WO2024136222A1 - Cold-rolled steel sheet and method for manufacturing same - Google Patents

Cold-rolled steel sheet and method for manufacturing same Download PDF

Info

Publication number
WO2024136222A1
WO2024136222A1 PCT/KR2023/019851 KR2023019851W WO2024136222A1 WO 2024136222 A1 WO2024136222 A1 WO 2024136222A1 KR 2023019851 W KR2023019851 W KR 2023019851W WO 2024136222 A1 WO2024136222 A1 WO 2024136222A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel sheet
rolled steel
cold
less
equation
Prior art date
Application number
PCT/KR2023/019851
Other languages
French (fr)
Korean (ko)
Inventor
서창효
임영록
김상현
정기택
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Publication of WO2024136222A1 publication Critical patent/WO2024136222A1/en

Links

Images

Definitions

  • the present invention relates to an ultra-high-strength cold-rolled steel sheet with a tensile strength of 1470 MPa, which is mainly used for automobile collision and structural members, and a method of manufacturing the same.
  • methods for strengthening steel include solid solution strengthening, precipitation strengthening, strengthening by grain refinement, and transformation strengthening.
  • strengthening by solid solution strengthening and grain refinement has the disadvantage that it is very difficult to manufacture high-strength steel with a tensile strength of 490 MPa or higher.
  • precipitation-strengthened high-strength steel strengthens the steel sheet by precipitating carbon and nitrides by adding carbon and nitride forming elements such as Cu, Nb, Ti, and V, or refines the grains by suppressing grain growth by fine precipitates. It is a technique to secure strength.
  • the above technology has the advantage of easily obtaining high strength at a low manufacturing cost, but has the disadvantage of requiring high-temperature annealing to cause sufficient recrystallization and ensure ductility, as the recrystallization temperature rises rapidly due to fine precipitates.
  • precipitation strengthened steel which is strengthened by precipitating carbon and nitride in the ferrite matrix, has a problem in that it is difficult to obtain high strength steel of 600 MPa or higher.
  • transformation-strengthened high-strength steels include ferrite-martensite dual phase steels containing hard martensite in a ferrite matrix, TRIP (Transformation Induced Plasticity) steels using transformation-induced plasticity of retained austenite, or ferrite and Various CP (Complexed Phase) steels composed of hard bainite or martensite structures have been developed.
  • TRIP Transformation Induced Plasticity
  • CP Complexed Phase
  • the seat part is a part that connects the passenger and the vehicle body and must support high stress to prevent the passenger from being thrown out in the event of a collision. For this purpose, high yield strength and yield ratio are required.
  • the application of steel materials with excellent hole expansion properties is required.
  • Patent Document 1 Japanese Patent Publication No. 3729108 discloses a high-tensile cold-rolled steel sheet with a martensitic single-phase structure and a tensile strength of 880 to 1170 MPa by optimizing the composition and heat treatment conditions of the steel sheet.
  • Patent Document 2 Japanese Patent Laid-Open No. 2005-272954
  • a steel sheet in which the volume ratio of the low-temperature transformation phase consisting of martensite and retained austenite accounts for more than 90% of the total metal structure is heated and maintained in the two-phase region, thereby forming the low-temperature transformation phase.
  • a method of manufacturing a high-strength steel sheet in which the structure is controlled by fine ferrite and austenite including laths, and by subsequent cooling, the final metal structure is formed in which ferrite and low-temperature transformation phase are finely dispersed on the laths.
  • Patent Document 1 Japanese Patent Publication No. 3729108
  • Patent Document 2 Japanese Patent Publication No. 2005-272954
  • an ultra-high strength cold rolled steel sheet with excellent formability and a method for manufacturing the same are provided.
  • One aspect of the present invention is,
  • C 0.1 ⁇ 0.3%
  • Si 2.0% or less (excluding 0%)
  • Mn 1.5 ⁇ 3.0%
  • Cr 1.2% or less
  • Mo 0.03 ⁇ 0.25%
  • Al 0.1% or less (excluding 0%)
  • P 0.001 to 0.015%
  • S 0.001 to 0.01%
  • N 0.001 to 0.01%
  • B 0.001 to 0.005%, including the balance Fe and other impurities
  • Microstructure in area%, includes the sum of bainite and tempered martensite: 75-90%, retained austenite: 10% or less (excluding 0%), and the balance fresh martensite;
  • the microstructure may include 4.8 to 9.6% of retained austenite in area percent.
  • the microstructure may include a total of 81 to 89% of bainite and tempered martensite in area percent.
  • C 0.1 ⁇ 0.3%
  • Si 2.0% or less (excluding 0%)
  • Mn 1.5 ⁇ 3.0%
  • Cr 1.2% or less
  • Mo 0.03 ⁇ 0.25%
  • Al 0.1% or less (excluding 0%)
  • P 0.001 to 0.015%
  • S 0.001 to 0.01%
  • N 0.001 to 0.01%
  • B 0.001 to 0.005%, including the balance Fe and other impurities, and Reheating the slab satisfying relations 1 and 2;
  • It provides a method of manufacturing a cold-rolled steel sheet, including the step of over-aging heat treatment of the secondary cooled cold-rolled steel sheet at 250 to 350°C.
  • the manufacturing method can satisfy the following relational equation 3.
  • [Ac1] is a value defined by the following relational equation 4, [RCS] represents the secondary cooling end temperature (°C), and [Ms] represents the martensite transformation start temperature (°C). )
  • the step of skin-pass rolling the over-aging heat-treated cold-rolled steel sheet in the range of 0.1 to 1.0% may be further included.
  • an ultra-high strength cold rolled steel sheet with excellent formability and a manufacturing method thereof can be provided.
  • Figure 1 shows a photograph of the microstructure of a specimen obtained in Inventive Example 1 using a scanning electron microscope (SEM).
  • microstructure control is very important in order to manufacture steel with an excellent hole expansion ratio (HER) of 20% or more and an elongation of 10% or more, as suggested by the present invention steel.
  • a method of simultaneously increasing stretch flangeability and elongation requires a technique to secure a uniform structure.
  • the structure with the highest strength among low-temperature structures is martensite, and as is well known, the easiest way to manufacture martensite is to anneal it for a time to sufficiently form austenite, then cool it with water, and then temper it. It is to be processed.
  • the water cooling method may cause productivity deterioration due to problems such as material deviation and shape defect, the present invention sought to secure martensite by controlling alloy elements.
  • carbon (C) is a very important element added to strengthen the transformed structure. Carbon promotes high strength and promotes the formation of martensite in transformed steel. If the carbon content is less than 0.1%, it is very difficult to secure the strength of martensite proposed in the present invention, so the carbon content is set to 0.1% or more. Meanwhile, as the carbon content increases, the amount of martensite in the steel increases. However, when the carbon content exceeds 0.3%, the strength of martensite increases, but the strength difference with ferrite with a low carbon concentration increases. This difference in strength reduces the stretch flangeability because fracture easily occurs at the interface between phases when stress is applied. In addition, due to poor weldability, welding defects occur when processing parts. Preferably it may be 0.10 to 0.30%.
  • Si 2.0% or less (excluding 0%)
  • silicon (Si) promotes ferrite transformation and increases the carbon content in untransformed austenite to form a composite structure of ferrite and martensite, which hinders the increase in the strength of martensite.
  • the Si content is controlled to 2.0% or less.
  • 0% is excluded as the lower limit of Si content. Preferably it may be 2.00% or less.
  • Mn manganese
  • the Mn content is 1.5%. It is set in the range of ⁇ 3.0%. Preferably it may be 1.50 to 3.00%. Meanwhile, in terms of further improving the above-described effect, the lower limit of the Mn content may be 2.0%, or the upper limit of the Mn content may be 2.9%.
  • phosphorus (P) is a substitutional alloy element with the greatest solid solution strengthening effect and plays a role in improving in-plane anisotropy and enhancing strength. Therefore, if the P content is less than 0.001%, not only can the above-mentioned effects not be secured, but it also causes problems with manufacturing costs. On the other hand, if the P content is excessively added to exceed 0.015%, press formability may deteriorate and brittleness of the steel may occur, so the P content is set at 0.001 to 0.015%. Meanwhile, in terms of further improving the above-described effect, the lower limit of the P content may be 0.003%, or the upper limit of the P content may be 0.014%.
  • sulfur (S) is an impurity element that impairs the ductility and weldability of steel sheets. Therefore, if the S content exceeds 0.01%, there is a high possibility that the ductility and weldability of the steel sheet will be impaired, so the S content is set to 0.01% or less. On the other hand, considering unavoidable inclusion, the lower limit of S content is set to 0.001%. Meanwhile, in terms of further improving the above-described effect, the lower limit of the S content may be 0.002%, or the upper limit of the S content may be 0.009%.
  • soluble aluminum (Al) is an effective ingredient in improving martensite hardenability by combining with oxygen to deoxidize and, like Si, distributing carbon in ferrite to austenite. Therefore, in order to secure the above-mentioned Al effect, 0% is excluded as the lower limit of the Al content. However, if the Al content exceeds 0.1%, the effect is saturated and the manufacturing cost increases, so the Al content is set to 0.1% or less. Preferably it may be 0.10% or less. Meanwhile, in terms of further improving the above-described effect, the lower limit of the Al content may be 0.001%, or the upper limit of the Al content may be 0.09%.
  • N nitrogen
  • the lower limit of N content is set to 0.001%.
  • the lower limit of the N content may be 0.002%, or the upper limit of the N content may be 0.009%.
  • Cr chromium
  • Cr chromium
  • the Cr content is set to 1.2% or less.
  • the Cr content may be 1.20% or less.
  • the lower limit of the Cr content may be 0.01%, or the upper limit of the Cr content may be 1.19%.
  • B is a component that delays the transformation of austenite into pearlite during cooling during annealing, and is added as an element that suppresses the formation of ferrite and promotes the formation of martensite.
  • the content of B is set at 0.001 to 0.005%.
  • Molybdenum (Mo) is an element added to ensure strength and hardenability, and when added together with Ti, it forms carbide with Ti. In order to obtain the structure strengthening effect due to the formation of carbides, the Mo content must be added at 0.03% or more. However, Mo is an expensive element, and if it is added too excessively, it not only deteriorates economic efficiency, but also delays phase transformation too much, causing fresh martensite formation, so the Mo content is set to 0.25% or less. Preferably, it may be 0.030 to 0.250%. Meanwhile, in terms of further improving the above-mentioned effect, the lower limit of the Mo content may be 0.04%, or the upper limit of the Mo content may be 0.24%.
  • the cold rolled steel sheet may optionally further include one or more elements of Ti and Nb, and Ti and Nb are among the steels, which increase the strength of the steel sheet and increase the strength of the steel sheet. It is an element effective in grain refinement by precipitates.
  • Ti or Nb when adding Ti or Nb, the Ti content can be in the range of 0.01 to 0.08%, or the Nb content can be in the range of 0.01 to 0.05%.
  • Ti and Nb are added in large quantities as in the present invention, they combine with carbon to form very fine nano-precipitates. These nano-precipitates serve to strengthen the matrix structure and reduce the difference in hardness between phases.
  • the remainder is Fe.
  • impurities are known to anyone skilled in the art, all of them are not specifically mentioned in this specification, but representative impurities are mentioned as follows.
  • the cold-rolled steel sheet according to the present invention has, as a microstructure and area percent, a total of bainite and tempered martensite: 75 to 90%, retained austenite: 10% or less (excluding 0%), and the remainder fresh. Contains martensite.
  • the total of bainite and tempered martensite, which are transformed structures, should be controlled to 75% or more and 90% or less, and retained austenite should be controlled to 10% or less.
  • HER pore expandability
  • YiR yield ratio
  • the carbon content is kept to 0.3% or less.
  • the present inventors are able to provide a cold-rolled steel sheet having ultra-high strength at the level desired in the present invention, even though the carbon content is as low as 0.3% or less.
  • the lower limit of the retained austenite area ratio may be 4.8%, or the upper limit of the retained austenite area ratio may be 9.6%.
  • the lower limit of the total area ratio of the bainite and tempered martensite may be 81%, or the upper limit of the total area ratio of the bainite and tempered martensite may be 89%.
  • the cold rolled steel sheet according to the present invention satisfies the following relational expressions 1 and 2.
  • the hole expandability (HER) under the condition of securing a certain ductility is at least 20% through numerous experiments on steels within the composition range presented in the steel of the present invention.
  • HER hole expandability
  • El elongation
  • hot rolling is performed. Finish rolling in hot rolling is preferably performed so that the exit temperature is between Ar3 and Ar3+50°C. In other words, if the temperature at the exit side of the finish rolling is less than Ar3, there is a high possibility that the hot deformation resistance will increase rapidly, and the top, tail, and edge of the hot rolled coil will become a single phase region, resulting in an increase in in-plane anisotropy and Formability deteriorates. However, if the exit temperature of finish rolling exceeds Ar3+50°C, not only will too thick oxidation scale occur, but there is a high possibility that the microstructure of the steel sheet will become coarse. Meanwhile, the Ar3 can be obtained by a method commonly known in the art, so it is not particularly limited. Additionally, more specifically, the finish rolling may be performed in the temperature range of 880 to 920°C.
  • the hot finishing rolling After completing the hot finishing rolling, it is wound at 500 to 750°C. If the coiling temperature is less than 500°C, excessive martensite or bainite is generated, causing an excessive increase in the strength of the hot rolled steel sheet, which may cause manufacturing problems such as shape defects due to load during cold rolling. On the other hand, if the coiling temperature exceeds 750°C, the pickling properties deteriorate due to an increase in surface scale, so it is preferable to limit the coiling temperature to 500-750°C.
  • the hot-rolled steel sheet manufactured in the above manner is pickled and then cold-rolled to obtain a cold-rolled steel sheet.
  • the cold rolled steel sheet obtained in this way is continuously annealed at 800 to 900°C, which is the continuous annealing temperature (SS). If the continuous annealing temperature is low, ferrite is generated in large quantities, making it impossible to secure YS and TS. On the other hand, if the continuous annealing temperature is too high, the martensite packet size produced during cooling increases due to the increase in austenite grain size due to high-temperature annealing, making it difficult to secure the desired physical properties in the present invention.
  • SS continuous annealing temperature
  • the continuously annealed cold-rolled steel sheet is subjected to primary cooling at an average cooling rate of 1 to 10°C/s until the primary cooling end temperature is 650 to 700°C.
  • the primary cooling is to suppress ferrite transformation and transform most of the austenite into martensite.
  • the primary cooled cold-rolled steel sheet is subjected to secondary cooling at an average cooling rate of more than 10°C/s and less than 20°C/s to the secondary cooling end temperature (RCS), and the secondary cooled cold-rolled steel sheet is cooled at 250 °C/s.
  • RCS secondary cooling end temperature
  • Over-aging treatment is performed by maintaining heat treatment at ⁇ 350°C.
  • This secondary cooling end temperature (RCS) is a very important temperature condition for securing high YR and high HER along with securing the shape of the coil in the width and longitudinal directions. If the cooling end temperature is low, the amount of martensite may be excessive during overaging treatment. With this increase, the yield strength and tensile strength increase simultaneously and the ductility deteriorates significantly.
  • shape deterioration occurs due to rapid cooling, which is expected to result in workability deterioration when processing automobile parts.
  • the secondary end temperature is too high, the austenite generated during annealing cannot be transformed into martensite, and high-temperature transformation phases such as bainite and granular bainite are generated, causing a rapid deterioration in yield strength. .
  • the occurrence of such a structure is accompanied by a decrease in the yield ratio and a deterioration of the hole expandability, making it impossible to manufacture the high-yield ratio high-strength steel with excellent elongation flangeability proposed in the present invention.
  • the method of manufacturing the cold rolled steel sheet can be managed to satisfy the following relational equation 3.
  • the following relational expression 3 it is possible to effectively provide a cold rolled steel sheet that is excellent in strength and hole expandability at the same time.
  • [Ac1] is a value defined by the following relational equation 4, [RCS] represents the secondary cooling end temperature (°C), and [Ms] represents the martensite transformation start temperature (°C). )
  • [Ms] refers to a value defined by the following relational equation 5.
  • Skin pass rolling is performed on the above-described overaging heat-treated cold rolled steel sheet in the range of 0.1 to 1.0%.
  • the yield strength increases by at least 50Mpa or more with little increase in tensile strength. If the rolling rate of the skin pass rolling is less than 0.1%, it is very difficult to control the shape of ultra-high strength steel such as the present invention steel, and if the rolling rate of the skin pass rolling exceeds 1.0%, the operability is greatly reduced due to high elongation work. Since it becomes unstable, set the value to 0.1 to 1.0%.
  • the cold rolled steel sheet obtained in this way is subjected to continuous annealing at a continuous annealing temperature (SS) under the conditions shown in Table 2 below, and then cooled to a primary cooling end temperature of 650 to 700°C at an average cooling rate of 5°C/s. Primary cooling was performed, followed by secondary cooling to the secondary cooling end temperature (RCS) at an average cooling rate of 15°C/s. Next, the secondary cooled cold rolled steel sheet was subjected to overaging heat treatment maintained at 250 to 350° C., and the final skin pass rolling rate was fixed at 0.2%.
  • SS continuous annealing temperature
  • RCS secondary cooling end temperature
  • a JIS No. 5 tensile test specimen was produced and the yield strength (YS), tensile strength (TS), elongation (El), and hole expandability (HER) were measured according to the JIS standard, and the results were presented along with comparative examples. It is shown in Table 3 below. Meanwhile, in the case of hole expansion, D o is the initial hole diameter (mm), and D h is the hole diameter after fracture (mm), and it was calculated according to the following equation.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

The present invention relates to an ultra-high-strength cold-rolled steel sheet having a tensile strength of 1470 MPa, which is mainly used for automobile crashworthy and structural members, and to a method for manufacturing same.

Description

냉연강판 및 이의 제조방법Cold rolled steel sheet and manufacturing method thereof
본 발명은 주로 자동차 충돌 및 구조 부재에 사용되는 인장강도 1470MPa급의 초고강도 냉연강판 및 그 제조방법에 관한 것이다.The present invention relates to an ultra-high-strength cold-rolled steel sheet with a tensile strength of 1470 MPa, which is mainly used for automobile collision and structural members, and a method of manufacturing the same.
최근 자동차용 강판은 각종 환경 규제 및 에너지 사용 규제에 의해 연비 향상이나 내구성 향상을 위하여 강도가 더욱 높은 강판이 요구되고 있다. 특히, 최근 자동차의 충격 안정성 규제가 확산되면서 차체의 내충격성 향상을 위해 멤버(Member), 시트 레일(seat rail) 및 필라(pillar) 등의 구조 부재에 항복강도가 우수한 고강도강이 채용되고 있다. 상기 구조 부재는 인장강도 대비 항복강도가 높을수록 즉, 항복비(인장강도/항복강도)가 높을수록 충격에너지 흡수능에 유리한 특징을 가지고 있다. 그러나, 일반적으로 강판의 강도가 증가할수록 연신율이 감소하게 됨으로써, 성형 가공성이 저하되는 문제점이 발생하므로, 이를 보완할 수 있는 재료의 개발이 요구되고 있는 실정이다.Recently, automobile steel sheets are required to have higher strength in order to improve fuel efficiency and durability due to various environmental and energy use regulations. In particular, as automobile impact safety regulations have recently spread, high-strength steel with excellent yield strength is being used in structural members such as members, seat rails, and pillars to improve the impact resistance of car bodies. The structural member has an advantageous feature in absorbing impact energy as the yield strength relative to the tensile strength is higher, that is, the higher the yield ratio (tensile strength/yield strength) is. However, in general, as the strength of the steel sheet increases, the elongation decreases, which causes the problem of reduced forming processability, so the development of materials that can complement this problem is required.
통상적으로, 강을 강화하는 방법에는 고용강화, 석출강화, 결정립 미세화에 의한 강화, 변태강화 등이 있다. 그러나, 상기 방법 중 고용강화 및 결정립 미세화에 의한 강화는 인장강도 490MPa급 이상의 고강도 강을 제조하기가 매우 어렵다는 단점이 있다.Typically, methods for strengthening steel include solid solution strengthening, precipitation strengthening, strengthening by grain refinement, and transformation strengthening. However, among the above methods, strengthening by solid solution strengthening and grain refinement has the disadvantage that it is very difficult to manufacture high-strength steel with a tensile strength of 490 MPa or higher.
한편, 석출강화형 고강도 강은 Cu, Nb, Ti, V 등과 같은 탄·질화물 형성원소를 첨가함으로써 탄·질화물을 석출시켜 강판을 강화시키거나, 미세 석출물에 의한 결정립 성장 억제를 통해 결정립을 미세화시켜 강도를 확보하는 기술이다. 상기 기술은 낮은 제조원가 대비 높은 강도를 쉽게 얻을 수 있다는 장점을 가지고 있으나, 미세 석출물에 의해 재결정온도가 급격히 상승하게 됨으로써, 충분한 재결정을 일으켜 연성을 확보하기 위해서는 고온 소둔을 실시하여야 한다는 단점이 있다. 또한, 페라이트 기지에 탄·질화물을 석출시켜 강화하는 석출강화강은 600MPa급 이상의 고강도 강을 얻기 곤란하다는 문제점이 있다.On the other hand, precipitation-strengthened high-strength steel strengthens the steel sheet by precipitating carbon and nitrides by adding carbon and nitride forming elements such as Cu, Nb, Ti, and V, or refines the grains by suppressing grain growth by fine precipitates. It is a technique to secure strength. The above technology has the advantage of easily obtaining high strength at a low manufacturing cost, but has the disadvantage of requiring high-temperature annealing to cause sufficient recrystallization and ensure ductility, as the recrystallization temperature rises rapidly due to fine precipitates. In addition, precipitation strengthened steel, which is strengthened by precipitating carbon and nitride in the ferrite matrix, has a problem in that it is difficult to obtain high strength steel of 600 MPa or higher.
한편, 변태강화형 고강도강은 페라이트 기지에 경질의 마르텐사이트를 포함시킨 페라이트-마르텐사이트 2상 조직(Dual Phase)강, 잔류 오스테나이트의 변태유기 소성을 이용한 TRIP(Transformation Induced Plasticity)강 혹은 페라이트와 경질의 베이나이트 또는 마르텐사이트 조직으로 구성되는 CP(Complexed Phase)강 등 여러가지가 개발되어 왔다. 그러나, 이러한 Advanced high strength steel에서 구현 가능한 인장강도 1500MPa 일때 연신율은 약 8% 수준이 한계이다. 또한 충돌 안전성을 확보하기 위한 구조부재에의 적용은 고온에서 성형후 수냉하는 다이(Die)와의 직접 접촉을 통한 급냉에 의하여 최종 강도를 확보하는 핫 프레스 포밍(Hot Press Forming)강이 각광받고 있으나, 설비 투자비의 과다 및 열처리 및 공정비용이 높아서 적용확대가 크지 않다.Meanwhile, transformation-strengthened high-strength steels include ferrite-martensite dual phase steels containing hard martensite in a ferrite matrix, TRIP (Transformation Induced Plasticity) steels using transformation-induced plasticity of retained austenite, or ferrite and Various CP (Complexed Phase) steels composed of hard bainite or martensite structures have been developed. However, when the tensile strength that can be achieved with this advanced high strength steel is 1500 MPa, the elongation rate is limited to about 8%. In addition, for application to structural members to ensure crash safety, hot press forming steel, which secures final strength by rapid cooling through direct contact with a water-cooled die after forming at high temperature, is receiving attention. The expansion of application is not large due to excessive facility investment costs and high heat treatment and processing costs.
최근에는 충돌 시 승객의 안정성을 보다 향상시키고자 차량의 시트(seat) 부품의 고강도화와 경량화가 동시에 진행되고 있다. 이러한 부품은 롤포밍 뿐만 아니라 프레스성형의 두가지 방법으로 제조되고 있다. 시트(seat) 부품은 승객과 차체를 연결하는 부품으로서 충돌 시 승객이 밖으로 튕겨져 나가지 못하도록 높은 응력으로 지지해주어야 한다. 이를 위해서는 높은 항복강도, 항복비가 필요하다. 또한 가공되는 부품의 대부분이 신장플랜지성을 요구하는 부품으로서 구멍 확장성이 우수한 강재의 적용이 요구되고 있다.Recently, in order to improve the safety of passengers in the event of a collision, increased strength and weight reduction of vehicle seat parts are being carried out simultaneously. These parts are manufactured by two methods: roll forming as well as press forming. The seat part is a part that connects the passenger and the vehicle body and must support high stress to prevent the passenger from being thrown out in the event of a collision. For this purpose, high yield strength and yield ratio are required. In addition, as most of the parts being processed require elongation flange properties, the application of steel materials with excellent hole expansion properties is required.
한편, 특허문헌 1(일본 특허공보 제3729108호)에서는 강판의 조성 및 열처리 조건을 적정화함으로써, 마르텐사이트 단상 조직으로 하고, 인장 강도가 880~1170MPa의 고장력 냉연강판을 개시하고 있다. 또한, 특허문헌 2(일본 특허공개 2005-272954호)에서는 마르텐사이트과 잔류 오스테나이트으로 이루어진 저온 변태상의 체적비율이 전체의 금속 조직중 90% 이상을 차지하는 강판을 2상역에 가열 유지함으로써, 저온 변태상의 래스를 포함한 미세한 페라이트과 오스테나이트의 조직으로 제어하고, 그 후의 냉각에 의해 최종적으로 페라이트와 저온변태상이 래스상에 세세하게 분산한 금속 조직으로 하는 고장력 강판의 제조 방법을 개시하고 있다. 이러한 특허들은 수냉 처리없이 높은 항복강도를 얻을 수 있다고 주장하고 있으나, 연성이 매우 열화하거나, 혹은 강 중에 오스테나이트의 다량 발생으로 신장플랜지성이 열화하는 단점들이 존재한다.Meanwhile, Patent Document 1 (Japanese Patent Publication No. 3729108) discloses a high-tensile cold-rolled steel sheet with a martensitic single-phase structure and a tensile strength of 880 to 1170 MPa by optimizing the composition and heat treatment conditions of the steel sheet. In addition, in Patent Document 2 (Japanese Patent Laid-Open No. 2005-272954), a steel sheet in which the volume ratio of the low-temperature transformation phase consisting of martensite and retained austenite accounts for more than 90% of the total metal structure is heated and maintained in the two-phase region, thereby forming the low-temperature transformation phase. A method of manufacturing a high-strength steel sheet is disclosed, in which the structure is controlled by fine ferrite and austenite including laths, and by subsequent cooling, the final metal structure is formed in which ferrite and low-temperature transformation phase are finely dispersed on the laths. These patents claim that high yield strength can be obtained without water cooling, but there are disadvantages such as greatly deteriorating ductility or deterioration of stretch flangeability due to the generation of a large amount of austenite in the steel.
(특허문헌 1) 일본 특허공보 제3729108호(Patent Document 1) Japanese Patent Publication No. 3729108
(특허문헌 2) 일본 특허공개 2005-272954호(Patent Document 2) Japanese Patent Publication No. 2005-272954
본 발명의 일 측면에 따르면, 성형성이 우수한 초고강도 냉연강판 및 이의 제조방법을 제공하고자 한다.According to one aspect of the present invention, an ultra-high strength cold rolled steel sheet with excellent formability and a method for manufacturing the same are provided.
본 발명의 과제는 전술한 내용에 한정하지 아니한다. 본 발명이 속하는 기술분야에서 통상의 지식을 가지는 자라면 누구라도 본 발명 명세서 전반에 걸친 내용으로부터 본 발명의 추가적인 과제를 이해하는 데 어려움이 없을 것이다.The object of the present invention is not limited to the above-described content. Anyone skilled in the art to which the present invention pertains will have no difficulty in understanding the additional problems of the present invention from the content throughout the present invention specification.
본 발명의 일 측면은, One aspect of the present invention is,
중량%로, C: 0.1~0.3%, Si: 2.0% 이하(0%는 제외), Mn: 1.5~3.0%, Cr: 1.2% 이하(0%는 제외), Mo: 0.03~0.25%, Al: 0.1% 이하(0%는 제외), P: 0.001~0.015%, S: 0.001~0.01%, N: 0.001~0.01%, B: 0.001~0.005%, 잔부 Fe 및 기타의 불순물을 포함하고,In weight%, C: 0.1~0.3%, Si: 2.0% or less (excluding 0%), Mn: 1.5~3.0%, Cr: 1.2% or less (excluding 0%), Mo: 0.03~0.25%, Al : 0.1% or less (excluding 0%), P: 0.001 to 0.015%, S: 0.001 to 0.01%, N: 0.001 to 0.01%, B: 0.001 to 0.005%, including the balance Fe and other impurities,
미세조직으로서, 면적%로, 베이나이트 및 템퍼드 마르텐사이트의 합계: 75~90%, 잔류 오스테나이트: 10% 이하(0%는 제외), 및 잔부 프레쉬 마르텐사이트를 포함하고,Microstructure, in area%, includes the sum of bainite and tempered martensite: 75-90%, retained austenite: 10% or less (excluding 0%), and the balance fresh martensite;
하기 관계식 1 및 2를 충족하는, 냉연강판을 제공한다.Provided is a cold rolled steel sheet that satisfies the following relations 1 and 2.
[관계식 1][Relationship 1]
1.0 ≤ [C] + (1.3×[Si]+[Mn])/6 + ([Cr]+1.2×[Mo])/5 + 100×[B] ≤ 1.21.0 ≤ [C] + (1.3×[Si]+[Mn])/6 + ([Cr]+1.2×[Mo])/5 + 100×[B] ≤ 1.2
(상기 관계식 1에 있어서, 상기 [C], [Si], [Mn], [Cr], [Mo] 및 [B]는 괄호 안의 각 원소에 대한 중량% 함량을 나타낸다.)(In Equation 1 above, [C], [Si], [Mn], [Cr], [Mo], and [B] represent the weight percent content of each element in parentheses.)
[관계식 2][Relational Expression 2]
106 ≤ ([Cr] + [Mo])×[Si]/[Al] ≤275106 ≤ ([Cr] + [Mo])×[Si]/[Al] ≤275
(상기 관계식 2에 있어서, 상기 [Cr], [Mo], [Si] 및 [Al]는 괄호 안의 각 원소에 대한 중량% 함량을 나타낸다.)(In Equation 2 above, [Cr], [Mo], [Si], and [Al] represent the weight percent content of each element in parentheses.)
상기 미세조직은 면적%로, 잔류 오스테나이트 4.8~9.6%를 포함할 수 있다.The microstructure may include 4.8 to 9.6% of retained austenite in area percent.
상기 미세조직은 면적%로, 베이나이트 및 템퍼드 마르텐사이트의 합계 81~89%를 포함할 수 있다. The microstructure may include a total of 81 to 89% of bainite and tempered martensite in area percent.
또한, 본 발명의 또 다른 일 측면은,In addition, another aspect of the present invention is,
중량%로, C: 0.1~0.3%, Si: 2.0% 이하(0%는 제외), Mn: 1.5~3.0%, Cr: 1.2% 이하(0%는 제외), Mo: 0.03~0.25%, Al: 0.1% 이하(0%는 제외), P: 0.001~0.015%, S: 0.001~0.01%, N: 0.001~0.01%, B: 0.001~0.005%, 잔부 Fe 및 기타의 불순물을 포함하고, 하기 관계식 1 및 2를 충족하는 슬라브를 재가열하는 단계;In weight%, C: 0.1~0.3%, Si: 2.0% or less (excluding 0%), Mn: 1.5~3.0%, Cr: 1.2% or less (excluding 0%), Mo: 0.03~0.25%, Al : 0.1% or less (excluding 0%), P: 0.001 to 0.015%, S: 0.001 to 0.01%, N: 0.001 to 0.01%, B: 0.001 to 0.005%, including the balance Fe and other impurities, and Reheating the slab satisfying relations 1 and 2;
상기 재가열된 슬라브를 Ar3~Ar3+50℃에서 마무리 열간압연하여 열연강판을 얻는 단계; Obtaining a hot rolled steel sheet by performing final hot rolling on the reheated slab at Ar3~Ar3+50°C;
상기 열연강판을 500~750℃에서 권취하는 단계; Winding the hot rolled steel sheet at 500 to 750°C;
상기 권취된 열연강판을 냉간압연하여 냉연강판을 얻는 단계; Obtaining a cold rolled steel sheet by cold rolling the coiled hot rolled steel sheet;
상기 냉연강판을 800~900℃에서 연속 소둔하는 단계; Continuously annealing the cold rolled steel sheet at 800 to 900°C;
상기 연속소둔된 냉연강판을 650~700℃의 1차 냉각종료온도까지 1~10℃/s의 평균 냉각속도로 1차 냉각하는 단계; Primary cooling the continuously annealed cold rolled steel sheet at an average cooling rate of 1 to 10°C/s to a primary cooling end temperature of 650 to 700°C;
상기 1차 냉각된 냉연강판을 2차 냉각 종료 온도까지 10℃/s 초과 20℃/s 이하의 평균 냉각속도로 2차 냉각하는 단계; 및Secondary cooling the primary cooled cold-rolled steel sheet to the secondary cooling end temperature at an average cooling rate of more than 10°C/s and less than 20°C/s; and
상기 2차 냉각된 냉연강판을 250~350℃에서 과시효 열처리하는 단계;를 포함하는, 냉연강판의 제조방법을 제공한다.It provides a method of manufacturing a cold-rolled steel sheet, including the step of over-aging heat treatment of the secondary cooled cold-rolled steel sheet at 250 to 350°C.
[관계식 1][Relationship 1]
1.0 ≤ [C] + (1.3×[Si]+[Mn])/6 + ([Cr]+1.2×[Mo])/5 + 100×[B] ≤ 1.21.0 ≤ [C] + (1.3×[Si]+[Mn])/6 + ([Cr]+1.2×[Mo])/5 + 100×[B] ≤ 1.2
(상기 관계식 1에 있어서, 상기 [C], [Si], [Mn], [Cr], [Mo] 및 [B]는 괄호 안의 각 원소에 대한 중량% 함량을 나타낸다.)(In Equation 1 above, [C], [Si], [Mn], [Cr], [Mo], and [B] represent the weight percent content of each element in parentheses.)
[관계식 2][Relational Expression 2]
106 ≤ ([Cr] + [Mo])×[Si]/[Al] ≤275106 ≤ ([Cr] + [Mo])×[Si]/[Al] ≤275
(상기 관계식 2에 있어서, 상기 [Cr], [Mo], [Si] 및 [Al]는 괄호 안의 각 원소에 대한 중량% 함량을 나타낸다.)(In Equation 2 above, [Cr], [Mo], [Si], and [Al] represent the weight percent content of each element in parentheses.)
상기 제조방법은 하기 관계식 3을 충족할 수 있다.The manufacturing method can satisfy the following relational equation 3.
[관계식 3][Relational Expression 3]
8 ≤ 3.1×([SS]-[Ac1]) + 2.2×([RCS]-[Ms])≤ 1808 ≤ 3.1×([SS]-[Ac1]) + 2.2×([RCS]-[Ms])≤ 180
(상기 관계식 3에 있어서, [Ac1]은 하기 관계식 4로 정의되는 값이고, [RCS]는 2차 냉각 종료 온도(℃)를 나타내며, [Ms]는 마르텐사이트 변태 개시 온도(℃)를 나타낸다.)(In the above relational equation 3, [Ac1] is a value defined by the following relational equation 4, [RCS] represents the secondary cooling end temperature (°C), and [Ms] represents the martensite transformation start temperature (°C). )
[관계식 4][Relational Expression 4]
[Ac1] = 723-10.7×[Mn]-16.9×[Ni]+29.1×[Si]+16.9×[Cr][Ac1] = 723-10.7×[Mn]-16.9×[Ni]+29.1×[Si]+16.9×[Cr]
(상기 관계식 4에 있어서, [Mn], [Ni], [Si] 및 [Cr]은 괄호 안의 각 원소에 대한 중량% 함량을 나타낸다.)(In equation 4 above, [Mn], [Ni], [Si], and [Cr] represent the weight percent content for each element in parentheses.)
상기 과시효 열처리된 냉연강판에, 0.1~1.0% 범위에서 스킨패스 압연하는 단계를 더 포함할 수 있다.The step of skin-pass rolling the over-aging heat-treated cold-rolled steel sheet in the range of 0.1 to 1.0% may be further included.
본 발명의 일 측면에 따르면, 성형성이 우수한 초고강도 냉연강판 및 이의 제조방법을 제공할 수 있다.According to one aspect of the present invention, an ultra-high strength cold rolled steel sheet with excellent formability and a manufacturing method thereof can be provided.
본 발명의 다양하면서도 유익한 장점과 효과는 상술한 내용에 한정되지 않고, 본 발명의 구체적인 실시 형태를 설명하는 과정에서 보다 쉽게 이해될 수 있을 것이다.The various and beneficial advantages and effects of the present invention are not limited to the above-described content, and may be more easily understood through description of specific embodiments of the present invention.
도 1은 발명예 1로부터 얻어진 시편에 대해 주사 전자 현미경(SEM)으로 미세조직을 촬영한 사진을 나타낸 것이다.Figure 1 shows a photograph of the microstructure of a specimen obtained in Inventive Example 1 using a scanning electron microscope (SEM).
이하, 본 발명의 바람직한 실시형태들을 설명한다. 그러나, 본 발명의 실시형태는 여러 가지 다른 형태로 변형될 수 있고, 본 발명의 범위가 이하 설명하는 실시형태로 한정되는 것은 아니다. 또한, 본 발명의 실시형태는 당해 기술분야에서 평균적인 지식을 가진 자에게 본 발명을 더욱 완전하게 설명하기 위해서 제공되는 것이다.Hereinafter, preferred embodiments of the present invention will be described. However, the embodiments of the present invention can be modified into various other forms, and the scope of the present invention is not limited to the embodiments described below. Additionally, the embodiments of the present invention are provided to more completely explain the present invention to those with average knowledge in the relevant technical field.
한편, 본 명세서에서 사용되는 용어는 특정 실시예를 설명하기 위한 것이고, 본 발명을 한정하는 것을 의도하지 않는다. 예를 들어, 본 명세서에서 사용되는 단수 형태들은 관련 정의가 이와 명백히 반대되는 의미를 나타내지 않는 한 복수 형태들도 포함한다. 또한, 명세서에서 사용되는 "포함하는"의 의미는 구성을 구체화하고, 다른 구성의 존재나 부가를 제외하는 것이 아니다.Meanwhile, the terms used in this specification are for describing specific embodiments and are not intended to limit the present invention. For example, as used herein, singular forms include plural forms unless the relevant definition clearly indicates the contrary. Additionally, the meaning of “including” used in the specification is to specify a configuration and not to exclude the presence or addition of another configuration.
앞에서 언급한 바와 같이 본 발명강에서 제시한 구멍 확장성(HER, Hole Expansion Ratio) 20% 이상과 10% 이상의 연신율이 우수한 강재를 제조하기 위해서는 미세조직 제어가 매우 중요하다. 신장 플랜지성과 연신율을 동시에 증가시키는 방법으로는 균일한 조직을 확보하는 기술이 필요하다. 일반적으로 저온조직 중 가장 높은 강도를 가지는 조직이 마르텐사이트이고, 기 공지된 바와 같이 가장 용이하게 마르텐사이트를 제조하는 방법은 소둔 시 오스테나이트가 충분히 형성될 수 있는 시간 동안 유지한 후 수냉을 하고 템퍼링처리하는 것이다. 그러나, 수냉 방식은 재질 편차, 형상 불량 등의 문제로 인한 생산성 열화가 발생할 수 있으므로, 본 발명에서는 합금 원소 제어에 의한 마르텐사이트 확보를 도모하고자 하였다. 즉 Mn, Cr등의 경화능 원소를 일정량이상 첨가함으로써 낮은 냉각속도에서도 마르텐사이트를 확보하는 기술이다. 그러나, 이러한 방법은 높은 합금원소 첨가로 인한 용접성 열화 등의 문제가 발생할 수 있다. 따라서, 본 발명에서는, 용접성에 가장 큰 영향을 미치는 탄소 함량을 최소화하고자 하였다. 본 발명강에서는 탄소함량을 0.3% 이하로 제한하였다.As mentioned earlier, microstructure control is very important in order to manufacture steel with an excellent hole expansion ratio (HER) of 20% or more and an elongation of 10% or more, as suggested by the present invention steel. A method of simultaneously increasing stretch flangeability and elongation requires a technique to secure a uniform structure. In general, the structure with the highest strength among low-temperature structures is martensite, and as is well known, the easiest way to manufacture martensite is to anneal it for a time to sufficiently form austenite, then cool it with water, and then temper it. It is to be processed. However, since the water cooling method may cause productivity deterioration due to problems such as material deviation and shape defect, the present invention sought to secure martensite by controlling alloy elements. In other words, it is a technology that secures martensite even at low cooling rates by adding a certain amount of hardenable elements such as Mn and Cr. However, this method may cause problems such as deterioration of weldability due to the addition of high alloy elements. Therefore, in the present invention, an attempt was made to minimize the carbon content, which has the greatest impact on weldability. In the present invention steel, the carbon content was limited to 0.3% or less.
본 발명강과 같은 냉각조건에서 높은 항복비를 확보하기 위해서는 합금 원소를 가능한 다량 첨가하여야 한다. 그러나 이러한 시도는 용접성 열화, 열연강도 증가등의 문제를 추가로 야기하고 있으므로 이에 대한 해결이 필요하다. 이에, 본 발명자들의 다양한 연구에 의해, 과도한 합금원소 첨가없이도 마르텐사이트의 크기와 나노 석출물을 제어할 경우 본 발명강에서 제시하는 신장 플랜지성과 항복비를 만족할 수 있음을 발견하고 본 발명을 완성하게 되었다. 이하에서는, 본 발명에서 요구하는 초고강도를 가지면서도, 구멍 확장성 20% 이상과, 연신율 10% 이상을 확보하기 위한 합금조성 및 미세조직적 특성에 대해 상세히 설명한다.In order to secure a high yield ratio under cooling conditions such as the steel of the present invention, alloying elements must be added as much as possible. However, these attempts cause additional problems such as deterioration of weldability and increase in hot rolling strength, so solutions are needed. Accordingly, through various studies by the present inventors, it was discovered that the elongation flangeability and yield ratio suggested by the present invention steel can be satisfied when the size and nano-precipitates of martensite are controlled without excessive addition of alloy elements, and the present invention was completed. . Below, the alloy composition and microstructural characteristics to ensure hole expandability of 20% or more and elongation of 10% or more while having the ultra-high strength required by the present invention will be described in detail.
먼저, 본 발명 냉연강판의 합금 성분의 첨가이유 및 함량 한정이유에 대하여 상세히 설명한다. 후술하는 각 성분의 함량은 특별히 언급하지 않는 한 모두 중량% 기준임에 유의할 필요가 있다.First, the reason for adding the alloy component and the reason for limiting the content of the cold rolled steel sheet of the present invention will be explained in detail. It is important to note that the content of each ingredient described below is based on weight percent unless specifically mentioned.
C: 0.1~0.3%C: 0.1~0.3%
강 중, 탄소(C)는 변태조직 강화를 위해 첨가되는 매우 중요한 원소이다. 탄소는 고강도화를 도모하고 변태조직강에서 마르텐사이트의 형성을 촉진한다. 탄소 함량이 0.1% 미만이면, 본 발명에서 제시하는 마르텐사이트의 강도를 확보하기 매우 어렵기 때문에 탄소 함량을 0.1% 이상으로 한다. 한편, 탄소함량이 증가하게 되면 강중 마르텐사이트량이 증가하게 된다. 하지만, 탄소 함량이 0.3%를 초과하면, 마르텐사이트의 강도는 높아지나, 탄소 농도가 낮은 페라이트와의 강도차이가 증가한다. 이러한 강도차이는 응력 부가 시 상간 계면에서 파괴가 쉽게 발생하기 때문에 신장플랜지성이 저하한다. 또한, 용접성이 열위하여 부품 가공 시 용접결함이 발생한다. 바람직하게는 0.10~0.30%일 수 있다. Among steels, carbon (C) is a very important element added to strengthen the transformed structure. Carbon promotes high strength and promotes the formation of martensite in transformed steel. If the carbon content is less than 0.1%, it is very difficult to secure the strength of martensite proposed in the present invention, so the carbon content is set to 0.1% or more. Meanwhile, as the carbon content increases, the amount of martensite in the steel increases. However, when the carbon content exceeds 0.3%, the strength of martensite increases, but the strength difference with ferrite with a low carbon concentration increases. This difference in strength reduces the stretch flangeability because fracture easily occurs at the interface between phases when stress is applied. In addition, due to poor weldability, welding defects occur when processing parts. Preferably it may be 0.10 to 0.30%.
Si: 2.0% 이하 (0%는 제외)Si: 2.0% or less (excluding 0%)
강 중, 실리콘(Si)은 페라이트 변태를 촉진시키고, 미변태 오스테나이트 중에 탄소의 함량을 상승시켜 페라이트와 마르텐사이트의 복합 조직을 형성시켜 마르텐사이트의 강도 상승에 방해를 준다. 또한, 표면특성 관련하여 표면 스케일 결함을 유발할 뿐 만 아니라, 화성처리성을 떨어뜨리기 때문에 가능한 첨가를 제한하는 것이 바람직하므로, 본 발명에서는 Si 함량을 2.0% 이하로 제어한다. 다만, 불가피하게 포함되는 경우를 감안하여, Si 함량의 하한으로서 0%는 제외한다. 바람직하게는 2.00% 이하일 수 있다. In steel, silicon (Si) promotes ferrite transformation and increases the carbon content in untransformed austenite to form a composite structure of ferrite and martensite, which hinders the increase in the strength of martensite. In addition, it is desirable to limit the addition as much as possible because it not only causes surface scale defects in relation to surface characteristics but also reduces chemical treatment properties, so in the present invention, the Si content is controlled to 2.0% or less. However, considering unavoidable inclusion, 0% is excluded as the lower limit of Si content. Preferably it may be 2.00% or less.
Mn: 1.5~3.0%Mn: 1.5~3.0%
강 중, 망간(Mn)은 연성의 손상없이 입자를 미세화시키고, 강중 황을 완전히 MnS로 석출시켜 FeS의 생성에 의한 열간 취성을 방지함과 더불어 강을 강화시키는 원소이며 동시에 마르텐사이트상이 얻어지는 임계 냉각속도 낮추는 역할을 하게 되어 마르텐사이트를 보다 용이하게 형성시킬 수 있다. Mn 함량이 1.5% 미만인 경우, 본 발명에서 목표로 하는 강도 확보에 어려움이 있는 반면, 3.0%를 초과하면, 용접성, 열간 압연성 등의 문제가 발생될 가능성이 높기 때문에, 상기 Mn의 함량은 1.5~3.0%의 범위로 한다. 바람직하게는 1.50~3.00%일 수 있다. 한편, 전술한 효과를 보다 개선하는 측면에서, 상기 Mn 함량의 하한은 2.0%일 수 있고, 혹은 상기 Mn 함량의 상한은 2.9%일 수 있다. In steel, manganese (Mn) is an element that refines the particles without damaging ductility and completely precipitates sulfur in the steel into MnS, preventing hot embrittlement caused by the formation of FeS and strengthening the steel. At the same time, critical cooling where martensite phase is obtained It plays a role in lowering the speed, making it easier to form martensite. If the Mn content is less than 1.5%, it is difficult to secure the strength targeted by the present invention, while if it exceeds 3.0%, problems such as weldability and hot rolling are likely to occur. Therefore, the Mn content is 1.5%. It is set in the range of ~3.0%. Preferably it may be 1.50 to 3.00%. Meanwhile, in terms of further improving the above-described effect, the lower limit of the Mn content may be 2.0%, or the upper limit of the Mn content may be 2.9%.
P: 0.001~0.015%P: 0.001~0.015%
강 중, 인(P)은 고용 강화 효과가 가장 큰 치환형 합금원소로서 면내 이방성을 개선하고 강도를 향상시키는 역할을 한다. 따라서, P 함량이 0.001% 미만인 경우, 전술한 효과를 확보할 수 없을 뿐만 아니라, 제조비용의 문제를 야기한다. 반면, P 함량이 0.015%를 초과하도록 과다하게 첨가하면, 프레스 성형성이 열화하고 강의 취성이 발생될 수 있기 때문에, 상기 P 함량은 0.001~0.015%로 한다. 한편, 전술한 효과를 보다 개선하는 측면에서, 상기 P 함량의 하한은 0.003%일 수 있고, 혹은 상기 P 함량의 상한은 0.014%일 수 있다.Among steels, phosphorus (P) is a substitutional alloy element with the greatest solid solution strengthening effect and plays a role in improving in-plane anisotropy and enhancing strength. Therefore, if the P content is less than 0.001%, not only can the above-mentioned effects not be secured, but it also causes problems with manufacturing costs. On the other hand, if the P content is excessively added to exceed 0.015%, press formability may deteriorate and brittleness of the steel may occur, so the P content is set at 0.001 to 0.015%. Meanwhile, in terms of further improving the above-described effect, the lower limit of the P content may be 0.003%, or the upper limit of the P content may be 0.014%.
S: 0.001~0.01%S: 0.001~0.01%
강 중, 황(S)은 불순물 원소로서 강판의 연성 및 용접성을 저해하는 원소이다. 따라서, S 함량이 0.01%를 초과하면, 강판의 연성 및 용접성을 저해할 가능성이 높기 때문에, 상기 S 함량은 0.01% 이하로 한다. 반면, 불가피하게 포함되는 경우를 감안하여, S 함량의 하한은 0.001%로 한다. 한편, 전술한 효과를 보다 개선하는 측면에서, 상기 S 함량의 하한은 0.002%일 수 있고, 혹은 상기 S 함량의 상한은 0.009%일 수 있다.In steel, sulfur (S) is an impurity element that impairs the ductility and weldability of steel sheets. Therefore, if the S content exceeds 0.01%, there is a high possibility that the ductility and weldability of the steel sheet will be impaired, so the S content is set to 0.01% or less. On the other hand, considering unavoidable inclusion, the lower limit of S content is set to 0.001%. Meanwhile, in terms of further improving the above-described effect, the lower limit of the S content may be 0.002%, or the upper limit of the S content may be 0.009%.
Al: 0.1% 이하(0%는 제외)Al: 0.1% or less (excluding 0%)
강 중, 가용 알루미늄(Al)은 산소와 결합하여 탈산 작용 및 Si과 같이 페라이트 내 탄소를 오스테나이트로 분배하여 마르텐사이트 경화능을 향상시키는데 유효한 성분이다. 따라서, 전술한 Al 효과의 확보를 위해, Al 함량의 하한으로서 0%는 제외한다. 다만, Al 함량이 0.1%를 초과하게 되면 상기 효과는 포화될 뿐만 아니라, 제조비용이 증가하므로, 상기 Al 함량을 0.1% 이하로 한다. 바람직하게는 0.10% 이하일 수 있다. 한편, 전술한 효과를 보다 개선하는 측면에서, 상기 Al 함량의 하한은 0.001%일 수 있고, 혹은 상기 Al 함량의 상한은 0.09%일 수 있다.Among steels, soluble aluminum (Al) is an effective ingredient in improving martensite hardenability by combining with oxygen to deoxidize and, like Si, distributing carbon in ferrite to austenite. Therefore, in order to secure the above-mentioned Al effect, 0% is excluded as the lower limit of the Al content. However, if the Al content exceeds 0.1%, the effect is saturated and the manufacturing cost increases, so the Al content is set to 0.1% or less. Preferably it may be 0.10% or less. Meanwhile, in terms of further improving the above-described effect, the lower limit of the Al content may be 0.001%, or the upper limit of the Al content may be 0.09%.
N: 0.001~0.01%N: 0.001~0.01%
강 중, 질소(N)는 오스테나이트를 안정화시키는데 유효한 작용을 하는 성분으로서, 0.01%를 초과하는 경우 AlN 형성 등을 통한 연주시 크랙이 발생할 위험성이 크게 증가되므로, 그 상한을 0.01%로 한정하는 것이 바람직하다. 또한, 불가피하게 포함되는 경우를 감안하여, N 함량의 하한은 0.001%로 한다. 한편, 전술한 효과를 보다 개선하는 측면에서, 상기 N 함량의 하한은 0.002%일 수 있고, 혹은 상기 N 함량의 상한은 0.009%일 수 있다.In steel, nitrogen (N) is an ingredient that effectively stabilizes austenite. If it exceeds 0.01%, the risk of cracks occurring during playing through AlN formation, etc. increases significantly, so the upper limit is limited to 0.01%. It is desirable. In addition, considering cases where it is inevitably included, the lower limit of N content is set to 0.001%. Meanwhile, in terms of further improving the above-described effect, the lower limit of the N content may be 0.002%, or the upper limit of the N content may be 0.009%.
Cr: 1.2% 이하(0%는 제외)Cr: 1.2% or less (excluding 0%)
강 중, 크롬(Cr)은 강의 경화능을 향상시키고 고강도를 확보하기 위해 첨가하는 성분이고, 본 발명에서는 저온 변태상인 마르텐사이트를 형성하는데 매우 중요한 역할을 하는 원소이다. 전술한 효과 확보를 위해 Cr 함량의 하한으로서 0%는 제외한다. 다만, 상기 Cr 함량이 1.2%를 초과하면 그 효과가 포화될 뿐만 아니라 과도한 열연강도 증가도 냉간압연성이 열화하는 문제가 발생하므로 상기 Cr 함량을 1.2% 이하로 한다. 바람직하게는 1.20% 이하일 수 있다. 한편, 전술한 효과를 보다 개선하는 측면에서, 상기 Cr 함량의 하한은 0.01%일 수 있고, 혹은 상기 Cr 함량의 상한은 1.19%일 수 있다.Among steels, chromium (Cr) is a component added to improve the hardenability of steel and ensure high strength, and in the present invention, it is an element that plays a very important role in forming martensite, a low-temperature transformation phase. To ensure the above-mentioned effect, 0% is excluded as the lower limit of Cr content. However, if the Cr content exceeds 1.2%, not only is the effect saturated, but an excessive increase in hot rolling strength also causes the problem of deterioration of cold rolling properties, so the Cr content is set to 1.2% or less. Preferably it may be 1.20% or less. Meanwhile, in terms of further improving the above-described effect, the lower limit of the Cr content may be 0.01%, or the upper limit of the Cr content may be 1.19%.
B: 0.001~0.005%B: 0.001~0.005%
강 중, B은 소둔 중 냉각하는 과정에서 오스테나이트가 펄라이트로 변태되는 것을 지연시키는 성분으로, 페라이트 형성을 억제하고 마르텐사이트의 형성을 촉진하는 원소로서 첨가된다. 하지만, 상기 B의 함량이 0.001% 미만인 경우에는 전술한 효과를 얻기가 어렵고 0.005% 초과하면 합금철 과다에 따른 원가 열화가 발생하므로 그 함량을 0.001~0.005%로 한다.In steel, B is a component that delays the transformation of austenite into pearlite during cooling during annealing, and is added as an element that suppresses the formation of ferrite and promotes the formation of martensite. However, if the content of B is less than 0.001%, it is difficult to obtain the above-mentioned effect, and if it exceeds 0.005%, cost deterioration occurs due to excessive iron alloy, so the content is set at 0.001 to 0.005%.
Mo: 0.03~0.25%Mo: 0.03~0.25%
몰리브덴(Mo)은 강도와 경화능을 확보하기 위해 첨가되는 원소로서, Ti과 함께 첨가될 경우 Ti과 함께 탄화물을 구성하게 된다. 이러한 탄화물 형성에 따른 조직강화 효과를 얻기 위해서는 상기 Mo의 함량은 0.03% 이상 첨가되어야 한다. 다만, Mo은 고가의 원소로서 너무 과도하게 첨가되면 경제성이 나빠질 뿐만 아니라, 상변태를 너무 지연시켜 프레시 마르텐사이트 형성을 유발할 수 있으므로, 상기 Mo 함량은 0.25% 이하로 한다. 바람직하게는 0.030~0.250%일 수 있다. 한편, 전술한 효과를 보다 개선하는 측면에서, 상기 Mo 함량의 하한은 0.04%일 수 있고, 혹은 상기 Mo 함량의 상한은 0.24%일 수 있다.Molybdenum (Mo) is an element added to ensure strength and hardenability, and when added together with Ti, it forms carbide with Ti. In order to obtain the structure strengthening effect due to the formation of carbides, the Mo content must be added at 0.03% or more. However, Mo is an expensive element, and if it is added too excessively, it not only deteriorates economic efficiency, but also delays phase transformation too much, causing fresh martensite formation, so the Mo content is set to 0.25% or less. Preferably, it may be 0.030 to 0.250%. Meanwhile, in terms of further improving the above-mentioned effect, the lower limit of the Mo content may be 0.04%, or the upper limit of the Mo content may be 0.24%.
또한, 특별히 한정하는 것은 아니나, 본 발명의 일 측면에 따르면, 상기 냉연강판은, 선택적으로 Ti 및 Nb 중 하나 이상의 원소를 더 포함할 수 있고, Ti 및 Nb은 강 중에서, 강판의 강도 상승 및 나노석출물에 의한 결정립 미세화에 유효한 원소이다. 본 발명에 있어서, 상기 Ti나 Nb을 첨가하는 경우에는, Ti의 함량을 0.01~0.08%로 할 수 있고, 혹은 Nb의 함량을 0.01~0.05%의 범위로 할 수 있다. 한편, Ti와 Nb는 본 발명에서와 같이 다량으로 첨가하게 되면 탄소와 결합하여 매우 미세한 나노석출물을 형성하게 된다. 이러한 나노 석출물은 기지조직을 강화시켜 상간의 경도차이를 감소시키는 역할을 한다.In addition, although it is not particularly limited, according to one aspect of the present invention, the cold rolled steel sheet may optionally further include one or more elements of Ti and Nb, and Ti and Nb are among the steels, which increase the strength of the steel sheet and increase the strength of the steel sheet. It is an element effective in grain refinement by precipitates. In the present invention, when adding Ti or Nb, the Ti content can be in the range of 0.01 to 0.08%, or the Nb content can be in the range of 0.01 to 0.05%. On the other hand, when Ti and Nb are added in large quantities as in the present invention, they combine with carbon to form very fine nano-precipitates. These nano-precipitates serve to strengthen the matrix structure and reduce the difference in hardness between phases.
상기 조성 이외에 나머지는 Fe이다. 다만, 통상의 제조과정에서는 원료 또는 주위 환경으로부터 의도되지 않는 불가피한 불순물들이 불가피하게 혼입될 수 있으므로, 이를 배제할 수는 없다. 이들 불순물들은 본 기술분야에서 통상의 지식을 가진 자라면 누구라도 알 수 있는 것이기 때문에 그 모든 내용을 본 명세서에서 특별히 언급하지는 않으나, 대표적인 불순물에 대해 언급하면 다음과 같다.In addition to the above composition, the remainder is Fe. However, in the normal manufacturing process, unintended impurities from raw materials or the surrounding environment may inevitably be mixed, so this cannot be ruled out. Since these impurities are known to anyone skilled in the art, all of them are not specifically mentioned in this specification, but representative impurities are mentioned as follows.
이어서, 본 발명에 따른 냉연강판은, 미세조직으로서, 면적%로, 베이나이트 및 템퍼드 마르텐사이트의 합계: 75~90%, 잔류 오스테나이트: 10% 이하(0%는 제외), 및 잔부 프레쉬 마르텐사이트를 포함한다. Next, the cold-rolled steel sheet according to the present invention has, as a microstructure and area percent, a total of bainite and tempered martensite: 75 to 90%, retained austenite: 10% or less (excluding 0%), and the remainder fresh. Contains martensite.
본 발명에서는, 변태조직인 베이나이트 및 템퍼드 마르텐사이트의 합계가 75% 이상 90% 이하로 제어되어야 하고, 잔류 오스테나이트는 10% 이하로 제어되어야 한다. 구멍 확장성(HER) 및 항복비(YR)를 증가시키기 위해서는 가능한 변태조직 분율이 높을수록 좋지만, 연신율까지 고려를 하면 90% 이하로 제어하는 것이 좋다 본 발명과 같이, 탄소 함량이 0.3% 이하로 낮은 경우, 용접성과 열연 강도를 고려하여 합금원소를 첨가하게 되면 생성되는 마르텐사이트의 강도 증가에 한계가 발생한다. 즉, 마르텐사이트 내에 충분한 탄소가 포함되지 못하면 강도증가에 한계가 있다. 그러나, 본 발명자들은, 탄소 함량이 0.3% 이하로 낮음에도 불구하고, 본 발명에서 목적하는 수준의 초고강도를 갖는 냉연강판의 제공이 가능하다.In the present invention, the total of bainite and tempered martensite, which are transformed structures, should be controlled to 75% or more and 90% or less, and retained austenite should be controlled to 10% or less. In order to increase the pore expandability (HER) and yield ratio (YR), the higher the transformed tissue fraction, the better. However, considering the elongation, it is better to control it to 90% or less. As in the present invention, the carbon content is kept to 0.3% or less. In low cases, when alloy elements are added considering weldability and hot rolling strength, there is a limit to the increase in the strength of the martensite produced. In other words, if sufficient carbon is not included in martensite, there is a limit to the increase in strength. However, the present inventors are able to provide a cold-rolled steel sheet having ultra-high strength at the level desired in the present invention, even though the carbon content is as low as 0.3% or less.
한편, 전술한 효과를 보다 개선하는 측면에서, 상기 잔류 오스테나이트 면적율의 하한은 4.8%일 수 있고, 혹은 상기 잔류 오스테나이트 면적율의 상한은 9.6%일 수 있다. 혹은, 상기 베이나이트 및 템퍼드 마르텐사이트의 합계 면적율의 하한은 81%일 수 있고, 혹은 상기 베이나이트 및 템퍼드 마르텐사이트의 합계 면적율의 상한은 89%일 수 있다.Meanwhile, in terms of further improving the above-described effect, the lower limit of the retained austenite area ratio may be 4.8%, or the upper limit of the retained austenite area ratio may be 9.6%. Alternatively, the lower limit of the total area ratio of the bainite and tempered martensite may be 81%, or the upper limit of the total area ratio of the bainite and tempered martensite may be 89%.
또한, 본 발명에 따른 냉연강판은, 하기 관계식 1 및 2를 충족한다. 즉, 본 발명에서는 강도를 확보하면서 연신율을 얻기 해서는 본 발명강에서 제시하는 성분범위에 존재하는 강재를 대상으로 수많은 실험을 통해 일정한 연성을 확보하는 조건에서의 구멍 확장성(HER)이 최소 20% 이상이면서 연신울(El) 10% 이상을 확보하기 위해서는, 이때 제조되는 강들이 성분과 제조조건이 매우 중요하고, 이러한 인자들이 아래의 관계식 1 및 2를 충족하는 것이 주요함을 확인하였다.In addition, the cold rolled steel sheet according to the present invention satisfies the following relational expressions 1 and 2. In other words, in the present invention, in order to obtain elongation while securing strength, the hole expandability (HER) under the condition of securing a certain ductility is at least 20% through numerous experiments on steels within the composition range presented in the steel of the present invention. In order to secure more than 10% of elongation (El), it was confirmed that the composition and manufacturing conditions of the steels manufactured at this time are very important, and it is important for these factors to satisfy the relational equations 1 and 2 below.
[관계식 1][Relationship 1]
1.0 ≤ [C] + (1.3×[Si]+[Mn])/6 + ([Cr]+1.2×[Mo])/5 + 100×[B] ≤ 1.21.0 ≤ [C] + (1.3×[Si]+[Mn])/6 + ([Cr]+1.2×[Mo])/5 + 100×[B] ≤ 1.2
(상기 관계식 1에 있어서, 상기 [C], [Si], [Mn], [Cr], [Mo] 및 [B]는 괄호 안의 각 원소에 대한 중량% 함량을 나타낸다.)(In Equation 1 above, [C], [Si], [Mn], [Cr], [Mo], and [B] represent the weight percent content of each element in parentheses.)
[관계식 2][Relational Expression 2]
106 ≤ ([Cr] + [Mo])×[Si]/[Al] ≤275106 ≤ ([Cr] + [Mo])×[Si]/[Al] ≤275
(상기 관계식 2에 있어서, 상기 [Cr], [Mo], [Si] 및 [Al]는 괄호 안의 각 원소에 대한 중량% 함량을 나타낸다.)(In Equation 2 above, [Cr], [Mo], [Si], and [Al] represent the weight percent content of each element in parentheses.)
이하에서는 본 발명에 따른 냉연강판의 제조방법에 대하여 구체적으로 설명한다.Hereinafter, the manufacturing method of a cold rolled steel sheet according to the present invention will be described in detail.
전술한 합금 설계 방식으로 성분이 조성된 슬라브를 재가열 후에는 열간압연을 실시한다. 열간압연에서의 마무리 압연은 출구측 온도가 Ar3~Ar3+50℃의 사이가 되도록 압연하는 것이 바람직하다. 즉, 마무리 압연의 출구측 온도가 Ar3 미만이면, 열간 변형 저항이 급격히 증가될 가능성이 높고, 또한 열연코일의 상(top), 하(tail)부 및 가장자리가 단상영역으로 되어 면내 이방성의 증가 및 성형성이 열화된다. 그러나, 마무리 압연의 출구측 온도가 Ar3+50℃를 초과하게 되면 너무 두꺼운 산화 스케일이 발생할 뿐만 아니라, 강판의 미세조직이 조대화될 가능성이 높다. 한편, 상기 Ar3에 대해서는 당해 기술분야에서 통상적으로 알려진 방법으로 구할 수 있으므로, 이를 특별히 한정하지 않는다. 또한, 상기 마무리 압연은 보다 구체적으로는, 880~920℃ 온도범위에서 수행될 수 있다.After reheating the slab composed of the ingredients using the above-described alloy design method, hot rolling is performed. Finish rolling in hot rolling is preferably performed so that the exit temperature is between Ar3 and Ar3+50°C. In other words, if the temperature at the exit side of the finish rolling is less than Ar3, there is a high possibility that the hot deformation resistance will increase rapidly, and the top, tail, and edge of the hot rolled coil will become a single phase region, resulting in an increase in in-plane anisotropy and Formability deteriorates. However, if the exit temperature of finish rolling exceeds Ar3+50°C, not only will too thick oxidation scale occur, but there is a high possibility that the microstructure of the steel sheet will become coarse. Meanwhile, the Ar3 can be obtained by a method commonly known in the art, so it is not particularly limited. Additionally, more specifically, the finish rolling may be performed in the temperature range of 880 to 920°C.
상기 열간마무리 압연을 종료한 후, 500~750℃에서 권취한다. 권취 온도가 500℃ 미만인 경우, 과다한 마르텐사이트 또는 베이나이트가 생성되어 열연강판의 과다한 강도 상승을 초래함으로써 냉간압연시 부하로 인한 형상불량 등의 제조상의 문제가 발생할 수 있다. 반면, 권취 온도가 750℃를 초과하게 되면, 표면 스케일의 증가로 산세성이 열화하므로, 상기 권취 온도는 500~750℃로 제한하는 것이 바람직하다.After completing the hot finishing rolling, it is wound at 500 to 750°C. If the coiling temperature is less than 500°C, excessive martensite or bainite is generated, causing an excessive increase in the strength of the hot rolled steel sheet, which may cause manufacturing problems such as shape defects due to load during cold rolling. On the other hand, if the coiling temperature exceeds 750°C, the pickling properties deteriorate due to an increase in surface scale, so it is preferable to limit the coiling temperature to 500-750°C.
상기의 방식으로 제조한 열연강판을 산세 후에 냉간압연하여, 냉연강판을 얻는다. The hot-rolled steel sheet manufactured in the above manner is pickled and then cold-rolled to obtain a cold-rolled steel sheet.
이렇게 얻어진 냉연강판을 연속 소둔 온도(SS)인 800~900℃에서 연속 소둔을 행한다. 상기 연속 소둔 온도가 낮을 경우 페라이트가 다량으로 생성되어 YS 및 TS를 확보할 수 없다. 반면, 연속 소둔 온도가 너무 높을 경우에는 고온 소둔에 따른 오스트나이트 결정립 크기 증가로 인해 냉각 시 생산되는 마르텐사이트 패킷 사이즈가 증가하여 본 발명에서 목적하는 물성을 확보하기 어려울 수 있다.The cold rolled steel sheet obtained in this way is continuously annealed at 800 to 900°C, which is the continuous annealing temperature (SS). If the continuous annealing temperature is low, ferrite is generated in large quantities, making it impossible to secure YS and TS. On the other hand, if the continuous annealing temperature is too high, the martensite packet size produced during cooling increases due to the increase in austenite grain size due to high-temperature annealing, making it difficult to secure the desired physical properties in the present invention.
상기 연속소둔된 냉연강판을 650~700℃의 1차 냉각종료온도까지 1~10℃/s의 평균 냉각속도로 1차 냉각을 실시한다. 상기 1차 냉각은 페라이트 변태를 억제하여 대부분의 오스테나이트가 마르텐사이트로 변태시키기 위함이다. The continuously annealed cold-rolled steel sheet is subjected to primary cooling at an average cooling rate of 1 to 10°C/s until the primary cooling end temperature is 650 to 700°C. The primary cooling is to suppress ferrite transformation and transform most of the austenite into martensite.
이어서, 상기 1차 냉각된 냉연강판을 2차 냉각 종료 온도(RCS)까지 10℃/s 초과 20℃/s 이하의 평균 냉각속도로 2차 냉각을 실시하고, 상기 2차 냉각된 냉연강판을 250~350℃에서 유지 열처리하는 과시효 처리를 실시한다. 이러한 2차 냉각 종료 온도(RCS)는 코일일의 폭방향, 길이방향 형상확보와 더불어 고YR 및 고HER 확보에 매우 중요한 온도조건으로서 냉각 종료 온도가 낮을 경우는 과시효 처리 동안 마르텐사이트량의 과도한 증가로 항복강도, 인장강도가 동시에 증가하고 연성이 매우 열화한다. 특히, 급냉에 따른 형상열화가 발생하여 자동차 부품가공시 작업성열화 등이 예상된다. 한편 2차 종료 온도가 너무 높을 경우 소둔 시 생성된 오스테나이트가 마르텐사이트로 변태되지 못하고 고온변태상인 베이나이트, 그래뉼라 베이나이트(granular bainite) 등이 생성되어 항복강도가 급격히 열화되는 문제가 발생한다. 이러한 조직의 발생은 항복비의 저하와 더불어 구멍확장성의 열화를 수반하여 본 발명에서 제시하는 신장 플랜지성이 우수한 고항복비형 고강도강을 제조할 수 없다.Subsequently, the primary cooled cold-rolled steel sheet is subjected to secondary cooling at an average cooling rate of more than 10°C/s and less than 20°C/s to the secondary cooling end temperature (RCS), and the secondary cooled cold-rolled steel sheet is cooled at 250 °C/s. Over-aging treatment is performed by maintaining heat treatment at ~350°C. This secondary cooling end temperature (RCS) is a very important temperature condition for securing high YR and high HER along with securing the shape of the coil in the width and longitudinal directions. If the cooling end temperature is low, the amount of martensite may be excessive during overaging treatment. With this increase, the yield strength and tensile strength increase simultaneously and the ductility deteriorates significantly. In particular, shape deterioration occurs due to rapid cooling, which is expected to result in workability deterioration when processing automobile parts. On the other hand, if the secondary end temperature is too high, the austenite generated during annealing cannot be transformed into martensite, and high-temperature transformation phases such as bainite and granular bainite are generated, causing a rapid deterioration in yield strength. . The occurrence of such a structure is accompanied by a decrease in the yield ratio and a deterioration of the hole expandability, making it impossible to manufacture the high-yield ratio high-strength steel with excellent elongation flangeability proposed in the present invention.
본 발명의 일 측면에 따르면, 상기 냉연강판의 제조방법은, 하기 관계식 3을 충족하도록 관리될 수 있다. 하기 관계식 3을 충족함으로써, 강도 및 구멍 확장성이 동시에 우수한 냉연강판을 효과적으로 제공할 수 있다.According to one aspect of the present invention, the method of manufacturing the cold rolled steel sheet can be managed to satisfy the following relational equation 3. By satisfying the following relational expression 3, it is possible to effectively provide a cold rolled steel sheet that is excellent in strength and hole expandability at the same time.
[관계식 3][Relational Expression 3]
8 ≤ 3.1×([SS]-[Ac1]) + 2.2×([RCS]-[Ms])≤ 1808 ≤ 3.1×([SS]-[Ac1]) + 2.2×([RCS]-[Ms])≤ 180
(상기 관계식 3에 있어서, [Ac1]은 하기 관계식 4로 정의되는 값이고, [RCS]는 2차 냉각 종료 온도(℃)를 나타내며, [Ms]는 마르텐사이트 변태 개시 온도(℃)를 나타낸다.) (In the above relational equation 3, [Ac1] is a value defined by the following relational equation 4, [RCS] represents the secondary cooling end temperature (°C), and [Ms] represents the martensite transformation start temperature (°C). )
[관계식 4][Relational Expression 4]
[Ac1] = 723-10.7×[Mn]-16.9×[Ni]+29.1×[Si]+16.9×[Cr][Ac1] = 723-10.7×[Mn]-16.9×[Ni]+29.1×[Si]+16.9×[Cr]
(상기 관계식 4에 있어서, [Mn], [Ni], [Si] 및 [Cr]은 괄호 안의 각 원소에 대한 중량% 함량을 나타낸다.)(In equation 4 above, [Mn], [Ni], [Si], and [Cr] represent the weight percent content for each element in parentheses.)
이 때, 상기 [Ms]는 하기 관계식 5로 정의되는 값을 말한다.At this time, [Ms] refers to a value defined by the following relational equation 5.
[관계식 5][Relational Expression 5]
Ms = 539 - 423×[C] - 30.4×[Mn] - 12.1×[Cr] - 7.5×[Mo]Ms = 539 - 423×[C] - 30.4×[Mn] - 12.1×[Cr] - 7.5×[Mo]
(상기 관계식 5에 있어서, [C], [Mn], [Cr] 및 [Mo]은 괄호 안의 각 원소에 대한 중량% 함량을 나타낸다.)(In Equation 5 above, [C], [Mn], [Cr], and [Mo] represent the weight percent content for each element in parentheses.)
전술한 과시효 열처리된 냉연강판에, 0.1~1.0% 범위에서 스킨패스 압연을 수행한다. 통상 변태조직강을 스킨패스 압연하는 경우 인장강도의 증가는 거의 없이 적어도 50Mpa 이상의 항복강도 상승이 일어난다. 상기 스킨패스 압연의 압연율이 0.1% 미만이면 본 발명강과 같은 초고강도강에서 형상의 제어가 매우 어려우며, 상기 스킨패스 압연의 압연율을 1.0% 초과하도록 작업하면 고연신 작업에 의해 조업성이 크게 불안정해지므로, 그 값을 0.1~1.0%로 한다.Skin pass rolling is performed on the above-described overaging heat-treated cold rolled steel sheet in the range of 0.1 to 1.0%. Typically, when skin-pass rolling transformed steel, the yield strength increases by at least 50Mpa or more with little increase in tensile strength. If the rolling rate of the skin pass rolling is less than 0.1%, it is very difficult to control the shape of ultra-high strength steel such as the present invention steel, and if the rolling rate of the skin pass rolling exceeds 1.0%, the operability is greatly reduced due to high elongation work. Since it becomes unstable, set the value to 0.1 to 1.0%.
이하, 실시예를 통하여 본 발명을 보다 구체적으로 설명한다. 다만, 하기 실시예는 예시를 통하여 본 발명을 설명하기 위한 것일 뿐, 본 발명의 권리범위를 제한하기 위한 것이 아니라는 점에서 유의할 필요가 있다. 본 발명의 권리범위는 특허 청구범위에 기재된 사항과 이로부터 합리적으로 유추되는 사항에 의해 결정되는 것이기 때문이다.Hereinafter, the present invention will be described in more detail through examples. However, it should be noted that the following examples are only for illustrating the present invention by way of example and are not intended to limit the scope of the present invention. This is because the scope of rights of the present invention is determined by matters stated in the patent claims and matters reasonably inferred therefrom.
(실시예)(Example)
하기 표 1에 기재된 조성을 갖는 강 슬라브를 진공용해하고, 가열로에서 재가열온도 1200℃ 온도에서 1시간 가열하고 열간압연을 실시한 후 권취하였다. 열간압연 작업 시 온도조건은 하기 표 2와 같이 각 예들에 대한 Ar3 이상를 기준으로, Ar3~Ar3+50℃ 범위를 충족하도록, 880~920℃ 온도범위에서 열간압연을 종료하였으며, 권취온도는 500~680℃로 제어하였다. 열간압연한 강판을 이용하여 산세를 실시하고 냉간압연을 실시하였다. 이렇게 얻어진 냉간압연된 강판에 대해, 하기 표 2에 기재된 조건으로, 연속 소둔 온도(SS)에서 연속 소둔을 행한 후, 5℃/s의 평균 냉각 속도로 650~700℃의 1차 냉각종료온도까지 1차 냉각을 실시하였고, 이어서 15℃/s의 평균 냉각 속도로 2차 냉각 종료 온도(RCS)까지 2차 냉각을 실시하였다. 다음으로, 상기 2차 냉각된 냉연강판을 250~350℃에서 유지하는 과시효 열처리를 행한 후, 최종적으로 스킨패스 압연율은 0.2%로 고정하였다.Steel slabs having the composition shown in Table 1 below were vacuum melted, heated in a heating furnace at a reheating temperature of 1200°C for 1 hour, hot rolled, and then wound. The temperature conditions during hot rolling are as shown in Table 2 below. Based on Ar3 or higher for each example, hot rolling was completed in the temperature range of 880~920℃ to satisfy the range of Ar3~Ar3+50℃, and the coiling temperature was 500~50℃. It was controlled at 680°C. Pickling was performed using hot-rolled steel sheets, followed by cold rolling. The cold rolled steel sheet obtained in this way is subjected to continuous annealing at a continuous annealing temperature (SS) under the conditions shown in Table 2 below, and then cooled to a primary cooling end temperature of 650 to 700°C at an average cooling rate of 5°C/s. Primary cooling was performed, followed by secondary cooling to the secondary cooling end temperature (RCS) at an average cooling rate of 15°C/s. Next, the secondary cooled cold rolled steel sheet was subjected to overaging heat treatment maintained at 250 to 350° C., and the final skin pass rolling rate was fixed at 0.2%.
각 강성분 및 소둔조건의 변화에 따라 제조된 각 강판에 대한 베이나이트 및 템퍼드 마르텐사이트의 합계, 잔류 오스테나이트 및 프레쉬 마르텐사이트의 면적율을 측정하여 하기 표 3에 나타내었다.The total of bainite and tempered martensite, and the area ratio of retained austenite and fresh martensite for each steel sheet manufactured according to changes in each steel component and annealing condition were measured and are shown in Table 3 below.
또한, JIS 5호 인장시험편을 제작하여, JIS 규격에 따라 항복강도(YS), 인장강도(TS), 연신율(El), 구멍 확장성(HER)을 측정하였고, 그 결과를 비교예들과 함께 하기 표 3에 나타내었다. 한편, 구멍 확장성의 경우, Do를 초기 구멍직경(㎜), 및 Dh를 파단 후 구멍직경(㎜)이라 할 때, 이하의 식에 따라 계산하였다.In addition, a JIS No. 5 tensile test specimen was produced and the yield strength (YS), tensile strength (TS), elongation (El), and hole expandability (HER) were measured according to the JIS standard, and the results were presented along with comparative examples. It is shown in Table 3 below. Meanwhile, in the case of hole expansion, D o is the initial hole diameter (mm), and D h is the hole diameter after fracture (mm), and it was calculated according to the following equation.
HER(%)= (Dh-Do)/Do×100HER(%)= (D h -D o )/D o ×100
구분division 조성 (wt%)Composition (wt%)
CC SiSi MnMn CrCr MoMo BB AlAl PP SS NN
발명강 1Invention lecture 1 0.2450.245 0.610.61 2.482.48 0.320.32 0.0480.048 0.00140.0014 0.00210.0021 0.0090.009 0.0030.003 0.0040.004
발명강 2Invention lecture 2 0.2120.212 0.80.8 2.682.68 0.630.63 0.090.09 0.00210.0021 0.00210.0021 0.0110.011 0.0040.004 0.0050.005
발명강 3Invention lecture 3 0.2520.252 1.481.48 2.42.4 0.050.05 0.10.1 0.00180.0018 0.00180.0018 0.0110.011 0.0040.004 0.0050.005
비교강 1Comparison lecture 1 0.3310.331 0.380.38 2.692.69 0.530.53 0.120.12 0.00220.0022 0.0250.025 0.0110.011 0.0030.003 0.0050.005
비교강 2Comparison lecture 2 0.180.18 0.650.65 2.452.45 0.210.21 0.070.07 0.00170.0017 0.0250.025 0.0120.012 0.0030.003 0.0050.005
구분division 관계식 1Relation 1 관계식 2Relation 2 Ar3 [℃]Ar3 [°C] Ac1 [℃]Ac1 [℃] Ms [℃]Ms [°C]
발명강 1Invention lecture 1 1.011.01 106.90106.90 838.30838.30 719.62719.62 356356
발명강 2Invention lecture 2 1.191.19 274.29274.29 855.13855.13 728.25728.25 360360
발명강 3Invention lecture 3 1.191.19 123.33123.33 877.40877.40 741.23741.23 358358
비교강 1Comparison lecture 1 1.221.22 9.889.88 813.97813.97 714.23714.23 310310
비교강 2Comparison lecture 2 0.960.96 7.287.28 855.13855.13 719.25719.25 385385
Ac1 = 723 - 10.7×[Mn] - 16.9×[Ni] + 29.1×[Si] + 16.9×[Cr]Ac1 = 723 - 10.7×[Mn] - 16.9×[Ni] + 29.1×[Si] + 16.9×[Cr]
강종steel grade 비고note SS
[℃]
SS
[℃]
RCS
[℃]
RCS
[℃]
관계식 3Relation 3 YS
[MPa]
YS
[MPa]
TS
[MPa]
TS
[MPa]
El
[%]
El
[%]
HER
[%]
HER
[%]
잔류 r
[%]
residual r
[%]
B+TM
[%]
B+TM
[%]
발명강 1Invention lecture 1 발명예 1Invention Example 1 852852 248248 173173 11411141 15311531 10.610.6 2727 6.46.4 8484
발명예 2Invention Example 2 847847 199199 1414 11851185 15041504 10.310.3 3535 5.25.2 8888
비교예 1Comparative Example 1 859859 162162 55 12211221 16121612 88 2222 2.72.7 9393
비교예 2Comparative Example 2 799799 157157 -192-192 11431143 16231623 88 1515 4.24.2 7373
비교예 3Comparative Example 3 857857 298298 298298 982982 15821582 99 1818 11.111.1 7979
발명강 2Invention lecture 2 발명예 3Invention Example 3 852852 248248 137137 11751175 15311531 10.610.6 2929 7.27.2 8181
발명예 4Invention Example 4 849849 196196 1414 12211221 15471547 10.110.1 3737 4.84.8 8989
비교예 4Comparative Example 4 855855 152152 -65-65 13201320 16211621 88 2323 3.13.1 9393
발명강 3Invention lecture 3 발명예 5Invention Example 5 849849 242242 7979 11541154 15431543 11.111.1 3131 8.78.7 8585
발명예 6Invention Example 6 845845 274274 137137 11161116 15111511 10.910.9 2727 9.69.6 8282
비교예 5Comparative Example 5 851851 302302 217217 965965 16121612 10.210.2 1818 10.810.8 7878
비교강 1Comparative lecture 1 비교예 6Comparative Example 6 847847 251251 282282 12341234 16111611 88 1616 9.19.1 8383
비교강 2Comparison lecture 2 비교예 7Comparative Example 7 855855 258258 141141 10501050 12211221 1414 3232 7.27.2 8181
r: 오스테나이트, B: 베이나이트, TM: 템퍼드 마르텐사이트 [잔부 FM(프레쉬 마르텐사이트)]r: Austenite, B: Bainite, TM: Tempered martensite [Remaining FM (fresh martensite)]
상기 표 3의 실험결과를 통해 볼 수 있듯이, 본 발명의 합금 조성 및 제조 조건을 충족하는 발명예 1~6의 경우, 인장강도가 1470MPa급 이상으로 초강도를 가짐과 동시에, 항복강도 역시 우수하였고, 연신율 및 구멍 확장성 역시 우수함을 확인하였다.As can be seen from the experimental results in Table 3, in the case of Invention Examples 1 to 6 that meet the alloy composition and manufacturing conditions of the present invention, the tensile strength was super high at 1470 MPa or higher, and the yield strength was also excellent. , it was confirmed that elongation and hole expandability were also excellent.
반면, 본 발명의 합금 조성 및 제조조건 중 하나 이상을 충족하지 못하는 비교예 1~7의 경우, 인장강도, 항복강도, 연신율 및 구멍 확작성 중 하나 이상의 특성이 전술한 발명예에 비하여 열위함을 확인하였다.On the other hand, in the case of Comparative Examples 1 to 7, which do not meet one or more of the alloy composition and manufacturing conditions of the present invention, one or more characteristics of tensile strength, yield strength, elongation, and hole expansion are inferior to the above-described invention examples. Confirmed.

Claims (6)

  1. 중량%로, C: 0.1~0.3%, Si: 2.0% 이하(0%는 제외), Mn: 1.5~3.0%, Cr: 1.2% 이하(0%는 제외), Mo: 0.03~0.25%, Al: 0.1% 이하(0%는 제외), P: 0.001~0.015%, S: 0.001~0.01%, N: 0.001~0.01%, B: 0.001~0.005%, 잔부 Fe 및 기타의 불순물을 포함하고,In weight%, C: 0.1~0.3%, Si: 2.0% or less (excluding 0%), Mn: 1.5~3.0%, Cr: 1.2% or less (excluding 0%), Mo: 0.03~0.25%, Al : 0.1% or less (excluding 0%), P: 0.001 to 0.015%, S: 0.001 to 0.01%, N: 0.001 to 0.01%, B: 0.001 to 0.005%, including the balance Fe and other impurities,
    미세조직으로서, 면적%로, 베이나이트 및 템퍼드 마르텐사이트의 합계: 75~90%, 잔류 오스테나이트: 10% 이하(0%는 제외), 및 잔부 프레쉬 마르텐사이트를 포함하고,Microstructure, in area%, includes the sum of bainite and tempered martensite: 75-90%, retained austenite: 10% or less (excluding 0%), and the balance fresh martensite;
    하기 관계식 1 및 2를 충족하는, 냉연강판.A cold rolled steel sheet that satisfies the following relations 1 and 2.
    [관계식 1][Relationship 1]
    1.0 ≤ [C] + (1.3×[Si]+[Mn])/6 + ([Cr]+1.2×[Mo])/5 + 100×[B] ≤ 1.21.0 ≤ [C] + (1.3×[Si]+[Mn])/6 + ([Cr]+1.2×[Mo])/5 + 100×[B] ≤ 1.2
    (상기 관계식 1에 있어서, 상기 [C], [Si], [Mn], [Cr], [Mo] 및 [B]는 괄호 안의 각 원소에 대한 중량% 함량을 나타낸다.)(In Equation 1 above, [C], [Si], [Mn], [Cr], [Mo], and [B] represent the weight percent content of each element in parentheses.)
    [관계식 2][Relational Expression 2]
    106 ≤ ([Cr] + [Mo])×[Si]/[Al] ≤275106 ≤ ([Cr] + [Mo])×[Si]/[Al] ≤275
    (상기 관계식 2에 있어서, 상기 [Cr], [Mo], [Si] 및 [Al]는 괄호 안의 각 원소에 대한 중량% 함량을 나타낸다.)(In Equation 2 above, [Cr], [Mo], [Si], and [Al] represent the weight percent content of each element in parentheses.)
  2. 제 1 항에 있어서,According to claim 1,
    미세조직으로서, 면적%로, 잔류 오스테나이트: 4.8~9.6% 포함하는, 냉연강판.Cold-rolled steel sheet containing, as microstructure and area %, retained austenite: 4.8 to 9.6%.
  3. 제 1 항에 있어서,According to claim 1,
    미세조직으로서, 면적%로, 베이나이트 및 템퍼드 마르텐사이트의 합계: 81~89% 포함하는, 냉연강판.Cold-rolled steel sheet containing, as microstructure and area %, the sum of bainite and tempered martensite: 81 to 89%.
  4. 중량%로, C: 0.1~0.3%, Si: 2.0% 이하(0%는 제외), Mn: 1.5~3.0%, Cr: 1.2% 이하(0%는 제외), Mo: 0.03~0.25%, Al: 0.1% 이하(0%는 제외), P: 0.001~0.015%, S: 0.001~0.01%, N: 0.001~0.01%, B: 0.001~0.005%, 잔부 Fe 및 기타의 불순물을 포함하고, 하기 관계식 1 및 2를 충족하는 슬라브를 재가열하는 단계;In weight%, C: 0.1~0.3%, Si: 2.0% or less (excluding 0%), Mn: 1.5~3.0%, Cr: 1.2% or less (excluding 0%), Mo: 0.03~0.25%, Al : 0.1% or less (excluding 0%), P: 0.001 to 0.015%, S: 0.001 to 0.01%, N: 0.001 to 0.01%, B: 0.001 to 0.005%, including the balance Fe and other impurities, and Reheating the slab satisfying relations 1 and 2;
    상기 재가열된 슬라브를 Ar3~Ar3+50℃에서 마무리 열간압연하여 열연강판을 얻는 단계; Obtaining a hot rolled steel sheet by performing final hot rolling on the reheated slab at Ar3~Ar3+50°C;
    상기 열연강판을 500~750℃에서 권취하는 단계; Winding the hot rolled steel sheet at 500 to 750°C;
    상기 권취된 열연강판을 냉간압연하여 냉연강판을 얻는 단계; Obtaining a cold rolled steel sheet by cold rolling the coiled hot rolled steel sheet;
    상기 냉연강판을 800~900℃에서 연속 소둔하는 단계; Continuously annealing the cold rolled steel sheet at 800 to 900°C;
    상기 연속소둔된 냉연강판을 650~700℃의 1차 냉각종료온도까지 1~10℃/s의 평균 냉각속도로 1차 냉각하는 단계; Primary cooling the continuously annealed cold rolled steel sheet at an average cooling rate of 1 to 10°C/s to a primary cooling end temperature of 650 to 700°C;
    상기 1차 냉각된 냉연강판을 2차 냉각 종료 온도까지 10℃/s 초과 20℃/s 이하의 평균 냉각속도로 2차 냉각하는 단계; 및Secondary cooling the primary cooled cold-rolled steel sheet to the secondary cooling end temperature at an average cooling rate of more than 10°C/s and less than 20°C/s; and
    상기 2차 냉각된 냉연강판을 250~350℃에서 과시효 열처리하는 단계;를 포함하는, 냉연강판의 제조방법.A method of manufacturing a cold-rolled steel sheet, comprising: over-aging heat treatment of the secondary cooled cold-rolled steel sheet at 250 to 350°C.
    [관계식 1][Relationship 1]
    1.0 ≤ [C] + (1.3×[Si]+[Mn])/6 + ([Cr]+1.2×[Mo])/5 + 100×[B] ≤ 1.21.0 ≤ [C] + (1.3×[Si]+[Mn])/6 + ([Cr]+1.2×[Mo])/5 + 100×[B] ≤ 1.2
    (상기 관계식 1에 있어서, 상기 [C], [Si], [Mn], [Cr], [Mo] 및 [B]는 괄호 안의 각 원소에 대한 중량% 함량을 나타낸다.)(In Equation 1 above, [C], [Si], [Mn], [Cr], [Mo], and [B] represent the weight percent content of each element in parentheses.)
    [관계식 2][Relational Expression 2]
    106 ≤ ([Cr] + [Mo])×[Si]/[Al] ≤275106 ≤ ([Cr] + [Mo])×[Si]/[Al] ≤275
    (상기 관계식 2에 있어서, 상기 [Cr], [Mo], [Si] 및 [Al]는 괄호 안의 각 원소에 대한 중량% 함량을 나타낸다.)(In Equation 2 above, [Cr], [Mo], [Si], and [Al] represent the weight percent content of each element in parentheses.)
  5. 제 4 항에 있어서,According to claim 4,
    하기 관계식 3을 충족하는, 냉연강판의 제조방법.A method of manufacturing a cold rolled steel sheet that satisfies the following relational expression 3.
    [관계식 3][Relational Expression 3]
    8 ≤ 3.1×([SS]-[Ac1]) + 2.2×([RCS]-[Ms])≤ 1808 ≤ 3.1×([SS]-[Ac1]) + 2.2×([RCS]-[Ms])≤ 180
    (상기 관계식 3에 있어서, [Ac1]은 하기 관계식 4로 정의되는 값이고, [RCS]는 2차 냉각 종료 온도(℃)를 나타내며, [Ms]는 마르텐사이트 변태 개시 온도(℃)를 나타낸다.)(In the above relational equation 3, [Ac1] is a value defined by the following relational equation 4, [RCS] represents the secondary cooling end temperature (°C), and [Ms] represents the martensite transformation start temperature (°C). )
    [관계식 4][Relational Expression 4]
    [Ac1] = 723-10.7×[Mn]-16.9×[Ni]+29.1×[Si]+16.9×[Cr][Ac1] = 723-10.7×[Mn]-16.9×[Ni]+29.1×[Si]+16.9×[Cr]
    (상기 관계식 4에 있어서, [Mn], [Ni], [Si] 및 [Cr]은 괄호 안의 각 원소에 대한 중량% 함량을 나타낸다.)(In equation 4 above, [Mn], [Ni], [Si], and [Cr] represent the weight percent content for each element in parentheses.)
  6. 제 4 항에 있어서,According to claim 4,
    상기 과시효 열처리된 냉연강판에, 0.1~1.0% 범위에서 스킨패스 압연하는 단계를 더 포함하는, 냉연강판의 제조방법.A method of manufacturing a cold-rolled steel sheet, further comprising performing skin pass rolling on the over-aging heat-treated cold-rolled steel sheet in a range of 0.1 to 1.0%.
PCT/KR2023/019851 2022-12-20 2023-12-05 Cold-rolled steel sheet and method for manufacturing same WO2024136222A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2022-0179342 2022-12-20
KR1020220179342A KR20240098246A (en) 2022-12-20 2022-12-20 Ultra high-strength cold-rolled steel sheet having excellent formability and method of manufacturing the same

Publications (1)

Publication Number Publication Date
WO2024136222A1 true WO2024136222A1 (en) 2024-06-27

Family

ID=91589267

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/019851 WO2024136222A1 (en) 2022-12-20 2023-12-05 Cold-rolled steel sheet and method for manufacturing same

Country Status (2)

Country Link
KR (1) KR20240098246A (en)
WO (1) WO2024136222A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010275608A (en) * 2009-05-29 2010-12-09 Kobe Steel Ltd High-strength steel sheet having excellent hydrogen embrittlement resistance
KR20130074503A (en) * 2011-12-26 2013-07-04 주식회사 포스코 Ultra high strength colde rolled steel sheet having excellent weldability and bendability and method for manufacturing the same
JP2014196557A (en) * 2013-03-06 2014-10-16 株式会社神戸製鋼所 High-strength cold-rolled steel sheet excellent in steel sheet shape and shape fixability and production method thereof
US20180216206A1 (en) * 2015-07-31 2018-08-02 Nippon Steel & Sumitomo Metal Corporation Steel sheet with strain induced transformation type composite structure and method of manufacturing same
KR20210077973A (en) * 2019-12-18 2021-06-28 주식회사 포스코 Cold rolled steel sheet having excellent bake hardenability and anti-aging properties at room temperature and method for manufacturing the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0372910A (en) 1989-08-10 1991-03-28 Kurita Water Ind Ltd Deodorization apparatus
JP4396347B2 (en) 2004-03-25 2010-01-13 Jfeスチール株式会社 Method for producing high-tensile steel sheet with excellent ductility and stretch flangeability

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010275608A (en) * 2009-05-29 2010-12-09 Kobe Steel Ltd High-strength steel sheet having excellent hydrogen embrittlement resistance
KR20130074503A (en) * 2011-12-26 2013-07-04 주식회사 포스코 Ultra high strength colde rolled steel sheet having excellent weldability and bendability and method for manufacturing the same
JP2014196557A (en) * 2013-03-06 2014-10-16 株式会社神戸製鋼所 High-strength cold-rolled steel sheet excellent in steel sheet shape and shape fixability and production method thereof
US20180216206A1 (en) * 2015-07-31 2018-08-02 Nippon Steel & Sumitomo Metal Corporation Steel sheet with strain induced transformation type composite structure and method of manufacturing same
KR20210077973A (en) * 2019-12-18 2021-06-28 주식회사 포스코 Cold rolled steel sheet having excellent bake hardenability and anti-aging properties at room temperature and method for manufacturing the same

Also Published As

Publication number Publication date
KR20240098246A (en) 2024-06-28

Similar Documents

Publication Publication Date Title
WO2015174605A1 (en) High-strength cold rolled steel sheet having excellent ductility, hot-dip galvanized steel sheet and method for manufacturing same
WO2013069937A1 (en) Steel sheet for hot press forming, hot press forming member, and manufacturing method thereof
WO2020130560A1 (en) Cold rolled steel sheet having excellent workability, hot-dip galvanized steel sheet, and manufacturing methods thereof
WO2017111407A1 (en) High yield ratio type high-strength cold-rolled steel sheet and manufacturing method thereof
WO2018110867A1 (en) High strength cold rolled steel plate having excellent yield strength, ductility, and hole expandability, hot dip galvanized steel plate, and method for producing same
JP4530606B2 (en) Manufacturing method of ultra-high strength cold-rolled steel sheet with excellent spot weldability
WO2020050573A1 (en) Ultra high strength and high ductility steel sheet having excellent yield ratio and manufacturing method for same
WO2019132465A1 (en) Steel material showing excellent hydrogen-induced cracking resistance and method for preparing same
WO2020067752A1 (en) High-strength cold rolled steel sheet having high hole expansion ratio, high-strength hot-dip galvanized steel sheet, and manufacturing methods therefor
WO2018080133A1 (en) Ultra-high-strength steel sheet having excellent hole expandability and yield ratio and method for preparing same
WO2017188654A1 (en) Ultrahigh-strength and high-ductility steel sheet having excellent yield ratio and manufacturing method therefor
WO2017222159A1 (en) High-strength cold-rolled steel sheet with excellent workability and manufacturing method therefor
WO2022124609A1 (en) High-strength hot-dip galvanized steel sheet with high ductility and excellent formability, and manufacturing method for same
WO2018117711A1 (en) Cold-rolled steel sheet having excellent bendability and hole expandability and method for manufacturing same
WO2022119253A1 (en) Ultra-high strength cold rolled steel sheet having excellent bendability, and method of manufacturing same
WO2017051998A1 (en) Plated steel plate and manufacturing method thereof
WO2021117989A1 (en) Cold rolled steel sheet with ultra-high strength, and manufacturing method therefor
KR100276308B1 (en) The manufacturing method ofsuper high strength cold rolling steel sheet with workability
WO2024136222A1 (en) Cold-rolled steel sheet and method for manufacturing same
WO2024136353A1 (en) Steel sheet and method for manufacturing same
WO2024128709A1 (en) Hot-dip galvanized steel sheet, and method for manufacturing same
WO2024144044A1 (en) Ultra-high strength cold-rolled steel sheet with corrosion resistance and manufacturing method therefor
WO2020111858A1 (en) Steel plate for pressure vessel having excellent hydrogen-induced cracking resistance and method of manufacturing same
WO2024143832A1 (en) High-strength and high-formability steel sheet, and method for manufacturing same
WO2023214634A1 (en) Cold-rolled steel sheet and method for manufacturing same