WO2024135426A1 - Space purification device - Google Patents

Space purification device Download PDF

Info

Publication number
WO2024135426A1
WO2024135426A1 PCT/JP2023/044148 JP2023044148W WO2024135426A1 WO 2024135426 A1 WO2024135426 A1 WO 2024135426A1 JP 2023044148 W JP2023044148 W JP 2023044148W WO 2024135426 A1 WO2024135426 A1 WO 2024135426A1
Authority
WO
WIPO (PCT)
Prior art keywords
aqueous solution
air
hypochlorous acid
electrolyte
electrolysis
Prior art date
Application number
PCT/JP2023/044148
Other languages
French (fr)
Japanese (ja)
Inventor
正太郎 山口
拓也 和田
将秀 福本
真司 吉田
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2024135426A1 publication Critical patent/WO2024135426A1/en

Links

Images

Definitions

  • This disclosure relates to a space purification device used to disinfect living spaces, etc.
  • a space purification device has been known as a device for disinfecting living spaces and reducing the risk of infectious diseases, in which an aqueous solution containing hypochlorous acid (hereinafter, hypochlorous acid aqueous solution) is impregnated into an evaporation filter, and air containing hypochlorous acid gas is released to the outside by passing the air through the evaporation filter (see, for example, Patent Document 1).
  • hypochlorous acid aqueous solution an aqueous solution containing hypochlorous acid
  • evaporation filter air containing hypochlorous acid gas is released to the outside by passing the air through the evaporation filter
  • an aqueous solution of hypochlorous acid is generated by electrolyzing an aqueous solution of sodium chloride or potassium chloride (hereinafter referred to as electrolyte) stored in a storage section.
  • the space purification device then passes the generated hypochlorous acid aqueous solution through a vaporization filter and exposes it to circulating air, thereby releasing air containing hypochlorous acid gas to the outside and purifying the living space.
  • electrolyte sodium chloride or potassium chloride
  • electrolysis is performed with a small amount of electrolyte stored in the storage section, the amount of electrolyte is small compared to the consumption associated with the electrolysis of sodium chloride or potassium chloride (hereinafter referred to as electrolyte), and the electrolyte concentration of the entire electrolyte is more likely to decrease.
  • the amount of electrolyte that can be stored in the storage section is small due to the miniaturization of the space purification device, if the generation of a hypochlorous acid aqueous solution by electrolysis of the electrolyte and the purification operation using the generated hypochlorous acid aqueous solution are repeatedly performed, the electrolyte concentration decreases over time, and the generation efficiency of hypochlorous acid by electrolysis of the electrolyte (the ratio of generated hypochlorous acid to the current value passed through the electrolyte) decreases. As a result, the amount of hypochlorous acid generated by electrolysis of the electrolyte decreases.
  • the amount of hypochlorous acid contained in the hypochlorous acid aqueous solution decreases over time, and as a result, there is a concern that the amount of hypochlorous acid gas contained in the air circulating during the purification operation cannot be stably maintained.
  • the present disclosure aims to solve the above-mentioned problems of the past and provide a space purification device that can stably maintain the amount of hypochlorous acid gas contained in the released air even when the device is compact and the amount of electrolyte that can be stored in the storage section is small.
  • the spatial purification device comprises a storage section that stores an aqueous solution containing sodium chloride or potassium chloride inside a housing, an electrolysis section that is provided inside the storage section and that electrolyzes the aqueous solution to produce an aqueous hypochlorous acid solution, an air introduction section that introduces air from outside the housing into the storage section, and an air discharge section that discharges air in the space above the aqueous hypochlorous acid solution in the storage section to the outside of the housing.
  • the electrolysis section electrolyzes the aqueous solution with sodium chloride or potassium chloride precipitated in the aqueous solution to produce an aqueous hypochlorous acid solution.
  • the present disclosure even if the amount of electrolyte that can be stored in the storage section is small due to miniaturization, it is possible to provide a space purification device that can stably maintain the amount of hypochlorous acid gas contained in the released air.
  • FIG. 1 is a perspective view showing a space purification device including a space purification device according to a first embodiment of the present disclosure being used indoors.
  • FIG. 2 is a schematic diagram showing the configuration of the space purification device.
  • FIG. 3 is a perspective view showing the appearance of the space purification device.
  • FIG. 4 is a transparent perspective view showing the configuration of the space purification device.
  • FIG. 5 is a transparent side view showing the flow of the aqueous solution and the flow of air in a storage portion of the space purification device.
  • FIG. 6 is a see-through side view showing the flow of the aqueous solution and the flow of air in a storage portion in a space purification device according to a modified example.
  • the spatial purification device includes a storage section that stores an aqueous solution containing sodium chloride or potassium chloride (hereinafter, electrolyte) inside a housing, an electrolysis section that is provided inside the storage section and that electrolyzes the electrolyte to produce an aqueous hypochlorous acid solution, an air introduction section that introduces air from outside the housing into the storage section, and an air discharge section that discharges air in the space above the aqueous hypochlorous acid solution in the storage section to the outside of the housing.
  • the electrolysis section generates an aqueous hypochlorous acid solution by electrolyzing the electrolyte with sodium chloride or potassium chloride (hereinafter, electrolyte) precipitated in the electrolyte.
  • the storage section may be provided with a precipitate filter that prevents electrolyte precipitates from floating up from the solute region where the electrolyte precipitates to the solution region located above the solute region and in which the electrolysis section is installed.
  • a precipitate filter that prevents electrolyte precipitates from floating up from the solute region where the electrolyte precipitates to the solution region located above the solute region and in which the electrolysis section is installed.
  • the stirring section has an aqueous solution suction port that draws in the electrolyte solution, and an aqueous solution outlet that blows the electrolyte solution drawn in from the aqueous solution suction port into the storage section, and it is preferable that the aqueous solution outlet blows the electrolyte solution toward the electrolysis section to generate a water flow.
  • the water flow can be generated by concentrating it on the electrolysis section, so that it is possible to reliably prevent the oxygen gas and hydrogen gas bubbles generated on the surface of the electrode section by electrolysis from adhering to the electrolysis section as they are.
  • the spatial purification device is provided in the storage section and includes a stirring section for stirring the hypochlorous acid aqueous solution, and the stirring section has an aqueous solution suction port for sucking in the hypochlorous acid aqueous solution and an aqueous solution outlet for blowing out the hypochlorous acid aqueous solution sucked in from the aqueous solution suction port into the storage section, and the aqueous solution outlet may be configured to blow out the hypochlorous acid aqueous solution toward the upper space between the air introduction section and the air discharge section.
  • the hypochlorous acid aqueous solution is present in the upper space between the air introduction section and the air discharge section in the form of a water column or water droplets.
  • the air introduced from the air introduction section can come into contact with the hypochlorous acid aqueous solution over a wider area in the upper space by the hypochlorous acid aqueous solution that has become a water column or water droplets until the air introduced from the air introduction section is discharged from the air discharge section.
  • This allows the amount of hypochlorous acid gas contained in the circulating air to be increased even with the same hypochlorous acid concentration of the hypochlorous acid aqueous solution.
  • the amount of hypochlorous acid solution that can be stored in the storage section by miniaturizing the device is small, it is possible to generate the necessary amount of hypochlorous acid gas to be contained in the released air.
  • Fig. 1 is a perspective view showing a state in which a space purification device 2 equipped with a space purification device 11 according to the embodiment 1 of the present disclosure is used in a room 1.
  • FIG. 2 is a schematic diagram showing the configuration of the space purification device 2.
  • the space purification device 2 has a space purification device 11 inside. More specifically, as shown in FIG. 2, the space purification device 2 is configured with an intake port 8, a dust collection filter 9, a blower 10, the space purification device 11, and an outlet port 12.
  • the space purification device 2 draws in the intake air 3 from the intake port 8, removes dust, and blows it out from the outlet 12 into the room 1 as blown air 4 containing hypochlorous acid gas.
  • the space purification device 2 blows out the blown air 4 from the outlet 12
  • the space purification device 2 causes the blown air 4 to contain hypochlorous acid gas by the space purification device 11.
  • the intake port 8 is located on the lower right side of the front of the space purification device 2, and takes in intake air 3 from the room 1 into the interior of the space purification device 2.
  • the space purifier 11 takes in a part of the dust-removed air 5 as the introduced air 6, and after adding hypochlorous acid gas to the introduced air 6 inside the space purifier 11 (the upper space 23 in the storage section 13 described later), merges it with the dust-removed air 5 as the discharged air 7. As a result, the dust-removed air 5 becomes air containing hypochlorous acid gas.
  • the wind pressure of the blower 10 can be used as the driving force for sucking in the introduced air 6 and releasing it as the discharged air 7.
  • the introduced air 6 can be introduced into the space purifier 11 by the wind pressure of the blower 10, and the discharged air 7 can be released from the space purifier 11. Details of the space purifier 11 will be described later.
  • the air outlet 12 is provided on the top surface of the space purification device 2, and blows out the dust-free air 5 containing hypochlorous acid gas as blown air 4 into the room 1 after flowing through the internal air passage.
  • the spatial purification device 11 is configured to have an air inlet section 15, an air outlet section 16, a storage section 13, an electrolysis section 14, an agitation section 20, and a sediment filter 19.
  • the air discharge section 16 blows the introduced air 6 taken into the interior of the space purification device 11 from the air introduction section 15 into the internal air passage of the space purification device 2 as discharged air 7 containing hypochlorous acid gas.
  • the outlet of the air release section 16 is located downstream of the inlet of the air introduction section 15 in the internal air passage. The process by which the introduced air 6 contains hypochlorous acid gas will be described later.
  • the electrolyte 13a is an aqueous solution for generating the hypochlorous acid aqueous solution 13b by electrolysis, and is an aqueous solution in which sodium chloride or potassium chloride is dissolved.
  • the electrolyte 13a is stored in the storage section 13 in a state in which the electrolyte 13c made of sodium chloride or potassium chloride is precipitated without being completely dissolved. The reaction that occurs in the electrolysis section 14 using this electrolyte 13a will be described later.
  • sodium chloride or potassium chloride is used as the electrolyte 13c, but this is not limited thereto.
  • chloride ions since the presence of chloride ions is sufficient to generate the hypochlorous acid aqueous solution 13b, it is also possible to use other chlorides such as calcium chloride or lithium chloride. Therefore, in this disclosure, “sodium chloride or potassium chloride” means “broadly including those that contain chloride ions,” including calcium chloride, lithium chloride, etc.
  • the hypochlorous acid aqueous solution 13b is a solution produced by electrolyzing the electrolyte 13a in a state in which the electrolyte 13c is precipitated in the electrolyte 13a, and is a so-called aqueous solution containing hypochlorous acid.
  • the hydrogen ion concentration (pH) of the hypochlorous acid aqueous solution 13b is preferably 5 to 13, and more preferably 5 to 7. This is because there is a risk that the hypochlorous acid aqueous solution 13b will evaporate into chlorine gas if the pH falls below 5, and also because, if the pH is 5 or higher, the lower the pH, the more likely it is to evaporate into hypochlorous acid gas.
  • the solute region 17 is located at the bottom side of the storage section 13 and is a region that holds the electrolyte solution 13a that contains a precipitate of electrolyte 13c.
  • the solution region 18 is located above the solute region 17, and is a region that holds the electrolyte solution 13a that does not contain precipitates of the electrolyte 13c.
  • the electrolysis section 14 and the stirring section 20 are installed in a state in which they are immersed in the solution region 18.
  • a precipitate filter 19 is provided between the solute region 17 and the solution region 18.
  • the precipitate filter 19 is provided on the bottom side (solute region 17 side) of the solution region 18 so as to block the opening that connects the solute region 17 and the solution region 18, which are partitioned from each other. The precipitate filter 19 will be described later.
  • electrolyte 13a in the solute region 17 and solution region 18 described above may be read as an aqueous hypochlorous acid solution 13b, or as a mixture of the electrolyte 13a and the aqueous hypochlorous acid solution 13b.
  • the upper space 23 is an air region that occurs above the liquid surface of the electrolyte 13a and the hypochlorous acid aqueous solution 13b inside the storage section 13.
  • the upper space 23 is connected in communication with the internal air passage of the space purification device 2 by the air inlet section 15 and the air outlet section 16.
  • introduced air 6 is introduced into the upper space 23 from the internal air passage of the space purification device 2 through the air inlet section 15.
  • the air in the upper space 23 air containing hypochlorous acid gas
  • the electrolysis unit 14 is a member that electrolyzes the electrolyte 13a stored in the storage unit 13 to generate an aqueous hypochlorous acid solution 13b.
  • the electrolysis unit 14 is installed on the bottom side of the solution region 18 and immersed in the electrolyte 13a in the solution region 18.
  • the electrolysis unit 14 is, for example, a pair of electrodes, an anode and a cathode, configured with a catalytic coating on the surface of a conductive substrate.
  • the electrolysis unit 14 electrolyzes the electrolyte 13a by passing a current through the pair of electrodes.
  • the chloride ions contained in the electrolyte 13a are electrolyzed in the electrolysis unit 14, and hypochlorous acid is generated.
  • the electrolyte 13a is electrolyzed in the electrolysis unit 14 the following three types of reactions mainly occur:
  • the electrolysis unit 14 generates hypochlorous acid from chloride ions contained in the electrolytic solution 13a by causing a reaction of formula (1) at the anode, and generates an aqueous hypochlorous acid solution 13b.
  • the electrolysis unit 14 generates oxygen and hydrogen ions from water by causing the reaction of formula (2).
  • the electrolysis unit 14 generates hydrogen from the hydrogen ions contained in the electrolyte 13a by causing the reaction of formula (3) at the cathode.
  • the ratio of the reaction of formula (1) occurring among the reactions of formula (1) and formula (2) occurring due to the electrolysis of the electrolyte 13a (hereinafter, referred to as the hypochlorous acid generation efficiency) is , depends on the concentration of chloride ions contained in the left side of formula (1). Specifically, the higher the concentration of chloride ions, the higher the efficiency of hypochlorous acid generation. In order to generate hypochlorous acid efficiently, it is important to maintain a constant concentration of chloride ions. In this embodiment, the precipitated electrolyte 13c supplies the chloride ions consumed from the electrolytic solution 13a by the reaction of formula (1) to the electrolytic solution 13a.
  • the electrolyte has a role of always keeping the electrolyte saturated (about 4.4 mol/L in the case of sodium chloride, about 3.4 mol/L in the case of potassium chloride). This allows the electrolyte to be stored in the storage unit 13 in a compact size. Even if the amount of 13a is small, the concentration of chloride ions contained in the electrolyte 13a can be maintained constant, and the efficiency of hypochlorous acid generation can be maintained.
  • the chloride ion concentration of the electrolyte 13a that decreases due to electrolysis is proportional to the volume of the electrolyte 13a. If the volume of the electrolyte 13a is 55 mL and the volume of the electrolyte in a conventional device that uses a lot of electrolyte is 1.5 L, the rate of decrease in the chloride ion concentration due to electrolysis will be about 27 times.
  • the amount of hypochlorous acid contained in the hypochlorous acid aqueous solution 13b will decrease over time, and as a result, it will be impossible to maintain a stable amount of hypochlorous acid gas contained in the air circulating during purification operation.
  • the stirring unit 20 is a member that stirs the electrolyte solution 13a and the hypochlorous acid aqueous solution 13b stored in the storage unit 13 within the storage unit 13.
  • the stirring unit 20 is installed with its main part immersed in the electrolyte solution 13a in the solution area 18, vertically above the electrolysis unit 14.
  • the stirring unit 20 has an aqueous solution suction port 20a, an aqueous solution outlet 20b, and a drive unit 20c, and by operating the drive unit 20c, the electrolyte solution 13a and the hypochlorous acid aqueous solution 13b are sucked in through the aqueous solution suction port 20a, and the electrolyte solution 13a and the hypochlorous acid aqueous solution 13b are blown out through the aqueous solution outlet 20b.
  • the aqueous solution suction port 20a is a cylindrical suction port that draws in the electrolyte 13a and the aqueous hypochlorous acid solution 13b in the storage section 13.
  • the aqueous solution suction port 20a is installed in a substantially horizontal position relative to the bottom of the storage section 13 and facing the side of the storage section 13.
  • the aqueous solution outlet 20b is an outlet that discharges the electrolyte solution 13a and the hypochlorous acid aqueous solution 13b sucked in from the aqueous solution suction port 20a into the electrolyte solution 13a and the hypochlorous acid aqueous solution 13b in the storage section 13.
  • the aqueous solution outlet 20b is installed facing the liquid surface of the electrolyte solution 13a and the hypochlorous acid aqueous solution 13b vertically upward.
  • the aqueous solution outlet 20b then blows the electrolyte solution 13a and the hypochlorous acid aqueous solution 13b toward the upper space 23 between the air introduction section 15 and the air discharge section 16, generating a water flow 21 (see FIG. 5).
  • the drive unit 20c is a motor member that generates a water flow 21 (see FIG. 5) for stirring the solution. More specifically, the drive unit 20c rotates to generate a flow that sucks in the electrolyte solution 13a and the hypochlorous acid aqueous solution 13b from the aqueous solution suction port 20a and blows out the electrolyte solution 13a and the hypochlorous acid aqueous solution 13b from the aqueous solution outlet 20b. Unlike the main part (the aqueous solution suction port 20a and the aqueous solution outlet 20b), the drive unit 20c is installed outside the storage unit 13.
  • the stirring unit 20 has the role of accelerating the electrolysis of the electrolyte 13a and the generation of hypochlorous acid gas.
  • the operation of the stirring unit 20 generates a stirred water flow 21b, which will be described later, and this can suppress the adhesion of air bubbles generated in the electrolysis unit 14 to the electrolysis unit 14.
  • the amount of hypochlorous acid gas contained in the introduced air 6 introduced from the air introduction unit 15 can be increased by blowing the hypochlorous acid aqueous solution 13b toward the upper space 23. Details of the water flow 21 generated by the stirring unit 20 will be described later.
  • the precipitate filter 19 is a filter that prevents the electrolyte 13c that has precipitated in the solute region 17 from floating up due to the water flow 21 generated by the agitator 20 and reaching the electrolysis section 14.
  • the precipitate filter 19 is provided between the solute region 17 and the solution region 18. As a result, the precipitate filter 19 prevents the precipitate of the electrolyte 13c from floating up and flowing from the solute region 17, where the electrolyte 13c precipitates, into the solution region 18, where the electrolysis section 14 is installed.
  • the space purification device 11 can take in dust-free air 5 from the internal air passage of the space purification equipment 2 as introduced air 6 and release it into the internal air passage as discharged air 7 containing hypochlorous acid gas.
  • Figure 5 is a transparent side view showing the flow of the aqueous solution and the flow of air in the storage unit 13 of the space purification device 11.
  • Air flow when the blower 10 is in operation, an air flow 22 is generated in the upper space 23 of the storage section 13, which is a flow from when the intake air 6 is introduced through the air intake section 15 until it is released from the air release section 16 as released air 7.
  • the air flow 22 can also be said to be a flow in which the intake air 6 introduced through the air intake section 15 pushes out the air in the upper space 23 as released air 7.
  • the water column or water droplets are present in the upper space 23 due to the blown water flow 21a, so the air flow 22 can come into gas-liquid contact with the hypochlorous acid aqueous solution 13b over a wider area than in the absence of a water column or water droplets.
  • the blown water flow 21a is a flow of water that is blown out from the aqueous solution outlet 20b of the stirring section 20 into the upper space 23.
  • the electrolyte solution 13a and the aqueous hypochlorous acid solution 13b that are blown out toward the upper space 23 can be present in the upper space 23 by the force of the blown water flow 21a causing the liquid surface to rise and become a water column, or by scattering into droplets.
  • the blown water flow 21a of the hypochlorous acid aqueous solution 13b is present in the upper space 23 in the form of a water column or water droplets, and thus can come into gas-liquid contact with the air flow 22 over a wider area than when there is no water column or water droplets. Therefore, even if the hypochlorous acid concentration of the hypochlorous acid aqueous solution 13b is the same, the amount of hypochlorous acid gas contained in the air flow 22 can be increased.
  • the agitated water flow 21b is a water flow that is created inside the electrolyte 13a and the hypochlorous acid aqueous solution 13b after the blown water flow 21a hits the liquid surface. After flowing from the liquid surface toward the bottom, the agitated water flow 21b reaches the sediment filter 19, which prevents water flow from occurring in the solute region 17, and the wall surface, where it changes direction and is sucked into the agitation unit 20 through the aqueous solution suction port 20a of the agitation unit 20.
  • the agitated water flow 21b of the electrolyte 13a flows through the electrolysis unit 14, which prevents the oxygen gas and hydrogen gas bubbles that are generated on the surface of the electrolysis unit 14 from adhering to the electrolysis unit 14.
  • the spatial purification device 11 is controlled so that it continuously supplies hypochlorous acid gas while generating hypochlorous acid by electrolysis for about 4 minutes every predetermined time (e.g., 10 minutes). Therefore, during the period when the supply of hypochlorous acid gas and electrolysis are performed simultaneously, the effects of the blown water flow 21a and stirred water flow 21b generated by the operation of the stirring unit 20 are obtained simultaneously.
  • the spatial purification device 11 according to the first embodiment can provide the following effects.
  • the space purification device 11 includes a storage section 13 that stores an aqueous solution containing sodium chloride or potassium chloride (hereinafter, electrolyte 13a) inside a housing, an electrolysis section 14 that is provided inside the storage section 13 and electrolyzes the electrolyte 13a to generate an aqueous hypochlorous acid solution 13b, an air introduction section 15 that draws in introduced air 6 from the outside of the housing (the internal air passage of the space purification device 2) and introduces it into the storage section 13, and an air discharge section 16 that discharges air in the space 23 above the aqueous hypochlorous acid solution 13b in the storage section 13 to the outside of the housing (the internal air passage of the space purification device 2).
  • electrolyte 13a an aqueous solution containing sodium chloride or potassium chloride
  • the spatial purification device 11 includes an agitation unit 20 that is provided in the storage unit 13 and that agitates the electrolyte 13a.
  • the agitation unit 20 is provided so as to generate a water flow in the electrolysis unit 14.
  • the water flow 21 agitated water flow 21b
  • the electrolysis unit 14 is electrolyzing the electrolyte 13a
  • the water flow 21 can prevent bubbles of oxygen gas and hydrogen gas generated on the surface of the electrolysis unit 14 by electrolysis from adhering to the electrolysis unit 14.
  • the space purification device 11 is provided in the storage section 13 and includes an agitation section 20 for agitating the hypochlorous acid aqueous solution 13b.
  • the agitation section 20 has an aqueous solution suction port 20a for sucking in the hypochlorous acid aqueous solution 13b and an aqueous solution outlet 20b for blowing out the hypochlorous acid aqueous solution 13b sucked in from the aqueous solution suction port 20a into the storage section 13.
  • the aqueous solution outlet 20b blows out the hypochlorous acid aqueous solution 13b toward the upper space 23 between the air introduction section 15 and the air discharge section 16.
  • the hypochlorous acid aqueous solution 13b is present in the upper space 23 between the air introduction section 15 and the air discharge section 16 in the form of a water column or water droplets.
  • the introduced air 6 introduced from the air introduction section 15 can come into contact with the hypochlorous acid aqueous solution 13b over a wider area in the upper space 23 before being discharged as discharged air 7 from the air discharge section 16.
  • hypochlorous acid concentration of the hypochlorous acid aqueous solution 13b required to release the desired amount of hypochlorous acid gas into the room 1 can be reduced, and the time required to electrolyze the electrolyte 13a and produce the hypochlorous acid aqueous solution 13b capable of releasing the desired amount of hypochlorous acid gas can be shortened.
  • the time required from starting operation of the device until the desired amount of hypochlorous acid gas can be released can be shortened, resulting in a space purification device 11 that can stabilize the amount of hypochlorous acid gas contained in the circulating air from an early stage.
  • Fig. 6 is a see-through side view showing the flow of air and the flow of aqueous solution in the storage unit 13 of the modified spatial purification device 11a.
  • the spatial purification device 11 according to the modified example differs from the spatial purification device 11 according to the first embodiment in that the direction of the aqueous solution outlet 20b1 of the stirring unit 20 is directed toward the electrolysis unit 14.
  • the rest of the configuration of the spatial purification device 11a is the same as that of the spatial purification device 11 according to the first embodiment.
  • the outlet direction of the aqueous solution outlet 20b1 in the stirring section 20 faces the electrolysis section 14 located diagonally below the stirring section 20.
  • the blowout water flow 21c flows toward the electrolysis unit 14, collides with the walls of the electrolysis unit 14 and the storage unit 13, changes direction, and is then sucked in from the aqueous solution suction port 20a of the stirring unit 20. In this way, the blowout water flow 21c also plays the role of a stirred water flow that stirs the electrolyte 13a and the hypochlorous acid aqueous solution 13b.
  • the stirring unit 20 has an aqueous solution suction port 20a that draws in the electrolyte 13a, and an aqueous solution outlet 20b1 that blows the electrolyte 13a drawn in from the aqueous solution suction port 20a into the storage unit 13, and the aqueous solution outlet 20b1 blows the electrolyte 13a toward the electrolysis unit 14 to generate a water flow 21 (blowout water flow 21c).
  • the water flow 21 can be generated by concentrating on the electrolysis unit 14, so that it is possible to reliably prevent the oxygen gas and hydrogen gas bubbles generated on the surface of the electrolysis unit 14 by electrolysis from adhering to the electrolysis unit 14 as they are.
  • the stirring unit 20 is a member having an aqueous solution suction port 20a and an aqueous solution outlet 20b that blows the electrolyte 13a sucked in from the aqueous solution suction port 20a into the storage unit 13, but this is not limited to this.
  • the water flow may be generated by a rotating fin or screw.
  • the spatial purification device disclosed herein is useful because it can stably maintain the amount of hypochlorous acid gas contained in the released air even when the amount of electrolyte that can be stored in the storage section is small due to its compact size.

Landscapes

  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

The space purification device (11) comprises: a storage unit (13) that stores, in the interior of a housing, an aqueous solution (the electrolysis solution (13a) in the following) that contains sodium chloride or potassium chloride; an electrolysis unit (14) that is disposed within the storage unit (13) and carries out electrolysis of the electrolysis solution (13a) to produce an aqueous hypochlorous acid solution (13b); an air intake unit (15) that takes in air from outside the housing and introduces the air into the storage unit (13); and an air discharge unit (16) that discharges, to the outside of the housing, air in a space (23) above the aqueous hypochlorous acid solution (13b) in the storage unit (13). In addition, the electrolysis unit (14) produces the aqueous hypochlorous acid solution (13b) by carrying out electrolysis of the electrolysis solution (13a) in a state in which sodium chloride or potassium chloride (the electrolyte (13c) in the following) in the electrolysis solution (13a) is precipitated.

Description

空間浄化装置Space Purification Device
 本開示は、居住空間などの除菌に用いられる空間浄化装置に関するものである。 This disclosure relates to a space purification device used to disinfect living spaces, etc.
 従来、居住空間などを除菌し、感染症のリスクを低減させる装置として、次亜塩素酸を含む水溶液(以下、次亜塩素酸水溶液)に気化フィルタを含侵させて、空気を気化フィルタに透過させることで次亜塩素酸ガスを含む空気を外部に放出する空間浄化装置が知られている(例えば、特許文献1参照)。  Conventionally, a space purification device has been known as a device for disinfecting living spaces and reducing the risk of infectious diseases, in which an aqueous solution containing hypochlorous acid (hereinafter, hypochlorous acid aqueous solution) is impregnated into an evaporation filter, and air containing hypochlorous acid gas is released to the outside by passing the air through the evaporation filter (see, for example, Patent Document 1).
特開2019―174032号公報JP 2019-174032 A
 空間浄化装置においては、貯留部に貯水された、塩化ナトリウムまたは塩化カリウムが溶解した水溶液(以下、電解液)を電気分解することで次亜塩素酸水溶液を生成する。そして、空間浄化装置は、生成した次亜塩素酸水溶液を気化フィルタに透過させて流通する空気に触れさせることによって、次亜塩素酸ガスを含む空気を外部に放出して居住空間の浄化を行う。こういった空間浄化装置を小型化しようとすると、貯留部に貯留することが可能な電解液の量が少なくなる。しかしながら、貯留部に貯留する電解液の量が少ない状態で電気分解を行うと、塩化ナトリウムまたは塩化カリウム(以下、電解質)の電気分解に伴う消費に対して電解液の量が少ないために、電解液全体の電解質濃度がより低下しやすくなってしまう。より詳細には、空間浄化装置を小型化して貯留部に貯留することが可能な電解液の量が少量である場合、電解液の電気分解による次亜塩素酸水溶液の生成と、生成した次亜塩素酸水溶液による浄化運転とを繰り返し行っていると、時間経過に伴い電解質濃度が低下していき、電解液の電気分解による次亜塩素酸の生成効率(電解液に流した電流値に対する、生成された次亜塩素酸の割合)が低下する。このため、電解液の電気分解による次亜塩素酸生成量が減少することになる。つまり、小型化した空間浄化装置では、時間経過に伴って次亜塩素酸水溶液に含まれる次亜塩素酸量が減少することになり、その結果、浄化運転において流通する空気に含ませられる次亜塩素酸ガスの量を安定して保つことができない、ということが懸念される。 In the space purification device, an aqueous solution of hypochlorous acid is generated by electrolyzing an aqueous solution of sodium chloride or potassium chloride (hereinafter referred to as electrolyte) stored in a storage section. The space purification device then passes the generated hypochlorous acid aqueous solution through a vaporization filter and exposes it to circulating air, thereby releasing air containing hypochlorous acid gas to the outside and purifying the living space. When attempting to miniaturize such space purification devices, the amount of electrolyte that can be stored in the storage section decreases. However, if electrolysis is performed with a small amount of electrolyte stored in the storage section, the amount of electrolyte is small compared to the consumption associated with the electrolysis of sodium chloride or potassium chloride (hereinafter referred to as electrolyte), and the electrolyte concentration of the entire electrolyte is more likely to decrease. More specifically, when the amount of electrolyte that can be stored in the storage section is small due to the miniaturization of the space purification device, if the generation of a hypochlorous acid aqueous solution by electrolysis of the electrolyte and the purification operation using the generated hypochlorous acid aqueous solution are repeatedly performed, the electrolyte concentration decreases over time, and the generation efficiency of hypochlorous acid by electrolysis of the electrolyte (the ratio of generated hypochlorous acid to the current value passed through the electrolyte) decreases. As a result, the amount of hypochlorous acid generated by electrolysis of the electrolyte decreases. In other words, in a miniaturized space purification device, the amount of hypochlorous acid contained in the hypochlorous acid aqueous solution decreases over time, and as a result, there is a concern that the amount of hypochlorous acid gas contained in the air circulating during the purification operation cannot be stably maintained.
 そこで本開示は、上記従来の課題を解決するものであり、小型化して貯留部に貯留することが可能な電解液の量が少量である場合であっても、放出する空気に含ませる次亜塩素酸ガスの量を安定して保つことが可能な空間浄化装置を提供することを目的とする。 The present disclosure aims to solve the above-mentioned problems of the past and provide a space purification device that can stably maintain the amount of hypochlorous acid gas contained in the released air even when the device is compact and the amount of electrolyte that can be stored in the storage section is small.
 そして、この目的を達成するために、本開示に係る空間浄化装置は、筐体の内部に塩化ナトリウムまたは塩化カリウムを含む水溶液を貯留する貯留部と、貯留部内に設けられ、水溶液を電気分解して次亜塩素酸水溶液を生成する電解部と、筐体の外部からの空気を貯留部内に導入する空気導入部と、貯留部内の次亜塩素酸水溶液の上方空間の空気を筐体の外部に放出する空気放出部と、を備える。そして、電解部は、水溶液中に塩化ナトリウムまたは塩化カリウムが沈殿している状態で、水溶液の電気分解を行って次亜塩素酸水溶液を生成する。 In order to achieve this objective, the spatial purification device according to the present disclosure comprises a storage section that stores an aqueous solution containing sodium chloride or potassium chloride inside a housing, an electrolysis section that is provided inside the storage section and that electrolyzes the aqueous solution to produce an aqueous hypochlorous acid solution, an air introduction section that introduces air from outside the housing into the storage section, and an air discharge section that discharges air in the space above the aqueous hypochlorous acid solution in the storage section to the outside of the housing. The electrolysis section electrolyzes the aqueous solution with sodium chloride or potassium chloride precipitated in the aqueous solution to produce an aqueous hypochlorous acid solution.
 本開示によれば、小型化して貯留部に貯留することが可能な電解液の量が少量である場合であっても、放出する空気に含ませる次亜塩素酸ガスの量を安定して保つことが可能な空間浄化装置とすることができる。 According to the present disclosure, even if the amount of electrolyte that can be stored in the storage section is small due to miniaturization, it is possible to provide a space purification device that can stably maintain the amount of hypochlorous acid gas contained in the released air.
図1は、本開示の実施の形態1に係る空間浄化装置を備えた空間浄化機器の、室内における使用状態を示す透視図である。FIG. 1 is a perspective view showing a space purification device including a space purification device according to a first embodiment of the present disclosure being used indoors. 図2は、空間浄化機器の構成を示す概略構成図である。FIG. 2 is a schematic diagram showing the configuration of the space purification device. 図3は、空間浄化装置の外観を示す外観斜視図である。FIG. 3 is a perspective view showing the appearance of the space purification device. 図4は、空間浄化装置の構成を示す透過斜視図である。FIG. 4 is a transparent perspective view showing the configuration of the space purification device. 図5は、空間浄化装置における貯留部内の水溶液の流れ及び空気の流れを示す透過側面図である。FIG. 5 is a transparent side view showing the flow of the aqueous solution and the flow of air in a storage portion of the space purification device. 図6は、変形例に係る空間浄化装置における貯留部内の水溶液の流れ及び空気の流れを示す透過側面図である。FIG. 6 is a see-through side view showing the flow of the aqueous solution and the flow of air in a storage portion in a space purification device according to a modified example.
 本開示に係る空間浄化装置は、筐体の内部に塩化ナトリウムまたは塩化カリウムを含む水溶液(以下、電解液)を貯留する貯留部と、貯留部内に設けられ、電解液を電気分解して次亜塩素酸水溶液を生成する電解部と、筐体の外部からの空気を貯留部内に導入する空気導入部と、貯留部内の次亜塩素酸水溶液の上方空間の空気を筐体の外部に放出する空気放出部と、を備える。そして、電解部は、電解液中に塩化ナトリウムまたは塩化カリウム(以下、電解質)が沈殿している状態で、電解液の電気分解を行って次亜塩素酸水溶液を生成する。 The spatial purification device according to the present disclosure includes a storage section that stores an aqueous solution containing sodium chloride or potassium chloride (hereinafter, electrolyte) inside a housing, an electrolysis section that is provided inside the storage section and that electrolyzes the electrolyte to produce an aqueous hypochlorous acid solution, an air introduction section that introduces air from outside the housing into the storage section, and an air discharge section that discharges air in the space above the aqueous hypochlorous acid solution in the storage section to the outside of the housing. The electrolysis section generates an aqueous hypochlorous acid solution by electrolyzing the electrolyte with sodium chloride or potassium chloride (hereinafter, electrolyte) precipitated in the electrolyte.
 こうした構成によれば、電解液に含まれる電解質が、電解液の電気分解によって消費されても、沈殿している電解質が電解液中に溶出して補充されるので、電解液の電気分解を行っている際に、電解液中の電解質濃度が低下することを抑制することができる。これにより、電解質濃度の低下に伴う、次亜塩素酸の生成効率(電解液に流した電流値に対する、生成された次亜塩素酸の割合)の低下を抑制することができるので、電解液の電気分解による次亜塩素酸の生成量を安定化させることができる。つまり、小型化して貯留部に貯留することが可能な電解液の量が少量である場合であっても、放出する空気に含ませる次亜塩素酸ガスの量を安定して保つことが可能な空間浄化装置とすることができる。 With this configuration, even if the electrolyte contained in the electrolyte solution is consumed by electrolysis of the electrolyte solution, the precipitated electrolyte is dissolved into the electrolyte solution and replenished, so that it is possible to suppress a decrease in the electrolyte concentration in the electrolyte solution during electrolysis of the electrolyte solution. This makes it possible to suppress a decrease in the hypochlorous acid production efficiency (the ratio of hypochlorous acid produced to the current value passed through the electrolyte solution) that accompanies a decrease in electrolyte concentration, and therefore it is possible to stabilize the amount of hypochlorous acid produced by electrolysis of the electrolyte solution. In other words, even if the amount of electrolyte solution that can be stored in the storage section by miniaturization is small, it is possible to provide a space purification device that can stably maintain the amount of hypochlorous acid gas contained in the released air.
 また、本開示に係る空間浄化装置は、貯留部には、電解質が沈殿する溶質領域から、溶質領域の上方に位置し電解部が設置された溶液領域に、電解質の沈殿物が浮上することを抑制する沈殿物フィルタが設けられてもよい。こうした構成によれば、沈殿している電解質の固形物が電解液中を浮遊し、電解部に達することを抑制できる。これにより、電解部が電解液の電気分解を行っている間に、電解部に電解質の固形物が堆積することによって次亜塩素酸の生成効率が悪化することを抑制できる。 Furthermore, in the spatial purification device according to the present disclosure, the storage section may be provided with a precipitate filter that prevents electrolyte precipitates from floating up from the solute region where the electrolyte precipitates to the solution region located above the solute region and in which the electrolysis section is installed. With this configuration, precipitated electrolyte solids can be prevented from floating in the electrolyte and reaching the electrolysis section. This prevents the efficiency of hypochlorous acid production from deteriorating due to electrolyte solids accumulating in the electrolysis section while the electrolysis section is electrolyzing the electrolyte.
 また、本開示に係る空間浄化装置は、貯留部内に設けられ、電解液を攪拌するための攪拌部を備え、攪拌部は、電解部に水流を生じさせられるように設けられてもよい。こうした構成によれば、電解部が電解液の電気分解を行っている間に、水流によって電気分解で電極部表面に生じた酸素ガス及び水素ガスの気泡がそのまま電解部に付着している状態となることを抑制できる。この結果、電解部に付着した気泡によって電解部の電解有効面積が減少し、次亜塩素酸の生成効率が悪化することを抑制できる。 The spatial purification device according to the present disclosure may further include an agitation unit provided within the storage unit for agitating the electrolyte, and the agitation unit may be provided so as to generate a water flow in the electrolysis unit. With this configuration, while the electrolysis unit is electrolyzing the electrolyte, it is possible to prevent the oxygen gas and hydrogen gas bubbles generated on the surface of the electrode unit by electrolysis due to the water flow from adhering to the electrolysis unit. As a result, it is possible to prevent the effective electrolysis area of the electrolysis unit from being reduced by the bubbles adhering to the electrolysis unit, and to prevent a deterioration in the efficiency of generating hypochlorous acid.
 また、本開示に係る空間浄化装置では、攪拌部は、電解液を吸い込む水溶液吸込口と、水溶液吸込口から吸い込んだ電解液を貯留部内に吹き出す水溶液吹出口とを有し、水溶液吹出口は、電解部に向けて電解液を吹き出して水流を生じさせることが好ましい。このようにすることで、電解部に集中して水流を生じさせることができるため、電気分解で電極部表面に生じた酸素ガス及び水素ガスの気泡がそのまま電解部に付着している状態となることを確実に抑制できる。この結果、電解部に付着した気泡によって電解部の電解有効面積が減少し、次亜塩素酸の生成効率が悪化することをさらに抑制できる。 Furthermore, in the spatial purification device according to the present disclosure, the stirring section has an aqueous solution suction port that draws in the electrolyte solution, and an aqueous solution outlet that blows the electrolyte solution drawn in from the aqueous solution suction port into the storage section, and it is preferable that the aqueous solution outlet blows the electrolyte solution toward the electrolysis section to generate a water flow. In this way, the water flow can be generated by concentrating it on the electrolysis section, so that it is possible to reliably prevent the oxygen gas and hydrogen gas bubbles generated on the surface of the electrode section by electrolysis from adhering to the electrolysis section as they are. As a result, it is possible to further prevent the effective electrolysis area of the electrolysis section from being reduced by the bubbles adhering to the electrolysis section, and thus to prevent the efficiency of hypochlorous acid production from being deteriorated.
 また、本開示に係る空間浄化装置は、貯留部内に設けられ、次亜塩素酸水溶液を攪拌する攪拌部を備え、攪拌部は、次亜塩素酸水溶液を吸い込む水溶液吸込口と、水溶液吸込口から吸い込んだ次亜塩素酸水溶液を貯留部内に吹き出す水溶液吹出口とを有し、水溶液吹出口は、空気導入部と空気放出部との間における上方空間に向けて次亜塩素酸水溶液を吹き出すようにしてもよい。こうした構成によれば、空気導入部と空気放出部との間における上方空間において、次亜塩素酸水溶液が水柱あるいは水滴の形で上方空間内に存在するようになる。空気導入部から導入された空気が、水柱あるいは水滴となった次亜塩素酸水溶液によって、空気導入部から導入された空気が空気放出部から放出されるまでの間に、上方空間においてより広い面積で次亜塩素酸水溶液に接触することができる。これにより、同じ次亜塩素酸水溶液の次亜塩素酸濃度であっても、流通する空気に含ませられる次亜塩素酸ガスの量を増加させることができる。つまり、小型化して貯留部に貯留することが可能な次亜塩素酸水溶液の量が少量である場合であっても、放出する空気に含ませる必要な次亜塩素酸ガスの量を発生させることができる。 The spatial purification device according to the present disclosure is provided in the storage section and includes a stirring section for stirring the hypochlorous acid aqueous solution, and the stirring section has an aqueous solution suction port for sucking in the hypochlorous acid aqueous solution and an aqueous solution outlet for blowing out the hypochlorous acid aqueous solution sucked in from the aqueous solution suction port into the storage section, and the aqueous solution outlet may be configured to blow out the hypochlorous acid aqueous solution toward the upper space between the air introduction section and the air discharge section. With this configuration, the hypochlorous acid aqueous solution is present in the upper space between the air introduction section and the air discharge section in the form of a water column or water droplets. The air introduced from the air introduction section can come into contact with the hypochlorous acid aqueous solution over a wider area in the upper space by the hypochlorous acid aqueous solution that has become a water column or water droplets until the air introduced from the air introduction section is discharged from the air discharge section. This allows the amount of hypochlorous acid gas contained in the circulating air to be increased even with the same hypochlorous acid concentration of the hypochlorous acid aqueous solution. In other words, even if the amount of hypochlorous acid solution that can be stored in the storage section by miniaturizing the device is small, it is possible to generate the necessary amount of hypochlorous acid gas to be contained in the released air.
 以下、本開示の実施の形態について図面を参照しながら説明する。なお、以下の実施の形態は、本開示を具体化した一例であって、本開示の技術的範囲を限定するものではない。また、実施の形態において説明する各図は、模式的な図であり、各図中の各構成要素の大きさ及び厚さそれぞれの比が、必ずしも実際の寸法比を反映しているとは限らない。 Below, an embodiment of the present disclosure will be described with reference to the drawings. Note that the following embodiment is an example of a specific embodiment of the present disclosure, and does not limit the technical scope of the present disclosure. Furthermore, each figure described in the embodiment is a schematic diagram, and the ratios of sizes and thicknesses of each component in each figure do not necessarily reflect the actual dimensional ratios.
 (実施の形態1)
 まず、図1を参照して、本実施の形態1に係る空間浄化装置11を備えた空間浄化機器2の室内1における使用時の状態について説明する。図1は、本開示の実施の形態1に係る空間浄化装置11を備えた空間浄化機器2の、室内1における使用状態を示す透視図である。
(Embodiment 1)
First, a state in which a space purification device 2 equipped with a space purification device 11 according to the embodiment 1 is used in a room 1 will be described with reference to Fig. 1. Fig. 1 is a perspective view showing a state in which a space purification device 2 equipped with a space purification device 11 according to the embodiment 1 of the present disclosure is used in a room 1.
 図1に示す通り、空間浄化装置11を備えた空間浄化機器2は、室内1に設置されて用いられる。空間浄化機器2が置かれる室内1は、利用者が日常生活で使用する空間であり、空間に設置された台上に空間浄化機器2を置くことを想定している。空間浄化機器2は、室内1の空気を吸込空気3として吸い込んで除塵し、次亜塩素酸ガスを含ませた吹出空気4として室内1に吹き出す。これにより、空間浄化機器2は、室内1の浄化を行う。 As shown in FIG. 1, a space purification device 2 equipped with a space purification device 11 is installed in a room 1 for use. The room 1 in which the space purification device 2 is placed is a space used by a user in daily life, and it is assumed that the space purification device 2 is placed on a stand installed in the space. The space purification device 2 draws in air from the room 1 as intake air 3, removes dust, and blows it out into the room 1 as exhaust air 4 containing hypochlorous acid gas. In this way, the space purification device 2 purifies the room 1.
 続いて、図2を用いて、本実施の形態1に係る空間浄化装置11を備えた空間浄化機器2の構成について説明する。図2は、空間浄化機器2の構成を示す概略構成図である。 Next, the configuration of the space purification device 2 equipped with the space purification device 11 according to the first embodiment will be described with reference to FIG. 2. FIG. 2 is a schematic diagram showing the configuration of the space purification device 2.
 空間浄化機器2は、内部に空間浄化装置11を備える。より詳細には、図2に示す通り、空間浄化機器2は、吸込口8、集塵フィルタ9、送風機10、空間浄化装置11、及び吹出口12を有して構成される。 The space purification device 2 has a space purification device 11 inside. More specifically, as shown in FIG. 2, the space purification device 2 is configured with an intake port 8, a dust collection filter 9, a blower 10, the space purification device 11, and an outlet port 12.
 空間浄化機器2は、上述した通り、吸込口8から吸込空気3を吸い込んで除塵し、次亜塩素酸ガスを含ませた吹出空気4として吹出口12から室内1に吹き出す。空間浄化機器2は、吹出口12から吹出空気4を吹き出す際、空間浄化装置11によって吹出空気4に次亜塩素酸ガスを含ませている。 As described above, the space purification device 2 draws in the intake air 3 from the intake port 8, removes dust, and blows it out from the outlet 12 into the room 1 as blown air 4 containing hypochlorous acid gas. When the space purification device 2 blows out the blown air 4 from the outlet 12, the space purification device 2 causes the blown air 4 to contain hypochlorous acid gas by the space purification device 11.
 吸込口8は、空間浄化機器2の正面下部右側に設けられており、室内1から空間浄化機器2の内部に吸込空気3を取り入れる。 The intake port 8 is located on the lower right side of the front of the space purification device 2, and takes in intake air 3 from the room 1 into the interior of the space purification device 2.
 集塵フィルタ9は、通過する空気を浄化する部材である。集塵フィルタ9は、吸込口8から吸い込んだ吸込空気3が通過するように設けられている。集塵フィルタ9を通過した吸込空気3は、集塵フィルタ9によって微粒子が取り除かれることにより除塵される。集塵フィルタ9には、例えば、HEPAフィルタが用いられる。 The dust collection filter 9 is a member that purifies the air that passes through it. The dust collection filter 9 is provided so that the intake air 3 drawn in from the suction port 8 passes through it. The intake air 3 that passes through the dust collection filter 9 is cleaned of dust by the dust collection filter 9 removing fine particles. For example, a HEPA filter is used as the dust collection filter 9.
 送風機10は、吸込口8から吸込空気3を吸い込み、吹出口12から吹出空気4として室内1に吹き出すための圧力を生じさせる部材である。送風機10は、吸込口8と吹出口12とを連通する内部風路において集塵フィルタ9の下流側に設置される。送風機10の動作によって、集塵フィルタ9を通過して送風機10に吸い込まれた吸込空気3は、送風機10を通して除塵空気5となる。そして、除塵空気5は、内部風路を流通する過程で、空間浄化装置11から放出される放出空気7(次亜塩素酸ガス含む空気)と混合されて吹出空気4として吹き出される。送風機10は、モータ部と、モータ部により回転するファン部と、それらを囲むスクロール形状のケーシング部とを有して構成されるが、一般的な送風ファンが用いられればよいので、詳細な説明は省略する。 The blower 10 is a member that draws in the intake air 3 from the intake port 8 and generates pressure to blow it out as the exhaust air 4 from the exhaust port 12 into the room 1. The blower 10 is installed downstream of the dust collection filter 9 in the internal air passage that connects the intake port 8 and the exhaust port 12. The intake air 3 that passes through the dust collection filter 9 and is sucked into the blower 10 by the operation of the blower 10 becomes the dust-removed air 5 through the blower 10. Then, in the process of flowing through the internal air passage, the dust-removed air 5 is mixed with the exhaust air 7 (air containing hypochlorous acid gas) discharged from the space purification device 11 and blown out as the exhaust air 4. The blower 10 is composed of a motor unit, a fan unit rotated by the motor unit, and a scroll-shaped casing unit that surrounds them, but detailed description is omitted since a general exhaust fan may be used.
 空間浄化装置11は、除塵空気5の一部を導入空気6として内部に取り込み、空間浄化装置11の内部(後述する貯留部13内の上方空間23)で導入空気6に次亜塩素酸ガスを含ませた後、放出空気7として除塵空気5に合流させる。これにより、除塵空気5は、次亜塩素酸ガスを含む空気となる。なお、導入空気6を吸い込み、放出空気7として放出されるための空気の駆動力には、送風機10の風圧を利用することができる。例えば、送風機10によって作られた除塵空気5の流れ方向と対向するように導入空気6の導入口を設け、送風機10によって作られた除塵空気5の流れ方向と直交する向きに放出空気7の放出口を設けると、送風機10の風圧によって導入空気6を空間浄化装置11内に導入させ、放出空気7を空間浄化装置11から放出することができる。空間浄化装置11の詳細については後述する。 The space purifier 11 takes in a part of the dust-removed air 5 as the introduced air 6, and after adding hypochlorous acid gas to the introduced air 6 inside the space purifier 11 (the upper space 23 in the storage section 13 described later), merges it with the dust-removed air 5 as the discharged air 7. As a result, the dust-removed air 5 becomes air containing hypochlorous acid gas. The wind pressure of the blower 10 can be used as the driving force for sucking in the introduced air 6 and releasing it as the discharged air 7. For example, if an inlet for the introduced air 6 is provided so as to face the flow direction of the dust-removed air 5 created by the blower 10, and an outlet for the discharged air 7 is provided in a direction perpendicular to the flow direction of the dust-removed air 5 created by the blower 10, the introduced air 6 can be introduced into the space purifier 11 by the wind pressure of the blower 10, and the discharged air 7 can be released from the space purifier 11. Details of the space purifier 11 will be described later.
 吹出口12は、空間浄化機器2の上面に設けられており、内部風路を流通して次亜塩素酸ガスを含んだ除塵空気5を、吹出空気4として室内1に吹き出す。 The air outlet 12 is provided on the top surface of the space purification device 2, and blows out the dust-free air 5 containing hypochlorous acid gas as blown air 4 into the room 1 after flowing through the internal air passage.
 以上の構成により、空間浄化機器2は、室内1の空気を吸込空気3として吸い込んで除塵し、次亜塩素酸ガスを含ませた吹出空気4として室内1に吹き出すことができる。 With the above configuration, the space purification device 2 can suck in air from the room 1 as intake air 3, remove dust from it, and blow it out into the room 1 as exhaust air 4 that contains hypochlorous acid gas.
 続いて、図3及び図4を用いて、空間浄化機器2に組み込まれる空間浄化装置11の構成について説明する。図3は、空間浄化装置11の外観を示す外観斜視図である。図4は、空間浄化装置11の構成を示す透過斜視図である。 Next, the configuration of the space purification device 11 incorporated in the space purification equipment 2 will be described with reference to Figures 3 and 4. Figure 3 is an external perspective view showing the appearance of the space purification device 11. Figure 4 is a see-through perspective view showing the configuration of the space purification device 11.
 空間浄化装置11は、空間浄化機器2の内部に着脱可能に組み込まれるユニットである(図2参照)。そして、図3に示す通り、空間浄化装置11は、空気導入部15から空間浄化機器2の除塵空気5を導入空気6として取り込み、次亜塩素酸ガスを含ませた放出空気7として空気放出部16から空間浄化機器2の内部風路に放出する。 The space purification device 11 is a unit that is removably installed inside the space purification device 2 (see FIG. 2). As shown in FIG. 3, the space purification device 11 takes in dust-free air 5 from the space purification device 2 as introduced air 6 from the air inlet 15, and releases it as released air 7 containing hypochlorous acid gas from the air outlet 16 into the internal air passage of the space purification device 2.
 より詳細には、図4に示す通り、空間浄化装置11は、空気導入部15、空気放出部16、貯留部13、電解部14、攪拌部20、及び沈殿物フィルタ19を有して構成される。 More specifically, as shown in FIG. 4, the spatial purification device 11 is configured to have an air inlet section 15, an air outlet section 16, a storage section 13, an electrolysis section 14, an agitation section 20, and a sediment filter 19.
 空気導入部15は、空間浄化機器2の内部風路と、貯留部13の上部の密閉された上方空間23とをつなぐ管状の部材であり、空間浄化装置11の内部に導入空気6を取り入れる。具体的には、空気導入部15は、内部風路側に位置する導入口と、上方空間23側に位置する導出口とを有する。空気導入部15の内部風路側の導入口は、除塵空気5を導入空気6として取り込むための管口であり、導入口の向きが、送風機10によって作られる除塵空気5の流れ方向と対向するように設置されている(図2参照)。空気導入部15の上方空間23側の導出口は、導入空気6を上方空間23に導入する管口であり、空間浄化装置11の上面に設置されている。これにより、空気導入部15では、導入口から取り込んだ導入空気6を、導出口から上方空間23に供給する。 The air introduction section 15 is a tubular member that connects the internal air passage of the space purification device 2 with the sealed upper space 23 above the storage section 13, and takes in the introduced air 6 into the space purification device 11. Specifically, the air introduction section 15 has an inlet located on the internal air passage side and an outlet located on the upper space 23 side. The inlet on the internal air passage side of the air introduction section 15 is a tube opening for taking in the dust-removed air 5 as the introduced air 6, and is installed so that the direction of the inlet faces the flow direction of the dust-removed air 5 created by the blower 10 (see FIG. 2). The outlet on the upper space 23 side of the air introduction section 15 is a tube opening for introducing the introduced air 6 into the upper space 23, and is installed on the top surface of the space purification device 11. As a result, the air introduction section 15 supplies the introduced air 6 taken in from the inlet to the upper space 23 from the outlet.
 空気放出部16は、貯留部13の上部の密閉された上方空間23と、空間浄化機器2の内部風路とをつなぐ管状の部材であり、空間浄化装置11の内部から放出空気7を放出する。具体的には、空気放出部16は、上方空間23側に位置する導入口と、内部風路側に位置する放出口とを有する。空気放出部16の上方空間23側の導入口は、空間浄化装置11の上面に設置されている。空気放出部16の内部風路側の放出口は、次亜塩素酸ガスを含む放出空気7を放出するための管口であり、放出口の向きが、送風機10によって作られる除塵空気5の流れ方向と直交するように設置されている(図2参照)。つまり、空気放出部16は、空気導入部15から空間浄化装置11の内部に取り入れた導入空気6を、次亜塩素酸ガスを含ませた放出空気7として空間浄化機器2の内部風路に吹き出す。なお、空気放出部16の放出口は、空気導入部15の導入口よりも内部風路の下流側に設置されている。導入空気6が次亜塩素酸ガスを含む過程については後述する。 The air discharge section 16 is a tubular member that connects the sealed upper space 23 above the storage section 13 with the internal air passage of the space purification device 2, and discharges the discharged air 7 from inside the space purification device 11. Specifically, the air discharge section 16 has an inlet located on the upper space 23 side and an outlet located on the internal air passage side. The inlet on the upper space 23 side of the air discharge section 16 is installed on the upper surface of the space purification device 11. The outlet on the internal air passage side of the air discharge section 16 is a pipe opening for discharging the discharged air 7 containing hypochlorous acid gas, and is installed so that the direction of the outlet is perpendicular to the flow direction of the dust-removed air 5 created by the blower 10 (see FIG. 2). In other words, the air discharge section 16 blows the introduced air 6 taken into the interior of the space purification device 11 from the air introduction section 15 into the internal air passage of the space purification device 2 as discharged air 7 containing hypochlorous acid gas. The outlet of the air release section 16 is located downstream of the inlet of the air introduction section 15 in the internal air passage. The process by which the introduced air 6 contains hypochlorous acid gas will be described later.
 貯留部13は、空気導入部15及び空気放出部16を取り付けた状態で、密閉された内部空間を構成し、内部に電解液13a及び次亜塩素酸水溶液13bを貯留する部材である。また、貯留部13は、電解液13a及び次亜塩素酸水溶液13bの液面の上方に上方空間23を有する。なお、貯留部13全体が、請求項の「筐体」に相当するものである。 The storage unit 13, with the air inlet 15 and air outlet 16 attached, forms a sealed internal space and is a member that stores the electrolyte 13a and the aqueous hypochlorous acid solution 13b inside. The storage unit 13 also has an upper space 23 above the liquid levels of the electrolyte 13a and the aqueous hypochlorous acid solution 13b. The entire storage unit 13 corresponds to the "housing" in the claims.
 ここで、本実施の形態では、貯留部13は、電解液13a及び次亜塩素酸水溶液13bの混合液を貯留しているが、以下では、両者を区別し、電気分解による次亜塩素酸水溶液の生成の際には電解液13aと称し、次亜塩素酸ガスを放出する浄化運転の際には次亜塩素酸水溶液13bと称して説明する。 In this embodiment, the storage unit 13 stores a mixture of the electrolyte 13a and the aqueous hypochlorous acid solution 13b. In the following, the two will be distinguished and will be referred to as the electrolyte 13a when the aqueous hypochlorous acid solution is produced by electrolysis, and as the aqueous hypochlorous acid solution 13b when performing purification operation to release hypochlorous acid gas.
 電解液13aは、電気分解することで次亜塩素酸水溶液13bを生成するための水溶液であり、塩化ナトリウムまたは塩化カリウムを溶解させた水溶液である。本実施の形態では、電解液13aは、塩化ナトリウムまたは塩化カリウムからなる電解質13cが完全に溶解することなく電解質13cが沈澱した状態で、貯留部13内に貯留されている。こうした電解液13aを用いて電解部14で起こる反応については後述する。 The electrolyte 13a is an aqueous solution for generating the hypochlorous acid aqueous solution 13b by electrolysis, and is an aqueous solution in which sodium chloride or potassium chloride is dissolved. In this embodiment, the electrolyte 13a is stored in the storage section 13 in a state in which the electrolyte 13c made of sodium chloride or potassium chloride is precipitated without being completely dissolved. The reaction that occurs in the electrolysis section 14 using this electrolyte 13a will be described later.
 沈澱する電解質13cは、塩化ナトリウムまたは塩化カリウムの沈殿物であり、電気分解によって電解液13aから消費された塩化物イオンを再度電解液13aに供給するためのものである。こちらも詳細については後述する。 The precipitated electrolyte 13c is a precipitate of sodium chloride or potassium chloride, and serves to supply the chloride ions consumed from the electrolyte 13a by electrolysis back to the electrolyte 13a. Details of this will be described later.
 なお、本実施の形態では、電解質13cとして、塩化ナトリウムまたは塩化カリウムを用いているが、それに限られるわけではない。後述するが、次亜塩素酸水溶液13bを生成するためには塩化物イオンが存在していればよいため、他に塩化カルシウムあるいは塩化リチウムなどの塩化物を用いることも考えられる。よって、本開示において、「塩化ナトリウムまたは塩化カリウム」とは、塩化カルシウムや塩化リチウム等も含めた「塩化物イオンが存在するものを広く含むもの」を意味する。 In this embodiment, sodium chloride or potassium chloride is used as the electrolyte 13c, but this is not limited thereto. As will be described later, since the presence of chloride ions is sufficient to generate the hypochlorous acid aqueous solution 13b, it is also possible to use other chlorides such as calcium chloride or lithium chloride. Therefore, in this disclosure, "sodium chloride or potassium chloride" means "broadly including those that contain chloride ions," including calcium chloride, lithium chloride, etc.
 次亜塩素酸水溶液13bは、電解液13a中に電解質13cが沈殿している状態で、電解液13aの電気分解を行って生成された溶液であり、いわゆる次亜塩素酸を含む水溶液である。次亜塩素酸水溶液13bの水素イオン濃度(pH)は、5~13がよく、特に5~7が好適である。次亜塩素酸水溶液13bは、pHが5を下回ると塩素ガスとして気化する危険性があり、また、pHが5以上であれば、pHが低いほど次亜塩素酸ガスとして気化しやすいためである。 The hypochlorous acid aqueous solution 13b is a solution produced by electrolyzing the electrolyte 13a in a state in which the electrolyte 13c is precipitated in the electrolyte 13a, and is a so-called aqueous solution containing hypochlorous acid. The hydrogen ion concentration (pH) of the hypochlorous acid aqueous solution 13b is preferably 5 to 13, and more preferably 5 to 7. This is because there is a risk that the hypochlorous acid aqueous solution 13b will evaporate into chlorine gas if the pH falls below 5, and also because, if the pH is 5 or higher, the lower the pH, the more likely it is to evaporate into hypochlorous acid gas.
 貯留部13は、上述した通り、電解液13a中に電解質13cが沈殿している状態で、電解液13aを貯留するとともに、電解液13aの液面の上方に上方空間23を有している。貯留部13は、電解質13cが沈殿する溶質領域17と、後述する電解部14及び攪拌部20が設置された溶液領域18とに区画されている。 As described above, the storage section 13 stores the electrolyte solution 13a in a state in which the electrolyte 13c is precipitated in the electrolyte solution 13a, and has an upper space 23 above the liquid surface of the electrolyte solution 13a. The storage section 13 is divided into a solute region 17 in which the electrolyte 13c is precipitated, and a solution region 18 in which the electrolysis section 14 and the stirring section 20 described below are installed.
 溶質領域17は、貯留部13の底部側に位置しており、電解質13cの沈澱物を含む電解液13aを保持する領域である。 The solute region 17 is located at the bottom side of the storage section 13 and is a region that holds the electrolyte solution 13a that contains a precipitate of electrolyte 13c.
 溶液領域18は、溶質領域17の上方に位置しており、電解質13cの沈殿物を含まない電解液13aを保持する領域である。溶液領域18には、電解部14及び攪拌部20がそれぞれ浸漬した状態で設置されている。また、溶質領域17と溶液領域18との間には、沈殿物フィルタ19が設けられている。具体的には、溶液領域18の底部側(溶質領域17側)において、互いに区画された溶質領域17と溶液領域18とを連通する開口部を塞ぐように沈殿物フィルタ19が設けられている。沈殿物フィルタ19については後述する。 The solution region 18 is located above the solute region 17, and is a region that holds the electrolyte solution 13a that does not contain precipitates of the electrolyte 13c. The electrolysis section 14 and the stirring section 20 are installed in a state in which they are immersed in the solution region 18. In addition, a precipitate filter 19 is provided between the solute region 17 and the solution region 18. Specifically, the precipitate filter 19 is provided on the bottom side (solute region 17 side) of the solution region 18 so as to block the opening that connects the solute region 17 and the solution region 18, which are partitioned from each other. The precipitate filter 19 will be described later.
 なお、上述した溶質領域17及び溶液領域18における電解液13aは、次亜塩素酸水溶液13bと読み替えてもよいし、電解液13aと次亜塩素酸水溶液13bの混合液と読み替えてもよい。 Note that the electrolyte 13a in the solute region 17 and solution region 18 described above may be read as an aqueous hypochlorous acid solution 13b, or as a mixture of the electrolyte 13a and the aqueous hypochlorous acid solution 13b.
 上方空間23は、貯留部13の内部において、電解液13a及び次亜塩素酸水溶液13bの液面の上方に生じる空気領域である。上方空間23は、空気導入部15と空気放出部16とによって空間浄化機器2の内部風路と連通接続されている。そして、上方空間23には、送風機10の動作時に、空間浄化機器2の内部風路から導入空気6が空気導入部15を通じて導入される。そして、導入空気6が上方空間23に導入されることで、上方空間23内の空気(次亜塩素酸ガスを含む空気)が放出空気7として空気放出部16から内部風路に押し出される。 The upper space 23 is an air region that occurs above the liquid surface of the electrolyte 13a and the hypochlorous acid aqueous solution 13b inside the storage section 13. The upper space 23 is connected in communication with the internal air passage of the space purification device 2 by the air inlet section 15 and the air outlet section 16. When the blower 10 is in operation, introduced air 6 is introduced into the upper space 23 from the internal air passage of the space purification device 2 through the air inlet section 15. When the introduced air 6 is introduced into the upper space 23, the air in the upper space 23 (air containing hypochlorous acid gas) is pushed out from the air outlet section 16 into the internal air passage as released air 7.
 電解部14は、貯留部13に貯留された電解液13aを電気分解して次亜塩素酸水溶液13bを生成する部材である。電解部14は、溶液領域18の底部側において、溶液領域18の電解液13aに浸漬されて設置されている。電解部14は、例えば、導電性基体の表面に触媒被膜を有して構成される陽極と陰極との一対の電極である。電解部14は、一対の電極に通電することで電解液13aの電気分解を行う。これにより、電解液13aに含まれる塩化物イオンが電解部14において電気分解され、次亜塩素酸が生成される。具体的には、電解部14では、電解液13aの電気分解を行うと、以下の3通りの反応が主に起きる。 The electrolysis unit 14 is a member that electrolyzes the electrolyte 13a stored in the storage unit 13 to generate an aqueous hypochlorous acid solution 13b. The electrolysis unit 14 is installed on the bottom side of the solution region 18 and immersed in the electrolyte 13a in the solution region 18. The electrolysis unit 14 is, for example, a pair of electrodes, an anode and a cathode, configured with a catalytic coating on the surface of a conductive substrate. The electrolysis unit 14 electrolyzes the electrolyte 13a by passing a current through the pair of electrodes. As a result, the chloride ions contained in the electrolyte 13a are electrolyzed in the electrolysis unit 14, and hypochlorous acid is generated. Specifically, when the electrolyte 13a is electrolyzed in the electrolysis unit 14, the following three types of reactions mainly occur:
 陽極:Cl + HO → H + HClO + 2e ・・・ 式(1)
    2HO → O + 4H + 4e       ・・・ 式(2)
 陰極:2H + 2e → H              ・・・ 式(3)
 電解部14は、陽極において、式(1)の反応を起こすことにより、電解液13aに含まれる塩化物イオンから次亜塩素酸を生成し、次亜塩素酸水溶液13bを生成する。また、式(2)の反応を起こすことにより、水から酸素と水素イオンを生成する。一方、電解部14は、陰極において、式(3)の反応を起こすことにより、電解液13aに含まれる水素イオンから水素を生成する。ここで、電解液13aの電気分解によって起きる式(1)及び式(2)の反応のうち、式(1)の反応が起きる割合(以下、次亜塩素酸発生効率)は、式(1)の左辺に含まれる塩化物イオンの濃度に依存する。具体的には、塩化物イオンの濃度が高いほど、次亜塩素酸発生効率は高くなる。したがって、次亜塩素酸発生効率を維持しながら次亜塩素酸を生成するためには、塩化物イオンの濃度を一定に維持することが重要となる。本実施の形態では、沈澱する電解質13cは、式(1)の反応によって電解液13aから消費された塩化物イオンを電解液13aに供給する。具体的には、電解液13aの塩化物イオンを常に飽和状態(塩化ナトリウムの場合約4.4mol/L、塩化カリウムの場合約3.4mol/L)に保つ役割を有する。これにより、小型化して貯留部13に貯留することが可能な電解液13aの量が少量である場合であっても、電解液13aに含まれる塩化物イオンの濃度を一定に維持することができ、次亜塩素酸発生効率を維持することが可能となる。
Anode: Cl - + H 2 O → H + + HClO + 2e -... Formula (1)
2H 2 O → O 2 + 4H + + 4e −... Formula (2)
Cathode: 2H + + 2e - → H 2 ... Formula (3)
The electrolysis unit 14 generates hypochlorous acid from chloride ions contained in the electrolytic solution 13a by causing a reaction of formula (1) at the anode, and generates an aqueous hypochlorous acid solution 13b. The electrolysis unit 14 generates oxygen and hydrogen ions from water by causing the reaction of formula (2). Meanwhile, the electrolysis unit 14 generates hydrogen from the hydrogen ions contained in the electrolyte 13a by causing the reaction of formula (3) at the cathode. Hydrogen is generated. Here, the ratio of the reaction of formula (1) occurring among the reactions of formula (1) and formula (2) occurring due to the electrolysis of the electrolyte 13a (hereinafter, referred to as the hypochlorous acid generation efficiency) is , depends on the concentration of chloride ions contained in the left side of formula (1). Specifically, the higher the concentration of chloride ions, the higher the efficiency of hypochlorous acid generation. In order to generate hypochlorous acid efficiently, it is important to maintain a constant concentration of chloride ions. In this embodiment, the precipitated electrolyte 13c supplies the chloride ions consumed from the electrolytic solution 13a by the reaction of formula (1) to the electrolytic solution 13a. The electrolyte has a role of always keeping the electrolyte saturated (about 4.4 mol/L in the case of sodium chloride, about 3.4 mol/L in the case of potassium chloride). This allows the electrolyte to be stored in the storage unit 13 in a compact size. Even if the amount of 13a is small, the concentration of chloride ions contained in the electrolyte 13a can be maintained constant, and the efficiency of hypochlorous acid generation can be maintained.
 改めて小型化の際の課題を説明する。従来のように、貯留部13に貯留する電解液13aの量が多量(例えば、1.5L)の場合には、式(1)の反応によって電解液13aから塩化物イオンが消費されても、多量にある電解液13aから塩化物イオンが供給されるので、電解液13aの電気分解による次亜塩素酸水溶液13bの生成と、生成した次亜塩素酸水溶液13bによる浄化運転とを繰り返し行っても、実質的な電解質濃度が低下することなく電解部14近傍の電解液13aに含まれる塩化物イオンの濃度を一定に維持することができる。このため、長期間にわたって次亜塩素酸発生効率を維持することができる。 The problems encountered in miniaturization will now be explained. As in the past, when the amount of electrolyte 13a stored in the storage section 13 is large (e.g., 1.5 L), even if chloride ions are consumed from the electrolyte 13a by the reaction of formula (1), chloride ions are supplied from the large amount of electrolyte 13a. Therefore, even if the generation of the aqueous hypochlorous acid solution 13b by electrolysis of the electrolyte 13a and the purification operation using the generated aqueous hypochlorous acid solution 13b are repeated, the concentration of chloride ions contained in the electrolyte 13a near the electrolysis section 14 can be maintained constant without a decrease in the actual electrolyte concentration. Therefore, the hypochlorous acid generation efficiency can be maintained for a long period of time.
 これに対して、本実施の形態のように貯留部13に貯留する電解液13aの量を少量(約55mL)にすると、沈澱する電解質13cによる塩化物イオンの供給がない場合には、電気分解によって低下する電解液13aの塩化物イオン濃度が、電解液13aの容量に比例するので、電解液13aの体積を55mLとし、従来のような電解液を多く使用する機器の電解液の体積を1.5Lとすると、電気分解に伴う塩化物イオン濃度の減少速度は約27倍となる。つまり、小型化した空間浄化装置では、時間経過に伴って次亜塩素酸水溶液13bに含まれる次亜塩素酸量が減少することになり、その結果、浄化運転において流通する空気に含ませられる次亜塩素酸ガスの量を安定して保つことができなくなる。 In contrast, if the amount of electrolyte 13a stored in the storage section 13 is small (about 55 mL) as in this embodiment, and there is no supply of chloride ions from the precipitated electrolyte 13c, the chloride ion concentration of the electrolyte 13a that decreases due to electrolysis is proportional to the volume of the electrolyte 13a. If the volume of the electrolyte 13a is 55 mL and the volume of the electrolyte in a conventional device that uses a lot of electrolyte is 1.5 L, the rate of decrease in the chloride ion concentration due to electrolysis will be about 27 times. In other words, in a compact space purification device, the amount of hypochlorous acid contained in the hypochlorous acid aqueous solution 13b will decrease over time, and as a result, it will be impossible to maintain a stable amount of hypochlorous acid gas contained in the air circulating during purification operation.
 攪拌部20は、貯留部13に貯留された電解液13a及び次亜塩素酸水溶液13bを貯留部13内で溶液を攪拌する部材である。攪拌部20は、その主要部が、電解部14の鉛直方向上方において、溶液領域18の電解液13aに浸漬されて設置される。攪拌部20は、水溶液吸込口20a、水溶液吹出口20b、及び駆動部20cを有し、駆動部20cが作動することによって水溶液吸込口20aから電解液13a及び次亜塩素酸水溶液13bを吸い込み、水溶液吹出口20bから電解液13a及び次亜塩素酸水溶液13bを吹き出す。 The stirring unit 20 is a member that stirs the electrolyte solution 13a and the hypochlorous acid aqueous solution 13b stored in the storage unit 13 within the storage unit 13. The stirring unit 20 is installed with its main part immersed in the electrolyte solution 13a in the solution area 18, vertically above the electrolysis unit 14. The stirring unit 20 has an aqueous solution suction port 20a, an aqueous solution outlet 20b, and a drive unit 20c, and by operating the drive unit 20c, the electrolyte solution 13a and the hypochlorous acid aqueous solution 13b are sucked in through the aqueous solution suction port 20a, and the electrolyte solution 13a and the hypochlorous acid aqueous solution 13b are blown out through the aqueous solution outlet 20b.
 水溶液吸込口20aは、貯留部13の電解液13a及び次亜塩素酸水溶液13bを吸い込む円筒状の吸込口である。水溶液吸込口20aは、貯留部13の底部に対して略水平状態で、貯留部13の側面を向いて設置される。 The aqueous solution suction port 20a is a cylindrical suction port that draws in the electrolyte 13a and the aqueous hypochlorous acid solution 13b in the storage section 13. The aqueous solution suction port 20a is installed in a substantially horizontal position relative to the bottom of the storage section 13 and facing the side of the storage section 13.
 水溶液吹出口20bは、水溶液吸込口20aから吸い込んだ電解液13a及び次亜塩素酸水溶液13bを、貯留部13内の電解液13a及び次亜塩素酸水溶液13b中に放出する吐出口である。水溶液吹出口20bは、鉛直方向上方の電解液13a及び次亜塩素酸水溶液13bの液面を向いて設置される。そして、水溶液吹出口20bは、空気導入部15と空気放出部16との間における上方空間23に向けて電解液13a及び次亜塩素酸水溶液13bを吹き出して水流21を生じさせる(図5参照)。 The aqueous solution outlet 20b is an outlet that discharges the electrolyte solution 13a and the hypochlorous acid aqueous solution 13b sucked in from the aqueous solution suction port 20a into the electrolyte solution 13a and the hypochlorous acid aqueous solution 13b in the storage section 13. The aqueous solution outlet 20b is installed facing the liquid surface of the electrolyte solution 13a and the hypochlorous acid aqueous solution 13b vertically upward. The aqueous solution outlet 20b then blows the electrolyte solution 13a and the hypochlorous acid aqueous solution 13b toward the upper space 23 between the air introduction section 15 and the air discharge section 16, generating a water flow 21 (see FIG. 5).
 駆動部20cは、溶液を攪拌するための水流21(図5参照)を生じさせるモータ部材である。より詳細には、駆動部20cは、回転駆動することにより、水溶液吸込口20aから電解液13a及び次亜塩素酸水溶液13bを吸い込み、水溶液吹出口20bから電解液13a及び次亜塩素酸水溶液13bを吹き出す流れを生じさせる。駆動部20cは、主要部(水溶液吸込口20a及び水溶液吹出口20b)とは異なり、貯留部13の外側に設置される。 The drive unit 20c is a motor member that generates a water flow 21 (see FIG. 5) for stirring the solution. More specifically, the drive unit 20c rotates to generate a flow that sucks in the electrolyte solution 13a and the hypochlorous acid aqueous solution 13b from the aqueous solution suction port 20a and blows out the electrolyte solution 13a and the hypochlorous acid aqueous solution 13b from the aqueous solution outlet 20b. Unlike the main part (the aqueous solution suction port 20a and the aqueous solution outlet 20b), the drive unit 20c is installed outside the storage unit 13.
 本実施の形態では、攪拌部20は、電解液13aの電気分解と次亜塩素酸ガスの発生とをそれぞれ加速させる役割を有する。電気分解によって次亜塩素酸の生成量を増加させる機能として、攪拌部20の稼働によって後述する攪拌水流21bが発生することで、電解部14において発生する気泡の電解部14への付着を抑制することができる。また、次亜塩素酸ガスの供給量を増加させる機能として、次亜塩素酸水溶液13bを上方空間23に向けて吹き出すことにより空気導入部15より導入した導入空気6に含ませる次亜塩素酸ガスの量を増加させることができる。攪拌部20で生じさせる水流21の詳細については後述する。 In this embodiment, the stirring unit 20 has the role of accelerating the electrolysis of the electrolyte 13a and the generation of hypochlorous acid gas. As a function of increasing the amount of hypochlorous acid produced by electrolysis, the operation of the stirring unit 20 generates a stirred water flow 21b, which will be described later, and this can suppress the adhesion of air bubbles generated in the electrolysis unit 14 to the electrolysis unit 14. As a function of increasing the supply amount of hypochlorous acid gas, the amount of hypochlorous acid gas contained in the introduced air 6 introduced from the air introduction unit 15 can be increased by blowing the hypochlorous acid aqueous solution 13b toward the upper space 23. Details of the water flow 21 generated by the stirring unit 20 will be described later.
 沈殿物フィルタ19は、攪拌部20で生じさせた水流21により、溶質領域17において沈殿している電解質13cが浮遊し、電解部14に到達することを抑制するためのフィルタである。沈殿物フィルタ19は、溶質領域17と溶液領域18の間に設けられる。これにより、沈殿物フィルタ19は、電解質13cが沈殿する溶質領域17から、電解部14が設置された溶液領域18に、電解質13cの沈殿物が浮上して流れ込むことを抑制する。 The precipitate filter 19 is a filter that prevents the electrolyte 13c that has precipitated in the solute region 17 from floating up due to the water flow 21 generated by the agitator 20 and reaching the electrolysis section 14. The precipitate filter 19 is provided between the solute region 17 and the solution region 18. As a result, the precipitate filter 19 prevents the precipitate of the electrolyte 13c from floating up and flowing from the solute region 17, where the electrolyte 13c precipitates, into the solution region 18, where the electrolysis section 14 is installed.
 以上の構成により、空間浄化装置11は、空間浄化機器2の内部風路から除塵空気5を導入空気6として取り込み、次亜塩素酸ガスを含ませた放出空気7として内部風路に放出することができる。 With the above configuration, the space purification device 11 can take in dust-free air 5 from the internal air passage of the space purification equipment 2 as introduced air 6 and release it into the internal air passage as discharged air 7 containing hypochlorous acid gas.
 続いて、図5を用いて、空間浄化装置11における空気流22及び攪拌部20が生じさせる水流21について説明する。図5は、空間浄化装置11における貯留部13内の水溶液の流れ及び空気の流れを示す透過側面図である。 Next, the air flow 22 in the space purification device 11 and the water flow 21 generated by the agitation unit 20 will be described with reference to Figure 5. Figure 5 is a transparent side view showing the flow of the aqueous solution and the flow of air in the storage unit 13 of the space purification device 11.
 [空気流]
 図5に示すように、貯留部13の上方空間23には、送風機10の動作時に、導入空気6が空気導入部15を通じて導入され、空気放出部16から放出空気7として放出されるまでの流れである空気流22が生じる。空気流22は、空気導入部15を通じて導入される導入空気6によって上方空間23内の空気を放出空気7として押し出す流れとも言える。
[Air flow]
5, when the blower 10 is in operation, an air flow 22 is generated in the upper space 23 of the storage section 13, which is a flow from when the intake air 6 is introduced through the air intake section 15 until it is released from the air release section 16 as released air 7. The air flow 22 can also be said to be a flow in which the intake air 6 introduced through the air intake section 15 pushes out the air in the upper space 23 as released air 7.
 空気流22は、空気導入部15の導出口から空気放出部16の導入口までの上方空間23内を流通する過程で、次亜塩素酸水溶液13bと気液接触して次亜塩素酸水溶液13bから次亜塩素酸ガスを取り込む。このため、空気流22は、空気放出部16の放出口から放出される際には、次亜塩素酸ガスを含む放出空気7となる。 As the air flow 22 flows through the upper space 23 from the outlet of the air inlet 15 to the inlet of the air outlet 16, it comes into gas-liquid contact with the hypochlorous acid aqueous solution 13b and takes in hypochlorous acid gas from the hypochlorous acid aqueous solution 13b. Therefore, when the air flow 22 is released from the outlet of the air outlet 16, it becomes released air 7 containing hypochlorous acid gas.
 詳細は後述するが、本実施の形態では、吹出水流21aによって上方空間23に水柱あるいは水滴などが存在しているので、空気流22は、水柱あるいは水滴などがない場合と比較して、より広い面積で次亜塩素酸水溶液13bと気液接触することができる。 Although details will be described later, in this embodiment, the water column or water droplets are present in the upper space 23 due to the blown water flow 21a, so the air flow 22 can come into gas-liquid contact with the hypochlorous acid aqueous solution 13b over a wider area than in the absence of a water column or water droplets.
 [水流]
 図5に示すように、攪拌部20の動作時に、空気導入部15と空気放出部16との間における上方空間23に向けて電解液13a及び次亜塩素酸水溶液13bを吹き出して水流21を生じさせる。より詳細には、水流21として、吹出水流21a及び攪拌水流21bを生じさせる。
[Water flow]
5, when the stirring unit 20 is in operation, the electrolyte 13a and the hypochlorous acid aqueous solution 13b are blown out toward the upper space 23 between the air inlet 15 and the air outlet 16 to generate a water flow 21. More specifically, the water flow 21 is generated as a blown water flow 21a and a stirred water flow 21b.
 吹出水流21aは、攪拌部20の水溶液吹出口20bから上方空間23に吹き出される水の流れである。上方空間23に向けて吹き出された電解液13a及び次亜塩素酸水溶液13bは、吹出水流21aの勢いによって液面が盛り上がり水柱となる、あるいは、飛散して水滴となり、上方空間23に存在することができる。 The blown water flow 21a is a flow of water that is blown out from the aqueous solution outlet 20b of the stirring section 20 into the upper space 23. The electrolyte solution 13a and the aqueous hypochlorous acid solution 13b that are blown out toward the upper space 23 can be present in the upper space 23 by the force of the blown water flow 21a causing the liquid surface to rise and become a water column, or by scattering into droplets.
 ここで、次亜塩素酸水溶液13bの吹出水流21aは、水柱あるいは水滴などの形状で上方空間23に存在することにより、水柱あるいは水滴などがない場合と比較して、空気流22と広い面積で気液接触させることができる。このため、同じ次亜塩素酸水溶液13bの次亜塩素酸濃度であっても、空気流22に含ませられる次亜塩素酸ガスの量を増加させることができる。 Here, the blown water flow 21a of the hypochlorous acid aqueous solution 13b is present in the upper space 23 in the form of a water column or water droplets, and thus can come into gas-liquid contact with the air flow 22 over a wider area than when there is no water column or water droplets. Therefore, even if the hypochlorous acid concentration of the hypochlorous acid aqueous solution 13b is the same, the amount of hypochlorous acid gas contained in the air flow 22 can be increased.
 攪拌水流21bは、吹出水流21aが液面に着水した後に、電解液13a及び次亜塩素酸水溶液13bの内部に作る水の流れである。攪拌水流21bは、液面から底部に向けて流れた後、溶質領域17に水の流れを生じさせないための沈殿物フィルタ19及び壁面に到達して方向転換し、攪拌部20の水溶液吸込口20aから攪拌部20に吸い込まれる。 The agitated water flow 21b is a water flow that is created inside the electrolyte 13a and the hypochlorous acid aqueous solution 13b after the blown water flow 21a hits the liquid surface. After flowing from the liquid surface toward the bottom, the agitated water flow 21b reaches the sediment filter 19, which prevents water flow from occurring in the solute region 17, and the wall surface, where it changes direction and is sucked into the agitation unit 20 through the aqueous solution suction port 20a of the agitation unit 20.
 ここで、電解液13aの攪拌水流21bは、電解部14を通過するように流れるため、この際に電解部14表面に生じた酸素ガス及び水素ガスの気泡がそのまま電解部14に付着している状態となることを抑制することができる。 Here, the agitated water flow 21b of the electrolyte 13a flows through the electrolysis unit 14, which prevents the oxygen gas and hydrogen gas bubbles that are generated on the surface of the electrolysis unit 14 from adhering to the electrolysis unit 14.
 本実施の形態では、空間浄化装置11は、次亜塩素酸ガスの供給を連続的に行いつつ、所定時間(例えば、10分)ごとに電気分解による次亜塩素酸の生成を4分程度行う制御となっている。このため、次亜塩素酸ガスの供給と電気分解とが同時に行われている期間には、攪拌部20の稼働によって発生する吹出水流21a及び攪拌水流21bによる効果は同時に得られるものである。 In this embodiment, the spatial purification device 11 is controlled so that it continuously supplies hypochlorous acid gas while generating hypochlorous acid by electrolysis for about 4 minutes every predetermined time (e.g., 10 minutes). Therefore, during the period when the supply of hypochlorous acid gas and electrolysis are performed simultaneously, the effects of the blown water flow 21a and stirred water flow 21b generated by the operation of the stirring unit 20 are obtained simultaneously.
 以上、本実施の形態1に係る空間浄化装置11によれば、以下の効果を享受することができる。 As described above, the spatial purification device 11 according to the first embodiment can provide the following effects.
 (1)空間浄化装置11では、筐体の内部に塩化ナトリウムまたは塩化カリウムを含む水溶液(以下、電解液13a)を貯留する貯留部13と、貯留部13内に設けられ、電解液13aを電気分解して次亜塩素酸水溶液13bを生成する電解部14と、筐体の外部(空間浄化機器2の内部風路)から導入空気6を吸い込み、貯留部13内に導入する空気導入部15と、貯留部13内の次亜塩素酸水溶液13bの上方空間23の空気を筐体の外部(空間浄化機器2の内部風路)に放出する空気放出部16と、を備える。そして、電解部14は、電解液13a中に塩化ナトリウムまたは塩化カリウム(以下、電解質13c)が沈殿している状態で、電解液13aの電気分解を行って次亜塩素酸水溶液13bを生成するようにした。 (1) The space purification device 11 includes a storage section 13 that stores an aqueous solution containing sodium chloride or potassium chloride (hereinafter, electrolyte 13a) inside a housing, an electrolysis section 14 that is provided inside the storage section 13 and electrolyzes the electrolyte 13a to generate an aqueous hypochlorous acid solution 13b, an air introduction section 15 that draws in introduced air 6 from the outside of the housing (the internal air passage of the space purification device 2) and introduces it into the storage section 13, and an air discharge section 16 that discharges air in the space 23 above the aqueous hypochlorous acid solution 13b in the storage section 13 to the outside of the housing (the internal air passage of the space purification device 2). The electrolysis section 14 is configured to electrolyze the electrolyte 13a in a state in which sodium chloride or potassium chloride (hereinafter, electrolyte 13c) is precipitated in the electrolyte 13a to generate the aqueous hypochlorous acid solution 13b.
 こうした構成によれば、電解液13aに含まれる電解質13cが、電解液13aの電気分解によって消費されても、沈殿している電解質13cが電解液13a中に溶出して補充されるので、電解液13aの電気分解を行っている際に、電解液13a中の電解質13cの濃度が低下することを抑制することができる。これにより、電解質13cの濃度の低下に伴う、次亜塩素酸の生成効率(電解液13aに流した電流値に対する、生成された次亜塩素酸の割合)の低下を抑制することができるので、電解液13aの電気分解による次亜塩素酸の生成量を安定化させることができる。つまり、空間浄化装置11を小型化して貯留部13に貯留することが可能な電解液13aの量が少量である場合であっても、放出する空気に含ませる次亜塩素酸ガスの量を安定して保つことが可能な空間浄化装置11とすることができる。 With this configuration, even if the electrolyte 13c contained in the electrolyte solution 13a is consumed by the electrolysis of the electrolyte solution 13a, the precipitated electrolyte 13c is dissolved into the electrolyte solution 13a and replenished, so that it is possible to suppress a decrease in the concentration of the electrolyte 13c in the electrolyte solution 13a during electrolysis of the electrolyte solution 13a. This makes it possible to suppress a decrease in the hypochlorous acid production efficiency (the ratio of the generated hypochlorous acid to the current value passed through the electrolyte solution 13a) that accompanies a decrease in the concentration of the electrolyte 13c, so that it is possible to stabilize the amount of hypochlorous acid produced by the electrolysis of the electrolyte solution 13a. In other words, even if the amount of the electrolyte solution 13a that can be stored in the storage unit 13 by miniaturizing the space purification device 11 is small, it is possible to provide a space purification device 11 that can stably maintain the amount of hypochlorous acid gas contained in the released air.
 (2)空間浄化装置11では、貯留部13には、電解質13cが沈殿する溶質領域17から、電解部14が設置された溶液領域18に、電解質13cの沈殿物が浮上することを抑制する沈殿物フィルタ19を設けるようにした。こうした構成によれば、沈殿している電解質13cの固形物が電解液13a中を浮遊し、電解部14に達することを抑制できる。これにより、電解部14が電解液13aの電気分解を行っている間に、電解部14に電解質13cの固形物が堆積することによって次亜塩素酸の生成効率が悪化することを抑制できる。 (2) In the spatial purification device 11, the storage section 13 is provided with a precipitate filter 19 that prevents precipitates of the electrolyte 13c from floating up from the solute region 17, where the electrolyte 13c precipitates, to the solution region 18, where the electrolysis section 14 is installed. This configuration prevents precipitated solids of the electrolyte 13c from floating in the electrolytic solution 13a and reaching the electrolytic section 14. This prevents the efficiency of hypochlorous acid production from deteriorating due to the accumulation of solids of the electrolyte 13c in the electrolytic section 14 while the electrolytic section 14 is electrolyzing the electrolytic solution 13a.
 (3)空間浄化装置11では、貯留部13内に設けられ、電解液13aを攪拌するための攪拌部20を備え、攪拌部20は、電解部14に水流を生じさせられるように設けるようにした。こうした構成によれば、電解部14が電解液13aの電気分解を行っている間に、水流21(攪拌水流21b)によって電気分解で電解部14表面に生じた酸素ガス及び水素ガスの気泡がそのまま電解部14に付着している状態となることを抑制できる。この結果、電解部14に付着した気泡によって電解部14の電解有効面積が減少し、次亜塩素酸の生成効率が悪化することを抑制できる。 (3) The spatial purification device 11 includes an agitation unit 20 that is provided in the storage unit 13 and that agitates the electrolyte 13a. The agitation unit 20 is provided so as to generate a water flow in the electrolysis unit 14. With this configuration, while the electrolysis unit 14 is electrolyzing the electrolyte 13a, the water flow 21 (agitated water flow 21b) can prevent bubbles of oxygen gas and hydrogen gas generated on the surface of the electrolysis unit 14 by electrolysis from adhering to the electrolysis unit 14. As a result, it is possible to prevent the bubbles adhering to the electrolysis unit 14 from reducing the effective electrolysis area of the electrolysis unit 14 and thus preventing a deterioration in the efficiency of hypochlorous acid production.
 (4)空間浄化装置11は、貯留部13内に設けられ、次亜塩素酸水溶液13bを攪拌する攪拌部20を備え、攪拌部20は、次亜塩素酸水溶液13bを吸い込む水溶液吸込口20aと、水溶液吸込口20aから吸い込んだ次亜塩素酸水溶液13bを貯留部13内に吹き出す水溶液吹出口20bとを有し、水溶液吹出口20bは、空気導入部15と空気放出部16との間における上方空間23に向けて次亜塩素酸水溶液13bを吹き出すようにした。こうした構成によれば、空気導入部15と空気放出部16との間における上方空間23において、次亜塩素酸水溶液13bが水柱や水滴の形で上方空間23内に存在するようになる。空気導入部15から導入された導入空気6が、空気放出部16から放出空気7として放出されるまでの間に、上方空間23においてより広い面積で次亜塩素酸水溶液13bに接触することができる。これにより、同じ次亜塩素酸水溶液13bの次亜塩素酸濃度であっても、流通する空気に含ませられる次亜塩素酸ガスの量を増加させることができる。つまり、小型化して貯留部13に貯留することが可能な次亜塩素酸水溶液13bの量が少量である場合であっても、放出する空気に含ませる必要な次亜塩素酸ガスの量を発生させることができる。 (4) The space purification device 11 is provided in the storage section 13 and includes an agitation section 20 for agitating the hypochlorous acid aqueous solution 13b. The agitation section 20 has an aqueous solution suction port 20a for sucking in the hypochlorous acid aqueous solution 13b and an aqueous solution outlet 20b for blowing out the hypochlorous acid aqueous solution 13b sucked in from the aqueous solution suction port 20a into the storage section 13. The aqueous solution outlet 20b blows out the hypochlorous acid aqueous solution 13b toward the upper space 23 between the air introduction section 15 and the air discharge section 16. With this configuration, the hypochlorous acid aqueous solution 13b is present in the upper space 23 between the air introduction section 15 and the air discharge section 16 in the form of a water column or water droplets. The introduced air 6 introduced from the air introduction section 15 can come into contact with the hypochlorous acid aqueous solution 13b over a wider area in the upper space 23 before being discharged as discharged air 7 from the air discharge section 16. This allows the amount of hypochlorous acid gas contained in the circulating air to be increased even if the hypochlorous acid concentration of the hypochlorous acid aqueous solution 13b is the same. In other words, even if the amount of hypochlorous acid aqueous solution 13b that can be stored in the storage unit 13 through miniaturization is small, the amount of hypochlorous acid gas required to be contained in the released air can be generated.
 また、室内1に対して目的の次亜塩素酸ガスの量を放出するために必要な次亜塩素酸水溶液13bの次亜塩素酸濃度を低下させることができるとも言えるので、電解液13aを電気分解し、目的の次亜塩素酸ガス量を放出可能な次亜塩素酸水溶液13bとする時間を短縮できる。つまり、装置の運転を開始してから目的の次亜塩素酸ガス量を放出できるようになるまでの時間を短縮し、流通する空気に含ませられる次亜塩素酸ガスの量を早期から安定させることが可能な空間浄化装置11とすることができる。 It can also be said that the hypochlorous acid concentration of the hypochlorous acid aqueous solution 13b required to release the desired amount of hypochlorous acid gas into the room 1 can be reduced, and the time required to electrolyze the electrolyte 13a and produce the hypochlorous acid aqueous solution 13b capable of releasing the desired amount of hypochlorous acid gas can be shortened. In other words, the time required from starting operation of the device until the desired amount of hypochlorous acid gas can be released can be shortened, resulting in a space purification device 11 that can stabilize the amount of hypochlorous acid gas contained in the circulating air from an early stage.
 (変形例)
 次に、図6を参照して、変形例に係る空間浄化装置11aについて説明する。図6は、変形例に係る空間浄化装置11aにおける貯留部13内の空気の流れ及び水溶液の流れを示す透過側面図である。
(Modification)
Next, a modified spatial purification device 11a will be described with reference to Fig. 6. Fig. 6 is a see-through side view showing the flow of air and the flow of aqueous solution in the storage unit 13 of the modified spatial purification device 11a.
 変形例に係る空間浄化装置11は、攪拌部20の水溶液吹出口20b1の吹出方向が電解部14の方向を向いている点で実施の形態1に係る空間浄化装置11と異なる。これ以外の空間浄化装置11aの構成は、実施の形態1に係る空間浄化装置11と同様である。以下、実施の形態1で説明済みの内容は再度の説明を適宜省略し、実施の形態1と異なる点を主に説明する。 The spatial purification device 11 according to the modified example differs from the spatial purification device 11 according to the first embodiment in that the direction of the aqueous solution outlet 20b1 of the stirring unit 20 is directed toward the electrolysis unit 14. The rest of the configuration of the spatial purification device 11a is the same as that of the spatial purification device 11 according to the first embodiment. Below, the contents already explained in the first embodiment will not be explained again as appropriate, and the differences from the first embodiment will be mainly explained.
 図6に示すように、変形例に係る空間浄化装置11aでは、攪拌部20における水溶液吹出口20b1の吹出方向が攪拌部20の鉛直斜め下方向に位置する電解部14の方向を向いている。 As shown in FIG. 6, in the spatial purification device 11a according to the modified example, the outlet direction of the aqueous solution outlet 20b1 in the stirring section 20 faces the electrolysis section 14 located diagonally below the stirring section 20.
 [空気流]
 図6に示すように、貯留部13の上方空間23には、実施の形態1と同様、送風機10の動作時に、導入空気6が空気導入部15を通じて導入され、空気放出部16から放出空気7として放出されるまでの流れである空気流22が生じる。
[Air flow]
As shown in FIG. 6 , in the space above the storage section 13, as in the first embodiment, when the blower 10 is in operation, an air flow 22 is generated in which the intake air 6 is introduced through the air intake section 15 and then released as discharged air 7 from the air discharge section 16.
 空気流22は、空気導入部15の導出口から空気放出部16の導入口までの上方空間23内を流通する過程で、次亜塩素酸水溶液13bと気液接触して次亜塩素酸水溶液13bから次亜塩素酸ガスを取り込む。このため、空気流22は、空気放出部16の放出口から放出される際には、次亜塩素酸ガスを含む放出空気7となる。 As the air flow 22 flows through the upper space 23 from the outlet of the air inlet 15 to the inlet of the air outlet 16, it comes into gas-liquid contact with the hypochlorous acid aqueous solution 13b and takes in hypochlorous acid gas from the hypochlorous acid aqueous solution 13b. Therefore, when the air flow 22 is released from the outlet of the air outlet 16, it becomes released air 7 containing hypochlorous acid gas.
 [水流]
 図6に示すように、攪拌部20の動作時に、電解部14に向けて電解液13a及び次亜塩素酸水溶液13bを吹き出して水流21(吹出水流21c)を生じさせる。つまり、空間浄化装置11aにおける攪拌部20では、吹出水流21aのように液面に水柱あるいは水滴などを生じさせる構成とはなっていない。より詳細には、攪拌部20は、水溶液吹出口20bから電解液13a及び次亜塩素酸水溶液13bを電解部14に向けて吹出水流21cとして吹き出す。吹出水流21cは、電解部14に向かって流れ、電解部14及び貯留部13の壁面に衝突し、方向変換した後、攪拌部20の水溶液吸込口20aから吸い込まれる。このようにして、吹出水流21cは、電解液13a及び次亜塩素酸水溶液13bを攪拌する攪拌水流の役割も担う。
[Water flow]
As shown in FIG. 6, when the stirring unit 20 is in operation, the electrolyte 13a and the hypochlorous acid aqueous solution 13b are blown toward the electrolysis unit 14 to generate a water flow 21 (blowout water flow 21c). In other words, the stirring unit 20 in the space purification device 11a is not configured to generate a water column or water droplets on the liquid surface like the blowout water flow 21a. More specifically, the stirring unit 20 blows out the electrolyte 13a and the hypochlorous acid aqueous solution 13b from the aqueous solution outlet 20b toward the electrolysis unit 14 as the blowout water flow 21c. The blowout water flow 21c flows toward the electrolysis unit 14, collides with the walls of the electrolysis unit 14 and the storage unit 13, changes direction, and is then sucked in from the aqueous solution suction port 20a of the stirring unit 20. In this way, the blowout water flow 21c also plays the role of a stirred water flow that stirs the electrolyte 13a and the hypochlorous acid aqueous solution 13b.
 以上、変形例に係る空間浄化装置11aによれば、上記した効果(1)及び効果(2)とともに、以下の効果を享受することができる。 As described above, with the spatial purification device 11a according to the modified example, in addition to the above-mentioned effects (1) and (2), the following effects can be obtained.
 (5)空間浄化装置11aでは、攪拌部20は、電解液13aを吸い込む水溶液吸込口20aと、水溶液吸込口20aから吸い込んだ電解液13aを貯留部13内に吹き出す水溶液吹出口20b1とを有し、水溶液吹出口20b1は、電解部14に向けて電解液13aを吹き出して水流21(吹出水流21c)を生じさせるようにした。こうした構成によれば、電解部14に集中して水流21を生じさせることができるため、電気分解で電解部14表面に生じた酸素ガス及び水素ガスの気泡がそのまま電解部14に付着している状態となることを確実に抑制できる。この結果、電解部14に付着した気泡によって電解部14の電解有効面積が減少し、次亜塩素酸の生成効率が悪化することをさらに抑制できる。 (5) In the spatial purification device 11a, the stirring unit 20 has an aqueous solution suction port 20a that draws in the electrolyte 13a, and an aqueous solution outlet 20b1 that blows the electrolyte 13a drawn in from the aqueous solution suction port 20a into the storage unit 13, and the aqueous solution outlet 20b1 blows the electrolyte 13a toward the electrolysis unit 14 to generate a water flow 21 (blowout water flow 21c). With this configuration, the water flow 21 can be generated by concentrating on the electrolysis unit 14, so that it is possible to reliably prevent the oxygen gas and hydrogen gas bubbles generated on the surface of the electrolysis unit 14 by electrolysis from adhering to the electrolysis unit 14 as they are. As a result, it is possible to further prevent the effective electrolysis area of the electrolysis unit 14 from being reduced by the bubbles adhering to the electrolysis unit 14, and to prevent the efficiency of hypochlorous acid production from being deteriorated.
 以上、実施の形態に基づき本開示を説明したが、本開示は上記の実施の形態に何ら限定されるものではなく、本開示の趣旨を逸脱しない範囲内で種々の改良変形が可能であることは容易に推察できるものである。 The present disclosure has been described above based on the embodiments, but the present disclosure is in no way limited to the above embodiments, and it can be easily imagined that various improvements and modifications are possible within the scope of the spirit of the present disclosure.
 実施の形態1に係る空間浄化装置11では、攪拌部20として、水溶液吸込口20aと、水溶液吸込口20aから吸い込んだ電解液13aを貯留部13内に吹き出す水溶液吹出口20bとを有する部材を用いたが、これに限られない。例えば、回転するフィンまたはスクリューなどによって水流を生じさせるようにしてもよい。 In the spatial purification device 11 according to the first embodiment, the stirring unit 20 is a member having an aqueous solution suction port 20a and an aqueous solution outlet 20b that blows the electrolyte 13a sucked in from the aqueous solution suction port 20a into the storage unit 13, but this is not limited to this. For example, the water flow may be generated by a rotating fin or screw.
 本開示に係る空間浄化装置では、小型化して貯留部に貯留することが可能な電解液の量が少量である場合であっても、放出する空気に含ませる次亜塩素酸ガスの量を安定して保つことができるので、有用である。 The spatial purification device disclosed herein is useful because it can stably maintain the amount of hypochlorous acid gas contained in the released air even when the amount of electrolyte that can be stored in the storage section is small due to its compact size.
 1   室内
 2   空間浄化機器
 3   吸込空気
 4   吹出空気
 5   除塵空気
 6   導入空気
 7   放出空気
 8   吸込口
 9   集塵フィルタ
 10  送風機
 11  空間浄化装置
 11a 空間浄化装置
 12  吹出口
 13  貯留部
 13a 電解液
 13b 次亜塩素酸水溶液
 13c 電解質
 14  電解部
 15  空気導入部
 16  空気放出部
 17  溶質領域
 18  溶液領域
 19  沈殿物フィルタ
 20  攪拌部
 20a 水溶液吸込口
 20b 水溶液吹出口
 20b1 水溶液吹出口
 20c 駆動部
 21  水流
 21a 吹出水流
 21b 攪拌水流
 21c 吹出水流
 22  空気流
 23  上方空間
REFERENCE SIGNS LIST 1 Indoor space 2 Space purification device 3 Intake air 4 Blowout air 5 Dust-removed air 6 Intake air 7 Discharge air 8 Intake port 9 Dust collection filter 10 Blower 11 Space purification device 11a Space purification device 12 Blowout port 13 Storage section 13a Electrolyte 13b Hypochlorous acid aqueous solution 13c Electrolyte 14 Electrolysis section 15 Air introduction section 16 Air discharge section 17 Solute region 18 Solution region 19 Sediment filter 20 Stirring section 20a Aqueous solution suction port 20b Aqueous solution blowout port 20b1 Aqueous solution blowout port 20c Driving section 21 Water flow 21a Blowout water flow 21b Stirred water flow 21c Blowout water flow 22 Air flow 23 Upper space

Claims (5)

  1.  筐体の内部に塩化ナトリウムまたは塩化カリウムを含む水溶液を貯留する貯留部と、
     前記貯留部内に設けられ、前記水溶液を電気分解して次亜塩素酸水溶液を生成する電解部と、
     前記筐体の外部からの空気を前記貯留部内に導入する空気導入部と、
     前記貯留部内の前記次亜塩素酸水溶液の上方空間の空気を前記筐体の外部に放出する空気放出部と、
    を備え、
     前記電解部は、前記水溶液中に前記塩化ナトリウムまたは前記塩化カリウムが沈殿している状態で、前記水溶液の電気分解を行って前記次亜塩素酸水溶液を生成する、空間浄化装置。
    A storage section for storing an aqueous solution containing sodium chloride or potassium chloride inside the housing;
    An electrolysis unit provided in the storage unit and electrolyzing the aqueous solution to generate an aqueous hypochlorous acid solution;
    an air introduction section that introduces air from outside the housing into the storage section;
    An air discharge unit that discharges air in a space above the aqueous hypochlorous acid solution in the storage unit to the outside of the housing;
    Equipped with
    The electrolysis unit electrolyzes the aqueous solution while the sodium chloride or the potassium chloride is precipitated in the aqueous solution to generate the aqueous hypochlorous acid solution.
  2.  前記貯留部には、
    前記塩化ナトリウムまたは前記塩化カリウムが沈殿する溶質領域から、
    前記溶質領域の上方に位置し、前記電解部が設置された溶液領域に、
    前記塩化ナトリウムまたは前記塩化カリウムの沈殿物が浮上することを抑制する沈殿物フィルタが設けられている、請求項1に記載の空間浄化装置。
    The storage section includes:
    from the solute region from which the sodium chloride or potassium chloride precipitates,
    A solution region located above the solute region and in which the electrolysis unit is installed,
    The spatial purification device according to claim 1 , further comprising a sediment filter that inhibits the sodium chloride or potassium chloride sediment from floating to the surface.
  3.  前記貯留部内に設けられ、前記水溶液を攪拌するための攪拌部を備え、
     前記攪拌部は、前記電解部に水流を生じさせられるように設けられている、請求項1または2に記載の空間浄化装置。
    a stirring unit provided in the storage unit for stirring the aqueous solution;
    The space purification device according to claim 1 or 2, wherein the agitation unit is provided so as to generate a water flow in the electrolysis unit.
  4.  前記攪拌部は、前記水溶液を吸い込む水溶液吸込口と、前記水溶液吸込口から吸い込んだ前記水溶液を前記貯留部内に吹き出す水溶液吹出口とを有し、
     前記水溶液吹出口は、前記電解部に向けて前記水溶液を吹き出して水流を生じさせる、請求項3に記載の空間浄化装置。
    the stirring unit has an aqueous solution suction port that draws in the aqueous solution, and an aqueous solution outlet that blows out the aqueous solution drawn in from the aqueous solution suction port into the storage unit,
    The space purification device according to claim 3 , wherein the aqueous solution outlet blows out the aqueous solution toward the electrolysis unit to generate a water flow.
  5.  前記貯留部内に設けられ、前記次亜塩素酸水溶液を攪拌する攪拌部を備え、
     前記攪拌部は、前記次亜塩素酸水溶液を吸い込む水溶液吸込口と、前記水溶液吸込口から吸い込んだ前記次亜塩素酸水溶液を前記貯留部内に吹き出す水溶液吹出口とを有し、
     前記水溶液吹出口は、前記空気導入部と前記空気放出部との間における前記上方空間に向けて前記次亜塩素酸水溶液を吹き出す、請求項1または2に記載の空間浄化装置。
    A stirring unit is provided in the storage unit and stirs the hypochlorous acid aqueous solution,
    The stirring unit has an aqueous solution suction port that sucks in the aqueous hypochlorous acid solution, and an aqueous solution outlet that blows out the aqueous hypochlorous acid solution sucked in from the aqueous solution suction port into the storage unit,
    The space purification device according to claim 1 or 2, wherein the aqueous solution outlet blows out the hypochlorous acid aqueous solution toward the upper space between the air inlet and the air outlet.
PCT/JP2023/044148 2022-12-22 2023-12-11 Space purification device WO2024135426A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-205780 2022-12-22
JP2022205780A JP2024090111A (en) 2022-12-22 2022-12-22 Space Purification Device

Publications (1)

Publication Number Publication Date
WO2024135426A1 true WO2024135426A1 (en) 2024-06-27

Family

ID=91588640

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/044148 WO2024135426A1 (en) 2022-12-22 2023-12-11 Space purification device

Country Status (2)

Country Link
JP (1) JP2024090111A (en)
WO (1) WO2024135426A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63162891A (en) * 1986-12-26 1988-07-06 Matsushita Electric Ind Co Ltd Feeding device for gaseous chlorine
JPH0899087A (en) * 1994-09-29 1996-04-16 Tokico Ltd Electrolytic water maker
JP2000070945A (en) * 1998-08-28 2000-03-07 Matsushita Electric Ind Co Ltd Electrolytic device
JP2002018250A (en) * 2000-07-05 2002-01-22 Jonan Denki Kogyosho:Kk Saturated solution forming tank
JP2012046773A (en) * 2010-08-24 2012-03-08 Japan Organo Co Ltd Salt dissolving tank and electrolyzer
JP2019069163A (en) * 2015-05-22 2019-05-09 株式会社東芝 Space sterilization method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63162891A (en) * 1986-12-26 1988-07-06 Matsushita Electric Ind Co Ltd Feeding device for gaseous chlorine
JPH0899087A (en) * 1994-09-29 1996-04-16 Tokico Ltd Electrolytic water maker
JP2000070945A (en) * 1998-08-28 2000-03-07 Matsushita Electric Ind Co Ltd Electrolytic device
JP2002018250A (en) * 2000-07-05 2002-01-22 Jonan Denki Kogyosho:Kk Saturated solution forming tank
JP2012046773A (en) * 2010-08-24 2012-03-08 Japan Organo Co Ltd Salt dissolving tank and electrolyzer
JP2019069163A (en) * 2015-05-22 2019-05-09 株式会社東芝 Space sterilization method

Also Published As

Publication number Publication date
JP2024090111A (en) 2024-07-04

Similar Documents

Publication Publication Date Title
JP4928869B2 (en) Air sanitizer
CN101032628A (en) Air sterilizing device
CN1652879A (en) Electrolyzed water spraying device
JP2011145031A (en) Humidifier
JP2007283180A (en) Ozone water generator and ozone water generation method
EP1798493A2 (en) Air filtering apparatus
CN1854622A (en) Refrigeration machine
JP2008110011A (en) Air sterilizer
CN1924475A (en) Air conditioner
KR100899516B1 (en) Air sterilizing device
JP2008036135A (en) Air disinfecting apparatus
WO2024135426A1 (en) Space purification device
JP7198987B1 (en) space purifier
WO2022131316A1 (en) Air purifier
EP1788315A2 (en) On-floor mount type air filtering apparatus
WO2023181590A1 (en) Space purification device
JP2010249337A (en) Ultrasonic atomizing device
WO2023228472A1 (en) Space sanitization device
JP3506475B2 (en) Method and apparatus for producing hydrogen peroxide
JP2003311274A (en) Water treatment apparatus
JP2009041882A (en) Humidifying device
WO2022209123A1 (en) Air purification device
WO2022209124A1 (en) Air purification device
WO2022190613A1 (en) Air purification device
JP2022182222A (en) air conditioner