WO2024148815A1 - 一种手术导航的自适应注册系统及方法 - Google Patents
一种手术导航的自适应注册系统及方法 Download PDFInfo
- Publication number
- WO2024148815A1 WO2024148815A1 PCT/CN2023/113225 CN2023113225W WO2024148815A1 WO 2024148815 A1 WO2024148815 A1 WO 2024148815A1 CN 2023113225 W CN2023113225 W CN 2023113225W WO 2024148815 A1 WO2024148815 A1 WO 2024148815A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- optical
- registration
- navigation camera
- coordinate system
- camera
- Prior art date
Links
- 230000003044 adaptive effect Effects 0.000 title claims abstract description 29
- 238000000034 method Methods 0.000 title claims abstract description 18
- 230000003287 optical effect Effects 0.000 claims abstract description 203
- 238000006073 displacement reaction Methods 0.000 claims abstract description 40
- 239000011159 matrix material Substances 0.000 claims abstract description 27
- 238000004364 calculation method Methods 0.000 claims abstract description 15
- 238000004891 communication Methods 0.000 claims description 17
- 238000012546 transfer Methods 0.000 claims description 6
- 230000009466 transformation Effects 0.000 claims description 6
- 238000012544 monitoring process Methods 0.000 claims description 5
- 238000005457 optimization Methods 0.000 claims description 4
- 238000007408 cone-beam computed tomography Methods 0.000 claims description 3
- 238000005481 NMR spectroscopy Methods 0.000 claims description 2
- 238000006243 chemical reaction Methods 0.000 abstract description 3
- 238000001356 surgical procedure Methods 0.000 abstract description 3
- 239000003550 marker Substances 0.000 description 15
- 238000010586 diagram Methods 0.000 description 7
- 230000008859 change Effects 0.000 description 4
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 2
- 101000827703 Homo sapiens Polyphosphoinositide phosphatase Proteins 0.000 description 2
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 2
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 2
- 102100023591 Polyphosphoinositide phosphatase Human genes 0.000 description 2
- 101100012902 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) FIG2 gene Proteins 0.000 description 2
- 101100233916 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) KAR5 gene Proteins 0.000 description 2
- 238000002591 computed tomography Methods 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 229910052744 lithium Inorganic materials 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical group [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 2
- 229910052753 mercury Inorganic materials 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000012795 verification Methods 0.000 description 2
- 206010002091 Anaesthesia Diseases 0.000 description 1
- 238000002679 ablation Methods 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000037005 anaesthesia Effects 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 230000008676 import Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/20—Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H40/00—ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices
- G16H40/40—ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the management of medical equipment or devices, e.g. scheduling maintenance or upgrades
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A90/00—Technologies having an indirect contribution to adaptation to climate change
- Y02A90/30—Assessment of water resources
Definitions
- the present invention belongs to the technical field of surgical positioning and navigation, and in particular relates to an adaptive registration system and method for surgical navigation.
- preoperative registration In surgical navigation systems using optical navigation cameras, such as CT surgical navigation systems, accurate registration of the CT coordinate system and the optical navigation camera coordinate system (i.e., establishing the corresponding relationship between the CT coordinate system and the optical navigation camera coordinate system) is the prerequisite for its navigation function.
- preoperative registration There are two registration methods: preoperative registration and intraoperative registration.
- the common intraoperative registration method is to place optical and image-recognizable markers on the patient for intraoperative registration;
- the common preoperative registration method is to fix the optical navigation camera near the image acquisition device such as the CT machine, with the optical navigation camera field of view facing the CT hole direction, and the registration reference plate is placed on the CT bed.
- the optical navigation camera obtains the coordinates of the first marker component (optical marker ball) on the registration reference plate in the optical navigation camera coordinate system, and then the CT scans the second marker component (the positioning ball that can be developed under CT) on the registration reference plate.
- the first marker component and the second marker component may or may not overlap.
- the registration software identifies the center of the positioning ball of the second marker component in the scanned CT image, thereby obtaining the coordinates of the positioning ball in the CT coordinate system.
- the registration software can calculate the conversion matrix between the optical navigation camera coordinate system and the CT coordinate system through the least squares method and other algorithms, and complete the registration of the CT coordinate system and the optical navigation camera coordinate system.
- the registration reference plate can be removed.
- the navigation software can determine the corresponding position in the CT scan image based on the image position taken by the optical navigation camera, thereby realizing surgical navigation.
- This preoperative registration method requires that the position of the optical navigation camera be fixed relative to the CT position after registration. If the position of the optical navigation camera changes relative to the CT machine, it is necessary to re-place the registration reference plate, re-scan the second marking component, and re-identify the first marking component for the optical navigation camera to re-register. Since the operating room space is not abundant and other equipment such as anesthesia ventilators, ablations, and monitoring equipment need to be placed, the optical navigation camera is usually not fixed. The optical navigation camera often needs to be fixed on a movable support trolley. Usually, the optical navigation camera trolley and the robot trolley are stored in the corner of the operating room. When navigation is needed, the optical navigation camera trolley and the robot trolley are pushed out for use.
- the present invention aims to provide an adaptive registration system and method for surgical navigation, so as to solve the technical problem that an optical navigation camera needs to be re-registered after movement.
- a self-adaptive registration system for surgical navigation comprises an optical navigation camera, a registration reference board and a calculation module, wherein the calculation module is communicatively connected with an image collector and an optical navigation camera, wherein the image collector, the optical navigation camera, the registration reference board and the calculation module cooperate to complete the first registration, wherein the system comprises an optical tool, wherein the optical tool is fixedly arranged on the housing of the image collector, wherein the optical tool comprises at least three optical tools, and a plurality of optical tools form an optical tool array, wherein when the system performs the first registration of the image collector coordinate system and the optical navigation camera coordinate system, the optical navigation camera simultaneously scans the optical tool array to obtain the initial coordinates of the optical tool array and saves them, and when the optical navigation camera moves, the optical navigation camera obtains the new coordinates of the optical tool array in the optical navigation camera, and the calculation module automatically calculates the displacement matrix of the new coordinate system according to the initial coordinates of the optical tool array during the first registration, and recalculates the transformation matrix of the optical navigation camera coordinate system
- each optical tool is distributed at a different position on the housing of the image acquisition device, and any three optical tools are not in a straight line.
- the optical tool body is a rigid base
- the optical tool has at least three reflective marks, the distances between the reflective marks are not equal, and the polygonal figure formed by connecting the reflective marks cannot be a rotationally symmetric figure.
- the optical tool has an alignment mark, which is a pair of stickers with alignment symbols, one of which is affixed to the surface of the optical tool and the other is affixed to the image acquisition device housing.
- the alignment symbols are aligned and placed to verify whether the optical tool and the housing have moved.
- a housing displacement detector is fixedly installed on the housing of the image collector, and the housing displacement detector includes a control circuit board and a battery, and the battery provides the required power for the control circuit board.
- the control circuit board includes a main control module, a wireless communication module, a sensor module and an alarm prompt module.
- the communication module, the sensor module, the alarm prompt module are electrically connected to the main control module.
- the main control module is used to control the operation of other modules.
- the sensor module is a displacement sensor.
- the wireless communication module is used to establish wireless communication between the casing displacement detector and the monitoring terminal.
- the alarm prompt module is used to provide a displacement alarm when the casing is disassembled or the overall position is moved.
- the optical navigation camera is a binocular optical camera
- the image collector is a CT machine, a nuclear magnetic resonance machine or a CBCT machine.
- the present invention also discloses an adaptive registration method, comprising the following steps:
- Step 1 The image collector, optical navigation camera, registration reference board and computing module cooperate to complete the first registration and obtain the transformation matrix M from the medical image coordinate system to the camera coordinate system, which is a 4x4 transfer matrix;
- Step 2 Record the three-dimensional coordinates of all optical tools in the optical tool array on the image acquisition device in the optical navigation camera coordinate system at this time, P 1 , P 2 , ..., P n , where n represents the number of optical tools;
- Step 3 When the optical navigation camera moves, the optical navigation camera acquires new three-dimensional coordinates of all optical tools in the optical tool array after the camera position moves, P′ 1 , P′ 2 , ...P′ n ;
- Step 4 Define the distance between the three-dimensional coordinate points (a, b): Wherein, point a represents the initial coordinate of the optical tool array, and point b represents the coordinate of the optical tool array after the optical navigation camera moves;
- Step 6 Adaptive re-registration is completed.
- the computing module converts the target point in the medical image coordinates to the optical navigation camera coordinate system based on the M′ obtained by re-registration, so as to perform intraoperative navigation.
- the adaptive registration system and method for surgical navigation of the present invention have the following advantages: the present invention fixes an optical tool array on the image acquisition device as an adaptive registration reference, and the calculation module has a built-in setting program. The position of the optical tool array is fixed under normal circumstances. Once the optical navigation camera moves, the calculation module can calculate the changed displacement matrix according to the reference position of the optical tool array, thereby automatically re-registering. When the optical tool array does not move, it only needs to be registered once. When the optical navigation camera moves subsequently, the system can automatically perform adaptive registration, which is convenient and fast, and does not require multiple uses. Re-registration: After using it on the same day, move the optical navigation camera to the storage position. The next day, it can be automatically registered as long as it is moved to the working position.
- the present invention can accurately identify whether a single optical tool has moved relative to the housing through the design of the shape of the optical tool and the design of the moving mark; a housing displacement detector is set on the image collector to detect the overall displacement of the image collector housing, reminding the staff to re-register, thereby ensuring the accuracy of registration.
- FIG1 is a schematic diagram of the overall application of the adaptive registration system of the present invention.
- FIG2 is a schematic structural diagram of a first embodiment of an optical tool of the present invention.
- FIG3 is a schematic structural diagram of a second embodiment of an optical tool of the present invention.
- FIG4 is a schematic structural diagram of a third embodiment of an optical tool of the present invention.
- FIG5 is a schematic diagram of a housing displacement detector module of the present invention.
- FIG6 is a schematic circuit diagram of a housing displacement detector module according to the present invention.
- an existing adaptive registration system for surgical navigation includes an optical navigation camera 3, a registration reference board 2, and a computing module.
- the computing module is an industrial computer that runs control software.
- the computing module is connected to the image collector 1 and the optical navigation camera 3 in communication, and the image collector 1, the optical navigation camera 3, the registration reference board 2, and the adaptive registration system of the computing module cooperate to complete the first registration.
- the image acquisition device can be a CT machine, a MRI machine or a CBCT machine commonly used in surgery.
- the optical navigation camera 3 may be a near-infrared binocular optical camera or a visible light binocular camera.
- the present invention is described by taking a CT machine as an example.
- the CT machine includes a CT frame 11 and a CT bed 12.
- the registration reference plate 2 has a first marking component 21 and a second marking component 22.
- the first marking component 21 is an optical navigation
- the camera can identify the marker, preferably, the first marker component is a plurality of optical marker balls, the second marker component 22 is a marker that can be identified by the CT image, preferably, the second marker 22 is a developer positioning ball.
- the first marker component 21 and the second marker component 22 can be physically separated or physically overlapped, and the physical overlap can be achieved by coating the metal developer ball with a reflective material.
- the field of view of the optical navigation camera 3 is toward the hole direction of the CT frame 11, and the registration reference plate 2 is placed on the CT bed 12 during registration and can be removed after registration is completed.
- the adaptive registration system for surgical navigation of the present invention also includes an optical tool array 4, which is fixedly arranged on the housing of the CT rack 11 facing the optical navigation camera 3.
- the optical tool array 4 includes at least three optical tools 41, each of which is the same in size and shape and is respectively distributed at different positions on the housing of the CT rack 11. In order to obtain spatial reference positions in different orientations, all optical tools 41 cannot be on the same straight line. In order for the optical navigation camera 3 to easily identify the optical tools 41 at different positions to determine whether the camera position has changed, the polygonal figure formed by connecting all the optical tools 41 cannot be a rotationally symmetric figure.
- the optical navigation camera 3 simultaneously obtains the coordinates of the first marking component 21 on the registration reference plate 2 in the camera coordinate system and the coordinates of the optical tool array 4 in the camera coordinate system, and the CT machine scans the second marking component 22 on the registration reference plate 2.
- the calculation module identifies the positioning ball in the scanned CT image, thereby obtaining the coordinates of the positioning ball in the CT coordinate system. Based on the known spatial relationship between the first marking component 21 and the second marking component 22 during processing, the calculation module can calculate the conversion matrix between the optical navigation camera coordinate system and the CT coordinate system to complete the first registration. At this time, the registration reference plate 2 can be removed.
- the calculation module has a pre-set calculation program, which can automatically calculate the displacement matrix of the new coordinate system based on the initial coordinates of the optical tool array 4 during the first registration, and recalculate the transformation matrix of the camera coordinate system relative to the CT coordinate system based on the displacement matrix, thereby realizing the adaptive registration of the intraoperative position of the optical navigation camera.
- the optical tool 41 is used as a positioning reference point, and its position is fixed and cannot be moved. Therefore, the main body of the optical tool 41 is a rigid base with a certain rigidity and is not easily deformed. There is a self-adhesive sticker on the bottom of the rigid base for fixing it on the CT machine. There are at least three reflective marks 42 on the optical tool 41.
- the reflective marks 42 can be reflective balls or reflective stickers, preferably reflective stickers.
- the distances between the reflective marks 42 are not equal to each other, and the polygonal figure formed by the reflective marks 42 cannot be a rotationally symmetrical figure.
- the spacing between the reflective marks 42 is the same as the spacing before the first marking component 21 on the registration reference plate 2. The spacings are not equal, and are used for classification and recognition by the optical navigation camera 3.
- Optical tool embodiment 1
- the optical tool 41 is designed as a non-rotationally symmetrical structure.
- the naked eye can recognize the change in shape and position, thereby re-adjusting and registering.
- the optical tool 41 is designed to have at least three branches 411 in different directions, preferably four.
- the length of each branch 411 is unequal, and the optical tool 41 is fixed in a specified direction to facilitate identification of possible displacement.
- Each branch 411 has a reflective mark 42 at the end, and the reflective mark 42 can be a reflective ball or a reflective sticker, preferably a reflective sticker.
- the distance between each reflective mark 42 is unequal.
- Optical tool embodiment 2
- the present invention also provides another scheme for indicating the displacement of the optical tool 41.
- the appearance of the optical tool 41 can be any shape.
- the optical tool 41 has multiple reflective marks 42. The distances between each reflective mark 42 are not equal, which is used for classification and recognition by the optical navigation camera 3.
- An alignment mark 43 is set on the optical tool 41.
- the alignment mark 43 is preferably at least 2. At least 2 of the multiple alignment marks are not in the same direction, which are used for alignment in different directions.
- Each alignment mark 43 has a pair of stickers, and the stickers have alignment marks. One is attached to the surface of the optical tool 41, and the other is attached to the housing of the CT machine.
- the alignment mark can be any graphic that can be used for alignment verification.
- the alignment mark in the embodiment of the present invention is two relative arrows. When the two arrows are aligned, it indicates that the optical tool 41 has not moved. If one of the pairs of arrows is not aligned, it means that the optical tool 41 has shifted.
- the alignment mark 43 can more intuitively reflect the displacement of the optical tool 41, which is convenient for the staff to find and adjust.
- Optical tool embodiment 3
- the third embodiment combines the first embodiment with the second embodiment to achieve a dual indication function, which has a more accurate recognition function.
- the optical tool 41 has four branches 411 in different directions, and the lengths of each branch 411 are not equal. When the optical tool 41 is fixed, it is fixed in a specified direction to facilitate the identification of possible displacement.
- Each branch 411 has a reflective mark 42 at the end, and at least two branches 411 have alignment marks 43.
- the CT machine sometimes needs The casing is disassembled for maintenance. Once the casing is disassembled for maintenance and then reassembled, it is difficult for the reference frame array 4 to maintain complete consistency with the original spatial position, resulting in poor positioning accuracy.
- the present invention fixes a casing displacement detector 5 at the bottom of the casing of the CT machine.
- the casing displacement detector 5 includes a control circuit board and a lithium battery, and the lithium battery provides the required power for the control circuit board.
- the control circuit board includes a main control module, a wireless communication module, a sensor module, a key module and an alarm prompt module.
- the wireless communication module, the sensor module, the key module, and the alarm prompt module are electrically connected to the main control module, and the main control module is used to control the operation of other modules.
- the sensor module is a displacement sensor, and the displacement sensor is preferably a mercury switch.
- the wireless communication module is used to establish wireless communication between the casing displacement detector 5 and the monitoring terminal.
- the wireless communication module is a Bluetooth communication module.
- the key module is used to start, pause and reset the casing displacement detector 5.
- the alarm prompt module can be an audible and visual alarm, including an LED light and a voice module. Normally, the main control module is in a dormant state. When the casing of the CT machine moves due to external force, the mercury switch is turned on to generate an interrupt signal.
- the main control module is awakened upon receiving the interrupt signal.
- the main control module controls the alarm prompt module to issue an alarm prompt for casing position change.
- the wireless communication module sends a casing position change warning to the external monitoring host. It reminds the user that the casing has moved as a whole and needs to be re-registered to improve accuracy.
- Figure 6 shows the circuit schematic diagram of the casing displacement detector module.
- the calculation module has registration software, which is used to implement adaptive registration after the optical navigation camera 3 moves.
- the adaptive registration method of the present invention includes the following steps:
- Step 1 Place the registration reference plate 2 on the CT bed 12, the CT frame 11 scans the registration reference plate 2, the optical navigation camera 3 obtains the coordinate A of the first marking component on the registration reference plate 2, the calculation module imports the CT image of the registration reference plate 2, identifies the coordinate B of the second marking component on the registration reference plate 2, and calibrates the coordinate system of the CT and camera according to the spatial position correspondence between the first marking component 21 and the second marking component 22 when the registration reference plate 2 is processed, and obtains the transformation matrix M from the CT coordinate system to the camera coordinate system, which is a 4x4 transfer matrix.
- Step 2 Simultaneously with step 1, record the three-dimensional coordinates of all optical tools 41 of the optical tool array 4 on the holes of the CT gantry 11 in the coordinate system of the optical navigation camera 3 at this time, P 1 , P 2 , . . . , P n , where n represents the number of optical tools 41 .
- Step 3 When the optical navigation camera 3 sends a movement, the optical navigation camera 3 is aligned near the hole of the CT rack, and the three-dimensional coordinates of all the optical tools 41 of the optical tool array 4 after the movement, P′ 1 , P′ 2 , ...P′ n , are recorded.
- Step 4 Define the distance between the three-dimensional coordinate points (a, b):
- point a represents the initial coordinates of the optical tool array 4
- point b represents the coordinates of the optical tool array 4 after the optical navigation camera 3 moves.
- the optimization algorithm may use but is not limited to existing algorithms such as LM (Levenberg-Marquardt) and L-BFGS-B.
- Step 6 After re-registration is completed, the calculation module converts the target point in the medical image coordinates to the optical navigation camera coordinate system based on M′, thereby performing intraoperative navigation.
- the device of the present invention only needs to be registered once when the optical tool array 4 does not move. If the optical navigation camera moves subsequently, the system can automatically perform preoperative adaptive registration, which is convenient and fast, and there is no need to re-register for multiple uses. After use on the same day, the optical navigation camera can be moved to the storage position, and it can be automatically registered as long as it is moved to the working position the next day. Compared with the need to re-scan and register before each use, it greatly saves working time and improves surgical efficiency.
Landscapes
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- General Business, Economics & Management (AREA)
- Public Health (AREA)
- Life Sciences & Earth Sciences (AREA)
- Business, Economics & Management (AREA)
- Surgery (AREA)
- Medical Informatics (AREA)
- General Health & Medical Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Molecular Biology (AREA)
- Heart & Thoracic Surgery (AREA)
- Veterinary Medicine (AREA)
- Robotics (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Epidemiology (AREA)
- Primary Health Care (AREA)
- Length Measuring Devices By Optical Means (AREA)
- Manipulator (AREA)
Abstract
本发明属于手术定位导航技术领域,公开了一种手术导航的自适应注册系统及方法,包括至少3个固定设置在影像采集器(1)机壳上的光学工具(41)形成的光学工具阵列(4),首次进行影像采集器(1)坐标系和光学导航相机(3)坐标系注册时,光学导航相机(3)同时扫描光学工具阵列(4)获取光学工具阵列(4)初始坐标,当光学导航相机(3)发生移动时,光学导航相机(3)获取光学工具阵列(4)的新坐标,计算模块根据光学工具阵列(4)的初始坐标自动计算出新坐标系的位移矩阵,根据位移矩阵重新计算光学导航相机(3)坐标系相对于影像采集器(1)坐标系的转换矩阵。本发明在光学工具阵列(4)不发生位移的情况下只需注册一次即可,后续的光学导航相机(3)发生移动,系统可自动进行自适应注册,方便快捷,提高了手术效率。
Description
本发明属于手术定位导航技术领域,尤其涉及一种手术导航的自适应注册系统及方法。
采用光学导航相机的手术导航系统中,如CT手术导航系统,CT坐标系和光学导航相机坐标系的准确配准注册(即建立CT坐标系和光学导航相机坐标系对应关系)是其发挥导航作用的前提。注册方式有术前注册和术中注册两种。常见的术中注册方法是病人身上放置光学和影像都能识别的标记点进行术中注册;常见的术前注册方法是光学导航相机固定于影像采集设备如CT机附近,光学导航相机视场朝CT孔洞方向,注册参考板放置于CT床上。光学导航相机获取注册参考板上第一标记部件(光学标记球)在光学导航相机坐标系下坐标,然后CT扫描注册参考板上第二标记部件(CT下可以显影的定位球)。第一标记部件和第二标记部件可以重合也可以不重合。注册软件识别所扫描CT影像中的第二标记部件定位球心,从而获取定位球在CT坐标系下坐标。根据光学标记球和显影定位球加工时的已知空间关系,注册软件通过最小二乘法等算法可计算出光学导航相机坐标系和CT坐标系的转换矩阵,完成CT坐标系和光学导航相机坐标系的注册。注册完成后,注册参考板就可以移除,在手术过程中,导航软件根据光学导航相机拍摄的图像位置就能够确定CT扫描图像中所对应的位置,从而实现手术导航。
这种术前注册方法要求注册后光学导航相机位置相对于CT位置固定。如果光学导航相机位置相对于CT机发生变化,那就需要重新放置注册参考板,CT机重新扫描第二标记部件、光学导航相机重新识别第一标记部件进行重新注册。由于手术室空间并不富裕,还需要安放其他如麻醉呼吸机、消融、监护设备等等,因此光学导航相机通常无法固定安装。光学导航相机往往需要固定于可移动支架台车上。平时光学导航相机台车和机器人台车存放在手术室角落,需要导航时把光学导航相机台车和机器人台车推出来使用。这样每次手术前都需要重新注册。特别的在手术过程中如果由于意外导致相机位置发生移动,这都需要重新进行注册操作。而注册过程通常比较费时(通常包含放置注册参考板、影像扫描及注册
验证等过程),会占用手术的宝贵时间,导致使用不方便。
发明内容
本发明目的在于提供一种手术导航的自适应注册系统及方法,以解决光学导航相机发生移动后需要重新注册的技术问题。
为解决上述技术问题,本发明的一种手术导航的自适应注册系统及方法的具体技术方案如下:
一种手术导航的自适应注册系统,包括光学导航相机、注册参考板和计算模块,所述计算模块与影像采集器、光学导航相机通信连接,所述影像采集器、光学导航相机、注册参考板和计算模块配合完成首次注册,所述系统包括光学工具,所述光学工具固定设置在所述影像采集器机壳上,所述光学工具至少具有3个,多个光学工具形成光学工具阵列,在系统进行首次影像采集器坐标系和光学导航相机坐标系注册时,光学导航相机同时扫描光学工具阵列获取光学工具阵列初始坐标并保存,当光学导航相机发生移动时,所述光学导航相机获取光学工具阵列在光学导航相机中的新坐标,所述计算模块根据首次注册时光学工具阵列的初始坐标自动计算出新坐标系的位移矩阵,根据位移矩阵重新计算光学导航相机坐标系相对于影像采集器坐标系的转换矩阵,实现采用术前注册工作模式时光学导航相机注册后位置变化时自适应注册。
进一步的,每个光学工具分别分布在影像采集器机壳上的不同位置,所述任意三个光学工具不在一条直线上。
进一步的,所述光学工具本体为刚性基座,所述光学工具上具有至少3个反光标记,所述反光标记之间的距离两两不相等,且所述反光标记相连组成的多边图形不能为旋转对称图形。
进一步的,所述光学工具上具有对准标记,所述对准标记为一对贴纸,所述贴纸上具有对准符号,一个贴于光学工具表面,另一个贴于影像采集器机壳上,所述对准符号对齐放置,用于光学工具是否和机壳发生位置移动的校验指示。
进一步的,所述影像采集器的机壳上固定安装有机壳位移检测器,所述机壳位移检测器包括控制电路板和电池,所述电池为控制电路板提供所需电源,所述控制电路板包括主控模块、无线通信模块、传感模块和报警提示模块,所述无线
通信模块、传感模块、报警提示模块与主控模块电连接,所述主控模块用于控制其他各模块工作,所述传感模块为位移传感器,所述无线通信模块用于建立机壳位移检测器与监控终端的无线通信,所述报警提示模块用于当机壳发生拆装或整体位置移动时提供位移报警。
进一步的,所述光学导航相机为双目光学相机;所述影像采集器为CT机、核磁机或CBCT机。
本发明还公开了一种自适应注册方法,包括如下步骤:
步骤1:影像采集器、光学导航相机、注册参考板和计算模块配合完成首次注册,获得医学影像坐标系到相机坐标系的转换矩阵M,该矩阵为4x4的转移矩阵;
步骤2:记录此时光学导航相机坐标系下,影像采集器上的光学工具阵列的所有光学工具的三维坐标,P1,P2,...,Pn,其中,n表示光学工具的数量;
步骤3:当光学导航相机发生移动时,光学导航相机获取相机位置移动后的光学工具阵列的所有光学工具的三维新坐标,P′1,P′2,...P′n;
步骤4:定义三维坐标点(a,b)之间的距离:其中,a点表示光学工具阵列的初始坐标,b点表示光学导航相机移动后的光学工具阵列的坐标;
步骤5:通过最优化算法计算光学工具阵列的位移矩阵Z,使得
最小,从而获得影像采集器到新相机坐标系的转移矩阵M′=M·Z;
步骤6:自适应重新注册完成,计算模块根据重新注册得到的M′,把医学影像坐标中的目标点,转换到光学导航相机坐标系下,从而进行术中导航。
本发明的手术导航的自适应注册系统及方法具有以下优点:本发明在影像采集器上固定设置了光学工具阵列,作为自适应注册基准,计算模块内置设定程序,光学工具阵列的位置正常情况下是固定不动的,一旦光学导航相机发生移动,计算模块就可以根据光学工具阵列的基准位置计算出变化后的位移矩阵,从而自动重新注册,在光学工具阵列不发生位移的情况下只需注册一次即可,后续的光学导航相机发生移动,系统可自动进行自适应注册,方便快捷,且多次使用都无需
重新注册,当天使用完成把光学导航相机移动到储藏位置,第二天只要移到工作位置就能够自动注册,相比每次使用前必须进行重新扫描注册节省了工作时间,提高了手术效率。同时,本发明通过对光学工具形状的设计和移动标识的设计,能够精确的识别单个光学工具是否相对于机壳发生移动;在影像采集器上设置机壳位移检测器,检测影像采集器机壳发生整体位移时,提醒工作人员需重新进行注册,保证了注册的精确度。
图1为本发明的自适应注册系统整体应用示意图;
图2为本发明的光学工具实施例一结构示意图;
图3为本发明的光学工具实施例二结构示意图;
图4为本发明的光学工具实施例三结构示意图;
图5为本发明的机壳位移检测器模块示意图;
图6为本发明的机壳位移检测器模块电路原理图;
图中标记说明:1、影像采集器;11、CT机架;12、CT床;2、注册参考板;21、第一标记部件;22、第二标记部件;3、光学导航相机;4、光学工具阵列;41、光学工具;411、分支;42、反光标记;43、对准标记;5、机壳位移检测器。
为了更好地了解本发明的目的、结构及功能,下面结合附图,对本发明一种手术导航的自适应注册系统及方法做进一步详细的描述。
如图1所示,现有的一种手术导航的自适应注册系统,包括光学导航相机3、注册参考板2和计算模块。计算模块为运行控制软件的工控机。计算模块与影像采集器1、光学导航相机3通信连接,影像采集器1、光学导航相机3、注册参考板2和计算模块自适应注册系统配合完成首次注册。
影像采集器可以为手术中常用的CT机,核磁机或CBCT机。
光学导航相机3可以为近红外双目光学相机或可见光双目相机。
本发明以CT机为例进行说明,CT机包括CT机架11和CT床12。注册参考板2上具有第一标记部件21和第二标记部件22。第一标记部件21为光学导航
相机能够识别的标记物,优选的,第一标记部件为多个光学标记球,第二标记部件22为CT影像能够识别的标记物,优选的,第二标记物22为显影定位球。第一标记部件21和第二标记部件22可以物理上分开也可以物理上重合,物理上重合可采用金属显影球外面涂有反光材质来实现。光学导航相机3视场朝CT机架11的孔洞方向,注册参考板2注册时放置于CT床12上,注册完成后可移除。
本发明的一种手术导航的自适应注册系统还包括光学工具阵列4,光学工具阵列4固定设置在面对光学导航相机3的CT机架11的机壳上,光学工具阵列4包括至少3个光学工具41,每个光学工具41大小形状相同,分别分布在CT机架11的机壳上不同位置,为了能够获得不同方位的空间参考位置,所有光学工具41不能在同一条直线上。为了光学导航相机3能方便的识别出不同位置的光学工具41,以判断相机位置是否发生改变,所有光学工具41相连组成的多边图形不能为旋转对称图形。
首次注册时,光学导航相机3同时获取注册参考板2上第一标记部件21在相机坐标系下坐标和光学工具阵列4在相机坐标系下坐标,同时CT机扫描注册参考板2上第二标记部件22。计算模块识别所扫描CT影像中的定位球,从而获取定位球在CT坐标系下坐标。根据第一标记部件21和第二标记部件22加工时的已知空间关系,计算模块可以计算出光学导航相机坐标系和CT坐标系的转换矩阵,完成首次注册。此时,可将注册参考板2移除。
因光学工具阵列4的位置是固定不变的,当光学导航相机3发生移动时,光学导航相机3获取光学工具阵列4在光学导航相机3中的新坐标,计算模块中具有预先设置的计算程序,能够根据首次注册时光学工具阵列4的初始坐标自动计算出新坐标系的位移矩阵,根据位移矩阵重新计算相机坐标系相对于CT坐标系的转换矩阵,从而实现光学导航相机术中位置自适应注册。
光学工具41作为定位参考点,其位置是固定不能发生移动的,因此,光学工具41本体为刚性基座,具有一定的刚性,不易发生形变。刚性基座底部具有不干胶贴纸,用于固定于CT机上。光学工具41上具有至少3个反光标记42,反光标记42可以是反光球也可以是反光帖纸,优选为反光贴纸。反光标记42之间的距离两两不相等,且反光标记42相连组成的多边图形不能为旋转对称图形。优选的,反光标记42之间的间距与注册参考板2上的第一标记部件21之前
的间距不相等,用于光学导航相机3进行分类识别。
光学工具实施例一:
如图2所示,为了指示光学工具41发生位移,光学工具41设计为非旋转对称结构,当光学工具41发生转动时,肉眼能够识别出形状位置的改变,从而重新进行调整、注册。本实施例中,光学工具41设计为具有至少3个不同方向的分支411,优选为4个。每个分支411长度均不相等,固定光学工具41时按照指定方向固定,便于识别可能产生的位移。每个分支411末端具有反光标记42,反光标记42可以是反光球也可以是反光帖纸,优选为反光贴纸。优选的,每个反光标记42之间的距离都不相等。
光学工具实施例二:
然而肉眼的识别并不精确,如图3所示,为了更精准的指示光学工具41发生位移,本发明还提供了另一种指示光学工具41位移的方案,本实施例中,光学工具41的外型可以为任意形状,光学工具41上具有多个反光标记42,每个反光标记42之间的距离都不相等,用于光学导航相机3进行分类识别。光学工具41上设置对准标记43,对准标记43优选为至少2个,多个对准标记中至少2个不在同一方向,用于不同方向的对准。每个对准标记43具有一对贴纸,贴纸上具有对准标识,一个贴于光学工具41表面,一个贴于CT机机壳上,对准标识可以为任意可以进行对准校验的图形,本发明实施例中的对准标识为两个相对的箭头,两个箭头对准时,表明光学工具41没有发生移动,若有其中一对箭头没有对准,就表面光学工具41发生了偏移。对准标记43能够更加直观的反应出光学工具41的位移,便于工作人员发现进行调整。
光学工具实施例三:
肉眼识别精确度不高,而对准标识需要近距离的观察,实施例三是通过将实施例一和实施例二结合,达到双重指示功能,具有更精确的识别功能。如图4所示,光学工具41具有4个不同方向的分支411,每个分支411长度均不相等,固定光学工具41时按照指定方向固定,便于识别可能产生的位移。每个分支411末端具有反光标记42,其中至少2个分支411上具有对准标记43。
以上实施例虽然能够识别参考架阵列4的位置改变,然而,CT机有时需要
拆开外壳进行维护,而一旦机壳拆开维护后再装回,参考架阵列4也很难和原始空间位置保持完全一致,导致定位精度变差。为了解决该问题,本发明在CT机的机壳底部固定安装了机壳位移检测器5,如图5所示,机壳位移检测器5包括控制电路板和锂电池,锂电池为控制电路板提供所需电源。控制电路板包括主控模块、无线通信模块、传感模块、按键模块和报警提示模块,无线通信模块、传感模块、按键模块、报警提示模块与主控模块电连接,主控模块用于控制其他各模块工作。传感模块为位移传感器,位移传感器优选为水银开关。无线通信模块用于建立机壳位移检测器5与监控终端的无线通信,优选的,无线通信模块为蓝牙通信模块。按键模块用于启动、暂停和复位机壳位移检测器5。报警提示模块可以是声光报警,包括LED灯和语音模块。平时主控模块处于休眠状态,CT机的机壳因为外力发生移动,水银开关即接通产生中断信号,主控模块接收该中断信号即被唤醒,主控模块控制报警提示模块发出机壳位置变动报警提示。同时无线通信模块向外部监控主机发送机壳位置变动警告。提醒使用者机壳整体已经发生移动,需要重新注册以提高精度。如图6所示为机壳位移检测器模块电路原理图。
计算模块内具有注册软件,注册软件用于实现光学导航相机3移动后的自适应注册。本发明的自适应注册方法,包括如下步骤:
步骤1:将注册参考板2放置CT床12上,CT机架11扫描注册参考板2,光学导航相机3获取注册参考板2上第一标记部件的坐标A,计算模块导入注册参考板2的CT影像,识别注册参考板2上第二标记部件的坐标B,根据第一标记部件21和第二标记部件22在注册参考板2加工时的空间位置对应关系,校准CT和相机的坐标系,获得CT坐标系到相机坐标系的转换矩阵M,该矩阵为4x4的转移矩阵。
步骤2:与步骤1同时,记录此时光学导航相机3坐标系下,CT机架11孔洞上的光学工具阵列4的所有光学工具41的三维坐标,P1,P2,...,Pn,其中,n表示光学工具41的数量。
步骤3:当光学导航相机3发送移动时,将光学导航相机3对准CT机架的洞口附近,记录移动后的光学工具阵列4的所有光学工具41的三维坐标,P′1,P′2,...P′n。
步骤4:定义三维坐标点(a,b)之间的距离:
其中,a点表示光学工具阵列4的初始坐标,b点表示光学导航相机3移动后的光学工具阵列4的坐标。
步骤5:通过最优化算法计算光学工具阵列4位移矩阵Z,使得
最小,从而获得,CT机到新相机坐标系的转移矩阵M′=M·Z。其中,最优化算法可以使用但不限于LM(Levenberg-Marquardt),L-BFGS-B等现有的算法。
步骤6:重新注册完成,计算模块根据M′,把医学影像坐标中的目标点,转换到光学导航相机坐标系下,从而进行术中导航。
本发明装置在光学工具阵列4不发生位移的情况下只需注册一次即可,后续的光学导航相机发生移动,系统可自动进行术前自适应注册,方便快捷,且多次使用都无需重新注册,当天使用完成把光学导航相机移动到储藏位置,第二天只要移到工作位置就能够自动注册,相比每次使用前必须进行重新扫描注册大大节省了工作时间,提高了手术效率。
可以理解,本发明是通过一些实施例进行描述的,本领域技术人员知悉的,在不脱离本发明的精神和范围的情况下,可以对这些特征和实施例进行各种改变或等效替换。另外,在本发明的教导下,可以对这些特征和实施例进行修改以适应具体的情况及材料而不会脱离本发明的精神和范围。因此,本发明不受此处所公开的具体实施例的限制,所有落入本申请的权利要求范围内的实施例都属于本发明所保护的范围内。
Claims (6)
- 一种手术导航的自适应注册系统,包括光学导航相机(3)、注册参考板(2)和计算模块,所述计算模块与影像采集器(1)、光学导航相机(3)通信连接,所述影像采集器(1)、光学导航相机(3)、注册参考板(2)和计算模块配合完成首次注册,其特征在于,所述系统包括光学工具(41),所述光学工具(41)固定设置在所述影像采集器(1)机壳上,所述光学工具(41)至少具有3个,每个光学工具(41)大小形状相同,分别分布在影像采集器(1)的机壳上不同位置,所有光学工具(41)不能在同一条直线上,且所有光学工具(41)相连组成的多边图形不能为旋转对称图形,多个光学工具(41)形成光学工具阵列(4),在系统进行首次影像采集器坐标系和光学导航相机坐标系注册时,光学导航相机(3)同时扫描光学工具阵列(4)获取光学工具阵列(4)初始坐标并保存,当光学导航相机(3)发生移动时,所述光学导航相机(3)获取光学工具阵列(4)在光学导航相机(3)中的新坐标,所述计算模块根据首次注册时光学工具阵列(4)的初始坐标自动计算出新坐标系的位移矩阵,根据位移矩阵重新计算光学导航相机坐标系相对于影像采集器坐标系的转换矩阵,实现采用术前注册工作模式时光学导航相机(3)注册后位置变化时自适应注册。
- 根据权利要求1所述的自适应注册系统,其特征在于,所述光学工具(41)本体为刚性基座,所述光学工具(41)上具有至少3个反光标记(42),所述反光标记(42)之间的距离两两不相等,且所述反光标记(42)相连组成的多边图形不能为旋转对称图形。
- 根据权利要求1所述的自适应注册系统,其特征在于,所述光学工具(41)上具有对准标记(43),所述对准标记(43)为一对贴纸,所述贴纸上具有对准符号,一个贴于光学工具(41)表面,另一个贴于影像采集器(1)机壳上,所述对准符号对齐放置,用于光学工具是否和机壳发生位置移动的校验指示。
- 根据权利要求1所述的自适应注册系统,其特征在于,所述影像采集器(1)的机壳上固定安装有机壳位移检测器(5),所述机壳位移检测器(5)包括控制电路板和电池,所述电池为控制电路板提供所需电源,所述控制电路板包括主控模块、无线通信模块、传感模块和报警提示模块,所述无线通信模块、传感模块、报警提示模块与主控模块电连接,所述主控模块用于控制其他各模块工作,所述 传感模块为位移传感器,所述无线通信模块用于建立机壳位移检测器(5)与监控终端的无线通信,所述报警提示模块用于当机壳发生拆装或整体位置移动时提供位移报警。
- 根据权利要求1所述的自适应注册系统,其特征在于,所述光学导航相机(3)为双目光学相机;所述影像采集器(1)为CT机、核磁机或CBCT机。
- 一种如权利要求1-5任一项所述的自适应注册系统的自适应注册方法,其特征在于,包括如下步骤:步骤1:影像采集器(1)、光学导航相机(3)、注册参考板(2)和计算模块配合完成首次注册,获得医学影像坐标系到相机坐标系的转换矩阵M,该矩阵为4x4的转移矩阵;步骤2:记录此时光学导航相机坐标系下,影像采集器(1)上的光学工具阵列(4)的所有光学工具(41)的三维坐标,P1,P2,...,Pn,其中,n表示光学工具(41)的数量;步骤3:当光学导航相机(3)发生移动时,光学导航相机(3)获取相机位置移动后的光学工具阵列(4)的所有光学工具(41)的三维新坐标,P′1,P′2,...P′n;步骤4:定义三维坐标点(a,b)之间的距离:其中,a点表示光学工具阵列(4)的初始坐标,b点表示光学导航相机(3)移动后的光学工具阵列(4)的坐标;步骤5:通过最优化算法计算光学工具阵列(4)的位移矩阵Z,使得最小,从而获得影像采集器到新相机坐标系的转移矩阵M′=M·Z;步骤6:自适应重新注册完成,计算模块根据重新注册得到的M′,把医学影像坐标中的目标点,转换到光学导航相机坐标系下,从而进行术中导航。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310032080.8A CN115831341B (zh) | 2023-01-10 | 2023-01-10 | 一种手术导航的自适应注册系统及方法 |
CN202310032080.8 | 2023-01-10 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024148815A1 true WO2024148815A1 (zh) | 2024-07-18 |
Family
ID=85520504
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2023/113225 WO2024148815A1 (zh) | 2023-01-10 | 2023-08-16 | 一种手术导航的自适应注册系统及方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN115831341B (zh) |
WO (1) | WO2024148815A1 (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115831341B (zh) * | 2023-01-10 | 2023-05-26 | 浙江伽奈维医疗科技有限公司 | 一种手术导航的自适应注册系统及方法 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20160157938A1 (en) * | 2013-08-23 | 2016-06-09 | Stryker Leibinger Gmbh & Co. Kg | Computer-Implemented Technique For Determining A Coordinate Transformation For Surgical Navigation |
CN107440797A (zh) * | 2017-08-21 | 2017-12-08 | 上海霖晏医疗科技有限公司 | 用于手术导航的注册配准系统及方法 |
CN111870344A (zh) * | 2020-05-29 | 2020-11-03 | 中山大学肿瘤防治中心(中山大学附属肿瘤医院、中山大学肿瘤研究所) | 术前导航方法、系统及终端设备 |
CN111920524A (zh) * | 2020-09-18 | 2020-11-13 | 浙江伽奈维医疗科技有限公司 | 一种远程遥控步进穿刺机器人系统及操作方法 |
CN113633408A (zh) * | 2021-07-30 | 2021-11-12 | 华南理工大学 | 一种光学导航的牙种植机器人系统及其标定方法 |
CN113925609A (zh) * | 2021-09-16 | 2022-01-14 | 浙江伽奈维医疗科技有限公司 | 一种手术中ct坐标与导航相机配准装置 |
CN115831341A (zh) * | 2023-01-10 | 2023-03-21 | 浙江伽奈维医疗科技有限公司 | 一种手术导航的自适应注册系统及方法 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107133637B (zh) * | 2017-03-31 | 2020-09-15 | 精劢医疗科技南通有限公司 | 一种手术导航图像自动注册设备以及方法 |
CN109785955A (zh) * | 2018-12-25 | 2019-05-21 | 襄阳市第一人民医院(襄阳市肿瘤医院) | 一种基于计算机的神经外科诊疗控制系统及方法 |
CN111281540B (zh) * | 2020-03-09 | 2021-06-04 | 北京航空航天大学 | 基于虚实融合的骨科微创术中实时可视化导航系统 |
US20230081244A1 (en) * | 2021-04-19 | 2023-03-16 | Globus Medical, Inc. | Computer assisted surgical navigation system for spine procedures |
CN115578320A (zh) * | 2022-09-18 | 2023-01-06 | 上海由格医疗技术有限公司 | 一种骨科手术机器人全自动空间注册方法及系统 |
-
2023
- 2023-01-10 CN CN202310032080.8A patent/CN115831341B/zh active Active
- 2023-08-16 WO PCT/CN2023/113225 patent/WO2024148815A1/zh unknown
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20160157938A1 (en) * | 2013-08-23 | 2016-06-09 | Stryker Leibinger Gmbh & Co. Kg | Computer-Implemented Technique For Determining A Coordinate Transformation For Surgical Navigation |
CN107440797A (zh) * | 2017-08-21 | 2017-12-08 | 上海霖晏医疗科技有限公司 | 用于手术导航的注册配准系统及方法 |
CN111870344A (zh) * | 2020-05-29 | 2020-11-03 | 中山大学肿瘤防治中心(中山大学附属肿瘤医院、中山大学肿瘤研究所) | 术前导航方法、系统及终端设备 |
CN111920524A (zh) * | 2020-09-18 | 2020-11-13 | 浙江伽奈维医疗科技有限公司 | 一种远程遥控步进穿刺机器人系统及操作方法 |
CN113633408A (zh) * | 2021-07-30 | 2021-11-12 | 华南理工大学 | 一种光学导航的牙种植机器人系统及其标定方法 |
CN113925609A (zh) * | 2021-09-16 | 2022-01-14 | 浙江伽奈维医疗科技有限公司 | 一种手术中ct坐标与导航相机配准装置 |
CN115831341A (zh) * | 2023-01-10 | 2023-03-21 | 浙江伽奈维医疗科技有限公司 | 一种手术导航的自适应注册系统及方法 |
Also Published As
Publication number | Publication date |
---|---|
CN115831341A (zh) | 2023-03-21 |
CN115831341B (zh) | 2023-05-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021114595A1 (zh) | 导航手术系统及其注册方法、电子设备及支撑装置 | |
JP7237483B2 (ja) | ロボットシステムの制御方法、制御プログラム、記録媒体、制御装置、ロボットシステム、物品の製造方法 | |
WO2024148815A1 (zh) | 一种手术导航的自适应注册系统及方法 | |
US11103313B2 (en) | Redundant reciprocal surgical tracking system with three optical trackers | |
US9622824B2 (en) | Method for automatically identifying instruments during medical navigation | |
JP4914039B2 (ja) | 情報処理方法および装置 | |
US9066755B1 (en) | Navigable device recognition system | |
CN104758066A (zh) | 用于手术导航的设备及手术机器人 | |
JP2017513550A5 (zh) | ||
CN103619273A (zh) | 包括位置跟踪系统的用于操纵骨的组件 | |
EP3349643B1 (en) | Methods, systems and computer program products for determining object distances and target dimensions using light emitters | |
CN107246866A (zh) | 一种高精度六自由度测量系统及方法 | |
JP2020527813A (ja) | 空間的位置決め用の地上標識 | |
JP7538812B2 (ja) | X線装置又は超音波装置環境において処置具を照準及び位置合わせするシステム及び方法 | |
JPWO2018043524A1 (ja) | ロボットシステム、ロボットシステム制御装置、およびロボットシステム制御方法 | |
CN111265299B (zh) | 基于光纤形状传感的手术导航系统 | |
JP2024056663A (ja) | コンピュータ支援外科手術ナビゲーションのためのカメラ追跡システム | |
US20170083671A1 (en) | Apparatus for maintenance support in medical technology devices | |
CN116160453A (zh) | 标定板、机械臂的手眼标定数据采集方法及手眼标定方法 | |
CN218832876U (zh) | 一种用于统一标定ct机与手术机器人坐标的标定板 | |
CN215899872U (zh) | 交互系统、手术机器人导航定位系统 | |
JP2010064200A (ja) | 制御システム、制御方法およびプログラム | |
CN104296656B (zh) | 一种被测物的测量基准面定位设备与装置及其方法 | |
CN209000869U (zh) | 一种晶硅光伏太阳能电池电极二次印刷精度视觉检测装置 | |
Zhang et al. | Towards tracking by 2D-target registration for surgical optical tracking system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23915576 Country of ref document: EP Kind code of ref document: A1 |