which the refrigerant flows during the heating operation, the branch portion 29a, the first The connecting portion 29b, the first stirring portion 29c, the second connecting portion 29d, the second stirring portion 29e, and the third connecting portion 29f are arranged in this order.

分岐部29aは円管を用いてY字形状に形成されており、一端が第一分岐管29a1と第二分岐管29a2の2股に分かれており、第一分岐管29a1が分岐部29aより上方に配置された下部分配器80aに接続され、第二分岐管29a2が分岐部29aおよび下部分配器80aより上方に配置された上部分配器80bに接続されている。また、分岐部29aの他端は、図3に示す境界線L1で分岐部29aより下方に配置された第一接続部29bの一端に連続している。分岐部29aは、上記のように下部分配器80a、上部分配器80b、および、第一接続部29bのそれぞれに接続されることで、機械室200a内部において下部分配器80aや上部分配器80bより下方、かつ、下部分配器80aや上部分配器80bに接続される側が境界線L1側より上方となるように配置される。 The branch portion 29a is formed in a Y shape using a circular pipe, and one end thereof is divided into a first branch pipe 29a1 and a second branch pipe 29a2. The second branch pipe 29a2 is connected to an upper distributor 80b arranged above the branch portion 29a and the lower distributor 80a. The other end of the branched portion 29a is continuous with one end of the first connection portion 29b arranged below the branched portion 29a at the boundary line L1 shown in FIG. The branch portion 29a is connected to the lower distributor 80a, the upper distributor 80b, and the first connection portion 29b, respectively, as described above, so that the lower distributor 80a and the upper distributor 80b in the inside of the machine room 200a. It is arranged so that the lower side and the side connected to the lower distributor 80a and the upper distributor 80b are above the boundary line L1 side.

分岐部29aは、空気調和機1が冷房運転を行うときは、室外熱交換器23の下側パス23aから下部分配器80aを介して流入した冷媒と、室外熱交換器23の上側パス23bから上部分配器80bを介して流入した冷媒とを合流させて、第一接続部29bへと流出させる。また、空気調和機1が暖房運転を行うときは、第一接続部29bから流入した冷媒を、下部分配器80aを介して室外熱交換器23の下側パス23aへと、および、上部分配器80bを介して室外熱交換器23の上側パス23bへと、分流させる。 When the air conditioner 1 performs a cooling operation, the branch portion 29a receives the refrigerant flowing from the lower path 23a of the outdoor heat exchanger 23 via the lower distributor 80a and the refrigerant from the upper path 23b of the outdoor heat exchanger 23. The refrigerant that has flowed in via the upper distributor 80b is merged with the refrigerant and flowed out to the first connection portion 29b. Further, when the air conditioner 1 performs heating operation, the refrigerant flowing from the first connection portion 29b is sent to the lower path 23a of the outdoor heat exchanger 23 via the lower distributor 80a, and to the upper distributor 80 b to the upper path 23 b of the outdoor heat exchanger 23 .

第一接続部29bは円管であり、一端が前述したように境界線L1で分岐部29aに連続し、他端が境界線L2で第一撹拌部29cの後述する第一開口部29c3に連続している。第一接続部29bは、上記のように分岐部29aおよび第一撹拌部29cにそれぞれ接続されることで、室外機2の機械室200a内部において分岐部29aより下方、かつ、境界線L1側が境界線L2側より上方となるように配置される。 The first connection portion 29b is a circular pipe, and one end thereof is continuous with the branch portion 29a along the boundary line L1 as described above, and the other end thereof is continuous with the first opening portion 29c3 of the first stirring portion 29c described later along the boundary line L2. is doing. The first connection portion 29b is connected to the branch portion 29a and the first stirring portion 29c as described above, so that the branch portion 29a and the boundary line L1 side of the inside of the machine room 200a of the outdoor unit 2 are located below the branch portion 29a. It is arranged so as to be above the line L2 side.

第一撹拌部29cは円管を用いてT字形状に形成されており、上方に開口した第一開口部29c3と、室外機2の設置面に対して水平方向に開口した第二開口部29c4の2つの開口部を有する。また、第二開口部29c4と180度反対側には、端部が半球形状とされた衝突部29c1が形成されている。第一開口部29c3は、前述したように境界線L2で第一接続部29bに連続している。第二開口部29c4は、境界線L3で第二接続部29dに連続している。第一撹拌部29cは、上記のように第一接続部29bに接続されることで、室外機2の機械室200a内部において第一接続部29bより下方に配置される。そして、第二開口部29c4と衝突部29c1との間が、衝突空間29c2となっている。つまり、第二開口部29c4と衝突部29c1とは、衝突空間29c2を挟んで対向する配置となっている。 The first stirring part 29c is formed in a T shape using a circular pipe, and has a first opening 29c3 that opens upward and a second opening 29c4 that opens horizontally with respect to the installation surface of the outdoor unit 2. has two openings. A collision portion 29c1 having a hemispherical end is formed on the opposite side of the second opening 29c4 by 180 degrees. The first opening 29c3 is continuous with the first connecting portion 29b at the boundary line L2 as described above. The second opening 29c4 is continuous with the second connecting portion 29d at the boundary line L3. The first stirring part 29c is arranged below the first connecting part 29b inside the machine room 200a of the outdoor unit 2 by being connected to the first connecting part 29b as described above. A collision space 29c2 is formed between the second opening 29c4 and the collision portion 29c1. That is, the second opening 29c4 and the collision portion 29c1 are arranged to face each other with the collision space 29c2 interposed therebetween.

第二接続部29dは円管であり、一端が前述したように境界線L3で第一撹拌部29cの第二開口部29c4に連続し、他端が境界線L4で第二撹拌部29eの後述する第一開口部29e3に連続している。第二接続部29dは、上記のように第一撹拌部29cおよび第二撹拌部29eにそれぞれ接続されることで、室外機2の機械室200a内部において第一接続部29bより下方、かつ、境界線L3側と境界線L4側とがほぼ同じ高さとなるように配置される。 The second connecting portion 29d is a circular tube, and one end thereof is continuous with the second opening portion 29c4 of the first stirring portion 29c at the boundary line L3 as described above, and the other end thereof is at the boundary line L4 and is connected to the second stirring portion 29e. It is continuous with the first opening 29e3. The second connection portion 29d is connected to the first stirring portion 29c and the second stirring portion 29e as described above, so that the second connection portion 29d is located below the first connection portion 29b inside the machine chamber 200a of the outdoor unit 2 and at the boundary. It is arranged so that the line L3 side and the boundary line L4 side have substantially the same height.

第二撹拌部29eは円管を用いてT字形状に形成されており、室外機2の設置面に対して水平方向に開口した第一開口部29e3と、上方に開口した第二開口部29e4の2つの開口部を有する。また、第二開口部29e4と180度反対側には、端部が半球形状とされた衝突部29e1が形成されている。第一開口部29e3は、前述したように境界線L4で第二接続部29dに連続している。第二開口部29e4は、境界線L5で第二撹拌部29eより上方に配置されている第三接続部29fに連続している。第二撹拌部29eは、上記のように第二接続部29dに接続されることで、室外機2の機械室200a内部において第一撹拌部29cとほぼ同じ高さに配置される。そして、第二開口部29e4と衝突部29e1との間が、衝突空間29e2となっている。つまり、第二開口部29e4と衝突部29e1とは、衝突空間29e2を挟んで対向する配置となっている。 The second stirring part 29e is formed in a T shape using a circular pipe, and has a first opening 29e3 that opens horizontally with respect to the installation surface of the outdoor unit 2 and a second opening 29e4 that opens upward. has two openings. A collision portion 29e1 having a hemispherical end is formed on the opposite side of the second opening 29e4 by 180 degrees. The first opening 29e3 is continuous with the second connecting portion 29d at the boundary line L4 as described above. The second opening 29e4 is continuous with the third connecting portion 29f arranged above the second stirring portion 29e at the boundary line L5. The second stirring part 29e is arranged at substantially the same height as the first stirring part 29c inside the machine room 200a of the outdoor unit 2 by being connected to the second connection part 29d as described above. A collision space 29e2 is formed between the second opening 29e4 and the collision portion 29e1. That is, the second opening 29e4 and the collision portion 29e1 are arranged to face each other with the collision space 29e2 interposed therebetween.

第三接続部29fは円管であり、一端が前述したように境界線L5で第二撹拌部29eの第二開口部29e4に連続し、他端が第三接続部29fより上方に配置されている室外機液管63に接続されている。第三接続部29fは、上記のように第二撹拌部29eおよび室外機液管63にそれぞれ接続されることで、室外機2の機械室200a内部において第二撹拌部29eより上方、かつ、室外機液管63に接続する側が境界線L5側より上方となるように配置される。
なお、上記の冷媒導入部29の説明で使用した境界線L1~L5は、各々が冷媒導入部29の説明をわかりやすくするために図3に描いた仮想の境界線である。
The third connecting portion 29f is a circular pipe, one end of which is continuous with the second opening 29e4 of the second stirring portion 29e at the boundary line L5 as described above, and the other end of which is arranged above the third connecting portion 29f. is connected to the outdoor unit liquid pipe 63. The third connecting portion 29f is connected to the second stirring portion 29e and the outdoor unit liquid pipe 63 as described above, so that the third connecting portion 29f is positioned above the second stirring portion 29e inside the machine chamber 200a of the outdoor unit 2 and outside the room. It is arranged so that the side connected to the mechanical fluid pipe 63 is above the boundary line L5 side.
Note that the boundary lines L1 to L5 used in the explanation of the coolant introduction portion 29 above are imaginary boundary lines drawn in FIG.

<暖房運転時の室外機液管から室外熱交換器への冷媒の流れ>
次に、空気調和機1が暖房運転を行う際に、冷媒導入部29が、室外機液管63から流入し室外熱交換器23へと流出する冷媒に与える効果について、図2および図3を用いて説明する。
<Refrigerant flow from outdoor unit liquid pipe to outdoor heat exchanger during heating operation>
Next, FIG. 2 and FIG. 3 show the effect of the refrigerant introduction part 29 on the refrigerant flowing in from the outdoor unit liquid pipe 63 and flowing out to the outdoor heat exchanger 23 when the air conditioner 1 performs heating operation. will be used for explanation.

空気調和機1が暖房運転を行うときは、図2を用いて先に説明したように、室内機3から閉鎖弁25を経て室外機2の室外機液管63に流入した冷媒が、膨張弁24を通過する際に減圧されて気液二相冷媒となる。膨張弁24から流出した冷媒は、室外機液管63を流れて冷媒導入部29に流入する。 When the air conditioner 1 performs heating operation, as described above using FIG. 24, it is depressurized and becomes a gas-liquid two-phase refrigerant. The refrigerant flowing out of the expansion valve 24 flows through the outdoor unit liquid pipe 63 and flows into the refrigerant introduction portion 29 .

図3に示すように、冷媒導入部29に流入した冷媒は第三接続部29fを流れ、第二開口部29e4を介して第二撹拌部29eに流入する。第二撹拌部29eに流入した冷媒は、その大部分が衝突部29e1へと流れて衝突部29e1に衝突して上方へと反転する。そして、反転した冷媒と第三接続部29fから流入した冷媒とが衝突空間29e2でぶつかって撹拌されて、第二撹拌部29eから第一開口部29e3を介して第二接続部29dへと流出する。このように、第二撹拌部29eに流入した冷媒は、ガス冷媒と液冷媒とが撹拌されて第二接続部29dへと流れるので、第二接続部29dを冷媒が流れる際に第二接続部29dの内部で液冷媒が偏らない。 As shown in FIG. 3, the refrigerant that has flowed into the refrigerant introduction portion 29 flows through the third connection portion 29f and flows into the second stirring portion 29e via the second opening portion 29e4. Most of the refrigerant that has flowed into the second stirring portion 29e flows to the collision portion 29e1, collides with the collision portion 29e1, and is reversed upward. Then, the reversed refrigerant and the refrigerant flowing from the third connecting portion 29f collide with each other in the collision space 29e2 and are stirred, and flow out from the second stirring portion 29e to the second connecting portion 29d through the first opening 29e3. . In this way, the refrigerant that has flowed into the second stirring portion 29e flows to the second connection portion 29d while the gas refrigerant and the liquid refrigerant are stirred. The liquid refrigerant is not biased inside 29d.

第二接続部29dを流れる冷媒は、第二開口部29c4を介して第一撹拌部29cに流入する。第一撹拌部29cに流入した冷媒は、その大部分が衝突部29c1へと流れて衝突部29c1に衝突して第二開口部29c4の方へと反転する。そして、反転した冷媒と第二接続部29dから流入した冷媒とが衝突空間29c2でぶつかって撹拌されて、第一撹拌部29cから第一開口部29c3を介して第一接続部29bへと流出する。このように、第一撹拌部29cに流入した冷媒は、ガス冷媒と液冷媒とが撹拌されて第一接続部29bへと流れるので、第一接続部29bを冷媒が流れる際に第一接続部29bの内部で液冷媒が偏らない。 The refrigerant flowing through the second connection portion 29d flows into the first stirring portion 29c through the second opening portion 29c4. Most of the refrigerant that has flowed into the first stirring portion 29c flows into the collision portion 29c1, collides with the collision portion 29c1, and is reversed toward the second opening portion 29c4. Then, the reversed refrigerant and the refrigerant flowing from the second connecting portion 29d collide with each other in the collision space 29c2 and are stirred, and flow out from the first stirring portion 29c to the first connecting portion 29b through the first opening 29c3. . In this way, the refrigerant that has flowed into the first stirring portion 29c flows to the first connection portion 29b while the gas refrigerant and the liquid refrigerant are stirred. The liquid refrigerant is not biased inside 29b.

第一接続部29bを流れる冷媒は分岐部29へと流入し、第一分岐管29a1と第二分岐管29a2へと分流する。第一分岐管29a1に分流した冷媒(図3に示す矢印FR1)は、下部分配器80aを介して下側パス23aへと流れ、第二分岐管29a2に流入した冷媒(図3に示す矢印FR2)は、上部分配器80bを介して上側パス23bへと流れる。 The refrigerant flowing through the first connection portion 29b flows into the branch portion 29 and is divided into the first branch pipe 29a1 and the second branch pipe 29a2. Refrigerant branched into the first branch pipe 29a1 (arrow FR1 shown in FIG. 3) flows to the lower path 23a via the lower distributor 80a and flows into the second branch pipe 29a2 (arrow FR2 shown in FIG. 3). ) flows through the upper distributor 80b to the upper path 23b.

以上に説明したように、空気調和機1の暖房運転時に膨張弁24で減圧されて気液二相状態となった冷媒は、冷媒導入部29の第一撹拌部29cと第二撹拌部29eとによって、ガス冷媒と液冷媒とが撹拌されて室外熱交換器23の下側パス23aと上側パス23bとに分配される。従って、各々のパスに流れる気液二相冷媒のガス冷媒と液冷媒との比率を均一にでき、室外熱交換器23で発揮される熱交換能力の低下を抑制することができる。 As described above, the refrigerant that has been decompressed by the expansion valve 24 during the heating operation of the air conditioner 1 and is in a gas-liquid two-phase state flows through the first stirring portion 29c and the second stirring portion 29e of the refrigerant introduction portion 29. , the gas refrigerant and the liquid refrigerant are stirred and distributed to the lower path 23 a and the upper path 23 b of the outdoor heat exchanger 23 . Therefore, the ratio of gas refrigerant and liquid refrigerant in the two-phase gas-liquid refrigerant flowing in each path can be made uniform, and a decrease in the heat exchange capacity exhibited by the outdoor heat exchanger 23 can be suppressed.

次に、本発明の第2の実施形態について説明する。第1の実施形態と異なるのは、冷媒導入部の第二撹拌部の形状であり、特に、第二撹拌部の衝突部の形状が、第一の実施形態と異なる。尚、上記以外の点については、第1の実施形態と同じであるため、詳細な説明を省略する。 Next, a second embodiment of the invention will be described. What differs from the first embodiment is the shape of the second stirring part of the refrigerant introduction part, and in particular, the shape of the collision part of the second stirring part is different from the first embodiment. Since points other than the above are the same as those of the first embodiment, detailed description thereof will be omitted.

<第二撹拌部の形状>
本実施
形態の冷媒導入部29では、第一の実施形態の第二撹拌部29eに代えて、図4に示す第二撹拌部29gが備えられている。第二撹拌部29gは円管を用いてT字形状に形成されており、室外機2の設置面に対して水平方向に開口した第一開口部29g3と、上方に開口した第二開口部29g4の2つの開口部を有する。また、第二開口部29g4と180度反対側には、衝突部29g1が球形状に形成されている。第一開口部29g3は、境界線L4で第二接続部29dに連続している。第二開口部29g4は、境界線L5で第二撹拌部29eより上方に配置されている第三接続部29fに連続している。そして、第二開口部29g4と衝突部29g1との間が、衝突空間29g2となっている。つまり、第二開口部29g4と衝突部29g1とは、衝突空間29g2を挟んで対向する配置となっている。
なお、第1の実施形態と同様に、上記の第二撹拌部29gの説明で使用した境界線L4とL5は、各々第二撹拌部29gの説明をわかりやすくするために図4に描いた仮想の境界線である。
<Shape of second stirring unit>
In the refrigerant introduction part 29 of this embodiment, a second stirring part 29g shown in FIG. 4 is provided instead of the second stirring part 29e of the first embodiment. The second stirring part 29g is formed in a T shape using a circular pipe, and has a first opening 29g3 that opens horizontally with respect to the installation surface of the outdoor unit 2, and a second opening 29g4 that opens upward. has two openings. A spherical impact portion 29g1 is formed on the side 180 degrees opposite to the second opening portion 29g4. The first opening 29g3 is continuous with the second connecting portion 29d at the boundary line L4. The second opening 29g4 is continuous with the third connecting portion 29f arranged above the second stirring portion 29e at the boundary line L5. A collision space 29g2 is formed between the second opening 29g4 and the collision portion 29g1. That is, the second opening 29g4 and the collision portion 29g1 are arranged to face each other with the collision space 29g2 interposed therebetween.
Note that, as in the first embodiment, the boundary lines L4 and L5 used in the explanation of the second stirring section 29g are virtual lines drawn in FIG. 4 to facilitate the explanation of the second stirring section 29g. is the border of

<暖房運転時の室外機液管から室外熱交換器への冷媒の流れ>
上記のような第二撹拌部29gを有する冷媒導入部29を室外機2に備えた空気調和機1が暖房運転を行うとき、膨張弁24から流出した冷媒は、室外機液管63を流れて冷媒導入部29に流入する。図4に示すように、冷媒導入部29に流入した冷媒は第三接続部29fを流れ、第二開口部29g4を介して第二撹拌部29gに流入する。
<Refrigerant flow from outdoor unit liquid pipe to outdoor heat exchanger during heating operation>
When the air conditioner 1 including the refrigerant introduction portion 29 having the second stirring portion 29g as described above in the outdoor unit 2 performs heating operation, the refrigerant flowing out of the expansion valve 24 flows through the outdoor unit liquid pipe 63. It flows into the refrigerant introduction part 29 . As shown in FIG. 4, the refrigerant that has flowed into the refrigerant introduction portion 29 flows through the third connection portion 29f and flows into the second stirring portion 29g via the second opening portion 29g4.

第二撹拌部29gに流入した冷媒は、その大部分が衝突部29g1へと流れて衝突部29g1に衝突して上方へと反転する。そして、反転した冷媒と第三接続部29fから流入した冷媒とが衝突空間29g2でぶつかって撹拌されて、第二撹拌部29gから第一開口部29e3を介して第二接続部29dへと流出する。このように、第二撹拌部29gで撹拌されてガス冷媒と液冷媒との比率が均一化された冷媒が、第二接続部29dへと流れる。 Most of the refrigerant that has flowed into the second stirring portion 29g flows into the collision portion 29g1, collides with the collision portion 29g1, and is reversed upward. Then, the reversed refrigerant and the refrigerant flowing from the third connecting portion 29f collide with each other in the collision space 29g2 and are stirred, and flow out from the second stirring portion 29g to the second connecting portion 29d through the first opening 29e3. . In this way, the refrigerant in which the ratio of gas refrigerant and liquid refrigerant is homogenized by being stirred by the second stirring portion 29g flows to the second connection portion 29d.

前述したように、第二撹拌部29gの衝突部29g1は球形状であり、また、図3と図4とを比較すれば明らかなように、本実施形態の衝突部29g1の方が第1の実施形態の衝突部29e1と比べて容積が大きくなるように形成されている。これらのことから、本実施形態の衝突部29g1の方が第1の実施形態の衝突部29e1と比べて冷媒がより撹拌される。そして、衝突部29g1である程度均一化された冷媒が第三接続部29fから流入した冷媒と衝突空間29g2でぶつかってさらに冷媒の撹拌が起こる。このように、第二撹拌部29gに流入した冷媒は、ガス冷媒と液冷媒とが撹拌されて第二接続部29dへと流れるので、第二接続部29dを冷媒が流れる際に第二接続部29dの内部で液冷媒が偏らない。 As described above, the collision portion 29g1 of the second stirring portion 29g is spherical, and as is clear from a comparison of FIGS. 3 and 4, the collision portion 29g1 of the present embodiment is the first It is formed so as to have a larger volume than the collision portion 29e1 of the embodiment. For these reasons, the collision portion 29g1 of the present embodiment agitates the refrigerant more than the collision portion 29e1 of the first embodiment. Then, the refrigerant homogenized to some extent at the collision portion 29g1 collides with the refrigerant flowing from the third connection portion 29f in the collision space 29g2, thereby further stirring the refrigerant. In this way, the refrigerant that has flowed into the second stirring portion 29g flows into the second connection portion 29d while the gas refrigerant and the liquid refrigerant are stirred. The liquid refrigerant is not biased inside 29d.

以上に説明したように、本実施形態の空気調和機1では、球形状の衝突部29g1を有する第二撹拌部29gを備えた冷媒導入部29が室外機2に設けられている。従って、第1の実施形態と比べて、より均一化された冷媒を室外熱交換器23の下側パス23aと上側パス23bとに分配できるので、各々のパスに流れる気液二相冷媒のガス冷媒と液冷媒との比率を均一にでき、室外熱交換器23で発揮される熱交換能力の低下をより効果的に防ぐことができる。 As described above, in the air conditioner 1 of the present embodiment, the outdoor unit 2 is provided with the refrigerant introduction portion 29 including the second stirring portion 29g having the spherical collision portion 29g1. Therefore, as compared with the first embodiment, a more homogenized refrigerant can be distributed to the lower path 23a and the upper path 23b of the outdoor heat exchanger 23, so the gas-liquid two-phase refrigerant gas flowing through each path The ratio between the refrigerant and the liquid refrigerant can be made uniform, and a decrease in the heat exchange capacity exhibited by the outdoor heat exchanger 23 can be prevented more effectively.

尚、以上に説明した実施形態では、第二撹拌部29gの衝突部29g1を球形状とする場合を説明したが、第一撹拌部29cの衝突部29c1を球形状としてもよく、また、衝突部29g1と衝突部29c1とをともに球形状としてもよい。また、衝突部29g1の形状は立方体などの別の形状でもよく、第1の実施形態の第2衝突部29e1より容積が大きければよい。ただし、衝突部29c1を球形状としたほうが、立方体形状など角のある形状とするよりは、衝突部29c1で冷媒が受ける圧力損失を低減できるため、球形状とするのが好ましい。 In the above-described embodiment, the collision part 29g1 of the second stirring part 29g is spherical, but the collision part 29c1 of the first stirring part 29c may be spherical. Both the 29g1 and the collision portion 29c1 may be spherical. Further, the shape of the collision portion 29g1 may be another shape such as a cube, as long as the volume is larger than that of the second collision portion 29e1 of the first embodiment. However, a spherical collision portion 29c1 is preferable to a cubic shape or other angular shape because the pressure loss that the refrigerant receives at the collision portion 29c1 can be reduced.

次に、本発明の第3の実施形態について説明する。第1の実施形態や第2の実施形態と異なるのは、冷媒導入部の第二撹拌部の形状であり、特に、第二撹拌部の衝突部の形状が、第1の実施形態や第2の実施形態と異なる。尚、上記以外の点については、第1の実施形態や第2の実施形態と同じであるため、詳細な説明を省略する。 Next, a third embodiment of the invention will be described. The difference from the first embodiment and the second embodiment is the shape of the second stirring part of the refrigerant introduction part. different from the embodiment of Since points other than the above are the same as those of the first and second embodiments, detailed description thereof will be omitted.

<第二撹拌部の形状>
本実施形態の冷媒導入部29では、第一の実施形態の第二撹拌部29eや第二の実施形態の第二撹拌部29gに代えて、図5に示す第二撹拌部29hが備えられている。第二撹拌部29hは円管を用いてT字形状に形成されており、室外機2の設置面に対して水平方向に開口した第一開口部29h3と、上方に開口した第二開口部29h4の2つの開口部を有する。また、第二開口部29h4と180度反対側には、第一開口部29h3に向かって斜めに上昇するように、つまり、図5の正面視で三角形状となるように衝突部29h1が形成されている。第一開口部29h3は、境界線L4で第二接続部29dに連続している。第二開口部29h4は、境界線L5で第二撹拌部29eより上方に配置されている第三接続部29fに連続している。そして、第二開口部29h4と衝突部29h1との間が、衝突空間29h2となっている。つまり、第二開口部29h4と衝突部29h1とは、衝突空間29h2を挟んで対向する配置となっている。
なお、第1の実施形態や第2の実施形態と同様に、上記の第二撹拌部29gの説明で使用した境界線L4とL5は、各々第二撹拌部29gの説明をわかりやすくするために図4に描いた仮想の境界線である。
<Shape of second stirring unit>
In the refrigerant introduction part 29 of the present embodiment, a second stirring part 29h shown in FIG. 5 is provided instead of the second stirring part 29e of the first embodiment and the second stirring part 29g of the second embodiment. there is The second stirring part 29h is formed in a T shape using a circular pipe, and has a first opening 29h3 that opens horizontally with respect to the installation surface of the outdoor unit 2 and a second opening 29h4 that opens upward. has two openings. Further, on the opposite side of the second opening 29h4 by 180 degrees, a collision part 29h1 is formed so as to rise obliquely toward the first opening 29h3, that is, to have a triangular shape when viewed from the front in FIG. ing. The first opening 29h3 is continuous with the second connecting portion 29d at the boundary line L4. The second opening portion 29h4 is continuous with the third connection portion 29f arranged above the second stirring portion 29e at the boundary line L5. A collision space 29h2 is formed between the second opening 29h4 and the collision portion 29h1. That is, the second opening 29h4 and the collision portion 29h1 are arranged to face each other with the collision space 29h2 interposed therebetween.
Note that, as in the first and second embodiments, the boundary lines L4 and L5 used in the explanation of the second stirring section 29g above are drawn to facilitate the explanation of the second stirring section 29g. It is the imaginary boundary drawn in FIG.

<暖房運転時の室外機液管から室外熱交換器への冷媒の流れ>
上記のような第二撹拌部29hを有する冷媒導入部29を室外機2に備えた空気調和機1が暖房運転を行うとき、膨張弁24から流出した冷媒は、室外機液管63を流れて冷媒導入部29に流入する。図5に示すように、冷媒導入部29に流入した冷媒は第三接続部29fを流れ、第二開口部29h4を介して第二撹拌部29hに流入する。
<Refrigerant flow from outdoor unit liquid pipe to outdoor heat exchanger during heating operation>
When the air conditioner 1 including the refrigerant introduction portion 29 having the second stirring portion 29h as described above in the outdoor unit 2 performs heating operation, the refrigerant flowing out from the expansion valve 24 flows through the outdoor unit liquid pipe 63. It flows into the refrigerant introduction part 29 . As shown in FIG. 5, the refrigerant that has flowed into the refrigerant introduction portion 29 flows through the third connection portion 29f and flows into the second stirring portion 29h via the second opening portion 29h4.

第二撹拌部29hに流入した冷媒は、その大部分が衝突部29h1へと流れて衝突部29h1に衝突して上方へと反転する。そして、反転した冷媒と第三接続部29fから流入した冷媒とが衝突空間29h2でぶつかって撹拌されて、第二撹拌部29hから第一開口部29h3を介して第二接続部29dへと流出する。このように、第二撹拌部29hに流入した冷媒は、ガス冷媒と液冷媒とが撹拌されて第二接続部29dへと流れるので、第二接続部29dを冷媒が流れる際に第二接続部29dの内部で液冷媒が偏らない。 Most of the refrigerant that has flowed into the second stirring portion 29h flows into the collision portion 29h1, collides with the collision portion 29h1, and is reversed upward. Then, the reversed refrigerant and the refrigerant flowing from the third connection portion 29f collide with each other in the collision space 29h2 and are stirred, and flow out from the second stirring portion 29h to the second connection portion 29d through the first opening portion 29h3. . In this way, the refrigerant that has flowed into the second stirring portion 29h flows to the second connection portion 29d while the gas refrigerant and the liquid refrigerant are stirred. The liquid refrigerant is not biased inside 29d.

衝突部29h1は、前述したように図5の正面視で三角形状となっている。また、図4と図5とを比較すれば明らかなように、本実施形態の衝突部29h1の方が第2の実施形態の衝突部29g1と比べて容積が小さい。これらのことから、本実施形態の衝突部29h1の方が第2の実施形態の衝突部29g1と比べて冷媒を撹拌する効果は少ない。一方で、衝突部29h1を形成する第三開口部29h5を閉じて形成された面が、第二接続部29dに向かって斜めに傾いた形状とされているために、第1の実施形態の衝突部29e1や第2の実施形態の衝突部29g1と比べて、衝突部29h1で冷媒が受ける圧力損失が小さくなるので、第二撹拌部29hから第二接続部29dに冷媒が流れやすくなる。 The collision part 29h1 has a triangular shape when viewed from the front in FIG. 5, as described above. Further, as is clear from a comparison of FIGS. 4 and 5, the volume of the collision portion 29h1 of the present embodiment is smaller than that of the collision portion 29g1 of the second embodiment. For these reasons, the collision portion 29h1 of the present embodiment has less effect of agitating the refrigerant than the collision portion 29g1 of the second embodiment. On the other hand, since the surface formed by closing the third opening 29h5 forming the collision portion 29h1 has a shape inclined toward the second connection portion 29d, the collision of the first embodiment Compared to the collision portion 29e1 and the collision portion 29g1 of the second embodiment, the refrigerant receives less pressure loss at the collision portion 29h1, so the refrigerant can easily flow from the second stirring portion 29h to the second connection portion 29d.

以上に説明したように、本実施形態の衝突部29h1の方が第1の実施形態の衝突部29e1や第2の実施形態の衝突部29g1と比べて、衝突部29h1で冷媒が受ける圧力損失が小さくなる。従って、冷媒が受ける圧力損失を減らしつつ、ガス冷媒と液冷媒との比率が均一化された冷媒を室外熱交換器23の下側パス23aと上側パス23bとに分配できる。これにより、各々のパスに流れる気液二相冷媒のガス冷媒と液冷媒との比率を均一にでき、室外熱交換器23で発揮される熱交換能力の低下をより効果的に抑制することができる。 As described above, the collision portion 29h1 of the present embodiment has a higher pressure loss to the refrigerant than the collision portion 29e1 of the first embodiment and the collision portion 29g1 of the second embodiment. become smaller. Therefore, the refrigerant having a uniform ratio of gas refrigerant and liquid refrigerant can be distributed to the lower path 23a and the upper path 23b of the outdoor heat exchanger 23 while reducing the pressure loss that the refrigerant receives. As a result, the ratio of the gas-liquid two-phase refrigerant and the liquid refrigerant flowing in each path can be made uniform, and the deterioration of the heat exchange capacity exhibited by the outdoor heat exchanger 23 can be suppressed more effectively. can.

尚、以上に説明した実施形態では、第二撹拌部29hの衝突部29h1を三角形状とする場合を説明したが、第一撹拌部29cの衝突部29c1を三角形状としてもよく、また、衝突部29h1と衝突部29c1とをともに三角形状としてもよい。 In the above-described embodiment, the collision portion 29h1 of the second stirring portion 29h has a triangular shape, but the collision portion 29c1 of the first stirring portion 29c may have a triangular shape. Both the 29h1 and the collision portion 29c1 may be triangular.

1 空気調和装置
2 室外機
3 室内機
10 冷媒回路
21 圧縮機
22 四方弁
23 室外熱交換器
23a 下側パス
23b 上側パス
23c 伝熱管
27 アキュムレータ
29 冷媒導入部
29a 分岐部
29a1 第一分岐管
29a2 第二分岐管
29b 第一接続部
29c 第一撹拌部
29c1 衝突部
29c2 衝突空間
29c3 第一開口部
29c4 第二開口部
29d 第二接続部
29e、29g、29h 第二撹拌部
29e1、29g1、29h1 衝突部
29e2、29g2、29h2 衝突空間
29e3、29g3、29h3 第一開口部
29e4、29g4、29h4 第二開口部
29f 第三接続部
63 室外機液管
80a 下部分配器
80b 上部分配器
200a 機械室
200b 熱交換室
1 air conditioner 2 outdoor unit 3 indoor unit 10 refrigerant circuit 21 compressor 22 four-way valve 23 outdoor heat exchanger 23a lower path 23b upper path 23c heat transfer tube 27 accumulator 29 refrigerant introduction part 29a branch part 29a1 first branch pipe 29a2 Bifurcated pipe 29b First connecting portion 29c First stirring portion 29c1 Collision portion 29c2 Collision space 29c3 First opening 29c4 Second opening 29d Second connecting portion 29e, 29g, 29h Second stirring portion 29e1, 29g1, 29h1 Collision portion 29e2, 29g2, 29h2 collision space 29e3, 29g3, 29h3 first opening 29e4, 29g4, 29h4 second opening 29f third connection 63 outdoor unit liquid pipe 80a lower distributor 80b upper distributor 200a machine chamber 200b heat exchange chamber

Claims (4)

第一冷媒流路と第二冷媒流路とを備える室外熱交換器を有する室外機と、同室外機に冷媒配管で接続される室内機を有する空気調和機であって、
前記室外機は、暖房運転時に前記室内機から前記室外機に流入した冷媒を前記室外熱交換器の前記第一冷媒流路および前記第二冷媒流路に導く冷媒導入部を有し、
前記冷媒導入部は、冷媒の流れを前記第一冷媒流路と前記第二冷媒流路に分流する分岐部と、冷媒を撹拌する撹拌部とを有し、
前記撹拌部は、第一撹拌部と第二撹拌部とを有し、
前記第一撹拌部および前記第二撹拌部のそれぞれは、第一開口部と、第二開口部とを有し、
前記第一撹拌部の前記第一開口部が、前記分岐部に接続され、
前記第二撹拌部の前記第二開口部が、前記冷媒配管に接続され、
前記第一撹拌部の前記第二開口部と、前記第二撹拌部の前記第一開口部とが接続され、
暖房運転時の冷媒の流れる方向における下流側から上流側へと向かう方向に、前記分岐部、前記第一撹拌部、前記第二撹拌部の順で配置される、
ことを特徴とする空気調和機。
An air conditioner having an outdoor unit having an outdoor heat exchanger having a first refrigerant flow path and a second refrigerant flow path, and an indoor unit connected to the outdoor unit by refrigerant piping,
The outdoor unit has a refrigerant introduction part that guides the refrigerant that has flowed into the outdoor unit from the indoor unit during heating operation to the first refrigerant flow path and the second refrigerant flow path of the outdoor heat exchanger,
The refrigerant introduction part has a branching part that divides the flow of the refrigerant into the first refrigerant flow path and the second refrigerant flow path, and a stirring part that stirs the refrigerant,
The stirring unit has a first stirring unit and a second stirring unit,
Each of the first stirring section and the second stirring section has a first opening and a second opening,
The first opening of the first stirring section is connected to the branch section,
the second opening of the second stirring unit is connected to the refrigerant pipe,
The second opening of the first stirring section and the first opening of the second stirring section are connected,
The branching portion, the first stirring portion, and the second stirring portion are arranged in this order in the direction from the downstream side to the upstream side in the direction of refrigerant flow during heating operation,
An air conditioner characterized by:
第一冷媒流路と第二冷媒流路とを備える室外熱交換器を有する室外機と、同室外機に冷媒配管で接続される室内機を有する空気調和機であって、
前記室外機は、暖房運転時に前記室内機から前記室外機に流入した冷媒を前記室外熱交換器の前記第一冷媒流路および前記第二冷媒流路に導く冷媒導入部を有し、
前記冷媒導入部は、冷媒の流れを前記第一冷媒流路と前記第二冷媒流路に分流する分岐部と、撹拌部とを有し、
前記撹拌部は、第一撹拌部と第二撹拌部とを有し、
暖房運転時の冷媒の流れる方向における下流側から上流側へと向かう方向に、前記分岐部、前記第一撹拌部、前記第二撹拌部の順で配置され、
前記第一撹拌部は、流入した冷媒を衝突させてその流れを反転させる衝突部と、同衝突部によって反転させられた冷媒と前記第一撹拌部に流入した冷媒とを衝突させる衝突空間とを有し、
前記第二撹拌部は、流入した冷媒を衝突させてその流れを反転させる衝突部と、同衝突部によって反転させられた冷媒と前記第二撹拌部に流入した冷媒とを衝突させる衝突空間とを有する、
ことを特徴とする空気調和機。
An air conditioner having an outdoor unit having an outdoor heat exchanger having a first refrigerant flow path and a second refrigerant flow path, and an indoor unit connected to the outdoor unit by refrigerant piping,
The outdoor unit has a refrigerant introduction part that guides the refrigerant that has flowed into the outdoor unit from the indoor unit during heating operation to the first refrigerant flow path and the second refrigerant flow path of the outdoor heat exchanger,
The refrigerant introduction part has a branching part that divides the flow of the refrigerant into the first refrigerant flow path and the second refrigerant flow path, and a stirring part,
The stirring unit has a first stirring unit and a second stirring unit,
The branching portion, the first stirring portion, and the second stirring portion are arranged in this order in the direction from the downstream side to the upstream side in the direction in which the refrigerant flows during heating operation,
The first stirring section includes a collision section that causes the inflowing refrigerant to collide and reverse the flow, and a collision space that causes the refrigerant reversed by the collision section to collide with the refrigerant that has flowed into the first stirring section. have
The second stirring section includes a collision section that causes the inflowing refrigerant to collide and reverse the flow, and a collision space that causes the refrigerant reversed by the collision section to collide with the refrigerant that has flowed into the second stirring section. have
An air conditioner characterized by:
前記第一撹拌部および前記第二撹拌部のそれぞれは、第一開口部と、第二開口部とを有し、
前記第一撹拌部の前記第一開口部が、前記分岐部に接続され、
前記第二撹拌部の前記第二開口部が、前記冷媒配管に接続され、
前記第一撹拌部の前記第二開口部と、前記第二撹拌部の前記第一開口部とが接続される、
ことを特徴とする請求項2に記載の空気調和機。
Each of the first stirring section and the second stirring section has a first opening and a second opening,
The first opening of the first stirring section is connected to the branch section,
the second opening of the second stirring unit is connected to the refrigerant pipe,
The second opening of the first stirring unit and the first opening of the second stirring unit are connected,
The air conditioner according to claim 2, characterized by:
前記第一撹拌部の前記第二開口部と前記衝突部とは、前記衝突空間を挟んで対向して配置され、
前記第二撹拌部の前記第二開口部と前記衝突部とは、前記衝突空間を挟んで対向して配置される、
ことを特徴とする請求項3に記載の空気調和機。
The second opening of the first stirring section and the collision section are arranged to face each other across the collision space,
The second opening of the second stirring part and the collision part are arranged to face each other across the collision space,
The air conditioner according to claim 3, characterized in that:
JP2018109655A 2018-06-07 2018-06-07 air conditioner Active JP7155628B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018109655A JP7155628B2 (en) 2018-06-07 2018-06-07 air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018109655A JP7155628B2 (en) 2018-06-07 2018-06-07 air conditioner

Publications (2)

Publication Number Publication Date
JP2019211184A JP2019211184A (en) 2019-12-12
JP7155628B2 true JP7155628B2 (en) 2022-10-19

Family

ID=68843988

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018109655A Active JP7155628B2 (en) 2018-06-07 2018-06-07 air conditioner

Country Status (1)

Country Link
JP (1) JP7155628B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007162962A (en) 2005-12-09 2007-06-28 Denso Corp Ejector type refrigerating cycle and branching structure for the same
WO2016113901A1 (en) 2015-01-16 2016-07-21 三菱電機株式会社 Distributor and refrigeration cycle apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007162962A (en) 2005-12-09 2007-06-28 Denso Corp Ejector type refrigerating cycle and branching structure for the same
WO2016113901A1 (en) 2015-01-16 2016-07-21 三菱電機株式会社 Distributor and refrigeration cycle apparatus

Also Published As

Publication number Publication date
JP2019211184A (en) 2019-12-12

Similar Documents

Publication Publication Date Title
WO2013160957A1 (en) Heat exchanger, indoor unit, and refrigeration cycle device
US8205470B2 (en) Indoor unit for air conditioner
JP5354004B2 (en) Air conditioner
US20210041115A1 (en) Indoor heat exchanger and air conditioning apparatus
JP6576577B1 (en) Refrigerant distributor, heat exchanger, and air conditioner
WO2020039513A1 (en) Heat exchanger and air conditioner
JP4952347B2 (en) Air conditioner
US10047963B2 (en) Indoor unit for air-conditioning apparatus
EP3594591B1 (en) Heat exchanger and air conditioner
JP7155628B2 (en) air conditioner
JP2019027614A (en) Heat exchanging device and air conditioner
JP2012167913A (en) Air conditioner
JP2011163739A (en) Heat source unit
JP6562672B2 (en) Air conditioner
JP2017172869A (en) Air conditioner
JP2012254725A (en) Vehicle air conditioning device
JP6661781B2 (en) Refrigeration cycle device
WO2019116838A1 (en) Heat exchange unit and air conditioning device having same mounted therein
WO2019116820A1 (en) Air conditioner
JP2018162920A (en) Air conditioner
JP4734915B2 (en) Indoor unit of heat exchanger and air conditioner equipped with the same
JP7137092B2 (en) Heat exchanger
JP2019124415A (en) Air conditioner
JP2013050234A (en) Outdoor unit for heat pump apparatus
WO2020136797A1 (en) Outdoor unit and refrigeration cycle device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210527

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220330

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220405

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220524

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220906

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220919

R151 Written notification of patent or utility model registration

Ref document number: 7155628

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151