WO2024142279A1 - Air conditioning system, air conditioning apparatus, control method, and program - Google Patents

Air conditioning system, air conditioning apparatus, control method, and program Download PDF

Info

Publication number
WO2024142279A1
WO2024142279A1 PCT/JP2022/048280 JP2022048280W WO2024142279A1 WO 2024142279 A1 WO2024142279 A1 WO 2024142279A1 JP 2022048280 W JP2022048280 W JP 2022048280W WO 2024142279 A1 WO2024142279 A1 WO 2024142279A1
Authority
WO
WIPO (PCT)
Prior art keywords
concentration
air conditioning
control
air
unit
Prior art date
Application number
PCT/JP2022/048280
Other languages
French (fr)
Japanese (ja)
Inventor
元志 手塚
薦正 田辺
淳一 岡崎
弘志 ▲廣▼▲崎▼
航理 杉山
智貴 西山
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2022/048280 priority Critical patent/WO2024142279A1/en
Publication of WO2024142279A1 publication Critical patent/WO2024142279A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • F24F11/79Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling the direction of the supplied air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/50Air quality properties
    • F24F2110/65Concentration of specific substances or contaminants
    • F24F2110/72Carbon monoxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/50Air quality properties
    • F24F2110/80Electric charge
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2120/00Control inputs relating to users or occupants

Definitions

  • Patent Document 1 discloses an air conditioning system that estimates the level of concentration from the user's body temperature, and adjusts the environment of the space to prevent a decrease in the level of concentration when the level of concentration decreases.
  • a "decline in concentration has occurred" is determined when the rate of change in the user's body temperature exceeds a threshold value. For example, when the rate of change in the user's body temperature rises above a threshold value, it is determined that there is a "decline in concentration" and an operation is performed to reduce the user's thermal sensation.
  • Patent Document 1 gives examples of methods for reducing the sensation of warmth and coldness, such as lowering the room temperature and adjusting the air volume at the user's position, but these adjustments alone are insufficient to improve the user's concentration, and improvements are required.
  • the present disclosure has been made in consideration of the above circumstances, and aims to provide an air conditioning system, air conditioning device, control method, and program that performs air conditioning control that can determine a decrease in a user's concentration level with greater accuracy and provide an environment that makes it easier to concentrate.
  • FIG. 1 is a diagram showing a configuration of an air conditioning system according to a first embodiment of the present disclosure.
  • FIG. 2 is a schematic diagram showing the layout of an air-conditioned space in which indoor units of an air-conditioning apparatus according to the first embodiment are arranged;
  • FIG. 1 is a diagram showing a functional configuration of an air conditioning system according to a first embodiment.
  • FIG. 4 is a diagram showing an example of a control mode table for the intensive mode stored in a storage unit of the indoor unit control unit shown in FIG. 3 .
  • 1A and 1B are diagrams illustrating an example of a hardware configuration of an outdoor unit control unit and an indoor unit control unit according to embodiment 1.
  • 1 is a flowchart of a concentration improvement control process executed by an air conditioning apparatus according to the first embodiment.
  • the air conditioning device 2 comprises an outdoor unit 11 provided outside the house 3, an indoor unit 13 provided inside the house 3, and a remote controller (hereinafter, remote control) 55 operated by a user HM.
  • the outdoor unit 11 and the indoor unit 13 are connected via a refrigerant pipe 61 through which a refrigerant flows, and a communication line 63 through which various signals are transferred.
  • the outdoor unit 11 includes a compressor 21 that compresses and circulates the refrigerant, a four-way valve 22 that switches the direction of refrigerant flow, an outdoor heat exchanger 23 that exchanges heat between the refrigerant flowing through the refrigerant piping 61 and the air in the external space, an expansion valve 24 that reduces the pressure of the refrigerant flowing through the refrigerant piping 61 and expands it, an outdoor blower 31 that sends outdoor air to the outdoor heat exchanger 23, and an outdoor unit control unit 51 that controls the operation of the outdoor unit 11.
  • the indoor heat exchanger 25 exchanges heat between the refrigerant flowing through the refrigerant piping 61 and the air in the indoor space 71.
  • the indoor blower 33 is provided next to the indoor heat exchanger 25 and sends the air in the indoor space 71 to the indoor heat exchanger 25.
  • the indoor blower 33 draws in the air in the indoor space 71.
  • the drawn-in air is supplied to the indoor heat exchanger 25 and exchanges heat with the refrigerant piping 61, and then the air direction is adjusted by the vane 34 and the air is blown out as conditioned air into the indoor space 71. This conditions the indoor space 71.
  • the indoor heat exchanger 25 has a humidifying function and a dehumidifying function.
  • the infrared sensor 44 is a pyroelectric, thermopile, or other type of sensor, and detects infrared rays emitted from objects such as people and objects.
  • the infrared sensor 44 can identify the presence and position of objects such as people and objects by detecting infrared rays emitted from objects such as people and objects present in the indoor space 71.
  • the infrared sensor 44 is directional, and is configured so that the direction of direction can be controlled by a gimbal mechanism, etc.
  • the bioinformation detection device 43 detects the bioinformation and determines the concentration level CR.
  • the bioinformation detection device 43 includes a Doppler sensor (not shown).
  • the Doppler sensor has directionality and the direction of direction can be controlled by a gimbal mechanism or the like.
  • the Doppler sensor irradiates a sine wave radio wave of about 24 GHz, called the microwave band or the quasi-millimeter wave band, toward the human body detected by the infrared sensor 44.
  • the Doppler sensor receives the reflected wave from the human body and detects the change in the movement of the body surface of the human body, that is, the human body's pulse wave.
  • a remote control 55 is placed in the indoor space 71.
  • the remote control 55 transmits and receives various signals to the indoor unit control unit 53.
  • the remote control 55 has a display unit 55a.
  • the remote control 55 has push buttons, a touch screen, an LCD display, LEDs (Light Emitting Diodes), etc., and functions as a command receiving unit that receives various commands from the user HM, and as a display unit 55a that displays various information to the user HM.
  • the user HM inputs commands to the air conditioning device 2 by operating the remote control 55.
  • the commands are, for example, commands to switch between operation and stop, and commands to switch the operation mode, set temperature, set humidity, air volume, air direction, timer, etc.
  • the air conditioning device 2 operates according to the input commands.
  • the outdoor unit control unit 51 which is responsible for the control functions of the air conditioner 2, and the indoor unit control unit 53, which controls the operation of the indoor unit 13, will be described with reference to FIG. 3.
  • the outdoor unit control unit 51 and the indoor unit control unit 53 are control units that work together to control the entire air conditioning system 1 and perform air conditioning control, and hereinafter, both will be collectively referred to as the control device 50.
  • the outdoor unit control unit 51 controls the operation of the outdoor unit 11.
  • the outdoor unit control unit 51 includes a control unit 51a that controls the entire outdoor unit 11, a memory unit 51b that stores data necessary for control, a timer unit 51c that measures time, and a communication unit 51d that serves as a communication interface.
  • the indoor unit control unit 53 receives instructions from the user HM via the remote control 55, supplies control instruction information to the outdoor unit control unit 51 via the communication line 63, and controls the operation of the indoor unit 13.
  • the indoor unit control unit 53 includes a control unit 53a that controls the entire indoor unit 13, a memory unit 53b that stores data necessary for control, a timer unit 53c that measures time, and a communication unit 53d that acts as a communication interface.
  • the control program 54 functionally includes an acquisition processing unit 54a that causes the control unit 53a to execute a process to acquire the concentration level CR, a determination processing unit 54b that causes the control unit 53a to execute a determination process including a process to determine whether the acquired concentration level CR has decreased and the absolute value of the difference is equal to or greater than the determination threshold value Tha, a control processing unit 54c that causes the control unit 53a to execute air conditioning processing in the concentration mode, and a set value group 54d.
  • the set value group 54d stores the judgment thresholds Tha and Thb, which are reference values for judging the degree of decrease or increase of the concentration level CR, the control target and control content during heating in the concentration mode, the control target and control content during refrigeration, and the transition period.
  • the room temperature is lowered to the target temperature THo regardless of the set value
  • the humidity is raised to the target humidity HHo regardless of the set value
  • the air volume is raised to the target air volume FHo regardless of the set value
  • the transition period is the set period from when the concentration mode is set until each control target transitions to the target value, and is set to Ps in FIG. 4.
  • FIG. 4 the judgment thresholds Tha and Thb
  • the communication unit 53d communicates with the outdoor unit control unit 51 and also communicates with the information device 90 via the network NW.
  • the outdoor unit control unit 51 is composed of a computer such as a microcontroller, and includes, for example, a processor 1001 that executes a control program, a memory 1002 that functions as a main memory area, a secondary storage device 1003 that stores the control program, an input/output (I/O) interface 1004 that inputs and outputs signals, and a communication module 1005 that performs communication, all of which are connected to each other via a bus 1000, as shown in FIG. 5(A).
  • a processor 1001 that executes a control program
  • a memory 1002 that functions as a main memory area
  • secondary storage device 1003 that stores the control program
  • I/O input/output
  • communication module 1005 that performs communication, all of which are connected to each other via a bus 1000, as shown in FIG. 5(A).
  • the control unit 53a includes a machine learning device.
  • the machine learning device learns, for example, the relationship between the target value CR o and deviation eCR of the concentration level CR and the target values To, Ho, Fo, and Lo of the temperature, humidity, air volume, and wind direction as learning data.
  • the machine learning device inputs the target value CR o and deviation eCR, and outputs the target value To of the temperature, the target value Ho of the humidity, the target value Fo of the air volume, and the target value Lo of the wind direction.
  • the control unit 53a controls the indoor unit air conditioning unit 82 so that each target value is obtained, and further controls the outdoor unit air conditioning unit 81 via the control unit 51a.
  • the input to the machine learning device may be, for example, the target value CR o of the concentration level CR, the temperature T, humidity H, air volume DF, and wind direction L at that time, and the output may be a target value for each control object.
  • control unit 53a performs a process of determining the execution time of the concentration improvement operation (step S104), but the present disclosure is not limited to this.
  • the control unit 53a may continue the concentration improvement operation until an instruction to end the concentration mode or an instruction to end the air conditioning is received, without performing the determination process of step S104.
  • control is performed in the heating or cooling operation mode during the concentration improvement operation, but in an environment where neither cooling nor heating is required, control may be performed in the air blowing operation mode.
  • the control unit 53a may control the air volume and air direction, but not the temperature and humidity.
  • the human pulse wave is detected by a Doppler sensor, but the pulse wave may be detected by any type of sensor.
  • the human pulse wave may be detected by a 24 GHz to 79 GHz FMCW (Frequency Modulated Continuous Wave radar) sensor.
  • the pulse wave may also be measured by irradiating a living body with infrared light, red light, green light, or other light and measuring the light reflected within the living body or the light that has passed through the living body with a light receiving element.
  • the sensor is not limited to a non-contact type, and may be a contact type sensor that detects by contacting the human body.
  • an electrocardiogram may be used to measure the human body and the pulse wave may be extracted from the electrocardiogram.
  • the timing of "temperature control off” is set at the point when the temperature difference ⁇ TR between the room temperature TR and the set temperature TS set in the user HM reaches ⁇ Toff°C, and the timing of "temperature control on” is set at the point when the temperature difference ⁇ TR between the room temperature TR and the set temperature TS becomes ⁇ Ton°C.
  • the set temperature is 28°C
  • the temperature control off timing ⁇ Toff -2°C
  • the compressor 21 is stopped and "cooling" is stopped.
  • the compressor 21 is operated and "cooling" is resumed.
  • the control unit 53a judges whether the current average value AVCRt is lower than the previous average value AVCRt -1 and whether the absolute value of the difference CBt is equal to or greater than the judgment threshold value Tha (step S102).
  • the control unit 53a also performs the process of step S105 in the same manner as step S101.
  • the concentration level CR is calculated based on the pulse wave.
  • This disclosure is not limited to this.
  • other biological information may be used in combination.
  • the pulse wave of the user HM and its changes, the heart rate of the user HM and its changes, the brain waves of the user HM and its changes, the body temperature of the user HM and its changes, the changes in the movement of the facial muscles of the user HM, the behavior of the user HM, etc. may be measured by a sensor, the concentration level CR may be calculated from each measurement value, and the concentration level CR to be used for control may be calculated by taking a weighted average of the calculated concentration levels CR.
  • AI Artificial Intelligence
  • teacher data is created by investigating in advance the relationship between a set of input data, such as the user HM's pulse waves and their changes, the user HM's heart rate and its changes, the user HM's brain waves and its changes, the user HM's body temperature and its changes, changes in the movement of the user HM's facial muscles, the user HM's behavior, etc., and the output concentration level CR.
  • the AI device is made to learn the teacher data.
  • the AI device inputs biometric information such as pulse waves and brain waves measured by a sensor, their rate of change, their history, etc., and outputs an index showing the concentration level CR.
  • step S102 it is determined whether or not to perform the concentration improvement operation based on the relationship between the preset standard and the concentration level CR, but the concentration improvement operation may be performed without making a determination.
  • AI technology may be utilized in the indoor unit control unit 53, and, for example, the concentration level CR, its change, change rate, or its history may be input to the AI device, and the AI device may output an appropriate control mode.
  • the concentration level CR, its change amount or change rate, and the history of these, as well as the relationship between the control target, the control content, and its effect are investigated in advance to create teacher data.
  • the AI device is made to learn the teacher data.
  • step S102 of FIG. 6 the AI device inputs the concentration level CR etc. supplied from the bioinformation detection device 43, and outputs the appropriate control target and control content.
  • step S103 air conditioning control indicated by the output control target and control content is performed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

An air conditioning system (1) for controlling air conditioning in an air conditioning space is provided with an air conditioning unit (80) for performing air conditioning in the air conditioning space and a control device (50) for controlling the air conditioning unit (80). A control unit (53a) in the control device (50) acquires the degree of concentration obtained from the change in movement of the body surface of a user in the air conditioning space and controls the air conditioning unit (80) on the basis of the degree of concentration so as to increase the degree of concentration of the user.

Description

空気調和システム、空気調和装置、制御方法及びプログラムAir conditioning system, air conditioning device, control method and program
 本開示は、空気調和システム、空気調和装置、制御方法及びプログラムに関する。 This disclosure relates to an air conditioning system, an air conditioning device, a control method, and a program.
 ユーザが存在する空間の環境を調整してユーザの集中度の低下を防止する空気調和システムが開発されている。例えば、特許文献1には、ユーザの体温から集中度を推定し、集中度が低下した際に、集中度の低下を防止するように空間の環境を調整する空気調和システムが開示されている。集中度の低下があるか否かの判別については、ユーザの体温変化率が閾値以上になった時を「集中度の低下あり」と判断している。例えば、ユーザの体温の変化率が閾値以上に上昇したとき、「集中度の低下あり」との判断をして、使用者の温冷感を低下させる運転を行う。 Air conditioning systems have been developed that adjust the environment of the space in which the user is present to prevent a decrease in the user's level of concentration. For example, Patent Document 1 discloses an air conditioning system that estimates the level of concentration from the user's body temperature, and adjusts the environment of the space to prevent a decrease in the level of concentration when the level of concentration decreases. To determine whether or not there is a decrease in the level of concentration, a "decline in concentration has occurred" is determined when the rate of change in the user's body temperature exceeds a threshold value. For example, when the rate of change in the user's body temperature rises above a threshold value, it is determined that there is a "decline in concentration" and an operation is performed to reduce the user's thermal sensation.
特開2020-39443号公報JP 2020-39443 A
 ユーザの体温から集中度を推定する手法は、信頼度が低く、誤検出が多いという問題がある。例えば、ユーザが作業を短期間で完了させようと集中している場合に、高揚感、緊張感などが絡み合い、同時にストレスを感じて体温が短時間で上昇することがある。このような場合、体温に基づいて推定する手法では、ユーザの集中度が高いにもかかわらず、「集中度の低下あり」と判断してしまう恐れがある。この場合、集中度を上げるように温冷感を下げる運転を行うと、ストレスによる冷や汗で寒気を感じ、ユーザの集中度を低下させてしまう。 Methods that estimate the level of concentration from a user's body temperature have the problem of low reliability and frequent false positives. For example, when a user is concentrating to complete a task in a short period of time, a combination of elation and tension can cause stress and a rise in body temperature in a short period of time. In such cases, methods that estimate based on body temperature may determine that the user's level of concentration is "decreasing," even when the user is highly concentrated. In this case, if the device is operated to reduce thermal sensation in order to increase the level of concentration, the user will feel chills from the cold sweat caused by stress, and this will decrease the user's level of concentration.
 また、特許文献1では、温冷感を下げる手法として、室温を下げること、ユーザの位置における風量を調整することを例示しているが、これらの調整だけでは、ユーザの集中度を向上するには、不十分であり、改善が求められる。 In addition, Patent Document 1 gives examples of methods for reducing the sensation of warmth and coldness, such as lowering the room temperature and adjusting the air volume at the user's position, but these adjustments alone are insufficient to improve the user's concentration, and improvements are required.
 本開示は、上記の事情に鑑みてなされたものであり、ユーザの集中度の低下をより高い精度で判定して、より集中しやすい環境を提供することが可能な空調制御を行う空気調和システム、空気調和装置、制御方法及びプログラムを提供することを目的とする。 The present disclosure has been made in consideration of the above circumstances, and aims to provide an air conditioning system, air conditioning device, control method, and program that performs air conditioning control that can determine a decrease in a user's concentration level with greater accuracy and provide an environment that makes it easier to concentrate.
 上記の目的を達成するため、本開示に係る空気調和システムは、空調対象空間の空調制御を行う空気調和システムであって、空調部と、制御装置とを備える。空調部は、空調対象空間を空調する。制御装置は、空調部を制御する。制御装置は、指標値取得手段と、制御手段とを有する。指標値取得手段は、空調対象空間に存在するユーザの体表面の動きの変化から求めた集中度を取得する。制御手段は、取得した集中度に基づいて、ユーザの集中度を増大させるように空調部を制御する。 In order to achieve the above object, the air conditioning system according to the present disclosure is an air conditioning system that controls the air conditioning of a space to be air-conditioned, and includes an air conditioning unit and a control unit. The air conditioning unit conditions the space to be air-conditioned. The control unit controls the air conditioning unit. The control unit has an index value acquisition means and a control means. The index value acquisition means acquires a concentration level determined from changes in the movement of the body surface of a user present in the space to be air-conditioned. The control means controls the air conditioning unit based on the acquired concentration level so as to increase the user's concentration level.
 本開示によれば、空気調和システムにおいて、体表面の動きの変化から求めた集中度を取得し、集中度を増大させるように空調制御を行うことができる。このため、ユーザの集中度を高精度で判定し、ユーザが集中しやすい環境を提供できる。 According to the present disclosure, in an air conditioning system, the degree of concentration can be obtained from changes in body surface movement, and air conditioning control can be performed to increase the degree of concentration. This makes it possible to determine the user's degree of concentration with high accuracy, and provide an environment in which the user can easily concentrate.
本開示の実施の形態1に係る空気調和システムの構成を示す図FIG. 1 is a diagram showing a configuration of an air conditioning system according to a first embodiment of the present disclosure. 実施の形態1における空気調和装置の室内機が配置される空調対象空間のレイアウトを示す模式的な図FIG. 2 is a schematic diagram showing the layout of an air-conditioned space in which indoor units of an air-conditioning apparatus according to the first embodiment are arranged; 実施の形態1に係る空気調和システムの機能的構成を示す図FIG. 1 is a diagram showing a functional configuration of an air conditioning system according to a first embodiment. 図3に示す室内機制御部の記憶部に記憶される集中モード用制御態様テーブルの一例を示す図FIG. 4 is a diagram showing an example of a control mode table for the intensive mode stored in a storage unit of the indoor unit control unit shown in FIG. 3 . (A)と(B)は、実施の形態1に係る室外機制御部と室内機制御部のハードウェア構成の一例を示す図1A and 1B are diagrams illustrating an example of a hardware configuration of an outdoor unit control unit and an indoor unit control unit according to embodiment 1. 実施の形態1における空気調和装置が実行する集中度向上制御処理のフローチャート1 is a flowchart of a concentration improvement control process executed by an air conditioning apparatus according to the first embodiment. (A)と(B)は、ユーザの位置と送風が床に当たる位置との距離を用いて風向きを説明するための模式図(A) and (B) are schematic diagrams for explaining the wind direction using the distance between the user's position and the position where the blown air hits the floor. (A)~(C)は、それぞれ、実施の形態1に係る空気調和システムにおける制御態様の一例を示す図1A to 1C are diagrams showing examples of control modes in an air conditioning system according to embodiment 1. 実施の形態1に係る空気調和システムにおける制御態様の一例を示す図FIG. 1 is a diagram showing an example of a control mode in an air conditioning system according to a first embodiment. 図4に示す集中モード用制御態様テーブルの変形例を示す図FIG. 5 is a diagram showing a modified example of the control mode table for the concentration mode shown in FIG. (A)と(B)は、それぞれ、集中度向上制御処理の履歴情報の構成例を示す図1A and 1B are diagrams showing examples of configurations of history information of a concentration improvement control process, respectively; 図1に示す空気調和システムの構成の変形例を示す図FIG. 2 is a diagram showing a modified example of the configuration of the air conditioning system shown in FIG. (A)は、図1に示す空気調和システムの構成の他の変形例を示す図、(B)は、集中モード用制御態様テーブルの変形例を示す図FIG. 2A is a diagram showing another modified example of the configuration of the air conditioning system shown in FIG. 1 , and FIG. 2B is a diagram showing a modified example of the control mode table for the intensive mode. 本開示の実施の形態2における風あて制御処理を説明するための模式図FIG. 13 is a schematic diagram for explaining a wind blowing control process according to a second embodiment of the present disclosure.
 図面を参照しながら、本開示の実施の形態に係る空気調和システム、空気調和装置、制御方法を説明する。各図面においては、同一又は同等の部分に同一の符号を付す。 The air conditioning system, air conditioning device, and control method according to the embodiment of the present disclosure will be described with reference to the drawings. In each drawing, the same or equivalent parts are denoted by the same reference numerals.
(実施の形態1)
[空気調和システム1の構成]
 本開示の実施の形態1に係る空気調和システム1は、空調対象空間である室内空間71に存在するユーザHMの集中度CRに基づいて、室内空間71を空調するシステムである。空調とは、空調空間の空気の温度、湿度、清浄度、気流等を調整することであって、具体的には、暖房、冷房、除湿、加湿、空気清浄等である。集中とは、一つの事柄に意識を集中して物事に取り組むことを意味する。集中度CRとは、集中の度合いを意味する。人は作業を継続していると、その人の集中度CRは次第に低下していく傾向にある。また、人は、集中度CRが低下していくと、眠気を生じる傾向にある。逆もまた然りで、人は、眠気を生じると集中度CRが低下する。いずれにしても、集中度CRと、眠気の度合いを示す眠気度とは、密接な関係である。集中度CRは、集中している程度を示す指標であり、本明細書では、集中度CRが高い又は大きい程、集中の程度が高く、眠気度の低い状態にあるものとする。
(Embodiment 1)
[Configuration of Air Conditioning System 1]
The air conditioning system 1 according to the first embodiment of the present disclosure is a system that conditions an indoor space 71 based on the concentration level CR of a user HM present in the indoor space 71, which is an air-conditioned space. Air conditioning refers to adjusting the temperature, humidity, cleanliness, airflow, etc. of the air in the air-conditioned space, and specifically includes heating, cooling, dehumidification, humidification, air purification, etc. Concentration means concentrating one's mind on one thing and working on it. The concentration level CR means the degree of concentration. When a person continues working, the concentration level CR of the person tends to gradually decrease. In addition, when the concentration level CR decreases, a person tends to become sleepy. The opposite is also true, and when a person becomes sleepy, the concentration level CR decreases. In any case, the concentration level CR and the sleepiness level indicating the degree of sleepiness are closely related. The concentration level CR is an index indicating the degree of concentration, and in this specification, the higher or larger the concentration level CR, the higher the degree of concentration and the lower the sleepiness level.
 空気調和システム1は、図1に示すように、室内空間71を空調する設備である空気調和装置2と、ユーザHMによって操作される情報機器90を備えている。空調運転に際し、室内空間71に存在するユーザHMの集中度CRを向上させる空調制御が行われる。情報機器90と、空気調和装置2に備えられた室内機制御部53とは、ネットワークNWを介して接続されている。 As shown in FIG. 1, the air conditioning system 1 includes an air conditioner 2, which is equipment for conditioning an indoor space 71, and an information device 90 operated by a user HM. During air conditioning operation, air conditioning control is performed to improve the concentration level CR of the user HM present in the indoor space 71. The information device 90 and the indoor unit control unit 53 provided in the air conditioner 2 are connected via a network NW.
 図1に示すように、空気調和装置2は、家屋3に設置される。家屋3は、一例として、いわゆる一般的な戸建て住宅の建物である。空気調和装置2は、例えばCO(二酸化炭素)又はHFC(ハイドロフルオロカーボン)等を冷媒として用いたヒートポンプ式の空気調和設備である。 1, an air conditioner 2 is installed in a house 3. The house 3 is, for example, a typical detached residential building. The air conditioner 2 is a heat pump type air conditioning facility that uses, for example, CO2 (carbon dioxide) or HFC (hydrofluorocarbon) as a refrigerant.
 空気調和装置2は、家屋3の外側に設けられる室外機11と、家屋3内に設けられる室内機13と、ユーザHMによって操作されるリモートコントローラ(以下、リモコン)55とを備える。室外機11と室内機13とは、冷媒が流れる冷媒配管61と、各種信号が転送される通信線63と、を介して接続されている。 The air conditioning device 2 comprises an outdoor unit 11 provided outside the house 3, an indoor unit 13 provided inside the house 3, and a remote controller (hereinafter, remote control) 55 operated by a user HM. The outdoor unit 11 and the indoor unit 13 are connected via a refrigerant pipe 61 through which a refrigerant flows, and a communication line 63 through which various signals are transferred.
 図2に示すように、室内機13は、室内空間71に空調空気を供給できるような場所、例えば、壁の上部に設置されている。室内機13より吹き出される冷風及び温風により室内空間71の冷暖房が行われる。本実施の形態において、室内空間71に存在する一人のユーザHMの集中度CRに基づいた空調制御が行われる。詳細は後述する。 As shown in FIG. 2, the indoor unit 13 is installed in a location such as the upper part of a wall where it can supply conditioned air to the indoor space 71. The indoor space 71 is cooled or heated by the cold air and hot air blown out from the indoor unit 13. In this embodiment, air conditioning control is performed based on the concentration level CR of one user HM present in the indoor space 71. Details will be described later.
 図1に示すように、室外機11は、冷媒を圧縮して循環させる圧縮機21と、冷媒の流れる方向を切り替える四方弁22と、冷媒配管61を流れる冷媒と外部空間の空気との間で熱交換を行う室外熱交換器23と、冷媒配管61を流れる冷媒を減圧して膨張させる膨張弁24と、室外の空気を室外熱交換器23に送る室外送風機31と、室外機11の動作を制御する室外機制御部51と、を備える。 As shown in FIG. 1, the outdoor unit 11 includes a compressor 21 that compresses and circulates the refrigerant, a four-way valve 22 that switches the direction of refrigerant flow, an outdoor heat exchanger 23 that exchanges heat between the refrigerant flowing through the refrigerant piping 61 and the air in the external space, an expansion valve 24 that reduces the pressure of the refrigerant flowing through the refrigerant piping 61 and expands it, an outdoor blower 31 that sends outdoor air to the outdoor heat exchanger 23, and an outdoor unit control unit 51 that controls the operation of the outdoor unit 11.
 また、室内機13は、冷媒配管61を流れる冷媒と室内空間71の空気との間で熱交換を行う室内熱交換器25と、室内空間71の空気を室内熱交換器25に送る室内送風機33と、風向を調整するベーン34と、室内機13の動作を制御する室内機制御部53と、を備える。なお、以下、ベーン、ルーバ等の風向を制御する機構を纏めてベーン34と呼ぶ。空気調和装置2は、圧縮機21と、四方弁22と、室外熱交換器23と、膨張弁24と、室内熱交換器25とを、冷媒配管61によって接続して構成された冷媒回路を有する。冷媒回路は、冷媒を循環させて冷凍サイクルの動作を行う。 The indoor unit 13 also includes an indoor heat exchanger 25 that exchanges heat between the refrigerant flowing through the refrigerant piping 61 and the air in the indoor space 71, an indoor blower 33 that sends the air in the indoor space 71 to the indoor heat exchanger 25, a vane 34 that adjusts the air direction, and an indoor unit control unit 53 that controls the operation of the indoor unit 13. Hereinafter, the mechanisms that control the air direction, such as the vane and louvers, will be collectively referred to as the vane 34. The air conditioning device 2 has a refrigerant circuit that is configured by connecting the compressor 21, four-way valve 22, outdoor heat exchanger 23, expansion valve 24, and indoor heat exchanger 25 by the refrigerant piping 61. The refrigerant circuit circulates the refrigerant to perform the refrigeration cycle operation.
 圧縮機21は、冷媒を圧縮して冷媒配管61を循環させる。具体的に説明すると、圧縮機21は、低温且つ低圧の冷媒を圧縮し、高圧及び高温となった冷媒を四方弁22に吐出する。圧縮機21は、駆動周波数に応じて運転容量を変化させることができるインバータ回路を備える。運転容量とは、圧縮機21が単位時間当たりに冷媒を送り出す量である。圧縮機21は、室外機制御部51からの指示に従って運転容量を変更する。 The compressor 21 compresses the refrigerant and circulates it through the refrigerant piping 61. Specifically, the compressor 21 compresses low-temperature, low-pressure refrigerant and discharges the high-pressure, high-temperature refrigerant to the four-way valve 22. The compressor 21 is equipped with an inverter circuit that can change the operating capacity according to the drive frequency. The operating capacity is the amount of refrigerant that the compressor 21 sends out per unit time. The compressor 21 changes the operating capacity according to instructions from the outdoor unit control unit 51.
 四方弁22は、圧縮機21の吐出側に設置されている。四方弁22は、空気調和装置2の運転が冷房又は除湿運転であるか暖房運転であるかに応じて、冷媒配管61中の冷媒の流れる方向を切り替える。 The four-way valve 22 is installed on the discharge side of the compressor 21. The four-way valve 22 switches the direction of the refrigerant flow in the refrigerant piping 61 depending on whether the air conditioner 2 is operating in cooling or dehumidification mode, or in heating mode.
 室外熱交換器23は、冷媒配管61を流れる冷媒と、空調対象空間の外部である室外空間72の空気、言い換えると外部空間の空気と、の間で熱交換を行う。室外送風機31は、室外熱交換器23の傍に設けられており、室外空間72の空気を室外熱交換器23に送る。室外送風機31は室外空間72の空気を吸い込む。吸い込まれた空気は、室外熱交換器23に供給され、冷媒配管61を流れる冷媒との間で熱交換された後、室外空間72に吹き出される。 The outdoor heat exchanger 23 exchanges heat between the refrigerant flowing through the refrigerant piping 61 and the air in the outdoor space 72, which is outside the space to be air-conditioned, in other words, the air in the external space. The outdoor blower 31 is provided next to the outdoor heat exchanger 23 and sends the air in the outdoor space 72 to the outdoor heat exchanger 23. The outdoor blower 31 draws in air from the outdoor space 72. The drawn-in air is supplied to the outdoor heat exchanger 23, where it exchanges heat with the refrigerant flowing through the refrigerant piping 61, and is then blown out into the outdoor space 72.
 膨張弁24は、室外熱交換器23と室内熱交換器25との間に設置されており、冷媒配管61を流れる冷媒を減圧して膨張させる。膨張弁24は、その開度を制御可能な電子式膨張弁である。膨張弁24は、室外機制御部51からの指示に従って開度を変更して、冷媒の圧力を調整する。 The expansion valve 24 is installed between the outdoor heat exchanger 23 and the indoor heat exchanger 25, and reduces the pressure of the refrigerant flowing through the refrigerant piping 61 to expand it. The expansion valve 24 is an electronic expansion valve whose opening degree can be controlled. The expansion valve 24 changes its opening degree according to instructions from the outdoor unit control unit 51 to adjust the pressure of the refrigerant.
 室内熱交換器25は、冷媒配管61を流れる冷媒と室内空間71の空気との間で熱交換を行う。室内送風機33は、室内熱交換器25の傍に設けられており、室内空間71の空気を室内熱交換器25に送る。室内送風機33は、室内空間71の空気を吸い込む。吸い込まれた空気は、室内熱交換器25に供給され、冷媒配管61との間で熱交換された後、ベーン34により風向が調整され、空調空気として、室内空間71に吹き出される。これにより、室内空間71が空調される。室内熱交換器25は、加湿機能と除湿機能を備える。加湿の手法は、気化式加湿でも、一次蒸気スプレー式、二次蒸気スプレー式、電力利用型蒸気発生式等の蒸気式加湿等でもよく、任意の既知の手法を採用可能である。除湿の手法は、弱冷房除湿、再熱除湿等、任意の既知の手法を採用可能である。 The indoor heat exchanger 25 exchanges heat between the refrigerant flowing through the refrigerant piping 61 and the air in the indoor space 71. The indoor blower 33 is provided next to the indoor heat exchanger 25 and sends the air in the indoor space 71 to the indoor heat exchanger 25. The indoor blower 33 draws in the air in the indoor space 71. The drawn-in air is supplied to the indoor heat exchanger 25 and exchanges heat with the refrigerant piping 61, and then the air direction is adjusted by the vane 34 and the air is blown out as conditioned air into the indoor space 71. This conditions the indoor space 71. The indoor heat exchanger 25 has a humidifying function and a dehumidifying function. The humidifying method may be evaporation humidification, or steam humidification such as primary steam spray type, secondary steam spray type, or power-utilizing steam generation type, and any known method can be used. The dehumidifying method may be weak cooling dehumidification, reheat dehumidification, or any known method can be used.
 以下、室内空間71を空調する部分のうち、室外機11に配置されている圧縮機21、四方弁22、室外熱交換器23、膨張弁24、及び室外送風機31を室外機空調部81、室内機13に配置されている室内熱交換器25、室内送風機33、及びベーン34を室内機空調部82と呼ぶ。また、室外機空調部81と室内機空調部82とを合わせて空調を行う部分として空調部80と呼ぶ。 Hereinafter, among the parts that condition the indoor space 71, the compressor 21, four-way valve 22, outdoor heat exchanger 23, expansion valve 24, and outdoor blower 31 arranged in the outdoor unit 11 will be referred to as the outdoor unit air conditioning section 81, and the indoor heat exchanger 25, indoor blower 33, and vane 34 arranged in the indoor unit 13 will be referred to as the indoor unit air conditioning section 82. In addition, the outdoor unit air conditioning section 81 and the indoor unit air conditioning section 82 will be collectively referred to as the air conditioning section 80 as the part that performs air conditioning.
 室内機13は、温度を検知する温度センサ41と、湿度を検知する湿度センサ42と、人、物等の対象から放射される赤外線を検知する赤外線センサ44と、ユーザHMの集中度CRを特定する生体情報検出装置43と、を更に備えている。 The indoor unit 13 further includes a temperature sensor 41 that detects temperature, a humidity sensor 42 that detects humidity, an infrared sensor 44 that detects infrared rays emitted from people, objects, etc., and a biometric information detection device 43 that identifies the concentration level CR of the user HM.
 温度センサ41は、測温抵抗体、サーミスタ、熱電対等を備え、室内空間71の空気温度である室温を検知する。湿度センサ42は、電気抵抗式、静電容量式等のセンサであり、室内空間71の空気湿度である室内湿度を検知する。温度センサ41及び湿度センサ42は、室内熱交換器25の吸い込み口に設置されており、室内送風機33により室内熱交換器25に吸い込まれる空気の温度及び湿度を検知する。室内熱交換器25の吸い込み口に設置されていることで、温度センサ41及び湿度センサ42は、室内空間71内の空気の温度及び湿度を精度良く検知することができる。 The temperature sensor 41 is equipped with a resistance temperature detector, thermistor, thermocouple, etc., and detects the room temperature, which is the air temperature in the indoor space 71. The humidity sensor 42 is an electrical resistance type, capacitance type, etc. sensor, and detects the indoor humidity, which is the air humidity in the indoor space 71. The temperature sensor 41 and humidity sensor 42 are installed at the intake port of the indoor heat exchanger 25, and detect the temperature and humidity of the air sucked into the indoor heat exchanger 25 by the indoor blower 33. By being installed at the intake port of the indoor heat exchanger 25, the temperature sensor 41 and humidity sensor 42 can accurately detect the temperature and humidity of the air in the indoor space 71.
 赤外線センサ44は、焦電型、サーモパイル型等のセンサであり、人、物等の対象から放射される赤外線を検知する。赤外線センサ44は、室内空間71に存在する人、物等の対象から放射される赤外線を検知することにより、人、物等の対象の存在及び位置を特定することができる。赤外線センサ44は、指向性を有し、ジンバル機構等により、指向方向を制御可能に構成されている。 The infrared sensor 44 is a pyroelectric, thermopile, or other type of sensor, and detects infrared rays emitted from objects such as people and objects. The infrared sensor 44 can identify the presence and position of objects such as people and objects by detecting infrared rays emitted from objects such as people and objects present in the indoor space 71. The infrared sensor 44 is directional, and is configured so that the direction of direction can be controlled by a gimbal mechanism, etc.
 生体情報検出装置43は、生体情報を検出して集中度CRを特定する。生体情報検出装置43は、図示しないドップラーセンサを含む。ドップラーセンサは、指向性を有し、ジンバル機構等により指向方向を制御可能である。ドップラーセンサは、マイクロ波帯または準ミリ波帯と呼ばれるおよそ24GHzの正弦波の電波を、赤外線センサ44によって検知された人体に向けて照射する。ドップラーセンサは、人体からの反射波を受信し、人体の体表面の動きの変化、すなわち、人体の脈波を検出する。脈波とは、心臓の脈動による人の体表面の動きの変化を示す波形であり、血管の動きの変化の波形と、心臓部分の体表面の変化の波形を含む。生体情報検出装置43は、ドップラーセンサで検出された脈波を解析し、集中度CRを特定する。生体情報検出装置43は、脈波を周期的に解析し、集中度CRを周期的に特定する。脈波から集中度CRを導出する手法は、既知の任意の手法を使用可能である。例えば、脈波の時系列データから、心拍変動の時系列データを求め、これを周波数解析して、呼吸変動に対応する高周波変動成分(HF成分)と血圧変動であるメイヤー波(Mayer wave)に対応する低周波成分(LF成分)を抽出し、トータルパワー(=HF+LF)との比率(=LF/(HF+LF))を数値化することにより、集中度CRを求めることができる。また、交感神経が優位にある場合にLF成分が現れるため、LF成分の数値を交感神経の活性度、即ち、集中度CRとしてもよい。 The bioinformation detection device 43 detects the bioinformation and determines the concentration level CR. The bioinformation detection device 43 includes a Doppler sensor (not shown). The Doppler sensor has directionality and the direction of direction can be controlled by a gimbal mechanism or the like. The Doppler sensor irradiates a sine wave radio wave of about 24 GHz, called the microwave band or the quasi-millimeter wave band, toward the human body detected by the infrared sensor 44. The Doppler sensor receives the reflected wave from the human body and detects the change in the movement of the body surface of the human body, that is, the human body's pulse wave. The pulse wave is a waveform that indicates the change in the movement of the human body surface due to the pulsation of the heart, and includes a waveform of the change in the movement of the blood vessels and a waveform of the change in the body surface of the heart. The bioinformation detection device 43 analyzes the pulse wave detected by the Doppler sensor and determines the concentration level CR. The bioinformation detection device 43 periodically analyzes the pulse wave and periodically determines the concentration level CR. Any known method can be used to derive the concentration level CR from the pulse wave. For example, time series data of heart rate fluctuations can be obtained from time series data of pulse waves, and this can be frequency analyzed to extract high frequency fluctuation components (HF components) corresponding to respiratory fluctuations and low frequency components (LF components) corresponding to Mayer waves, which are blood pressure fluctuations, and the concentration level CR can be calculated by quantifying the ratio (= LF/(HF + LF)) to the total power (= HF + LF). Also, since the LF component appears when the sympathetic nervous system is dominant, the numerical value of the LF component can be used as the activity level of the sympathetic nervous system, i.e., the concentration level CR.
 また、脈波から脈拍を抽出し、脈拍の変化を利用して、脳の覚醒度合いを求め、求めた覚醒度合いから集中度CRを推定することも可能である。例えば、脈拍の変化が大きければ覚醒度合いが大きく、集中度CRが高い状態である。一方、脈拍の変化が小さければ覚醒度合いが小さく眠気に襲われている状態であり、集中度CRが低い状態である。 It is also possible to extract the pulse rate from the pulse wave, use the changes in the pulse rate to determine the brain's level of alertness, and estimate the concentration level CR from the determined level of alertness. For example, a large change in the pulse rate indicates a high level of alertness and a high level of concentration CR. On the other hand, a small change in the pulse rate indicates a low level of alertness, a drowsy state, and a low level of concentration CR.
 体温は、寝ているときも起きている時も大きな変化がある。また、体温は、午前中に変化率が高く、午後は変化率が低い傾向がある。このため、体温変化率に基づいて集中度CRを判断することは精度が低く信頼性に欠ける。これに対し、脈波には、このような問題はなく、より高い精度で集中度CRを求めることができる。 Body temperature changes greatly whether you are asleep or awake. Also, body temperature tends to change more rapidly in the morning and less rapidly in the afternoon. For this reason, judging concentration level CR based on the rate of change of body temperature is inaccurate and unreliable. In contrast, pulse waves do not have these problems and can determine concentration level CR with greater accuracy.
 以下、温度センサ41と湿度センサ42と赤外線センサ44と生体情報検出装置43とを総称して、センサ群40と呼ぶ。それらの出力を総称してセンサ群40の出力群と呼ぶ。センサ群40の出力は、室内機制御部53に供給される。 Hereinafter, the temperature sensor 41, humidity sensor 42, infrared sensor 44, and biological information detection device 43 are collectively referred to as the sensor group 40. Their outputs are collectively referred to as the output group of the sensor group 40. The outputs of the sensor group 40 are supplied to the indoor unit control unit 53.
 室内空間71には図1に示すように、リモコン55が配置されている。リモコン55は、室内機制御部53と各種信号を送受信する。リモコン55は、表示部55aを備えている。リモコン55は、押圧ボタン、タッチスクリーン、液晶ディスプレイ、LED(Light Emitting Diode)等を備えており、ユーザHMからの各種指令を受け付ける指令受付部、及び、各種情報をユーザHMに表示する表示部55aとして機能する。ユーザHMは、リモコン55を操作することで、空気調和装置2に指令を入力する。指令は、例えば、運転と停止との切替指令、運転モード、設定温度、設定湿度、風量、風向、タイマ等の切替指令である。空気調和装置2は、入力した指令に従って運転する。 As shown in FIG. 1, a remote control 55 is placed in the indoor space 71. The remote control 55 transmits and receives various signals to the indoor unit control unit 53. The remote control 55 has a display unit 55a. The remote control 55 has push buttons, a touch screen, an LCD display, LEDs (Light Emitting Diodes), etc., and functions as a command receiving unit that receives various commands from the user HM, and as a display unit 55a that displays various information to the user HM. The user HM inputs commands to the air conditioning device 2 by operating the remote control 55. The commands are, for example, commands to switch between operation and stop, and commands to switch the operation mode, set temperature, set humidity, air volume, air direction, timer, etc. The air conditioning device 2 operates according to the input commands.
 情報機器90は、スマートフォン、タブレット等を含むユーザHM所有の機器である。情報機器90は、表示部90aを有している。表示部90aには、各種の情報が表示される。情報機器90は、空気調和装置用のアプリケーションがインストールされることによって、ネットワークNWを介した空気調和装置2の操作が可能となる。 The information device 90 is a device owned by the user HM, including a smartphone, tablet, etc. The information device 90 has a display unit 90a. Various information is displayed on the display unit 90a. The information device 90 is capable of operating the air conditioning device 2 via the network NW by installing an application for the air conditioning device.
 室内機13は、本体表示部58を更に備えている。本体表示部58は、空気調和装置2の運転状態、設定情報等の任意の情報をユーザHMに知らせるための表示部である。本体表示部58は、空気調和装置2の運転モードを含む、ユーザHMに報知する各種情報を表示する。なお、本体表示部58は、本開示の「表示手段」の一例に相当する。 The indoor unit 13 further includes a main body display unit 58. The main body display unit 58 is a display unit for informing the user HM of any information, such as the operating state of the air conditioning device 2, setting information, etc. The main body display unit 58 displays various information to be notified to the user HM, including the operating mode of the air conditioning device 2. The main body display unit 58 corresponds to an example of the "display means" of this disclosure.
 次に、空気調和装置2の制御機能を担当する室外機制御部51と、室内機13の動作を制御する室内機制御部53の詳細を、図3を参照して説明する。室外機制御部51と室内機制御部53とは、協働して空気調和システム1の全体を制御して、空調制御を行う制御部であり、以下、両者を纏めて制御装置50と呼ぶ。 Next, the details of the outdoor unit control unit 51, which is responsible for the control functions of the air conditioner 2, and the indoor unit control unit 53, which controls the operation of the indoor unit 13, will be described with reference to FIG. 3. The outdoor unit control unit 51 and the indoor unit control unit 53 are control units that work together to control the entire air conditioning system 1 and perform air conditioning control, and hereinafter, both will be collectively referred to as the control device 50.
 室外機制御部51は、室外機11の動作を制御する。室外機制御部51は、室外機11の全体を制御する制御部51aと、制御に必要なデータを記憶する記憶部51bと、時間を計時する計時部51cと、通信インタフェースの役割を担う通信部51dと、を備える。 The outdoor unit control unit 51 controls the operation of the outdoor unit 11. The outdoor unit control unit 51 includes a control unit 51a that controls the entire outdoor unit 11, a memory unit 51b that stores data necessary for control, a timer unit 51c that measures time, and a communication unit 51d that serves as a communication interface.
 制御部51aは、室内機制御部53から通信線63を介して、電源オンオフ、動作モード、設定温度、設定湿度、設定風量、タイマ情報、各種センサの検出データ等を含む制御指示信号を受信する。制御部51aは、制御指示信号に応答して、室外機11全体の制御、特に、室外機空調部81の制御、例えば、圧縮機21の動作周波数の制御、四方弁22の切り替えの制御、室外送風機31の回転速度の制御、膨張弁24の開度の制御等を行う。記憶部51bは、RAM(Random Access Memory)、ROM(Read Only Memory)などのメモリで構成されており、制御に必要なデータを記憶する。計時部51cは、時間を計る部分である。計時部51cは、RTC(Real Time Clock)を備えており、空気調和装置2の電源がオフの間も計時を継続する計時デバイスである。制御部51aは、タイマによる起動、停止等のために計時部51cによる計時時刻を参照する。通信部51dは、制御部51aが通信線63を介して室内機制御部53と通信するためのインタフェースである。 The control unit 51a receives control instruction signals including power on/off, operating mode, set temperature, set humidity, set air volume, timer information, detection data of various sensors, etc. from the indoor unit control unit 53 via the communication line 63. In response to the control instruction signals, the control unit 51a controls the entire outdoor unit 11, in particular the outdoor unit air conditioning unit 81, for example, controls the operating frequency of the compressor 21, controls the switching of the four-way valve 22, controls the rotation speed of the outdoor blower 31, and controls the opening degree of the expansion valve 24. The storage unit 51b is composed of memories such as RAM (Random Access Memory) and ROM (Read Only Memory), and stores data necessary for control. The clock unit 51c is a part that measures time. The clock unit 51c is equipped with an RTC (Real Time Clock), and is a clock device that continues to measure time even when the power to the air conditioning device 2 is off. The control unit 51a refers to the time measured by the clock unit 51c to start and stop the timer. The communication unit 51d is an interface that allows the control unit 51a to communicate with the indoor unit control unit 53 via the communication line 63.
 室内機制御部53は、リモコン55からのユーザHMの指示を受信し、制御指示情報を通信線63を介して室外機制御部51に供給すると共に室内機13の動作を制御する。室内機制御部53は、室内機13の全体を制御する制御部53aと、制御に必要なデータを記憶する記憶部53bと、時間を計時する計時部53cと、通信インタフェースの役割を担う通信部53dと、を備える。 The indoor unit control unit 53 receives instructions from the user HM via the remote control 55, supplies control instruction information to the outdoor unit control unit 51 via the communication line 63, and controls the operation of the indoor unit 13. The indoor unit control unit 53 includes a control unit 53a that controls the entire indoor unit 13, a memory unit 53b that stores data necessary for control, a timer unit 53c that measures time, and a communication unit 53d that acts as a communication interface.
 制御部53aは、リモコン55から、電源オンオフ、動作モード、設定温度、設定湿度、設定風量、タイマ情報、各種センサの検出データ等を含む制御情報を受信する。また、制御部53aは、センサ群40の出力群を受信する。制御部53aは、受信したこれらの情報に基づいて、室外機制御部51に制御指示信号を送信すると共にベーン34と室内送風機33を制御し、空調処理を行う。また、制御部53aは、室内機13の本体表示部58に、空気調和装置2の運転状態、運転モード、設定情報等の情報を表示させて、ユーザHMに報知する役割を担う。室内機13の本体表示部58のみならず、制御部53aは、リモコン55と、情報機器90に対して、空気調和装置2の運転状態を表示するように指示を送る。これにより、空気調和装置2の運転状態が、リモコン55の表示部55aと、情報機器90の表示部90aに表示される。かかる表示は、ユーザHMが空気調和装置2の運転状態を把握し易くする、または、ユーザHMが、より集中できるような行動へ導き得る等の効果を生じる。なお、制御部53aは、本開示の「指標値取得手段」および「制御手段」の一例に相当する。 The control unit 53a receives control information from the remote control 55, including power on/off, operating mode, set temperature, set humidity, set air volume, timer information, and detection data from various sensors. The control unit 53a also receives the outputs of the sensors 40. Based on the received information, the control unit 53a transmits a control instruction signal to the outdoor unit control unit 51 and controls the vane 34 and the indoor blower 33 to perform air conditioning processing. The control unit 53a also plays a role in displaying information such as the operating state, operating mode, and setting information of the air conditioning device 2 on the main body display unit 58 of the indoor unit 13 to notify the user HM. In addition to the main body display unit 58 of the indoor unit 13, the control unit 53a sends instructions to the remote control 55 and the information device 90 to display the operating state of the air conditioning device 2. As a result, the operating state of the air conditioning device 2 is displayed on the display unit 55a of the remote control 55 and the display unit 90a of the information device 90. Such a display has the effect of making it easier for the user HM to understand the operating state of the air conditioning device 2, or of guiding the user HM to take actions that allow him or her to concentrate more. Note that the control unit 53a corresponds to an example of the "index value acquisition means" and "control means" of the present disclosure.
 記憶部53bは、RAM、ROMなどのメモリで構成されており、制御に必要なプログラムとデータを記憶する。具体的には、記憶部53bは、冷房制御用、暖房制御用、除湿制御用などの一般的な空調制御プログラムを記憶すると共に、室内空間71のユーザHMの集中度CRを向上させる空調制御を制御部53aに実行させる制御プログラム、即ち、集中モード用制御プログラム(以下、単に制御プログラム)54を記憶している。ここで、「集中モード」とは、ユーザHMの集中度CRを向上させるための空調制御を行う運転モードを意味する。制御プログラム54は、機能的に、制御部53aに集中度CRを取得する処理を実行させる取得処理部54aと、制御部53aに、取得した集中度CRが低下且つ差分の絶対値が判定閾値Tha以上、であるか否かを判定する処理を含む判定処理を実行させる判定処理部54bと、制御部53aに集中モードでの空調処理を実行させる制御処理部54cと、設定値群54dを含む。 The storage unit 53b is composed of memories such as RAM and ROM, and stores programs and data necessary for control. Specifically, the storage unit 53b stores general air conditioning control programs such as cooling control, heating control, and dehumidification control, and also stores a control program for causing the control unit 53a to execute air conditioning control to improve the concentration level CR of the user HM in the indoor space 71, that is, a control program for concentration mode (hereinafter, simply referred to as control program) 54. Here, "concentration mode" refers to an operation mode in which air conditioning control is performed to improve the concentration level CR of the user HM. The control program 54 functionally includes an acquisition processing unit 54a that causes the control unit 53a to execute a process to acquire the concentration level CR, a determination processing unit 54b that causes the control unit 53a to execute a determination process including a process to determine whether the acquired concentration level CR has decreased and the absolute value of the difference is equal to or greater than the determination threshold value Tha, a control processing unit 54c that causes the control unit 53a to execute air conditioning processing in the concentration mode, and a set value group 54d.
 設定値群54dは、図4に示すように、集中度CRの低下の程度、または上昇の程度を判定するための基準値である判定閾値Tha,Thb、集中モードでの暖房時の制御対象と制御内容、冷蔵時の制御対象と制御内容、移行期間を記憶している。図4では、例えば、集中モードの暖房運転では、室温を設定値にかかわらず目標温度THoまで下降させ、湿度を設定値にかかわらず目標湿度HHoまで上昇させ、風量を設定値にかかわらず目標風量FHoまで上昇させ、風あて制御することが設定されている。また、移行期間は、集中モードが設定されてから、各制御対象が目標値に移行するまでの設定期間であり、図4では、Psに設定されている。図4では、4つの制御対象に共通の移行期間Psが設定されているが、制御対象毎に移行期間が個別に設定されてもよい。記憶部53bは、取得した集中度CRを時刻情報とともに保存する。なお、記憶部53bは、初期設定の集中度CRとして、入学試験、検定試験、競技大会など、集中力が高い時に示す値を保存している。 As shown in FIG. 4, the set value group 54d stores the judgment thresholds Tha and Thb, which are reference values for judging the degree of decrease or increase of the concentration level CR, the control target and control content during heating in the concentration mode, the control target and control content during refrigeration, and the transition period. In FIG. 4, for example, in the heating operation in the concentration mode, the room temperature is lowered to the target temperature THo regardless of the set value, the humidity is raised to the target humidity HHo regardless of the set value, and the air volume is raised to the target air volume FHo regardless of the set value, and the air blowing control is performed. The transition period is the set period from when the concentration mode is set until each control target transitions to the target value, and is set to Ps in FIG. 4. In FIG. 4, a common transition period Ps is set for the four control targets, but the transition period may be set individually for each control target. The memory unit 53b stores the acquired concentration level CR together with time information. The memory unit 53b stores the initial concentration level CR as a value that is shown when concentration is high, such as during entrance exams, qualification exams, and competitions.
 図3に示す計時部53cは、時間を計る部分である。計時部53cは、RTCを備えており、空気調和装置2の電源がオフの間も計時を継続する計時デバイスである。 The timer unit 53c shown in FIG. 3 is a unit that measures time. The timer unit 53c is equipped with an RTC and is a timing device that continues to measure time even when the power to the air conditioning device 2 is off.
 通信部53dは、室外機制御部51と通信し、また、情報機器90とネットワークNWを介して通信する。 The communication unit 53d communicates with the outdoor unit control unit 51 and also communicates with the information device 90 via the network NW.
 次に、室外機制御部51と室内機制御部53のハードウェア構成の一例について、図5(A)、(B)を参照しながら説明する。 Next, an example of the hardware configuration of the outdoor unit control unit 51 and the indoor unit control unit 53 will be described with reference to Figures 5 (A) and (B).
 室外機制御部51は、マイクロコントローラ等のコンピュータから構成され、例えば、図5(A)に示すように、バス1000を介して互いに接続された、制御プログラムを実行するプロセッサ1001と、主記憶領域として機能するメモリ1002と、制御プログラムを記憶する二次記憶装置1003と、信号を入出力する入出力(I/O)インタフェース1004と、通信を行う通信モジュール1005と、を備える。 The outdoor unit control unit 51 is composed of a computer such as a microcontroller, and includes, for example, a processor 1001 that executes a control program, a memory 1002 that functions as a main memory area, a secondary storage device 1003 that stores the control program, an input/output (I/O) interface 1004 that inputs and outputs signals, and a communication module 1005 that performs communication, all of which are connected to each other via a bus 1000, as shown in FIG. 5(A).
 プロセッサ1001は、例えばCPU(Central Processing Unit:中央算出装置)である。プロセッサ1001が、二次記憶装置1003に記憶された制御プログラムをメモリ1002に読み込んで実行する。 The processor 1001 is, for example, a CPU (Central Processing Unit). The processor 1001 loads a control program stored in the secondary storage device 1003 into the memory 1002 and executes it.
 メモリ1002は、例えば、RAMにより構成される主記憶装置である。メモリ1002は、プロセッサ1001のワークメモリとして機能し、プロセッサ1001が二次記憶装置1003から読み込んだ制御プログラムを記憶する。 Memory 1002 is, for example, a main storage device configured from a RAM. Memory 1002 functions as a work memory for processor 1001, and stores the control program that processor 1001 reads from secondary storage device 1003.
 二次記憶装置1003は、フラッシュメモリ、HDD(Hard Disk Drive)、SSD(Solid State Drive)等から構成される。二次記憶装置1003は、プロセッサ1001が実行する制御プログラム、固定データ等を記憶する。 The secondary storage device 1003 is composed of a flash memory, a hard disk drive (HDD), a solid state drive (SSD), etc. The secondary storage device 1003 stores the control program executed by the processor 1001, fixed data, etc.
 I/O(Input/Output)インタフェース1004は、シリアルポート、USB(Universal Serial Bus)ポートインタフェース等から構成される。I/Oインタフェース1004は、室外機11内の室外機空調部81、例えば、圧縮機21、四方弁22、膨張弁24、室外送風機31等に制御信号を送信して、プロセッサ1001による制御を可能とする。 The I/O (Input/Output) interface 1004 is composed of a serial port, a USB (Universal Serial Bus) port interface, etc. The I/O interface 1004 transmits control signals to the outdoor unit air conditioning section 81 in the outdoor unit 11, such as the compressor 21, the four-way valve 22, the expansion valve 24, the outdoor blower 31, etc., enabling control by the processor 1001.
 通信モジュール1005は、ネットワークインタフェース等から構成され、プロセッサ1001と室内機制御部53との間の通信を実現する。 The communication module 1005 is composed of a network interface, etc., and realizes communication between the processor 1001 and the indoor unit control unit 53.
 制御部51aと計時部51cとは、例えば、プロセッサ1001とI/Oインタフェース1004とから構成される。また、記憶部51bは、メモリ1002と二次記憶装置1003から構成される。また、通信部51dは、例えば、通信モジュール1005から構成される。 The control unit 51a and the timer unit 51c are each composed of, for example, a processor 1001 and an I/O interface 1004. The storage unit 51b is composed of a memory 1002 and a secondary storage device 1003. The communication unit 51d is composed of, for example, a communication module 1005.
 一方、室内機制御部53は、マイクロコントローラ等のコンピュータから構成され、例えば、図5(B)に示すように、バス1010を介して互いに接続された、制御プログラムを実行するプロセッサ1011と、主記憶領域として機能するメモリ1012と、制御プログラムを記憶する二次記憶装置1013と、信号を入出力するI/Oインタフェース1014と、通信を行う通信モジュール1015と、を備える。プロセッサ1011と、メモリ1012と、二次記憶装置1013と、I/Oインタフェース1014と、通信モジュール1015とは、図5(A)に示す室外機制御部51を構成するバス1000と、プロセッサ1001と、メモリ1002と、二次記憶装置1003と、I/Oインタフェース1004と、通信モジュール1005と、同一の構成と機能を備える。ただし、二次記憶装置1013は、集中モード用制御プログラム54を記憶し、I/Oインタフェース1014は、センサ群40、リモコン55、本体表示部58と室内機空調部82、例えばベーン34の駆動機構に接続されている。また、通信モジュール1015は、室外機制御部51とネットワークNWに接続されている。 On the other hand, the indoor unit control unit 53 is composed of a computer such as a microcontroller, and includes, for example, a processor 1011 that executes a control program, a memory 1012 that functions as a main memory area, a secondary storage device 1013 that stores the control program, an I/O interface 1014 that inputs and outputs signals, and a communication module 1015 that performs communication, all of which are connected to one another via a bus 1010, as shown in Fig. 5(B). The processor 1011, memory 1012, secondary storage device 1013, I/O interface 1014, and communication module 1015 have the same configurations and functions as the bus 1000, processor 1001, memory 1002, secondary storage device 1003, I/O interface 1004, and communication module 1005 that constitute the outdoor unit control unit 51 shown in Fig. 5(A). However, the secondary storage device 1013 stores the control program 54 for the concentrated mode, and the I/O interface 1014 is connected to the sensor group 40, the remote control 55, the main body display unit 58, and the indoor unit air conditioning unit 82, for example, the drive mechanism of the vane 34. In addition, the communication module 1015 is connected to the outdoor unit control unit 51 and the network NW.
 ここまで、空気調和システム1の構成について説明した。続いて、その動作について説明する。
 空気調和装置2は、通常時は、一般的な通常モードでの空調運転を行っているが、集中モードによる空調運転に切り替わると、ユーザHMの集中度CRを向上させるような、例えば予め設定されているような集中度向上制御処理を実行する。以下、理解を容易にするため、図2に例示した使用環境で、空気調和装置2が実行する集中度向上制御処理を説明する。
Up to this point, a description has been given of the configuration of the air conditioning system 1. Next, a description will be given of its operation.
The air conditioning device 2 normally performs air conditioning operation in a general normal mode, but when it switches to air conditioning operation in the concentration mode, it executes, for example, a preset concentration improvement control process that improves the concentration level CR of the user HM. For ease of understanding, the concentration improvement control process executed by the air conditioning device 2 in the usage environment exemplified in Fig. 2 will be described below.
 ユーザHMが、パソコンでの作業、書物を読む作業など各種の作業を継続して行い、集中力の低下を感じ始めたとき等に、リモコン55を用いて「集中モード」を選択する。すると、その選択が制御部53aに判別され、制御部53aは、集中モード用制御プログラム54の実行を開始する。制御部53aは、まず、赤外線センサ44によりユーザHMの存在を特定し、生体情報検出装置43に対して、ユーザHMの集中度CRを取得するために指示を送る。 When user HM continues to perform various tasks such as working on a computer or reading a book and begins to feel a decline in his/her concentration, he/she selects "concentration mode" using remote control 55. This selection is then recognized by control unit 53a, which starts executing control program 54 for concentration mode. First, control unit 53a identifies the presence of user HM using infrared sensor 44, and sends an instruction to biometric information detection device 43 to obtain the concentration level CR of user HM.
 また、制御部53aは、図6に示す集中度向上制御処理を開始する。
 まず、制御部53aは、生体情報検出装置43からユーザHMの集中度CRを取得し記憶する(ステップS101)。制御部53aは、前回取得した集中度CRt-1と、今回取得した集中度CRtとの差分CB(=CRt-CRt-1)が負の値であり、且つ、差分CBの絶対値が判定閾値Tha以上であるか否かを判定する(ステップS102)。上述したように、記憶部53bは、初期設定の集中度CRt-1として、集中力が高い時に示す値を保存している。このため、制御部53aは、初回には、前回取得した集中度CRt-1を、初期設定の集中度CRとして、ステップS102の処理を行う。
Furthermore, the control unit 53a starts the concentration improvement control process shown in FIG.
First, the control unit 53a acquires and stores the concentration level CR of the user HM from the bioinformation detection device 43 (step S101). The control unit 53a judges whether the difference CB t (=CR t -CR t-1 ) between the previously acquired concentration level CR t-1 and the currently acquired concentration level CR t is a negative value and whether the absolute value of the difference CB t is equal to or greater than the judgment threshold value Tha (step S102). As described above, the storage unit 53b stores a value that indicates a high level of concentration as the initial concentration level CR t-1 . For this reason, the control unit 53a performs the process of step S102 for the first time by setting the previously acquired concentration level CR t-1 as the initial concentration level CR.
 ユーザHMは、集中力の低下を感じ始めて「集中モード」を選択しているので、初回は、集中度CRは低下し、且つ、差分CBの絶対値は判定閾値Tha以上である(ステップS102:Yes)と想定する。制御部53aは、集中度CRは低下し、且つ、差分CBの絶対値は判定閾値Tha以上であると判定した場合(ステップS102:Yes)、集中度向上運転を実行する(ステップS103)。集中度向上運転は、ユーザHMの集中度CRを増大させるために行う運転を意味する。なお、制御部53aは、計時部53cに基づいて、集中度向上運転の実行開始時刻を、記憶部53bに保存する。 Since the user HM has started to feel a decrease in concentration and has selected the "concentration mode", it is assumed that the concentration level CR has decreased and the absolute value of the difference CB t is equal to or greater than the judgment threshold Tha (step S102: Yes) for the first time. When the control unit 53a determines that the concentration level CR has decreased and the absolute value of the difference CB t is equal to or greater than the judgment threshold Tha (step S102: Yes), it executes a concentration level improvement operation (step S103). The concentration level improvement operation refers to an operation performed to increase the concentration level CR of the user HM. The control unit 53a stores the start time of the execution of the concentration level improvement operation in the memory unit 53b based on the timer unit 53c.
 集中度向上運転では、ユーザHMの設定と離れて、冷房の場合、図4に例示するように、例えば、移行期間Psの間に室温を目標温度TCoまで下げ、湿度を移行期間Psの間に目標湿度HCoまで下げ、移行期間Psの間に風量を目標風量FCoまで増大させ、風向きを風あて制御にし、暖房の場合、室温を目標温度THoまで下げ、湿度を目標湿度HHoまで上げ、風量を目標風量FHoまで増大させ、風向きを風あて制御にする。なお、風あて制御は、図7(A)に模式的に示すように、ユーザHMに室内機13からの送風が空中を流れて直接当たるように風向を制御する方法である。風あて制御は、送風が床、壁などに当たってからユーザHMまで届く態様の送風を含まない。また、ユーザHMの足下に風を当てる例に限定されず、生体情報検出装置43と赤外線センサ44によりユーザHMの体の部位を特定し、予め設定された部位、例えば、腰、胸、顔、頭等に風が当たるように、風向を制御してもよい。なお、ユーザHMの体の部位を判別する必要がある場合には、例えば、センサ群40に画像センサを追加し、画像解析から部位を求めるようにしてもよい。 In the concentration improvement operation, apart from the settings of the user HM, in the case of cooling, as illustrated in FIG. 4, for example, the room temperature is lowered to the target temperature TCo during the transition period Ps, the humidity is lowered to the target humidity HCo during the transition period Ps, the air volume is increased to the target air volume FCo during the transition period Ps, and the air direction is set to air blowing control, while in the case of heating, the room temperature is lowered to the target temperature THo, the humidity is raised to the target humidity HHo, the air volume is increased to the target air volume FHo, and the air direction is set to air blowing control. Note that air blowing control is a method of controlling the air direction so that the air blown from the indoor unit 13 flows through the air and hits the user HM directly, as shown diagrammatically in FIG. 7(A). Air blowing control does not include air blowing in a manner in which the air hits the floor, wall, etc. before reaching the user HM. Furthermore, the example is not limited to blowing wind on the feet of the user HM, but the body part of the user HM may be identified using the biometric information detection device 43 and the infrared sensor 44, and the wind direction may be controlled so that the wind blows on a preset part, such as the waist, chest, face, head, etc. If it is necessary to determine the body part of the user HM, for example, an image sensor may be added to the sensor group 40, and the part may be determined from image analysis.
 集中度向上運転のため、制御部53aは、その時点の室温TR、湿度HR、風量FR、風向きを特定する。
 次に、制御部53aは、暖房の場合、現在の室温TRと予め設定されている集中度向上制御での目標室温THoとの温度差DT、現在の湿度HRと予め設定されている集中度向上制御での目標湿度HHoとの湿度差DH、現在の風量FRと予め設定されている集中度向上制御での目標風量FHoとの風量差DFを特定する。さらに、制御部53aは、図7(A)、(B)に例示するように、ユーザHMの位置と送風が床に当たる現在の位置とを特定し、両者の距離DLを求め、風向きを示すデータとする。なお、風向きを示すデータとして、送風の鉛直方向からの傾斜角などを採用してもよい。
For the concentration improvement operation, the control unit 53a identifies the room temperature TR, humidity HR, air volume FR, and air direction at that time.
Next, in the case of heating, the control unit 53a specifies the temperature difference DT between the current room temperature TR and the target room temperature THo in the preset concentration improvement control, the humidity difference DH between the current humidity HR and the target humidity HHo in the preset concentration improvement control, and the air volume difference DF between the current air volume FR and the target air volume FHo in the preset concentration improvement control. Furthermore, as shown in Fig. 7 (A) and (B), the control unit 53a specifies the position of the user HM and the current position where the blown air hits the floor, calculates the distance DL between them, and sets it as data indicating the wind direction. Note that the data indicating the wind direction may be the inclination angle of the blown air from the vertical direction, or the like.
 次に、求めた温度差DT、湿度差DH、風量差DF、距離DLを予め設定されている移行期間Psで除算し、単位時間あたりの変更量を求める。例えば、暖房運転状態で、現在の室温がTR℃、予め設定されている目標室温がTHo℃、移行期間をPs[m]とすると、単位時間あたりの温度の変化量ΔTは(TR-THo)/Ps[℃/m」と求められる。同様に、図7(A)、(B)に模式的に示すように現在の送風が床に当たる位置とユーザHMの位置の距離をDL[m]とすると、暖房運転でDL=0とするために、単位時間あたりの送風位置の移動量ΔDLはDL[m]/Ps[m]と求められる。湿度の変化量ΔHと風量の変化量ΔFについても同様に求める。 Next, the calculated temperature difference DT, humidity difference DH, airflow difference DF, and distance DL are divided by the preset transition period Ps to determine the amount of change per unit time. For example, in heating operation, if the current room temperature is TR°C, the preset target room temperature is THo°C, and the transition period is Ps [m], the amount of change in temperature per unit time ΔT is calculated as (TR-THo)/Ps [°C/m]. Similarly, as shown in Figs. 7(A) and (B) diagrammatically, if the distance between the position where the current airflow hits the floor and the position of the user HM is DL [m], the amount of movement ΔDL of the airflow position per unit time to make DL=0 in heating operation is calculated as DL [m]/Ps [m]. The amount of change in humidity ΔH and the amount of change in airflow ΔF are calculated in the same manner.
 制御部53aは、動作モードが集中モードであること、暖房と冷房の別、目標温度、目標湿度、目標風量、目標風向、単位変化量ΔT,ΔH,ΔF,ΔDL、等の情報を含む制御指示信号を室外機制御部51に通信部53dを介して送信する。 The control unit 53a transmits a control instruction signal to the outdoor unit control unit 51 via the communication unit 53d, including information such as the fact that the operating mode is the concentrated mode, whether it is heating or cooling, the target temperature, the target humidity, the target air volume, the target air direction, the unit changes ΔT, ΔH, ΔF, ΔDL, etc.
 室外機制御部51の制御部51aは、通信部51dを介して制御部53aから送信された制御指示信号を受信し、温度、風量を、単位変化量ΔT,ΔFで、目標温度THo又はTCo、目標風量FHo又はFCoまで変化させるように、計時部51cの計時時間を参照しつつ、室外機空調部81、すなわち、圧縮機21の回転周波数、膨張弁24の開度、室外送風機31の送風量などを制御する。 The control unit 51a of the outdoor unit control unit 51 receives the control instruction signal sent from the control unit 53a via the communication unit 51d, and controls the outdoor unit air conditioning unit 81, i.e., the rotational frequency of the compressor 21, the opening of the expansion valve 24, the air volume of the outdoor blower 31, etc., while referring to the time measured by the timing unit 51c, so as to change the temperature and air volume to the target temperature THo or TCo and the target air volume FHo or FCo by unit changes ΔT and ΔF.
 同様に、室内機制御部53の制御部53aは、温度、湿度、風量、送風を単位変化量ΔT,ΔH,ΔF、ΔDLで、目標温度THo又はTCo、目標湿度HHo又はHCo、目標風量FHo又はFCo、目標位置まで変化させるように、計時部53cの計時時間を参照しつつ、室内機空調部82,すなわち、室内送風機33の熱交換量、送風量、調湿量、ベーン34の向き等を制御する。 Similarly, the control unit 53a of the indoor unit control unit 53 controls the indoor unit air conditioning unit 82 (i.e., the heat exchange amount, airflow amount, humidity control amount, and vane 34 direction, etc.) of the indoor blower 33 while referring to the time measured by the timer unit 53c, so as to change the temperature, humidity, airflow amount, and airflow by unit changes ΔT, ΔH, ΔF, and ΔDL to the target temperature THo or TCo, target humidity HHo or HCo, target airflow FHo or FCo, and target position.
 なお、制御部51aと53aは、温度等の各制御対象が目標値に達した場合には、以後は、その目標値を維持するように制御する。 In addition, when each controlled object, such as temperature, reaches a target value, the control units 51a and 53a control the object to maintain that target value.
 図6に戻り、制御部53aは、ステップS101で取得した集中度CRが、低下して且つ差分の絶対値は判定閾値Tha以上ではないと判定した場合(ステップS102:No)、ユーザHMの集中度CRが上昇、維持、または、低下の度合いが著しくはない状態のため、集中度向上運転を行わず、処理をステップS108へ進め、「集中モード」が停止されたか否かを判定する(ステップS108)。「集中モード」が停止されたと判定した場合(ステップS108:Yes)、制御部53aは、集中度向上制御処理を終了し、室外機制御部51にも集中モード終了を示す制御指示信号を送信する。室外機制御部51も停止の処理を行う。なお、通常モードの動作に復帰してもよい。「集中モード」の停止は、リモコン55による「集中モード」の終了の指示が行われた場合と、空気調和装置2の運転停止の指示が行われた場合等を含む。 Returning to FIG. 6, if the control unit 53a determines that the concentration level CR acquired in step S101 has decreased and the absolute value of the difference is not equal to or greater than the judgment threshold value Tha (step S102: No), the concentration level CR of the user HM is not increasing, being maintained, or decreasing significantly, so the control unit 53a does not perform the concentration level improvement operation and proceeds to step S108 to determine whether the "concentration mode" has been stopped (step S108). If the control unit 53a determines that the "concentration mode" has been stopped (step S108: Yes), the control unit 53a ends the concentration level improvement control process and also transmits a control instruction signal to the outdoor unit control unit 51 indicating the end of the concentration mode. The outdoor unit control unit 51 also performs a stop process. The control unit 53a may return to normal mode operation. Stopping the "concentration mode" includes a case where an instruction to end the "concentration mode" is given by the remote control 55, a case where an instruction to stop the operation of the air conditioning device 2 is given, etc.
 一方、ステップS108で、「集中モード」が停止されていないと判定した場合(ステップS108:No)、処理はステップS101に戻る。 On the other hand, if it is determined in step S108 that the "concentration mode" has not been stopped (step S108: No), the process returns to step S101.
 ステップS103の集中度向上運転を一定期間継続すると、制御部53aは、記憶部53bに保存された集中度向上運転実行開始時刻と、計時部53cとに基づいて、集中度向上運転を予め定められた時間以上実施しているか否かを判定する(ステップS104)。本実施の形態において、予め定められた時間は3分である。なお、集中度向上運転の実行時間は3分に限らず5分であってもよく、本実施の形態の作用効果を奏するならば、任意の実行時間でもよい。 When the concentration improvement operation in step S103 continues for a certain period of time, the control unit 53a determines whether the concentration improvement operation has been performed for a predetermined time or longer based on the concentration improvement operation execution start time stored in the memory unit 53b and the timing unit 53c (step S104). In this embodiment, the predetermined time is three minutes. Note that the execution time of the concentration improvement operation is not limited to three minutes, but may be five minutes, or any execution time may be used as long as the effect of this embodiment is achieved.
 制御部53aは、集中度向上運転を予め定められた時間以上実施していないと判定した場合(ステップS104:No)、ステップS101と同様に、生体情報検出装置43から集中度CRを取得する(ステップS105)。制御部53aは、ステップS105で取得した集中度CRが、予め定められた判定閾値Thb以上であるか否かを判定する(ステップS106)。制御部53aは、集中度CRが判定閾値Thb以上ではないと判定した場合(ステップS106:No)、ユーザHMの集中度CRは向上していない状態である。このため、制御部53aは、集中度向上運転を継続しながら、処理をステップS104へ戻す。 If the control unit 53a determines that the concentration improvement operation has not been performed for a predetermined time or longer (step S104: No), it acquires the concentration level CR from the bioinformation detection device 43, as in step S101 (step S105). The control unit 53a judges whether the concentration level CR acquired in step S105 is equal to or greater than a predetermined judgment threshold Thb (step S106). If the control unit 53a judges that the concentration level CR is not equal to or greater than the judgment threshold Thb (step S106: No), the concentration level CR of the user HM has not improved. Therefore, the control unit 53a returns the process to step S104 while continuing the concentration improvement operation.
 制御部53aは、集中度CRが判定閾値Thb以上であると判定した場合(ステップS106:Yes)、ユーザHMの集中度CRを向上させた状態に至っている。このため、制御部53aは、集中度向上運転を停止する(ステップS107)。制御部53aは、集中モードの停止(ステップS108:Yes)を経て、集中度向上制御処理を終了し、通常運転モードに復帰する。あるいは、空気調和装置2の動作を停止してもよい。なお、制御部53aは、ステップS108で集中モードは停止していないと判定した場合(ステップS108:No)、処理をステップS101へ戻す。 When the control unit 53a determines that the concentration level CR is equal to or greater than the judgment threshold Thb (step S106: Yes), the concentration level CR of the user HM has been improved. Therefore, the control unit 53a stops the concentration level improvement operation (step S107). After stopping the concentration mode (step S108: Yes), the control unit 53a ends the concentration level improvement control process and returns to the normal operation mode. Alternatively, the operation of the air conditioning device 2 may be stopped. Note that when the control unit 53a determines in step S108 that the concentration mode has not been stopped (step S108: No), the process returns to step S101.
 制御部53aは、集中度向上運転を予め定められた時間以上実施していると判定した場合(ステップS104:Yes)、集中度向上運転を停止する(ステップS107)。集中度向上運転は、通常の運転からの変化によって効果が発生し易い。このため、集中度向上運転を継続しても集中度CRを向上させる効果は低くなる傾向にあることから、制御部53aは、予め定められた時間以上の実施で集中度向上運転を停止する。ステップS107以後の処理は、上記と同様である。 If the control unit 53a determines that the concentration improving driving has been performed for a predetermined time or longer (step S104: Yes), it stops the concentration improving driving (step S107). The effect of concentration improving driving is likely to be produced by a change from normal driving. For this reason, even if the concentration improving driving is continued, the effect of improving the concentration level CR tends to decrease, so the control unit 53a stops the concentration improving driving if it has been performed for a predetermined time or longer. The processing from step S107 onwards is the same as above.
 また、制御部53aは、ステップS106で集中度向上運転を実行している間、制御態様を示す情報を、室内機13の本体表示部58に表示する。具体的には、制御部53aは、図4に例示する集中モード用制御態様テーブルの運転モードと、制御対象と、制御内容を示す情報を、ユーザHMに報知する情報として、室内機13の本体表示部58に表示させる。制御部53aは、リモコン55の表示部55a、情報機器90の表示部90aに集中モード用制御態様テーブルの運転モードと、制御対象と、制御内容を示す情報を、ユーザHMに報知する情報として表示するように、リモコン55と情報機器90に指示を送ってもよい。また、制御部53aは、集中度向上運転の際、制御態様を示す情報を、音声によって報知してもよい。例えば、制御部53aは、室内機13に設けられたスピーカによって報知してもよい。 In addition, while the concentration improvement operation is being performed in step S106, the control unit 53a displays information indicating the control mode on the main body display unit 58 of the indoor unit 13. Specifically, the control unit 53a causes the main body display unit 58 of the indoor unit 13 to display information indicating the operation mode, the control target, and the control content in the control mode table for the concentration mode, as illustrated in FIG. 4, as information to be notified to the user HM. The control unit 53a may send an instruction to the remote control 55 and the information device 90 to display information indicating the operation mode, the control target, and the control content in the control mode table for the concentration mode on the display unit 55a of the remote control 55 and the display unit 90a of the information device 90 as information to be notified to the user HM. In addition, the control unit 53a may notify the information indicating the control mode by voice during the concentration improvement operation. For example, the control unit 53a may notify by a speaker provided in the indoor unit 13.
 以上、集中度向上制御処理において、集中度CRに基づいて、集中度CRを増大させるように空調部を制御することを説明した。なお、本実施の形態において、「集中度CRに基づいて」とは、集中度向上運転を実行するか否か及び集中度向上運転を継続するか否かを、「集中度CRに基づいて」判定しているということを意味している。 As described above, in the concentration improvement control process, the air conditioning unit is controlled to increase the concentration level CR based on the concentration level CR. Note that in this embodiment, "based on the concentration level CR" means that the determination as to whether or not to execute the concentration improvement operation and whether or not to continue the concentration improvement operation is made "based on the concentration level CR."
 以上説明したように、実施の形態1に係る空気調和システム1において、制御部53aは、ユーザHMの脈波に基づいて集中度CRを判別している。脈波に基づいた集中度CRの推定は、体温に基づく集中度CRの推定よりも信頼度を高くすることが可能である。このため、ユーザHMの集中度CRの低下をより高精度で判定し、集中モードを設定し、集中しやすい環境を提供することが可能となる。
 また、集中度向上運転においては、単純に温冷感を下げるだけでなく、ユーザHM自身に室内機13からの調和空気を直接当てる風あて制御を行うこと、調湿制御を行うことにより、より集中しやすい環境を提供することが可能となる。
As described above, in the air conditioning system 1 according to the first embodiment, the control unit 53a determines the concentration level CR based on the pulse wave of the user HM. Estimation of the concentration level CR based on the pulse wave can be more reliable than estimation of the concentration level CR based on body temperature. This makes it possible to determine a decrease in the concentration level CR of the user HM with higher accuracy, set a concentration mode, and provide an environment that is easy to concentrate.
In addition, in the concentration improvement operation, it is possible to provide an environment that is easier to concentrate in by not simply reducing the sense of warmth or cold, but by performing airflow control to directly blow conditioned air from the indoor unit 13 onto the user HM himself/herself, and by performing humidity control.
(実施の形態1の変形例)
 上記実施の形態1は、種々の変更が可能である。
 例えば、実施形態1では、集中度向上制御処理において、集中度向上運転を行うか否かの判定(ステップS102)を、集中度CRの差分CB(=CRt-CRt-1)に基づいて行ったが、これは一例である。任意の集中度CRのサンプルデータ、例えば、サンプルデータCRt-mとCRt-nを使用してもよい。なお、m、nは自然数、m<nである。また、複数の差分の移動平均などを用いてもよい。以下の説明において、異なるタイミングで得られたサンプルデータを使用する場面も同様である。
(Modification of the first embodiment)
The above-mentioned first embodiment can be modified in various ways.
For example, in the first embodiment, in the concentration improvement control process, the determination of whether or not to perform concentration improvement driving (step S102) is made based on the difference CB t (= CR t - CR t-1 ) in the concentration level CR, but this is just one example. Any sample data of the concentration level CR, for example, sample data CR tm and CR tn , may be used. Note that m and n are natural numbers, m < n. Also, a moving average of multiple differences may be used. In the following description, the same applies to situations in which sample data obtained at different times is used.
 実施の形態1では、集中度向上制御処理において、集中度向上運転を行うか否かの判定(ステップS102)を、集中度CRが低下し且つ集中度CRの差分の絶対値が判定閾値Tha以上であるか否かにより行ったが、本開示はこれに限られない。制御部53aは、集中度向上運転を行うか否かの判定(ステップS102)を、集中度CRが低下し且つ集中度CRの比率RC(=CRt/CRt-1)が、予め定められた判定閾値Thc以上であるか否かで行ってもよい。
 また、集中度向上運転を行うか否かの判定(ステップS102)を、集中度CRと、予め定められた判定閾値Thbとの比較によって行ってもよい。例えば、制御部53aは、集中度向上運転を行うか否かの判定(ステップS102)を、集中度CRが判定閾値Thbより小さいか否かで行ってもよい。制御部53aは、集中度CRが判定閾値Thbより小さい場合、集中度向上運転を実行してもよい。
In the first embodiment, in the concentration improvement control process, the determination of whether or not to perform the concentration improvement operation (step S102) is performed based on whether or not the concentration level CR has decreased and the absolute value of the difference in the concentration levels CR is equal to or greater than the determination threshold value Tha, but the present disclosure is not limited to this. The control unit 53a may determine whether or not to perform the concentration improvement operation (step S102) based on whether or not the concentration level CR has decreased and the ratio RCt (= CRt /CRt -1 ) of the concentration levels CR is equal to or greater than a predetermined determination threshold value Thc.
Furthermore, the determination of whether or not to perform the concentration-improving operation (step S102) may be performed by comparing the concentration level CR with a predetermined determination threshold value Thb. For example, the control unit 53a may determine whether or not to perform the concentration-improving operation (step S102) based on whether or not the concentration level CR is smaller than the determination threshold value Thb. When the concentration level CR is smaller than the determination threshold value Thb, the control unit 53a may execute the concentration-improving operation.
 実施の形態1では、集中度向上制御処理において、集中度向上運転を継続するか否かの判定(ステップS106)を、集中度CRが判定閾値Thb以上であるか否かにより判定したが、本開示はこれに限られない。制御部53aは、集中度向上運転を継続するか否かの判定(ステップS106)を、前回取得した集中度CRt-1と、今回取得した集中度CRtとの差分RB(=CRt-CRt-1)が、予め定められた判定閾値Thv以上であるか否かで行ってもよい。また、両者の比率RC(=CRt/CRt-1)が、予め定められた判定閾値Thr以上であるか否かで判定してもよい。 In the first embodiment, in the concentration improvement control process, the determination of whether or not to continue the concentration improvement operation (step S106) is made based on whether or not the concentration level CR is equal to or greater than the determination threshold Thb, but the present disclosure is not limited to this. The control unit 53a may determine whether or not to continue the concentration improvement operation (step S106) based on whether or not the difference RB t (= CR t - CR t-1 ) between the previously acquired concentration level CR t-1 and the currently acquired concentration level CR t is equal to or greater than a predetermined determination threshold Thv. Alternatively, the control unit 53a may determine whether or not to continue the concentration improvement operation (step S106) based on whether or not the ratio RC t (= CR t /CR t-1 ) between the two is equal to or greater than a predetermined determination threshold Thr.
 また、集中度向上運転において、集中度CRを監視し、集中度CRが上昇するように、制御対象を制御してもよい。
 例えば、集中度向上運転中のあるタイミングtで、前回の集中度CRt-1と今回の集中度CRtとの差分CB(=CRt-CRt-1)が正の値であれば、予定されている制御内容をそのまま継続し、差分CBが負の値であれば、集中度CRが確実に上昇するように、集中度CRと正の相関を有する制御対象の制御量を予定量よりも大きくしてもよい。例えば、タイミングtにおいて、湿度をΔHだけ上昇させる制御態様が予定されている場合に、湿度をΔH+αだけ上昇させる。ここで、αは正の値で、α=f(CB)で表される。関数fは差分CBが小さい(絶対値が大きい)程大きくなる関数である。他の制御対象の制御についても同様である。また、前回の集中度CRt-1と今回の集中度CRtとの比率RC(=CRt/CRt-1)が「1」未満のときにも、同様の処理が可能である。
In addition, in the driving to improve concentration, the concentration level CR may be monitored, and the controlled object may be controlled so that the concentration level CR increases.
For example, at a certain timing t during the concentration improvement operation, if the difference CB t (= CR t - CR t-1 ) between the previous concentration CR t-1 and the current concentration CR t is a positive value, the scheduled control content is continued as is, and if the difference CB t is a negative value, the control amount of the control object having a positive correlation with the concentration CR may be made larger than the scheduled amount so that the concentration CR is surely increased. For example, if a control mode for increasing the humidity by ΔH t is scheduled at the timing t, the humidity is increased by ΔH t + α. Here, α is a positive value and is expressed as α = f (CB t ). The function f is a function that increases as the difference CB t is smaller (the absolute value is larger). The same applies to the control of other control objects. Also, the same processing is possible when the ratio RC t (= CR t / CR t -1 ) between the previous concentration CR t-1 and the current concentration CR t is less than "1".
 また、集中度CRの目標値CRを設定し、生体情報検出装置43により周期的に集中度CRを取得し、偏差eCR(=CR-CR)を求め、偏差eCRに基づいて、PID制御(比例積分微分制御)を用いて、温度、湿度、風量、風向の変更量ΔT、ΔH、ΔF、ΔL、を次式で示すように制御してもよい。
ΔT=a1・eCR+b1・∫eCRdt+c1・eCR/dt
ΔH=a2・eCR+b2・∫eCRdt+c2・eCR/dt
ΔF=a3・eCR+b3・∫eCRdt+c3・eCR/dt
ΔL=a4・eCR+b4・∫eCRdt+c4・eCR/dt
 なお、a1,...a,b1,...b,c1,...c,は係数である。
In addition, a target value CR o for the concentration level CR may be set, the concentration level CR may be periodically acquired using the bio-information detection device 43, and the deviation eCR (= CR o - CR) may be calculated. Based on the deviation eCR, PID control (proportional integral differential control) may be used to control the change amounts ΔT, ΔH, ΔF, and ΔL of the temperature, humidity, air volume, and air direction as shown in the following equation.
ΔT= a1・eCR+ b1・∫eCRdt+ c1・eCR/dt
ΔH= a2 ·eCR+ b2 ·∫eCRdt+ c2 ·eCR/dt
ΔF= a3 ·eCR+ b3 ·∫eCRdt+ c3 ·eCR/dt
ΔL= a4 ·eCR+ b4 ·∫eCRdt+ c4 ·eCR/dt
Note that a 1 , ...a 4 , b 1 , ...b 4 , c 1 , ...c 4 are coefficients.
 また、機械学習技術を用いてもよい。この場合、制御部53aは、機械学習装置を備える。機械学習装置は、例えば、集中度CRの目標値CR及び偏差eCRと、温度と湿度と風量と風向の目標値To、Ho、Fo、Loとの関係を学習データとして学習する。機械学習装置は、実際の制御の場面では、目標値CRと偏差eCRとを入力し、温度の目標値Toと湿度の目標値Hoと風量の目標値Foと風向の目標値Loを出力する。制御部53aは、各目標値が得られるように、室内機空調部82を制御し、さらに、制御部51aを介して室外機空調部81を制御する。
 なお、機械学習装置の入力を、例えば、集中度CRの目標値CRとその時点の温度Tと湿度Hと風量DFと風向Lとし、出力を制御対象別の目標値としてもよい。
Machine learning technology may also be used. In this case, the control unit 53a includes a machine learning device. The machine learning device learns, for example, the relationship between the target value CR o and deviation eCR of the concentration level CR and the target values To, Ho, Fo, and Lo of the temperature, humidity, air volume, and wind direction as learning data. In an actual control situation, the machine learning device inputs the target value CR o and deviation eCR, and outputs the target value To of the temperature, the target value Ho of the humidity, the target value Fo of the air volume, and the target value Lo of the wind direction. The control unit 53a controls the indoor unit air conditioning unit 82 so that each target value is obtained, and further controls the outdoor unit air conditioning unit 81 via the control unit 51a.
The input to the machine learning device may be, for example, the target value CR o of the concentration level CR, the temperature T, humidity H, air volume DF, and wind direction L at that time, and the output may be a target value for each control object.
 実施の形態1では、集中度向上運転をステップS103で実行した後に、制御部53aは、集中度向上運転の実行時間の判定処理(ステップS104)を行っているが、本開示はこれに限られない。制御部53aは、ステップS104の判定処理を行うことなく、集中モード終了の指示あるいは空調終了の指示があるまで、継続して集中度向上運転を継続してもよい。 In the first embodiment, after the concentration improvement operation is executed in step S103, the control unit 53a performs a process of determining the execution time of the concentration improvement operation (step S104), but the present disclosure is not limited to this. The control unit 53a may continue the concentration improvement operation until an instruction to end the concentration mode or an instruction to end the air conditioning is received, without performing the determination process of step S104.
 また、制御部53aは、集中度CRが低下且つ差分の絶対値は判定閾値Tha以上、ではない、と判定した場合(ステップS102:No)、集中度向上制御処理を終了してもよい。 In addition, if the control unit 53a determines that the concentration level CR has decreased and the absolute value of the difference is not equal to or greater than the determination threshold value Tha (step S102: No), the control unit 53a may terminate the concentration level improvement control process.
 実施の形態1では、制御部53aは、集中度向上運転を予め定められた時間以上実施したら(ステップS104:Yes)、集中度向上運転を停止し(ステップS107)、集中モードを停止するか否かの判定を行っていた(ステップS108)が、集中度向上運転を停止(ステップS107)したら、集中モードを停止させてもよい。 In the first embodiment, when the concentration improvement operation is performed for a predetermined time or longer (step S104: Yes), the control unit 53a stops the concentration improvement operation (step S107) and determines whether to stop the concentration mode (step S108). However, when the concentration improvement operation is stopped (step S107), the concentration mode may be stopped.
 上記実施の形態1では、集中度向上運転として、温度、湿度、風量、風向等の制御対象を目標値まで一定の変化率で変化させる例を示したが、どの可変量を制御対象にするか、どのような変化態様にするか等については、ユーザHMの集中度CRを増大させる限りにおいて、任意である。 In the above embodiment 1, an example was given of the concentration improvement operation in which the controlled objects such as temperature, humidity, air volume, and wind direction are changed at a constant rate of change to the target value, but the variable quantity to be controlled and the manner of change are arbitrary as long as they increase the concentration level CR of the user HM.
 例えば、温度、湿度、風量、風向等の制御対象を目標値まで徐々に変化させるのではなく、移行期間Psをほぼ0(ゼロ)として、短い時間である瞬時に変化させて、以後は、目標値を維持するようにしてもよい。なお、風向だけを一気に目標値まで変化させて、温度、湿度、風量については、目標値まで徐々に変化させてもよい。例えば、制御部53aは、集中度向上運転を開始すると、ベーン34を調整して風向を一気に制御して、生体情報検出装置43と赤外線センサ44とで検出されるユーザHMの足下、腰、胸、顔等の予め設定された位置に当たるように風向を制御してもよい。 For example, rather than gradually changing the controlled objects such as temperature, humidity, air volume, and wind direction to the target values, the transition period Ps may be set to approximately 0 (zero), and the changes may be made instantaneously for a short period of time, after which the target values may be maintained. Alternatively, only the wind direction may be changed to the target value in one go, while the temperature, humidity, and air volume may be changed gradually to their target values. For example, when the control unit 53a starts the concentration improvement operation, it may adjust the vanes 34 to control the wind direction in one go, and control the wind direction so that the wind hits preset positions such as the feet, waist, chest, and face of the user HM detected by the bioinformation detection device 43 and infrared sensor 44.
 また、図8(A)、(B)、(C)に示すように、各制御量を、時間に対して線形に、曲線的に、あるいは、段階的に変化させてもよい。図8(A)、(B)に示すように、時間の経過に伴って変化量を小さくすることにより、集中モード開始時の変化量を大きくして、眠気を抑制して覚醒を促すことができる。また、図8(C)に示すように、時間の経過に伴って変化量を大きくすることにより、覚醒を持続させることができる。
 なお、集中モード開始直後は、予め定められた制御態様或いは制御履歴に基づいて集中度向上運転を実施し、その後は、ユーザHMの集中度CRの変化に応じて運転態様を変更するようにしてもよい。
Also, as shown in Figures 8(A), (B), and (C), each control amount may be changed linearly, curvilinearly, or stepwise with respect to time. As shown in Figures 8(A) and (B), by decreasing the amount of change over time, the amount of change at the start of the concentration mode can be increased, suppressing drowsiness and promoting wakefulness. Also, as shown in Figure 8(C), by increasing the amount of change over time, wakefulness can be maintained.
Incidentally, immediately after the concentration mode starts, a concentration improving operation may be performed based on a predetermined control mode or control history, and thereafter the operation mode may be changed in response to a change in the concentration level CR of the user HM.
 また、例えば、集中モードにおいて、温度、風向については調整するが、湿度と風量については、調整しないというように、一部の制御対象のみを選択的に調整するようにしてもよい。 Also, for example, in the concentrated mode, the temperature and wind direction may be adjusted, but the humidity and air volume may not be adjusted, so that only some of the control targets are selectively adjusted.
 また、制御の対象とする制御対象を経過時間と共に変化させてもよい。例えば、図9に例示するように、集中モードの開始直後には、4つの各制御対象の全てを集中用に制御し、時刻T1以後、風向を集中用の制御の対象から除外し、時刻T2以後、風量を集中用の制御の対象から外し、時刻T3以降、湿度を集中用の制御の対象から外し...というように、集中モード用の制御の対象を時間の経過に伴って変化させてもよい。 The control objects to be controlled may also be changed over time. For example, as shown in FIG. 9, immediately after the start of the concentration mode, all four control objects are controlled for concentration, and after time T1, the air direction is excluded from the objects of the concentration mode control, after time T2, the air volume is excluded from the objects of the concentration mode control, and after time T3, the humidity is excluded from the objects of the concentration mode control, etc. In this way, the control objects for the concentration mode may be changed over time.
 実施の形態1では、制御部53aは、集中度向上運転の際、風あて制御を行っていたが、上下の風向き、または、左右の風向きをスイング動作させて、気流によるユーザHMへの刺激を実現してもよい。 In the first embodiment, the control unit 53a controls the wind direction during the concentration improvement operation, but the wind direction may be swung up and down or left and right to stimulate the user HM with the airflow.
 上記実施の形態1では、集中度向上運転の際、暖房または冷房の運転モードにおいて、制御を行っていたが、冷房も暖房も不要な環境においては、送風の運転モードにおいて制御を行ってもよい。この場合、制御部53aは、風量と風向きを制御対象とし、温度と湿度は制御対象としなくてもよい。 In the above embodiment 1, control is performed in the heating or cooling operation mode during the concentration improvement operation, but in an environment where neither cooling nor heating is required, control may be performed in the air blowing operation mode. In this case, the control unit 53a may control the air volume and air direction, but not the temperature and humidity.
 また、制御部53aは、集中度向上運転の実行時間を、予め定められた時間ではなく、集中度CRの変化に応じて、変更してもよい。例えば、集中度向上運転の実行開始直後から、集中度CRの上昇率が小さい状態が続いていたが、集中度向上運転の実行時間が予め定められた時間の直前になった時、集中度CRの上昇率が大きくなった場合、集中度向上運転の実行時間を長くしてもよい。 The control unit 53a may also change the execution time of the concentration improvement operation in response to changes in the concentration level CR, rather than to a predetermined time. For example, if the rate of increase in the concentration level CR has remained small since immediately after the start of the execution of the concentration improvement operation, but the rate of increase in the concentration level CR becomes large just before the execution time of the concentration improvement operation reaches the predetermined time, the execution time of the concentration improvement operation may be lengthened.
 実施の形態1では、制御部53aは、集中度向上運転を予め定められた時間以上実施した場合(ステップS104:Yes)、集中度向上運転を停止(ステップS107)していたが、集中度CRが判定閾値Thb以上になるまで、集中度向上運転を実行してもよい。 In the first embodiment, if the concentration improvement operation has been performed for a predetermined time or longer (step S104: Yes), the control unit 53a stops the concentration improvement operation (step S107), but the concentration improvement operation may be performed until the concentration CR becomes equal to or greater than the judgment threshold value Thb.
 実施の形態1では、制御部53aは、集中度向上運転を停止(ステップS107)した後、集中モードが停止していないと判定した場合(ステップS108:No)、ステップS101へ処理を戻していたが、本開示はこれに限られない。集中度CRの向上は、運転状態の変化によって効果が生じる傾向にある。このため、制御部53aは、集中度向上運転を停止(ステップS107)した後、集中モードが停止していないと判定した場合(ステップS108:No)、すぐにステップS101へ処理を戻すのではなく、予め定められた時間が経過してから、ステップS101へ処理を戻してもよい。 In the first embodiment, if the control unit 53a determines that the concentration mode has not stopped (step S108: No) after stopping the concentration improvement operation (step S107), the control unit 53a returns the process to step S101, but the present disclosure is not limited to this. The improvement of the concentration level CR tends to be caused by a change in the driving state. For this reason, if the control unit 53a determines that the concentration mode has not stopped (step S108: No) after stopping the concentration improvement operation (step S107), the control unit 53a may return the process to step S101 after a predetermined time has elapsed, rather than immediately returning the process to step S101.
 上記実施の形態1では、集中度向上運転を行うか否かの判定を、集中度CRが低下し且つ差分の絶対値が判定閾値Tha以上であるか否かの判定処理(ステップS102)において、差分の絶対値と1つの判定閾値Thaとの比較で行ったが、複数の判定閾値を設定してもよい。例えば、図10は、2つの判定閾値Tha1とTha2を使用する例を示す。なお、Tha1>Tha2である。この例では、集中度CRの低下時の差分の絶対値が、第1の判定閾値Tha1以上の時は、4つの制御対象の全てを集中モード用に制御し、集中度CRの低下時の差分の絶対値が、第2の判定閾値Tha2以上、かつ、第1の判定閾値Tha1より小さいときには、温度と風向を集中モード用の制御の対象とし、集中度CRの低下時の差分の絶対値が、第2の判定閾値Tha2より小さいときには、温度のみを集中モード用に制御する。 In the above-mentioned embodiment 1, the determination of whether or not to perform the concentration improvement operation was made by comparing the absolute value of the difference with one judgment threshold Tha in the determination process (step S102) of whether or not the concentration level CR has decreased and the absolute value of the difference is equal to or greater than the judgment threshold Tha. However, multiple judgment thresholds may be set. For example, FIG. 10 shows an example in which two judgment thresholds Tha1 and Tha2 are used. Note that Tha1>Tha2. In this example, when the absolute value of the difference when the concentration level CR has decreased is equal to or greater than the first judgment threshold Tha1, all four control objects are controlled for the concentration mode, when the absolute value of the difference when the concentration level CR has decreased is equal to or greater than the second judgment threshold Tha2 and smaller than the first judgment threshold Tha1, the temperature and wind direction are controlled for the concentration mode, and when the absolute value of the difference when the concentration level CR has decreased is smaller than the second judgment threshold Tha2, only the temperature is controlled for the concentration mode.
 また、図11(A)に示すように、集中度向上運転の実施日時、運転態様、集中度CRの変化、集中度CRの上昇率等を、記憶部53b又は外部記憶装置に記録して、履歴情報を形成し、次回以降の集中度向上運転にフィードバックしてもよい。例えば、運転態様の異なる集中度向上運転を複数回実行し、その後、記録されている運転態様のうちで、集中度CRの上昇率が最も高い制御運転態様を特定し、その運転態様と同一又は類似の制御を行うようにしてもよい。なお、集中度CRの上昇率は、例えば、集中モード開始時点の集中度CRt=0と一定時間TE経過時点での集中度CRt=TEの比の値CRt=TE/CRt=0として求めればよい。 Also, as shown in Fig. 11 (A), the date and time of the concentration improvement operation, the driving mode, the change in the concentration level CR, the increase rate of the concentration level CR, etc. may be recorded in the memory unit 53b or an external storage device to form history information and fed back to the next and subsequent concentration improvement operations. For example, the concentration improvement operation with different driving modes may be performed multiple times, and then, among the recorded driving modes, the controlled driving mode with the highest increase rate of the concentration level CR may be identified, and control may be performed that is the same as or similar to that driving mode. The increase rate of the concentration level CR may be calculated, for example, as the ratio CR t=TE /CR t=0 between the concentration level CR t= 0 at the start of the concentration mode and the concentration level CR t=TE after a certain time TE has elapsed.
 また、ユーザHMを識別し、図11(B)に例示するように、集中度向上運転の履歴をユーザHM毎に記録してもよい。この場合、集中モード起動時に、室内空間71にいるユーザHMを特定して、そのユーザHMの履歴情報に基づいて、例えば、集中度CRが最も向上したときの集中度向上運転の運転態様を再現することで、集中度CRの向上を期待できる。
 なお、集中モード開始直後は、履歴に基づいて集中度向上運転を実施し、その後は、ユーザHMの集中度CRの変化(=CRt-CRt-1)あるいは変化率(=(CRt-CRt-1)/CRt)に応じて運転態様を調整するようにしてもよい。例えば、それまでの集中度向上運転で、集中度CRがほとんど変化しない場合に、各制御対象の変更量を従前の変化量あるいは予定量よりも大きくする、集中度CRが急激に上昇した場合に、各制御対象の変更量を従前の変化量あるいは予定量よりも小さくする、等の調整を行ってもよい。
In addition, the user HM may be identified, and the history of the concentration-improving driving may be recorded for each user HM, as shown in Fig. 11(B) . In this case, when the concentration mode is started, the user HM in the indoor space 71 may be identified, and based on the history information of the user HM, for example, the driving mode of the concentration-improving driving when the concentration level CR was most improved may be reproduced, which is expected to improve the concentration level CR.
It should be noted that immediately after the concentration mode starts, a concentration-improving operation may be performed based on the history, and thereafter the operating mode may be adjusted according to the change in the concentration level CR of the user HM (=CR t - CR t-1 ) or the rate of change (=(CR t - CR t-1 )/CR t ). For example, if the concentration level CR has hardly changed during the previous concentration-improving operation, the amount of change in each control object may be made larger than the previous amount of change or the planned amount; if the concentration level CR has risen sharply, the amount of change in each control object may be made smaller than the previous amount of change or the planned amount.
 また、好適な運転態様を選択する際に、曜日、時間帯、季節等の時間的要因を参照してもよい。
 例えば、休日の午後は、平日よりも風量を小さくした方が、集中度CRが向上できている傾向が、履歴から判別できる場合、集中モードの起動時点が休日の午後に該当すれば、風量を小さくした態様で集中度向上運転を開始するようにしてもよい。
Furthermore, time factors such as the day of the week, the time period, and the season may be taken into consideration when selecting a suitable driving mode.
For example, if it can be determined from the history that there is a tendency for the concentration level CR to be improved by reducing the airflow on holiday afternoons compared to weekdays, then if the concentration mode is activated on a holiday afternoon, the concentration level improving operation may be started with the airflow reduced.
 ドップラーセンサは、指向性を有し、ジンバル機構等により指向方向を制御可能であったが、本開示はこれに限られない。ドップラーセンサは、指向方向を制御できない固定した形態であってもよい。室内空間71に存在するユーザHMの脈波を検出すべく、単数に限らず、複数のドップラーセンサが備えられていてもよい。また、室内機13がドップラーセンサを備えるのみならず、壁、天井等にドップラーセンサが設置されてもよいし、例えば、マイクロ波の照射方向が部屋の中央を向くように、部屋の四隅にドップラーセンサが三脚で固定されてもよい。 Although the Doppler sensor has directionality and the directional direction can be controlled by a gimbal mechanism or the like, the present disclosure is not limited to this. The Doppler sensor may be in a fixed form in which the directional direction cannot be controlled. In order to detect the pulse waves of the user HM present in the indoor space 71, multiple Doppler sensors may be provided, not limited to a single one. Furthermore, not only may the indoor unit 13 be provided with a Doppler sensor, but the Doppler sensor may be installed on a wall, ceiling, etc., and, for example, the Doppler sensor may be fixed on a tripod to the four corners of the room so that the direction of microwave irradiation faces the center of the room.
 実施の形態1では、赤外線センサ44とドップラーセンサを備えていた。赤外線センサ44が人の位置を特定し、ドップラーセンサが人体の脈波を検出して、両者が協働してセンサの役割を果たしていたが、本開示はこれに限られない。空気調和装置2は、ドップラーセンサのみを備え、ドップラーセンサが人体の脈波の検出のみならず、人の位置を特定してもよい。また、赤外線センサ44の検出とドップラーセンサの検出とを組み合わせて、信頼度を高めてもよい。 In the first embodiment, an infrared sensor 44 and a Doppler sensor were provided. The infrared sensor 44 identified the position of a person, and the Doppler sensor detected the pulse waves of the human body, and the two worked together to fulfill the role of sensors, but the present disclosure is not limited to this. The air conditioning device 2 may be provided with only a Doppler sensor, and the Doppler sensor may not only detect the pulse waves of the human body but also identify the position of the person. Furthermore, the detection by the infrared sensor 44 and the detection by the Doppler sensor may be combined to increase reliability.
 実施の形態1では、ドップラーセンサによって人体の脈波を検出したが、任意の種類のセンサによって脈波を検出してもよい。例えば、24GHz~79GHzのFMCW(Frequency Modulated Continuous Wave radar)方式センサによって人体の脈波を検出してもよい。また、赤外線、赤色光、緑色波長等の光を生体に向けて照射し、生体内で反射した光、又は、生体を透過した光を受光素子で計測することにより脈波を計測してもよい。また、非接触型のセンサに限らず、人体に接触して検出を行う接触型センサでもよい。例えば、心電図計を人体で計測し、心電図から脈波を抽出してもよい。 In the first embodiment, the human pulse wave is detected by a Doppler sensor, but the pulse wave may be detected by any type of sensor. For example, the human pulse wave may be detected by a 24 GHz to 79 GHz FMCW (Frequency Modulated Continuous Wave radar) sensor. The pulse wave may also be measured by irradiating a living body with infrared light, red light, green light, or other light and measuring the light reflected within the living body or the light that has passed through the living body with a light receiving element. The sensor is not limited to a non-contact type, and may be a contact type sensor that detects by contacting the human body. For example, an electrocardiogram may be used to measure the human body and the pulse wave may be extracted from the electrocardiogram.
 実施の形態1において、空気調和装置2は制御装置50を内部に備えていたが、制御装置50は空気調和装置2の外部に配置されてもよい。この場合、制御装置50は、例えば、図12に示すように、空気調和装置2にネットワークNWを介して接続される。この場合、空気調和装置2は、例えば、外部と通信を行う通信装置56を備える。通信装置56は、外部に配置された制御装置50の室外機制御部51と、空気調和装置2の室外機空調部81との間の通信を可能とし、外部に配置された制御装置50の室内機制御部53とセンサ群40,リモコン55、室内機空調部82との間の通信を可能とする。 In the first embodiment, the air conditioning apparatus 2 has the control device 50 inside, but the control device 50 may be placed outside the air conditioning apparatus 2. In this case, the control device 50 is connected to the air conditioning apparatus 2 via a network NW, for example, as shown in FIG. 12. In this case, the air conditioning apparatus 2 has, for example, a communication device 56 that communicates with the outside. The communication device 56 enables communication between the outdoor unit control unit 51 of the control device 50 placed outside and the outdoor unit air conditioning unit 81 of the air conditioning apparatus 2, and enables communication between the indoor unit control unit 53 of the control device 50 placed outside and the sensor group 40, the remote control 55, and the indoor unit air conditioning unit 82.
 また、例えば、制御装置50は、ネットワークNWに接続されたサーバ装置57から構成されてもよい。この場合、例えば、室外機制御部51及び室内機制御部53が実行する制御処理を実行する制御プログラムをサーバ装置57にインストールして、室外機制御機能及び室内機制御機能をサーバ装置57上に構築すればよい。なお、サーバ装置57は、パーソナルコンピュータにより実現されてもよい。 Furthermore, for example, the control device 50 may be configured from a server device 57 connected to the network NW. In this case, for example, a control program that executes the control processing executed by the outdoor unit control unit 51 and the indoor unit control unit 53 may be installed in the server device 57, and an outdoor unit control function and an indoor unit control function may be constructed on the server device 57. Note that the server device 57 may be realized by a personal computer.
 上記実施の形態においては、空気調和装置2が生体情報検出装置43を備えていたが、生体情報検出装置43は空気調和装置2の外部にあってもよい。例えば、生体情報検出装置43は、室内空間71を形成する天井、壁、床等に配置されてもよい。また、ウエアラブルな生体情報検出装置を用いてもよい。この場合、ウエアラブルな生体情報検出装置と室内機制御部53との間を無線通信又は有線通信により接続することが望ましい。 In the above embodiment, the air conditioning apparatus 2 is equipped with the biological information detection device 43, but the biological information detection device 43 may be located outside the air conditioning apparatus 2. For example, the biological information detection device 43 may be placed on the ceiling, wall, floor, etc. that form the indoor space 71. Also, a wearable biological information detection device may be used. In this case, it is desirable to connect the wearable biological information detection device and the indoor unit control unit 53 via wireless communication or wired communication.
 また、近時の携帯情報端末には、様々な生体情報を測定し、解析する機能を有するものがある。この種の携帯情報端末をセンサとして用いて、例えば、図3の構成で、情報機器90と室内機制御部53とを有線又は無線で直接接続し、あるいは、ネットワークNW経由で接続し、情報機器90が生体情報を取得し、さらにこれを解析して集中度CRを求め、室内機制御部53に通知してもよい。また、情報機器90は、生体情報を取得して、室内機制御部53に送信し、室内機制御部53が生体情報を解析して、集中度CRを求めてもよい。生体情報検出装置43は、例えば、ドップラー信号を受信するのみで、室内機制御部53がドップラー信号を解析して脈波を抽出し、さらに、脈波を解析して集中度CRを求めてもよい。 Moreover, some recent portable information terminals have the function of measuring and analyzing various types of bioinformation. Using this type of portable information terminal as a sensor, for example, in the configuration of FIG. 3, the information device 90 and the indoor unit control unit 53 may be directly connected by wire or wirelessly, or connected via a network NW, and the information device 90 may acquire the bioinformation, analyze it to determine the concentration level CR, and notify the indoor unit control unit 53 of the same. The information device 90 may also acquire the bioinformation and transmit it to the indoor unit control unit 53, which may analyze the bioinformation to determine the concentration level CR. For example, the bioinformation detection device 43 may simply receive a Doppler signal, and the indoor unit control unit 53 may analyze the Doppler signal to extract a pulse wave, and further analyze the pulse wave to determine the concentration level CR.
 実施の形態1において、集中度向上制御処理は、ユーザHMがリモコン55を用いて集中モードを選択することにより開始されていたが、本開示はこれに限られない。任意の態様で開始と終了を設定できる。例えば、赤外線センサ44のような人感センサによって室内空間71に人を検知すると、集中度向上制御処理を自動的に開始し、人を検知しなくなったら終了してもよい。 In the first embodiment, the concentration improvement control process is started by the user HM selecting the concentration mode using the remote control 55, but the present disclosure is not limited to this. The start and end can be set in any manner. For example, when a human presence sensor such as the infrared sensor 44 detects a person in the indoor space 71, the concentration improvement control process may be automatically started, and may be ended when the person is no longer detected.
 また、集中度向上制御処理において、集中度CRが、人が不在時に示されるような例外値になった場合に、集中度向上制御処理の終了、または、空気調和装置2の運転を停止してもよい。例えば、取得した集中度CRが「ゼロ」の場合、制御部53aは、空気調和装置2の運転を停止してもよい。 In addition, in the concentration improvement control process, if the concentration level CR becomes an exceptional value such as that shown when no one is present, the concentration improvement control process may be terminated or the operation of the air conditioning device 2 may be stopped. For example, if the acquired concentration level CR is "zero," the control unit 53a may stop the operation of the air conditioning device 2.
 上記実施の形態においては、集中モードでは、温度、湿度、風量、風向を制御対象としたが、これらの制御対象の一部に代えて、あるいは、これらの制御対象と共に他のパラメータを制御対象としてもよい。例えば、温調タイミングを通常運転時での温調タイミングから変更する制御を実行してもよい。ここで、温調タイミングとは、温調制御をオン又はオフするタイミングを意味する。ここで、「温調オフ」は、室外機11の圧縮機21を止め、「冷やす」又は「暖める」を止めることを意味し、「温調オン」は、室外機11の圧縮機21を稼働させ、「冷やす」又は「暖める」を行うことを意味する。「温調オフ」のタイミングは、室温TRとユーザHMに設定された設定温度TSの温度差ΔTRがΔToff℃に到達した時点、「温調オン」のタイミングは、室温TRと設定温度TSの温度差ΔTRがΔTon℃になった時点に設定される。例えば、通常モードの冷房運転で、設定温度が28℃で、温調オフのタイミングΔToff=-2℃が設定され、温調オンのタイミングが温度差ΔTon=0℃に設定されている場合を想定する。この場合、室温TRが設定温度の26℃まで低下して温度差ΔTRが-2℃になると、圧縮機21を停止して「冷やす」ことを停止する。その後、室温TRが28℃まで上昇し、温度差ΔTRが0℃になると、圧縮機21を稼働して「冷やす」ことを再開する。 In the above embodiment, the temperature, humidity, air volume, and air direction are the control objects in the concentrated mode, but other parameters may be controlled instead of some of these control objects, or in addition to these control objects. For example, control may be performed to change the temperature control timing from the temperature control timing during normal operation. Here, temperature control timing means the timing to turn temperature control on or off. Here, "temperature control off" means stopping the compressor 21 of the outdoor unit 11 to stop "cooling" or "heating", and "temperature control on" means operating the compressor 21 of the outdoor unit 11 to perform "cooling" or "heating". The timing of "temperature control off" is set at the point when the temperature difference ΔTR between the room temperature TR and the set temperature TS set in the user HM reaches ΔToff°C, and the timing of "temperature control on" is set at the point when the temperature difference ΔTR between the room temperature TR and the set temperature TS becomes ΔTon°C. For example, assume that in normal cooling mode operation, the set temperature is 28°C, the temperature control off timing ΔToff = -2°C, and the temperature control on timing is set to a temperature difference ΔTon = 0°C. In this case, when the room temperature TR drops to the set temperature of 26°C and the temperature difference ΔTR becomes -2°C, the compressor 21 is stopped and "cooling" is stopped. After that, when the room temperature TR rises to 28°C and the temperature difference ΔTR becomes 0°C, the compressor 21 is operated and "cooling" is resumed.
 例えば、集中度向上制御処理において、集中度向上運転実行時(ステップS103)に、通常モード用に設定されている温調オンオフタイミングを変更する制御を行ってもよい。例えば、図6のステップS103で、温調オンのタイミングを規定する温度差ΔTon℃を通常モードよりも小さく-1℃とし、温調オフのタイミングを規定する温度差ΔToff℃を通常モードより大きい-1.5℃とする。この場合、上記の例で、室温TRが設定温度TSよりも1℃低い27℃に達すると、室温TRと設定温度TSの差がΔTon℃に達するため、圧縮機21を稼働して「冷やす」ことを再開する。また、室温TRが、設定温度TSのマイナス1.5℃の26.5℃に達したら、「冷やす」ことを止める制御を実行する。 For example, in the concentration improvement control process, when the concentration improvement operation is being performed (step S103), control may be performed to change the temperature control on/off timing set for the normal mode. For example, in step S103 of FIG. 6, the temperature difference ΔT on ° C. that specifies the temperature control on timing is set to -1 ° C., smaller than in the normal mode, and the temperature difference ΔT off ° C. that specifies the temperature control off timing is set to -1.5 ° C., larger than in the normal mode. In this case, in the above example, when the room temperature TR reaches 27 ° C., which is 1 ° C. lower than the set temperature TS, the difference between the room temperature TR and the set temperature TS reaches ΔT on ° C., so the compressor 21 is operated to resume "cooling". Also, when the room temperature TR reaches 26.5 ° C., which is 1.5 ° C. lower than the set temperature TS, control is performed to stop "cooling".
 実施の形態1では、集中度CRに基づいて、空気調和装置2のみを空調制御したが、これに加えて、ユーザHMが使用する機器を制御してもよい。ユーザHMが使用する機器は、ユーザHMの集中度CRに影響を与えるような環境を調整する。空気調和装置2に加えて、図13(A)に例示するように、室外機11又は室内機13に直接、あるいはネットワークNWを介して接続された外部機器、例えば、照明機器91a,91b、扇風機92、給湯器、空気清浄機、換気扇などの外部機器を制御してもよい。これらの外部機器は、空気調和装置2からの有線信号又は赤外線信号等の無線信号、又は、クラウドサーバ経由で操作されうる。これらの外部機器は、家屋3に配置され、室内空間71に所在するユーザHMの集中度CRに影響を与えうる態様で設置及び利用されている。 In the first embodiment, only the air conditioning device 2 is controlled based on the concentration level CR, but in addition to this, devices used by the user HM may also be controlled. The devices used by the user HM adjust the environment so as to affect the concentration level CR of the user HM. In addition to the air conditioning device 2, as illustrated in FIG. 13(A), external devices connected directly to the outdoor unit 11 or the indoor unit 13 or via the network NW, such as lighting devices 91a, 91b, an electric fan 92, a water heater, an air purifier, and a ventilation fan, may also be controlled. These external devices can be operated by wired signals or wireless signals such as infrared signals from the air conditioning device 2, or via a cloud server. These external devices are arranged in the house 3, and are installed and used in a manner that can affect the concentration level CR of the user HM located in the indoor space 71.
 この場合、室内機制御部53の記憶部53bには、図13(B)に例示するような集中モード用制御態様テーブルが格納される。このテーブルには、集中度向上運転を実行する際に、制御する外部機器の識別情報と制御態様とが登録されている。 In this case, a control mode table for the concentration mode, as shown in FIG. 13(B), is stored in the memory unit 53b of the indoor unit control unit 53. In this table, identification information and control modes of the external devices to be controlled when performing the concentration improvement operation are registered.
 例えば、図6のステップS103で、室内機制御部53は、集中モード用制御態様テーブルの設定内容に従い、照明機器91a,91bにコマンドを送り、照明1の調光度を60%まで降下させることを指示し、照明2の調光度を100%レベルに設定する。照明機器91a,91bに対する制御内容は、例えば、照明1は室内空間71の全体を明るくする電灯で、照明2はデスクライトの場合、室内全体は少し暗くして、デスクの手元を明るくすると、集中力を高められる傾向に基づいている。ネットワークNWを介してサーバ装置57にコマンドを送り、サーバ装置57に接続されている扇風機92の風力を「2」レベルに設定する。また、例えば、扇風機92が、自然な風を送るリズム風モード機能を有する場合、室内機制御部53は動作モードをリズム風モードに切り替える。さらに、外部機器が給湯器の場合、室内機制御部53は、設定温度を高めに設定する。外部機器が空気清浄機の場合、室内機制御部53は、運転中の音が気にならないような、静かな設定に切り替える。また、外部機器が換気扇の場合、室内機制御部53は、換気扇を稼働させ、室内の二酸化炭素濃度を下げ、集中度CRを向上させる。室内機制御部53は、これらの外部機器の制御を、ステップS103の集中度向上運転時に行う。空気調和装置2に加えて外部機器が制御されることによって、集中度CRの更なる向上が実現され得る。 For example, in step S103 of FIG. 6, the indoor unit control unit 53 sends a command to the lighting devices 91a and 91b according to the settings in the control mode table for the concentration mode, instructing them to lower the dimming level of the light 1 to 60% and to set the dimming level of the light 2 to 100%. The control contents for the lighting devices 91a and 91b are based on the tendency that, for example, if the light 1 is an electric light that brightens the entire indoor space 71 and the light 2 is a desk light, concentration can be improved by making the entire room a little darker and brightening the area around the desk. A command is sent to the server device 57 via the network NW, and the wind power of the electric fan 92 connected to the server device 57 is set to level "2". Also, for example, if the electric fan 92 has a rhythm wind mode function that blows natural wind, the indoor unit control unit 53 switches the operation mode to the rhythm wind mode. Furthermore, if the external device is a water heater, the indoor unit control unit 53 sets the set temperature to a higher level. If the external device is an air purifier, the indoor unit control unit 53 switches to a quiet setting so that the noise during operation is not distracting. If the external device is a ventilation fan, the indoor unit control unit 53 operates the ventilation fan to reduce the carbon dioxide concentration in the room and improve the concentration rate CR. The indoor unit control unit 53 controls these external devices during the concentration rate improvement operation in step S103. By controlling the external device in addition to the air conditioning device 2, a further improvement in the concentration rate CR can be achieved.
 また、室内機制御部53は、通常運転時は、室内熱交換器25の吸い込み口近傍の空気温度が設定温度に達するように空調運転を行うが、集中モードでは、人が実際に感じる体感温度を、目標温度である設定温度に近づけるように空調運転を行ってもよい。この場合、図1の構成において、例えば、赤外線センサ44に隣接して、ユーザHMの体感温度を検出する体感温度センサを配置し、図6のステップS103で、温度センサ41が検出する温度に代えて、体感温度センサが検出する温度を設定温度に近づける空調運転を行う。 In addition, during normal operation, the indoor unit control unit 53 performs air conditioning operation so that the air temperature near the intake port of the indoor heat exchanger 25 reaches the set temperature, but in the concentrated mode, the air conditioning operation may be performed so that the sensible temperature that a person actually feels approaches the set temperature, which is the target temperature. In this case, for example, in the configuration of FIG. 1, a sensible temperature sensor that detects the sensible temperature of the user HM is placed adjacent to the infrared sensor 44, and in step S103 of FIG. 6, air conditioning operation is performed to bring the temperature detected by the sensible temperature sensor, instead of the temperature detected by the temperature sensor 41, closer to the set temperature.
 また、赤外線センサ44がユーザHMを検出した場合、集中モードの空調運転を行い、赤外線センサ44が、ユーザHMを検出しなくなった場合、集中モードの空調運転を中止してもよい。 In addition, if the infrared sensor 44 detects the user HM, the air conditioning operation in the intensive mode may be performed, and if the infrared sensor 44 no longer detects the user HM, the air conditioning operation in the intensive mode may be stopped.
 実施の形態1では、室内機制御部53は、リモコン55からのユーザHMの指示を受信していたが、本開示はこれに限られない。室内機制御部53は、空気調和装置2用のアプリケーションがインストールされた情報機器90からのユーザHMの指示を受信してもよい。 In the first embodiment, the indoor unit control unit 53 receives instructions from the user HM from the remote control 55, but the present disclosure is not limited to this. The indoor unit control unit 53 may receive instructions from the user HM from an information device 90 in which an application for the air conditioning device 2 is installed.
 (実施の形態2)
 実施の形態1においては、集中度向上制御処理の対象となるユーザHMは一人である例を示した。本開示は、これに限定されず、図14に例示するように、制御部53aは、複数人のユーザHMを対象とした集中度向上制御処理を行ってもよい。
 ユーザHMが複数人の場合、生体情報検出装置43は各ユーザHMの脈波を検出し、各ユーザHMの集中度CRを特定する。また、赤外線センサ44は、複数人の位置を特定する。図14では、制御部53aは、2人のユーザHM1とHM2を対象とした集中度向上制御処理を行うが、2人に限らず任意の複数人を対象としてもよい。以下、図6のフローチャートを参照しつつ、実施の形態1と異なる点を中心に説明する。なお、図14は、空気調和システム1が天井設置型の例である。
(Embodiment 2)
In the first embodiment, an example has been shown in which the concentration level improvement control process is performed on one user HM. The present disclosure is not limited to this, and as illustrated in FIG. 14, the control unit 53a may perform the concentration level improvement control process on a plurality of users HM.
When there are multiple users HM, the bioinformation detection device 43 detects the pulse waves of each user HM and identifies the concentration level CR of each user HM. The infrared sensor 44 also identifies the positions of the multiple people. In FIG. 14, the control unit 53a performs a concentration level improvement control process for two users HM1 and HM2, but the process may be performed for any multiple people, not limited to two people. Below, the differences from the first embodiment will be mainly described with reference to the flowchart in FIG. 6. Note that FIG. 14 shows an example in which the air conditioning system 1 is installed on the ceiling.
 実施の形態2では、制御部53aは、集中度向上制御処理において、2人のユーザHM1とHM2の集中度CR1とCR2を取得する(ステップS101)。続いて、制御部53aは、判定処理では、2人のユーザHM1とHM2の集中度CR1tとCR2tの平均値AVCRt=(CR1f+CR2f)/2と、前回の平均値AVCRt-1=(CR1f-1+CR2f-1)/2との差分CBtを求める。制御部53aは、今回の平均値AVCRtが前回の平均値AVCRt-1よりも低下し、且つ、差分CBtの絶対値は判定閾値Tha以上であるか否かを判定する(ステップS102)。制御部53aは、ステップS105の処理についても、ステップS101と同様に行う。また、ステップS106の処理では、制御部53aは、2人のユーザHM1とHM2の集中度CR1tとCR2tの平均値AVCRt=(CR1f+CR2f)/2が、判定閾値Thb以上であるか否かを判定する(ステップS106)。 In the second embodiment, the control unit 53a obtains the concentration levels CR1 and CR2 of the two users HM1 and HM2 in the concentration level improvement control process (step S101). Next, in the judgment process, the control unit 53a obtains the difference CBt between the average value AVCRt = ( CR1f + CR2f ) / 2 of the concentration levels CR1t and CR2t of the two users HM1 and HM2 and the previous average value AVCRt -1 = (CR1f -1 + CR2f -1 ) / 2. The control unit 53a judges whether the current average value AVCRt is lower than the previous average value AVCRt -1 and whether the absolute value of the difference CBt is equal to or greater than the judgment threshold value Tha (step S102). The control unit 53a also performs the process of step S105 in the same manner as step S101. Furthermore, in the process of step S106, the control unit 53a determines whether the average value AVCR t = (CR1 f + CR2 f )/2 of the concentration levels CR1 t and CR2 t of the two users HM1 and HM2 is equal to or greater than the determination threshold Thb (step S106).
 制御部53aは、集中度向上運転実行の際、温度、湿度、風量、風向を、平均集中度AVCRに基づいて、2人のユーザHM1とHM2に共通に制御する。一方、制御部53aは、風向については、ベーン34を制御して、2つの風流F1、F2を生成し、2人のユーザHM1,HM2に個別に制御する。これにより、例えば、図14に示すように、実線で示す風向きF1,F2から破線で示す風向きF1’,F2’に制御して風あて制御を行うことができる。これにより、ユーザHM毎に集中度CRを向上し得る。 When performing the concentration improvement operation, the control unit 53a controls the temperature, humidity, air volume, and wind direction for both users HM1 and HM2 based on the average concentration AVCR. On the other hand, the control unit 53a controls the wind direction by controlling the vanes 34 to generate two air currents F1 and F2, which are individually controlled for the two users HM1 and HM2. This makes it possible to control the wind direction from the wind directions F1 and F2 shown by solid lines to the wind directions F1' and F2' shown by dashed lines, for example, as shown in FIG. 14. This makes it possible to improve the concentration CR for each user HM.
 (実施の形態2の変形例)
 実施の形態2では、判定処理(ステップS102)において、2人の集中度CRの平均値AVCRの差分の絶対値と、判定閾値Thaとを比較することにより、集中度向上運転を行うか否かを判定した。また、判定処理(ステップS106)において、2人の集中度CRの平均値AVCRと、判定閾値Thbとを比較することにより、集中度向上運転を継続するか否かを判定した。本開示はこれらに限られない。例えば、複数のユーザHMの集中度CRの中間値、最小値、最大値、等の任意の代表値と判定閾値とを比較、または、かかる代表値の差分の絶対値と判定閾値とを比較して、実施するか否か又は継続するか否かを判定してもよい。
(Modification of the second embodiment)
In the second embodiment, in the judgment process (step S102), the absolute value of the difference between the average value AVCR of the concentration levels CR of the two people is compared with the judgment threshold value Tha to judge whether or not to perform the concentration level improvement operation. Also, in the judgment process (step S106), the average value AVCR of the concentration levels CR of the two people is compared with the judgment threshold value Thb to judge whether or not to continue the concentration level improvement operation. The present disclosure is not limited to these. For example, any representative value such as the median value, minimum value, maximum value, etc. of the concentration levels CR of multiple users HM may be compared with the judgment threshold value, or the absolute value of the difference between such representative values may be compared with the judgment threshold value to judge whether or not to perform or continue the operation.
 また、実施の形態1,2では、制御部53aは、ユーザHMの集中度CRが低下し且つ集中度CRの差分の絶対値が判定閾値Tha以上であるか否かを判定し(ステップS102)、ユーザHMの集中度CRが低下し且つ集中度CRの差分の絶対値が判定閾値Tha以上であるとき(ステップS102:Yes)にのみ集中度向上運転を行うように説明していたが、本開示はこれに限られない。集中モードが指定されたときには、無条件に、制御部53aは、集中度向上運転を開始するようにしてもよい。 In addition, in the first and second embodiments, the control unit 53a determines whether the concentration level CR of the user HM has decreased and the absolute value of the difference in the concentration level CR is equal to or greater than the judgment threshold value Tha (step S102), and performs the concentration improvement operation only when the concentration level CR of the user HM has decreased and the absolute value of the difference in the concentration level CR is equal to or greater than the judgment threshold value Tha (step S102: Yes), but the present disclosure is not limited to this. When the concentration mode is specified, the control unit 53a may unconditionally start the concentration improvement operation.
 実施の形態1,2で、赤外線センサ44が、ユーザHMの存在・不存在、複数人の位置を特定していたが、これに代えて、ドップラーセンサが複数人の位置を特定してもよい。具体的には、ドップラーセンサが照射角度を変えながら照射し、人の位置を特定する。 In the first and second embodiments, the infrared sensor 44 identifies the presence or absence of the user HM and the positions of multiple people, but instead, a Doppler sensor may identify the positions of multiple people. Specifically, the Doppler sensor irradiates light while changing the irradiation angle to identify the positions of people.
 実施の形態1,2において、室内空間71は、室内に限らず、閉空間でも、一部が開口した半閉空間でもかまわない。また、エアカーテンなどで区切られた、実質的な閉空間、半閉空間などでもよい。 In the first and second embodiments, the indoor space 71 is not limited to a room, but may be a closed space or a semi-closed space with a portion open. It may also be a substantially closed space or a semi-closed space separated by an air curtain or the like.
(実施の形態3)
 実施の形態1,2では、集中度CRを脈波に基づいて求めた。この開示はこれに限定されない。集中度CRの精度を向上するため、他の生体情報を併用してもよい。例えば、ユーザHMの脈波とその変化、ユーザHMの心拍数とその変化、ユーザHMの脳波とその変化、ユーザHMの体温とその変化、ユーザHMの表情筋の動きの変化、ユーザHMの振る舞い、等をセンサで測定し、測定値からそれぞれ集中度CRを求め、求められた複数の集中度CRを重み付け平均して、制御に使用する集中度CRを求めてもよい。
(Embodiment 3)
In the first and second embodiments, the concentration level CR is calculated based on the pulse wave. This disclosure is not limited to this. In order to improve the accuracy of the concentration level CR, other biological information may be used in combination. For example, the pulse wave of the user HM and its changes, the heart rate of the user HM and its changes, the brain waves of the user HM and its changes, the body temperature of the user HM and its changes, the changes in the movement of the facial muscles of the user HM, the behavior of the user HM, etc. may be measured by a sensor, the concentration level CR may be calculated from each measurement value, and the concentration level CR to be used for control may be calculated by taking a weighted average of the calculated concentration levels CR.
 また、集中度CRの測定に、ニューラルネットワークなどのAI(Artificial Intelligence)を活用することも可能である。この場合、例えば、ユーザHMの脈波とその変化、ユーザHMの心拍数とその変化、ユーザHMの脳波とその変化、ユーザHMの体温とその変化、ユーザHMの表情筋の動きの変化、ユーザHMの振る舞い、等の入力データのセットと出力である集中度CRとの関係を予め調査して、教師データを作成する。次に、AI装置に教師データを学習させる。AI装置は、センサで測定された脈波、脳波などの生体情報、その変化率、その履歴等、を入力し、集中度CRを示す指標を出力する。 It is also possible to use AI (Artificial Intelligence) such as neural networks to measure the concentration level CR. In this case, teacher data is created by investigating in advance the relationship between a set of input data, such as the user HM's pulse waves and their changes, the user HM's heart rate and its changes, the user HM's brain waves and its changes, the user HM's body temperature and its changes, changes in the movement of the user HM's facial muscles, the user HM's behavior, etc., and the output concentration level CR. Next, the AI device is made to learn the teacher data. The AI device inputs biometric information such as pulse waves and brain waves measured by a sensor, their rate of change, their history, etc., and outputs an index showing the concentration level CR.
 また、実施の形態1,2では、ステップS102で、予め設定された基準と集中度CRとの関係から、集中度向上運転を行うか否かを判別したが、判定なしで、集中度向上運転を行ってもよい。例えば、室内機制御部53にAI技術を活用し、例えば、集中度CR、その変化、変化率又はその履歴をAI装置に入力し、AI装置が適切な制御態様を出力するように構成してもよい。この場合、例えば、集中度CR、その変化量又は変化率、これらの履歴と、制御対象と制御内容とその効果との関係を予め調査して、教師データを作成する。次に、AI装置に教師データを学習させる。AI装置は、図6のステップS102で、生体情報検出装置43から供給された集中度CR等入力し、適切な制御対象と制御内容とを出力する。続いて、ステップS103で、出力された制御対象と制御内容で示される空調制御を行う。 In addition, in the first and second embodiments, in step S102, it is determined whether or not to perform the concentration improvement operation based on the relationship between the preset standard and the concentration level CR, but the concentration improvement operation may be performed without making a determination. For example, AI technology may be utilized in the indoor unit control unit 53, and, for example, the concentration level CR, its change, change rate, or its history may be input to the AI device, and the AI device may output an appropriate control mode. In this case, for example, the concentration level CR, its change amount or change rate, and the history of these, as well as the relationship between the control target, the control content, and its effect are investigated in advance to create teacher data. Next, the AI device is made to learn the teacher data. In step S102 of FIG. 6, the AI device inputs the concentration level CR etc. supplied from the bioinformation detection device 43, and outputs the appropriate control target and control content. Next, in step S103, air conditioning control indicated by the output control target and control content is performed.
 本開示は、本開示の広義の精神と範囲を逸脱することなく、様々な実施の形態及び変形が可能とされるものである。また、上述した実施の形態は、本開示を説明するためのものであり、本開示の範囲を限定するものではない。つまり、本開示の範囲は、実施の形態ではなく、請求の範囲によって示される。そして、請求の範囲内及びそれと同等の開示の意義の範囲内で施される様々な変形が、本開示の範囲内とみなされる。 This disclosure allows for various embodiments and modifications without departing from the broad spirit and scope of the disclosure. Furthermore, the above-described embodiments are intended to explain the disclosure and do not limit the scope of the disclosure. In other words, the scope of the disclosure is indicated by the claims, not the embodiments. Furthermore, various modifications made within the scope of the claims and within the scope of the disclosure equivalent thereto are considered to be within the scope of the disclosure.
1 空気調和システム、2 空気調和装置、3 家屋、11 室外機、13 室内機、21 圧縮機、22 四方弁、23 室外熱交換器、24 膨張弁、25 室内熱交換器、31 室外送風機、33 室内送風機、34 ベーン、40 センサ群、41 温度センサ、42 湿度センサ、43 生体情報検出装置、44 赤外線センサ、50 制御装置、51 室外機制御部、51a 制御部、51b 記憶部、51c 計時部、51d 通信部、53 室内機制御部、53a 制御部、53b 記憶部、53c 計時部、53d 通信部、54 集中モード用制御プログラム、54a 取得処理部、54b 判定処理部、54c制御処理部、54d 設定値群、55 リモコン、55a 表示部、56 通信装置、57 サーバ装置、58 本体表示部、61 冷媒配管、63 通信線、71 室内空間、72 室外空間、80 空調部、81 室外機空調部、82 室内機空調部、 90 情報機器、90a 表示部、91a,91b 照明機器、92 扇風機、1000,1010 バス、1001,1011 プロセッサ、1002,1012 メモリ、1003,1013 二次記憶装置、1004,1014 I/Oインタフェース、1005,1015 通信モジュール、NW ネットワーク、HM,HM1,HM2 ユーザ 1 air conditioning system, 2 air conditioning device, 3 house, 11 outdoor unit, 13 indoor unit, 21 compressor, 22 four-way valve, 23 outdoor heat exchanger, 24 expansion valve, 25 indoor heat exchanger, 31 outdoor blower, 33 indoor blower, 34 vane, 40 sensor group, 41 temperature sensor, 42 humidity sensor, 43 biological information detection device, 44 infrared sensor, 50 control device, 51 outdoor unit control unit, 51a control unit, 51b memory unit, 51c timekeeping unit, 51d communication unit, 53 indoor unit control unit, 53a control unit, 53b memory unit, 53c timekeeping unit, 53d communication unit, 54 control program for concentrated mode, 54a acquisition processing unit, 54b judgment processing section, 54c control processing section, 54d set value group, 55 remote control, 55a display section, 56 communication device, 57 server device, 58 main body display section, 61 refrigerant piping, 63 communication line, 71 indoor space, 72 outdoor space, 80 air conditioning section, 81 outdoor unit air conditioning section, 82 indoor unit air conditioning section, 90 information device, 90a display section, 91a, 91b lighting equipment, 92 electric fan, 1000, 1010 bus, 1001, 1011 processor, 1002, 1012 memory, 1003, 1013 secondary storage device, 1004, 1014 I/O interface, 1005, 1015 communication module, NW network, HM, HM1, HM2 user

Claims (11)

  1.  空調対象空間の空調制御を行う空気調和システムであって、
     前記空調対象空間を空調する空調部と、
     前記空調部を制御する制御装置と、
     を備え、
     前記制御装置は、
     前記空調対象空間に存在するユーザの体表面の動きの変化から求めた集中度を取得する指標値取得手段と、
     取得した前記集中度に基づいて、前記ユーザの集中度を増大させるように前記空調部を制御する制御手段と、を有する、
     空気調和システム。
    An air conditioning system that controls air conditioning of an air-conditioned space,
    An air conditioning unit that conditions the air-conditioned space;
    A control device for controlling the air conditioning unit;
    Equipped with
    The control device includes:
    an index value acquisition means for acquiring a concentration level calculated from a change in a body surface movement of a user present in the air-conditioned space;
    and a control means for controlling the air conditioning unit so as to increase the degree of concentration of the user based on the acquired degree of concentration.
    Air conditioning system.
  2.  前記制御手段は、前記空調対象空間の温度と、湿度と、風向と、風量とのうちの少なくともいずれか一つを調整するように前記空調部を制御する、
     請求項1に記載の空気調和システム。
    The control means controls the air conditioning unit to adjust at least one of a temperature, a humidity, a wind direction, and an air volume of the air conditioned space.
    The air conditioning system of claim 1 .
  3.  前記指標値取得手段は、周期的に前記ユーザの集中度を取得し、
     取得した前記集中度と、前回取得した集中度との差分が、予め定められた閾値以上であると判定された場合、前記制御手段は、前記空調対象空間の温度と、湿度と、風向と、風量とのうちの少なくともいずれか一つを調整するように前記空調部を制御する、
     請求項2に記載の空気調和システム。
    the index value acquisition means periodically acquires the concentration level of the user;
    When it is determined that the difference between the acquired concentration degree and the previously acquired concentration degree is equal to or greater than a predetermined threshold, the control means controls the air conditioning unit to adjust at least one of the temperature, humidity, wind direction, and air volume of the air conditioned space.
    The air conditioning system according to claim 2.
  4.  前記制御装置は、前記空調部の制御と共に前記ユーザの集中度を向上するために、前記ユーザが使用する機器を更に制御する、
     請求項1から請求項3のいずれか一項に記載の空気調和システム。
    The control device further controls devices used by the user in order to improve the user's concentration in addition to controlling the air conditioning unit.
    The air conditioning system according to any one of claims 1 to 3.
  5.  前記制御手段は、前記集中度を増大させるように前記空調部を制御しているときに、前記集中度を増大させるように前記空調部を制御している実行時間が、予め定められた時間以上であると判定された場合、前記集中度を増大させるように前記空調部を制御することを停止する、
     請求項1から請求項4のいずれか一項に記載の空気調和システム。
    When the control means controls the air conditioning unit to increase the degree of concentration, if it is determined that an execution time for controlling the air conditioning unit to increase the degree of concentration is equal to or longer than a predetermined time, the control means stops controlling the air conditioning unit to increase the degree of concentration.
    The air conditioning system according to any one of claims 1 to 4.
  6.  前記空調対象空間に、複数のユーザがいる場合、
     前記指標値取得手段は、前記複数のユーザの全ての前記集中度を取得し、
     前記制御手段は、取得した前記集中度の代表値を増大させるように前記空調部を制御する、
     請求項1から請求項5のいずれか一項に記載の空気調和システム。
    When there are multiple users in the air-conditioned space,
    The index value acquisition means acquires the concentration levels of all of the plurality of users,
    The control means controls the air conditioning unit so as to increase the acquired representative value of the concentration degree.
    The air conditioning system according to any one of claims 1 to 5.
  7.  前記空調対象空間に、複数のユーザがいる場合、
     前記指標値取得手段は、前記複数のユーザの全ての前記集中度を取得し、
     前記制御手段は、取得した前記集中度のうち、最小の集中度を増大させるように前記空調部を制御する、
     請求項1から請求項5のいずれか一項に記載の空気調和システム。
    When there are multiple users in the air-conditioned space,
    The index value acquisition means acquires the concentration levels of all of the plurality of users,
    The control means controls the air conditioning unit so as to increase the minimum concentration degree among the acquired concentration degrees.
    An air conditioning system according to any one of claims 1 to 5.
  8.  前記ユーザに報知する情報を表示する表示手段を更に備え、
     前記表示手段は、前記集中度を増大させるように前記空調部を制御しているときに、前記空調部を制御する制御態様を示す情報を表示する、
     請求項1から請求項7のいずれか一項に記載の空気調和システム。
    The information display device further includes a display unit for displaying information to be notified to the user.
    the display means displays information indicating a control mode for controlling the air conditioning unit when the air conditioning unit is controlled so as to increase the degree of concentration.
    An air conditioning system according to any one of claims 1 to 7.
  9.  空調対象空間の空調制御を行う空気調和装置であって、
     前記空調対象空間を空調する空調部と、
     前記空調部を制御する制御装置と、
     を備え、
     前記制御装置は、前記空調対象空間のユーザの集中度を取得する指標値取得手段と、
     取得した前記集中度に基づいて、前記ユーザの集中度を増大させるように前記空調部を制御する制御手段と、を有する、
     空気調和装置。
    An air conditioning apparatus that controls air conditioning of an air-conditioned space,
    An air conditioning unit that conditions the air-conditioned space;
    A control device for controlling the air conditioning unit;
    Equipped with
    The control device includes an index value acquisition means for acquiring a concentration level of users in the air-conditioned space;
    and a control means for controlling the air conditioning unit so as to increase the degree of concentration of the user based on the acquired degree of concentration.
    Air conditioning equipment.
  10.  空調対象空間の空調制御を行い、
     前記空調対象空間のユーザの集中度を取得し、
     前記集中度を増大させるように制御を行う、
     制御方法。
    Control the air conditioning in the space to be air-conditioned,
    Acquire a concentration level of users in the air-conditioned space;
    Control is performed so as to increase the degree of concentration.
    Control methods.
  11.  コンピュータに、
     空調対象空間の空調制御を行う処理、
     前記空調対象空間のユーザの集中度を取得する処理、
     前記集中度を増大させるように制御を行う処理、
     を実行させるプログラム。

     
    On the computer,
    A process for controlling air conditioning in a space to be air-conditioned;
    A process of acquiring a concentration degree of users in the air-conditioned space;
    A process of performing control so as to increase the degree of concentration;
    A program that executes the following.

PCT/JP2022/048280 2022-12-27 2022-12-27 Air conditioning system, air conditioning apparatus, control method, and program WO2024142279A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/048280 WO2024142279A1 (en) 2022-12-27 2022-12-27 Air conditioning system, air conditioning apparatus, control method, and program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/048280 WO2024142279A1 (en) 2022-12-27 2022-12-27 Air conditioning system, air conditioning apparatus, control method, and program

Publications (1)

Publication Number Publication Date
WO2024142279A1 true WO2024142279A1 (en) 2024-07-04

Family

ID=91716778

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/048280 WO2024142279A1 (en) 2022-12-27 2022-12-27 Air conditioning system, air conditioning apparatus, control method, and program

Country Status (1)

Country Link
WO (1) WO2024142279A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002089927A (en) * 2000-09-19 2002-03-27 Matsushita Electric Ind Co Ltd Air-conditioning system
JP2021125307A (en) * 2020-01-31 2021-08-30 パナソニックIpマネジメント株式会社 Space production determination method, program, space production determination system, and space production management system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002089927A (en) * 2000-09-19 2002-03-27 Matsushita Electric Ind Co Ltd Air-conditioning system
JP2021125307A (en) * 2020-01-31 2021-08-30 パナソニックIpマネジメント株式会社 Space production determination method, program, space production determination system, and space production management system

Similar Documents

Publication Publication Date Title
CN107013978B (en) Air conditioner indoor unit and air supply method thereof
JP5089676B2 (en) Air conditioner
WO2020217799A1 (en) Air conditioner system
JP7127347B2 (en) Environmental control system and environmental control device
CN107655161B (en) Control method of air conditioner with monitoring function and air conditioner
JP6327843B2 (en) AIR CONDITIONING SYSTEM, AIR CONDITIONER, AIR CONDITIONING METHOD, AND PROGRAM
JP6272126B2 (en) Air conditioner
EP3862645A1 (en) Air conditioner and method for controlling the same
JP2007323526A (en) Environmental control system and input device
JP2019190765A (en) Environment control system and environment controller
JP6861366B2 (en) Air conditioner
WO2024142279A1 (en) Air conditioning system, air conditioning apparatus, control method, and program
CN112762583A (en) Control method of air conditioning unit
EP2868990A1 (en) Air conditioner and control method of the same
JP6917552B2 (en) Air conditioner
CN112460756A (en) Method and device for determining air outlet area of indoor unit of air conditioner
WO2024127587A1 (en) Air conditioning system, air conditioning device, control method and program
JP7038835B2 (en) Air conditioners, controls, air conditioners and programs
WO2024142175A1 (en) Air conditioning system, air conditioning apparatus, control method, and program
JP2020178789A (en) Sleep environment adjusting system and program
WO2024150312A1 (en) Air conditioning apparatus, control method, and program
WO2024150310A1 (en) Air conditioning device, control method, and program
WO2024150311A1 (en) Air conditioning device, control method, and program
WO2024150313A1 (en) Air conditioning device, control method, and program
WO2024150314A1 (en) Air conditioning system, air conditioning method, and program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22970072

Country of ref document: EP

Kind code of ref document: A1