WO2024143294A1 - Genetically modified experimental animal production method by which mosaic modification is reduced or avoided - Google Patents

Genetically modified experimental animal production method by which mosaic modification is reduced or avoided Download PDF

Info

Publication number
WO2024143294A1
WO2024143294A1 PCT/JP2023/046493 JP2023046493W WO2024143294A1 WO 2024143294 A1 WO2024143294 A1 WO 2024143294A1 JP 2023046493 W JP2023046493 W JP 2023046493W WO 2024143294 A1 WO2024143294 A1 WO 2024143294A1
Authority
WO
WIPO (PCT)
Prior art keywords
embryo
mosaic
embryos
blastomere
modification
Prior art date
Application number
PCT/JP2023/046493
Other languages
French (fr)
Japanese (ja)
Inventor
和歌子 汲田
えりか 佐々木
陽子 黒滝
Original Assignee
公益財団法人実験動物中央研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 公益財団法人実験動物中央研究所 filed Critical 公益財団法人実験動物中央研究所
Publication of WO2024143294A1 publication Critical patent/WO2024143294A1/en

Links

Images

Definitions

  • the present invention relates to a method for producing genetically modified experimental animals that reduces or avoids mosaic modifications when producing genetically modified experimental animals.
  • the present invention aims to provide a method for producing genetically modified experimental animals that reduces or avoids mosaic modifications when producing genetically modified experimental animals.
  • the inventors conducted extensive research into methods for reducing or avoiding mosaic alterations that occur when producing genetically modified marmosets. As a result, they discovered that it is possible to produce individuals with a reduced frequency of mosaic alterations or to avoid them by dividing the blastomere at the embryo stage to produce an embryo with a reduced mosaic rate, or by producing a cloned fertilized egg derived from a single blastomere and transferring the embryo to a foster parent, which led to the completion of the present invention.
  • a method for reducing the frequency of occurrence of mosaic modified embryos that occurs when modifying genes in vertebrate eggs or fertilized eggs by gene modification techniques comprising the steps of: A method for reducing the occurrence frequency of mosaic modified embryos, comprising injecting a genetic modification tool into an egg or fertilized egg, dividing an embryo at the 2-32 cell stage, producing an embryo consisting of one or more blastomeres, and culturing it in vitro, or transplanting the embryo into the uterus of a foster parent after division for development.
  • the method of [2], wherein the primate is a common marmoset.
  • [4] The method according to any one of [1] to [3], wherein the gene modification tool is selected from the group consisting of a genome editing tool, a base editing tool, a prime editing tool, and a tool for the PiggyBac transposon method.
  • the genome editing tool is selected from the group consisting of ZFN, TALEN and CRISPR/Cas9.
  • a method for avoiding the occurrence of mosaic modified embryos that occur when modifying genes in vertebrate eggs or fertilized eggs by gene modification techniques comprising the steps of: A method for avoiding the generation of mosaic modified embryos, comprising isolating each blastomere of an embryo that develops after injecting a genetic modification tool into an egg or fertilized egg, and then performing nuclear transfer of each blastomere as a donor into an enucleated egg or fertilized egg to produce a reconstructed embryo.
  • a method for producing a genetically modified vertebrate animal comprising, when the reconstructed embryo produced by the method of [7] develops to the blastomere stage, dividing the blastomere, analyzing the genetic modification, selecting an embryo having the desired modified gene, transferring it into the uterus of a surrogate mother, and allowing the offspring to live birth.
  • a method for producing a genetically modified vertebrate animal comprising transplanting an embryo generated by reducing the frequency of mosaic modified embryos using any of the methods [1] to [7] into the uterus of a surrogate mother and giving birth to a child.
  • This specification includes the disclosure of Japanese Patent Application No. 2022-210571, which is the priority basis of this application.
  • the method of the present invention after injecting a gene modification tool into a marmoset egg, embryos develop and cleave, and by dividing the blastomeres, the variability of the genetic modification content within the embryo is reduced, thereby decreasing the frequency of mosaic modifications, and making it possible to efficiently produce genetically modified experimental animals.
  • FIG. 1 This is a diagram showing the mechanism of how mosaic modified embryos are produced by genome editing. After inserting a genome editing tool into a marmoset fertilized egg at the one-cell stage, stepwise modifications occur from the two-cell stage onwards, producing mosaic modified embryos or individuals.
  • FIG. 2A shows the mechanism for reducing mosaic alterations, in which the number of alteration patterns in one embryo is reduced by dividing the blastomeres from an 8-cell stage embryo presumed to be causing mosaic alterations, thereby reducing the frequency of mosaic alterations.
  • FIG. 1 shows the sequence of the unmodified (wild-type) marmoset INS gene (part 1). This shows the sequence of the unmodified (wild-type) marmoset INS gene (part 2, continued from Figure 3-1). 1 shows the structure of each marmoset gene-targeting genome editing tool.
  • the guideRNA (black line) + PAM (diagonal line) sequences in CRISPR/Cas9 targeting the marmoset INS gene (A) and c-kit gene (B) are shown.
  • FIG. 1 shows INS gene modifications detected in embryos injected with a genome editing tool, and the results are shown in which each blastomere of an embryo that developed at the 5-cell stage after the injection of the genome editing tool was analyzed as a template.
  • FIG. 1 shows a method for producing an INS gene-modified marmoset using the mosaic reduction method. After the genome editing tool was injected, the blastomeres of embryos that had developed to about the 8-cell stage were divided and then transplanted into a foster parent female marmoset to produce an individual.
  • This figure shows the results of creating an INS gene-modified marmoset using the mosaic reduction method, and shows the results of performing PCR targeting the INS gene site using the hair root cell genome of the created marmoset, creating subclones from the PCR products, and performing sequence analysis.
  • This figure shows the results of generating INS gene modified marmosets using the mosaic reduction method, and also shows the blood glucose level transition during insulin treatment in the generated insulin gene modified marmosets. Although insulin treatment is essential for survival, there are cases where hyperglycemia (blood glucose level of 250 mg/dL or higher) occurs even during insulin treatment, revealing the onset of diabetes.
  • FIG. 1 shows the results of preparing a reconstructed embryo using a wild-type embryo and transferring the embryo (A), obtaining a baby derived from the reconstructed embryo (B), and the results showing that the numbers of microsatellite markers derived from the father (sperm) and mother (egg) matched (C).
  • 9A shows an outline of a method for producing a cloned embryo from a fertilized egg that avoids mosaic modification, in which Fig. 9A shows the division of a blastomere, Fig. 9B shows the PCR analysis of each blastomere, and Fig. 9C shows the results of the analysis.
  • the present invention relates to a method for producing an individual with reduced mosaic frequency, which occurs when producing a genetically modified animal using a genetic modification tool such as genome editing, by dividing an embryonic blastomere and transplanting one or more blastomeres into the uterus of a surrogate mother. Genetic modification tools are also called gene editing tools.
  • a "mosaic modified embryo” is often produced in which the intended modification does not occur uniformly within the embryo.
  • blastomeres in which the target gene is not modified are produced, and blastomeres in which the gene is modified and blastomeres in which the gene is not modified are mixed in one embryo, and the embryo as a whole becomes a "mosaic modified embryo” ( Figure 1).
  • a "mosaic modified embryo” is also called a "mosaic embryo.”
  • the production of a "mosaic modified embryo” is also called “mosaic modification.” Eggs and fertilized eggs are sometimes called eggs.
  • a gene modification tool is injected into an animal egg, and the blastomere of the embryo that develops and cleaves is divided to produce an embryo consisting of one or more blastomeres, which is then transplanted into the uterus of a surrogate parent to develop into an individual ( Figure 2A).
  • a gene modification tool is injected into an animal egg, and the blastomere of the embryo that develops and cleaves is separated, transplanted into an enucleated egg, and the egg and blastomere are fused to develop multiple embryos derived from each blastomere, and each embryo is screened for genetic modification, and the genetically modified embryo is transplanted into the uterus of a surrogate parent to develop into an individual (Figure 2B).
  • the method of the present invention can be applied to all organisms in which a fertilized egg cleaves to produce a blastomere.
  • the subject animal is a vertebrate, preferably a primate, and among primates, species used for experimental purposes are preferred.
  • primates belonging to the family Capuchin monkeys and primates belonging to the family Cercopithecidae and the genus Macaca with the common marmoset (Callithrix jacchus) and cynomolgus macaque (Macaca fascicularis) being particularly preferred.
  • the genes of an embryo are modified by a gene modification method.
  • gene modification methods include genome editing, base editing, the PiggyBac transposon method, prime editing, and other modification methods.
  • genome editing include methods using site-specific nucleases such as ZFN (Zinc-Finger Nuclease), TALEN (Transcription Activator-Like Effector Nuclease), Platinum TALEN, and CRISPR/Cas9, and genome editing tools such as ZFN, TALEN, Platinum TALEN, and CRISPR/Cas9 are used as gene modification tools.
  • a base editing tool called a base editor is used as the gene modification tool, and examples of base editors include the Cytosine base editor (CBE) and the Adenine base editor (ABE). Examples of base editors include inactive Cas9 (dCas9) or a complex of Cas9 nickase (Cas9n) and deaminase.
  • Prime editing uses a gene modification tool called a Prime Editor, and examples of Prime Editors include CAS9 nickase, RT (Reverse Transcriptase), and pegRNA (prime editing guide RNA).
  • genes are modified using the above-mentioned gene modification techniques. Specifically, genes of a target animal are modified by injecting a gene modification tool into an embryo of the target animal.
  • a gene modification tool is injected into the egg or fertilized egg of an animal from which a genetically modified individual is to be produced, and the blastomere of the developed embryo is divided to produce an embryo consisting of one or more blastomeres.
  • the created embryo is cultured in vitro, or promptly transferred to the uterus of a host parent after division to develop the embryo.
  • promptly means "without culturing.”
  • "Several" includes all blastomeres, and all blastomeres may be transferred.
  • the method of the present invention makes it possible to reduce the variation in the genetic modification content within the embryo, that is, to reduce mosaic modification.
  • the mosaic reduction method incises the zona pellucida of a developing embryo in which cleavage has progressed, divides the blastomeres by micromanipulation, and transplants them into the uterus of a surrogate parent to produce an individual with a reduced frequency of mosaic modification.
  • the incision of the zona pellucida of the developing embryo can be performed by laser perforation of the zona pellucida under a microscope.
  • the divided blastomere is a genetically modified blastomere, it is possible to produce an individual in which the desired modified gene has been homogenized (including homozygous and heterozygous modifications). Therefore, this method can reduce the frequency of mosaic modification in embryos in which it is unclear whether mosaic modification has occurred. Reducing the frequency of mosaic modification is also referred to as reducing the frequency of occurrence of mosaic modified embryos, or eliminating mosaicism.
  • blastomere nucleus transplantation embryo production method for avoiding mosaic alterations.
  • CRISPR/Cas9 Crispr RNA containing target gene sequences of marmoset insulin (INS) gene and c-kit gene was designed and artificially synthesized by an RNA synthesis contract company (FASMAC Co., Ltd.).
  • the crRNA sequence is shown in Figure 3.
  • Transactivating crRNA tracrRNA, FASMAC Co., Ltd.
  • Cas9 nuclease Integrated DNA Technologies, 1074181 were purchased from each company.
  • the annealing temperature was set at 2°C intervals from 74°C to 68°C for 5 cycles each, and the final reaction at 68°C was performed for 28 cycles. After the reaction was completed, the presence or absence of amplification was confirmed by agarose gel electrophoresis.
  • the forward primer TGGGGGCTCTATCACGGGCAGCCTGCCG (SEQ ID NO: 6)
  • reverse primer GACTAGCTGCGGTTCTCCAGCTGGCAG (SEQ ID NO: 7)
  • 1 ⁇ L of the amplified product of the first PCR were used, and amplification was performed under the same touchdown PCR conditions as the first PCR.
  • Figure 6 shows the sequences of the modified parts of blastomeres 1 to 5 (SEQ ID NOs: 12 to 16, respectively). Therefore, in order to reduce the number of modified blastomere patterns in the developing embryos after injection of the same CRISPR/Cas9 tool, the blastomeres in the 8-cell stage embryos were divided into one, two, and five, and transplanted into the uterus of a female foster parent marmoset. This individual production method resulted in the acquisition of offspring ( Figure 7-1).
  • the method of the present invention makes it possible to efficiently produce genetically modified model animals.

Abstract

Provided is a genetically modified experimental animal production method by which a mosaic modification is reduced or avoided when producing a genetically modified experimental animal. This method for reducing the frequency at which mosaic modified embryos are produced when modifying genes of fertilized eggs or embryos of vertebrates by a genetic modification technology comprises injecting a genetic modification tool into fertilized eggs or embryos and then dividing embryos of 2-32 cell stages to produce embryos composed of one or more blastomeres.

Description

モザイク改変を低減または回避する遺伝子改変実験動物の作出法Methods for producing genetically modified experimental animals that reduce or avoid mosaic alterations
 本発明は、遺伝子改変実験動物を作出する際にモザイク改変を低減または回避する遺伝子改変実験動物の作出法に関する。 The present invention relates to a method for producing genetically modified experimental animals that reduces or avoids mosaic modifications when producing genetically modified experimental animals.
 ゲノム編集技術等の遺伝子改変ツールを胚へ注入することによる遺伝子改変マーモセットの作出では、しばしば胚内で均質な目的改変が起こらない「モザイク改変胚」が作出される(非特許文献1参照)。このモザイク改変はマーモセットに限らず、多くの遺伝子改変実験動物の作出で起こる現象だが、その内容によっては表現型発現に影響する場合がある。特に胚内で目的の遺伝子改変率が低いようなモザイク改変が起きている場合は、その胚から作出される個体では期待する表現型が出ない可能性がある。 When genetically modified marmosets are produced by injecting gene modification tools such as genome editing into embryos, "mosaic modified embryos" are often produced in which the desired homogeneous modification does not occur within the embryo (see Non-Patent Document 1). This mosaic modification is not limited to marmosets, but occurs in many genetically modified experimental animals, and depending on the content, it can affect phenotypic expression. In particular, when mosaic modification occurs in an embryo that results in a low rate of desired gene modification, there is a possibility that the individual produced from that embryo will not exhibit the desired phenotype.
 本発明は、遺伝子改変実験動物作出の際にモザイク改変を低減または回避する遺伝子改変実験動物の作出法の提供を目的とする。 The present invention aims to provide a method for producing genetically modified experimental animals that reduces or avoids mosaic modifications when producing genetically modified experimental animals.
 本発明者は、遺伝子改変マーモセットを作出する際に起こるモザイク改変の低減または回避する方法について鋭意検討を行った。その結果、胚の段階で割球を分割しモザイク率を低減させた胚を作出するか、または1つの割球由来の受精卵クローン胚を作出し、仮親へ胚移植することで、モザイク改変の頻度を低減または回避させた個体を作出することができることを見出し、本発明を完成させるに至った。 The inventors conducted extensive research into methods for reducing or avoiding mosaic alterations that occur when producing genetically modified marmosets. As a result, they discovered that it is possible to produce individuals with a reduced frequency of mosaic alterations or to avoid them by dividing the blastomere at the embryo stage to produce an embryo with a reduced mosaic rate, or by producing a cloned fertilized egg derived from a single blastomere and transferring the embryo to a foster parent, which led to the completion of the present invention.
 すなわち、本発明は以下のとおりである。
[1] 脊椎動物の卵子または受精卵の遺伝子を遺伝子改変技術により改変する際に生じるモザイク改変胚の発生頻度を低減させる方法であって、
遺伝子改変ツールを卵子または受精卵に注入した後に2~32細胞期の胚を分割し、1個または複数個の割球からなる胚を作製して体外培養(in vitro培養)、もしくは分割後仮親の子宮内に移植して発生させることを含む、モザイク改変胚の発生頻度を低減させる方法。
[2] 脊椎動物が霊長類である、[1]の方法。
[3] 霊長類がコモンマーモセットである、[2]の方法。
[4] 遺伝子改変ツールが、ゲノム編集ツール、塩基編集ツール、プライム編集ツールおよびPiggyBacトランスポゾン法のためのツールからなる群から選択される、[1]~[3]のいずれかの方法。
[5] ゲノム編集ツールが、ZFN、TALENおよびCRISPR/Cas9からなる群から選択される、[4]の方法。
[6] 8細胞期の胚の割球を分割し、5個の割球からなる胚を発生させる、[1]~[5]のいずれかの方法。
[7] 脊椎動物の卵子または受精卵の遺伝子を遺伝子改変技術により改変する際に生じるモザイク改変胚の発生を回避する方法であって、
遺伝子改変ツールを卵子または受精卵に注入した後に発生した胚の割球を1個ずつ分離し、除核した卵子または受精卵にそれぞれの割球をドナーとして核移植し再構成胚を作出することを含む、モザイク改変胚の発生を回避する方法。
[8] [7]の方法で作出した再構成胚が割球ステージに発生したら、割球を分割して遺伝子の改変を解析し、目的の改変遺伝子を持つ胚を選別して仮親の子宮に移植し、子を出生させることを含む、遺伝子改変脊椎動物を作出する方法。
[9] [1]~[7]のいずれかの方法でモザイク改変胚の頻度を減少させて発生した胚を仮親の子宮に移植し、子を出生させることを含む、遺伝子改変脊椎動物を作出する方法。
 本明細書は本願の優先権の基礎となる日本国特許出願番号2022-210571号の開示内容を包含する。
That is, the present invention is as follows.
[1] A method for reducing the frequency of occurrence of mosaic modified embryos that occurs when modifying genes in vertebrate eggs or fertilized eggs by gene modification techniques, comprising the steps of:
A method for reducing the occurrence frequency of mosaic modified embryos, comprising injecting a genetic modification tool into an egg or fertilized egg, dividing an embryo at the 2-32 cell stage, producing an embryo consisting of one or more blastomeres, and culturing it in vitro, or transplanting the embryo into the uterus of a foster parent after division for development.
[2] The method of [1], wherein the vertebrate is a primate.
[3] The method of [2], wherein the primate is a common marmoset.
[4] The method according to any one of [1] to [3], wherein the gene modification tool is selected from the group consisting of a genome editing tool, a base editing tool, a prime editing tool, and a tool for the PiggyBac transposon method.
[5] The method of [4], wherein the genome editing tool is selected from the group consisting of ZFN, TALEN and CRISPR/Cas9.
[6] Any of the methods [1] to [5], in which a blastomere of an 8-cell stage embryo is divided to generate an embryo consisting of 5 blastomeres.
[7] A method for avoiding the occurrence of mosaic modified embryos that occur when modifying genes in vertebrate eggs or fertilized eggs by gene modification techniques, comprising the steps of:
A method for avoiding the generation of mosaic modified embryos, comprising isolating each blastomere of an embryo that develops after injecting a genetic modification tool into an egg or fertilized egg, and then performing nuclear transfer of each blastomere as a donor into an enucleated egg or fertilized egg to produce a reconstructed embryo.
[8] A method for producing a genetically modified vertebrate animal, comprising, when the reconstructed embryo produced by the method of [7] develops to the blastomere stage, dividing the blastomere, analyzing the genetic modification, selecting an embryo having the desired modified gene, transferring it into the uterus of a surrogate mother, and allowing the offspring to live birth.
[9] A method for producing a genetically modified vertebrate animal, comprising transplanting an embryo generated by reducing the frequency of mosaic modified embryos using any of the methods [1] to [7] into the uterus of a surrogate mother and giving birth to a child.
This specification includes the disclosure of Japanese Patent Application No. 2022-210571, which is the priority basis of this application.
 本発明の方法によれば、マーモセット卵に遺伝子改変ツールを注入したのち発生して卵割が進んだ胚で、割球を分割することにより胚内の遺伝子改変内容のばらつきを減少させることにより、モザイク改変の発生頻度を減少させ、効率的に遺伝子改変実験動物を作出することが可能となる。  According to the method of the present invention, after injecting a gene modification tool into a marmoset egg, embryos develop and cleave, and by dividing the blastomeres, the variability of the genetic modification content within the embryo is reduced, thereby decreasing the frequency of mosaic modifications, and making it possible to efficiently produce genetically modified experimental animals.
ゲノム編集によるモザイク改変胚の作出のメカニズムを示す図である。1細胞期のマーモセット受精卵にゲノム編集ツールを挿入後、2細胞期以降に段階的に改変が起こることで、モザイク改変胚もしくは個体が作出される。This is a diagram showing the mechanism of how mosaic modified embryos are produced by genome editing. After inserting a genome editing tool into a marmoset fertilized egg at the one-cell stage, stepwise modifications occur from the two-cell stage onwards, producing mosaic modified embryos or individuals. 発生したモザイク改変胚からのモザイク改変の低減と回避のメカニズムを示す図である。図2Aは、モザイク改変の低減のメカニズムを示し、モザイク改変を引き起こしていると推定される8細胞期胚から、割球を分割することで1つの胚内の改変内容パターン数が減少し、モザイク改変頻度を低減する。図2Bはモザイク回避のメカニズムを示し、モザイク改変胚の割球をドナーとして除核した卵子に核移植してドナー由来の受精卵を作製する。そこから発生した胚の一部の割球を解析し目的の遺伝子改変を示す胚を選別することで均質な遺伝子改変個体を作出する。This is a diagram showing the mechanism for reducing and avoiding mosaic alterations from generated mosaic alterations in mosaic alterations. Figure 2A shows the mechanism for reducing mosaic alterations, in which the number of alteration patterns in one embryo is reduced by dividing the blastomeres from an 8-cell stage embryo presumed to be causing mosaic alterations, thereby reducing the frequency of mosaic alterations. Figure 2B shows the mechanism for avoiding mosaic alterations, in which a blastomere from a mosaic altered embryo is nuclear transferred to an enucleated egg as a donor to produce a donor-derived fertilized egg. A portion of the blastomeres of the embryos generated from the donor are analyzed, and embryos showing the desired gene alterations are selected to produce homogeneous genetically altered individuals. 未改変(野生型)マーモセットINS遺伝子の配列を示す図である(その1)。FIG. 1 shows the sequence of the unmodified (wild-type) marmoset INS gene (part 1). 未改変(野生型)マーモセットINS遺伝子の配列を示す図である(その2、図3-1の続き)。This shows the sequence of the unmodified (wild-type) marmoset INS gene (part 2, continued from Figure 3-1). 各マーモセット遺伝子標的ゲノム編集ツールの構造を示す図である。マーモセットINS遺伝子(A)およびc-kit遺伝子(B)を標的化したCRISPR/Cas9におけるguideRNA(黒線)+PAM(斜線)配列を示す。1 shows the structure of each marmoset gene-targeting genome editing tool. The guideRNA (black line) + PAM (diagonal line) sequences in CRISPR/Cas9 targeting the marmoset INS gene (A) and c-kit gene (B) are shown. 胚の割球をもちいた遺伝子改変検討方法を示す図である。ゲノム編集ツールを挿入した胚の割球を1つずつテンプレートとして解析し、胚内の遺伝子改変内容を検討する。This is a diagram showing a method for investigating gene modification using embryo blastomeres. Each blastomere of an embryo into which a genome editing tool has been inserted is analyzed as a template to investigate the genetic modification in the embryo. モザイク改変胚の割球をドナーとした受精卵クローン胚の遺伝子改変解析方法を示す図である。ゲノム編集ツールを注入し発生した胚の割球を1つずつテンプレートとしてPCR、シークエンス解析して胚内の遺伝子改変内容を解析する。This is a diagram showing a method for analyzing gene modification in a cloned fertilized egg using a blastomere from a mosaic modified embryo as a donor. The genome editing tool is injected into the embryo, and each blastomere from the embryo is used as a template for PCR and sequence analysis to analyze the genetic modification in the embryo. ゲノム編集ツール注入胚から検出されたINS遺伝子改変を示す図である。ゲノム編集ツール注入後、5細胞期に発生した胚の割球を1つずつテンプレートとして解析した結果を示す。1 shows INS gene modifications detected in embryos injected with a genome editing tool, and the results are shown in which each blastomere of an embryo that developed at the 5-cell stage after the injection of the genome editing tool was analyzed as a template. モザイク低減法によるINS遺伝子改変マーモセットの作出方法を示す図であり、ゲノム編集ツールを注入後、8細胞期程度に発生した胚の割球を分割したのち、仮親雌マーモセットに移植して個体を作出したことを示す図である。FIG. 1 shows a method for producing an INS gene-modified marmoset using the mosaic reduction method. After the genome editing tool was injected, the blastomeres of embryos that had developed to about the 8-cell stage were divided and then transplanted into a foster parent female marmoset to produce an individual. モザイク低減法によるINS遺伝子改変マーモセットの作出結果を示す図であり、作出したマーモセットの毛根細胞ゲノムをもちいてINS遺伝子部位を標的としたPCRを行い、PCR産物からサブクローンを作製してシークエンス解析した結果を示す図である。This figure shows the results of creating an INS gene-modified marmoset using the mosaic reduction method, and shows the results of performing PCR targeting the INS gene site using the hair root cell genome of the created marmoset, creating subclones from the PCR products, and performing sequence analysis. モザイク低減法によるINS遺伝子改変マーモセットの作出結果を示す図であり、作出したインスリン遺伝子改変マーモセットのインスリン治療中の血糖値推移を示す図である。生命維持のためインスリン治療は必須であるが、インスリン治療中でも高血糖(血中グルコース250mg/dL以上)を示す場合もあり、糖尿病発症を明らかにした。This figure shows the results of generating INS gene modified marmosets using the mosaic reduction method, and also shows the blood glucose level transition during insulin treatment in the generated insulin gene modified marmosets. Although insulin treatment is essential for survival, there are cases where hyperglycemia (blood glucose level of 250 mg/dL or higher) occurs even during insulin treatment, revealing the onset of diabetes. 野生型胚を用いて再構築胚を作製して胚移植した結果(A)、再構築胚由来の仔が得られ(B)、父(精子)と母(卵子)由来のマイクロサテライトマーカー数が合致した結果(C)を示す図である。FIG. 1 shows the results of preparing a reconstructed embryo using a wild-type embryo and transferring the embryo (A), obtaining a baby derived from the reconstructed embryo (B), and the results showing that the numbers of microsatellite markers derived from the father (sperm) and mother (egg) matched (C). モザイク改変を回避した受精卵クローン胚作出法の概要を示す図である。図9Aは割球の分割を示し、図9Bは各割球のPCR解析を行うことを示し、図9Cは解析の結果を示す。9A shows an outline of a method for producing a cloned embryo from a fertilized egg that avoids mosaic modification, in which Fig. 9A shows the division of a blastomere, Fig. 9B shows the PCR analysis of each blastomere, and Fig. 9C shows the results of the analysis.
 以下、本発明を詳細に説明する。
 本発明は、ゲノム編集等の遺伝子改変ツールを用いて遺伝子改変動物を作出する際に起こるモザイク改変について、胚の割球を分割して1個または複数個の割球を仮親の子宮へ移植することで、モザイク頻度を減少させた個体を作出する方法である。なお、遺伝子改変ツールを遺伝子編集ツールとも呼ぶ。
The present invention will be described in detail below.
The present invention relates to a method for producing an individual with reduced mosaic frequency, which occurs when producing a genetically modified animal using a genetic modification tool such as genome editing, by dividing an embryonic blastomere and transplanting one or more blastomeres into the uterus of a surrogate mother. Genetic modification tools are also called gene editing tools.
 ゲノム編集技術等の遺伝子改変ツールを卵子、受精卵へ注入する、もしくは遺伝子改変ツールと精子の混合物を卵子へ注入することによる遺伝子改変マーモセット等の遺伝子改変脊椎動物の作出法では、しばしば胚内で均質な目的改変が起こらない「モザイク改変胚」が作出される。すなわち、細胞分裂の際に標的遺伝子が改変されていない割球が生じ、1つの胚中に遺伝子が改変されている割球と遺伝子が改変されていない割球が混在しており、胚全体として「モザイク改変胚」となる(図1)。その内容によっては表現型発現に影響する場合があり、胚内の割球細胞において目的改変率が低い場合は、遺伝子改変による表現型が出ない個体になる可能性がある。なお、「モザイク改変胚」を「モザイク胚」とも呼ぶ。また、「モザイク改変胚」が生じることを「モザイク改変」と呼ぶ。卵子、受精卵を含めて卵と呼ぶことがある。 In the production of genetically modified vertebrates such as genetically modified marmosets, by injecting gene modification tools such as genome editing technology into eggs or fertilized eggs, or by injecting a mixture of gene modification tools and sperm into eggs, a "mosaic modified embryo" is often produced in which the intended modification does not occur uniformly within the embryo. In other words, during cell division, blastomeres in which the target gene is not modified are produced, and blastomeres in which the gene is modified and blastomeres in which the gene is not modified are mixed in one embryo, and the embryo as a whole becomes a "mosaic modified embryo" (Figure 1). Depending on the content, it may affect the expression of the phenotype, and if the rate of intended modification in the blastomere cells in the embryo is low, it may result in an individual that does not exhibit the phenotype due to the genetic modification. Note that a "mosaic modified embryo" is also called a "mosaic embryo." The production of a "mosaic modified embryo" is also called "mosaic modification." Eggs and fertilized eggs are sometimes called eggs.
 本発明の方法においては、動物の卵に遺伝子改変ツールを注入したのち発生して卵割が進んだ胚の割球を分割し、1個または複数個の割球からなる胚を作製し、仮親の子宮へ移植して個体を発生させる(図2A)。また、本発明の方法においては、動物の卵に遺伝子改変ツールを注入したのち発生して卵割が進んだ胚の割球を分離し、除核した卵に分離した割球を移植し、卵子と割球を融合し、各割球由来の複数の胚を発生させ、それぞれの胚について、遺伝子改変がされているかスクリーニングを行い、遺伝子改変がされている胚を仮親の子宮へ移植し、個体を発生させる(図2B)。 In the method of the present invention, a gene modification tool is injected into an animal egg, and the blastomere of the embryo that develops and cleaves is divided to produce an embryo consisting of one or more blastomeres, which is then transplanted into the uterus of a surrogate parent to develop into an individual (Figure 2A). In addition, in the method of the present invention, a gene modification tool is injected into an animal egg, and the blastomere of the embryo that develops and cleaves is separated, transplanted into an enucleated egg, and the egg and blastomere are fused to develop multiple embryos derived from each blastomere, and each embryo is screened for genetic modification, and the genetically modified embryo is transplanted into the uterus of a surrogate parent to develop into an individual (Figure 2B).
 本発明の方法は、受精卵が卵割し割球が生じるすべての生物に適応することができる。 The method of the present invention can be applied to all organisms in which a fertilized egg cleaves to produce a blastomere.
 本発明においては、対象となる動物は、脊椎動物であり、好ましくは、霊長類であり、霊長類の中でも実験用として利用される種類が好ましい。例えば、オマキザル科に属する霊長類やオナガザル科マカク属に属する霊長類が挙げられ、特にコモンマーモセット(Callithrix jacchus)やカニクイザル(Macaca fascicularis)が好ましい。 In the present invention, the subject animal is a vertebrate, preferably a primate, and among primates, species used for experimental purposes are preferred. Examples include primates belonging to the family Capuchin monkeys and primates belonging to the family Cercopithecidae and the genus Macaca, with the common marmoset (Callithrix jacchus) and cynomolgus macaque (Macaca fascicularis) being particularly preferred.
 本発明の方法においては、遺伝子改変方法により胚の遺伝子を改変する。遺伝子改変方法として、ゲノム編集、塩基編集(Base Editing)、PiggyBacトランスポゾン法、プライム編集等による改変法が挙げられる。ゲノム編集として、ZFN(Zinc-Finger Nuclease)、TALEN(Transcription Activator-Like Effector Nuclease)、Platinum TALEN、CRISPR/Cas9等の部位特異的ヌクレアーゼを用いる方法が挙げられ、それぞれZFN、TALEN、Platinum TALEN、CRISPR/Cas9等のゲノム編集ツールを遺伝子改変ツールとして用いる。塩基編集は、遺伝子改変ツールとして、Base Editor(塩基エディタ)と呼ぶ塩基編集ツールを用いるが、Base Editorとして、Cytosine base editor(CBE)やAdenine base editor(ABE)が挙げられる。Base Editorとしては、不活性型Cas9(dCas9)もしくはCas9ニカーゼ(Cas9n)とデアミナーゼの複合体等が挙げられる。プライム編集は、遺伝子改変ツールとして、Prime Editor(プライムエディタ)と呼ぶプライム編集ツールを用いるが、Prime Editorとして、CAS9ニッカーゼ、RT(Reverse Transcriptase)およびpegRNA(prime editing guide RNA)が挙げられる。 In the method of the present invention, the genes of an embryo are modified by a gene modification method. Examples of gene modification methods include genome editing, base editing, the PiggyBac transposon method, prime editing, and other modification methods. Examples of genome editing include methods using site-specific nucleases such as ZFN (Zinc-Finger Nuclease), TALEN (Transcription Activator-Like Effector Nuclease), Platinum TALEN, and CRISPR/Cas9, and genome editing tools such as ZFN, TALEN, Platinum TALEN, and CRISPR/Cas9 are used as gene modification tools. For base editing, a base editing tool called a base editor is used as the gene modification tool, and examples of base editors include the Cytosine base editor (CBE) and the Adenine base editor (ABE). Examples of base editors include inactive Cas9 (dCas9) or a complex of Cas9 nickase (Cas9n) and deaminase. Prime editing uses a gene modification tool called a Prime Editor, and examples of Prime Editors include CAS9 nickase, RT (Reverse Transcriptase), and pegRNA (prime editing guide RNA).
 上記の遺伝子改変ツールの中でも、酵素を用いる遺伝子改変ツールが好ましい。
 本発明の方法においては、上記の遺伝子改変技術を用いて遺伝子を改変する。具体的には、遺伝子改変ツールを対象動物の胚に注入することにより、対象動物の遺伝子を改変する。
Among the above gene modification tools, gene modification tools using enzymes are preferred.
In the method of the present invention, genes are modified using the above-mentioned gene modification techniques. Specifically, genes of a target animal are modified by injecting a gene modification tool into an embryo of the target animal.
 本発明の一態様においては、モザイク改変を低減するために、遺伝子改変個体を作出しようとする動物の卵子または受精卵に、遺伝子改変ツールを注入し、発生した胚の割球を分割して1個または複数個の割球からなる胚を作製する。作製した胚を体外培養(in vitro培養)した後、あるいは分割後すみやかに仮親の子宮へ移植して胚を発生させる。ここで、「すみやかに」とは「培養しないで」という意味である。複数個は全部の割球も含み、全部の割球を移植してもよい。発生して卵割が進んだ胚中に、標的遺伝子が改変されていない割球が存在している場合、仮親の子宮へ移植した1個または複数個の割球において標的遺伝子が改変されている場合に、その胚から発生する個体は、遺伝子が完全に改変された個体、もしくは標的遺伝子が改変されていない細胞の割合が少ない個体となり、表現型が認められる個体となる。また、全部の割球を含む複数個の割球を仮親の子宮に移植した場合、複数の胚が発生し、二つ子や三つ子等の複数の仔が誕生することがあり、これらの仔が、標的遺伝子が改変されている割球から発生した場合に、その個体は遺伝子が完全に改変された遺伝子改変による表現型は認められる個体となる。このように、本発明の方法により、胚内の遺伝子改変内容のばらつきを減少、すなわち、モザイク改変を低減させることが可能となる。具体的には、遺伝子改変ツールを卵子または受精卵へ注入後、モザイク低減法では卵割の進んだ発生胚の透明帯を切開し、マイクロマニピュレーションにより割球を分割して、仮親の子宮へ移植することで、モザイク改変頻度を低減させた個体を作出する。発生胚の透明帯の切開は、顕微鏡下で透明帯をレーザー穿孔することにより行うことができる。 In one aspect of the present invention, in order to reduce mosaic modification, a gene modification tool is injected into the egg or fertilized egg of an animal from which a genetically modified individual is to be produced, and the blastomere of the developed embryo is divided to produce an embryo consisting of one or more blastomeres. The created embryo is cultured in vitro, or promptly transferred to the uterus of a host parent after division to develop the embryo. Here, "promptly" means "without culturing." "Several" includes all blastomeres, and all blastomeres may be transferred. If there are blastomeres in which the target gene is not modified in an embryo that has developed and cleaved, or if the target gene is modified in one or more blastomeres transferred to the uterus of a host parent, the individual that develops from that embryo will be an individual whose gene is completely modified, or an individual whose proportion of cells whose target gene is not modified is small, and an individual whose phenotype is recognized. Furthermore, when multiple blastomeres containing all the blastomeres are transplanted into the uterus of a surrogate parent, multiple embryos may develop, resulting in the birth of multiple offspring such as twins or triplets. If these offspring develop from a blastomere in which the target gene has been modified, the individual will be an individual in which the phenotype due to the gene modification in which the gene has been completely modified is recognized. In this way, the method of the present invention makes it possible to reduce the variation in the genetic modification content within the embryo, that is, to reduce mosaic modification. Specifically, after injecting a genetic modification tool into an egg or fertilized egg, the mosaic reduction method incises the zona pellucida of a developing embryo in which cleavage has progressed, divides the blastomeres by micromanipulation, and transplants them into the uterus of a surrogate parent to produce an individual with a reduced frequency of mosaic modification. The incision of the zona pellucida of the developing embryo can be performed by laser perforation of the zona pellucida under a microscope.
 この際、胚が2~32細胞期まで、好ましくは8~32細胞期まで発生したときに、割球を複数に分割するのが好ましい。分割した割球からなる胚を作製し、体外培養(in vitro培養)した後、あるいは分割後すみやかに仮母の子宮に移植し個体を発生させればよい。この際、分割した割球の1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、27、28、29、30、31または32個からなる胚を作製すればよい。8細胞期まで発生した胚を用いる場合、分割した割球の1、2、3、4、5、6、7または8個からなる胚を発生させればよく、好ましくは、5、6、7又は8個からなる胚を発生させればよい。この結果、分割した割球が遺伝子改変された割球ならば、目的の改変遺伝子が均質化(ホモ改変、ヘテロ改変を含む)された個体を作出することができる。したがって、この方法により、モザイク改変が生じているか不明な胚のモザイク改変の頻度を低減することができる。モザイク改変頻度を低減することを、モザイク改変胚の発生頻度を低減させるともいい、モザイク化を排除するともいう。 In this case, it is preferable to divide the blastomere into multiple pieces when the embryo has developed to the 2-32 cell stage, preferably the 8-32 cell stage. An embryo consisting of the divided blastomere is prepared and cultured in vitro, or immediately after division, transferred to the uterus of a surrogate mother to generate an individual. In this case, an embryo consisting of 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, or 32 divided blastomeres may be prepared. When using an embryo that has developed to the 8 cell stage, an embryo consisting of 1, 2, 3, 4, 5, 6, 7, or 8 divided blastomeres may be generated, preferably an embryo consisting of 5, 6, 7, or 8 divided blastomeres may be generated. As a result, if the divided blastomere is a genetically modified blastomere, it is possible to produce an individual in which the desired modified gene has been homogenized (including homozygous and heterozygous modifications). Therefore, this method can reduce the frequency of mosaic modification in embryos in which it is unclear whether mosaic modification has occurred. Reducing the frequency of mosaic modification is also referred to as reducing the frequency of occurrence of mosaic modified embryos, or eliminating mosaicism.
 上記の割球を分割することを含むモザイク改変を低減する方法を「モザイク改変低減のための割球分割法」と呼ぶ。 The above-mentioned method for reducing mosaic alterations, which involves dividing blastomeres, is called the "blastomere division method for reducing mosaic alterations."
 また、本発明の一態様においては、モザイク改変を回避するために、遺伝子改変個体を作出しようとする動物の未受精卵に、遺伝子改変ツールを注入したのち発生した胚の割球を1個ずつ分離し、除核した卵子にそれぞれの割球をドナーとして核移植し、すなわち、除核した卵と割球を融合し、胚を発生させることにより、再構成胚を作出する。割球の分離は、2~32細胞期、好ましくは8~32細胞期に行う。具体的には、遺伝子改変ツールを注入し発生したモザイク改変胚の透明帯を除去して割球を1個ずつ分離し、除核した卵子にそれぞれの割球をドナーとして核移植する。その後発生した胚を再構成胚と呼ぶ。再構成胚が割球ステージに発生したら、透明帯を切開し、割球の一部を抜き出して遺伝子の改変を解析する。目的の改変遺伝子を持つ胚を選別して仮親の子宮に移植すればよい。この結果、目的の改変遺伝子が均質化(ホモ改変、ヘテロ改変を含む)された個体を作出することができる。 In one aspect of the present invention, in order to avoid mosaic modification, a gene modification tool is injected into an unfertilized egg of an animal from which a genetically modified individual is to be produced, and then the blastomeres of the embryo that develops are separated one by one, and each blastomere is nuclear transferred to an enucleated egg as a donor, i.e., the enucleated egg and the blastomere are fused to develop an embryo, thereby producing a reconstituted embryo. The separation of the blastomeres is performed at the 2-32 cell stage, preferably the 8-32 cell stage. Specifically, the zona pellucida of the mosaic modified embryo that was developed by injecting the gene modification tool is removed, and the blastomeres are separated one by one, and each blastomere is nuclear transferred to an enucleated egg as a donor. The embryo that develops thereafter is called a reconstituted embryo. When the reconstituted embryo develops to the blastomere stage, the zona pellucida is incised, and a part of the blastomere is extracted to analyze the genetic modification. An embryo carrying the desired modified gene is selected and transplanted into the uterus of a surrogate parent. As a result, an individual in which the desired modified gene is homogenized (including homozygous modification and heterozygous modification) can be produced.
 胚の割球の分離は、胚の割球の透明帯を除去し、割球生研用メディウム(Biopsy medium)に浸漬した後に分離することにより行うことができる。卵子への移植はHVJ(センダイウイルス)を用いて、割球を除核した卵子と融合することにより行うことができる。 Embryonic blastomeres can be separated by removing the zona pellucida from the blastomeres, immersing them in Biopsy medium, and then isolating them. Transplantation into an egg can be achieved by fusing the blastomere with an enucleated egg using HVJ (Sendai virus).
 この方法によれば、遺伝子が改変された胚を確実に選択することができるので、モザイク改変を回避することができる。 This method makes it possible to reliably select embryos with modified genes, thus avoiding mosaic modifications.
 上記の割球核を卵子に移植することを含むモザイク改変を回避する方法を「モザイク改変回避のための割球核移植胚作製法」と呼ぶ。 The method of avoiding mosaic alterations, which involves transplanting the above-mentioned blastomere nucleus into an egg, is called the "blastomere nucleus transplantation embryo production method for avoiding mosaic alterations."
 モザイク改変低減のための割球分割法およびモザイク改変回避のための割球核移植胚作製法において、割球を分割した後の胚または再構成は、未受精卵を採卵した雌動物と性周期を同期している仮親の子宮へ移植する。この際、カテーテルを用いた経膣移植手術により移植すればよい。 In the blastomere division method for reducing mosaic alterations and the blastomere nuclear transfer embryo production method for avoiding mosaic alterations, the embryo or reconstruction after blastomere division is transplanted into the uterus of a foster parent whose sexual cycle is synchronized with that of the female animal from which the unfertilized eggs were collected. In this case, the transplant can be performed by a transvaginal transplantation procedure using a catheter.
 出生子のゲノムDNA解析は、出生子の毛根細胞を採取し、定法でDNAを抽出し、PCR法等により遺伝子増幅を行い、得られたDNAについてシークエンス解析を行えばよい。  Analysis of the genomic DNA of the newborn can be carried out by collecting hair root cells from the newborn, extracting DNA using standard methods, amplifying the genes using PCR or other methods, and then performing sequence analysis on the DNA obtained.
 本発明を以下の実施例によって具体的に説明するが、本発明はこれらの実施例によって限定されるものではない。 The present invention will be specifically explained by the following examples, but the present invention is not limited to these examples.
1.材料と方法
(1)マーモセット
 本研究で使用した成体のマーモセット(2~4.5歳、体重300~450g)は、実験動物飼育会社(日本クレア株式会社, 東京都)から購入した。すべての動物実験は、実験動物中央研究所実験動物委員会(CIEA: 11028)の承認を受け、実験動物中央研究所の動物実験等に関する規程および細則、マーモセットに関する標準操作手順書に従って実施された。実験動物中央研究所の動物実験等に関する規程は、日本学術会議が定めた「動物実験の適正な実施のための指針」に準じたものである。
1. Materials and Methods (1) Marmosets Adult marmosets (2-4.5 years old, weighing 300-450g) used in this study were purchased from a laboratory animal breeding company (CLEA Japan, Tokyo, Japan). All animal experiments were approved by the Central Institute for Experimental Animals' Laboratory Animal Committee (CIEA: 11028) and were conducted in accordance with the Central Institute for Experimental Animals' regulations and bylaws regarding animal experiments, as well as the standard operating procedures for marmosets. The Central Institute for Experimental Animals' regulations regarding animal experiments are in accordance with the "Guidelines for Proper Conduct of Animal Experiments" established by the Science Council of Japan.
(2)CRISPR/Cas9
 マーモセットインスリン(INS)遺伝子およびc-kit遺伝子の標的遺伝子配列を含んだcrispr RNA(crRNA)を設計し、RNA合成受託会社(FASMAC Co., Ltd.)にて人工合成した。crRNA配列は図3に示す。transactivating crRNA (tracrRNA, FASMAC Co., Ltd.)およびCas9 nuclease (Integrated DNA Technologies, 1074181)は、各社より製品を購入した。 crRNA 16.6ng/μL、tracrRNA 33.3ng/μL、Cas9 nuclease 100ng/μL、0.1×Tris-EDTA pH 8.0 bufferを混合したCRISPR/Cas9注入液を37℃で30分インキュベーションし、空気圧式マイクロインジェクター(FemtoJet, Eppendorf)とガラス針を用いて、後述の方法で得られるマーモセット卵に注入した。
(2) CRISPR/Cas9
Crispr RNA (crRNA) containing target gene sequences of marmoset insulin (INS) gene and c-kit gene was designed and artificially synthesized by an RNA synthesis contract company (FASMAC Co., Ltd.). The crRNA sequence is shown in Figure 3. Transactivating crRNA (tracrRNA, FASMAC Co., Ltd.) and Cas9 nuclease (Integrated DNA Technologies, 1074181) were purchased from each company. The CRISPR/Cas9 injection solution, which was a mixture of crRNA 16.6ng/μL, tracrRNA 33.3ng/μL, Cas9 nuclease 100ng/μL, and 0.1×Tris-EDTA pH 8.0 buffer, was incubated at 37°C for 30 minutes and injected into marmoset eggs obtained by the method described below using a pneumatic microinjector (FemtoJet, Eppendorf) and a glass needle.
 マーモセットインスリン遺伝子の未改変の野生型DNA配列を配列番号1及び図3-1および図3-2に示す。配列番号2にguideRNA+PAM配列を示し、配列番号3にその相補配列を示す(図3-3A)。またマーモセットc-kit遺伝子のguideRNA+PAMを配列番号20に、その相補配列を配列番号21に示す(図3-3B)。 The unmodified wild-type DNA sequence of the marmoset insulin gene is shown in SEQ ID NO:1 and in Figures 3-1 and 3-2. The guideRNA+PAM sequence is shown in SEQ ID NO:2, and its complementary sequence is shown in SEQ ID NO:3 (Figure 3-3A). The guideRNA+PAM of the marmoset c-kit gene is shown in SEQ ID NO:20, and its complementary sequence is shown in SEQ ID NO:21 (Figure 3-3B).
(3)マーモセット卵子の採取および体外受精による胚の作製
 血漿中のプロゲステロン濃度測定により性周期を管理している野生型雌マーモセットに、ヒト卵胞刺激ホルモン(hFSH, 富士製薬)25 IUを隔日で9日間筋肉内注射し、10日目に絨毛性ゴナドトロピン(hCG, あすか製薬)75 IUを筋肉内注射することで卵胞刺激を行った。hCG注射後17~20時間後に、雌マーモセットの卵巣から卵子(未受精卵)を麻酔下で外科的に採取した。得られた卵子に1.(2)のとおりに調整したCRISPR/Cas9注入液を注入した後、5(w/v)%濃度FBS、0.15 IU/mL濃度hFSH、10 IU/mL濃度hCGを含むPOM培地(機能性ペプチド研究所、IFP1010P)で、37℃、5% CO2、5% O2、90% N2下で27~29時間成熟培養した。培養後MI(Metaphase I)期以上に成熟した卵子を選抜し、体外受精にもちいた。体外受精に用いる精子は、野生型雄マーモセットから物理刺激により射出精液を採取し、TYH培地(LSI Medience, DR01031)で洗浄後、3.6 × 106精子/mLとなるようTYH培地で希釈して使用した。成熟卵子と希釈精子をTYH培地で10~16時間共培養した後、前核の有無により受精を判定し、受精卵はSequential Cleav(商標)培地(Origio, 83040010A)で培養した。
(3) Collection of marmoset eggs and production of embryos by in vitro fertilization Wild-type female marmosets, whose sexual cycles were monitored by measuring plasma progesterone concentrations, were intramuscularly injected with 25 IU of human follicle-stimulating hormone (hFSH, Fuji Pharmaceutical) every other day for 9 days, and on the 10th day, 75 IU of chorionic gonadotropin (hCG, Aska Pharmaceutical) was intramuscularly injected to stimulate ovarian follicles. 17-20 hours after hCG injection, eggs (unfertilized eggs) were surgically collected from the ovaries of the female marmosets under anesthesia. The eggs obtained were then subjected to 1. After injecting the CRISPR/Cas9 injection solution prepared as described in (2), the eggs were cultured for maturation for 27-29 hours at 37°C in POM medium (Functional Peptide Institute, IFP1010P) containing 5 (w/v)% FBS, 0.15 IU/mL hFSH, and 10 IU/mL hCG under 5% CO 2 , 5% O 2 , and 90% N 2. After culture, eggs that had matured to the MI (Metaphase I) stage or higher were selected and used for in vitro fertilization. The sperm used for in vitro fertilization were collected from wild-type male marmosets by physical stimulation, washed with TYH medium (LSI Medience, DR01031), and diluted with TYH medium to a concentration of 3.6 × 10 6 sperm/mL. Mature eggs and diluted sperm were co-cultured in TYH medium for 10-16 hours, after which fertilization was determined by the presence or absence of pronuclei, and fertilized eggs were cultured in Sequential Cleav™ medium (Origio, 83040010A).
(4)胚の割球を用いた遺伝子改変の検出
 体外受精後5日前後で発生が進んでいるCRISPR/Cas9注入マーモセット胚をPBS(-)で洗浄し、酸性タイロード液(Origio,10605000)に3秒ほど浸して透明帯を溶解し、割球を露出させた。割球はBiopsy Medium(Origio, 10620010)に37℃で15分間浸漬して割球同士の接着を緩めてから、ガラスキャピラリーで単一に分割した。単一割球は0.2 mlチューブに採取し、PCR鋳型サンプルとした(図4)。標的遺伝子部位の増幅はnested PCR で行い、PCR反応にはKOD-Plus-Neo(TOYOBO, 401)を製品説明書に従って使用した。INS遺伝子を標的としたPCRでは、1回目のPCRはforwardプライマー:TCCCTGACTGTGCCATCCTGTGTCCTC(配列番号4)とreverseプライマー:GACTAGCTGCGGTTCTCCAGCTGGCAG(配列番号5)をもちいて、94℃2分の加熱後、98℃10秒、各アニーリング温度30秒を5サイクルずつ増幅するタッチダウンPCRを行った。アニーリング温度は74℃から68℃まで2℃刻みで各5サイクルずつ設定し、最後のアニーリング温度68℃での反応は28サイクル実施した。反応終了後はアガロースゲル電気泳動で増幅の有無を確認した。2回目のPCRでは、forwardプライマー:TGGGGGCTCTATCACGGGCAGCCTGCCG(配列番号6)、reverseプライマー:GACTAGCTGCGGTTCTCCAGCTGGCAG(配列番号7)と1回目PCRの増幅産物1μLをもちいて、1回目と同じタッチダウンPCR条件で増幅した。アガロースゲル電気泳動で増幅を確認後、Zero Blunt PCR Cloning Kit(Thermo fisher scientific, K275040)を用いてサブクローンを作製した。キット添付のクローニング用ベクタープラスミドに増幅産物をライゲーションし、ライゲーション反応液でコンピテントセル大腸菌DH5αを形質転換した。形質転換されたDH5αを薬剤培地で選択し、コロニー10個を液体培地に植菌して増菌した。菌液からプラスミドDNAを抽出しシークエンス解析を行った。シークエンス解析はABI 3130 Genetic Analyzerで行った。またc-kit遺伝子を標的とした場合は、1回目のPCRはforwardプライマー:TGGAATTGCGGGGCTATGGCAG(配列番号8)とreverseプライマー:AACCTTCCCAAAAGCACCAGC(配列番号9)、2回目のPCRはforwardプライマー:AAATCCAGCCCCACACCCTGTTCA(配列番号10)とreverseプライマー:ATCAGAGGAGGTGCAATTTCACAGA(配列番号11)をもちいて、上述のINS遺伝子標的の場合と同様の条件で解析した(Kumita W. et al., Scientific Reports, 2019)。
(4) Detection of gene modification using embryo blastomeres CRISPR/Cas9-injected marmoset embryos, which were developing about 5 days after in vitro fertilization, were washed with PBS (-) and immersed in acidic Tyrode's solution (Origio, 10605000) for about 3 seconds to dissolve the zona pellucida and expose the blastomeres. The blastomeres were immersed in Biopsy Medium (Origio, 10620010) at 37°C for 15 minutes to loosen the adhesion between the blastomeres, and then split into single blastomeres using a glass capillary. Single blastomeres were collected in 0.2 ml tubes and used as PCR template samples (Figure 4). Amplification of the target gene site was performed by nested PCR, and KOD-Plus-Neo (TOYOBO, 401) was used for the PCR reaction according to the product instructions. In the PCR targeting the INS gene, the first PCR was performed using forward primer: TCCCTGACTGTGCCATCCTGTGTCCTC (SEQ ID NO: 4) and reverse primer: GACTAGCTGCGGTTCTCCAGCTGGCAG (SEQ ID NO: 5), and touchdown PCR was performed by heating at 94°C for 2 minutes, followed by 5 cycles of amplification at 98°C for 10 seconds and 30 seconds at each annealing temperature. The annealing temperature was set at 2°C intervals from 74°C to 68°C for 5 cycles each, and the final reaction at 68°C was performed for 28 cycles. After the reaction was completed, the presence or absence of amplification was confirmed by agarose gel electrophoresis. In the second PCR, the forward primer: TGGGGGCTCTATCACGGGCAGCCTGCCG (SEQ ID NO: 6), reverse primer: GACTAGCTGCGGTTCTCCAGCTGGCAG (SEQ ID NO: 7), and 1 μL of the amplified product of the first PCR were used, and amplification was performed under the same touchdown PCR conditions as the first PCR. After confirming amplification by agarose gel electrophoresis, subclones were prepared using the Zero Blunt PCR Cloning Kit (Thermo Fisher Scientific, K275040). The amplified product was ligated to the cloning vector plasmid included in the kit, and competent cells of E. coli DH5α were transformed with the ligation reaction solution. The transformed DH5α was selected in a drug medium, and 10 colonies were inoculated into a liquid medium for proliferation. Plasmid DNA was extracted from the bacterial solution and sequence analysis was performed. Sequence analysis was performed using an ABI 3130 Genetic Analyzer. When the c-kit gene was targeted, the first PCR was performed using forward primer: TGGAATTGCGGGGCTATGGCAG (sequence number 8) and reverse primer: AACCTTCCCAAAAGCACCAGC (sequence number 9), and the second PCR was performed using forward primer: AAATCCAGCCCCACACCCTGTTCA (sequence number 10) and reverse primer: ATCAGGGAGGTGCAATTTCACAGA (sequence number 11), and analysis was performed under the same conditions as in the case of the INS gene target described above (Kumita W. et al., Scientific Reports, 2019).
(5)モザイク低減のための胚内割球の分割
 体外受精後5日前後で8細胞期程度に発生したCRISPR/Cas9注入胚を、Biopsy Mediumに37℃で5分間浸漬したのち、顕微鏡下で透明帯をレーザー穿孔(XYClone, Hamilton Thorne, Inc.)し、マニピュレーションにより割球を分割した。
(5) Division of intraembryonic blastomeres to reduce mosaicism CRISPR/Cas9-injected embryos that had developed to the 8-cell stage approximately 5 days after in vitro fertilization were immersed in Biopsy Medium at 37°C for 5 minutes. The zona pellucida was then laser-perforated (XYClone, Hamilton Thorne, Inc.) under a microscope, and the blastomeres were divided by manipulation.
(6)モザイク改変を回避するための割球核移植胚作製
 Hepes-CZBにスクロースとサイトカラシンB (CCB:cytochalasin B)を入れた培地にMetaphaseIIステージの卵子を静置して核と極体を除く。30分~1時間ほど卵子を休ませた後、Ionomycinを用いて5分間、卵活性化を行う。その後Sequencial Cleav培地中で3時間培養する。遺伝子改変胚の割球の透明帯を除去して、Biopsy Mediumに37℃で5分間浸漬した後、1個ずつ分離してドナーとし、活性化3時間後にHVJを用いて除核した卵子に細胞融合させる。ドナー細胞と除核卵子が融合したらCCBで3時間培養して、そのSequential Cleav(商標)培地で培養する(図5)。
 再構成胚が割球ステージに発生したら、Biopsy Mediumに37℃で5分間浸漬したのち、透明帯切開して一部の割球を抜き出し、(4)の方法で遺伝子改変を検出する。
(6) Creation of blastomere nuclear transfer embryos to avoid mosaic modification Metaphase II stage eggs are placed in Hepes-CZB medium containing sucrose and cytochalasin B (CCB) to remove the nucleus and polar body. After resting the eggs for 30 minutes to an hour, they are activated with ionomycin for 5 minutes. They are then cultured in Sequential Cleav medium for 3 hours. The zona pellucida of the blastomeres of the genetically modified embryos is removed, and they are immersed in Biopsy Medium at 37°C for 5 minutes, after which they are separated one by one to be used as donors. After 3 hours of activation, they are fused with an egg enucleated using HVJ. Once the donor cell and the enucleated egg have fused, they are cultured in CCB for 3 hours and then cultured in Sequential Cleav™ medium (Figure 5).
When the reconstructed embryo develops into the blastomere stage, it is immersed in Biopsy Medium at 37°C for 5 minutes, after which the zona pellucida is incised to extract some blastomeres, and genetic modification is detected by the method in (4).
(7)胚移植、妊娠管理と出産
 割球を分割した後の胚および再構成胚は、卵子を採取した雌マーモセットと性周期を同期している仮親雌マーモセットの子宮へ、カテーテルをもちいて経腟子宮内移植手術をした。胚移植後の仮親は、血中P4(プロゲステロン)値の測定や超音波診断装置による子宮の観察によって妊娠判定を行い、妊娠が確定した個体については、週1回の超音波検査によって胎子の心拍の状態・形態学的な異常の有無などを定期的に観察した。胚移植より約140日前後の妊娠期間を経て、自然分娩により出生子を獲得した。
(7) Embryo transfer, pregnancy management and birth The embryos after cleavage of the blastomeres and the reconstructed embryos were transferred intrauterinely through a catheter into the uterus of a female foster parent marmoset whose sexual cycle was synchronized with that of the female marmoset from which the eggs were collected. After the embryo transfer, the foster parents were diagnosed as pregnant by measuring their blood P4 (progesterone) levels and observing the uterus with an ultrasound diagnostic device, and those whose pregnancy was confirmed were regularly observed by weekly ultrasound examinations for the condition of the fetal heartbeat and the presence or absence of morphological abnormalities. After a gestation period of approximately 140 days from the embryo transfer, a baby was born by natural birth.
(8)出生子のゲノムDNA解析
 出生したマーモセットの毛根細胞を採取し、QIAamp DNA Micro Kit (QIAGEN, 56304)を用いてゲノムDNAを抽出した。得られたゲノムDNA 10 ngをPCRテンプレートとして、3.4と同様の方法でPCR増幅、サブクローン作製を実施した。得られたサブクローンのコロニー50個を増菌し、それぞれからプラスミドDNAを抽出してシークエンス解析を行った。
(8) Genomic DNA analysis of offspring Hair root cells were collected from newborn marmosets, and genomic DNA was extracted using a QIAamp DNA Micro Kit (QIAGEN, 56304). Using 10 ng of the obtained genomic DNA as a PCR template, PCR amplification and subclones were produced in the same manner as in 3.4. Fifty colonies of the obtained subclones were multiplied, and plasmid DNA was extracted from each of them and subjected to sequence analysis.
2.結果
(1)モザイク改変低減法
 インスリン遺伝子標的CRISPR/Cas9を注入した後、発生したマーモセット体外受精胚の割球を分割して1つずつ遺伝子改変を確認した結果、1つの胚から最大で5つの遺伝子改変パターンが検出された。解析した5細胞期胚において検出された各インスリン遺伝子改変では、8bp欠損変異割球が5個中1個(20%)、9bp欠損変異割球が1個(20%)、19bp欠損割球が1個(20%)、4bp欠損から10bp挿入の置換変異割球が1個(20%)、未改変割球が1個(20%)であった(図6)。図6には、割球1~5の改変された部分の配列(それぞれ、配列番号12~16)を示す。そこで、同じCRISPR/Cas9ツールを注入した後の発生胚において胚内の改変割球パターン数を低減させることを目的として、8細胞期胚内の割球を1個、2個、5個に分割して仮親雌マーモセットの子宮へ移植した。この個体作出法により、出生子を獲得した(図7-1)。出生したマーモセットの毛根細胞ゲノム由来サブクローンを50個シークエンス解析した結果、50個中、野生型配列が21個(42%)、改変パターンAが18個(36%)、改変パターンBが11個(22%)であり、標的遺伝子の配列パターン数は3つだった(図7-2)。図7-2に、野生型の部分配列(配列番号17)及び該部分配列に対応する改変パターンAの配列(配列番号18)および改変パターンBの配列(配列番号19)を示す。また、生後まもなくから恒常的な高血糖値を示したことから(図7-3)、標的遺伝子の改変によって期待される表現型(疾患の発症)が認められた。
2. Results (1) Mosaic modification reduction method After injection of insulin gene-targeting CRISPR/Cas9, the blastomeres of the marmoset IVF embryos were divided and genetic modifications were confirmed one by one. As a result, up to five genetic modification patterns were detected in one embryo. For each insulin gene modification detected in the analyzed 5-cell stage embryos, one out of five blastomeres (20%) had an 8bp deletion mutation, one blastomere (20%) had a 9bp deletion mutation, one blastomere (20%) had a 19bp deletion mutation, one blastomere (20%) had a 4bp deletion to 10bp insertion substitution mutation, and one unmodified blastomere (20%) (Figure 6). Figure 6 shows the sequences of the modified parts of blastomeres 1 to 5 (SEQ ID NOs: 12 to 16, respectively). Therefore, in order to reduce the number of modified blastomere patterns in the developing embryos after injection of the same CRISPR/Cas9 tool, the blastomeres in the 8-cell stage embryos were divided into one, two, and five, and transplanted into the uterus of a female foster parent marmoset. This individual production method resulted in the acquisition of offspring (Figure 7-1). As a result of sequence analysis of 50 subclones derived from the hair root cell genome of the born marmoset, 21 (42%) of the 50 were wild-type sequences, 18 (36%) were modified pattern A, and 11 (22%) were modified pattern B, resulting in three sequence patterns of the target gene (Figure 7-2). Figure 7-2 shows the partial sequence of the wild type (SEQ ID NO: 17), the sequence of modified pattern A (SEQ ID NO: 18), and the sequence of modified pattern B (SEQ ID NO: 19) corresponding to the partial sequence. In addition, the offspring showed constant hyperglycemia immediately after birth (Figure 7-3), indicating the phenotype (onset of disease) expected from the modification of the target gene.
(2)モザイク改変回避法
 野生型マーモセットの自然交配胚の割球の核を移植した再構成胚(図8A)は、仮親の子宮に移植後、146日に帝王切開により出生した。出生時体重は36.8g、子供は外貌上の異常は認められず(図8B)、ドナー胚由来の親子鑑定結果が得られ(図8C)、再構成胚の作出方法が確立された。GV(Germinal Vesicle)卵子またはIVM-IVF(in vitro maturation-in vivo maturation)卵子にモザイク改変を引き起こすことが既知であるc-kit遺伝子標的CRISPR/Cas9(Kumita W. et al., Scientific Reports, 2019)を注入した後、発生したそれらの胚の割球を分割してドナーとする。それらのドナーから再構成胚を作出して発生させた割球を調べることにより、ドナー由来の均質な胚が作出されていることを確認することができる(図9)。目的とする遺伝子改変パターンを示した胚を仮親雌マーモセットの子宮へ移植する。この個体作出法により、出生子を獲得することができる。出生したマーモセットの毛根細胞ゲノム由来サブクローンをシークエンス解析し、均質な遺伝子改変パターンが得られたことを確認することができる。
(2) Method to avoid mosaic modification Reconstructed embryos (Fig. 8A) in which the blastomere nuclei of wild-type marmoset naturally mated embryos were transplanted into the uterus of a surrogate mother were born by Caesarean section on the 146th day. The birth weight was 36.8g, and the child had no external abnormalities (Fig. 8B). Parentage test results of donor embryos were obtained (Fig. 8C), and a method for producing reconstructed embryos was established. After injecting c-kit gene-targeted CRISPR/Cas9 (Kumita W. et al., Scientific Reports, 2019), which is known to cause mosaic modification, into GV (Germinal Vesicle) eggs or IVM-IVF (in vitro maturation-in vivo maturation) eggs, the blastomeres of the developed embryos are divided to become donors. By producing reconstructed embryos from these donors and examining the developed blastomeres, it is possible to confirm that homogeneous embryos derived from the donors have been produced (Fig. 9). Embryos that show the desired genetic modification pattern are transferred to the uterus of a female foster marmoset. This individual production method allows birth of offspring. Subclones derived from the hair root cell genome of the born marmoset are sequenced to confirm that a homogeneous genetic modification pattern has been obtained.
3.考察
 INS遺伝子を標的としたCRSPR/Cas9のマーモセット受精卵注入により、注入後発生した胚内で5つの標的遺伝子改変パターンが生じるモザイク改変を引き起こすことが明らかになったツールをもちいて、ツール注入後の発生胚の割球を分割して仮親へ移植することで、改変パターン数を3つにまで低減した個体を作出した。この結果により、本発明方法ではゲノム編集ツールを挿入した胚内で予想される標的遺伝子改変のパターン数を減らすことができ、出生個体でも、モザイク改変の割合を低減することが可能であることが明らかになった。また出生個体は期待する疾患の病態を生後1.5か月と早期に示したことから、本発明方法は出生個体の表現型発現に寄与したと考えられる。
3. Discussion Using a tool that was found to cause mosaic modification in which five target gene modification patterns occur in the embryos developed after injection by injecting CRSPR/Cas9 targeting the INS gene into fertilized marmoset eggs, the blastomeres of the embryos developed after injection were divided and transplanted into foster parents to produce individuals in which the number of modification patterns was reduced to three. This result revealed that the method of the present invention can reduce the number of target gene modification patterns expected in embryos into which a genome editing tool has been inserted, and that it is possible to reduce the rate of mosaic modification even in born individuals. In addition, since the born individuals showed the expected pathology of the disease as early as 1.5 months after birth, it is believed that the method of the present invention contributed to the phenotypic expression of the born individuals.
 改変パターンを均質化した個体作出の手法においては、割球を核移植した胚が正常に妊娠、出生することが認められれば、標的遺伝子改変を均質化した個体の作出に有用であることが示される。その結果、モザイク改変胚の割球をドナーとして、再構築胚を作出して得られた割球および個体の均質化が確認され、遺伝子改変時に生じるモザイク改変の回避が可能であることが明らかになる。 In the method of producing individuals with homogenized modification patterns, if it is confirmed that embryos with nuclear transplanted blastomeres can be conceived and born normally, it will be shown to be useful for producing individuals with homogenized target gene modifications. As a result, homogenization of the blastomeres and individuals obtained by producing reconstructed embryos using blastomeres from mosaic-modified embryos as donors will be confirmed, making it clear that it is possible to avoid mosaic modifications that occur during gene modification.
 なお本発明は、piggyBacなどトランスポゾンシステムによる目的遺伝子挿入などゲノム編集技術以外の遺伝子改変ツールをもちいた個体作出でも適用可能である。またマーモセットに限らず、胚内の割球が分割可能なすべての動物種において、モザイク低減を可能とする有用な方法と考えられる。 The present invention can also be applied to the production of individuals using gene modification tools other than genome editing technology, such as inserting a target gene using a transposon system such as piggyBac. Furthermore, this method is considered to be useful for reducing mosaics not only in marmosets, but in all animal species in which the blastomeres in the embryo can divide.
 本発明の方法により、効率的に遺伝子改変モデル動物を作出することができる。 The method of the present invention makes it possible to efficiently produce genetically modified model animals.
配列番号2、3、12~21 合成
配列番号4~11 プライマー
 本明細書で引用した全ての刊行物、特許及び特許出願はそのまま引用により本明細書に組み入れられるものとする。
SEQ ID NOs: 2, 3, 12-21 Synthetic SEQ ID NOs: 4-11 Primers All publications, patents, and patent applications cited herein are hereby incorporated by reference in their entirety.

Claims (9)

  1.  脊椎動物の卵子または受精卵の遺伝子を遺伝子改変技術により改変する際に生じるモザイク改変胚の発生頻度を低減させる方法であって、
    遺伝子改変ツールを卵子または受精卵に注入した後に2~32細胞期の胚から一部の割球を分割し、1個または複数個の割球からなる胚を作製して体外培養(in vitro培養)、もしくは分割後仮親の子宮内に移植して発生させることを含む、モザイク改変胚の発生頻度を低減させる方法。
    A method for reducing the frequency of occurrence of mosaic modified embryos that occurs when modifying genes in vertebrate eggs or fertilized eggs by gene modification techniques, comprising:
    A method for reducing the occurrence frequency of mosaic modified embryos, comprising injecting a genetic modification tool into an egg or fertilized egg, dividing some of the blastomeres from an embryo at the 2-32 cell stage, producing an embryo consisting of one or more blastomeres, and culturing it in vitro, or transplanting the embryo into the uterus of a foster parent after division for development.
  2.  脊椎動物が霊長類である、請求項1記載の方法。 The method of claim 1, wherein the vertebrate is a primate.
  3.  霊長類がコモンマーモセットである、請求項2記載の方法。 The method of claim 2, wherein the primate is a common marmoset.
  4.  遺伝子改変ツールが、ゲノム編集ツール、塩基編集ツール、プライム編集ツールおよびPiggyBacトランスポゾン法のためのツールからなる群から選択される、請求項1記載の方法。 The method of claim 1, wherein the gene modification tool is selected from the group consisting of a genome editing tool, a base editing tool, a prime editing tool, and a tool for the PiggyBac transposon method.
  5.  ゲノム編集ツールが、ZFN、TALENおよびCRISPR/Cas9からなる群から選択される、請求項4記載の方法。 The method of claim 4, wherein the genome editing tool is selected from the group consisting of ZFN, TALEN, and CRISPR/Cas9.
  6.  8細胞期の胚の割球を分割し、5個の割球からなる胚を発生させる、請求項1記載の方法。 The method according to claim 1, in which a blastomere of an 8-cell stage embryo is divided to generate an embryo consisting of 5 blastomeres.
  7.  脊椎動物の卵子または受精卵の遺伝子を遺伝子改変技術により改変する際に生じるモザイク改変胚の発生を回避する方法であって、
    遺伝子改変ツールを卵子または受精卵に注入した後に発生した胚の割球を1個ずつ分離し、除核した卵子または受精卵にそれぞれの割球をドナーとして核移植し再構成胚を作出することを含む、モザイク改変胚の発生を回避する方法。
    A method for avoiding the occurrence of mosaic modified embryos that occur when modifying genes in vertebrate eggs or fertilized eggs by gene modification techniques, comprising:
    A method for avoiding the generation of mosaic modified embryos, comprising isolating each blastomere of an embryo that develops after injecting a genetic modification tool into an egg or fertilized egg, and then performing nuclear transfer of each blastomere as a donor into an enucleated egg or fertilized egg to produce a reconstructed embryo.
  8.  請求項7記載の方法で作出した再構成胚が割球ステージに発生したら、割球の一部を抜き出して遺伝子の改変を解析し、目的の改変遺伝子を持つ胚を選別して仮親の子宮に移植し、子を出生させることを含む、遺伝子改変脊椎動物を作出する方法。 A method for producing a genetically modified vertebrate animal, comprising: extracting a portion of the blastomere when the reconstructed embryo produced by the method of claim 7 develops into the blastomere stage, analyzing the genetic modification, selecting an embryo having the desired modified gene, transplanting it into the uterus of a surrogate mother, and allowing the offspring to be born.
  9.  請求項1~7のいずれか1項に記載の方法でモザイク改変胚の頻度を減少させて発生した胚を仮親の子宮に移植し、子を出生させることを含む、遺伝子改変脊椎動物を作出する方法。 A method for producing a genetically modified vertebrate animal, comprising implanting an embryo generated by reducing the frequency of mosaic modified embryos using the method according to any one of claims 1 to 7 into the uterus of a surrogate mother and causing the offspring to give birth.
PCT/JP2023/046493 2022-12-27 2023-12-25 Genetically modified experimental animal production method by which mosaic modification is reduced or avoided WO2024143294A1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022-210571 2022-12-27

Publications (1)

Publication Number Publication Date
WO2024143294A1 true WO2024143294A1 (en) 2024-07-04

Family

ID=

Similar Documents

Publication Publication Date Title
CN108660161B (en) Method for preparing chimeric gene-free knockout animal based on CRISPR/Cas9 technology
WO2017143894A1 (en) Immunodeficient mouse, preparation method therefor, and application thereof
Kalds et al. Redesigning small ruminant genomes with CRISPR toolkit: overview and perspectives
CN105505879B (en) Method and culture medium for culturing transgenic animal embryonic cells or transgenic animals
US20090111764A1 (en) Mitochondrial selection
Park et al. Assisted reproductive techniques and genetic manipulation in the common marmoset
US20080175822A1 (en) Non-human primate embryonic stem and germ cells: methods of use and methods of making same
Kang et al. Apancreatic pigs cloned using Pdx1-disrupted fibroblasts created via TALEN-mediated mutagenesis
WO2024143294A1 (en) Genetically modified experimental animal production method by which mosaic modification is reduced or avoided
JP2024093919A (en) Methods for producing genetically modified experimental animals that reduce or avoid mosaic alterations
US20090111185A1 (en) Female genome selection
US20230167443A1 (en) Optimised Methods for Cleavage of Target Sequences
KR102270151B1 (en) Pig Knocked Out of the PKD2 Gene and the uses thereof
EP3760727A1 (en) Method for preparing non-human primate somatic cell cloned animal
JP2009511010A (en) Methods for transferring episomal vectors to animal cells
WO2019173615A1 (en) Sphingolipid-metabolizing proteins enhance the efficiency of gene editing in cells
JP4903392B2 (en) Gene homo-modified mammalian cells, gene homo-modified non-human mammals, and methods for establishing and producing them.
CN109504707A (en) The restorative procedure in the iPSCs Mitochondrial DNA Mutation site based on mitoTALENs
US11846627B2 (en) Method and composition for sorting out of cell comprising a modified gene
WO2017124022A2 (en) Methods for producing hypo-allergenic cats using gene editing technology
CN115029382A (en) Preparation method of genetically modified mouse capable of distinguishing Tbx1 two variable spliceosomes
Lin Scalable Production of Genome-Edited Livestock Embryos
Manne Is the world ready for human germline genetic editing using CRISPR/Cas9?
Mattar et al. Embryo and Fetal Gene Editing: Technical Challenges and Progress towards Clinical Applications
CN118222568A (en) Construction method and application of WNT1 mutant gene knock-in rat osteogenesis imperfecta animal model