WO2024149174A1 - 用于伞降目标的动力增补可控降落方法、目标可控降落方法及系统 - Google Patents

用于伞降目标的动力增补可控降落方法、目标可控降落方法及系统 Download PDF

Info

Publication number
WO2024149174A1
WO2024149174A1 PCT/CN2024/070995 CN2024070995W WO2024149174A1 WO 2024149174 A1 WO2024149174 A1 WO 2024149174A1 CN 2024070995 W CN2024070995 W CN 2024070995W WO 2024149174 A1 WO2024149174 A1 WO 2024149174A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
target
docking
power system
augmentation
Prior art date
Application number
PCT/CN2024/070995
Other languages
English (en)
French (fr)
Inventor
姜军
王雪竹
Original Assignee
沈阳极动科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 沈阳极动科技有限公司 filed Critical 沈阳极动科技有限公司
Publication of WO2024149174A1 publication Critical patent/WO2024149174A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D1/00Dropping, ejecting, releasing, or receiving articles, liquids, or the like, in flight
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D25/00Emergency apparatus or devices, not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D45/00Aircraft indicators or protectors not otherwise provided for
    • B64D45/04Landing aids; Safety measures to prevent collision with earth's surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D5/00Aircraft transported by aircraft, e.g. for release or reberthing during flight

Definitions

  • the invention belongs to the technical field of air transportation, and in particular relates to a power-augmented controllable landing method for a parachuted target, a target controllable landing method and a system.
  • Aircraft including rockets, airplanes, helicopters, etc. are tools that are extremely sensitive to weight. Specifically, their own weight load is relatively large, and the load weight has a leverage effect on the overall weight of the system. A load often requires an aircraft that is several to hundreds of times heavier than its own weight. This is why aircraft often use airborne parachutes with extremely small self-weight-to-load ratios to achieve imprecise landings. In addition, in order to reduce weight, these aircraft often do not have high-strength bodies, and when impacted, the bodies often deform, damage, or even completely destroyed. And its working mode is centered on aerial operations. When it loses power or control, it often means catastrophic consequences. Another manifestation of the sensitivity of these tools to weight is that the weight and size requirements for the targets they carry are often more stringent.
  • the landing methods of the above-mentioned aircraft and its carrying targets mainly include: relying on its own power to achieve controlled landing, relying on parachuting to achieve uncontrolled landing. Since parachutes are often very light compared to the targets they suspend, they are widely used in airdropping personnel and materials. For aircraft, this is often a last resort when a malfunction occurs. Although there is a parachute to cushion the impact, the landing is often accompanied by damage to the aircraft body.
  • the rocket body is a high-value target, it is often difficult to preserve the recovered rocket body by parachuting, and thus it does not have a good application prospect.
  • the method of landing with its own power means that the fuel and power device required for landing need to be lifted into outer space. This part of "dead weight” will cause a lot of resource waste and is also difficult to design.
  • the use of its own power recovery will incur a high cost.
  • the method of parachuting the rocket body can only reduce the impact of the rocket body on ground objects to a certain extent, and it is of little help in preserving the rocket body itself.
  • the delivered targets For parachuting targets, due to the lack of effective control means, the delivered targets often cannot reach the target location accurately, which greatly reduces the delivery efficiency. Sometimes the receiving personnel cannot receive the target. It may even happen that the delivered target is dropped to a place where it cannot be retrieved, such as water surface or valley, thus causing loss. From another perspective, the scope of application of traditional parachute delivery is very limited.
  • embodiments of the present invention provide a power-augmented controllable landing method for a parachuted target, a target controllable landing method and a power-augmented system, and a target controllable landing system.
  • the first aspect of the present invention discloses a power augmentation controllable landing method for a parachuting target, the method comprising:
  • the power system intersects and docks with the parachute target
  • the power system and the parachute target adopt the power reorganization method to reasonably allocate power resources to drive the target to the desired position or land in the desired state;
  • the power system includes a driving device that provides controllable driving force for the target.
  • the power reorganization includes docking the power system with the parachute target, and jettisoning or collecting the parachute after docking.
  • the power reorganization includes optimizing the structure and/or composition of the power system one or more times in combination with mission requirements.
  • adjustment is also included according to mission requirements, and the adjustment includes changing the relative position of the power system and the target in the target body coordinate system, and/or changing the relative position of the power system and the target in the global coordinate system.
  • power reorganization and adjustment may occur at the required times and in the required order, depending on the mission requirements.
  • the structure and/or composition of the power system is optimized according to mission requirements.
  • the second aspect of the present invention discloses a target controllable landing method based on parachuting and power augmentation, the method comprising:
  • the target's status is controlled by parachuting
  • the power augmentation stage is implemented by using the above-mentioned power augmentation controlled landing method to make the target move to the desired position in the desired state, or land in the desired state.
  • a third aspect of the present invention discloses a power augmentation system for a parachuting target, comprising at least one power augmentation unit;
  • a state observation system for obtaining state information of a target
  • a control system electrically connected to the power augmentation unit and the state observation system
  • the power augmentation unit includes a power system, which provides controllable power for the state of the target, and includes a power augmentation aircraft; and a docking device, which is used for docking the power system with the target, and is arranged on the power system;
  • a powered augmented aircraft is an aircraft or a combination of aircraft powered by a power drive unit.
  • the power system also includes a dedicated power system, which includes at least one power drive device, and the power drive devices and the dedicated power system and the power augmentation aircraft are connected through connectors; the connector between the dedicated power system and the power augmentation aircraft has controllable capabilities.
  • the power system further includes a booster system, which includes at least one power drive device, and the power drive devices and the booster system and the power augmentation aircraft are connected via connectors.
  • the power system uses a driving device with bidirectional or multidirectional power driving capability, or a combination of several such driving devices.
  • the docking device comprises a load-bearing docking device, and the load-bearing docking device comprises a carrier; or
  • the load-bearing docking device comprises a load-bearing body, on which a fastening device for fixing a target is arranged.
  • the docking device comprises a mating docking device, which includes a locking mechanism and a docking piece disposed on the target and mating with the locking mechanism.
  • the state observation system includes a device for acquiring a target state
  • the state observation system includes devices for obtaining the target state and the state of the power system; or
  • the state observation system includes devices for observing the state of the power system and the motion state of the target relative to the power system.
  • control system includes a controller disposed on the power augmentation system, a controller external to the power augmentation system, or a combination thereof.
  • a fourth aspect of the present invention discloses a target controllable landing system based on parachuting and power augmentation, comprising at least one parachute and the above-mentioned power augmentation system.
  • This application can make the recovered aerial targets have the advantages of light weight and precise control of the parachute method, so that the system can use the flight weight very efficiently.
  • the rocket launch and recovery system using this method will avoid carrying a large amount of "dead weight" including recycled fuel and auxiliary devices such as landing gear. Thereby greatly improving the utilization rate of rocket fuel, and thus greatly improving the overall performance of the rocket.
  • this method can quickly recover parachute targets scattered everywhere to one place, thereby improving the work efficiency of ground personnel who spend a lot of time collecting parachute targets.
  • this application can avoid the consequences of mission failure.
  • this application can achieve precise control of the recovery or landing action, thereby providing a gentle landing action for the recovered target, causing the recovered target to be slightly stressed, achieving a better protection effect.
  • the method proposed in this application can provide a variety of flexible power configurations for parachuting targets. Different power sources can be added to parachuting targets for different application scenarios to achieve different performances and meet different mission requirements. For example, for long-distance recovery, a ramjet parachute + additional propeller power method can be used to achieve efficient long-distance recovery and landing. For high-altitude recovery targets, the potential energy can be used to achieve spin landing by adding rotors at high altitudes.
  • FIG1 is a structural block diagram of a power augmentation system according to one aspect of the present disclosure.
  • FIG2 is a block diagram of a power mode I structure of a power system according to one aspect of the present disclosure
  • FIG3 is a power mode II structure block diagram of a power system according to one aspect of the present disclosure.
  • FIG4 is a power mode III structure block diagram of a power system according to one aspect of the present disclosure.
  • FIG5 is a power mode IV structure block diagram of a power system according to one aspect of the present disclosure.
  • FIG6 is a power mode V structure block diagram of a power system according to one aspect of the present disclosure.
  • FIG. 7-14 are schematic structural diagrams of a docking device embodiment according to the present disclosure.
  • 15-26 are schematic diagrams of embodiments of the method and system according to the present disclosure.
  • the present application discloses a power supplement system for parachuting targets, which functions to increase or supplement power for the target, or to provide independent landing power for the target, so that the parachuting target has the ability to recover/land in a controllable manner.
  • the power supplement system 3 includes a power system 5, which provides controllable power for the target; and a docking device 6, which is used to dock the power system with the target to establish a mechanical connection between the two, and the docking device 6 is arranged on the power system 5; and a state observation system 7, which is used to obtain the state information of the target; and a control system 8, which controls the power system 5 to intersect with the target and dock with the target through the docking device 6 according to the information fed back by the state observation system 7 and the state information of the power system 5, and controls the target to move to the desired position in the desired state, and the control system 8 is electrically connected to the power system 5, the docking device 6, and the state observation system 7.
  • the power system 5 has a variety of power composition modes, among which, in power mode I, as shown in FIG2 , the power system 5 includes a power augmentation aircraft 51.
  • the power augmentation aircraft 51 is an aircraft or a combination of multiple aircraft powered by a power drive device, and has sufficient motion capability and control accuracy to achieve efficient and reliable docking between the power system 5 and the target.
  • the power system 5 includes the power augmentation aircraft 51 in power mode I and the dedicated power system 52, and the dedicated power system 52 has comprehensive performance suitable for the mission requirements.
  • the dedicated power system 52 can be selected as a solid rocket of suitable size.
  • the dedicated power system 52 includes at least one power drive device, which selects different power drive devices and a combination of multiple drive devices according to different missions.
  • the power drive devices in the dedicated power system 52, as well as between it and the power augmentation aircraft, are connected through a connector 54.
  • At least the connector 54 between the dedicated power system 52 and the power augmentation aircraft 51 has controllable capabilities, which can realize the connection or separation of the devices at both ends of the connector 54.
  • Power mode III as shown in FIG. 4 , in some embodiments, the power system 5 includes the dedicated power system 52 in power mode II, or only includes part of the power of the dedicated power system 52 in power mode II.
  • the power system 5 includes the power augmentation aircraft 51 and the booster system 53 in the power mode I, and its function is to provide the power system 5 with a certain flight performance suitable for completing the task.
  • the booster system 53 includes at least one power drive device, which selects different power drive device adaptation schemes according to different tasks.
  • the power drive devices in the booster system 53, as well as the booster system 53 and the power augmentation aircraft 51, are connected through a controllable connector 54.
  • At least the connector 54 between the booster system 53 and the power augmentation aircraft 51 has controllable capabilities, which can realize the connection or separation of the devices at both ends of the connector 54.
  • the booster system 53 is separated from the other parts of the power system 5 before the power system 5 docks with the target. After the booster system 53 is separated, it will no longer participate in the subsequent tasks again.
  • the power system includes the power augmentation aircraft 51 in power mode I, the dedicated power system 52 in power mode II, and the booster system 53 in power mode IV.
  • the power augmentation aircraft 51, the dedicated power system 52, and the booster system 53 are connected by a controllable connector 54, and the devices at both ends of the connector 54 can be connected or separated.
  • the connector 54 adopts a universal connection mechanism or device, which is only used to realize the connection and fixation or separation and release of the devices at both ends. Its implementation scheme is a conventional design and will not be repeated here.
  • the form of the driver of the power drive device is all feasible forms in the prior art, including but not limited to: propeller, ducted propeller, air jet engine, rocket drive and the combination of the above.
  • the power source of the driver is all feasible power sources in the prior art, including but not limited to: electric motor, piston engine, air jet engine, rocket engine and combined engine.
  • the driver layout is all feasible layouts, including but not limited to: single rotor with tail rotor type, coaxial twin propeller type, serial/parallel twin propeller type, cross propeller type, multi-rotor type, or other configurations based on power requirements.
  • the dedicated power system 52 is an aircraft or a controllable power device powered by the above-mentioned power drive device for a specific mission, or a combination of multiple aircraft or controllable power devices.
  • the power system 5 adopts a driving device with bidirectional power driving capability, or a combination of several such driving devices.
  • a power system using a coaxial twin-propeller driving device can realize upward and downward driving force directions relative to its body.
  • the advantage of using bidirectional power is that when the relative position of the target and the power system needs to be flexibly adjusted/arranged, the change in relative position can be adapted by controlling its driving direction. For example, after the power system is docked with the slender target below, the slender target can be placed below the power system by adjustment, and the driving force of the power system changes direction relative to itself so that the combined system is still balanced.
  • a multi-directional driving device or a combination thereof can be set to achieve more flexible control.
  • the driving device is a rocket propulsion system
  • an engine with a lateral injection function in the main thrust direction can be used to provide rolling and tilting torques for the target and the combination of supplementary power, so as to better adjust the attitude.
  • the power system 5 and the docking device 6 thereon constitute a power supplementation unit 4, and the power supplementation system 3 includes a plurality of power supplementation units 4, which cooperate to perform tasks and complete target power supplementation.
  • the docking device of the present application adopts different docking modes according to different applications, including load-bearing type and matching type.
  • the load-bearing docking device 611, 612 adopts a lifting method to dock with the target.
  • the docking device is provided with a carrier for accommodating the target, and the target falls into the carrier.
  • Matching docking devices 621-626 the target is provided with a docking piece that matches the docking device.
  • Matching docking devices include rigid docking methods, quasi-rigid docking methods and flexible docking methods. The rigidity and flexibility are only relative, not strictly distinguished.
  • the docking device and the target docking part adopt different schemes according to different applications. For example, it can be docked with the bottom, middle or upper part of the target. Among them, if the docking part is the middle or upper part of the target, the docking device can be sleeved on the outside of the target.
  • Embodiment 1 of the docking device of the present application adopts a load-bearing manner to dock with a target.
  • the load-bearing docking device 611 includes a carrier 6101, on which a plurality of baffles 6102 are provided, and the baffles 6102 are distributed on the circumference of the carrier 6101.
  • the baffles 6102 are turned outward, so that the receiving body 6101 has a larger tolerance when receiving the target.
  • the baffles 6102 have a controllable flipping capability. Before the docking device docks with the target, the baffles 6102 are in an outwardly turned state, so that the docking device has a larger tolerance when docking with the target. When the target falls onto the carrier 6101, the baffles 6102 flip inward, so that the target is fixed on the carrier 6101.
  • Embodiment 2 of the docking device of the present application adopts a carrying method to dock with a target.
  • the carrying docking device 612 includes a disc-shaped carrier 6103, on which a magnetic attraction piece or a Velcro 6104-like adhesive piece that engages with the target is provided.
  • the docking device can be applied to a target with an iron or sticky outer packaging. It is also possible to use iron or sticky packaging materials to package the target in a targeted manner, or to set a matching magnetic attraction piece or Velcro-like adhesive piece on the outer packaging of the target.
  • Embodiment 3 of the docking device of the present application adopts a matching rigid docking implementation scheme to dock with the target.
  • Three mechanical arms are used to compensate for the large tolerance between the target and the power system, and precise docking is implemented.
  • the mechanical arm can be locked through a specific mechanism after the mechanical arm is adjusted to the state required by the system, so that the mechanical arm becomes a structural member, thereby being able to transmit a larger force.
  • the matching docking device 621 includes a bracket 6201, and a plurality of mechanical arms 6202 are reasonably distributed on the bracket 6201.
  • the free end of the mechanical arm 6202 is provided with a trumpet-shaped docking connector 6203, and a locking mechanism is provided in the docking connector 6203.
  • a ball-shaped docking member 6204 that cooperates with the docking connector 6203 is provided on the target.
  • the docking device embodiment 4 of the present application adopts a matching rigid docking implementation scheme to dock with the target.
  • the matching docking device 622 includes an annular bracket 6205, on which are distributed a plurality of locking blocks 6206 with driving capability, and a docking ring 6207 matching with the locking blocks 6206 is provided on the target, and the locking blocks 6206 are clamped with the docking ring 6207.
  • the docking device embodiment 5 of the present application adopts a matching quasi-rigid docking implementation scheme to dock with the target.
  • the matching docking device 623 includes a receiving body 6208 with funnel-shaped openings at both ends, a clamping type locking mechanism 6209 is provided at the end of the receiving body 6208 with a smaller opening, a bracket 6210 is provided at the end of the receiving body 6208 with a smaller opening, and is connected to the power system 5 through the bracket 6210.
  • An inverted funnel-shaped docking piece 6211 that matches the carrier 6208 is provided on the target, and a slender flexible piece 6212 is provided at the end of the docking piece 6211.
  • the funnel-shaped receiving body 6208 allows the docking device to have a larger tolerance.
  • the flexible piece 6212 passes through the smaller opening of the receiving body and connects with the locking mechanism 6209, and the locking mechanism 6209 pulls the flexible piece 6212 to dock and lock the docking device with the target.
  • Embodiment 6 of the docking device of the present application adopts a matching quasi-rigid docking implementation scheme to dock with the target.
  • the target is a rocket body
  • the docking device can be sleeved on the outside of the target to achieve middle and upper docking.
  • the aircraft adopts an annular structure
  • the matching docking device 624 includes a mechanical arm 6213, and the free end of the mechanical arm 6213 is provided with a trumpet-shaped docking device 6214, and the docking device 6214 is provided with a locking mechanism.
  • a ball-shaped docking piece 6215 that matches the docking device 6214 is provided on the target. After docking, the mechanical arm 6213 is locked to protect the drive.
  • a number of matching docking devices 624 are distributed on the annular structure of the aircraft, and the target is also provided with the same number of docking pieces 6215 as the docking devices 624.
  • Embodiment 7 of the docking device of the present application adopts a matching flexible docking implementation scheme to dock with the target.
  • a single ball docking scheme is adopted, and the aircraft adopts a coaxial double-propeller form.
  • the matching docking device 625 includes a trumpet-shaped docking connector 6216, and a locking mechanism is provided in the docking connector 6216.
  • the docking connector 6216 is arranged on the body of the double-propeller axis.
  • the target is provided with a ball-shaped docking piece 6217 that matches the docking connector 6216. Normally, the docking piece 6217 is arranged below the target.
  • Embodiment 8 of the docking device of the present application adopts a matching flexible docking implementation scheme to dock with a target.
  • This embodiment adopts a single-bar docking scheme, and a single-bar docking piece 6220 is provided on the target.
  • the matching docking device 626 includes a bracket 6218, and a clamp 6219 with controllable opening and closing capability that matches the single-bar docking piece 6220 is provided on the bracket 6218.
  • the power system can be located below, in the middle, or above the target in any direction that can ensure controllable flight.
  • the position of the target and the power system can also be adjusted according to actual needs. For example, if the power system is below the target during docking, the target can be moved to the bottom of the power system through control means, so that the power system is suspended from the target.
  • the power system can be located below, in the middle, or above the target in any direction that can ensure controllable flight.
  • the position of the target and the power system can also be adjusted according to actual needs. For example, if the power system is below the target during docking, the target can be moved to the bottom of the power system through control means, so that the power system is suspended from the target.
  • the target is often in a statically unstable state. That is, if the power system is not actively controlled, the target will overturn under the action of small disturbances and gravity, resulting in the inability to maintain a completely stable state.
  • active inverted pendulum control can maintain the relative position relationship between the power system and the target, but it is often very costly and impractical.
  • the state observation system is used to determine the motion state of the target.
  • the state observation system can be flexibly placed in a position that is convenient for state observation. Including but not limited to: on the power augmentation aircraft, on the dedicated power system, other parts of the power augmentation system, and combinations of the above positions.
  • the state observation system also includes a variety of sensors and their combinations, including inertial sensors included in the power system.
  • the state observation system also includes multiple sensors and combinations thereof, including inertial sensors included on the target, as well as a device combination and algorithm for fusing multi-sensor information of both parties through communication between the power system and the target to obtain better state observation capabilities.
  • the state observation system also includes a differential positioning system, ground radar, etc.
  • the target is provided with a marking point, which facilitates identification and measurement by the state observation system.
  • the marking point is set on the docking piece or docking part of the target to obtain more accurate motion state information of the docking part.
  • the control system is installed on the power system or other suitable places, or the control system can be distributed on various components of the entire system.
  • the control algorithm can be calculated by a single master controller or distributed by multiple controllers.
  • the control system can obtain the status information of each component of the power augmentation system, obtain the target status information through the observation system or third-party information source, and control the various components of the power augmentation system at various stages of the task execution.
  • a parachute control device is provided on the target, and the parachute control device is electrically connected to the control system.
  • the parachute control here includes disconnecting the connection between the parachute and the target, manipulating the parachute to achieve specific power requirements, retracting the parachute to eliminate the original aerodynamic force of the parachute, and changing the parachute type or structure to change the power of the parachute.
  • a target controllable landing system based on parachuting and power augmentation, including a parachute and the above-mentioned power augmentation system.
  • the target reaches a predetermined airspace or state to be thrown. After the target moves to a certain stage of the mission in the air, it enters the landing program, and the target is recovered by the target controllable landing system of the present application.
  • the parachute is opened, and the power augmentation system starts the power system in time to intersect and dock with the target, and controls the target to move to the desired position in the desired state, or land in the desired state.
  • the parachute may be steerable so that it forms part of a controllable powertrain, particularly a ramjet parachute.
  • the present disclosure proposes a power-augmented controllable landing method for a parachuting target.
  • the method provides controllability for the parachuting target or improves its controllability through a power system, so that the target moves to a desired position in a desired state, or lands in a desired state.
  • Step 1 Obtain the motion information of the parachuting target and calculate the intersection point or intersection area.
  • the point of intersection with the target in space can be obtained, which we call the intersection point.
  • the mission requirements mentioned here include but are not limited to minimum fuel consumption, minimum time consumption, minimum distance, etc., as well as comprehensive indicators combined with the above indicators.
  • the intersection point can usually be obtained using the optimal control method. Considering factors such as the necessary safety distance, sensor accuracy, and the observation range of the observation equipment, the intersection point can be expanded into a reasonable area through an algorithm, which we call the intersection area.
  • the state observation system is used to obtain the relative motion information between the target and the power system and solve the intersection area, or to infer the target motion information and solve the intersection area.
  • the state observation system may be a navigation and positioning system with the ability to obtain global coordinates or motion states and necessary communication means, such as GPS/differential GPS/combined navigation system and wireless communication.
  • the state observation system may also be an observation device and means for one party between the power system and the target to detect the other party in a unidirectional manner, such as radar, optical observation equipment, etc.
  • the state observation system may also be a one-way detection of the other party by one party providing a specific physical signal, and the other party infers the motion state of the signal provider through the corresponding equipment and methods according to the change law of the physical signal, such as the target emitting a signal of a specific wavelength during the descent, and the ground observation system determines its motion state through the Doppler effect.
  • the state observation system can be a combination and deep fusion of the above methods.
  • the relative distance between the two is relatively far. At this distance, it is difficult for the power system to observe the motion state of the target with high precision.
  • the motion information of the target can be obtained through information provided by a third party or based on the motion state information actively sent by the target.
  • the movement route and time of the parachuting target can be estimated according to the mission plan, and close observation can be performed based on the estimated time and intersection area to obtain the accurate movement status of the target.
  • Step 2 The power system moves toward the intersection point or intersection area and intersects with the parachute target.
  • the motion trajectory can be adjusted in real time based on the real-time status information of the target and the power system. Or, more simply, only the expected motion state of the power system is given.
  • the power system starts from the starting point at the right time, and the power system gradually approaches the target according to the plan.
  • the motion trajectory is calculated based on the location of the delivery area and some necessary information, such as the specific coordinates at the time of delivery, the motion state of the target at the time of delivery, meteorological information, etc., and the intersecting motion trajectory is calculated based on mathematical models, databases and solution methods.
  • the intersection area can be obtained online based on the motion state of the parachute target obtained online and the motion capability of the power system.
  • the power system is based on the motion trajectory obtained online.
  • the composition of the power system is optimized according to the mission requirements. For example, if the power system needs to reach the intersection at a very high speed, a special power combination can be used to accelerate the intersection. For example, a power system using a booster system.
  • the specific modes are power mode IV and power mode V of the above power system.
  • the booster system is generally separated from other parts of the power system before docking.
  • the power system in order to achieve the purpose of rapid intersection between the power system and the target, may be carried by an aircraft and wait near the intersection area in advance. When the intersection and docking task is triggered, the aircraft it carries will depart and arrive at the intersection area nearby.
  • the power system flies in formation with the parachuted target according to the data of the state observation system.
  • the state observation system has the ability to obtain global coordinates or motion states, and its accuracy is high enough, such as a differential GPS system in a large tolerance operation mission, so the global positioning device can also be used for docking operations.
  • the state observation system does not have the ability to obtain global coordinates or motion states, or the accuracy is not high enough, and it is necessary to achieve the high-precision observation required for docking through a system combination that improves the relative positioning accuracy in a phased and progressive process.
  • the state observation system can be implemented in a two-stage manner using ground radar detection in conjunction with an airborne high-precision optical observation system of the power system.
  • the specific implementation process can be that the ground radar detects full-time, and after discovering the target, the power system flies to the calculated intersection area.
  • the power system accurately determines the relative motion state of the target and it according to the optical observation system, providing a basis for docking.
  • the radar detection stage in this implementation can also be implemented by a global positioning system.
  • the target when the two intersect, the target should be within the observation range of the airborne optical observation system. If it cannot be observed directly after the intersection, the target can be brought into the measurement range of the airborne optical observation system by adjusting its own state, the state of the airborne optical observation system, or adjusting both at the same time.
  • the power system obtains the precise state of the target, and according to this state, the power system flies in close formation with the target, so that the docking piece or docking part on the target enters the operating range of the power system docking.
  • Step 3 The power system docks with the parachute target.
  • the power system After the power system obtains the precise relative motion state of the target, it moves to the appropriate relative position according to the docking plan for subsequent docking operations. For example, if the docking device of the target is located at its bottom, the power system should move to the bottom of the target and make the docking device close to the corresponding position of the target.
  • the power system should select a suitable movement route in combination with the measurement range of the state observation system and its adjustment capability to ensure that the state observation system can effectively observe the target during the docking process.
  • the power system should maintain a certain safe distance from the target to avoid collision between the two due to sudden disturbances. If it is necessary to exit the docking operation, a certain safe distance should be maintained so that the two can be separated smoothly when the mission is temporarily cancelled.
  • each power system when multiple power systems are docked with a target, each power system should move to its own docking position so that the docking operation can be performed simultaneously when necessary.
  • the power system can be directly docked with the target to achieve docking/engagement between the two. This method is suitable for the power system with very high dynamic control capability and motion accuracy.
  • the power system and the target are often docked/joined by a large tolerance guide, which can be used for most flexible connection methods.
  • an active high-dynamic docking method can be used to achieve precise docking.
  • a robotic arm can be used to achieve high-dynamic docking.
  • the locking device of the docking device when the relative state of the docking devices at both ends is reduced to a sufficiently small value, the locking device of the docking device is activated to lock the docking devices at both ends together.
  • the degrees of freedom between the docking devices at both ends are determined according to the characteristics of the docking devices. For pure rigid docking, the degrees of freedom between the two are zero. For suspension rope-type flexible docking, the number of degrees of freedom between the two is five. For ball joint docking, the number of degrees of freedom between the two is three.
  • One-to-one docking means one power system docks one target, and many-to-one means multiple power systems dock one target.
  • the orientation of the docking point on the target body is based on the stable state during the target parachute landing process. It can usually be simply divided into the bottom, lower part, middle part, and upper part. Among them, the bottom is directly below the target body.
  • the lower part, middle part and upper part refer to the lower, middle and upper parts of the side of the target body.
  • the power system can select the docking point and the combination of docking points according to the mission requirements, its own movement ability and the flexibility of docking.
  • the docking method can be load-bearing docking or matching docking according to the task.
  • the difference between load-bearing docking and matching docking is that matching docking requires a connector to be set on the target to match the docking device of the power system.
  • Load-bearing docking uses a tray-type docking device, which docks with the target from below.
  • this type of docking device is equipped with a controllable clamping module to clamp the target.
  • the clamping module clamps the target to improve the fixed connection between the target and the "tray".
  • Matching docking can be divided into flexible docking, quasi-rigid docking and rigid docking.
  • Flexible docking The power system and the target are connected by flexible parts.
  • Common flexible connections include single flexible part lifting type connection and multiple flexible parts coordinated retrieval type connection.
  • Rigid docking The power system and the target are connected by rigid parts. After the connection, there is no degree of freedom between the two.
  • Quasi-rigid docking The power system and the target are connected by rigid or flexible parts. After the connection, there are still degrees of freedom between the two, but from the control perspective, the two can be regarded as a rigid body, or a rigid body with little parameter change.
  • Step 4 Reorganize the power system with the parachute target power.
  • the purpose of dynamic reorganization is to provide the target with the controllable movement capabilities required for the task.
  • the contents of power reorganization include:
  • Supplementing power sources such as fuel and electricity
  • 1) is to establish a mechanical connection between the power system and the target by docking, so that the power system can exert force on the target independently or in cooperation with the parachute to achieve control.
  • the desired dynamic performance is obtained by changing the structure of the power system or the combination of the power system and the target, and a more streamlined system composition is obtained by removing the subsequent unnecessary parts when necessary.
  • the power system provides a dedicated power system according to the characteristics of the target. After docking, the power augmentation aircraft can be separated from the docking device and the target, so that only the dedicated power system is used to drive the target to achieve a better control effect.
  • a specific power part of the power system is in a compact state, and needs to maintain a small outer envelope size before the intersection and docking, so as to facilitate the flight performance of the power system.
  • the specific power part can be deployed to a suitable state to obtain a larger driving torque relative to the center of mass of the combined body, thereby obtaining better attitude control capability.
  • the power (energy) source is supplemented to the target through pipelines, electrical connections, etc.
  • the power system carries the fuel required by the target.
  • the fuel pipeline is simultaneously docked with the corresponding docking piece of the target.
  • the power system replenishes the fuel into the target.
  • the power system can be separated from the target, and the latter uses its own drive system to move independently. Or after the power system refuels the target, it maintains a connection relationship with the target.
  • the power devices of the two jointly drive the target to move.
  • the retained parachute type is a ram parachute
  • the additional power system can form a parachute wing power system with the ram parachute, thereby driving the target body to move in the form of a paraglider.
  • the power of the parachute can also be released as needed.
  • Step 5 by controlling the reorganized power system, the target is controlled to move to a desired position in a desired state, or to land in a desired state.
  • the main goal of the mission is to protect the safety of the personnel in the vehicle
  • the secondary goal is to protect the structural safety of the vehicle.
  • the landing site is uncertain, and the above goals are the basis.
  • the power system can screen feasible landing sites based on the surface information obtained offline, and obtain the actual situation of the alternative landing sites in real time based on its own state observation system. Combined with the dynamic performance, motion state, and environmental information of the target after the power is supplemented, the optimal landing site is selected. And the optimal drive combination scheme and specific control scheme are selected according to the actual situation.
  • the recovery location is clearly known. After the power system docks with the target, a suitable motion trajectory or route is obtained based on the system's motion state, remaining energy status, distance to the recovery location, and environmental information after docking. A reasonable power combination is used to fly to the recovery location, and if necessary, the recovery of the rocket is completed in cooperation with ground recovery equipment.
  • the above step 4 is divided into two parts: power reorganization and adjustment.
  • the above step 4 can be regarded as the power reorganization part.
  • the adjustment steps include:
  • the power system can use propellers with positive and negative angles of attack so that it can still provide the system with driving force to overcome gravity after switching up and down.
  • the power system or its internal power can be transferred to a more advantageous position along a preset transfer device to provide better control performance for the target. For example, on a slender cylindrical target, the power system moves from the bottom to the top along the length of the cylinder so that the center of mass is located below the power system, so that the combined whole obtains static stability characteristics.
  • the two links of power reorganization and adjustment can occur at the required times and order, providing a flexible configuration plan for the subsequent controlled landing and recovery of the target.
  • whether adjustments are needed can be determined based on the dynamic stability of the entire system after connection and the actual application scenario. For example, in the case of bottom docking, if the power system can stably control the system after docking, the state can be kept unchanged. For another example, if the auxiliary landing equipment requires the target body to be under the power system during landing, the state can be adjusted.
  • the target controllable landing method based on parachuting and power augmentation disclosed in the present application includes a parachuting stage and a power augmentation stage.
  • the parachuting stage refers to the use of a parachute to control the initial motion state of the target in the air
  • the power augmentation stage is to use the above-mentioned power augmentation recovery method for parachuting targets to control the later motion state of the target.
  • the parachute phases are :
  • the target starts from the initial location, moves to the set delivery area and is dropped, and the target enters the throwing state.
  • the target falls from the air, open the parachute at the right time .
  • the target can carry more than one type of parachute, more than one set, so as to build the parachute power more flexibly.
  • the main parachute, the guide parachute and the main parachute cooperate.
  • the umbrella carried by the subject may have its own controller to provide a degree of control, such as a ram-type umbrella.
  • the target after being launched, the target sends its own motion state information in real time, including global coordinate information and attitude information.
  • a positioning device is installed on the target to obtain coordinate information.
  • An inertial navigation system is installed on the target to obtain the attitude of the target.
  • a communication device is also required to be set up for sending information.
  • the target after being launched, can emit detectable information so that the outside world can learn, locate and track it.
  • detectable information e.g., optical information, a visible light or invisible light with high brightness.
  • optical information e.g., a visible light or invisible light with high brightness.
  • an acoustic signal with a specific wavelength and a specific change pattern e.g., a radio signal with a specific wavelength and a specific change pattern.
  • the target has a higher detectability, such as by installing a Luneburg lens.
  • the target enters a decelerated descent state and moves toward the target intersection area.
  • the power supplement stage is:
  • the above-mentioned power-augmented controlled landing method for parachuting targets is used to achieve the tasks of this stage, so that the target moves to the desired position in the desired state, or lands in the desired state.
  • the following embodiments are provided for a power augmentation system for a parachuting target and a power augmentation controllable landing method for a parachuting target of the present application.
  • Embodiment 1 As shown in FIGS. 15 and 16 , an aircraft is rescued in an emergency situation.
  • the target is a parachuted target aircraft 11, which can be a rescued aircraft or a parachute return capsule returning to the earth.
  • the power system 5a is composed of a large multi-rotor aircraft 511 and a booster rocket 521.
  • the booster rocket 521 is mainly used to provide a sufficiently large thrust for the power system 5a so that it can reach the high speed required for emergency response.
  • the multi-rotor aircraft 511 is also provided with a buffer booster rocket 531, which is used to provide a larger reverse thrust at the cost of a smaller weight before the rescued aircraft lands, so as to reduce the impact on the multi-rotor aircraft 511 and the passengers thereon.
  • the docking device 623 is implemented using the docking device embodiment 5, the locking mechanism 6209 in the docking device 623 adopts a roller winch, and the flexible member 6212 on the target docking member adopts a guide rope;
  • the state observation system is composed of a radar system arranged on the ground and an airborne visual observation system arranged on the multi-rotor aircraft 511;
  • the control system is composed of a main controller arranged on the ground rescue system and a controller arranged on the multi-rotor aircraft 511.
  • a power supplement unit 41 composed of multiple power systems 5a and docking devices 623 disposed thereon is used.
  • the multiple power supplement units 41 cooperate to perform tasks and complete the power supplement of the target aircraft 11.
  • the emergency rescue system receives the distress signal, and the ground radar of the state observation system scans the airspace to obtain the motion status information of the target aircraft 11.
  • the master controller of the control system calculates the spatial coordinates and other motion states of the intersection point between the power system ta and the target aircraft 11 according to the motion state information of the target aircraft 11 acquired by the radar, combined with the motion capability of the power system 5a, and according to the principle of time optimization, and simultaneously calculates the time optimal trajectory of the power system 5a flying to the intersection point.
  • the master controller sends the calculation results to the controller on the power system and issues an instruction to start the task. If necessary, the calculation is completed by the controller of the power system.
  • the power system 5a quickly reaches the intersection point according to the planned motion trajectory under the action of the booster rocket 531 and its own power, and timely updates the planned motion trajectory and adjusts the control output when necessary.
  • the onboard visual observation system of the power system 5a observes the target aircraft 11.
  • the booster rocket 531 separates from the rest of the power system 5a.
  • the remaining part of the power system 5a continues to the intersection of the target aircraft 11.
  • the onboard state observation system of the power system 5a measures the motion state information of the docking part on the target aircraft 11, especially the position and speed information relative to the power system.
  • the target aircraft 11 has extended flexible parts 6212 at several positions of the fuselage.
  • the power system 5a selects the docking point with the target aircraft 11 according to the movement information of the target aircraft 11 observed by the onboard visual observation system and other state information, and moves to the vicinity of the docking point by its own power, so that the docking device 623 carried by the power system 5a is close to the docking part of the target aircraft 11.
  • the power system 5a selects a suitable path to fly to the vicinity of the docking piece below the target aircraft 11, docks with the flexible piece 6212 through its own dynamic performance, and quickly docks with the flexible piece 6212 through the locking mechanism 6209, so that the docking piece mating surfaces at both ends are mated and locked. In this way, a preliminary power reorganization is achieved.
  • the power system 5a uses its own global positioning information, combined with offline geographic data and real-time meteorological information to find a suitable alternate landing area.
  • the state observation system is used to conduct online observation and evaluation of the alternate landing area of the target aircraft 11. Finally, a landing area with safe landing conditions is selected.
  • the power system 5a applies force to the target aircraft 11, driving the parachuting target aircraft 11 to avoid the dangerous surface area and guiding it to the selected landing area.
  • the power system 5a adjusts the attitude of the target aircraft 11 through the driving force of its own multi-rotor aircraft 511 to reduce the damage to the occupants and the aircraft structure when the target aircraft 11 lands.
  • the buffer booster rocket 521 is activated to provide a buffer force for the aircraft to be rescued, so that the target aircraft 11 receives minimal impact when landing.
  • the structure of the power system 5a in this embodiment is: a power augmentation aircraft 51 composed of a combination of a multi-rotor aircraft 511 and a buffer booster rocket 521, and a booster rocket 53 as a booster system 53.
  • the power can be further reorganized based on the above scheme. For example, when approaching the target aircraft 11 for landing, the multi-rotor aircraft 511 is separated from the buffer booster rocket 521.
  • the power system 5a is re-divided into: using a buffer booster rocket 531 as a dedicated power system 52, using a multi-rotor aircraft 511 as a power augmentation aircraft 51, and using a booster rocket 531 as a booster system 53.
  • the dedicated power system includes one or more buffer booster rockets, and the dedicated power system is docked to one or more positions of the target aircraft.
  • the buffer booster rocket is launched to provide the target aircraft with the torque and buffer force required for attitude adjustment to ensure the safety of the aircraft and the personnel on board.
  • parachute 2 can be discarded in time as a further power reorganization, and the return capsule has a higher maneuverability driven by power system 5a, so as to reach a safe landing point.
  • Example 2 Receiving airborne supplies.
  • the power augmentation system and method can achieve accurate reception of airborne materials 12. Since the material 12 is only required to be parachuted, it is conducive to the batch transportation of the material 12 on the transport aircraft.
  • the power augmentation aircraft 51 is an unmanned helicopter 5121, and the docking device 611 carried by the helicopter 5121 is implemented by docking device embodiment 1.
  • the material 12 is dropped in a preset airspace at a specified time and enters a parachute state.
  • the power system 5b conducts long-distance observation or aerial inspection at the designated time and in the predetermined airspace.
  • helicopter 5121 After identifying material 12, helicopter 5121 flies toward material 12, intersects with it, and docks with it.
  • the small parachute retractor 211 on the cargo 12 retracts the parachute into the parachute retractor 211 , thereby releasing the aerodynamic force of the parachute 2 .
  • Helicopter 5121 carries supplies 12 and delivers them accurately to the destination.
  • differential GPS modules and wireless communication modules are installed between the helicopter receiving the supplies and the supplies, and the helicopter and supplies obtain each other's coordinates through wireless communication.
  • the high-precision data of differential GPS is used as the observation result to provide a basis for the acceptance action.
  • the docking device 612 of the helicopter 5121 is implemented using docking device embodiment 2.
  • the docking device and the target 612 are bonded by Velcro 6104 to ensure the reliability of the connection.
  • the docking device 625 on the helicopter 5121 can be implemented using the docking device embodiment 7. Since there are three remaining degrees of freedom after docking, it is a flexible docking.
  • the helicopter 5121 can move the material 12 to the bottom of the helicopter 5121 through maneuvers.
  • the helicopter 5121 continues to provide effective pulling force for the material 12 by adjusting the pitch.
  • the power augmentation aircraft 51 is in the form of a vertical take-off and landing aircraft 5122. After the vertical take-off and landing aircraft 5122 intersects with the material 12, it can be transformed into a vertical take-off and landing mode to dock with the material 12. Alternatively, when the control accuracy is sufficient, a fixed-wing flight mode is used to complete the docking with the material 12.
  • the following embodiments are provided for a target controllable landing system based on parachute and power augmentation and a target controllable landing method based on parachute and power augmentation of the present application.
  • Example 3 Rocket recovery: The overall mission is to allow the rocket body to land undamaged at a designated location after launch for subsequent use.
  • the system and method can preserve the rocket body. Compared with the scheme of discarding after launch, the system and method save a lot of rocket launch costs. Compared with the rocket recovery scheme that relies on its own fuel and power recovery, the system and method save a lot of fuel, that is, greatly reduce the size of the rocket. Moreover, since the supplementary system can provide a landing device for the rocket, it can further reduce the additional load of the rocket, or from another perspective, increase the rocket payload.
  • the power augmentation aircraft is a large multi-rotor helicopter or a coaxial twin-rotor helicopter, collectively referred to as helicopter 513 here, and the docking device 621 is implemented using docking device embodiment 3.
  • the mechanical arm 6202 has a locking function so that the driver of the mechanical arm 6202 is free from force after docking.
  • the state observation device includes a ground radar, an optical tracking system, and a GPS sensor or a combined navigation system and a communication device with a global positioning function placed on the rocket body 13 to be recovered and the helicopter 513.
  • the recoverable rocket body 13 is launched into space together with other parts of the rocket. After the fuel is exhausted, it separates from other parts and enters an unpowered throwing state.
  • the arrow body to be recovered is equipped with a parachute and a parachute control device 21.
  • the parachute control device 21 opens the parachute 2 and enters the parachute state.
  • the lower part of the arrow body 13 to be recovered is provided with three ball-shaped docking parts 6204.
  • the arrow body 13 to be recovered sends its own global motion state information, especially position and speed information, to the outside in real time through wireless communication.
  • the state observation system detects the motion state information emitted by the recoverable arrow body 13 in real time. If necessary, active detection means can be adopted. Including real-time scanning by ground radar, and accurate tracking by the optical tracking system after obtaining preliminary information about the recoverable arrow body.
  • the main controller of the control system solves the intersection point or intersection area based on the obtained information about the recoverable arrow body, and solves the motion trajectory of the power system at the same time. And the calculation result is sent to the controller of the power system, and an instruction to start the task is issued in real time. If necessary, the calculation is completed by the controller of the power system.
  • the power system 5c can start from the recovery point, or other suitable locations, such as an airspace near the descent route of the to-be-recovered rocket body 13. For example, at a high altitude in the parachute drop area, the power system 5c is mounted on an aircraft, and the aircraft is on standby near the parachute drop area. After receiving the mission start command, the power system 5c starts from its carrier and flies to the intersection point.
  • the power system 5c can adjust the motion trajectory according to the real-time acquired motion information of the recoverable rocket body 13.
  • the airborne state observation system of the power system 5c measures the motion state information of the docking parts on the recoverable rocket body 513, especially the position and speed information relative to the power system 5c.
  • the helicopter 513 moves to the bottom of the parachute-dropped recoverable rocket body 13 to complete the docking.
  • the recovered arrow body 13 releases the parachute 2, and the helicopter 513 drives the recovered arrow body to separate from the parachute through maneuvers and enter the landing route.
  • the helicopter 513 can move the arrow body 13 to be recovered to the bottom of the helicopter 513 through maneuvers, so that the entire system has static stability, improves the controllability during the movement, and completes the adjustment action.
  • the landing gear of the helicopter 513 touches the ground to support the arrow body to be recovered.
  • the helicopter 513 can take advantage of the high altitude and adopt a method of combining a spin landing or a self-selected landing with a normal landing.
  • the potential energy of the helicopter 513 and the rocket body 13 to be recovered at high altitude is converted into the kinetic energy of the propeller, thereby greatly reducing the energy required to be carried by the power system.
  • the power system 5d can be composed of a multi-rotor helicopter 51401 and a rocket propulsion device 51402.
  • the parachute control device releases the parachute
  • the multi-rotor helicopter 51401 drives the to-be-recovered rocket body 13 to fly to the recovery location
  • the rocket propulsion device 51402 uses its own advantage of a large thrust-to-weight ratio to provide thrust to overcome the weight of the to-be-recovered rocket body 13, and the multi-rotor helicopter 51401 can adjust the posture of the to-be-recovered rocket body 13 as the main work, thereby reasonably utilizing the flight weight of the power system 5d.
  • Embodiment 5 please refer to Figures 20 and 21.
  • the dedicated power system 52 uses a small jet engine 522.
  • the power system 5e includes: a combination of a dedicated jet engine 522 and a helicopter 515.
  • the docking device 621 uses the two-stage combined docking device of the mechanical arm and rigid docking in Embodiment 3. The contents of this embodiment are generally the same as those of Embodiment 3, and only the different parts are described here.
  • the helicopter 515 and the jet engine 522 intersect with the rocket body 13 to be recovered.
  • the rigid docking parts installed on the jet engine 522 have a small tolerance, and the helicopter 515 cannot achieve its rigid docking by its own control accuracy.
  • the mechanical arm 6202 is used to achieve docking with a large tolerance, and then the rigid docking parts are guided by controlling the mechanical arm 6202. After reaching the tolerance range of the rigid docking parts, the rigid docking parts are docked and locked. The parachute is removed in time.
  • the helicopter 515 is separated from the jet engine 522. The subsequent recovery/landing work is completed by the jet engine 522.
  • the helicopter 515 and the jet engine 522 are not separated, and the two complete the subsequent recovery/landing work together.
  • the combination of the helicopter 515 and the jet engine 522 can be regarded as a power augmentation aircraft 51.
  • the jet engine 522 can be set to multiple and distributed around the rocket body, which is conducive to improving torque output and enhancing attitude control capabilities. Further, the distance between the jet engine and the center is adjustable, so that it has a larger range of use.
  • the power system 5f can be a power supplement unit 42 composed of multiple helicopters 516 and docking devices 624.
  • the advantage of using multiple helicopters 516 is that the recovery of large rocket bodies can be achieved through the coordinated transportation of multiple helicopters 516.
  • the ball-shaped docking pieces 6215 on the rocket body 13 to be recovered are distributed on the circumference of the rocket body 13 to be recovered.
  • the docking device 624 set on the helicopter 516 is implemented by the docking device embodiment 6. After the appropriate number of helicopters 516 intersect with the rocket body 13 to be recovered, they move to the vicinity of their respective docking pieces and move their own docking devices close to the corresponding docking pieces. According to the preset docking scheme and algorithm, the docking is completed in time. After the parachute is removed, the multiple helicopters 516 bring the rocket body 13 to be recovered back to the recovery point by the method of coordinated transportation.
  • Embodiment 7 please refer to Figures 23 and 24.
  • the supplementary power aircraft 51 in the power system 5g adopts a helicopter 517, and the docking method can be implemented by using the docking device embodiment 7.
  • the helicopter 517 can move the rocket body 13 to be recovered to the bottom of the helicopter 517 through maneuvers, so that the entire system has static stability, improves the controllability during the movement, and completes the adjustment action.
  • Embodiment 8 please refer to Figures 25 and 26, for the recovery of slender targets, such as the rocket in the above embodiments.
  • the aircraft 518 adopts an annular structure, and the docking method of the power system 5h and the target 1 can be implemented by the docking device embodiment 6.
  • a transfer device 63 is provided on the target 1, and the transfer device 63 includes a guide rail 6301 provided along the length direction of the target 1 and a slider 6302 slidably arranged on the guide rail 6301, and the docking member 6215 is installed on the slider 6302.
  • the power system 5h can be transferred to a more advantageous position along the preset transfer device 63 to provide better control performance for the target 1. Therefore, the power system 5h moves from the bottom to the top along the length direction of the target 1, so that the center of mass is located below the power system 5h, so that the combined whole obtains static stability characteristics.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Transportation (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Aiming, Guidance, Guns With A Light Source, Armor, Camouflage, And Targets (AREA)

Abstract

一种用于伞降目标的动力增补可控降落方法,该方法包括:获取伞降目标的运动信息;动力系统(5;5a-5h)与伞降目标交汇、对接;根据任务需求,动力系统(5;5a-5h)与伞降目标采用动力重组的方式,合理地分配动力资源,驱动伞降目标运动到期望的位置,或者以期望的状态着陆。

Description

用于伞降目标的动力增补可控降落方法、目标可控降落方法及系统
相关申请的交叉引用  
本申请要求2023年01月09日提交的名称为“用于伞降目标的动力增补可控降落方法、目标可控降落方法及系统”的中国申请号2023100298236的优先权,这件申请中的全部内容据此以引用方式并入。
技术领域
本发明属于空中运输技术领域,具体涉及一种用于伞降目标的动力增补可控降落方法、目标可控降落方法及系统。
背景技术
包括火箭、飞机、直升机等在内的飞行器是对重量极为敏感的工具。具体表现其自重负载比较大,负载重量对系统整体重量影响具有杠杆效应,一份负载往往需要数倍至数百倍于其重量的飞行器。这也是为什么飞行器往往利用自重负载比极小的机载降落伞实现不精准的降落。此外,这类飞行器为了减重,往往不具有高强度的机体,受到冲击时往往机体发生变形、损坏、乃至完全损毁。而其工作的模式又以空中作业为核心,当失去动力或者失去控制时,往往意味着灾难性的后果。这类工具对重量敏感的另一个表现在于,对其运载的目标的重量及尺寸要求也往往较为严苛。
目前,上述飞行器及其运载目标的着陆方法主要有:依靠自身动力实现可控着陆,依靠伞降实现不可控着陆。由于降落伞相对于其悬吊的目标,往往质量非常轻而在空投人员和空投物资方面有广泛应用。而对于飞行器而言,往往是其发生故障时不得已采取的手段,尽管有降落伞的缓冲,其着陆时往往伴随着机体的损坏。
就火箭而言,由于箭体是高价值目标,采用伞降方法往往难以达到保全被回收箭体的效果,从而不具备较好的应用前景。采用自身动力着陆的方法意味着需要将着陆时需要的燃料及动力装置提升至外太空,这部分“死重”会造成大量的资源浪费,而且设计上也较为困难。一言蔽之,而由于其自身的自重负载比非常大,采用自身动力回收会在成本造成较大代价。而采用伞降火箭箭体的方法只能一定程度上减轻火箭箭体对地面物体的冲击,对于保全箭体本身几乎没有帮助。
对于飞机和直升机,当其动力系统、机体结构、或者是控制系统出现问题后,往往面临坠毁的危险。处于成本和设计代价考虑,仅有极少部分的小型飞机采用伞降的方法保护机内人员。而这种采用降落伞保护飞机内成员的方法也有一定局限性,比如在地形险峻的山地或水面,由于伞降难以控制降落地点,难以对机内成员提供有效保护。
对于飞行器伞降目标来说,由于没有有效控制手段,被投送的目标往往不能准确到达目标地点,从而使投送效率大大降低。有时会使接收人员无法接收到目标。甚至会发生被投送目标被投到无法被找回的地方,比如水面,山谷,从而造成损失。从另一个侧面看,传统伞投的方式的适用范围十分局限。
从另一个侧面看,上述飞行器及其运载目标对降落伞的应用,也显示了他们对重量的敏感程度。
发明内容
为解决上述技术问题,本发明的实施例提供一种用于伞降目标的动力增补可控降落方法、目标可控降落方法及动力增补系统、目标可控降落系统。
为达到上述目的,本发明的实施例采用如下技术方案:
本发明公开的第一方面一种用于伞降目标的动力增补可控降落方法,该方法包括:
获取伞降目标的运动信息,求得动力系统与之交汇所需的期望状态;
动力系统与伞降目标交汇、对接;
根据任务需求,动力系统与伞降目标采用动力重组的方式,合理地分配动力资源,驱动目标运动到期望的位置,或者以期望的状态着陆;
其中,动力系统包括为目标提供可控驱动力的驱动装置。
在一些实施方案中,所述动力重组包括动力系统与伞降目标对接,以及对接后抛掉伞或收伞。
在一些实施方案中,所述动力重组包括结合任务需求,一次或多次优化动力系统的结构和/或组成。
在一些实施方案中,在动力系统与伞降目标对接后,根据任务需求,还包括调整,调整包括改变动力与目标在目标体坐标系下的相对位姿,和/或改变动力与目标在全局坐标系下的相对位姿。
在一些实施方案中,根据任务需求,动力重组和调整,均可以以需要的次数及次序出现。
在一些实施方案中,在动力系统与伞降目标对接前,根据任务需求,优化动力系统的结构和/或组成。
本发明公开的第二方面一种基于伞降和动力增补的目标可控降落方法,该方法包括:
伞降阶段,采用伞降方式控制目标的状态;
动力增补阶段,采用上述动力增补可控降落方法实施该阶段,使目标以期望的状态运动到期望的位置,或者以期望的状态着陆。
本发明公开的第三方面一种用于伞降目标的动力增补系统,包括至少一个动力增补单元;以及
状态观测系统,其用于获取目标的状态信息;以及
控制系统,其电连接于动力增补单元、状态观测系统;
其中,
动力增补单元包括动力系统,其为目标的状态提供可控的动力,其包括动力增补飞行器;以及对接装置,其用于动力系统与目标对接,其设置在动力系统上;
动力增补飞行器是由动力驱动装置为动力的飞行器或多个飞行器组合。
在一些实施方案中,所述动力系统还包括专用动力系统,其包括至少一个动力驱动装置,动力驱动装置之间以及专用动力系统与动力增补飞行器之间通过连接器相连接;专用动力系统与动力增补飞行器之间的连接器具有可控能力。
在一些实施方案中,所述动力系统还包括助推系统,其包括至少一个动力驱动装置,动力驱动装置之间以及助推系统与动力增补飞行器之间通过连接器相连接。
在一些实施方案中,所述动力系统采用双向或多向动力驱动能力的驱动装置,或若干个该驱动装置的组合。
在一些实施方案中,所述对接装置包括承载式对接装置,承载式对接装置包括承载体;或
承载式对接装置包括承载体,承载体上设有用于固定目标的紧固装置。
在一些实施方案中,所述对接装置包括配合式对接装置,其包括锁紧机构,以及设置在目标上与锁紧机构相配合的对接件。
在一些实施方案中,所述状态观测系统包括用于获取目标状态的设备;或
状态观测系统包括用于获取目标状态和动力系统状态的设备;或
状态观测系统包括动力系统状态和目标相对于动力系统的运动状态的设备。
在一些实施方案中,所述控制系统包括设置在动力增补系统上的控制器,或动力增补系统以外的控制器,以及上述组合。
本发明公开的第四方面一种基于伞降和动力增补的目标可控降落系统,包括至少一个降落伞和上述动力增补系统。
与现有技术相比,本发明的技术方案具有以下有益效果:
更高效。本申请可以使带回收的空中目标兼具伞降方法的轻质和精准可控的优点,从而使系统对飞行重量的利用十分高效。从能源利用效率角度看,采用此方法的火箭发射及回收系统,将避免携带大量的包括回收燃料和起落架等辅助装置在内的“死重”。从而大大提升火箭燃料的利用率,进而大大提升火箭的综合性能。从回收的时间利用率角度看,采用此方法可以快速将分散在各处的伞降目标快速回收到一处,从而改善地面人员花费大量时间搜集伞降目标的工作效率。
更安全。为伞降物提供了安全的降落方法,使伞降物可以着陆到安全的着陆区域,避免恶劣的着陆环境对伞降物带来的潜在威胁,且通过可控的降落运动状态,使伞降物免受破坏性冲击、倾覆等带来的不良影响。上述情况同样适用于其搭载目标和人员,从而达到保护人员安全和目标安全的效果。
更精准。为伞降物提供了精准的降落方法,有效避免了伞降方法本身具有的不精准的弱点。对于必须回到指定回收地点的物体,本申请可以避免任务失败的后果。除了回收或降落地点可以实现精准控制,本申请可以实现回收或降落动作的精准控制,从而为被回收目标提供柔和的着陆动作,使被回收目标轻微受力,达到较好的保护效果。
更灵活。本申请提出的方法可以为伞降目标提供多种灵活的动力配置,可以针对不同的应用场景,对伞降目标增补不同的动力源,达到不同的性能,满足不同的任务需求。比如,对远距离回收,可以采用冲压伞+增补螺旋桨动力的方法,实现高效的远距离回收与降落。对于高空带回收目标,可以通过高空增补旋翼的方法,利用势能实现自旋着陆。
效费比高。对于回收类应用,由于飞行的目标本体没有“死重”,因而大大提高了飞行器的运输效率。尤其对于火箭这类举高距离非常大的系统,消除“死重”对系统的效非比的提升有巨大的作用。 
附图说明
图1是根据本公开的一个方面的动力增补系统结构框图;
图2是根据本公开的一个方面的动力系统的动力模式I结构框图;
图3是根据本公开的一个方面的动力系统的动力模式II结构框图;
图4是根据本公开的一个方面的动力系统的动力模式III结构框图;
图5是根据本公开的一个方面的动力系统的动力模式IV结构框图;
图6是根据本公开的一个方面的动力系统的动力模式V结构框图;
图7-14是根据本公开的对接装置实施例结构示意图;
图15-26是根据本公开的方法及系统的实施例示意图。
图中:
1-目标、2-降落伞、21-控伞装置、3-动力增补系统、4-动力增补单元、5-动力系统、6-对接装置,7-状态观测系统、8-控制系统;51-动力增补飞行器、52-专用动力系统、53-助推系统、54-连接器;611-承载式对接装置、6101-承载体、6102-挡板;612-承载式对接装置、6103-盘状承载体、6104-魔术贴;621-配合式对接装置、6201-支架、6202-机械臂、6203-对接器、6204-球头形对接件;622-配合式对接装置、6205-环形支架、6206-锁紧块、6207-对接环;623-配合式对接装置、6208-承接体、6209-锁紧机构、6210-支架、6211-对接件、6212-柔性件;624-配合式对接装置、6213-机械臂、6214-对接器、6215-球头形对接件;625-配合式对接装置、6216-对接器、6217-球头形对接件;626-配合式对接装置、6218-支架、6219-夹具、6220-单杠型对接件;63-转移装置、6301-导轨、6302-滑块;11-目标飞行器;41-动力增补单元、5a-动力系统、511-多旋翼飞行器、521-缓冲助推火箭、531-助推火箭;12-物资;5b-动力系统、5121-直升机、211-收伞器、5122-垂直起降飞机;13-待回收箭体;5c-动力系统、513-直升机;5d-动力系统、51401-多旋翼直升机、51402-火箭推进装置;5e-动力系统、515-直升机、522-喷气式发动机;42-动力增补单元、5f-动力系统、516-直升机;5g-动力系统、517-直升机;5h-动力系统、518-飞行器。
实施方式
下面将结合具体的实施方案对本发明进行进一步的解释,但并不局限本发明,说明书附图所绘示的结构、比例、大小等,均仅用以配合说明书所揭示的内容,以供熟悉此技术的人士了解与阅读,并非用以限定本发明可实施的限定条件,故不具技术上的实质意义,任何结构的修饰、比例关系的改变或大小的调整,在不影响本发明所能产生的功效及所能达成的目的下,均应仍落在本发明所揭示的技术内容所能涵盖的范围内。同时,本说明书中所引用的如“上”、“下”、“前”、“后”、“中间”等用语,亦仅为便于叙述的明了,而非用以限定本发明可实施的范围,其相对关系的改变或调整,在无实质变更技术内容下,当亦视为本发明可实施的范畴。
请参阅图1所示,本申请公开了一种用于伞降目标的动力增补系统,其作用在于为目标增加或补充动力,或为目标提供独立的降落动力,使伞降目标具有可控方式回收/降落的能力。动力增补系统3包括动力系统5,动力系统5为目标提供可控的动力;以及对接装置6,对接装置6用于动力系统与目标对接,建立二者的力学联系,对接装置6设置在动力系统5上;以及状态观测系统7,状态观测系统7用于获取目标的状态信息;以及控制系统8,控制系统8根据状态观测系统7反馈的信息及动力系统5的状态信息,控制动力系统5与目标交汇并通过对接装置6与目标对接,及控制目标以期望的状态运动到期望的位置,控制系统8电连接于动力系统5、对接装置6、状态观测系统7。
动力系统5有多种动力组成模式,其中,动力模式I,如图2所示,动力系统5包括动力增补飞行器51,动力增补飞行器51是由动力驱动装置为动力的飞行器或多个飞行器组合,具有足够的运动能力及控制精度,以满足动力系统5与目标之间实现高效可靠的对接。
动力模式II,如图3所示,在一些实施例中,动力系统5包括动力模式I中的动力增补飞行器51和专用动力系统52,专用动力系统52具有适合任务需求的综合性能。比如,在需要大推重比的任务重,专用动力系统52可以选为大小适合的固体火箭。专用动力系统52包括至少一个动力驱动装置,其根据不同的任务选取不同的动力驱动装置及多种驱动装置的组合方案。专用动力系统52内的动力驱动装置之间,以及其与动力增补飞行器之间,通过连接器54连接。至少专用动力系统52与动力增补飞行器51之间的连接器54具有可控能力,可实现连接器54两端的装置接合或分离。
当然,如果专用动力系统52与动力增补飞行器51在整个任务的执行过程中始终保持固连,则,这种构成可视为动力模式I。这种情况下专用动力系统52与动力增补飞行器51之间的连接器54将视为动力模式I的组成部分。
动力模式III,如图4所示,在一些实施例中,在动力系统5包括动力模式II中的专用动力系统52,或仅包括动力模式II中的专用动力系统52的部分动力。
动力模式IV,如图5所示,在一些实施例中,动力系统5包括动力模式I中的动力增补飞行器51和助推系统53,其作用在于为动力系统5提供某种适于完成任务的飞行性能,比如,采用助推火箭作为助推系统53,可以使动力系统5与目标快速交汇。助推系统53包括至少一个动力驱动装置,其根据不同的任务选取不同的动力驱动装置适配方案。助推系统53内的动力驱动装置之间,以及助推系统53与动力增补飞行器51之间,通过可控连接器54连接。至少助推系统53与动力增补飞行器51之间的连接器54具有可控能力,可实现连接器54两端的装置接合或分离。助推系统53在动力系统5与目标对接前脱离动力系统5的其他部分。助推系统53脱离后不再重新参与到后续的任务中。
动力模式V,如图6所示,在一些实施例中,动力系统包括动力模式I中的动力增补飞行器51和,以及动力模式II中的专用动力系统52和动力模式IV中的助推系统53。动力增补飞行器51、专用动力系统52、助推系统53之间通过可控的连接器54连接,可实现连接器54两端的装置接合或分离。
上述连接器54采用通用的连接机构或装置,仅用于实现两端装置的接合固连或分离释放。其实现方案为常规设计,这里不赘述。
动力驱动装置的驱动器的的形式为现有技术中的所有可行形式,包括但不限于:螺旋桨、涵道螺旋桨、空气喷气式发动机、火箭驱动器以及上述的组合。驱动器的动力源为现有技术中的所有可行动力源,包括但不限于:电动机、活塞式发动机、空气喷气式发动机、火箭发动机以及组合发动机。驱动器布局为所有可行布局,包括但不限于:单旋翼带尾桨型、共轴双桨型、串/并列双桨型、交叉桨型、多旋翼型,或依据动力需求的其他构型。
专用动力系统52是针对特定任务由上述动力驱动装置为动力的飞行器或可控动力装置及多个飞行器或可控动力装置的组合。
在一些实施例中,动力系统5采用双向动力驱动能力的驱动装置,或若干个该驱动装置的组合。比如,采用共轴双桨驱动装置的动力系统可以实现相对于其本体的向上和向下的驱动力方向。采用双向动力的好处在于,当目标与动力系统的相对方位需要灵活调整/布置时,可以通过控制其驱动方向适应相对方位的变化。比如,动力系统在细长目标下方与其对接后,可以通过调整将细长目标置于动力系统下方,动力系统的驱动力相对于自身变换方向以使组合的系统仍然受力平衡。进一步地,在一些应用中,可以设置多向的驱动装置或其组合实现更灵活的控制。比如驱动装置为火箭推进系统,可以采用具有主推力方向侧向喷射功能的发动机,为目标及增补的动力的组合体提供滚动、倾转力矩,从而更好地调节姿态。
在一些实施例中,动力系统5及其上的对接装置6构成一个动力增补单元4,动力增补系统3包括若干个动力增补单元4,动力增补单元4协同执行任务,完成对目标动力增补。
本申请的对接装置根据不同的应用采用不同的对接方式,承载式和配合式。
承载式对接装置611,612,其采用托举的方式与目标对接。通常情况,该对接装置设有容纳目标的承载体,目标落入承载体。
配合式对接装置621-626,目标上设有与对接装置相配合的对接件。配合式对接装置包括刚性对接方式、准刚性对接方式和柔性对接方式。所述刚性和柔性仅为相对而言,并非严格意义的区分。对接装置与目标对接部位根据不同的应用采用不同的方案,例如,可以与目标的底部、中部或上部对接。其中,对接部位如果为目标的中部或上部,可以将对接装置套接在目标的外侧。
针对对接装置,这里提供以下几种实施方案。
本申请对接装置实施例1,如图7所示,采用承载方式与目标对接。承载式对接装置611包括承载体6101,承载体6101上设有若干个挡板6102,挡板6102分布在承载体6101的周线上。挡板6102向外翻出,使承接体6101在接收目标时具有较大的容差。在一些实施例中,挡板6102具有可控的翻转能力。对接装置在与目标对接前,挡板6102处于外翻状态,使对接装置与目标对接时具有较大的容差。目标落到承载体6101上,挡板6102向内翻动,使目标固定在承载体6101上。
本申请对接装置实施例2,如图8所示,采用承载方式与目标对接。承载式对接装置612包括盘状承载体6103,承载体6103上设有与目标接合的磁吸件或魔术贴6104类粘黏件。该对接装置可应用于具有铁质或粘黏性外包装的目标。也可以有针对性的采用铁质或粘黏的包装材料对目标进行包装,或在目标的外包装上设置相配合的磁吸件或魔术贴类粘黏件。
本申请对接装置实施例3,如图9所示,采用配合式刚性对接实施方案与目标对接。采用三个机械臂对目标与动力系统间的大容差进行补偿,实施精准的对接。对接后,可以在机械臂调整到系统所需的状态后,将机械臂通过特定机构锁死,使得机械臂成为结构件,从而可以传递较大的力。具体的,配合式对接装置621包括支架6201,支架6201上合理的分布若干个机械臂6202,机械臂6202的自由端设有喇叭形对接器6203,对接器6203内设有锁紧机构,目标上设有与对接器6203相配合的球头形对接件6204。
本申请对接装置实施例4,如图10所示,采用配合式刚性对接实施方案与目标对接。配合式对接装置622包括环形支架6205,环形支架6205上分布有若干个具有驱动能力的锁紧块6206,目标上设有与所述锁紧块6206相配合的对接环6207,锁紧块6206与对接环6207卡接。
本申请对接装置实施例5,如图11所示,采用配合式准刚性对接实施方案与目标对接。配合式对接装置623包括漏斗状两端开口的承接体6208,承接体6208开口较小一端设有夹紧型锁紧机构6209,承接体6208开口较小一端设有支架6210,并通过支架6210与动力系统5连接。目标上设有与承载体6208相配合的倒置的漏斗状对接件6211,对接件6211的端部设有细长柔性件6212。对接装置与目标对接时,漏斗状承接体6208使对接装置具有较大的容差。柔性件6212穿过承接体较小的开口与锁紧机构6209相接,锁紧机构6209拉动柔性件6212使对接装置与目标对接并锁紧。
本申请对接装置实施例6,如图12所示,采用配合式准刚性对接实施方案与目标对接。若目标为火箭箭体,针对避让喷口的情况,对接装置可以套接在目标外侧实现中部、上部对接。具体的,本实施例中,飞行器采环形结构,配合式对接装置624包括机械臂6213,机械臂6213的自由端设有喇叭形的对接器6214,对接器6214内设有锁紧机构。目标上设有与对接器6214相配合的球头形对接件6215。对接后机械臂6213锁紧以保护驱动器。飞行器的环形结构上分布有若干个配合式对接装置624,目标上同样设有与对接装置624数量相同的对接件6215。
本申请对接装置实施例7,如图13所示,采用配合式柔性对接实施方案与目标对接。本实施例中,采用单球型对接方案,飞行器采用共轴双桨形式。配合式对接装置625包括喇叭状对接器6216,对接器6216内设有锁紧机构。对接器6216设置在双桨轴线的机体上。目标设有与对接器6216相配合的球头形对接件6217。通常情况下,对接件6217设置在目标的下方。采用本实施例与目标对接,对接后剩余三个旋转自由度。
本申请对接装置实施例8,如图14所示,采用配合式柔性对接实施方案与目标对接。本实施例采用单杠型对接方案,在目标上设有单杠型对接件6220。配合式对接装置626包括支架6218,支架6218上设有与单杠型对接件6220相配合的具有可控开合能力的夹具6219。采用本实施例与目标对接,对接后剩余一个旋转自由度。
对于刚性对接方式,对接后动力系统可以在目标下方、中间、以及上部任何可以保证可控飞行的方位。也可以根据实际需求对目标与动力系统进行方位上的调整。比如,如果动力系统在对接时处于目标的下方,可以选择通过控制手段将目标转到动力系统的下方,从而形成动力系统对目标吊挂的形式。
对于准刚性对接方式,对接后动力系统可以在目标下方、中间、以及上部任何可以保证可控飞行的方位。也可以根据实际需求对目标与动力系统进行方位上的调整。比如,如果动力系统在对接时处于目标的下方,可以选择通过控制手段将目标转到动力系统的下方,从而形成动力系统对目标吊挂的形式。
对于柔性的对接方式。如果动力系统位于目标的下方,则,目标往往处于静不稳定状态。即,如果动力系统不进行主动控制,目标会在微小扰动和重力的作用下倾覆,导致无法保持全有的稳定状态。而采用主动的倒立摆控制可以维持动力系统与目标之间的相对位置关系,但往往代价极大而不实用。对于动力系统在下方的情况,较为优选地,通过主动控制,将目标置于动力系统下方,从而实现静稳定形式,便于后续的控制回收工作的开展。
对于对接后可以形成静稳定状态的系统,可以选择保持对接时的相对方位关系。
状态观测系统,其用于测定目标的运动状态,状态观测系统可以灵活地安置在便于状态观测的位置。包括但不限于:动力增补飞行器上,专用动力系统上,动力增补系统的其他部分,以及上述位置的组合。状态观测系统除了直接获取被观测对象的相对状态的设备,还包括动力系统上包括的惯性传感器在内的多种传感器及其组合。
在一些实施例中,状态观测系统还包括目标上包括的惯性传感器在内的多种传感器及其组合,以及通过动力系统与目标之间的通讯实现融合双方多传感器信息以获得更佳的状态观测能力的设备组合及算法。
在一些实施例中,状态观测系统还包括差分定位系统、地面雷达等。
在一些实施例中,目标上设有标识点,标识点便于状态观测系统的识别与测量。较优地,标识点设置在目标的对接件或者目标的对接部分上,以便获得更精准的对接部分的运动状态信息。
控制系统,设置于动力系统上或其他合适的地方,也可以将控制系统分散在整个系统的各个组成部分上。控制算法可以采用单个总控制器集中计算的方式,也可以采用多个控制器分布计算的方式。控制系统可以获取动力增补系统的各个组成部分的状态信息,通过观测系统或第三方信息源获取目标状态信息,在执行任务的各个阶段对动力增补系统的各个组成部分进行控制。
在一些实施例中,在目标上设置控伞装置,控伞装置与控制系统电连接。这里的控伞包括,断开降落伞与目标之间的连接关系、操控降落伞以实现特定的动力要求、收回降落伞以消除降落伞的原有的空气动力、改变伞型或结构以改变降落伞的动力。上述控伞目的实现均为现有技术,因此,不在这里详细说明控伞装置具体结构。
本申请公开的另一方面一种基于伞降和动力增补的目标可控降落系统,包括降落伞和上述动力增补系统。根据任务设定,目标到达预定空域或状态实施抛投。目标在空中运动到任务的某个阶段后进入降落程序,通过本申请的目标可控降落系统对目标实施回收。目标到达设定的区域或状态打开降落伞,动力增补系统适时启动动力系统与目标交汇、对接,控制目标以期望的状态运动到期望的位置,或者以期望的状态着陆。
在一些实施例中,降落伞可以操控,使之成为可控动力组成的一部分,特别是冲压伞。
本公开提出一种用于伞降目标的动力增补可控降落方法,本方法通过动力系统为伞降目标提供可控能力或提高其可控能力,使目标以期望的状态运动到期望的位置,或以期望的状态着陆。
步骤1,获取伞降目标的运动信息并解算出交汇点或交汇区域。
根据任务需求,结合目标的运动信息以及动力系统的动力学性能,可以求得与目标在空间中交汇的点,我们称这一点为交汇点。这是所说的任务需求包括但不限于最小燃油消耗,最小时间消耗,最小路程等,以及结合前述指标的综合指标等。交汇点通常可以用最优控制方法求得。考虑到必要的安全距离、传感器精度以及观测设备的观测范围等因素,可以通过算法将交汇点扩大为一个合理的区域,我们称之为交汇区域。
通过状态观测系统获取目标与动力系统间的相对运动信息并解算出交汇区域,或推算目标运动信息并解算出交汇区域。状态观测系统可能是具有全局坐标或运动状态获取能力的导航定位系统及必要的通讯手段,比如GPS/差分GPS/组合导航系统和无线通讯。状态观测系统也可能是动力系统和目标之间的一方单向探测另一方的观测设备和手段,比如雷达,光学观测设备等。状态观测系统也可以是一方提供特定物理信号,另一方通过相应设备及方法通过物理信号的变化规律推断提供信号方的运动状态,比如目标在下降过程中发射特定波长的信号,地面观测系统通过多普勒效应测定其运动状态。状态观测系统可以是上述方法的组合及深度融合。
在一些实施例中,在动力系统主动靠近伞降的目标之前,二者间的相对距离较远。在这种距离下,动力系统难以对目标的运动状态进行高精度的观测。通常,可以通过第三方提供的信息,或者根据目标主动发出的运动状态信息,获取目标的运动信息。
在一些实施例中,伞降目标的运动路线及时间根据任务规划可以进行预估,可以根据这个预估的时间和交汇区域进行抵近观测,以获取目标的准确的运动状态。
步骤2,动力系统向交汇点或交汇区域运动,与伞降目标交汇。
结合目标的运动信息以及动力系统的动力学性能,解算出交汇所需的运动轨迹。在需要的情况下,可以根据目标与动力系统的实时状态信息,实时调整运动轨迹。或者,更为简单地,只给出动力系统的期望运动状态。动力系统适时从出发点出发,动力系统按规划逐渐靠近目标。
在一些实施例中,运动轨迹通过投放区的位置以及一些必要的信息推算得出。例如,投放时的具体坐标、投放时目标体的运动状态、气象信息等,基于数学模型、数据库和求解方法,推算得出交汇的运动轨迹。
在一些实施例中,对于目标本体运动轨迹不预先知道的情况,交汇区域可以根据在线获得的伞降目标运动状态,结合动力系统的运动能力在线求得。动力系统依据在线求得的运动轨线。
在一些实施例中,根据任务需求,优化动力系统的组成。例如,动力系统需要以很高的速度到达交汇预期,可以特殊动力的组合,加速交汇。比如,采用助推系统的动力系统。具体模式有上述动力系统的动力模式IV和动力模式V。助推系统一般在对接前脱离动力系统的其他部分。
在一些实施例中,为了达到动力系统与目标快速交汇的目的,可以是动力系统搭乘飞行器,预先等候在交汇区域附近。待交汇、对接任务被触发时,从其所搭载的飞行器出发就近抵达交汇区域。
在一些实施例中,动力系统依状态观测系统的数据,与伞降目标编队飞行。在一些实施例中,对于对接操作,状态观测系统具有全局坐标或运动状态获取能力,且其精度足够高,比如在大容差操作任务中的差分GPS系统,那么该全局定位设备也可用于对接操作。
在一些实施例中,状态观测系统不具有全局坐标或运动状态获取能力,或者精度不够高,需要通过分阶段,渐进式过程提高相对定位精度的系统组合实现对接所需要的高精度观测。比如,状态观测系统可以采用地面雷达探测配合以动力系统的机载高精度光学观测系统的两阶段方式实现。具体的实施过程可以是,地面雷达全时探测,发现目标后,动力系统向计算的交汇区域飞去。当目标进入动力系统的机载光学观测系统后,动力系统根据光学观测系统精确测定目标与其的相对运动状态,为对接提供依据。此实施中的雷达探测阶段也可以由全局定位系统实现。在多数情况下,根据合理的任务规划,当二者交汇时,目标应处于机载光学观测系统的观测范围内。如果交汇后不能直接观测,则可通过调整自身状态、机载光学观测系统状态或者同时调整二者使目标进入机载光学观测系统的测量范围。动力系统获取目标的精确状态,根据此状态,动力系统与目标紧编队飞行,使目标上的对接件或对接部分进入动力系统对接的操作范围内。
步骤3,动力系统与伞降目标对接。
动力系统获得目标的精确相对运动状态后,根据对接方案,运动到合适的相对位置,以便后续的对接操作。比如,目标的对接装置位于其底部,则动力系统应运动到目标底部,并使对接装置靠近目标的相应位置。
动力系统在对接的过程中,应结合状态观测系统的测量范围以及其调节能力选择合适的运动路线,保证状态观测系统在对接过程中对目标的有效观测。
同时,在对接操作开始前,动力系统应与目标之间保持一定安全距离,以免二者间因突发的扰动导致碰撞。需要退出对接操作的情况下,保持一定的安全距离,便于任务临时取消时二者能够顺利分离。
在一些实施例中,有多个动力系统与目标对接时。各个动力系统应该运动到各自的对接位置,以便需要时同时实施对接操作。
在一些实施例中,对于动力系统的运动能力和运动精度足以满足对接容差的情况,可以采用动力系统直接对接目标的方式实现二者之间的对接/接合。这种方式适合动力系统具有非常高的动态控制能力和运动精度情况。
在一些实施例中,对于无法实现直接对接/结合的情况。动力系统和目标之间往往采用大容差引导的方式实现对接/接合。对于多数柔性连接方式可以采用这种方式。
在一些实施例中,当动力系统的运动能力无法满足直接补偿二者间运动状态差的情况,可以采用主动的高动态对接方式实现精准对接。比如,采用机械臂实现高动态对接。
在一些实施例中,当两端对接装置的相对状态减小到足够小时,对接装置的锁紧装置被激发,将两端的对接装置锁紧在一起。锁紧后,两端对接装置间的自由度根据对接装置的特点而定。对于纯刚性对接,二者间自由度为零。对于悬绳类柔性对接,二者间对接自由度数为五。对于球副对接,二者间自由度数为三。
按照动力系统与目标的数量比,可以为分为一对一对接和多对一对接形式。一对一对接形式指一个动力系统对接一个目标,多对一的形式指多个动力系统对接一个目标。
关于对接位置,以在目标伞降过程中稳定状态为基准,对接点在目标本体上的方位。通常可简单地分为下方,下部,中部,以及上部。其中,下方为目标本体的正下方。下部、中部和上部指目标本体侧面的下、中、上部。动力系统可以根据任务需求、自身运动能力以及对接的柔性选择对接点,以及对接点的组合。
对接的方式可根据任务采用承载式对接和配合式对接。承载式对接与配合式对接的区别在于,配合式对接需要在目标上设置与动力系统的对接装置相配合的连接件。
承载式对接采用托盘类对接装置,该类对接装置从目标下方与目标对接。通常,该类对接装置设有夹紧目标的可控夹持模块。当目标落到“托盘”之后,夹持模块夹紧目标,以提高目标与“托盘”间的固连关系。
配合式对接可分为柔性对接、准刚性对接、刚性对接。
柔性对接:动力系统与目标间通过柔性件连接。常见的柔性连接有单个柔性件的吊取型连接和多个柔性件的协同调取型连接。
刚性对接:动力系统与目标间通过刚性件连接,连接后,二者间没有自由度。
准刚性对接:动力系统与目标间通过刚性件或柔性件连接,连接后,二者间还具有自由度,但从控制角度二者可视为一个刚体,或参数变化不大的刚体。
步骤4,动力系统与伞降目标动力重组。
动力重组的目的在于为目标提供任务所需的可控的运动能力。
动力重组的内容包括:
为伞降目标增加动力系统;
在对接后系统的基础上改变动力系统的结构及组成;
改变伞的动力及动力学特性,或去除伞;
为目补充供动力源,比如燃料和电能;
以上内容的组合形式。
其中1)为,通过对接的方式,建立动力系统和目标之间的力学联系,使动力系统可以独立地或配合伞对目标施加力,以实现控制。
2)为,在动力系统与目标连接后,通过改变动力系统或动力系统与目标的结合体的结构以获得所需的动力学性能。以及在需要的情况下通过去除后续不需要的部分获得更精简的系统组成。
在一些实施例中,动力系统针对目标特点提供专用动力系统。对接后,动力增补飞行器可以脱离对接装置与目标,从而只用专用动力系统驱动目标,以达到较好的控制效果。
在一些实施例中,动力系统的特定动力部分处于紧缩状态,在交汇对接前需要保持较小的外包络尺寸,以利于动力系统的飞行性能。对接后,为了给目标提供更好的动力学性能,可以将特定动力部分展开至合适的状态,以获得相对结合体质心较大的驱动力矩,从而获得更好的姿态控制能力。
3),在动力系统与目标连接后,通过管道,电气连接等途径,为目标补充动力(能)源。
在一些实施例中,动力系统携带目标所需要的燃料。动力系统与目标对接时,燃料管道同时与目标相应对接件对接。确认管道正确对接后,动力增补向目标中加注燃料。动力系统为目标加注燃料后,可以脱离目标,后者利用自身的驱动系统独立运动。或者动力系统为目标加注燃料后,保持与目标之间的连接关系。二者的动力装置共同驱动目标运动。
4),改变伞的动力:解除伞的动力、通过更换伞型或改变伞的形式改变伞的动力,或保留伞的动力。
解除伞的动力有如下方式:
(1)断开伞与目标之间的连接。比如抛掉伞绳及伞\剪断伞绳。(2)改变伞的形式,使之失去原有的空气动力特点。比如采用设备将伞收回到目标上,使之失去伞的空气动力能力。(3)破坏伞,使之失去原有的空气动力特点。比如,烧掉伞,或者将伞上预设的孔洞打开。保留伞的动力,同时采用动力系统为目标本体提供动力。这类应用的一个典型是,保留的伞型为冲压伞,增补的动力系统可以与冲压伞形成伞翼动力系统,从而以伞翼机的形式带动目标本体运动。这种情况下,往往需要目标上具有控制伞的控制器,以获得较好的控制效果。在需要时,也可以根据需要解除该伞的动力。
步骤5,通过控制重组后的动力系统,控制目标以期望的状态运动到期望的位置,或者以期望的状态着陆。
以营救空中伞降飞行器为例,任务的主要目标为保全飞行器中的人员安全,次重要目标为保全飞行器的结构安全。这种情况下,着陆地点是不确定的,以实现上述目标为准。动力系统可根据离线获得的地表信息筛选可行的降落地点,并根据其自身携带的状态观测系统实时获取备选降落点的实际情况。结合增补动力后的目标的动力学性能、运动状态、事发时的环境信息等,选择最优的着陆地点。并根据实际情况选择最优的驱动组合方案以及具体的控制方案。
对于火箭回收类任务,回收地点是明确已知的。动力系统与目标对接后。根据对接后系统的运动状态、剩余能量状况、与回收地点之间的距离以及环境信息等,求取合适的运动轨迹或路线。采用合理的动力组合飞向回收地点,并在需要的情况下配合地面回收设备完成火箭的回收。
为了进一步优化上述动力增补回收方法,将上述步骤4分成动力重组和调整两个环节,上述步骤4可视为动力重组环节。
调整环节包括:
如果对接后目标与动力系统的状态就符合动力学要求,则不需要调整状态。如果在对接后的某个阶段,需要调整目标及动力系统的飞行状态,则将二者的组合体调整到适合飞行需要的飞行状态。如果动力重组后的结果为目标自身,则前述“组合体”只指目标自身。调整后,组合体应能够仍然得到有效动力。比如,对于目标本体上下调换的状态调整,动力系统可以采用具有正负攻角的螺旋桨,以便在上下调换后仍能为系统提供克服重力的驱动力。
在一些实施例中,动力系统与目标对接后,可以沿着预设的转移装置,将动力系统或其内部分动力转移到更有利的位置,为目标提供更好的控制性能。比如,在细长的圆柱形目标上,动力系统沿着圆柱的长度方向,从下方运动到上方,使质心位于动力系统下方,以使结合的整体获得静稳定特性。
对接后,根据任务需求,动力重组和调整两个环节,均可以以需要的次数及次序出现。为目标的后续可控降落和回收提供灵活配置方案。
对于柔性连接,通常需要根据连接后系统的动力学稳定特性来确定是否需要调整状态。比如,底部对接的情况,通常需要调整上下的相对状态以获得更稳定的动力学状态。对于多机协同调运,连接点在重心之上的情况,一般不需要调整状态。
对于刚性连接,可以根据连接后整个系统的动力学稳定性和实际应用的场景来确定是否需要调整。比如,底部对接的情况,如果动力系统可以稳定控制对接后的系统,则可以保持状态不变。再如,如果辅助降落设备要求目标本体在降落时处于动力系统下方,则可以调整状态。
本申请公开的基于伞降和动力增补的目标可控降落方法,包括伞降阶段和动力增补阶段。伞降阶段是指采用降落伞控制目标在空中的初期运动状态,动力增补阶段是采用上述用于伞降目标的动力增补回收方法来控制目标的后期运动状态。
其中的伞降阶段为
根据总体控制方案,目标从初始地出发,运动到设定的投放区将目标投放,目标进入抛投状态。
目标从空中下落,适时开伞
目标携带的伞可以不止一类,不止一套,以便更灵活地构建伞动力。例如,常规伞降方式,主伞,引导伞和主伞配合。
在一些实施例中,目标携带的伞可以有自己的控制器,以提供一定程度的控制能力。例如,冲压类的伞。
在一些实施例中,目标在投放后,实时发送自身运动状态信息,包括全局坐标信息、姿态信息。例如,在目标上安装定位装置,以获取坐标信息。在目标上安装惯性导航系统,以获得目标的姿态。还需要设置通信装置,用于信息的发送。
在一些实施例中,目标在投放后,可以发出可探测的信息,以便外界获悉、定位与跟踪。比如光学信息,具有较高亮度的可见光灯或不可见光的灯。比如具有特定波长和特定变化规律的声学信号。比如具有特定波长和特定变化规律的无线电信号。
在一些实施例中,目标具有较高的可被探测能力,比如安装龙勃透镜。
目标进入减速下降状态,向目标交汇区域运动。
动力增补阶段为:
采用上述用于伞降目标的动力增补可控降落方法实现本阶段的任务,使目标以期望的状态运动到期望的位置,或以期望的状态着陆。
对于本申请的一种用于伞降目标的动力增补系统和用于伞降目标的动力增补可控降落方法,提供了如下几个实施例。
实施例1:如图15、16所示,营救紧急情况下的飞行器。
目标为伞降的目标飞行器11,这里的目标飞行器11可以是待救援飞机,也可以是返回地球的伞降返回舱。采用本方案及系统,可以最大程度地保全机载乘客的安全,以及目标飞行器11的安全。
辖区内设有以本系统为主的应急救援系统。动力增补系统3的各部分组成如下:动力系统5a由大型多旋翼飞行器511和助推火箭521组成。助推火箭521主要用于为动力系5a统提供足够大的推力,以使其达到应急反应所需要的高速度。多旋翼飞行器511上还设有缓冲助推火箭531,缓冲助推火箭531用于在待救援飞机着陆前,以较小的重量为代价提供较大的反推力,以减轻多旋翼飞行器511以及其上乘客收到的冲击。以在着陆瞬间提供较大的缓冲推力;对接装置623采用对接装置实施例5实施,对接装置623中的锁紧机构6209采用轧辊绞车,目标对接件上的柔性件6212采用引导绳;状态观测系统由设置于地面的雷达系统和设置于多旋翼飞行器511的机载视觉观测系统组成;控制系统由设置于地面救援系统的总控制器和设置于多旋翼飞行器511上的控制器构成。
本实施例中,采用多个动力系统5a及设置其上的对接装置623构成的动力增补单元41。多个动力增补单元41协同执行任务,完成对目标飞行器11的动力增补。
应急救援系统收到求救信号,状态观测系统的地面雷达扫描所在空域,获得目标飞行器11运动状态信息。
控制系统的总控制器根据雷达获取的目标飞行器11运动状态信息,结合动力系统5a的运动能力,依据时间最优的原则,求解动力系统ta与目标飞行器11交汇点的空间坐标以及其他运动状态,同时求解出动力系统5a飞向交汇点的时间最优轨线。总控制器将计算结果发送给动力系统上的控制器,并发出开始任务的指令。在需要的情况下,该计算由动力系统的控制器完成。
动力系统5a根据规划的运动轨线,在助推火箭531以及自身动力的作用下快速抵达交汇点附近,并在需要的情况下及时更新规划的运动轨线以及调整控制输出。动力系统5a的机载视觉观测系统观测到待目标飞行器11。助推火箭531与动力系统5a的其他部分分离。动力系统5a的剩余部分继续目标飞行器11交汇点。当与目标飞行器11距离足够时,动力系统5a的机载状态观测系统测得目标飞行器11上对接件的运动状态信息,特别是相对于动力系统的位置速度信息。
根据约定,目标飞行器11已经在机身的几个位置伸出柔性件6212。动力系统5a根据机载视觉观测系统观测到的目标飞行器11运动信息以及其他状态信息,选定与目标飞行器11的对接点,并依靠自身动力运动到对接点附近,使动力系统5a携带的对接装置623与目标飞行器11的对接件相接近。
动力系统5a选择合适的路径飞到目标飞行器11下方对接件附近,通过自身的动力学性能与柔性件6212对接,并通过锁紧机构6209迅速与柔性件6212对接,使两端的对接器件配合面配合,并锁紧。如此,实现初步的动力重组。
动力系统5a通过自身全局定位信息,结合离线的地理数据以及实时的气象信息寻找合适的备降区域。并利用状态观测系统对目标飞行器11备降区域进行在线观测与评估。最后选出具有安全着陆条件的降落区域。
动力系统5a对目标飞行器11施加力,带动伞降中的目标飞行器11避开危险地表区域,将其引导至的选定的降落区域。
在即将降落时,动力系统5a通过自身多旋翼飞行器511的驱动力调整目标飞行11器姿态,以减轻目标飞行器11着陆时对机内成员以及飞机结构的伤害。
根据缓冲设计,在待目标飞行器11着陆前的距离地面的一小段距离内,缓冲助推火箭521启动为待救援飞机提供缓冲力,从而使目标飞行器11着陆时受到最小的冲击。
本实施例中的上述动力系统5a的结构为:由多旋翼飞行器511与缓冲助推火箭521的组合而构成的动力增补飞行器51,以及由助推火箭531作为的助推系统53。在一些具体的应用场景,可以基于上述方案进一步动力重组。例如,在临近目标飞行器11着陆时,多旋翼飞行器511与缓冲助推火箭521分离。这种情况下,动力系统5a被重新划分为:采用缓冲助推火箭531作为专用动力系统52,采用多旋翼飞行器511作为动力增补飞行器51,采用助推火箭531作为助推系统53。
在一些实施例中,专用动力系统包括一个或多个缓冲助推火箭,专用动力系统对接到目标飞行器的一个和多个位置。在目标飞行器接地之前一小段距离内,缓冲助推火箭发动,为目标飞行器提供姿态调整所需的力矩及缓冲力,以保证飞机及机上人员安全。
对于营救返回舱的场景,如果受降落伞2影响,返回舱无法被拖拽到安全的着陆点。可以适时抛掉降落伞2作为进一步的动力重组,返回舱在动力系统5a的带动下具有较高的机动能力,从而到达安全的着陆点。
实施例2:空降物资接收。
本动力增补系统及方法可以实现空降物资12的精准接收。由于对物资12的要求仅仅为伞降,所以有利于物资12在运输机上的批量运输。
如图7所示,动力增补飞行器51采用无人直升机5121,直升机5121上携带对接装置611采用对接装置实施例1实施。物资12在指定时间在预设空域投放,并进入伞降状态。
动力系统5b按照指定的时间和预定空域进行远距离观测或者升空巡查。
当识别到物资12后,直升机5121飞向物资12与之交汇,并与之对接。
物资12上的小型收伞器211将伞收回到收伞器211内,从而解除降落伞2的空气动力。
直升机5121携带物资12,并将其精准运送到目的地。
在一些情况下,接收物资的直升机和物资之间都安装差分GPS模块和无线通信模块,直升机和物资之间通过无线通讯获取对方坐标。利用差分GPS的高精度数据作为观测结果,为承接动作提供依据。
在一些情况下,如图8所示,直升机5121的对接装置612采用对接装实施例2实施。对接装置和612目标通过魔术贴6104粘合,保证连接的可靠性。
在一些情况下,如图13所示,对于一些细长型物资,直升机5121上的对接装置625可采用对接装置实施例7实施。由于对接后有三个剩余自由度,属于柔性对接。直升机5121可通过机动动作,将物12资运动至直升机5121下方。直升机5121通过调整桨距继续为物资12提供有效拉力。
在一些情况下,如图17所示,为兼顾部署的便捷性和交汇的时效性,动力增补飞行器51采用垂直起降飞机5122形式。垂直起降飞机5122与物质12交汇后,可以转变为垂直起降模式与物资12对接。或者,在控制精度足够的情况下,采用固定翼飞行模式与物资12完成对接。
对于本申请的一种基于伞降和动力增补的目标可控降落系统和基于伞降和动力增补的目标可控降落方法,提供了如下几个实施例。
实施例3:火箭回收,总体任务为,使火箭箭体在发射后可以不受损坏地降落到指定地点,以便后续使用。
本系统及方法,可以保全箭体。与发射后就丢弃的方案相比,本系统及方法节省大量的火箭发射成本。与依靠自身燃料和动力回收的火箭回收方案相比,本系统及方法节省大量燃料,亦即大幅减小火箭尺寸。而且,由于增补系统可以为火箭提供起落装置,还可以进一步减少火箭的额外负载,或从另一个角度看,增加火箭有效载荷。
请参阅图18所示,动力增补飞行器为大型多旋翼直升机或共轴双桨直升机,这里统一称为直升机513,对接装置621采用对接装置实施例3实施。其中,机械臂6202带锁紧功能,以便对接后机械臂6202驱动器避免受力。状态观测装置包括地面雷达,光学跟踪系统,以及安置于待回收箭体13和直升机513上的具有全局定位功能的GPS传感器或组合导航系统及通信装置。
作为火箭系统的一部分,待回收箭体13随火箭其他部分一同发射升空,在燃料耗尽后,脱离其他部分,进入无动力的抛投状态。
待回收箭体配有降落伞以及控伞装置21,当进入大气层一定高度后,控伞装置21打开降落伞2,进入伞降状态。待回收箭体13的下部设有三个球头形对接件6204。
待回收箭体13通过无线通讯向外实时发送自身的全局运动状态信息,尤其是位置,速度信息。
状态观测系统实时检测待回收箭体13发出的运动状态信息。必要时,可采用主动探测的手段。包括,地面雷达实时扫描,在获取初步的待回收箭体信息后光学跟踪系统进行精确跟踪。控制系统的总控制器根据获取的待回收箭体信息求解交汇点或交汇区域,同时解算动力系统的运动轨线。并将该计算结果发送给动力系统的控制器,并实时发出开始任务的指令。在需要的情况下,该计算由动力系统的控制器完成。
动力系统5c可以从回收点出发,也可以选择其他合适的地点出发,比如在待回收箭体13下降路线附近的某个空域。比如,伞降区域的高空,动力系统5c搭载于飞行器上,飞行器与伞降区域附近待命,收到任务开始指令后,动力系统5c从其载机上出发飞往交汇点。
在交汇过程中,动力系统5c可以根据实时获取的待回收箭体13运动信息调整运动轨迹。当动力系统5c与待回收箭体3距离足够近时,动力系统5c的机载状态观测系统测得待回收箭体513上对接件的运动状态信息,特别是相对于动力系统5c的位置速度信息。直升机513运动到伞降待回收箭体13下方,完成对接。
待回收箭体13释放降落伞2,直升机513通过机动动作带动待回收箭体脱离降落伞。并进入降落路线。
必要的情况下,直升机513可以通过机动动作使待回收箭体13运动到直升机513的下方,以使整个系统具有静稳定性,提高运动过程中的可控性,完成调整动作。
待回收箭体13运动到回收地点后,直升机513的起落架着地,支撑起待回收箭体。
对于直升机513从高空出发的情况。直升机513可以了利用高空优势,采用自旋着陆或者自选着陆与正常着陆相结合的方式。将直升机513和待回收箭体13在高空具有的势能,转化为螺旋桨的动能,从而大幅减少动力系统所需携带的能源。
实施例4,请参阅图19所示,基于实施例3,本例中,动力系统5d可以由多旋翼直升机51401和火箭推进装置51402组成。完成对接后,控伞装置释放伞,多旋翼直升机51401带动待回收箭体13飞向回收地点,火箭推进装置51402利用其自身推重比大的优势提供克服待回收箭体13的重量的推力,多旋翼直升机51401可以以调节待回收箭体13姿态为主要工作,从而合理利用动力系统5d的飞行重量。
实施例5,请参阅图20、21所示,基于实施例3,专用动力系统52采用小型喷气式发动机522。动力系统5e包括:专用的喷气式发动机522和直升机515的组合。对接装置621采用实施例3中的机械臂与刚性对接的两阶段式组合对接装置。本实施例与实施例3的内容总体相同,这里只描述不同的部分。
直升机515和喷气式发动机522与待回收箭体13交汇,安装于喷气式发动机522上的刚性对接件容差较小,直升机515无法靠自身的控制精度实现其刚性对接。采用机械臂6202实现大容差的对接,然后通过控制机械臂6202实现对刚性对接件的引导,达到刚性对接件的容差范围后,刚性对接件对接并锁紧。适时脱伞。直升机515与喷气式发动机522分离。后续回收/着陆工作由喷气式发动机522完成。
当然,在需要的情况下,直升机515与喷气式发动机522不分离,二者共同完成后续的回收/着陆工作。这种情况下,直升机515与喷气式发动机522的组合可视为动力增补飞行器51。
在需要的情况下,喷气式发动机522可以设为多个,分布于火箭箭体周围,从而有利于提高扭矩输出,增强姿态控制能力。进一步地,喷气式发动机与中心的距离可调,使其具有更大的使用范围。
实施例6,请参阅图22所示,针对实施例3中的火箭回收,动力系统5f可以由多个直升机516和对接装置624组成的动力增补单元42。采用多架直升516机好的好处是,可以通过多架直升机516的协同调运,实现大型箭体的回收。待回收箭体13上的球头形对接件6215分布于待回收箭体13的圆周上。直升机516上设置的对接装置624采用对接装置实施例6实施。合适数量的直升机516与待回收箭体13交汇后,运动到各自的对接件附近,并将自身的对接装置靠近相应的对接件。根据预设的对接方案及算法,适时完成对接。脱伞后,多架直升机516通过协同搬运的方法将待回收箭体13带回至回收点。
实施例7,请参阅图23、24所示,针对实施例3中的火箭回收,动力系统5g中的增补动力飞行器51采用直升机517,对接方式可以采用对接装置实施例7实施。直升机517与待回收箭体13对接后,直升机517可以通过机动动作使待回收箭体13运动到直升机517的下方,以使整个系统具有静稳定性,提高运动过程中的可控性,完成调整动作。
实施例8,请参阅图25、26所示,针对细长型目标回收,例如上述实施例中的火箭。飞行器518采环形结构,动力系统5h与目标1的对接方式可以采用对接装置实施例6实施。在目标1上设有转移装置63,转移装置63包括沿目标1长度方向设有导轨6301以及滑动设于导轨6301上的滑块6302,对接件6215安装在滑块6302上。动力系统5h与目标1对接后,可以沿着预设的转移装置63,将动力系统5h转移到更有利的位置,为目标1提供更好的控制性能。因此,动力系统5h沿着目标1的长度方向,从下方运动到上方,使质心位于动力系统5h下方,以使结合的整体获得静稳定特性。
尽管已经示出和描述了本发明的实施例,对于本领域的普通技术人员而言,可以理解在不脱离本发明的原理和精神的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由所附权利要求及其等同物限定。

Claims (1)

  1. 用于伞降目标的动力增补可控降落方法,其特征在于:
    该方法包括:
    获取目标的运动信息,求得动力系统与之交汇所需的期望状态;
    所述动力系统与所述目标交汇、对接;
    根据任务需求,所述动力系统与所述目标采用动力重组的方式合理地分配动力资源,驱动所述目标运动到期望的位置,或者以期望的状态着陆;
    其中,所述动力系统包括为所述目标提供可控驱动力的驱动装置。
    2.根据权利要求1所述的动力增补可控降落方法,其特征在于:
    所述动力重组包括动力系统与伞降目标对接。
    3.根据权利要求1所述的动力增补可控降落方法,其特征在于:
    所述动力重组包括对接后,根据任务的需求抛掉伞或收伞。
    4.根据权利要求1所述的动力增补可控降落方法,其特征在于:
    所述动力重组包括结合任务需求,一次或多次优化动力系统的结构和/或组成。
    5.根据权利要求1至4任意一项所述的动力增补可控降落方法,其特征在于:
    还包括调整,所述调整包括在所述动力系统与所述目标对接后,根据任务需求,
    改变动力与目标在目标体坐标系下的相对位姿,和/或
    改变动力与目标在全局坐标系下的相对位姿。
    6.根据权利要求5所述的动力增补可控降落方法,其特征在于:
    根据任务需求,包括若干次所述动力重组和/或若干次所述调整。
    7.根据权利要求1或6所述的动力增补可控降落方法,其特征在于:
    在所述动力系统与所述目标对接前,根据任务需求,优化所述动力系统的结构和/或组成。
    8.基于伞降和动力增补的目标可控降落方法,其特征在于:
    该方法包括:
    伞降阶段,采用伞降方式控制目标的状态;
    动力增补阶段,采用权利要求1至7任意一项所述的动力增补可控降落方法实施该阶段,使目标以期望的状态运动到期望的位置,或者以期望的状态着陆。
    9.一种用于伞降目标的动力增补系统,其特征在于:
    包括至少一个动力增补单元(4,41,42);以及
    状态观测系统,其用于获取目标的状态信息;以及
    控制系统,其电连接于所述动力增补单元(41,42)、所述状态观测系统;
    其中,
    所述动力增补单元(41,42)包括:
    动力系统(5;5a-5h),其为目标的状态提供可控的动力,所述动力系统(5;5a-5h)包括动力增补飞行器(51);以及
    对接装置(6;611,612;621-626),其用于所述动力系统(5;5a-5h)与所述目标(1;11-13)对接,其设置在所述动力系统(5;5a-5h)上;
    其中,所述动力增补飞行器(51)是由动力驱动装置为动力的飞行器或多个飞行器组合。
    10.根据权利要求9所述的动力增补系统,其特征在于:
    所述动力系统还包括专用动力系统(52),其包括至少一个动力驱动装置,所述动力驱动装置之间以及专用动力系统(52)与动力增补飞行器(51)之间通过连接器(54)相连接;
    其中,所述专用动力系统与所述动力增补飞行器之间的连接器实现两端的装置接合或分离。
    11.根据权利要求9或10所述的动力增补系统,其特征在于:
    所述动力系统还包括助推系统(53),其包括至少一个动力驱动装置,动力驱动装置之间以及助推系统(53)与动力增补飞行器(51)之间通过连接器(54)相连接;助推系统(53)与动力增补飞行器之间的连接器可实现两端的装置接合或分离。
    12.根据权利要求9所述的动力增补系统,其特征在于:
    所述动力系统采用双向或多向动力驱动能力的驱动装置,或若干个该驱动装置的组合。
    13.根据权利要求9所述的动力增补系统,其特征在于:
    所述对接装置包括承载式对接装置(611,612);
    所述承载式对接装置(611,612)包括:
    承载体;或
    承载体,以及设置于所述承载体上的用于固定目标的紧固装置。
    14.根据权利要求9所述的动力增补系统,其特征在于:
    所述对接装置包括配合式对接装置(621-626);
    所述配合式对接装置(621-626)包括锁紧机构,以及设置在目标上与锁紧机构相配合的对接件。
    15.根据权利要求9所述的动力增补系统,其特征在于:
    所述状态观测系统包括:
    用于获取目标状态的设备;或
    用于获取目标状态和动力系统状态的设备;或
    用于获取动力系统状态和目标相对于动力系统的运动状态的设备。
    16.根据权利要求9所述的动力增补系统,其特征在于:
    所述控制系统包括设置在动力增补系统上的控制器,和/或
    动力增补系统以外的控制器。
    17.一种基于伞降和动力增补的目标可控降落系统,其特征在于:
    包括至少一个降落伞(2)和权利要求9至16任意一项所述动力增补系统(3)。
PCT/CN2024/070995 2023-01-09 2024-01-07 用于伞降目标的动力增补可控降落方法、目标可控降落方法及系统 WO2024149174A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202310029823 2023-01-09
CN202310029823.6 2023-01-09

Publications (1)

Publication Number Publication Date
WO2024149174A1 true WO2024149174A1 (zh) 2024-07-18

Family

ID=91897881

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2024/070995 WO2024149174A1 (zh) 2023-01-09 2024-01-07 用于伞降目标的动力增补可控降落方法、目标可控降落方法及系统

Country Status (1)

Country Link
WO (1) WO2024149174A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2429165C1 (ru) * 2010-05-06 2011-09-20 Открытое акционерное общество "Ракетно-космическая корпорация "Энергия" имени С.П. Королева" Устройство для мягкой парашютной посадки груза на посадочную поверхность
CN103569368A (zh) * 2012-07-31 2014-02-12 贝尔直升机泰克斯特龙公司 旋翼飞机中增补动力的系统及方法
CN105947225A (zh) * 2016-04-26 2016-09-21 王耿 一种牵引设备,回收装置以及伞降回收系统
CN106915464A (zh) * 2017-03-10 2017-07-04 佛山市神风航空科技有限公司 一种飞机的降落装置及方式
CN206885358U (zh) * 2017-03-10 2018-01-16 佛山市神风航空科技有限公司 一种空中救援装置
CN113968342A (zh) * 2021-11-19 2022-01-25 中国直升机设计研究所 一种直升机回收火箭的装置
CN115432185A (zh) * 2022-08-16 2022-12-06 上海大学 系留飞行器平台的空中对接组件

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2429165C1 (ru) * 2010-05-06 2011-09-20 Открытое акционерное общество "Ракетно-космическая корпорация "Энергия" имени С.П. Королева" Устройство для мягкой парашютной посадки груза на посадочную поверхность
CN103569368A (zh) * 2012-07-31 2014-02-12 贝尔直升机泰克斯特龙公司 旋翼飞机中增补动力的系统及方法
CN105947225A (zh) * 2016-04-26 2016-09-21 王耿 一种牵引设备,回收装置以及伞降回收系统
CN106915464A (zh) * 2017-03-10 2017-07-04 佛山市神风航空科技有限公司 一种飞机的降落装置及方式
CN206885358U (zh) * 2017-03-10 2018-01-16 佛山市神风航空科技有限公司 一种空中救援装置
CN113968342A (zh) * 2021-11-19 2022-01-25 中国直升机设计研究所 一种直升机回收火箭的装置
CN115432185A (zh) * 2022-08-16 2022-12-06 上海大学 系留飞行器平台的空中对接组件

Similar Documents

Publication Publication Date Title
EP3781475B1 (en) Vertical take-off and landing vehicle
EP3127809B1 (en) Release and capture of a fixed-wing aircraft
CN109606673B (zh) 具有可互换的有效载荷模块的倾转旋翼式飞行器
US11834174B2 (en) Control of drone-load system method, system, and apparatus
US20210371104A1 (en) Aerial launch and/or recovery for unmanned aircraft, and associated systems and methods
US11103392B2 (en) Safety system for aerial vehicles and method of operation
TW201836925A (zh) 具有單體機翼和雙轉子推進/提升模組的無人駕駛飛行器
CA3077958C (en) Multimodal unmanned aerial systems having tiltable wings
US11542004B2 (en) Maneuverability involving a fixed-wing aircraft and an aerial vehicle having vertical takeoff and landing capabilities
KR101827308B1 (ko) 틸트로터 기반의 멀티콥터형 스마트 드론
US10004652B1 (en) Safety system for aerial vehicles and method of operation
KR20170104901A (ko) 서브 드론 모듈 설치 개수에 따라 페이로드를 조절하는 드론 조립체 및 서브 드론 모듈 중앙 비행제어 수단과 방법
US20220371729A1 (en) Autonomous air vehicle delivery system incorporating deployment
AU2018284337A1 (en) Vehicle system
WO2024149174A1 (zh) 用于伞降目标的动力增补可控降落方法、目标可控降落方法及系统
CN104192295B (zh) 一种自主飞行无主动力无人机及其飞行方式
CN114194387B (zh) 一种共轴反桨双旋翼式空中移动跑道
US10940953B1 (en) Aircraft self-rescue system
CN115916644A (zh) 用于降落在竖直结构上的混合动力无人机
WO2016135554A1 (en) Unmanned/manned aerial vehicle with self-governing wing
WO2024201841A1 (ja) 着陸装置、離着陸システムおよび着陸装置の制御方法
KR20230091525A (ko) 소형 로켓추진 시스템 기반 접이식 고정익 무인항공시스템
CN111707142A (zh) 一种混合型巡航弹网

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 24741173

Country of ref document: EP

Kind code of ref document: A1