WO2024148735A1 - 一种柔性医疗器械递送系统 - Google Patents

一种柔性医疗器械递送系统 Download PDF

Info

Publication number
WO2024148735A1
WO2024148735A1 PCT/CN2023/095822 CN2023095822W WO2024148735A1 WO 2024148735 A1 WO2024148735 A1 WO 2024148735A1 CN 2023095822 W CN2023095822 W CN 2023095822W WO 2024148735 A1 WO2024148735 A1 WO 2024148735A1
Authority
WO
WIPO (PCT)
Prior art keywords
catheter
delivery
component
speed
control mechanism
Prior art date
Application number
PCT/CN2023/095822
Other languages
English (en)
French (fr)
Inventor
黄军
杨伟南
Original Assignee
深圳市爱博医疗机器人有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市爱博医疗机器人有限公司 filed Critical 深圳市爱博医疗机器人有限公司
Publication of WO2024148735A1 publication Critical patent/WO2024148735A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots
    • A61B34/37Master-slave robots
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/01Introducing, guiding, advancing, emplacing or holding catheters
    • A61M25/0105Steering means as part of the catheter or advancing means; Markers for positioning
    • A61M25/0116Steering means as part of the catheter or advancing means; Markers for positioning self-propelled, e.g. autonomous robots
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/01Introducing, guiding, advancing, emplacing or holding catheters
    • A61M25/09Guide wires
    • A61M25/09041Mechanisms for insertion of guide wires
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots
    • A61B2034/301Surgical robots for introducing or steering flexible instruments inserted into the body, e.g. catheters or endoscopes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots
    • A61B2034/303Surgical robots specifically adapted for manipulations within body lumens, e.g. within lumen of gut, spine, or blood vessels

Definitions

  • the present application relates to the technical field of interventional surgical robots, and more specifically, to a flexible medical device delivery system.
  • the interventional surgical robot includes a master device and a slave device connected to the master device.
  • the operator operates on the master device and sends the operation information to the slave device, allowing the slave device to complete the corresponding operation, so that the operator can perform the operation in a radiation-free environment and ensure the safety of the operator.
  • the present application embodiment provides a flexible medical device delivery system, which adopts the following technical solution:
  • the flexible medical device delivery system includes: a processor, a first control mechanism, a second control mechanism, and a third control mechanism communicatively connected to the processor;
  • the guide wire is inserted into the second catheter, and the second catheter is inserted into the first catheter; the first control mechanism and the second control mechanism cooperate to control the first catheter; the second control mechanism and the third control mechanism cooperate to control the second catheter; the third control mechanism controls the guide wire;
  • a portion of the first catheter clamped by the first control mechanism and the second control mechanism is in a bent state, and a portion of the second catheter clamped by the second control mechanism and the third control mechanism is in a bent state;
  • the processor is used to obtain a target control mode and a forward motion instruction; determine a target controlled object based on the target control mode, and determine whether there is a target compensation object based on the target controlled object;
  • a target controlled object and a target compensation object are screened out from the first catheter, the second catheter and the guidewire; based on the target controlled object, a control mechanism corresponding to the target controlled object is screened out from the first control mechanism, the second control mechanism and the third control mechanism; based on the target compensation object, a compensation control mechanism corresponding to the target compensation object is screened out from the first control mechanism, the second control mechanism and the third control mechanism; wherein the target controlled object is at least one of the first catheter, the second catheter and the guidewire;
  • the forward delivery speed determines the compensation speed of the compensation control mechanism, the compensation speed and the forward delivery speed are opposite in direction, and the absolute value of the compensation speed is greater than the absolute value of the forward delivery speed;
  • the forward delivery speed of the control and manipulation mechanism is determined based on the forward motion instruction, and the control and manipulation mechanism is controlled to bend and deliver the target controlled object according to the forward delivery speed.
  • the position detection mechanism is used to detect a first detection distance between the first control mechanism and the second control mechanism, and a second detection distance between the second control mechanism and the third control mechanism, and send the first detection distance and the second detection distance to the processor;
  • the processor After acquiring the target control mode and the forward motion instruction, the processor further acquires the first detection distance and the second detection distance; when the target controlled object includes a first catheter, determining whether the first detection distance is not less than a first preset length;
  • the flexible medical device delivery system also includes a moving track for installing the first control mechanism, the second control mechanism and the third control mechanism;
  • the first control mechanism includes a first delivery component;
  • the second control mechanism includes a first moving component movable relative to the moving track and a second delivery component arranged on the first moving component;
  • the third control mechanism includes a second moving component movable relative to the moving track and a third delivery component arranged on the second moving component;
  • the first delivery component and the first movement component cooperate to control a first catheter
  • the second delivery assembly and the second movement assembly cooperate to control a second catheter
  • the third delivery assembly is used to deliver the guidewire.
  • the flexible medical device delivery system further comprises a state detection mechanism connected to the processor; the state detection mechanism is used to detect the state of the first catheter and/or the second catheter, generate state detection information, and send the state detection information to the processor;
  • the processor controls the first moving component and/or the second moving component to move when the catheter in the target controlled object changes from a bent state to a straightened state.
  • the target control mode By acquiring the target control mode, it is possible to determine whether the target controlled object is the first catheter, the second catheter or the guidewire.
  • the forward delivery speed of the control mechanism and the compensation speed of the control mechanism are determined by the forward motion instruction and the target control mode.
  • the compensation speed By adjusting the compensation speed, the slippage of the catheter or the guidewire due to the mechanical structure is compensated, thereby solving the misalignment between catheters and between catheters and guidewires.
  • FIG1 is a schematic diagram of an initial state of a first catheter according to a first embodiment of the present invention.
  • FIG2 is a schematic diagram showing a first catheter changing from a bent state to a straightened state after the first delivery assembly delivers the first catheter according to the first embodiment of the present invention
  • FIG3 is a schematic diagram of a second conduit remaining in a bent state after the first moving assembly moves according to the first embodiment of the present invention
  • FIG. 4 is a schematic diagram showing a state in which the second conduit changes from a bent state to a straightened state after the first moving assembly moves according to the first embodiment of the present invention.
  • the flexible medical device delivery system of the present application is used to perform interventional surgery.
  • the main end operator and control equipment such as a computer and other equipment
  • the flexible medical device delivery system is installed in the operating room.
  • the main end operator and control equipment are connected to the flexible medical device delivery system.
  • the master end operator and control device are operated by the patient to control the movement of the flexible medical device delivery system equipped with the flexible medical device, so as to realize the intelligent execution of interventional surgery.
  • the master end operator and control device can be connected to the flexible medical device delivery system through a wired network connection or a wireless network connection, which is not limited here.
  • Figure 1 shows that the first catheter 100 and the second catheter 200 are both in a bent state in the initial state in this embodiment.
  • Figure 2 shows that after the first delivery component 410 delivers the first catheter 100 in this embodiment, the first catheter 100 changes from a bent state to a straightened state.
  • Figure 3 shows that after the first moving component 510 moves in this embodiment, the second catheter 200 is still in a bent state.
  • Figure 4 shows that after the first moving component 510 moves in this embodiment, the second catheter 200 changes from a bent state to a straightened state.
  • This embodiment provides a flexible medical device delivery system, including: a processor, a first control mechanism 400, a second control mechanism 500 and a third control mechanism 600 communicatively connected to the processor;
  • the guide wire 300 is passed through the second catheter 200, and the second catheter 200 is passed through the first catheter 100; the first control mechanism 400 and the second control mechanism 500 cooperate to control the first catheter 100; the second control mechanism 500 and the third control mechanism 600 cooperate to control the second catheter 200; the third control mechanism 600 controls the guide wire 300;
  • the portion of the first catheter 100 clamped by the first control mechanism 400 and the second control mechanism 500 is in a bent state, and the portion of the second catheter 200 clamped by the second control mechanism 500 and the third control mechanism 600 is in a bent state;
  • the processor is used to obtain a target control mode and a forward motion instruction; determine a target controlled object based on the target control mode, and determine whether there is a target compensation object based on the target controlled object;
  • a target controlled object and a target compensation object are screened out from the first catheter 100, the second catheter 200 and the guidewire 300; based on the target controlled object, a control mechanism corresponding to the target controlled object is screened out from the first control mechanism 400, the second control mechanism 500 and the third control mechanism 600; based on the target compensation object, a compensation control mechanism corresponding to the target compensation object is screened out from the first control mechanism 400, the second control mechanism 500 and the third control mechanism 600; wherein the target controlled object is at least one of the first catheter 100, the second catheter 200 and the guidewire 300;
  • a control mechanism corresponding to the target controlled object is selected from the first control mechanism 400, the second control mechanism 500 and the third control mechanism 600 based on the target controlled object;
  • the forward delivery speed of the control and manipulation mechanism is determined based on the forward motion instruction, and the control and manipulation mechanism is controlled to bend and deliver the target controlled object according to the forward delivery speed.
  • the forward motion instruction is an instruction for controlling the target controlled object to enter the blood vessel.
  • the head end of the first catheter 100 enters the human blood vessel, the first control mechanism 400 clamps the first catheter 100, and the end of the first catheter 100 is connected to the Y valve of the second control mechanism 500, so that The first catheter 100 can advance or retreat in the human blood vessels under the cooperation of the first control mechanism 400 and the second control mechanism 500.
  • the second catheter 200 is arranged in the first catheter 100, the head end of the second catheter 200 extends out of the head end of the first catheter 100, and the end of the second catheter 200 is connected to the Y valve of the third control mechanism 600.
  • the guide wire 300 is arranged in the second catheter 200, the head end of the guide wire 300 extends out of the head end of the second catheter 200 and the head end of the first catheter 100, and the end of the guide wire 300 is installed on the third control mechanism 600.
  • the first catheter 100, the second catheter 200 and the guide wire 300 are all flexible medical devices.
  • the first catheter 100 can be an angiography catheter, a guide catheter, an intermediate catheter, etc.
  • the second catheter 200 can be a pre-expansion balloon catheter, a balloon expansion stent delivery catheter, a microcatheter, etc.
  • the guide wire 300 can be a loach guide wire, a micro guide wire, a spring coil delivery guide wire, an angiography guide wire, a guide wire, etc.
  • the doctor selects the required flexible medical device according to the actual operation procedures such as balloon angioplasty and stent implantation, angiography and coil embolization.
  • the head end is the end that enters the blood vessel, and the end end is the end away from the blood vessel.
  • the first catheter 100 and the second catheter 200 must be fully straightened before delivery can begin.
  • This approach causes the existing flexible medical device delivery system to be too long, the machine equipment to be too large, and excessively occupy the limited space of the operating room, which is not conducive to performing the surgery and poses a safety hazard.
  • the portion of the first catheter 100 clamped by the first control mechanism 400 and the second control mechanism 500 is in a bent state
  • the portion of the second catheter 200 clamped by the second control mechanism 500 and the third control mechanism 600 is in a bent state.
  • the first catheter 100 and the second catheter 200 are partially in a bent state, which can effectively shorten the length of the delivery system, reduce the size of the machine equipment, optimize the use of operating room space, and improve the safety of interventional surgery.
  • the existing flexible medical device delivery system has the problem that the same flexible medical device delivery system is not compatible with multiple surgical procedures, which causes doctors to need to learn different systems, the learning cost is too high, and it cannot meet the doctor's needs for delivering multiple flexible medical devices at the same time, resulting in low surgical efficiency.
  • the control device outside the operating room (such as a computer or other display) includes multiple buttons, and one button corresponds to at least one mode, which is convenient for doctors to operate. The doctor clicks the button of the control device to enter the target control mode required for the operation.
  • the target control mode is to control the delivery of the first catheter 100 alone, control the delivery of the second catheter 200 alone, control the delivery of the first catheter 100 and the guidewire 300, control the delivery of the second catheter 200 and the guidewire 300, control the delivery of the first catheter 100 and the second catheter 200, and any one of the delivery of the first catheter 100, the second catheter 200 and the guidewire 300. Therefore, the flexible medical device delivery system can be compatible with the control modes of multiple flexible medical devices to achieve the control of a single flexible medical device, or the coordinated control of multiple flexible medical devices to meet the actual surgical needs of doctors. Doctors can use a flexible medical device delivery system to operate multiple flexible medical devices at the same time and perform a variety of different surgical procedures. It has strong flexibility, effectively improves surgical efficiency, and shortens operation time.
  • the portion of the first catheter 100 clamped by the first control mechanism 400 and the second control mechanism 500 is in a bent state.
  • the first catheter 100 is controlled to be delivered in the forward direction
  • the portion of the first catheter 100 clamped by the first control mechanism 400 and the second control mechanism 500 is gradually straightened. Since the second catheter 200 is inserted into the first catheter 100 and the guidewire 300 is inserted into the second catheter 200, the process in which the shape of the first catheter 100 changes from bending to straightening drives the second catheter 200 and the guidewire 300 to be delivered in the forward direction at the same speed.
  • the processor selects the corresponding target compensation object from the second catheter 200 and the guidewire 300 according to the target control mode, or there is no target compensation object, to achieve precise control of flexible medical devices.
  • the initial position is the position where the second catheter 200 and the guidewire 300 are placed in the initial state.
  • the processor parses the forward motion instruction, obtains the forward delivery speed of the control mechanism, queries the delivery compensation curve, obtains the compensation speed corresponding to the forward delivery speed, and the absolute value of the compensation speed is greater than the absolute value of the forward delivery speed.
  • the compensation speed is increased to solve the problem that the second catheter 200 and the guidewire 300 cannot move in the opposite direction and cannot remain in the initial position due to slippage, thereby achieving precise control of flexible medical devices.
  • the forward delivery speed and the compensation speed in the delivery compensation curve are positively correlated.
  • the target control mode does not have a target compensation object, so the control mechanism corresponding to the target controlled object is directly selected from the first control mechanism 400, the second control mechanism 500 and the third control mechanism 600, and the forward delivery speed of the control mechanism is determined according to the forward motion instruction, and the target controlled object is delivered by bending or straightening.
  • the flexible medical device delivery system of the embodiment of the present application can determine whether the flexible medical device needs to be compensated in the target control mode, and realize accurate control of multiple flexible medical devices in a bent state, so as to meet the needs of a flexible medical device delivery system to perform different procedures.
  • the absolute value of the compensation speed is greater than the absolute value of the forward delivery speed, which increases the compensation speed, solves the problem of slipping during the movement of the target compensation object, and realizes accurate control of the flexible medical device.
  • the flexible medical device delivery system further includes a position detection mechanism connected to the processor; the position detection mechanism is used to detect a first detection distance between the first control mechanism 400 and the second control mechanism 500, and a second detection distance between the second control mechanism 500 and the third control mechanism 600, and send the first detection distance and the second detection distance to the processor;
  • the processor After acquiring the target control mode and the forward motion instruction, the processor further acquires the first detection distance and the second detection distance; when the target controlled object includes the first catheter 100, it is determined whether the first detection distance is not less than a first preset length;
  • the first catheter 100 and/or the second catheter 200 are bent and delivered, they are changed from the bent state to the straightened state.
  • the second control mechanism 500 and/or the third control mechanism 600 need to move to continue to deliver the first catheter 100 and/or the second catheter 200.
  • the second control mechanism 500 moves toward the first control mechanism 400 to achieve the continued delivery of the straightened first catheter 100, and at this time, the distance between the second control mechanism 500 and the first control mechanism 400 is gradually shortened.
  • the position detection mechanism of this embodiment detects the first detection distance between the second control mechanism 500 and the first control mechanism 400 in real time and sends it to the processor.
  • the processor compares the first detection distance with the first preset length. When the first detection distance is less than the first preset length, an alarm message is generated to remind the user that there is a possibility of collision between the second control mechanism 500 and the first control mechanism 400.
  • the second catheter 200 is used as a reference.
  • the third control mechanism 600 moves toward the second control mechanism 500 to achieve continued delivery of the second catheter 200.
  • the distance between the third control mechanism 600 and the second control mechanism 500 is gradually shortened.
  • the position detection mechanism of this embodiment detects the second detection distance between the third control mechanism 600 and the second control mechanism 500 in real time and sends it to the processor.
  • the processor compares the second detection distance with the second preset length. When the second detection distance is less than the second preset length, an alarm message is generated to remind the user that the third control mechanism 600 and the second control mechanism 500 are likely to collide.
  • the warning information includes a warning sound played by a warning light or a warning content flashing on a control device, or interrupting the user's control of the flexible medical device delivery system.
  • the flexible medical device delivery system further includes a moving track 700 for installing the first control mechanism 400, the second control mechanism 500 and the third control mechanism 600;
  • the first operating mechanism 400 includes a first delivery component 410;
  • the second operating mechanism 500 includes a first moving component 510 movable relative to the moving track 700 and a second delivery component 520 disposed on the first moving component 510;
  • the third operating mechanism 600 includes a second moving component 610 movable relative to the moving track 700 and a third delivery component 620 disposed on the second moving component 610;
  • the first delivery component 410 and the first movement component 510 cooperate to control the first catheter 100;
  • the second delivery assembly 520 and the second movement assembly 610 cooperate to control the second catheter 200;
  • the third delivery component 620 is used to deliver the guide wire 300 .
  • the flexible medical device delivery system further includes a state detection mechanism (not shown) connected to the processor; the state detection mechanism is used to detect the state of the first catheter 100 and/or the second catheter 200, generate state detection information, and send the state detection information to the processor;
  • the processor controls the first moving component 510 and/or the second moving component 610 to move when the catheter in the target controlled object changes from a bent state to a straightened state.
  • the state of the first catheter 100 and/or the second catheter 200 is detected by the state detection mechanism, and the state detection information is sent to the processor. If the current first catheter 100 or the second catheter 200 is in a straightened state, the first catheter 100 or the second catheter 200 continues to be delivered through the movement of the first movable component 510 or the second movable component 610. Therefore, the flexible medical device of the present application can deliver multiple flexible medical devices in a bent state, and can also deliver multiple flexible medical devices in a straightened state, thereby achieving precise control of flexible medical devices in multiple different states, improving delivery efficiency, and being compatible with different surgical procedures.
  • the processor needs to change the control mode.
  • the delivery mode is: control the first moving component 510 and/or the second moving component 610 to move toward the first delivery component 410 to achieve long-distance delivery of the flexible medical device, and control the absolute value of the forward moving speed of the first moving component 510 and/or the second moving component 610 to be less than the absolute value of the forward delivery speed of the first delivery component 410 and/or the second delivery component 520, so as to ensure that the straightened first catheter 100 and/or the second catheter 200 remain in a straightened state, so as to ensure the feasibility and safety of subsequent operations of the first catheter 100 and/or the second catheter 200, and avoid subsequent rotation of the first catheter 100 and/or the second catheter 200 to damage the first catheter 100 and/or the second catheter 200.
  • the first moving component 510 when delivering the first catheter 100 in a straightened state to a blood vessel, the first moving component 510 is controlled to move toward the first delivery component 410. Since the second catheter 200 is clamped in the second delivery component 520, the first moving component 510 drives the second delivery component 520 to move, and the first moving component 510 drives the second catheter 200 to be delivered into the blood vessel. That is to say, when it is necessary to separately control the delivery of the first catheter 100 in the straightened state, the delivery of the first catheter 100 is controlled by controlling the first delivery component 410 according to the delivery speed, and at the same time, the first movable component 510 moves toward the first delivery component 410.
  • the second catheter 200 is driven by the first movable component 510 to move forward and cannot remain in the initial position, and the second catheter 200 needs to be compensated; similarly, when the first catheter 100 and the second catheter 200 in the straightened state are controlled to be delivered into the blood vessel, the first movable component 510 and the second movable component 610 are controlled to move toward the first delivery component 410. Since the guide wire 300 is clamped in the third delivery component 620, the second movable component 610 drives the third delivery component 620 to move, and then the second movable component 610 drives the guide wire 300 to be delivered into the blood vessel. At this time, the guide wire 300 needs to be compensated; when it is necessary to control the delivery of the first catheter 100, the second catheter 200 and the guide wire 300 at the same time, no compensation is required.
  • the target compensation object is the second conduit 200
  • the first delivery component 410 delivers the first catheter 100 in a curved manner according to the forward delivery speed, and the second delivery component 520 delivers the second catheter 200 in a reverse direction according to the compensation speed;
  • the first moving component 510 is controlled to move toward the first delivery component 410, and the absolute value of the forward moving speed of the first moving component 510 is smaller than the absolute value of the forward delivery speed.
  • This embodiment takes the independent control of the delivery of the first catheter 100 as an example, the target controlled object is the first catheter 100, and the guidewire 300 can move with the second catheter 200. Therefore, the guidewire 300 does not need a separate control mechanism for compensation, and the target compensation object is the second catheter 200.
  • the first catheter 100 is in a bent state.
  • the processor obtains the forward motion instruction, it controls the first delivery component 410 to deliver the first catheter 100 in the bent state at a forward delivery speed.
  • the second delivery component 520 delivers the second catheter 200 in the reverse direction at a compensation speed.
  • the state detection mechanism detects that the first catheter 100 changes from a bent state to a straightened state
  • the first delivery component 410 continues to forwardly deliver the straightened first catheter 100 at the forward delivery speed
  • the second delivery component 520 reversely delivers the second catheter 200 at the compensation speed
  • the first moving component 510 begins to move toward the first delivery component 410
  • the absolute value of the forward moving speed of the first moving component 510 toward the first delivery component 410 is less than the absolute value of the forward moving speed of the first delivery component 410 delivering the first catheter 100.
  • the absolute value of the forward moving speed of the first moving component 510 toward the first delivery component 410 is less than the absolute value of the forward moving speed of the first delivery component 410 delivering the first catheter 100, so as to ensure that the straightened first catheter 100 remains in a straightened state, so as to ensure the feasibility and safety of subsequent operations of the first catheter 100, and to avoid the subsequent rotation of the first catheter 100 and the breakage of the catheter 100.
  • the absolute value of the forward moving speed of the first moving component 510 is smaller than the absolute value of the forward delivery speed of the first delivery component 410 delivering the first catheter 100, so as to ensure that the straightened first catheter 100 remains in a straightened state.
  • the absolute value of the compensation speed of the second delivery component 520 driving the second catheter 200 is greater than the absolute value of the forward delivery speed of the first delivery component 410 delivering the first catheter 100, so as to ensure that the second catheter 200 remains in the initial position.
  • the position detection mechanism continuously detects whether the first detection distance between the first movable component 510 and the first delivery component 410 is less than the first preset length.
  • the processor generates a warning message.
  • the warning message includes interrupting the user's control over the flexible medical device delivery system, a warning sound played through a warning light, and a warning content flashing on the control device.
  • the doctor can send a reverse motion instruction to the processor through the main end operator and the control device, so that the first delivery component 410 controls the delivery direction of the first catheter 100 to turn, and the first moving component 510 moves in a direction away from the first delivery component to withdraw the first catheter 100 from the blood vessel.
  • the reverse motion instruction is an instruction to control the target controlled object to withdraw from the blood vessel.
  • the target controlled object refers to the first catheter 100.
  • the processor obtains the reverse motion instruction, parses the reverse motion instruction, and obtains the reverse delivery speed
  • the first delivery component 410 delivers the first catheter 100 at the reverse delivery speed, that is, withdraws the first catheter 100 from the blood vessel, and the first moving component 510 begins to move away from the first delivery component 410.
  • the absolute value of the reverse movement speed of the first moving component 510 away from the first delivery component 410 is greater than the absolute value of the reverse delivery speed, thereby ensuring that the first catheter 100 remains in a straightened state and providing a guarantee for the subsequent rotation of the first catheter 100; the second delivery component 520 delivers the second catheter 200 in a forward direction at the compensation speed, that is, the second delivery component 520 controls the second catheter 200 to be delivered in the direction of entering the blood vessel, wherein the absolute value of the compensation speed is greater than the absolute value of the reverse delivery speed, and the compensation speed and the reverse movement speed are in opposite directions and equal in magnitude, thereby ensuring that the second catheter 200 remains in the initial position and achieving precise control of all flexible medical instruments.
  • this embodiment takes the independent control of the delivery of the second catheter 200 as an example.
  • the target compensation object is the guide wire 300;
  • the second delivery component 520 delivers the second catheter 200 in a curved manner according to the forward delivery speed, and the third delivery component 620 delivers the guidewire 300 in a reverse direction according to the compensation speed;
  • the second moving component 610 is controlled to move toward the second delivery component 520, and the absolute value of the forward moving speed of the second moving component 610 is smaller than the absolute value of the forward delivery speed.
  • This embodiment takes the independent control of the delivery of the second catheter 200 as an example, the target controlled object is the second catheter 200, and the target compensation object is the guidewire 300.
  • the second catheter 200 In the initial state, the second catheter 200 is in a bent state.
  • the processor obtains the forward motion instruction, it controls the second delivery component 520 to deliver the second catheter 200 in the bent state at a forward delivery speed.
  • the third delivery component 620 delivers the guidewire 300 in the reverse direction at a compensation speed.
  • the state detection mechanism detects that the second catheter 200 changes from a bent state to a straightened state
  • the second delivery component 520 continues to deliver the second catheter 200 in the straightened state at a forward delivery speed
  • the third delivery component 620 reversely delivers the guidewire 300 at a compensation speed
  • the second moving component 610 begins to move toward the second delivery component 520
  • the absolute value of the forward moving speed of the second moving component 610 toward the second delivery component 520 is less than the absolute value of the forward delivery speed.
  • the absolute value of the forward moving speed of the second moving component 610 toward the second delivery component 520 is less than the absolute value of the forward delivery speed of the second delivery component 520 delivering the second catheter 200, so that the second catheter 200 can maintain the straightened state during forward delivery in the straightened state, and the bending or even squeezing of the second catheter 200 between the second moving component 610 and the second delivery component 520 can be avoided, thereby avoiding damage to the second catheter 200.
  • the absolute value of the compensation speed of the guidewire 300 delivered by the third delivery assembly 620 is 1%-15% greater than the absolute value of the forward delivery speed of the second catheter 200 delivered by the second delivery assembly 520 .
  • the absolute value of the forward movement speed of the second movement assembly 610 is 1%-15% smaller than the absolute value of the forward delivery speed of the second delivery assembly 520 delivering the second catheter 200 .
  • the position detection mechanism continuously detects whether the second detection distance between the second movable component 610 and the second delivery component 520 is less than the second preset length.
  • the processor generates a warning message.
  • the warning message includes interrupting the user's control over the flexible medical device delivery system, a warning sound played through a warning light, and a warning content flashing on the control device.
  • the second delivery component 520 changes the direction of delivering the second catheter 200.
  • the second detection distance is less than the second preset length, it indicates that the second moving component 610 is moving toward the second delivery component.
  • the component 520 has reached the limit distance and is not suitable to continue forward delivery of the second catheter 200. At this time, the forward delivery of the second catheter 200 is stopped.
  • the second delivery component 520 controls the delivery direction of the second catheter 200 to control the withdrawal of the second catheter 200 from the blood vessel. At this time, the compensation direction of the guidewire 300 is forward delivery.
  • the processor obtains the reverse motion instruction, parses the reverse motion instruction, and obtains the reverse delivery speed
  • the second delivery component 520 delivers the second catheter 200 backward at the reverse delivery speed
  • the third delivery component 620 reversely delivers the guidewire 300 at the compensation speed
  • the second moving component 610 begins to move away from the first delivery component 410.
  • the absolute value of the reverse movement speed of the second moving component 610 moving away from the first delivery component 410 is greater than the absolute value of the reverse delivery speed.
  • this embodiment takes the control of the delivery of the first catheter 100 and the guide wire 300 as an example.
  • the target compensation object is the second catheter 200
  • the first delivery component 410 and the third delivery component 620 deliver the first catheter 100 and the guide wire 300 in a curved manner according to the forward delivery speed, and the second delivery component 520 delivers the second catheter 200 in a reverse direction according to the compensation speed;
  • the first moving component 510 is controlled to move toward the first delivery component 410, and the absolute value of the forward moving speed of the first moving component 510 is smaller than the absolute value of the forward delivery speed.
  • This embodiment takes the control of the delivery of the first catheter 100 and the guidewire 300 as an example, the target controlled objects are the first catheter 100 and the guidewire 300, and the target compensation object is the second catheter 200.
  • the first catheter 100 is in a curved state.
  • the processor obtains the forward motion instruction, it controls the first delivery component 410 to forward deliver the first catheter 100 in the curved state at the forward delivery speed, and controls the third delivery component 620 to forward deliver the guidewire 300 at the forward delivery speed.
  • the second delivery component 520 reversely delivers the second catheter 200 at the compensation speed.
  • the processor parses the forward motion instruction to obtain the forward delivery speeds of the first delivery component 410 and the third delivery component 620, and the absolute values of the forward delivery speeds of the first delivery component 410 and the third delivery component 620 can be equal or unequal, which is determined according to the actual operation of the main end operator by the doctor.
  • the main end operator has a first operating rod for controlling the catheter and a second operating rod for controlling the guidewire 300.
  • the speed at which the doctor operates the first operating rod to move determines the forward delivery speed of the first delivery component 410; the speed at which the doctor operates the second operating rod to move determines the forward delivery speed of the third delivery component 620, so as to achieve flexible and accurate control of the first catheter 100 and the guidewire 300.
  • the first delivery component 410 continues to forwardly deliver the straightened first catheter 100 at a forward delivery speed
  • the first moving component 510 begins to move toward the first delivery component 410
  • the third delivery component 620 continues to forwardly deliver the guide wire 300 at a forward delivery speed
  • the second delivery component 520 reversely delivers the second catheter 200 at a compensation speed, wherein the first moving component 510 moves toward the first delivery component 410 in the forward direction.
  • the absolute value of the moving speed is smaller than the absolute value of the forward delivery speed, ensuring that the first catheter 100 remains in a straightened state.
  • the position detection mechanism continuously detects whether the first detection distance between the first movable component 510 and the first delivery component 410 is less than the first preset length.
  • the processor generates a warning message.
  • the warning message includes interrupting the user's control over the flexible medical device delivery system, a warning sound played through a warning light, and a warning content flashing on the control device.
  • the first delivery component 410 changes the direction of delivering the first catheter 100
  • the third delivery component 620 changes the direction of delivering the guide wire 300.
  • the processor continues to obtain forward motion instructions, the first delivery component 410 delivers the first catheter 100 backward at the forward delivery speed, the third delivery component 620 delivers the guide wire 300 backward at the forward delivery speed, the second delivery component 520 delivers the second catheter 200 in reverse at the compensation speed, and the first moving component 510 starts to move in the opposite direction of the first delivery component 410, and the absolute value of the forward moving speed of the first moving component 510 in the opposite direction of the first delivery component 410 is greater than the absolute value of the forward delivery speed of the first delivery component 410 to deliver the first catheter 100.
  • the first detection distance is less than the first preset length, it means that the first moving component 510 has reached the limit distance towards the first delivery component 410, and it is not suitable to continue to deliver the first catheter 100 in the forward direction.
  • the forward delivery of the first catheter 100 is stopped, and the direction of the first delivery component 410 controlling the delivery of the first catheter 100 and the third delivery component 620 controlling the delivery of the guidewire 300 are turned.
  • the first delivery component 410 can control the first catheter 100 to be delivered backwards
  • the third delivery component 620 can control the guidewire 300 to be delivered backwards.
  • the compensation of the second catheter 200 is forward delivery.
  • the absolute value of the forward moving speed of the first moving component 510 to the first delivery component 410 is less than the absolute value of the forward delivery speed of the first delivery component 410 to deliver the first catheter 100, so that the first catheter 100 can be forward delivered in a straightened state and can avoid damage to the first catheter 100.
  • the absolute value of the compensation speed of the second delivery component 520 delivering the second catheter 200 is greater than the absolute value of the forward delivery speed of the first delivery component 410 delivering the first catheter 100 by 1%-15%, preferably 8%.
  • the absolute value of the forward movement speed of the first moving assembly 510 is 1%-15% smaller than the absolute value of the forward delivery speed of the first delivery assembly 410 delivering the first catheter 100 .
  • the absolute value of the forward delivery speed of the third delivery component 620 delivering the guidewire 300 is 2%-30% greater than the absolute value of the forward delivery speed of the first delivery component 410 delivering the first catheter 100.
  • the second delivery component 520 delivers the second catheter 200
  • the second catheter 200 is misaligned with the first catheter 100 due to the slippage of the mechanical structure.
  • the third delivery component 620 delivers the guidewire 300
  • the guidewire 300 is also misaligned with the first catheter 100 due to the slippage of the mechanical structure, and the misalignment distance also includes the distance of the slippage of the second catheter 200.
  • the first catheter 100 when delivering the first catheter 100 , the first catheter 100 is used as a reference, and other forward delivery speed adjustments or forward movement speed adjustments are based on the forward delivery speed of the first delivery component 410 delivering the first catheter 100 .
  • this embodiment takes the control of delivery of the first catheter 100 and the second catheter 200 as an example.
  • the target compensation object is the guide wire 300
  • the first delivery component 410 delivers the first catheter 100 and the second catheter 200 in a curved manner according to the forward delivery speed, and the third delivery component 620 delivers the guidewire 300 in a reverse direction according to the compensation speed;
  • the first moving component 510 and the second moving component 610 are controlled to move toward the first delivery component 410, and the absolute value of the forward moving speed of the first moving component 510 and the second moving component 610 is smaller than the absolute value of the forward delivery speed.
  • This embodiment takes the control of the delivery of the first catheter 100 and the second catheter 200 as an example, the target controlled objects are the first catheter 100 and the second catheter 200, and the target compensation object is the guidewire 300. Since the second catheter 200 moves following the first catheter 100, controlling the first delivery component 410 to deliver the first catheter 100 can achieve synchronous delivery of the first catheter 100 and the second catheter 200.
  • the first catheter 100 In the initial state, the first catheter 100 is in a bent state.
  • the processor obtains the forward motion instruction, it controls the first delivery component 410 to deliver the first catheter 100 in the bent state at a forward delivery speed.
  • the third delivery component 620 delivers the guidewire 300 in the reverse direction at a compensation speed.
  • the state detection mechanism detects that the first catheter 100 changes from a bent state to a straightened state
  • the first delivery component 410 continues to deliver the straightened first catheter 100 forward at the forward delivery speed
  • the third delivery component 620 reversely delivers the guidewire 300 at the compensation speed
  • the first moving component 510 and the second moving component 610 begin to move toward the direction of the first delivery component 410
  • the absolute value of the forward moving speed of the first moving component 510 and the second moving component 610 toward the first delivery component 410 is less than the absolute value of the forward delivery speed.
  • the absolute value of the forward moving speed of the first moving component 510 to the first delivery component 410 is less than the absolute value of the forward delivery speed of the first delivery component 410 to deliver the first catheter 100, so that the first catheter 100 can be forward delivered in a straightened state and can avoid damage to the first catheter 100.
  • the absolute value of the compensation speed of the guidewire 300 delivered by the third delivery component 620 is greater than the absolute value of the forward delivery speed of the first catheter 100 delivered by the first delivery component 410 by 1%-15%, preferably 8%.
  • the absolute value of the forward moving speed of the first moving component 510 is 1%-15% less than the absolute value of the forward delivery speed of the first delivery component 410 delivering the first catheter 100, preferably 8%.
  • the position detection mechanism continuously detects whether the first detection distance between the first movable component 510 and the first delivery component 410 is less than the first preset length.
  • the processor generates a warning message.
  • the warning message includes interrupting the user's control over the flexible medical device delivery system, a warning sound played through a warning light, and a warning content flashing on the control device.
  • the first delivery component 410 changes the direction of delivering the first catheter 100.
  • the first delivery component 410 changes direction, if the processor continues to obtain forward motion instructions, the first delivery component 410 delivers the first catheter 100 backward at the forward delivery speed, the second catheter 200 moves synchronously with the first catheter 100, the third delivery component 620 delivers the guidewire 300 in the reverse direction at the compensation speed, and the first moving component 510 and the second moving component 610 begin to move in the opposite direction of the first delivery component 410.
  • the absolute value of the forward movement speed of the first moving component 510 and the second moving component 610 in the opposite direction of the first delivery component 410 is greater than the absolute value of the forward delivery speed of the first delivery component 410 to deliver the first catheter 100.
  • the first detection distance is less than the first preset length, it means that the first moving component 510 has reached the limit distance towards the first delivery component 410, and it is not suitable to continue to deliver the first catheter 100 in the forward direction.
  • the forward delivery of the first catheter 100 is stopped, and the first delivery component 410 controls the delivery direction of the first catheter 100 to be turned.
  • the first delivery component 410 can be used to control the first catheter 100 to be delivered backward.
  • the compensation of the guide wire 300 is forward delivery.
  • this embodiment takes the control of the delivery of the second catheter 200 and the guide wire 300 as an example.
  • the target controlled object is the second catheter 200 and the guidewire 300;
  • the second delivery component 520 delivers the second catheter 200 and the guidewire 300 in a curved manner according to the forward delivery speed
  • the second moving component 610 is controlled to move toward the second delivery component 520, and the absolute value of the forward moving speed of the second moving component 610 is smaller than the absolute value of the forward delivery speed.
  • This embodiment takes the independent control of the delivery of the second catheter 200 as an example, the target controlled object is the second catheter 200, and there is no target compensation object.
  • the second catheter 200 In the initial state, the second catheter 200 is in a bent state.
  • the processor obtains the forward motion instruction, it controls the second delivery component 520 to forward deliver the second catheter 200 in the bent state at a forward delivery speed.
  • the second delivery component 520 continues to deliver the second catheter 200 in the straightened state at a forward delivery speed, and the second moving component 610 begins to move toward the second delivery component 520.
  • the absolute value of the forward moving speed of the second moving component 610 toward the second delivery component 520 is less than the absolute value of the forward delivery speed, thereby ensuring that the second catheter 200 remains in a straightened state, thereby providing a guarantee for the subsequent rotation of the second catheter 200.
  • the absolute value of the forward moving speed of the second moving component 610 toward the second delivery component 520 is less than the absolute value of the forward delivery speed of the second delivery component 520 to deliver the second catheter 200, so that the second catheter 200 can maintain the straightened state during forward delivery in the straightened state, and damage to the second catheter 200 can be avoided.
  • the absolute value of the forward movement speed of the second movement assembly 610 is 1%-15% smaller than the absolute value of the forward delivery speed of the second delivery assembly 520 delivering the second catheter 200 .
  • the position detection mechanism continuously detects whether the second detection distance between the second moving component 610 and the second delivery component 520 is less than the second preset length. If the second moving component 610 continues to move toward the second delivery component 520 and the second detection distance is less than the second preset length, it means that the second moving component 610 has reached the limit distance to the second delivery component 520 and is not suitable for continuing to forwardly deliver the second catheter 200, and the forward delivery of the second catheter 200 is stopped at this time.
  • the processor generates a warning message, which includes interrupting the user's control of the flexible medical device delivery system, a warning sound played through a warning light, and a warning content flashing on the control device to remind the doctor.
  • a reverse control instruction is sent to the processor through the main end operator and the control device.
  • the processor obtains the reverse control instruction
  • the second delivery component 520 is controlled to deliver the second catheter 200 backward at the reverse delivery speed, and the second moving component 610 begins to move away from the second delivery component 520.
  • the absolute value of the reverse moving speed of the second moving component 610 moving away from the second delivery component 520 is greater than the absolute value of the forward delivery speed, thereby ensuring that the second catheter 200 remains straightened.
  • this embodiment takes the control of the delivery of the first catheter 100, the second catheter 200 and the guide wire 300 as an example.
  • the target controlled objects are the first catheter 100, the second catheter 200 and the guidewire 300;
  • the first delivery component 410 delivers the first catheter 100, the second catheter 200 and the guidewire 300 in a curved manner according to the forward delivery speed;
  • the first moving component 510 and the second moving component 610 are controlled to move toward the first delivery component 410, and the absolute value of the forward moving speed of the first moving component 510 and the second moving component 610 is smaller than the absolute value of the forward delivery speed.
  • This embodiment takes the control of the delivery of the first catheter 100, the second catheter 200 and the guidewire 300 as an example.
  • the target controlled objects are the first catheter 100, the second catheter 200 and the guidewire 300.
  • the first catheter 100 In the initial state, the first catheter 100 is in a bent state, and the second catheter 200 and the guidewire 300 are inserted into the first catheter 100.
  • the delivery process of the first catheter 100 it is gradually straightened from the bent state, and the second catheter 200 and the guidewire 300 follow the first catheter 100 and are delivered into the blood vessel as the first catheter 100. Therefore, there is no target compensation object.
  • the first catheter 100 In the initial state, the first catheter 100 is in a bent state.
  • the processor obtains the forward motion instruction, it controls the first delivery component 410 to forward deliver the first catheter 100 in the bent state at a forward delivery speed.
  • the first delivery assembly 410 continues to forwardly deliver the straightened first catheter 100 at the forward delivery speed, and the first moving assembly 510 and the second moving assembly 610 begin to move toward the first delivery assembly 410.
  • the absolute values of the forward moving speeds of the first moving assembly 510 and the second moving assembly 610 moving toward the first delivery assembly 410 are less than the absolute values of the forward delivery speeds, ensuring that the first catheter 100 remains in a straightened state, providing a guarantee for the subsequent rotation operation of the first catheter 100.
  • the absolute values of the forward moving speeds of the first moving assembly 510 and the second moving assembly 610 moving toward the first delivery assembly 410 are equal.
  • the absolute value of the forward moving speed of the first moving component 510 toward the first delivery component 410 is less than the absolute value of the forward delivery speed.
  • the first catheter 100 can be delivered forward in a straightened state so as to maintain the straightened state and avoid damage to the first catheter 100 .
  • the absolute value of the forward movement speed of the first moving component 510 and the second moving component 610 is 1%-15% less than the absolute value of the forward delivery speed of the first delivery component 410 delivering the first catheter 100 .
  • the position detection mechanism continuously detects whether the first detection distance between the first movable component 510 and the first delivery component 410 is less than a first preset length.
  • the processor When the first movable component 510 continues to move in the direction of the first delivery component 410 and makes the first detection distance less than the first preset length, the processor generates a warning message.
  • the warning message includes interrupting the user's control over the flexible medical device delivery system, a warning sound played through a warning light, and a warning content flashing on the control device to alert the doctor.
  • a reverse motion instruction is sent to the processor through the main end operator and the control device.
  • the processor obtains the reverse motion instruction
  • the first delivery component 410 is controlled to deliver the first catheter 100 backward at the reverse delivery speed, and the first moving component 510 and the second moving component 610 begin to move away from the first delivery component 410.
  • the absolute value of the reverse movement speed of the first moving component 510 and the second moving component 610 moving away from the first delivery component 410 is greater than the absolute value of the forward delivery speed of the first delivery component 410 to deliver the first catheter 100, thereby ensuring that the first catheter 100 and the second catheter 200 remain in a straightened state.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Robotics (AREA)
  • Veterinary Medicine (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Anesthesiology (AREA)
  • Hematology (AREA)
  • Pulmonology (AREA)
  • Biophysics (AREA)
  • Surgery (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Apparatus For Radiation Diagnosis (AREA)
  • Media Introduction/Drainage Providing Device (AREA)

Abstract

一种柔性医疗器械递送系统,属于介入机器控制技术领域;该系统包括:处理器、与处理器通信连接的第一操控机构(400)、第二操控机构(500)和第三操控机构(600);处理器用于获取目标控制模式和正向运动指令;基于目标控制模式确定目标被控对象,基于目标被控对象判断是否存在目标补偿对象,若存在目标补偿对象,则从第一导管(100)、第二导管(200)和导丝(300)中筛选出目标被控对象和目标补偿对象;通过获取目标控制模式,可以确定目标被控对象为第一导管(100)、第二导管(200)或导丝(300),通过对补偿速度的调整,补偿导管或导丝因机械结构的打滑,解决导管(100)与导管(200)之间、导管(100,200)与导丝(300)之间的错位。

Description

一种柔性医疗器械递送系统
本申请要求申请日为2023年01月13日、申请号为202310077429.X、发明名称为“一种柔性医疗器械递送系统”的中国专利申请的优先权,此件中国专利申请的全部内容通过引用结合在本申请中。
技术领域
本申请涉及介入手术机器人技术领域,更具体地,涉及一种柔性医疗器械递送系统。
背景技术
介入手术机器人包括主端装置和与主端装置连接的从端装置,操作者在主端装置操作,并将操作信息发送给从端装置,让从端装置完成相应操作,实现操作者无辐射环境下执行手术,保证操作者安全。
随着对介入手术机器人的不断深入研究,医生和研发人员意识到多导管一导丝协同控制是通过介入手术机器人执行介入手术的关键技术,但是现有的介入手术机器人部分存在只能单独控制一导管一导丝、无法灵活控制多导管,导管和导丝控制过程发生错位,以及机器人设备体积过大,占用手术室有限空间的问题。
发明内容
为了解决上述技术问题,本申请实施例提供一种柔性医疗器械递送系统,采用了如下所述的技术方案:
柔性医疗器械递送系统包括:处理器、与所述处理器通信连接的第一操控机构、第二操控机构和第三操控机构;
所述导丝穿设于所述第二导管,所述第二导管穿设于所述第一导管;所述第一操控机构和第二操控机构配合控制所述第一导管;所述第二操控机构和第三操控机构配合控制所述第二导管;所述第三操控机构控制所述导丝;
初始状态下,所述第一导管被所述第一操控机构和第二操控机构夹持的部分呈弯曲状态,所述第二导管被所述第二操控机构和第三操控机构夹持的部分呈弯曲状态;
所述处理器用于获取目标控制模式和正向运动指令;基于所述目标控制模式确定目标被控对象,基于所述目标被控对象判断是否存在目标补偿对象;
若存在目标补偿对象,则从第一导管、第二导管和导丝中筛选出目标被控对象和目标补偿对象;基于所述目标被控对象从第一操控机构、第二操控机构和第三操控机构中筛选出所述目标被控对象对应的控制操控机构,基于所述目标补偿对象从第一操控机构、第二操控机构和第三操控机构中筛选出所述目标补偿对象对应的补偿操控机构;其中,目标被控对象为第一导管、第二导管和导丝的至少一个;
基于所述正向运动指令确定所述控制操控机构的正向递送速度,基于所 述正向递送速度确定所述补偿操控机构的补偿速度,所述补偿速度和所述正向递送速度方向相反,所述补偿速度绝对值大于所述正向递送速度绝对值;
控制所述控制操控机构按照所述正向递送速度弯曲递送目标被控对象,控制所述补偿操控机构按照所述补偿速度递送所述目标补偿对象;
若不存在目标补偿对象,则基于所述目标被控对象从第一操控机构、第二操控机构和第三操控机构中筛选出所述目标被控对象对应的控制操控机构;
基于所述正向运动指令确定所述控制操控机构的正向递送速度,控制所述控制操控机构按照所述正向递送速度弯曲递送目标被控对象。
进一步的,还包括与所述处理器连接的位置检测机构;所述位置检测机构用于检测第一操控机构和第二操控机构间距的第一检测距离,以及第二操控机构和第三操控机构间距的第二检测距离,并将所述第一检测距离和第二检测距离发送给处理器;
所述处理器在所述获取目标控制模式和正向运动指令之后,还获取所述第一检测距离和第二检测距离;当目标被控对象包括第一导管,则判断第一检测距离是否不小于第一预设长度;
若所述第一检测距离不小于第一预设长度,则执行所述基于所述正向递送速度控制所述控制操控机构弯曲递送目标被控对象;
若所述第一检测距离小于第一预设长度,则生成告警信息;
当所述目标被控对象不包括第一导管,则判断第二检测距离是否不小于第二预设长度;
若所述第二检测距离不小于第二预设长度,则执行所述基于所述正向递送速度控制所述控制操控机构弯曲递送目标被控对象;
若所述第二检测距离小于第二预设长度,则生成告警信息。
进一步的,柔性医疗器械递送系统还包括用于装设所述第一操控机构、第二操控机构和第三操控机构的移动轨道;
所述第一操控机构包括第一递送组件:所述第二操控机构包括可相对所述移动轨道移动的第一移动组件和设置在所述第一移动组件上的第二递送组件;所述第三操控机构包括可相对所述移动轨道移动的第二移动组件和设置在所述第二移动组件上的第三递送组件;
所述第一递送组件和所述第一移动组件配合控制第一导管;
所述第二递送组件和所述第二移动组件配合控制第二导管;
所述第三递送组件用于递送导丝。
进一步的,柔性医疗器械递送系统还包括与所述处理器连接的状态检测机构;所述状态检测机构用于检测第一导管和/或第二导管的状态,生成状态检测信息,并将所述状态检测信息发送给所述处理器;
所述处理器在接收到所述状态检测信息后,当目标被控对象中的导管由弯曲状态转变为拉直状态,则控制所述第一移动组件和/或第二移动组件移动。
与现有技术相比,本申请实施例主要有以下有益效果:
通过获取目标控制模式,可以确定目标被控对象为第一导管、第二导管或导丝,通过正向运动指令和目标控制模式确定操控机构的正向递送速度及操控机构补偿速度,通过对补偿速度的调整,补偿导管或导丝因机械结构的打滑,解决导管与导管之间、导管与导丝之间的错位。
附图说明
为了更清楚地说明本申请的方案,下面将对实施例描述中所需要使用的附图作一个简单介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例一的第一导管初始状态示意图;
图2为本发明实施例一的第一递送组件递送第一导管后,第一导管由弯曲状态变为拉直状态示意图;
图3为本发明实施例一的第一移动组件移动后,第二导管保持弯曲状态示意图;
图4为本发明实施例一的第一移动组件移动后,第二导管弯曲状态变为拉直状态示意图。
附图标记:
第一导管100、第二导管200、导丝300、第一操控机构400、第一递送组件410、第二操控机构500、第一移动组件510、第二递送组件520、第三操控机构600、第二移动组件610、第三递送组件620、移动轨道700。
具体实施方式
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请技术领域的技术人员通常理解的含义相同;本文中在申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请;本申请的说明书和权利要求书及上述附图说明中的术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含。本申请的说明书和权利要求书或上述附图中的术语“第一”、“第二”等是用于区别不同对象,而不是用于描述特定顺序。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
为了使本技术领域的人员更好地理解本申请方案,下面将结合附图,对本申请实施例中的技术方案进行清楚、完整地描述。
本申请的柔性医疗器械递送系统用于执行介入手术。具体地,主端操作器和控制设备(如计算机等设备)安装在手术室外,柔性医疗器械递送系统安装在手术室内,主端操作器和控制设备与柔性医疗器械递送系统连接,医 生操作主端操作器和控制设备,以控制安装有柔性医疗器械的柔性医疗器械递送系统运动,实现智能执行介入手术。其中,主端操作器和控制设备,与柔性医疗器械递送系统连接可以是通过有线网络连接,也可以是通过无线网络连接,在此不做限定。
请参阅图1-4,图1展示了本实施例中第一导管100和第二导管200在初始状态下均处于弯曲状态,图2展示了本实施例中第一导管100在第一递送组件410递送后,第一导管100由弯曲状态变为拉直状态,图3展示了本实施例中第一移动组件510移动后第二导管200仍处于弯曲状态,图4展示了本实施例中第一移动组件510移动后第二导管200由弯曲状态变为拉直状态。
实施例一
本实施例提供一种柔性医疗器械递送系统,包括:处理器、与所述处理器通信连接的第一操控机构400、第二操控机构500和第三操控机构600;
所述导丝300穿设于所述第二导管200,所述第二导管200穿设于所述第一导管100;所述第一操控机构400和第二操控机构500配合控制所述第一导管100;所述第二操控机构500和第三操控机构600配合控制所述第二导管200;所述第三操控机构600控制所述导丝300;
初始状态下,所述第一导管100被所述第一操控机构400和第二操控机构500夹持的部分呈弯曲状态,所述第二导管200被所述第二操控机构500和第三操控机构600夹持的部分呈弯曲状态;
所述处理器用于获取目标控制模式和正向运动指令;基于所述目标控制模式确定目标被控对象,基于所述目标被控对象判断是否存在目标补偿对象;
若存在目标补偿对象,则从第一导管100、第二导管200和导丝300中筛选出目标被控对象和目标补偿对象;基于所述目标被控对象从第一操控机构400、第二操控机构500和第三操控机构600中筛选出所述目标被控对象对应的控制操控机构,基于所述目标补偿对象从第一操控机构400、第二操控机构500和第三操控机构600中筛选出所述目标补偿对象对应的补偿操控机构;其中,目标被控对象为第一导管100、第二导管200和导丝300的至少一个;
基于所述正向运动指令确定所述控制操控机构的正向递送速度,基于所述正向递送速度确定所述补偿操控机构的补偿速度,所述补偿速度和所述正向递送速度方向相反,所述补偿速度绝对值大于所述正向递送速度绝对值;
控制所述控制操控机构按照所述正向递送速度弯曲递送目标被控对象,控制所述补偿操控机构按照所述补偿速度递送所述目标补偿对象;
若不存在目标补偿对象,则基于所述目标被控对象从第一操控机构400、第二操控机构500和第三操控机构600中筛选出所述目标被控对象对应的控制操控机构;
基于所述正向运动指令确定所述控制操控机构的正向递送速度,控制所述控制操控机构按照所述正向递送速度弯曲递送目标被控对象。
其中,正向运动指令是用于控制目标被控对象进入血管的指令。
具体地,第一导管100的头端进入人体血管中,第一操控机构400夹持第一导管100,第一导管100的末端与第二操控机构500的Y阀连接,因此, 第一导管100可以在第一操控机构400和第二操控机构500协同配合下,在人体血管中前进或后撤。第二导管200穿设在第一导管100内,第二导管200的头端伸出第一导管100的头端,第二导管200的末端与第三操控机构600的Y阀连接。导丝300穿设在第二导管200内,导丝300的头端伸出第二导管200的头端和第一导管100的头端,导丝300的末端装设在第三操控机构600上。其中,第一导管100、第二导管200和导丝300均为柔性医疗器械,具体地,第一导管100可以是造影导管、导引导管、中间导管等;第二导管200可以是预扩球囊导管、球囊扩张支架输送导管、微导管等;导丝300可以是泥鳅导丝、微导丝、弹簧圈输送导丝、造影导丝、导引导丝等。实际手术时,医生根据球囊成形术与支架植入术、造影手术和弹簧圈栓塞术等实际术式,自行选择需要的柔性医疗器械。其中,头端是进入血管的一端,末端是远离血管的一端。
现有柔性医疗器械递送系统执行介入手术,第一导管100和第二导管200必须保证完全拉直,才能开始递送。这种方式导致现有柔性医疗器械递送系统长度太长,机器设备体积过大,过度占用手术室有限空间,不利于执行手术,且存在安全隐患。本实施例,在初始状态下,第一导管100被第一操控机构400和第二操控机构500夹持的部分呈弯曲状态,第二导管200被第二操控机构500和第三操控机构600夹持的部分呈弯曲状态。相比现有技术,第一导管100和第二导管200部分呈弯曲状态,可以有效地缩短递送系统长度,压缩机器设备体积,优化手术室空间使用,提高介入手术安全。
现有柔性医疗器械递送系统,存在同一个柔性医疗器械递送系统无法兼容多个术式,导致医生需要学习不同的系统,学习成本代价过大,以及无法满足医生同时递送多个柔性医疗器械的需求,导致手术效率低等问题。本实施例中,手术室外的控制设备(如电脑等显示器),包括多个按键,一个按键对应至少一种模式,方便医生操作。医生点击控制设备的按键,而进入手术需要的目标控制模式。目标控制模式为单独控制第一导管100递送、单独控制第二导管200递送、控制第一导管100和导丝300递送、控制第二导管200和导丝300递送、控制第一导管100和第二导管200递送,以及第一导管100、第二导管200和导丝300递送中的任一种。因此,柔性医疗器械递送系统可以兼容多种柔性医疗器械的控制模式,以实现控制单个柔性医疗器械,或者协同控制多个柔性医疗器械,满足医生实际手术需要,医生利用一个柔性医疗器械递送系统可以同时操作多个柔性医疗器械,执行多种不同术式,灵活性强,有效提高手术效率,缩短手术时间。
本实施例中,初始状态下,第一导管100被第一操控机构400和第二操控机构500夹持的部分呈弯曲状态,当控制第一导管100正向递送时,第一导管100被第一操控机构400和第二操控机构500夹持的部分逐渐被拉直,由于第二导管200穿设于第一导管100内,导丝300穿设于第二导管200内,在第一导管100形状由弯曲变为拉直的过程,带动第二导管200和导丝300以相等速度正向递送。在这种情况下,当需要单独控制第一导管100递送,第二导管200和导丝300保持在初始位置,但是,第二导管200和导丝300 跟随第一导管100被拉直,产生不预期的递送,即第二导管200和导丝300产生错位;此时,需要补偿第二导管200,而导丝300跟随第二导管200同步移动,导丝300无须补偿。同样地,当需要控制第一导管100和第二导管200递送,则需要补偿导丝300;当需要控制第一导管100、第二导管200和导丝300同时递送,则不需要补偿。因此,处理器根据目标控制模式从第二导管200和导丝300中选择对应的目标补偿对象,或者无目标补偿对象,实现精准操控柔性医疗器械。其中,初始位置是第二导管200和导丝300初始状态下放置的位置。
但是,在单独控制第一导管100时,对第二导管200和导丝300进行补偿出现打滑的问题,导致第二导管200和导丝300跟随正向移动,无法保持在初始位置,无法精准控制。本实施例中,处理器解析正向运动指令,得到控制操控机构的正向递送速度,查询递送补偿曲线,得到正向递送速度对应的补偿速度,补偿速度绝对值大于正向递送速度绝对值,提升补偿速度,以解决打滑导致无法使第二导管200和导丝300反向移动,无法保持在初始位置的问题,实现精准控制柔性医疗器械。递送补偿曲线中正向递送速度与补偿速度呈正相关关系。
在部分模式下,目标控制模式不具有目标补偿对象,则从第一操控机构400、第二操控机构500和第三操控机构600直接筛选出目标被控对象对应的控制操控机构,根据正向运动指令确定该操控机构的正向递送速度,并弯曲或拉直递送目标被控对象。
本申请实施例的柔性医疗器械递送系统,可以在目标控制模式下,判断是否需要对柔性医疗器械进行补偿,实现精准控制弯曲状态的多个柔性医疗器械,满足一个柔性医疗器械递送系统执行不同术式。同时,补偿速度绝对值大于正向递送速度绝对值,提升补偿速度,解决目标补偿对象移动过程中打滑的问题,实现精准控制柔性医疗器械。
在本申请实施例中,柔性医疗器械递送系统还包括与所述处理器连接的位置检测机构;所述位置检测机构用于检测第一操控机构400和第二操控机构500间距的第一检测距离,以及第二操控机构500和第三操控机构600间距的第二检测距离,并将所述第一检测距离和第二检测距离发送给处理器;
所述处理器在所述获取目标控制模式和正向运动指令之后,还获取所述第一检测距离和第二检测距离;当目标被控对象包括第一导管100,则判断第一检测距离是否不小于第一预设长度;
若所述第一检测距离不小于第一预设长度,则执行所述基于所述正向递送速度控制所述控制操控机构弯曲递送目标被控对象;
若所述第一检测距离小于第一预设长度,则生成告警信息;
当所述目标被控对象不包括第一导管100,则判断第二检测距离是否不小于第二预设长度;
若所述第二检测距离不小于第二预设长度,则执行所述基于所述正向递送速度控制所述控制操控机构弯曲递送目标被控对象;
若所述第二检测距离小于第二预设长度,则生成告警信息。
当第一导管100和/或第二导管200弯曲递送完成后,由弯曲状态变为拉直状态。此时,若想继续递送拉直状态的第一导管100和/或第二导管200,则第二操控机构500和/或第三操控机构600需要通过移动方式才可以继续递送第一导管100和/或第二导管200。具体地,当需要继续递送拉直状态的第一导管100,通过第二操控机构500向第一操控机构400移动可以实现拉直状态的的第一导管100继续递送,此时第二操控机构500与第一操控机构400之间的距离逐渐缩短。为提高手术安全,避免第二操控机构500与第一操控机构400碰撞,本实施例的位置检测机构实时检测第二操控机构500与第一操控机构400之间的第一检测距离,并发送给处理器,处理器将第一检测距离与第一预设长度进行比较,在第一检测距离小于第一预设长度时,生成告警信息,提醒用户当前第二操控机构500与第一操控机构400具有相撞的可能性。
当目标被控对象不包括第一导管100,则以第二导管200作为参照,当需要继续递送拉直状态的第二导管200,则通过第三操控机构600向第二操控机构500移动可以实现第二导管200继续递送,此时第三操控机构600与第二操控机构500之间的距离逐渐缩短。为提高手术安全,避免第三操控机构600与第二操控机构500碰撞,本实施例的位置检测机构实时检测第三操控机构600与第二操控机构500之间的第二检测距离,并发送给处理器,处理器将第二检测距离与第二预设长度进行比较,在第二检测距离小于第二预设长度时,生成告警信息,以提醒用户当前第三操控机构600与第二操控机构500具有相撞的可能性。
在本申请实施例中,警告信息包括通过警示灯播放的警示声音或者在控制设备上闪烁的警示内容,或中断用户控制柔性医疗器械递送系统。
在本申请实施例中,柔性医疗器械递送系统还包括用于装设所述第一操控机构400、第二操控机构500和第三操控机构600的移动轨道700;
所述第一操控机构400包括第一递送组件410:所述第二操控机构500包括可相对所述移动轨道700移动的第一移动组件510和设置在所述第一移动组件510上的第二递送组件520;所述第三操控机构600包括可相对所述移动轨道700移动的第二移动组件610和设置在所述第二移动组件610上的第三递送组件620;
所述第一递送组件410和所述第一移动组件510配合控制第一导管100;
所述第二递送组件520和所述第二移动组件610配合控制第二导管200;
所述第三递送组件620用于递送导丝300。
在本申请实施例中,柔性医疗器械递送系统还包括与所述处理器连接的状态检测机构(图未示);所述状态检测机构用于检测第一导管100和/或第二导管200的状态,生成状态检测信息,并将所述状态检测信息发送给所述处理器;
所述处理器在接收到所述状态检测信息后,当目标被控对象中的导管由弯曲状态转变为拉直状态,则控制所述第一移动组件510和/或第二移动组件610移动。
通过状态检测机构检测第一导管100和/或第二导管200的状态,并将状态检测信息发送给处理器,若当前第一导管100或第二导管200为拉直状态后,则通过第一移动组件510或第二移动组件610的移动,继续递送第一导管100或第二导管200,因此,本申请的柔性医疗器械可以在弯曲状态下递送多个柔性医疗器械,还可以在拉直状态下递送多个柔性医疗器械,实现精准控制多个不同状态下的柔性医疗器械,提高递送效率,兼容不同术式。
本实施例中,处理器在接收到所述状态检测信息后,当目标被控对象中的导管由弯曲状态转变为拉直状态,则需要改变控制方式。目标被控对象中的导管被拉直后,递送方式为:控制所述第一移动组件510和/或第二移动组件610向第一递送组件410方向移动,以实现长距离递送柔性医疗器械,且控制所述第一移动组件510和/或第二移动组件610的正向移动速度绝对值小于第一递送组件410和/或第二递送组件520的正向递送速度绝对值,保证被拉直后的第一导管100和/或第二导管200保持拉直状态,以保障后续操作第一导管100和/或第二导管200的可行性和安全性,避免后续旋转第一导管100和/或第二导管200而损伤第一导管100和/或第二导管200。
需要说明的是,向血管递送拉直状态的第一导管100时,控制所述第一移动组件510向所述第一递送组件410方向移动,由于第二导管200被夹持在第二递送组件520,第一移动组件510带动第二递送组件520移动,则第一移动组件510带动第二导管200递送进入血管。也就是说,当需要单独控制拉直状态下的第一导管100递送,通过控制第一递送组件410按照递送速度控制第一导管100递送,同时第一移动组件510向第一递送组件410方向移动,此时,第二导管200被第一移动组件510带动正向移动,无法保持在初始位置,需要补偿第二导管200;同样地,当控制拉直状态下的第一导管100和第二导管200递送进入血管,通过控制第一移动组件510和第二移动组件610向第一递送组件410方向移动,由于导丝300被夹持在第三递送组件620,第二移动组件610带动第三递送组件620移动,则第二移动组件610带动导丝300递送进入血管,此时,需要补偿导丝300;当需要控制第一导管100、第二导管200和导丝300同时递送,则不需要补偿。
在本申请实施例中,当目标被控对象为第一导管100,所述目标补偿对象为第二导管200;
将所述第一递送组件410确定为控制操控机构,将所述第二递送组件520确定为补偿操控机构;
所述第一递送组件410按照所述正向递送速度弯曲递送所述第一导管100,所述第二递送组件520按照所述补偿速度反向递送第二导管200;
当所述第一导管100由弯曲状态转变为拉直状态,则控制所述第一移动组件510向所述第一递送组件410方向移动,所述第一移动组件510的正向移动速度绝对值小于所述正向递送速度绝对值。
本实施例以单独控制第一导管100递送为例,目标被控对象为第一导管100,导丝300可以跟随第二导管200移动,因此导丝300无需单独的操控机构进行补偿,目标补偿对象为第二导管200。
请参阅图1,在初始状态下,第一导管100为弯曲状态,处理器获取正向运动指令后控制第一递送组件410按照正向递送速度正向递送弯曲状态的第一导管100,此时第二递送组件520按照补偿速度反向递送第二导管200。
请参阅图2,当状态检测机构检测到第一导管100由弯曲状态变为拉直状态时,第一递送组件410继续按照正向递送速度正向递送拉直状态的第一导管100,第二递送组件520按照补偿速度反向递送第二导管200,第一移动组件510开始向第一递送组件410的方向移动,第一移动组件510向第一递送组件410正向移动速度绝对值小于第一递送组件410递送第一导管100的正向递送速度绝对值。本实施例中,在递送第一导管100进入血管时,第一移动组件510向第一递送组件410移动的正向移动速度绝对值小于第一递送组件410递送第一导管100的正向递送速度绝对值,保证被拉直后的第一导管100保持拉直状态,以保障后续操作第一导管100的可行性和安全性,避免后续旋转第一导管100而折断导管100。
优选地,在递送拉直状态的第一导管100进入血管时,第一移动组件510的正向移动速度绝对值比第一递送组件410递送第一导管100的正向递送速度的绝对值小,保证被拉直后的第一导管100保持拉直状态。此时,第二递送组件520驱动第二导管200的补偿速度绝对值大于第一递送组件410递送第一导管100的正向递送速度绝对值,保证第二导管200保持在初始位置。
请参阅图3或图4,在上述过程中,位置检测机构持续检测第一移动组件510与第一递送组件410之间的第一检测距离是否小于第一预设长度,当第一移动组件510持续向第一递送组件410的方向移动并使得第一检测距离小于第一预设长度,处理器生成警告信息,警告信息包括中断用户对柔性医疗器械递送系统的控制、通过警示灯播放的警示声音,以及在控制设备上闪烁的警示内容。
进一步地,当第一检测距离小于第一预设长度,说明第一移动组件510向第一递送组件410移动已经到达极限距离,不适合再继续正向递送第一导管100,停止正向递送第一导管100。此时,医生可以通过主端操作器和控制设备发送反向运动指令给处理器,以使第一递送组件410控制第一导管100递送方向转向,且第一移动组件510向远离第一递送组件的方向移动,以从血管撤出第一导管100。其中,反向运动指令是控制目标被控对象撤出血管的指令。本实施例中,目标被控对象是指第一导管100。
具体地,当处理器获取反向运动指令,解析反向运动指令,获取反向递送速度,第一递送组件410按照反向递送速度递送第一导管100,即将第一导管100撤出血管,第一移动组件510开始向远离第一递送组件410的方向移动,第一移动组件510向远离第一递送组件410方向的反向移动速度绝对值大于反向递送速度绝对值,保证第一导管100保持拉直状态,为后续旋转第一导管100提供保障;第二递送组件520按照补偿速度正向递送第二导管200,即第二递送组件520控制第二导管200往进入血管的方向递送,其中,补偿速度绝对值大于反向递送速度绝对值,且补偿速度和反向移动速度方向相反,大小相等,以保证第二导管200保持在初始位置,实现精准地控制所有柔性 医疗器械。
实施例二
本实施例与实施例一区别在于,本实施例以单独控制第二导管200递送为例。
在本申请实施例中,当目标被控对象为第二导管200,所述目标补偿对象为导丝300;
将所述第二递送组件520确定为控制操控机构,将所述第三递送组件620确定为补偿操控机构;
所述第二递送组件520按照所述正向递送速度弯曲递送所述第二导管200,所述第三递送组件620按照所述补偿速度反向递送导丝300;
当所述第二导管200由弯曲状态转变为拉直状态,则控制所述第二移动组件610向所述第二递送组件520方向移动,所述第二移动组件610的正向移动速度绝对值小于所述正向递送速度绝对值。
本实施例以单独控制第二导管200递送为例,目标被控对象为第二导管200,目标补偿对象为导丝300。
在初始状态下,第二导管200为弯曲状态,处理器获取正向运动指令后控制第二递送组件520按照正向递送速度正向递送弯曲状态的第二导管200,此时第三递送组件620按照补偿速度反向递送导丝300。
当状态检测机构检测到第二导管200由弯曲状态变为拉直状态时,第二递送组件520继续按照正向递送速度正向递送拉直状态的第二导管200,第三递送组件620按照补偿速度反向递送导丝300,第二移动组件610开始向第二递送组件520的方向移动,第二移动组件610向第二递送组件520正向移动速度绝对值小于正向递送速度绝对值。
本实施例中,在递送拉直状态的第二导管200时,第二移动组件610向第二递送组件520移动的正向移动速度绝对值小于第二递送组件520递送第二导管200的正向递送速度绝对值,使得第二导管200在拉直状态下正向递送可以保持拉直状态,可以避免第二移动组件610和第二递送组件520之间的第二导管200弯曲,甚至被挤压的问题,避免损害第二导管200。
具体地,第三递送组件620递送导丝300的补偿速度绝对值比第二递送组件520递送第二导管200的正向递送速度绝对值大1%-15%。
具体地,在第二递送组件520正向递送第二导管200时,第二移动组件610的正向移动速度绝对值比第二递送组件520递送第二导管200的正向递送速度的绝对值小1%-15%。
在上述过程中,位置检测机构持续检测第二移动组件610与第二递送组件520之间的第二检测距离是否小于第二预设长度,当第二移动组件610持续向第二递送组件520的方向移动并使得第二检测距离小于第二预设长度,处理器生成警告信息,警告信息包括中断用户对柔性医疗器械递送系统的控制、通过警示灯播放的警示声音,以及在控制设备上闪烁的警示内容,此时第二递送组件520转换递送第二导管200的方向。
当第二检测距离小于第二预设长度,说明第二移动组件610向第二递送 组件520移动已经到达极限距离,不适合再继续正向递送第二导管200,此时停止正向递送第二导管200,在需要撤第二导管200时,第二递送组件520控制第二导管200递送方向转向,以控制第二导管200撤出血管,此时导丝300的补偿方向为正向递送。
具体地,当处理器获取到反向运动指令,解析反向运动指令,获取反向递送速度,则第二递送组件520按照反向递送速度向后递送第二导管200,第三递送组件620按照补偿速度反向递送导丝300,第二移动组件610开始向远离第一递送组件410的方向移动,第二移动组件610向远离第一递送组件410的方向移动的反向移动速度绝对值大于反向递送速度绝对值。
实施例三
本实施例与实施例一区别在于,本实施例以控制第一导管100和导丝300递送为例。
在本申请实施例中,当目标被控对象为第一导管100和导丝300,所述目标补偿对象为第二导管200;
将所述第一递送组件410和所述第三递送组件620确定为控制操控机构,将所述第二递送组件520确定为补偿操控机构;
所述第一递送组件410和所述第三递送组件620按照所述正向递送速度弯曲递送所述第一导管100和所述导丝300,所述第二递送组件520按照所述补偿速度反向递送第二导管200;
当所述第一导管100由弯曲状态转变为拉直状态,则控制所述第一移动组件510向所述第一递送组件410方向移动,所述第一移动组件510的正向移动速度绝对值小于所述正向递送速度绝对值。
本实施例以控制第一导管100和导丝300递送为例,目标被控对象为第一导管100和导丝300,目标补偿对象为第二导管200。
在初始状态下,第一导管100为弯曲状态,处理器获取正向运动指令后控制第一递送组件410按照正向递送速度正向递送弯曲状态的第一导管100,控制第三递送组件620按照正向递送速度正向递送导丝300,此时第二递送组件520按照补偿速度反向递送第二导管200。本实施例中,处理器解析正向运动指令得到第一递送组件410和第三递送组件620的正向递送速度,且第一递送组件410和第三递送组件620的正向递送速度绝对值可以相等,也可以不相等,根据医生实际操作主端操作器而决定。示例性地,主端操作器具有控制导管的第一操作杆,和控制导丝300的第二操作杆,医生操作第一操作杆移动的速度决定第一递送组件410的正向递送速度;操作第二操作杆移动的速度决定第三递送组件620的正向递送速度,实现灵活精准控制第一导管100和导丝300。
当状态检测机构检测到第一导管100由弯曲状态变为拉直状态时,第一递送组件410继续按照正向递送速度正向递送拉直状态的第一导管100,第一移动组件510开始向第一递送组件410的方向移动,第三递送组件620继续按照正向递送速度正向递送导丝300,第二递送组件520按照补偿速度反向递送第二导管200,其中,第一移动组件510向第一递送组件410移动的正向移 动速度绝对值小于正向递送速度绝对值,保证第一导管100保持拉直状态。
在上述过程中,位置检测机构持续检测第一移动组件510与第一递送组件410之间的第一检测距离是否小于第一预设长度,当第一移动组件510持续向第一递送组件410的方向移动并使得第一检测距离小于第一预设长度,处理器生成警告信息,警告信息包括中断用户对柔性医疗器械递送系统的控制、通过警示灯播放的警示声音,以及在控制设备上闪烁的警示内容,此时第一递送组件410转换递送第一导管100的方向、第三递送组件620转换递送导丝300的方向。
在第一递送组件410和第三递送组件620转换方向后,处理器若继续获取正向运动指令,则第一递送组件410按照正向递送速度向后递送第一导管100,第三递送组件620按照正向递送速度向后递送导丝300,第二递送组件520按照补偿速度反向递送第二导管200,第一移动组件510开始向第一递送组件410的相反方向移动,第一移动组件510向第一递送组件410相反方向正向移动速度绝对值大于第一递送组件410递送第一导管100的正向递送速度绝对值。
可以理解地,当第一检测距离小于第一预设长度,说明第一移动组件510向第一递送组件410移动已经到达极限距离,不适合再继续正向递送第一导管100,此时停止正向递送第一导管100,并将第一递送组件410控制第一导管100递送和第三递送组件620控制导丝300递送的方向转向,可以通过第一递送组件410控制第一导管100向后递送、第三递送组件620控制导丝300向后递送,此时第二导管200的补偿为正向递送。
具体地,在正向递送第一导管100时,第一移动组件510向第一递送组件410正向移动速度绝对值小于第一递送组件410递送第一导管100的正向递送速度绝对值,使得第一导管100在拉直状态下正向递送可以保持拉直状态,可以避免对第一导管100造成损害。
具体地,第二递送组件520递送第二导管200补偿速度的绝对值大于第一递送组件410递送第一导管100的正向递送速度的绝对值1%-15%,优选8%。
具体地,在第一递送组件410正向递送第一导管100时,第一移动组件510的正向移动速度绝对值比第一递送组件410递送第一导管100的正向递送速度绝对值小1%-15%。
值得注意的是,第三递送组件620递送导丝300的正向递送速度绝对值大于第一递送组件410递送第一导管100的正向递送速度绝对值2%-30%。详细地说,在第二递送组件520递送第二导管200时,由于机械结构发生打滑,导致第二导管200与第一导管100错位,在第三递送组件620递送导丝300时,同样由于机械结构发生打滑,导丝300与第一导管100发生错位,并且错位距离还包括第二导管200打滑错位的距离。
更具体地,当递送第一导管100时,以第一导管100为参照物,其他正向递送速度调整或正向移动速度调整以第一递送组件410递送第一导管100的正向递送速度为基准。
实施例四
本实施例与实施例一区别在于,本实施例以控制第一导管100和第二导管200递送为例。
在本申请实施例中,当目标被控对象为第一导管100和第二导管200,所述目标补偿对象为导丝300;
将所述第一递送组件410确定为控制操控机构,将所述第三递送组确定为补偿操控机构;
所述第一递送组件410按照所述正向递送速度弯曲递送所述第一导管100和第二导管200,所述第三递送组件620按照所述补偿速度反向递送导丝300;
当所述第一导管100由弯曲状态转变为拉直状态,则控制所述第一移动组件510和所述第二移动组件610向所述第一递送组件410方向移动,所述第一移动组件510和所述第二移动组件610的正向移动速度绝对值小于所述正向递送速度绝对值。
本实施例以控制第一导管100和第二导管200递送为例,目标被控对象为第一导管100和第二导管200,目标补偿对象为导丝300。由于第二导管200跟随第一导管100移动,控制第一递送组件410递送第一导管100即可实现第一导管100和第二导管200同步递送。
在初始状态下,第一导管100为弯曲状态,处理器获取正向运动指令后控制第一递送组件410按照正向递送速度正向递送弯曲状态的第一导管100,此时第三递送组件620按照补偿速度反向递送导丝300。
当状态检测机构检测到第一导管100由弯曲状态变为拉直状态时,第一递送组件410继续按照正向递送速度正向递送拉直状态的第一导管100,第三递送组件620按照补偿速度反向递送导丝300,第一移动组件510和第二移动组件610开始向第一递送组件410的方向移动,第一移动组件510和第二移动组件610向第一递送组件410正向移动速度绝对值小于正向递送速度绝对值。
具体地,在正向递送第一导管100时,第一移动组件510向第一递送组件410正向移动速度绝对值小于第一递送组件410递送第一导管100的正向递送速度绝对值,使得第一导管100在拉直状态下正向递送可以保持拉直状态,可以避免对第一导管100造成损害。
具体地,第三递送组件620递送导丝300的补偿速度的绝对值大于第一递送组件410递送第一导管100的正向递送速度的绝对值1%-15%,优选8%。
具体地,在第一递送组件410正向递送第一导管100时,第一移动组件510的正向移动速度绝对值小于第一递送组件410递送第一导管100的正向递送速度的绝对值1%-15%,优选8%。
在上述过程中,位置检测机构持续检测第一移动组件510与第一递送组件410之间的第一检测距离是否小于第一预设长度,当第一移动组件510持续向第一递送组件410的方向移动并使得第一检测距离小于第一预设长度,处理器生成警告信息,警告信息包括中断用户对柔性医疗器械递送系统的控制、通过警示灯播放的警示声音,以及在控制设备上闪烁的警示内容,此时第一递送组件410转换递送第一导管100的方向。
在第一递送组件410转换方向后,处理器若继续获取正向运动指令,则第一递送组件410按照正向递送速度向后递送第一导管100,第二导管200跟随第一导管100同步移动,第三递送组件620按照补偿速度反向递送导丝300,第一移动组件510和第二移动组件610开始向第一递送组件410的相反方向移动,第一移动组件510和第二移动组件610向第一递送组件410相反方向正向移动速度绝对值大于第一递送组件410递送第一导管100的正向递送速度绝对值。
可以理解地,当第一检测距离小于第一预设长度,说明第一移动组件510向第一递送组件410移动已经到达极限距离,不适合再继续正向递送第一导管100,此时停止正向递送第一导管100,并将第一递送组件410控制第一导管100递送方向转向,可以通过第一递送组件410控制第一导管100向后递送,此时导丝300的补偿为正向递送。
实施例五
本实施例与实施例一区别在于,本实施例以控制第二导管200和导丝300递送为例。
在本申请实施例中,当目标被控对象为第二导管200和导丝300;
将所述第二递送组件520确定为控制操控机构;
所述第二递送组件520按照所述正向递送速度弯曲递送所述第二导管200和所述导丝300;
当所述第二导管200由弯曲状态转变为拉直状态,则控制所述第二移动组件610向所述第二递送组件520方向移动,所述第二移动组件610的正向移动速度绝对值小于所述正向递送速度绝对值。
本实施例以单独控制第二导管200递送为例,目标被控对象为第二导管200,不存在目标补偿对象。
在初始状态下,第二导管200为弯曲状态,处理器获取正向运动指令后控制第二递送组件520按照正向递送速度正向递送弯曲状态的第二导管200。
当状态检测机构检测到第二导管200由弯曲状态变为拉直状态时,第二递送组件520继续按照正向递送速度正向递送拉直状态的第二导管200,第二移动组件610开始向靠近第二递送组件520的方向移动,第二移动组件610向第二递送组件520移动的正向移动速度绝对值小于正向递送速度绝对值,保证第二导管200保持拉直状态,为后续旋转第二导管200提供保障。
具体地,在第二递送组件520正向递送拉直状态的第二导管200时,第二移动组件610向第二递送组件520正向移动速度绝对值小于第二递送组件520递送第二导管200的正向递送速度绝对值,使得第二导管200在拉直状态下正向递送可以保持拉直状态,可以避免对第二导管200造成损害。
具体地,在第二递送组件520正向递送第二导管200时,第二移动组件610的正向移动速度绝对值比第二递送组件520递送第二导管200的正向递送速度绝对值小1%-15%。
在上述过程中,位置检测机构持续检测第二移动组件610与第二递送组件520之间的第二检测距离是否小于第二预设长度,当第二移动组件610持 续向第二递送组件520的方向移动并使得第二检测距离小于第二预设长度,说明第二移动组件610向第二递送组件520移动已经到达极限距离,不适合再继续正向递送第二导管200,此时停止正向递送第二导管200。处理器生成警告信息,警告信息包括中断用户对柔性医疗器械递送系统的控制、通过警示灯播放的警示声音,以及在控制设备上闪烁的警示内容,以提醒医生。
当医生需要控制第二导管200撤出血管,通过主端操作器和控制设备向处理器发送反向控制指令,当处理器获取反向控制指令,则控制第二递送组件520按照反向递送速度向后递送第二导管200,第二移动组件610开始向远离第二递送组件520的方向移动,第二移动组件610向远离第二递送组件520方向移动的反向移动速度绝对值大于正向递送速度绝对值,保证第二导管200保持拉直状态。
实施例六
本实施例与实施例一区别在于,本实施例以控制第一导管100、第二导管200和导丝300递送为例。
在本申请实施例中,当目标被控对象为第一导管100、第二导管200和导丝300;
将所述第一递送组件410确定为控制操控机构;
所述第一递送组件410按照所述正向递送速度弯曲递送所述第一导管100、第二导管200和导丝300;
当所述第一导管100由弯曲状态转变为拉直状态,则控制所述第一移动组件510和所述第二移动组件610向所述第一递送组件410方向移动,所述第一移动组件510和所述第二移动组件610的正向移动速度绝对值小于所述正向递送速度绝对值。
本实施例以控制第一导管100、第二导管200和导丝300递送为例,目标被控对象为第一导管100、第二导管200和导丝300,初始状态下,第一导管100为弯曲状态,第二导管200和导丝300穿设于第一导管100内,当第一导管100递送过程中,由弯曲状态逐渐被拉直,第二导管200和导丝300跟随第一导管100,随着第一导管100被递送进入血管,因此,不存在目标补偿对象。
在初始状态下,第一导管100为弯曲状态,处理器获取正向运动指令后控制第一递送组件410按照正向递送速度正向递送弯曲状态的第一导管100。
当状态检测机构检测到第一导管100由弯曲状态变为拉直状态时,第一递送组件410继续按照正向递送速度正向递送拉直状态的第一导管100,第一移动组件510和第二移动组件610开始向第一递送组件410的方向移动,第一移动组件510和第二移动组件610向第一递送组件410移动的正向移动速度绝对值小于正向递送速度绝对值,保证第一导管100保持拉直状态,为后续第一导管100旋转操作提供保障。且第一移动组件510和第二移动组件610向第一递送组件410移动的正向移动速度绝对值相等。
具体地,在正向递送拉直状态的第一导管100时,第一移动组件510向靠近第一递送组件410方向的正向移动速度绝对值小于正向递送速度绝对值, 使得第一导管100在拉直状态下正向递送可以保持拉直状态,可以避免对第一导管100造成损害。
具体地,在第一递送组件410正向递送第一导管100时,第一移动组件510和第二移动组件610的正向移动速度绝对值小于第一递送组件410递送第一导管100的正向递送速度的绝对值1%-15%。
进一步地,位置检测机构持续检测第一移动组件510与第一递送组件410之间的第一检测距离是否小于第一预设长度,当第一移动组件510持续向第一递送组件410的方向移动并使得第一检测距离小于第一预设长度,处理器生成警告信息,警告信息包括中断用户对柔性医疗器械递送系统的控制、通过警示灯播放的警示声音,以及在控制设备上闪烁的警示内容,以提醒医生。
进一步地,医生需要控制导管撤血管时,当通过主端操作器和控制设备向处理器发送反向运动指令,当处理器获取到反向运动指令,则控制第一递送组件410按照反向递送速度向后递送第一导管100,第一移动组件510和第二移动组件610开始向远离第一递送组件410的方向移动,第一移动组件510和第二移动组件610向远离第一递送组件410移动的反向移动速度绝对值大于第一递送组件410递送第一导管100的正向递送速度绝对值,保证第一导管100和第二导管200保持拉直状态。
显然,以上所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例,附图中给出了本申请的较佳实施例,但并不限制本申请的专利范围。本申请可以以许多不同的形式来实现,相反地,提供这些实施例的目的是使对本申请的公开内容的理解更加透彻全面。尽管参照前述实施例对本申请进行了详细的说明,对于本领域的技术人员来而言,其依然可以对前述各具体实施方式所记载的技术方案进行修改,或者对其中部分技术特征进行等效替换。凡是利用本申请说明书及附图内容所做的等效结构,直接或间接运用在其他相关的技术领域,均同理在本申请专利保护范围之内。

Claims (20)

  1. 一种柔性医疗器械递送系统,其特征在于,包括:处理器、与所述处理器通信连接的第一操控机构、第二操控机构和第三操控机构;
    所述导丝穿设于所述第二导管,所述第二导管穿设于所述第一导管;所述第一操控机构和第二操控机构配合控制所述第一导管;所述第二操控机构和第三操控机构配合控制所述第二导管;所述第三操控机构控制所述导丝;
    初始状态下,所述第一导管被所述第一操控机构和第二操控机构夹持的部分呈弯曲状态,所述第二导管被所述第二操控机构和第三操控机构夹持的部分呈弯曲状态;
    所述处理器用于获取目标控制模式和正向运动指令;基于所述目标控制模式确定目标被控对象,基于所述目标被控对象判断是否存在目标补偿对象;
    若存在目标补偿对象,则从第一导管、第二导管和导丝中筛选出目标被控对象和目标补偿对象;基于所述目标被控对象从第一操控机构、第二操控机构和第三操控机构中筛选出所述目标被控对象对应的控制操控机构,基于所述目标补偿对象从第一操控机构、第二操控机构和第三操控机构中筛选出所述目标补偿对象对应的补偿操控机构;其中,目标被控对象为第一导管、第二导管和导丝的至少一个;
    基于所述正向运动指令确定所述控制操控机构的正向递送速度,基于所述正向递送速度确定所述补偿操控机构的补偿速度,所述补偿速度和所述正向递送速度方向相反,所述补偿速度绝对值大于所述正向递送速度绝对值;
    控制所述控制操控机构按照所述正向递送速度弯曲递送目标被控对象,控制所述补偿操控机构按照所述补偿速度递送所述目标补偿对象;
    若不存在目标补偿对象,则基于所述目标被控对象从第一操控机构、第二操控机构和第三操控机构中筛选出所述目标被控对象对应的控制操控机构;
    基于所述正向运动指令确定所述控制操控机构的正向递送速度,控制所述控制操控机构按照所述正向递送速度弯曲递送目标被控对象。
  2. 根据权利要求1所述的柔性医疗器械递送系统,其特征在于,还包括与所述处理器连接的位置检测机构;所述位置检测机构用于检测第一操控机构和第二操控机构间距的第一检测距离,以及第二操控机构和第三操控机构间距的第二检测距离,并将所述第一检测距离和第二检测距离发送给处理器;
    所述处理器在所述获取目标控制模式和正向运动指令之后,还获取所述第一检测距离和第二检测距离;当目标被控对象包括第一导管,则判断第一检测距离是否不小于第一预设长度;
    若所述第一检测距离不小于第一预设长度,则执行所述基于所述正向递送速度控制所述控制操控机构弯曲递送目标被控对象;
    若所述第一检测距离小于第一预设长度,则生成告警信息;
    当所述目标被控对象不包括第一导管,则判断第二检测距离是否不小于第二预设长度;
    若所述第二检测距离不小于第二预设长度,则执行所述基于所述正向递送速度控制所述控制操控机构弯曲递送目标被控对象;
    若所述第二检测距离小于第二预设长度,则生成告警信息。
  3. 根据权利要求1所述的柔性医疗器械递送系统,其特征在于,还包括用于装设所述第一操控机构、第二操控机构和第三操控机构的移动轨道;
    所述第一操控机构包括第一递送组件:所述第二操控机构包括可相对所述移动轨道移动的第一移动组件和设置在所述第一移动组件上的第二递送组件;所述第三操控机构包括可相对所述移动轨道移动的第二移动组件和设置在所述第二移动组件上的第三递送组件;
    所述第一递送组件和所述第一移动组件配合控制第一导管;
    所述第二递送组件和所述第二移动组件配合控制第二导管;
    所述第三递送组件用于递送导丝。
  4. 根据权利要求3所述的柔性医疗器械递送系统,其特征在于,还包括与所述处理器连接的状态检测机构;所述状态检测机构用于检测第一导管和/或第二导管的状态,生成状态检测信息,并将所述状态检测信息发送给所述处理器;
    所述处理器在接收到所述状态检测信息后,当目标被控对象中的导管由弯曲状态转变为拉直状态,则控制所述第一移动组件和/或第二移动组件移动。
  5. 根据权利要求4所述的柔性医疗器械递送系统,其特征在于,当目标被控对象为第一导管,所述目标补偿对象为第二导管;
    将所述第一递送组件确定为控制操控机构,将所述第二递送组件确定为补偿操控机构;
    所述第一递送组件按照所述正向递送速度弯曲递送所述第一导管,所述第二递送组件按照所述补偿速度反向递送第二导管;
    当所述第一导管由弯曲状态转变为拉直状态,则控制所述第一移动组件向所述第一递送组件方向移动,所述第一移动组件的正向移动速度绝对值小于所述正向递送速度绝对值。
  6. 根据权利要求5所述的柔性医疗器械递送系统,其特征在于,第二递送组件驱动第二导管的补偿速度绝对值大于第一递送组件递送第一导管的正向递送速度绝对值。
  7. 根据权利要求4所述的柔性医疗器械递送系统,其特征在于,当目标被控对象为第二导管,所述目标补偿对象为导丝;
    将所述第二递送组件确定为控制操控机构,将所述第三递送组件确定为补偿操控机构;
    所述第二递送组件按照所述正向递送速度弯曲递送所述第二导管,所述第三递送组件按照所述补偿速度反向递送导丝;
    当所述第二导管由弯曲状态转变为拉直状态,则控制所述第二移动组件向所述第二递送组件方向移动,所述第二移动组件的正向移动速度绝对值小于所述正向递送速度绝对值。
  8. 根据权利要求7所述的柔性医疗器械递送系统,其特征在于,所述第三递送组件递送导丝的补偿速度绝对值比第二递送组件递送第二导管的正向 递送速度绝对值大1%-15%。
  9. 根据权利要求7所述的柔性医疗器械递送系统,其特征在于,在第二递送组件正向递送第二导管时,第二移动组件的正向移动速度绝对值比第二递送组件递送第二导管的正向递送速度的绝对值小1%-15%。
  10. 根据权利要求4所述的柔性医疗器械递送系统,其特征在于,当目标被控对象为第一导管和导丝,所述目标补偿对象为第二导管;
    将所述第一递送组件和所述第三递送组件确定为控制操控机构,将所述第二递送组件确定为补偿操控机构;
    所述第一递送组件和所述第三递送组件按照所述正向递送速度弯曲递送所述第一导管和所述导丝,所述第二递送组件按照所述补偿速度反向递送第二导管;
    当所述第一导管由弯曲状态转变为拉直状态,则控制所述第一移动组件向所述第一递送组件方向移动,所述第一移动组件的正向移动速度绝对值小于所述正向递送速度绝对值。
  11. 根据权利要求10所述的柔性医疗器械递送系统,其特征在于,所述第二递送组件递送第二导管补偿速度的绝对值大于第一递送组件递送第一导管的正向递送速度的绝对值1%-15%。
  12. 根据权利要求10所述的柔性医疗器械递送系统,其特征在于,在所述第一递送组件正向递送所述第一导管时,所述第一移动组件的正向移动速度绝对值比所述第一递送组件递送所述第一导管的正向递送速度绝对值小1%-15%。
  13. 根据权利要求10所述的柔性医疗器械递送系统,其特征在于,所述第三递送组件递送所述导丝的正向递送速度绝对值大于所述第一递送组件递送所述第一导管的正向递送速度绝对值2%-30%。
  14. 根据权利要求4所述的柔性医疗器械递送系统,其特征在于,当目标被控对象为第一导管和第二导管,所述目标补偿对象为导丝;
    将所述第一递送组件确定为控制操控机构,将所述第三递送组确定为补偿操控机构;
    所述第一递送组件按照所述正向递送速度弯曲递送所述第一导管和第二导管,所述第三递送组件按照所述补偿速度反向递送导丝;
    当所述第一导管由弯曲状态转变为拉直状态,则控制所述第一移动组件和所述第二移动组件向所述第一递送组件方向移动,所述第一移动组件和所述第二移动组件的正向移动速度绝对值小于所述正向递送速度绝对值。
  15. 根据权利要求14所述的柔性医疗器械递送系统,其特征在于,具体地,所述第三递送组件递送所述导丝的补偿速度的绝对值大于所述第一递送组件递送所述第一导管的正向递送速度的绝对值1%-15%。
  16. 根据权利要求14所述的柔性医疗器械递送系统,其特征在于,在所述第一递送组件正向递送所述第一导管时,所述第一移动组件的正向移动速度绝对值小于所述第一递送组件递送所述第一导管的正向递送速度的绝对值1%-15%。
  17. 根据权利要求4所述的柔性医疗器械递送系统,其特征在于,当目标被控对象为第二导管和导丝;
    将所述第二递送组件确定为控制操控机构;
    所述第二递送组件按照所述正向递送速度弯曲递送所述第二导管和所述导丝;
    当所述第二导管由弯曲状态转变为拉直状态,则控制所述第二移动组件向所述第二递送组件方向移动,所述第二移动组件的正向移动速度绝对值小于所述正向递送速度绝对值。
  18. 根据权利要求17所述的柔性医疗器械递送系统,其特征在于,在所述第二递送组件正向递送所述第二导管时,所述第二移动组件的正向移动速度绝对值比所述第二递送组件递送所述第二导管的正向递送速度绝对值小1%-15%。
  19. 根据权利要求4所述的柔性医疗器械递送系统,其特征在于,当目标被控对象为第一导管、第二导管和导丝;
    将所述第一递送组件确定为控制操控机构;
    所述第一递送组件按照所述正向递送速度弯曲递送所述第一导管、第二导管和导丝;
    当所述第一导管由弯曲状态转变为拉直状态,则控制所述第一移动组件和所述第二移动组件向所述第一递送组件方向移动,所述第一移动组件和所述第二移动组件的正向移动速度绝对值小于所述正向递送速度绝对值。
  20. 根据权利要求19所述的柔性医疗器械递送系统,其特征在于,在所述第一递送组件正向递送所述第一导管时,所述第一移动组件和所述第二移动组件的正向移动速度绝对值小于所述第一递送组件递送所述第一导管的正向递送速度的绝对值1%-15%。
PCT/CN2023/095822 2023-01-13 2023-05-23 一种柔性医疗器械递送系统 WO2024148735A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202310077429.XA CN116077195A (zh) 2023-01-13 2023-01-13 一种柔性医疗器械递送系统
CN202310077429.X 2023-01-13

Publications (1)

Publication Number Publication Date
WO2024148735A1 true WO2024148735A1 (zh) 2024-07-18

Family

ID=86211760

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/095822 WO2024148735A1 (zh) 2023-01-13 2023-05-23 一种柔性医疗器械递送系统

Country Status (2)

Country Link
CN (1) CN116077195A (zh)
WO (1) WO2024148735A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116077195A (zh) * 2023-01-13 2023-05-09 深圳市爱博医疗机器人有限公司 一种柔性医疗器械递送系统
CN117426874B (zh) * 2023-10-31 2024-03-19 三六三医院 心血管介入机器人控制监测系统

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160135662A1 (en) * 2013-07-26 2016-05-19 Olympus Corporation Manipulator system
US20210369355A1 (en) * 2020-05-26 2021-12-02 Canon U.S.A., Inc. Robotic endoscope probe having orientation reference markers
CN114451998A (zh) * 2021-10-11 2022-05-10 上海微创微航机器人有限公司 医疗导管及其形状控制系统、方法和手术机器人
CN114848144A (zh) * 2022-03-23 2022-08-05 上海微创微航机器人有限公司 导管形状控制方法、介入手术系统、电子设备和存储介质
US20220287840A1 (en) * 2019-07-08 2022-09-15 Medtentia International Ltd Oy A medical arrangement for introducing an object into an anatomical target position
CN115154853A (zh) * 2022-08-08 2022-10-11 深圳市爱博医疗机器人有限公司 导管导丝递送的方法及对导管导丝进行递送的驱动装置
CN115211968A (zh) * 2021-04-19 2022-10-21 微机器人医疗有限公司 用于在体腔内将医疗工具自动插入及操作的装置
CN115245387A (zh) * 2022-09-22 2022-10-28 深圳市爱博医疗机器人有限公司 细长型医疗器械递送系统、递送方法、设备及介质
CN115430007A (zh) * 2022-09-08 2022-12-06 深圳市爱博医疗机器人有限公司 导丝导管递送方法和装置
CN115517766A (zh) * 2022-01-29 2022-12-27 深圳市爱博医疗机器人有限公司 一种操作双导丝的介入手术机器人和介入手术机器人系统
CN116077195A (zh) * 2023-01-13 2023-05-09 深圳市爱博医疗机器人有限公司 一种柔性医疗器械递送系统

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160135662A1 (en) * 2013-07-26 2016-05-19 Olympus Corporation Manipulator system
US20220287840A1 (en) * 2019-07-08 2022-09-15 Medtentia International Ltd Oy A medical arrangement for introducing an object into an anatomical target position
US20210369355A1 (en) * 2020-05-26 2021-12-02 Canon U.S.A., Inc. Robotic endoscope probe having orientation reference markers
CN115211968A (zh) * 2021-04-19 2022-10-21 微机器人医疗有限公司 用于在体腔内将医疗工具自动插入及操作的装置
CN114451998A (zh) * 2021-10-11 2022-05-10 上海微创微航机器人有限公司 医疗导管及其形状控制系统、方法和手术机器人
CN115517766A (zh) * 2022-01-29 2022-12-27 深圳市爱博医疗机器人有限公司 一种操作双导丝的介入手术机器人和介入手术机器人系统
CN114848144A (zh) * 2022-03-23 2022-08-05 上海微创微航机器人有限公司 导管形状控制方法、介入手术系统、电子设备和存储介质
CN115154853A (zh) * 2022-08-08 2022-10-11 深圳市爱博医疗机器人有限公司 导管导丝递送的方法及对导管导丝进行递送的驱动装置
CN115430007A (zh) * 2022-09-08 2022-12-06 深圳市爱博医疗机器人有限公司 导丝导管递送方法和装置
CN115245387A (zh) * 2022-09-22 2022-10-28 深圳市爱博医疗机器人有限公司 细长型医疗器械递送系统、递送方法、设备及介质
CN116077195A (zh) * 2023-01-13 2023-05-09 深圳市爱博医疗机器人有限公司 一种柔性医疗器械递送系统

Also Published As

Publication number Publication date
CN116077195A (zh) 2023-05-09

Similar Documents

Publication Publication Date Title
WO2024148735A1 (zh) 一种柔性医疗器械递送系统
US11007021B2 (en) User interface for active drive apparatus with finite range of motion
US10251716B2 (en) Robotic surgical system with selective motion control decoupling
EP2294988B1 (en) Device for inserting an embolic coil
US8892224B2 (en) Method for graphically providing continuous change of state directions to a user of a medical robotic system
EP4309612A1 (en) Control method for surgical robot system, readable storage medium, and robot system
KR20190109449A (ko) 관절형 전기수술 도구
CN115500953B (zh) 一种血管介入导丝的磁操控系统及磁操控方法
US20180325613A1 (en) Systems, devices, and methods for performing surgical actions via externally driven driving assemblies
JP2023531851A (ja) 介入手術ロボットスレーブ装置
WO2023039930A1 (zh) 一种内镜手术器械输送装置、控制方法及机器人系统
CN113995941A (zh) 一种微创血管介入手术机器人导管导丝协同执行装置
Yang et al. Magnetic micro-driller system for nasolacrimal duct recanalization
CN117481810A (zh) 用于脑血管介入的磁导航系统
CN219184095U (zh) 导管机器人
CN115737131A (zh) 介入机器人控制系统
EP3888565A1 (en) Minimally invasive surgery auxiliary apparatus and control method thereof
CN114052828A (zh) 堵塞穿透控制装置及血管机器人系统
US20160183772A1 (en) Medical device
WO2023142488A1 (zh) 一种操作双导丝的介入手术机器人和介入手术机器人系统
CN115530989A (zh) 一种手术导管机器人系统及控制方法
CN112546397A (zh) 一种导管递送方法
CN220025195U (zh) 一种手术机器人操作台
CN113729858B (zh) 一种血管内异物捕获及导管输送用微导丝
CN113456229A (zh) 用于腹腔手术的机器人系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23915499

Country of ref document: EP

Kind code of ref document: A1