JP2019069163A - Space sterilization method - Google Patents

Space sterilization method Download PDF

Info

Publication number
JP2019069163A
JP2019069163A JP2018225524A JP2018225524A JP2019069163A JP 2019069163 A JP2019069163 A JP 2019069163A JP 2018225524 A JP2018225524 A JP 2018225524A JP 2018225524 A JP2018225524 A JP 2018225524A JP 2019069163 A JP2019069163 A JP 2019069163A
Authority
JP
Japan
Prior art keywords
hypochlorous acid
space
acid water
concentration
sterilization method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018225524A
Other languages
Japanese (ja)
Other versions
JP6696701B2 (en
Inventor
千草 尚
Hisashi Chigusa
尚 千草
修介 森田
Shusuke Morita
修介 森田
高橋 健
Takeshi Takahashi
高橋  健
大川 猛
Takeshi Okawa
猛 大川
松田 秀三
Shuzo Matsuda
秀三 松田
正 柳沢
Tadashi Yanagisawa
正 柳沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Publication of JP2019069163A publication Critical patent/JP2019069163A/en
Application granted granted Critical
Publication of JP6696701B2 publication Critical patent/JP6696701B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L3/00Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs
    • A23L3/34Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs by treatment with chemicals
    • A23L3/3454Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs by treatment with chemicals in the form of liquids or solids
    • A23L3/3463Organic compounds; Microorganisms; Enzymes
    • A23L3/3481Organic compounds containing oxygen
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/16Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor using chemical substances
    • A61L2/20Gaseous substances, e.g. vapours
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • A61L9/01Deodorant compositions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • A61L9/015Disinfection, sterilisation or deodorisation of air using gaseous or vaporous substances, e.g. ozone
    • A61L9/04Disinfection, sterilisation or deodorisation of air using gaseous or vaporous substances, e.g. ozone using substances evaporated in the air without heating
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • A61L9/14Disinfection, sterilisation or deodorisation of air using sprayed or atomised substances including air-liquid contact processes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N21/78Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator producing a change of colour

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Epidemiology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Pathology (AREA)
  • Microbiology (AREA)
  • Immunology (AREA)
  • Nutrition Science (AREA)
  • Food Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)
  • Apparatus For Disinfection Or Sterilisation (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)

Abstract

To provide a space sterilization method capable of sterilizing and deodorizing sufficiently a space to be treated, without receiving a harmful effect of hypochlorous acid water.SOLUTION: In a space sterilization method in an embodiment, which is a space sterilization method for performing sterilization by supplying gaseous and/or misty hypochlorous acid water into a space to be treated, following formula (1) is satisfied in a relation between a germicidal treatment time y (time) and a supply amount x(μg/(m-min) of gaseous and/or misty hypochlorous acid water supplied to a unit area per unit time.SELECTED DRAWING: Figure 4

Description

本発明の実施形態は、空間殺菌方法に関する。   Embodiments of the present invention relate to a space sterilization method.

従来、空気中に浮遊する菌を殺菌する目的や空間の除臭をする目的で次亜塩素酸水を空間中に噴霧することにより浮遊菌が殺菌されること、メチルメルカプタンやトイレ臭が除臭されることが知られており、除臭目的で空間中に噴霧する装置も販売されている。   Conventionally, floating bacteria are sterilized by spraying hypochlorous acid water into the space for the purpose of sterilizing bacteria floating in the air and for the purpose of deodorizing the space, and methyl mercaptan and toilet odor are deodorized. It is known to be used, and devices for spraying into space for the purpose of deodorizing are also sold.

ところで、殺菌、除臭に対して室内空間に噴霧される濃度が少ないと殺菌、除臭に対して効果がなく、また多すぎると酸性ガスが充満し、空間内の金属製品が錆びたり、健康を害する等の悪影響を受ける可能性がある。
例えば8.1mの密閉空間にあるメチルメルカプタンに対し、50〜150ppmの濃度の次亜塩素酸水を25〜30ml噴霧し、除臭効果が得られることが開示されているが、場所による濃度ばらつきや失活などにより除菌や除臭に効果的となる空間中の濃度は不明である。
By the way, there is no effect on sterilization and deodorization if the concentration sprayed in the indoor space for sterilization and deodorization is low, and if too high, acid gas is full and metal products in the space rust and health May be adversely affected.
For example, it is disclosed that 25 to 30 ml of hypochlorous acid water at a concentration of 50 to 150 ppm is sprayed on methyl mercaptan in a sealed space of 8.1 m 3 to obtain a deodorizing effect, but concentration by location The concentration in the space that is effective for sterilization and deodorization due to variations and inactivation is unknown.

特開2009−034025号公報JP, 2009-034025, A 特開2009−178640号公報JP, 2009-178640, A

第38回空気調和・衛生工学会近畿支部学術研究発表会論文集,pp.33−36Proceedings of the 38th Annual Meeting of the Air Conditioning and Hygiene Engineering Association Kinki Branch Academic Research Conference, pp. 33-36

本発明の実施形態の課題は、次亜塩素酸水の悪影響を受けず、かつ被処理空間内を十分に殺菌、除臭することが可能な次亜塩素酸濃度を規定し、その濃度を維持し得る空間殺菌方法を提供することにある。   The problem of the embodiment of the present invention is to define a hypochlorous acid concentration which is not adversely affected by hypochlorous acid water and which can sufficiently sterilize and deodorize the interior of the treated space, and maintain the concentration It is to provide a space sterilization method that can

実施形態によれば、被処理空間に前記ガス状及び/または霧状の次亜塩素酸水を供給し、殺菌を行う空間殺菌方法であって、
殺菌処理時間y(時間)と、単位面積、単位時間当たりに供給される前記ガス状及び/または霧状の次亜塩素酸水の供給量x(μg/(m・min)との関係において、下記式(1)を満足させる空間殺菌方法が提供される。
y≧16.217x−1.384…(1)
According to an embodiment of the present invention, there is provided a space sterilization method in which the gaseous and / or atomized hypochlorous acid water is supplied to a space to be treated to sterilize the space.
In relation to the sterilization treatment time y (hour) and the unit area, the supply amount of the gaseous and / or atomized hypochlorous acid water supplied per unit time x (μg / (m 2 · min) The space sterilization method which satisfies following formula (1) is provided.
y ≧ 16.217x− 1.384 (1)

次亜塩素酸状態図の一例を表す図である。It is a figure showing an example of hypochlorous acid phase diagram. 実施形態の空間殺菌装置の構成の一例を表す模式図である。It is a schematic diagram showing an example of a structure of the space sterilizer of embodiment. 実施形態に使用可能な次亜塩素酸水供給部の一例を表す模式図である。It is a schematic diagram showing an example of the hypochlorous acid water supply part which can be used for embodiment. 実施形態にかかる殺菌装置の一例を表す模式図である。It is a schematic diagram showing an example of the sterilizer concerning embodiment. 理論空間噴霧量と有効な次亜塩素酸との量との関係を表すグラフ図である。It is a graph showing the relationship between the theoretical space spray amount and the amount of effective hypochlorous acid. 理論空間噴霧量と有効な次亜塩素酸との量との関係を表すグラフ図である。It is a graph showing the relationship between the theoretical space spray amount and the amount of effective hypochlorous acid. 供給した次亜塩素酸濃度と空間次亜塩素酸濃度との関係を表すグラフ図である。It is a graph showing the relationship between the supplied hypochlorous acid concentration and space hypochlorous acid concentration. 培養法によるオクラの一般細菌の殺菌効果を表す写真である。It is a photograph showing the bactericidal effect of common bacteria of okra by the culture method. 培養法によるオクラの一般細菌の殺菌効果を表す写真である。It is a photograph showing the bactericidal effect of common bacteria of okra by the culture method. 培養法によるオクラの一般細菌の殺菌効果を表す写真である。It is a photograph showing the bactericidal effect of common bacteria of okra by the culture method. 培養法によるオクラの一般細菌の殺菌効果を表す写真である。It is a photograph showing the bactericidal effect of common bacteria of okra by the culture method. 実施形態に適用可能な酸性電解水を作成するための電解装置の一例を表す図である。It is a figure showing an example of the electrolysis device for producing acidity electrolysis water applicable to an embodiment. 有効な次亜塩素酸の空間存在量とガス分解量との関係を表すグラフ図である。It is a graph showing the relationship between the amount of space of effective hypochlorous acid, and the amount of gas decomposition. ドライミスト供給量と殺菌時間との関係の一例を表すグラフ図である。It is a graph showing an example of the relation between dry mist supply and sterilization time. ドライミスト供給量と殺菌時間との関係の他の一例を表すグラフ図である。It is a graph showing the other example of the relationship between dry mist supply and sterilization time.

第1の実施形態にかかる空間殺菌装置は、被処理空間にガス状及び/または霧状の次亜塩素酸水を供給する次亜塩素酸水供給部を含み、被処理空間中の次亜塩素酸濃度を400ppbないし500ppmにすることができる。
また、第2の実施形態にかかる空間除臭装置は、被処理空間にガス状及び/または霧状の次亜塩素酸水を供給する次亜塩素酸水供給部を含み、前記被処理空間中の次亜塩素酸濃度を400ppbないし500ppmにすることができる。
The space sterilizing apparatus according to the first embodiment includes a hypochlorous acid water supply unit that supplies gaseous and / or atomized hypochlorous acid water to a treated space, and the hypochlorite in the treated space The acid concentration can be 400 ppb to 500 ppm.
In addition, the space deodorizing apparatus according to the second embodiment includes a hypochlorous acid water supply unit that supplies gaseous and / or misty hypochlorous acid water to the to-be-treated space; The concentration of hypochlorous acid can be 400 ppb to 500 ppm.

実施形態によれば、次亜塩素酸水供給部により被処理空間にガス状及び/または霧状の次亜塩素酸水を供給して、被処理空間中の次亜塩素酸濃度を400ppbないし500ppmとすることにより、次亜塩素酸水による悪影響が無く、かつ十分な殺菌及び除臭効果が得られる。   According to the embodiment, the hypochlorous acid water supply unit supplies gaseous and / or atomized hypochlorous acid water to the processing space, and the hypochlorous acid concentration in the processing space is 400 ppb to 500 ppm. By doing so, there is no adverse effect of hypochlorous acid water, and a sufficient sterilization and deodorizing effect can be obtained.

なお、ここでは、殺菌とは、被処理空間の菌の少なくとも一部を殺すことをいう。
また、除臭とは、菌の繁殖を抑制し、臭気の発生、あるいは発散を防ぐことをいう。
次亜塩素酸水は、次亜塩素酸分子(HClO)と次亜塩素酸イオン(ClO)とを平衡して含んでおり、HClOはClOに比較し強い殺菌力を有する。両者の構成比率はpHによって変化し、アルカリ性領域ではClOの比率が高くなり、弱酸性領域ではHClOが多くなるため、強い殺菌力を発揮できる。なお、塩素ガス(Cl)の殺菌力は、ClOの殺菌力よりも低い。
Here, the sterilization means to kill at least a part of the bacteria in the space to be treated.
Further, deodorizing means suppressing the growth of bacteria and preventing the generation or the emission of an odor.
Hypochlorous acid water, hypochlorous acid molecule (HClO) and hypochlorous acid ions (ClO -) and includes in equilibrium with, HClO is ClO - has a strong sterilizing power compared to. Component ratio of the two changes by pH, ClO in an alkaline region - the higher the ratio of, for the greater the HClO in weakly acidic region, can exhibit a strong sterilizing power. Incidentally, germicidal chlorine gas (Cl 2) is, ClO - lower than sterilizing power.

図1に、例えば温度25℃における次亜塩素酸状態図の一例を示す。
図中、電解水は、pHにより、SA領域では強酸性電解水、WA領域では弱酸性電解水、MA領域では微酸性電解水、AI領域では電解次亜水となっている。
次亜塩素酸水供給部は、次亜塩素酸水をガス状にする気化装置、または霧状にする噴霧装置を含むことができる。
FIG. 1 shows an example of a hypochlorous acid phase diagram at a temperature of 25 ° C., for example.
In the figure, the electrolyzed water is, depending on the pH, strongly acidic electrolyzed water in the SA region, weakly acidic electrolyzed water in the WA region, slightly acidic electrolyzed water in the MA region, and electrolyzed subaqueous water in the AI region.
The hypochlorous acid water supply unit can include a vaporizer that gasifies hypochlorous acid water, or a spray device that atomizes it.

また、実施形態に係る空間殺菌装置は、次亜塩素酸濃度を計測するシステムをさらに含むことができる。
一実施形態において、次亜塩素酸濃度を計測するシステムは、例えば、被処理空間内のガス状及び/または霧状の次亜塩素酸水を採取する容器及び前記容器内に収容され、次亜塩素酸と反応して発光する蛍光試薬を含む次亜塩素酸水採取部と、発光強度計測部とを含み、発光強度から次亜塩素酸濃度を算出することができる。
Moreover, the space sterilization apparatus which concerns on embodiment can further include the system which measures hypochlorous acid density | concentration.
In one embodiment, a system for measuring the concentration of hypochlorous acid includes, for example, a container for collecting gaseous and / or atomized hypochlorous acid water in a processing space, and the container housed in the container; A hypochlorous acid water collecting part containing a fluorescent reagent which emits light by reacting with chloric acid and a luminescence intensity measuring part can be calculated, and the hypochlorous acid concentration can be calculated from the luminescence intensity.

使用される蛍光試薬として、アミノフェニルフルオレセイン(APF)試薬があげられる。APF試薬は、次亜塩素酸に対して高い反応性を持ち、酸化により蛍光化合物を生成する。
また、他の実施形態において、次亜塩素酸濃度を計測するシステムは、例えば、被処理空間内のガス状及び/または霧状の次亜塩素酸水を採取する容器を有する次亜塩素酸水採取部及び容器内に収容された純水を含む次亜塩素酸水採取部と、容器から回収した純水中の有効塩素濃度を計測する有効塩素濃度計とを含むことができる。
As a fluorescent reagent to be used, an aminophenyl fluorescein (APF) reagent can be mentioned. The APF reagent is highly reactive to hypochlorous acid and produces a fluorescent compound by oxidation.
In another embodiment, a system for measuring the concentration of hypochlorous acid includes, for example, hypochlorous acid water having a container for collecting gaseous and / or atomized hypochlorous acid water in the space to be treated. The extraction unit may include a hypochlorous acid water extraction unit containing pure water contained in the container, and an effective chlorine concentration meter that measures an effective chlorine concentration in the pure water collected from the container.

使用される有効塩素濃度計として、ヨウ素吸光光度法またはDPD法を用い、回収した純水中の次亜塩素酸を反応により発色させて有効塩素濃度を計測し、有効塩素濃度に基づいて次亜塩素酸濃度を算出することができる。
次亜塩素酸濃度は、好ましくは500ppbないし200ppmにすることができる。
Hypochlorous acid in the recovered pure water is colored by reaction using iodine absorptiometry or DPD method as the effective chlorine concentration meter to be used, and the effective chlorine concentration is measured, and the hypochlorous acid is measured based on the effective chlorine concentration. The chloric acid concentration can be calculated.
The hypochlorous acid concentration can preferably be 500 ppb to 200 ppm.

500ppb未満であると、十分な殺菌効果が得られず、200ppmを越えると装置や空間の金属が錆びやすくなる傾向がある。
実施形態に係る空間殺菌装置はまた、被処理空間内の空気を吸気する吸気装置、及び吸気装置と次亜塩素酸水供給部に接続され、吸気装置により導入された空気をガス状及び/または霧状の次亜塩素酸水を用いて殺菌する殺菌部をさらに含むことができる。
If it is less than 500 ppb, a sufficient bactericidal effect can not be obtained, and if it exceeds 200 ppm, the metal of the device or space tends to rust easily.
The space sterilizer according to the embodiment is also connected to an air suction device for suctioning air in the processing space, and the air suction device and the hypochlorous acid water supply unit, and the air introduced by the air suction device is in the form of gas and / or It may further include a sterilizing unit for sterilizing using misty hypochlorous acid water.

図2に、吸気装置を備えた空間殺菌装置の構成の一例を表す模式図を示す。
図示するように、この空間殺菌装置は、吸気装置51、次亜塩素酸水供給部56、及び吸気装置51と次亜塩素酸水供給部56に接続された殺菌部54、殺菌部54に接続された排気部57を含む。また、吸気装置51前段には、任意に、粗い塵を取り除く除塵フィルタ52を設けることができる。吸気装置51は、吸気ダクト58及び吸気ファン53から構成される。殺菌部54では、被処理空間から吸気装置51により殺菌部54に導入された空気をガス状及び/または霧状の次亜塩素酸水を用いて殺菌し、排気部57を通して再び被処理空間に排出することができる。殺菌部54内の次亜塩素酸濃度は、有効塩素濃度計やAPF試薬等により、計測することが可能であり、好ましくは500ppbないし200ppmにすることができる。500ppb未満であると、十分な殺菌効果を得ることができず、200ppmを越えると平衡等により生じる腐食性ガスにより装置内の金属酸化により金属腐食が進み、装置寿命が短くなる傾向がある。
The schematic diagram showing an example of a structure of the space sterilizer provided with FIG. 2 with the suction device is shown.
As shown, this space sterilization device is connected to the suction unit 51, the hypochlorous acid water supply unit 56, and the sterilization unit 54 and the sterilization unit 54 connected to the suction unit 51 and the hypochlorous acid water supply unit 56. Exhaust portion 57 included. In addition, a dust removal filter 52 for removing coarse dust can optionally be provided in the front stage of the intake device 51. The intake device 51 includes an intake duct 58 and an intake fan 53. In the sterilizing part 54, the air introduced from the treated space into the sterilizing part 54 by the suction device 51 is disinfected using gaseous and / or misty hypochlorous acid water, and is exhausted again through the exhaust part 57 to the treated space. It can be discharged. The hypochlorous acid concentration in the sterilization unit 54 can be measured by an effective chlorine meter, an APF reagent or the like, and can preferably be 500 ppb to 200 ppm. If it is less than 500 ppb, sufficient sterilizing effect can not be obtained, and if it exceeds 200 ppm, metal corrosion in the device tends to be promoted by metal oxidization due to corrosive gas generated by equilibrium etc., and the device life tends to be shortened.

図3に、実施形態に使用可能な次亜塩素酸水供給部の一例を示す。
図示するように、次亜塩素酸水供給部1は、タンク10と、配管11と、ポンプ12と、噴霧装置13と、コントローラ14と、を備えている。
タンク10は、殺菌水の一例である次亜塩素酸水を貯水する。この次亜塩素酸水は、タンク10が備える給水口を介して人手により、或いはタンク10に接続された給水管を介してポンプなどの動力源により、適宜に補充される。
An example of the hypochlorous acid water supply part which can be used for FIG. 3 at embodiment is shown.
As illustrated, the hypochlorous acid water supply unit 1 includes a tank 10, a pipe 11, a pump 12, a spray device 13, and a controller 14.
The tank 10 stores hypochlorous acid water which is an example of sterilizing water. The hypochlorous acid water is appropriately replenished by hand via a water supply port provided in the tank 10 or by a power source such as a pump via a water supply pipe connected to the tank 10.

配管11は、一端がタンク10の例えば底面に接続されるとともに、他端が噴霧装置13に接続されている。ポンプ12は、タンク10の次亜塩素酸水を噴霧装置13に供給する送液装置として機能するものであり、配管11に設けられている。ポンプ12は、例えば回転数の可変制御により、噴霧装置13に送る次亜塩素酸水の流量を調整することができる。なお、タンク10から噴霧装置13への次亜塩素酸水の送液は、水頭圧等を利用して行われても良い。この場合においては、例えば配管11に開度が可変な電磁弁を設けることにより、噴霧装置13に送る次亜塩素酸水の流量を調整することができる。   One end of the pipe 11 is connected to, for example, the bottom surface of the tank 10, and the other end is connected to the spray device 13. The pump 12 functions as a liquid feeding device that supplies hypochlorous acid water of the tank 10 to the spray device 13, and is provided in the pipe 11. The pump 12 can adjust the flow rate of the hypochlorous acid water to be sent to the spray device 13 by, for example, variable control of the rotational speed. The hypochlorous acid water may be sent from the tank 10 to the spray device 13 using water head pressure or the like. In this case, the flow rate of the hypochlorous acid water to be sent to the spray device 13 can be adjusted, for example, by providing the piping 11 with a solenoid valve whose opening degree is variable.

噴霧装置13は、吸気口15a及び排気口15bを有する筐体15と、この筐体15に収容された気化器16及びファン17と、を備えている。図3の例において、配管11は筐体15の内部に延び、気化器16に接続されている。
気化器16は、配管11を介して供給される次亜塩素酸水を気化し、殺菌成分を空間に放出する。同時に、気化器16は粒径が比較的小さいミストも発生する。また、ミストの発生を主目的としない気化の方式としては、例えば、超音波方式を採用することができる。この場合において、気化器16は、配管11を介して供給される次亜塩素酸水を溜める容器と、超音波によりこの容器に溜められた次亜塩素酸水を振動させ、液面から次亜塩素酸水のミストを発生させる超音波振動子と、を有している。その他にも、気化器16により次亜塩素酸水を気化する方式としては、微細孔を有するノズルから次亜塩素酸水を放出することにより次亜塩素酸水を気化(霧化)する方式などを採用しても良い。さらに気化フィルタにファン等で風を当てる自然気化式がある。空間殺菌の場合には、対象物を濡らさずに殺菌することが好ましいため、発生するミスト量は少なく、かつ粒径が小さいことが望ましい。
The spray device 13 includes a housing 15 having an intake port 15 a and an exhaust port 15 b, and a carburetor 16 and a fan 17 housed in the housing 15. In the example of FIG. 3, the pipe 11 extends inside the housing 15 and is connected to the carburetor 16.
The vaporizer 16 vaporizes the hypochlorous acid water supplied through the pipe 11 and discharges the sterilizing component to the space. At the same time, the vaporizer 16 also generates mist having a relatively small particle size. Moreover, as a system of vaporization which does not mainly generate the mist, for example, an ultrasonic system can be adopted. In this case, the vaporizer 16 vibrates the container for storing the hypochlorous acid water supplied through the pipe 11 and the hypochlorous acid water stored in the container by ultrasonic waves so that And an ultrasonic transducer for generating a mist of chloric acid water. In addition, as a method of vaporizing hypochlorous acid water by the vaporizer 16, a method of vaporizing (atomizing) hypochlorous acid water by discharging hypochlorous acid water from a nozzle having a fine hole, etc. May be adopted. Furthermore, there is a natural vaporization type that blows air to the vaporization filter with a fan or the like. In the case of space sterilization, it is preferable to sterilize the object without wetting it, so it is desirable that the amount of mist generated be small and the particle size be small.

ファン17は、気化器16により生成された気化した次亜塩素酸水及びミストを筐体15の外部に送り出す。具体的には、ファン17の回転に伴って吸気口15aから筐体15に空気が取り込まれ、この空気が気化器16により生成された気化した次亜塩素酸水及びミストとともに排気口15bから排出(噴霧)される。ファン17の回転数の可変制御により、筐体15の外部に噴霧する気化した次亜塩素酸水等の量を調整することができる。   The fan 17 sends the vaporized hypochlorous acid water and mist generated by the vaporizer 16 to the outside of the housing 15. Specifically, as the fan 17 rotates, air is taken into the housing 15 from the intake port 15a, and this air is discharged from the exhaust port 15b together with the vaporized hypochlorous acid water and mist generated by the vaporizer 16 (Sprayed). By variable control of the rotation speed of the fan 17, the amount of vaporized hypochlorous acid water or the like sprayed to the outside of the housing 15 can be adjusted.

コントローラ14は、例えば第1殺菌装置1の制御の中枢を担うプロセッサ、各種の設定条件やプロセッサが実行するコンピュータプログラムを記憶したメモリ、及び、各部に供給する電圧を生成する電源装置などを備えている。このコントローラ14は、ポンプ12、気化器16、及びファン17などを制御する。図3の例において、コントローラ14には、表示灯或いはディスプレイなどの表示装置、ボタン或いはスイッチ等の入力装置、及びスピーカなどの音声出力装置を備える入出力装置18が接続されている。   The controller 14 includes, for example, a processor responsible for controlling the first sterilizing device 1, a memory storing various setting conditions and computer programs executed by the processor, and a power supply device generating a voltage to be supplied to each part. There is. The controller 14 controls the pump 12, the vaporizer 16, the fan 17 and the like. In the example of FIG. 3, the controller 14 is connected to an input / output device 18 provided with a display device such as a display lamp or a display, an input device such as a button or a switch, and an audio output device such as a speaker.

このような気化した殺菌水(次亜塩素酸水)は、被処理空間の内壁を濡らさずに殺菌することができ、同時に発生する粒径の小さいミストが付着しても迅速に蒸発するため、被処理空間の内壁表面等を過度に濡らすことがない。したがって、水洗いなどに不向きな被処理物の殺菌に適している。   Such vaporized sterilizing water (hypochlorous acid water) can be disinfected without wetting the inner wall of the space to be treated, and it evaporates quickly even if a mist having a small particle size is generated at the same time. There is no excessive wetting of the inner wall surface etc. of the processing space. Therefore, it is suitable for sterilization of the processing object unsuitable for washing with water.

次亜塩素酸水は、例えば、塩化ナトリウム、塩化カリウム、あるいは無機塩化物を含む電解質水溶液の電気分解により得られる電解水を使用することができる。
次亜塩素酸水中の有効塩素濃度は、10ないし200ppmであることが好ましい。
次亜塩素酸水は、pH7以下であることが好ましい。
As hypochlorous acid water, for example, electrolytic water obtained by electrolysis of an aqueous electrolyte solution containing sodium chloride, potassium chloride or inorganic chloride can be used.
The effective chlorine concentration in hypochlorous acid water is preferably 10 to 200 ppm.
Hypochlorous acid water preferably has a pH of 7 or less.

図2の空間殺菌装置は空間除臭装置として使用可能であり、また、図3の次亜塩素酸水供給部は空間除臭装置に適用可能である。
空間除臭装置として使用場合、次亜塩素酸水は、pH3ないし7であることが好ましい。
実施例
実施例1
実施例1では、以下のように、蛍光試薬を用いて次亜塩素酸の空間存在量を算出し、オクラの一般細菌の殺菌効果を評価した。
The space sterilizer of FIG. 2 can be used as a space deodorizer, and the hypochlorous acid water supply unit of FIG. 3 can be applied to the space deodorizer.
When used as a space deodorizing device, hypochlorous acid water preferably has a pH of 3 to 7.
Example 1
In Example 1, the space existing amount of hypochlorous acid was calculated using a fluorescent reagent as follows, and the bactericidal effect of common bacteria of okra was evaluated.

次亜塩素酸の空間存在量の算出
発明者らはまずpHの違い、噴霧形態の違いによる次亜塩素酸の空間存在量を下記のように求めた。
図4に、実施例1に適用可能な殺菌装置を表す模式図を示す。
まず、失活などが予測されるため、実験用に幅3m、奥行き4m高さ2mの密閉空間20を用意した。
Calculation of Space Amount of Hypochlorous Acid The inventors first determined the space amount of hypochlorous acid due to the difference in pH and the difference in spray form as follows.
FIG. 4 is a schematic view showing a sterilizer applicable to the first embodiment.
First, since deactivation and the like are predicted, a sealed space 20 with a width of 3 m and a depth of 4 m and a height of 2 m was prepared for the experiment.

積水メディカル製 APF試薬の5000倍希釈液を20mlずつ第1、第2、及び第3のシャーレに入れて、第1、第2、及び第3の次亜塩素酸水採取部22,23,24を作成した。
図示するように、空間殺菌装置25は、密閉空間20内に設けられ、図3と同様の構成を有する次亜塩素酸水供給部1と、密閉空間20の床21に次亜塩素酸水供給部1に近い位置から順に配置された、第1の次亜塩素酸水採取部22、第2の次亜塩素酸水採取部23、及び第3の次亜塩素酸水採取部24と、図示しない分光蛍光光度計とを含む。
20 ml of a 5000-fold diluted solution of APF reagent manufactured by Sekisui Medical Co., Ltd. is put in each of the first, second and third petri dishes, and the first, second and third hypochlorous acid water collecting portions 22, 23, 24 It was created.
As shown, the space sterilizer 25 is provided in the enclosed space 20, and the hypochlorous acid water supply unit 1 having the same configuration as FIG. 3 and the hypochlorous acid water supply to the floor 21 of the enclosed space 20. The first hypochlorous acid water collecting unit 22, the second hypochlorous acid water collecting unit 23, and the third hypochlorous acid water collecting unit 24, which are arranged in order from the position close to the unit 1, And a spectrofluorometer.

食塩を2隔壁3室型の電解水生成装置によって電気分解することによって陽極側で得られた50mg/Lの有効塩素濃度を有する次亜塩素酸水をpH3およびpH6にて作成した。pHは同装置の陰極側で得られる電解アルカリ水を添加することにより調整した。   Hypochlorous acid water having an effective chlorine concentration of 50 mg / L obtained on the anode side by electrolysis of sodium chloride using a two-separator three-chamber type electrolyzed water generator was prepared at pH 3 and pH 6. The pH was adjusted by adding the electrolytic alkaline water obtained on the cathode side of the same device.

得られた次亜塩素酸水を、例えばこの殺菌装置25の次亜塩素酸水供給部に適用し、各々、密閉空間に2時間噴霧した。
次亜塩素酸水の実際の噴霧量は、噴霧した前後の次亜塩素酸水の重量の差から求めた。
空間体積より処理時間当たりの理論空間噴霧量を求めた。
The obtained hypochlorous acid water was applied to, for example, the hypochlorous acid water supply unit of the sterilizing apparatus 25 and was sprayed in a closed space for 2 hours.
The actual spray amount of hypochlorous acid water was determined from the difference in weight of hypochlorous acid water before and after spraying.
The theoretical space spray amount per treatment time was determined from the space volume.

それぞれ30分、1時間、2時間後のシャーレ内の蛍光発光強度を図示しない分光蛍光光度計を用いて計測した。計測結果より、30分、1時間、2時間後のシャーレ上に落下した次亜塩素酸水の量を算出した。
さらに、噴霧後、シャーレ直上に浮遊する次亜塩素酸水の有無を確認するため、同一場所で2時間放置した。噴霧中及び噴霧後の次亜塩素酸水量の和を、処理時間内にシャーレ直上の円柱の体積上に到達した次亜塩素酸水量として算出し、これを次亜塩素酸の空間存在量すなわち次亜塩素酸の濃度とした。
The fluorescence emission intensity in the petri dish after 30 minutes, 1 hour and 2 hours, respectively, was measured using a non-illustrated spectrofluorimeter. From the measurement results, the amount of hypochlorous acid water dropped onto the petri dish after 30 minutes, 1 hour and 2 hours was calculated.
Furthermore, after spraying, in order to confirm the presence or absence of hypochlorous acid water floating immediately above the petri dish, it was left at the same place for 2 hours. The sum of the amount of hypochlorous acid water during and after spraying is calculated as the amount of hypochlorous acid water reached on the volume of the cylinder immediately above the petri dish within the treatment time, and this is the amount of space of hypochlorous acid, ie It was the concentration of chlorous acid.

なお、発光強度は、分光蛍光光度計として島津製作所製RF−5300PCを用い、励起波長490nm,蛍光波長526nmにて測定した。また、検量線は、既知の濃度の次亜塩素酸水を直接APFの5000倍試薬に投入し、その発光強度から求めた。
図5は、気化式装置でpH3の有効塩素濃度50ppmの次亜塩素酸水を噴霧した時の重量変化から求めた理論空間噴霧量と、補足された次亜塩素酸との量との関係を表すグラフ図を示す。
In addition, emission intensity was measured by excitation wavelength 490 nm and fluorescence wavelength 526 nm, using Shimadzu RF-5300PC as a spectrofluorimeter. In addition, a calibration curve was obtained by directly injecting hypochlorous acid water of a known concentration into a 5000-fold reagent of APF, and the luminescence intensity thereof.
FIG. 5 shows the relationship between the amount of theoretical space spray obtained from the weight change when spraying an aqueous solution of 50 ppm effective chlorine concentration of pH 3 with a vaporization type device and the amount of hypochlorous acid captured. FIG.

図中、グラフ31,グラフ32,グラフ33は、各々、第1の次亜塩素酸水採取部22、第2の次亜塩素酸水採取部23、及び第3の次亜塩素酸水採取部24のシャーレにおける計測結果を示す。グラフ30は、理論総噴霧量を示す。
図5から、pH3の場合、有効な次亜塩素酸の空間存在量は理論空間噴霧量の20から30%であることがわかる。
In the figure, the graph 31, the graph 32, and the graph 33 respectively indicate the first hypochlorous acid water collecting unit 22, the second hypochlorous acid water collecting unit 23, and the third hypochlorous acid water collecting unit. The measurement result in 24 petri dishes is shown. The graph 30 shows the theoretical total spray amount.
From FIG. 5, it can be seen that the effective hypochlorous acid space abundance is 20 to 30% of the theoretical space spray volume at pH 3.

また、図6は、気化式装置でpH6の50ppmの次亜塩素酸水を噴霧した時の重量変化から求めた理論噴霧量と、補足された次亜塩素酸水の量との関係を表すグラフ図を示す。
図中、グラフ41,グラフ42,グラフ43は、各々、第1の次亜塩素酸水採取部22、第2の次亜塩素酸水採取部23、及び第3の次亜塩素酸水採取部24のシャーレにおける計測結果を示す。グラフ40は、理論総噴霧量を示す。
Further, FIG. 6 is a graph showing the relationship between the theoretical spray amount obtained from the weight change when spraying 50 ppm hypochlorous acid water of pH 6 with a vaporization type device and the amount of hypochlorous acid water captured. Figure shows.
In the figure, the graph 41, the graph 42, and the graph 43 show the first hypochlorous acid water collecting portion 22, the second hypochlorous acid water collecting portion 23, and the third hypochlorous acid water collecting portion, respectively. The measurement result in 24 petri dishes is shown. Graph 40 shows the theoretical total spray amount.

図6から、有効な次亜塩素酸の空間存在量はpH6の場合は理論空間噴霧量の20から50%であることがわかる。
オクラの一般細菌の殺菌効果
実験用密閉空間20の第1の次亜塩素酸水採取部22、第2の次亜塩素酸水採取部23、及び第3の次亜塩素酸水採取部24の近傍にシャーレに載せたオクラをそれぞれ配置した。
It can be seen from FIG. 6 that the effective space presence of hypochlorous acid is 20 to 50% of the theoretical space spray amount at pH 6.
The bactericidal effect of common bacteria of okra The first hypochlorous acid water collecting part 22, the second hypochlorous acid water collecting part 23, and the third hypochlorous acid water collecting part 24 of the experimental sealed space 20 Each okra placed on a petri dish was placed in the vicinity.

50mg/Lの有効塩素濃度を有する次亜塩素酸水をpH3およびpH6にて作成し、有効な次亜塩素酸の空間存在量が、0ppb,200ppb,400ppb,500ppb,5ppm,50ppm,200ppm,500ppmとなるよう理論噴霧量を設定して、各々、2時間暴露した。また安全のため塩素ガスセンサー(日本トキシレーシステムズ社製 トキシレ−2−CL2)を空間室内にセットした。   Hypochlorous acid water having an effective chlorine concentration of 50 mg / L is prepared at pH 3 and pH 6, and the space existing amount of effective hypochlorous acid is 0 ppb, 200 ppb, 400 ppb, 500 ppb, 5 ppm, 50 ppm, 200 ppm, 500 ppm The theoretical spray amount was set to become and each was exposed for 2 hours. In addition, a chlorine gas sensor (Toxire-2-CL2 manufactured by Nippon Toxire Systems, Inc.) was set in the space room for safety.

なお、ブース内の有効な次亜塩素酸の空間存在量は、予め実験により次亜塩素酸水の濃度、pH、単位時間あたりの噴霧量等を設定することにより調整することができる。
図7は、供給した次亜塩素酸濃度と空間次亜塩素酸濃度との関係を表すグラフ図である。
The effective space amount of hypochlorous acid in the booth can be adjusted in advance by setting the concentration of hypochlorous acid water, pH, the spray amount per unit time, and the like by experiment.
FIG. 7 is a graph showing the relationship between the supplied hypochlorous acid concentration and the spatial hypochlorous acid concentration.

グラフ81,82は、それぞれ、pH3、pH6の種々の濃度の次亜塩素酸を実験空間に200ml/時間の噴霧を行った場合の2時間後の空間濃度である。
例えば実験用密閉空間20内を200ppbにするには、pH3の場合は、130mg/Lの濃度を有する次亜塩素酸水を2時間、pH6の場合は100mg/Lの濃度を有する次亜塩素酸水を2時間、連続的に噴霧することでできる。また、噴霧は、所望の空間存在量に応じて、連続的でなくても一定時間毎に行うことができる。
Graphs 81 and 82 are space concentrations after 2 hours when hypochlorous acid of various concentrations of pH 3 and pH 6 is sprayed into the experimental space at 200 ml / hour, respectively.
For example, to bring 200 ppb into the experimental sealed space 20, hypochlorous acid water having a concentration of 130 mg / L for 2 hours at pH 3 and hypochlorous acid having a concentration of 100 mg / L for pH 6 Water can be sprayed continuously for 2 hours. Also, depending on the desired amount of space present, spraying can be performed at regular intervals, even if not continuous.

その時のオクラ表面の一般細菌を綿棒で採取して、標準寒天培地に移し、37℃のインキュベータ内で24時間培地培養した。
上記の実験をそれぞれ4回(N1〜N4)ずつ実施した。
図8Aないし図8Dは、培養法によるオクラの一般細菌の殺菌効果を表す写真である。
The common bacteria on the surface of the okra were collected with a cotton swab, transferred to a standard agar medium, and cultured in a 37 ° C. incubator for 24 hours.
Each of the above experiments was performed four times (N1 to N4).
FIGS. 8A to 8D are photographs showing the bactericidal effect of common bacteria of okra by the culture method.

オクラの一般細菌数によれば有効な次亜塩素酸の空間存在量が400ppb以上で細菌の増殖防止効果がみられた。
図8Aは空間存在量が0ppbの時のオクラの一般細菌数を示す。
また図8Bは5ppm、図8Cは50ppm時、図8Dは200ppm時のオクラの一般細菌数を示す。
According to the general bacterial count of okra, the effective growth of hypochlorous acid at 400 ppb or more showed the effect of preventing bacterial growth.
FIG. 8A shows the general bacterial counts of okra when the spatial abundance is 0 ppb.
Also, FIG. 8B shows the general bacterial counts of okra at 5 ppm, FIG. 8C at 50 ppm, and FIG. 8D at 200 ppm.

また、有効な次亜塩素酸の空間存在量が500ppmを越えると、塩素ガスモニターが0.5ppmを示した。
同様にpH3の次亜塩素酸水においても実験を行った。この結果を下記表1に示す。
The chlorine gas monitor showed 0.5 ppm when the effective space chlorine content of hypochlorous acid exceeded 500 ppm.
Similarly, the experiment was carried out in pH 3 hypochlorous acid water. The results are shown in Table 1 below.

Figure 2019069163
これにおいても400ppb以上で殺菌効果がみられた。
なお、図9に、実施例1に使用可能な2隔壁3室型の電解水生成装置の一例を表す概略図を示す。
図示するように、この電解水生成装置150は、陽極室154と、陰極室155と、陽極室154及び陰極室155の間に設けられた中間室151との3室からなる3室型電解槽158を有する。中間室151は、無機塩化物を含む電解質水溶液として飽和食塩水165とその無機塩化物である残留塩166とを収容する飽和食塩水貯留器161、塩水循環ポンプ162、及び食塩水供給ライン169を備えた飽和食塩水循環システム163と接続され、常にほぼ飽和状態の食塩水165が供給される。一方、陽極室154及び陰極室155は、給水システム164と接続され、各々、常に新しい水が供給される。中間室151と陽極室154の間は陰イオン交換膜152で仕切られ、中間室151と陰極室155の間は陽イオン交換膜153で仕切られている。陽極室154には陽極電極156、陰極室155には陰極電極157が備えられており、それぞれにプラスとマイナスの電圧が印加されている。
Figure 2019069163
Also in this case, the bactericidal effect was observed at 400 ppb or more.
In addition, the schematic showing an example of the 2 partition 3 chamber type electrolyzed water generating apparatus which can be used for Example 1 is shown.
As shown, this electrolyzed water generating device 150 is a three-chamber electrolytic cell consisting of an anode chamber 154, a cathode chamber 155, and an intermediate chamber 151 provided between the anode chamber 154 and the cathode chamber 155. It has 158. The intermediate chamber 151 has a saturated saline solution reservoir 161 containing a saturated saline solution 165 and the residual salt 166 which is the inorganic chloride solution as an electrolyte aqueous solution containing inorganic chloride, a saline circulation pump 162, and a saline solution supply line 169. It is connected with the provided saturated saline circulation system 163, and a nearly saturated saline solution 165 is always supplied. On the other hand, the anode chamber 154 and the cathode chamber 155 are connected to the water supply system 164, and fresh water is always supplied. The intermediate chamber 151 and the anode chamber 154 are partitioned by an anion exchange membrane 152, and the intermediate chamber 151 and the cathode chamber 155 are partitioned by a cation exchange membrane 153. The anode chamber 154 is provided with an anode electrode 156, and the cathode chamber 155 is provided with a cathode electrode 157, to which positive and negative voltages are respectively applied.

陽極室154では、中間室151中の塩素イオンが陽極電極156に引っ張られ、陰イオン交換膜152を通過して陽極室154に移動し、陽極電極156で電子を渡して塩素ガスとなり、水と反応して次亜塩素酸と塩酸を生じる。次亜塩素酸と塩酸を含む酸性電解水は、酸性電解水に溶解できない塩素ガスと共に酸性電解水ライン167を通して取り出される。   In the anode chamber 154, chlorine ions in the intermediate chamber 151 are pulled by the anode electrode 156, pass through the anion exchange membrane 152, move to the anode chamber 154, pass electrons at the anode electrode 156, become chlorine gas, The reaction produces hypochlorous acid and hydrochloric acid. Acidic electrolyzed water containing hypochlorous acid and hydrochloric acid is taken out through an acid electrolyzed water line 167 together with chlorine gas which can not be dissolved in the acid electrolyzed water.

陰極室155では、中間室151中のナトリウムイオンが陰極電極157に引っ張られ、陽イオン交換膜153を通過して陰極室155に移動し、陰極電極157で水が分解した水素イオンが電子を受け取って水素ガスとなり、水酸化ナトリウムを生じる。この水酸化ナトリウムの水溶液は、アルカリ性電解水として、アルカリ性電解水ライン171を通して取り出される。   In the cathode chamber 155, sodium ions in the intermediate chamber 151 are pulled by the cathode electrode 157, pass through the cation exchange membrane 153, move to the cathode chamber 155, and hydrogen ions decomposed by water at the cathode electrode 157 receive electrons. Hydrogen gas to produce sodium hydroxide. The aqueous solution of sodium hydroxide is taken out as an alkaline electrolyzed water through an alkaline electrolyzed water line 171.

なお、実施形態に使用される無機塩化物として例えば塩化ナトリウム、及び塩化カリウムなどがあげられ、この場合、アルカリ性電解水としては、各々、水酸化ナトリウム水溶液、及び水酸化カリウム水溶液が得られる。
実施例2
実施例2では、蛍光試薬以外の試薬を使用して次亜塩素酸の空間存在量を算出し、除臭効果としてメチルメルカプタンのガス分解性能を評価した。
In addition, sodium chloride, potassium chloride etc. are mention | raise | lifted as an inorganic chloride used for embodiment, In this case, sodium hydroxide aqueous solution and potassium hydroxide aqueous solution are respectively obtained as alkaline electrolyzed water.
Example 2
In Example 2, the space existing amount of hypochlorous acid was calculated using a reagent other than the fluorescent reagent, and the gas decomposition performance of methyl mercaptan was evaluated as a deodorizing effect.

まず、1mの実験用ブースを用意する。
この実験用ブースの中に、次亜塩素酸水供給部として音波噴霧機、例えばシャーレなどの次亜塩素酸水採取部、及び有効塩素濃度計を含む空間防臭装置が設けられている。
例えば実験用ブース中にメチルメルカプタンガス100ppm/N2を一定量注入し、ブース内のメチルメルカプタン濃度を3ppmに設定した。さらに、ブース内に株式会社CGI製超音波噴霧機エリアクリンCS−P102を設置し、次亜塩素酸水を噴霧した。次亜塩素酸水の空間濃度によるメチルメルカプタンガスの分解量を測定した。
First, prepare 1 m 3 of booth for experiment.
In this experimental booth, a sonic sprayer as a hypochlorous acid water supply unit, a hypochlorous acid water collection unit such as a petri dish, and a space deodorizing apparatus including an effective chlorine concentration meter are provided.
For example, a fixed amount of 100 ppm / N 2 of methyl mercaptan gas was injected into the experimental booth, and the methyl mercaptan concentration in the booth was set to 3 ppm. Furthermore, an ultrasonic sprayer AreaClean CS-P102 manufactured by CGI Corporation was installed in the booth, and hypochlorous acid water was sprayed. The decomposition amount of methyl mercaptan gas was measured by the space concentration of hypochlorous acid water.

メチルメルカプタンガスの濃度はガステック製気体採取器GV−110を用い、同社製ガス検知管No.70L(メルカプタン類検知管)にて測定した。空間濃度はシャーレ上に20mlの水を入れ、一定時間後にシャーレを取り出し、その水の有効塩素濃度を柴田化学製AQUAB AQ−102を用いヨウ素試薬吸光光度法により測定し、そのデータよりブース内の次亜塩素酸濃度を求めた。   The concentration of methyl mercaptan gas was measured using a gas detector gas collector GV-110, and the gas detector tube No. It measured by 70 L (mercaptans detection tube). Space concentration put 20 ml of water on the petri dish, take out the petri dish after a certain time, measure the effective chlorine concentration of the water by iodine reagent absorptiometry using AQUAB AQ-102 made by Shibata Chemical Co., Ltd. The hypochlorous acid concentration was determined.

有効な次亜塩素酸の空間存在量に対するメチルメルカプタンのガス分解量(初期ガス濃度−ガス残存量)との関係を表すグラフ図を図10に示す。
図中、83がpH3,84がpH6のときのメチルメルカプタン分解性能を表す。
図示するように、空間内のHClO濃度に比例してガスが分解され、またその比率が1:1であることがわかる。
A graph showing the relationship between the gas decomposition amount (initial gas concentration-gas remaining amount) of methyl mercaptan with respect to the space existing amount of effective hypochlorous acid is shown in FIG.
In the figure, 83 represents the methyl mercaptan decomposition performance at pH 3, 84 at pH 6.
As shown, it can be seen that the gas is decomposed in proportion to the concentration of HClO in the space, and the ratio is 1: 1.

実施例2ではヨウ素試薬を用いて次亜塩素酸の空間存在量を算出し、メチルメルカプタンのガス分解性能を評価したが、実施例1に示すように蛍光試薬を用いて同様の評価を行うことも可能である。
実施例3
殺菌空間においた対象物は、その表面が殺菌されるが、その殺菌力は殺菌空間の殺菌濃度、殺菌処理時間、殺菌対象物(菌種類と数(密度)など)にて規定される。
In Example 2, the space existing amount of hypochlorous acid was calculated using an iodine reagent, and the gas decomposition performance of methyl mercaptan was evaluated. However, as shown in Example 1, the same evaluation is performed using a fluorescent reagent. Is also possible.
Example 3
The surface of the target placed in the germicidal space is disinfected, but its germicidal activity is defined by the germicidal concentration of the germicidal space, the sterilizing time, the germicidal object (bacteria type and number (density), etc.).

図11は、オクラの表面に着床した灰色かび病菌を殺菌対象物とした場合の、殺菌濃度と、その濃度にて必要な殺菌処理時間との関係を示している。
グラフ90の横軸は、単位面積当たりに単位時間供給される次亜塩素酸ドライミスト供給量μg/(m・分)を表している。次亜塩素酸ドライミスト供給量は、活性酸素検出用蛍光試薬(Aminophenyl Fluorescein)、通称APF液を用いた蛍光強度測定法より算出できる。
FIG. 11 shows the relationship between the bactericidal concentration and the required bactericidal treatment time required for the concentration when the Botrytis cinerea fungus which has been implanted on the surface of okra is the object of sterilization.
The horizontal axis of the graph 90 represents hypochlorous acid dry mist supply amount μg / (m 2 · min) supplied per unit time per unit area. The amount of hypochlorous acid dry mist supplied can be calculated by a fluorescence intensity measurement method using a fluorescent reagent for active oxygen detection (Aminophenyl Fluorescein), commonly called APF solution.

ここでは、APF液で満たしたφ84mmのシャーレを所定の濃度の次亜塩素酸水のドライミストを噴霧空間に一定時間設置後に、回収したシャーレ内のHCLO量から、単位面積・単位時間あたりの対象物への次亜塩素酸ドライミスト供給量を算出する。
一方で、縦軸は、殺菌処理時間を示しており、任意のドライミスト供給量に対して、対象を十分に殺菌するために必要な処理時間を示している。例えば条件(1)として100(mg/l)の濃度の次亜塩素酸水を用いた、次亜塩素酸ドライミスト供給量が53μg/(m・分)の噴霧空間では、1.3時間(80分)処理すれば対象物を殺菌できることを示している。実際に条件(1)で殺菌した場合、オクラ表面に300万個いた灰色かび病菌が7000個まで減少し、その後に20℃にて一週間保管しても菌の発病がない事を確認している。一方で、殺菌処理無しのサンプルでは、同保管条件にて1週間後には灰色かび病菌の発病が観測される。
Here, after installing the dry mist of hypochlorous acid water of a predetermined concentration in the spray space for a certain period of time, the petition per unit area and unit time is obtained from the amount of HCLO in the petri dish recovered Calculate the amount of hypochlorous acid dry mist supplied to the product.
On the other hand, the vertical axis indicates the sterilization treatment time, and indicates the treatment time required to sufficiently sterilize the target for any dry mist supply amount. For example, in the spray space where hypochlorous acid dry mist is 53 μg / (m 2 · min) using hypochlorous acid water at a concentration of 100 (mg / l) as condition (1), 1.3 hours It shows that if it is treated (80 minutes), the object can be sterilized. When sterilization was actually performed under condition (1), the number of Botrytis cinerea fungi which had been 3 million on the surface of the okra decreased to 7,000, and it was confirmed that there was no onset of the fungus even after storage at 20 ° C for one week thereafter There is. On the other hand, in samples without sterilization treatment, the onset of Botrytis cinerea is observed after one week under the same storage conditions.

また、オクラの表面積を113cmと仮定して、ドライミスト供給量に表面積と処理時間を掛けた値がオクラ1本の表面に噴霧されたドライミストの総供給量となる。以下、ドライミスト総供給量(μg)とする。
条件(1)で殺菌処理した場合のオクラ1本に供給されたドライミスト総供給量は48μgとなる。
Further, assuming that the surface area of the okra is 113 cm 2 , the value obtained by multiplying the dry mist supply amount by the surface area and the treatment time is the total supply amount of dry mist sprayed on the surface of one okra. Hereinafter, the dry mist total supply amount (μg) is referred to.
The total supply amount of dry mist supplied to one okra in the case of sterilization treatment under the condition (1) is 48 μg.

また、条件(2)では、25mg/Lの濃度の次亜塩素酸水を用いた、ドライミスト供給量7μg/(m・分)で、殺菌処理時間24時間、条件(1)と同等の殺菌効果を得るためには総供給量112μgと2倍以上のドライミスト総供給量が必要である。図11ではグラフ90の上の領域91で殺菌効果がある。つまり殺菌効果は単純なドライミスト総供給量だけでは判断できず、瞬間的に供給する殺菌濃度が影響することがわかる。 In addition, under the condition (2), using a hypochlorous acid water having a concentration of 25 mg / L, the dry mist supply amount is 7 μg / (m 2 · min), and the sterilization time is 24 hours, equivalent to the condition (1) In order to obtain the bactericidal effect, a total supply amount of 112 μg and a total dry mist supply amount of twice or more are required. In FIG. 11, there is a bactericidal effect in the area 91 above the graph 90. That is, the bactericidal effect can not be judged only by the simple dry mist total supply amount, and it turns out that the bactericidal concentration supplied instantaneously influences.

また、本例の灰色かび病菌は真菌であり、大腸菌などに代表される細菌は真菌の1/10の殺菌力で殺菌できると言われているため、殺菌効果がある噴霧空間を図12で定義する。
以上の結果から、殺菌処理時間y(時間)と次亜塩素酸ドライミスト供給量x(μg/(m・分)との関係において、図12のグラフ92で表されるy=16.217x−1.384以上の領域93すなわち下記式(1)
y≧16.217x−1.384…(1)
を満足するとき、殺菌効果がある噴霧空間とすることができる。
Further, it is said that the gray mold fungus of the present example is a fungus, and bacteria represented by E. coli and the like can be killed with a 1/10 bactericidal activity of the fungus, so a spray space having a bactericidal effect is defined in FIG. Do.
From the above results, in the relationship between the sterilization treatment time y (hours) and the hypochlorous acid dry mist supply amount x (μg / (m 2 · min), y = 16.217x represented by the graph 92 in FIG. -1.384 or more area 93, that is, the following formula (1)
y ≧ 16.217x− 1.384 (1)
The spray space has a bactericidal effect.

以下に、本願出願当初の特許請求の範囲に記載された発明を付記する。
[1]被処理空間にガス状及び/または霧状の次亜塩素酸水を供給する次亜塩素酸水供給部を含み、前記被処理空間中の次亜塩素酸濃度を400ppbないし500ppmにする空間殺菌装置。
[2]次亜塩素酸水供給部は、次亜塩素酸水をガス状にする気化装置、または霧状にする噴霧装置を含む[1]に記載の空間殺菌装置。
[3]前記被処理空間中の前記次亜塩素酸濃度を計測するシステムをさらに含む[1]または[2]に記載の空間殺菌装置。
[4]前記被処理空間中の前記次亜塩素酸濃度を計測するシステムは、前記被処理空間内の前記ガス状及び/または霧状の次亜塩素酸水を採取する容器及び前記容器内に収容され、前記次亜塩素酸と反応して発光する蛍光試薬を含む次亜塩素酸水採取部と、発光強度計測部とを含み、発光強度から前記次亜塩素酸濃度を算出する[3]に記載の空間殺菌装置。
[5]前記蛍光試薬は、アミノフェニルフルオレセイン試薬である[4]に記載の空間殺菌装置。
[6]前記被処理空間中の前記次亜塩素酸濃度を計測するシステムは、前記被処理空間内の前記ガス状及び/または霧状の次亜塩素酸水を採取する容器を有する次亜塩素酸水採取部及び前記容器内に収容された純水を含む次亜塩素酸水採取部と、前記容器から回収した純水中の有効塩素濃度を計測する有効塩素濃度計とを含む[3]に記載の空間殺菌装置。
[7]前記有効塩素濃度計は、ヨウ素吸光光度法またはDPD法を用い、回収した純水中の次亜塩素酸を反応により発色させて有効塩素濃度を計測し、前記有効塩素濃度に基づいて次亜塩素酸濃度を算出する[6]に記載の空間殺菌装置。
[8]前記被処理空間中の前記次亜塩素酸濃度は、500ppbないし200ppmである[1]ないし[7]のいずれか1項に記載の空間殺菌装置。
[9]前記次亜塩素酸水中のpHは、7以下である[1]ないし[7]のいずれか1項に記載の空間殺菌装置。
[10]被処理空間内の空気を吸気する吸気装置、及び前記吸気装置と前記次亜塩素酸水供給部に接続され、前記吸気装置により導入された空気を前記ガス状及び/または霧状の次亜塩素酸水を用いて殺菌する殺菌部を具備する[1]ないし[9]のいずれか1項に記載の空間殺菌装置。
[11]殺菌処理時間y(時間)と、単位面積、単位時間当たりに供給される次亜塩素酸ドライミスト供給量x(μg/(m・min)との関係が下記式(1)を満足する[1]ないし[10]のいずれか1項に記載の空間殺菌装置。
y≧16.217x−1.384…(1)
[12]被処理空間にガス状及び/または霧状の次亜塩素酸水を供給する次亜塩素酸水供給部を含み、前記被処理空間中の次亜塩素酸濃度を400ppbないし500ppmにする空間除臭装置。
[13]次亜塩素酸水供給部は、次亜塩素酸水をガス状にする気化装置、または霧状にする噴霧装置を含む[12]に記載の空間除臭装置。
[14]前記次亜塩素酸濃度を計測するシステムをさらに含む[12]または[13]に記載の空間除臭装置。
[15]前記次亜塩素酸濃度を計測するシステムは、前記被処理空間内の前記ガス状及び/または霧状の次亜塩素酸水を採取する容器及び前記容器内に収容され、前記次亜塩素酸と反応して発光する蛍光試薬を含む次亜塩素酸水採取部と、発光強度計測部とを含み、発光強度から前記次亜塩素酸濃度を算出する[14]に記載の空間除臭装置。
[16]前記蛍光試薬は、アミノフェニルフルオレセイン試薬である[15]に記載の空間除臭装置。
[17]前記次亜塩素酸濃度を計測するシステムは、前記被処理空間内の前記ガス状及び/または霧状の次亜塩素酸水を採取する容器を有する次亜塩素酸水採取部及び前記容器内に収容された純水を含む次亜塩素酸水採取部と、前記容器から回収した純水中の有効塩素濃度を計測する有効塩素濃度計とを含む[14]に記載の空間除臭装置。
[18]前記有効塩素濃度計は、ヨウ素吸光光度法またはDPD法を用い、回収した純水中の次亜塩素酸を反応により発色させて有効塩素濃度を計測し、前記有効塩素濃度に基づいて次亜塩素酸濃度を算出する[17]に記載の空間除臭装置。
[19]前記次亜塩素酸濃度は、1ないし200ppmである[12]ないし[18]のいずれか1項に記載の空間除臭装置。
[20]前記次亜塩素酸水中のpHは、3ないし7である[12]ないし[18]のいずれか1項に記載の空間除臭装置。
[21]被処理空間内の空気を吸気する吸気装置、及び前記吸気装置と前記次亜塩素酸水供給部に接続され、前記吸気装置により導入された空気を前記ガス状及び/または霧状の次亜塩素酸水を用いて殺菌する殺菌部を具備する[12]ないし[20]のいずれか1項に記載の空間除臭装置。
[22]殺菌処理時間y(時間)と、単位面積、単位時間当たりに供給される次亜塩素酸ドライミスト供給量x(μg/(m・min)との関係が下記式(1)を満足する[12]ないし[21]のいずれか1項に記載の空間除臭装置。
y≧16.217x−1.384…(1)
本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
The invention described in the claims at the beginning of the present application is appended below.
[1] A hypochlorous acid water supply unit for supplying gaseous and / or atomized hypochlorous acid water to a space to be treated, wherein the concentration of hypochlorous acid in the space to be treated is 400 ppb to 500 ppm Space sterilizer.
[2] The space sterilizer according to [1], wherein the hypochlorous acid water supply unit includes a vaporizer that gasifies hypochlorous acid water, or a spray device that atomizes it.
[3] The space sterilizer according to [1] or [2], further including a system for measuring the hypochlorous acid concentration in the processing space.
[4] The system for measuring the concentration of hypochlorous acid in the space to be treated includes a container for collecting the gaseous and / or misty hypochlorous acid water in the space to be treated, and the container Containing a hypochlorous acid water collecting part containing a fluorescent reagent which is contained and reacts with the hypochlorous acid and emits light, and a luminescence intensity measuring part, and the hypochlorous acid concentration is calculated from luminescence intensity [3] Space sterilization device as described in.
[5] The space sterilizer according to [4], wherein the fluorescent reagent is an aminophenyl fluorescein reagent.
[6] The system for measuring the concentration of hypochlorous acid in the space to be treated comprises a container for collecting the gaseous and / or misty hypochlorous acid water in the space to be treated. An acid water collecting unit, a hypochlorous acid water collecting unit containing pure water contained in the container, and an effective chlorine concentration meter for measuring an effective chlorine concentration in the pure water collected from the container [3] Space sterilization device as described in.
[7] The available chlorine concentration meter measures the concentration of available chlorine by causing hypochlorous acid in the recovered pure water to develop color by reaction using iodine absorptiometry or DPD method, and based on the available chlorine concentration, The space sterilizer according to [6], which calculates hypochlorous acid concentration.
[8] The space sterilizer according to any one of [1] to [7], wherein the hypochlorous acid concentration in the space to be treated is 500 ppb to 200 ppm.
[9] The space sterilizer according to any one of [1] to [7], wherein the pH in the hypochlorous acid water is 7 or less.
[10] An intake device for taking in air in the processing space; and the intake device and the hypochlorous acid water supply unit connected to the intake device, the air introduced by the intake device is in the form of gas and / or mist The space sterilizer according to any one of [1] to [9], comprising a sterilizer that sterilizes using hypochlorous acid water.
[11] The relationship between the sterilization treatment time y (hour) and the unit area and the amount of hypochlorous acid dry mist supplied per unit time x (μg / (m 2 · min) is expressed by the following equation (1) The space sterilizer according to any one of [1] to [10], which is satisfied.
y ≧ 16.217x− 1.384 (1)
[12] A hypochlorous acid water supply unit for supplying gaseous and / or atomized hypochlorous acid water to a space to be treated, wherein the concentration of hypochlorous acid in the space to be treated is 400 ppb to 500 ppm Space deodorizer.
[13] The space deodorizing apparatus according to [12], wherein the hypochlorous acid water supply unit includes a vaporizer that gasifies hypochlorous acid water, or a spray device that atomizes it.
[14] The space deodorizing apparatus according to [12] or [13], further including a system for measuring the hypochlorous acid concentration.
[15] The system for measuring the hypochlorous acid concentration comprises a container for collecting the gaseous and / or atomized hypochlorous acid water in the processing space, and the container for accommodating the container in the container, The space deodorizing method according to [14], comprising a hypochlorous acid water collecting unit containing a fluorescent reagent that emits light by reacting with chloric acid, and a luminescence intensity measuring unit, and calculating the hypochlorous acid concentration from the luminescence intensity apparatus.
[16] The space deodorizing device according to [15], wherein the fluorescent reagent is an aminophenyl fluorescein reagent.
[17] The system for measuring the concentration of hypochlorous acid comprises a hypochlorous acid water collecting portion having a container for collecting the gaseous and / or atomized hypochlorous acid water in the space to be treated; The space deodorization according to [14], including a hypochlorous acid water collecting unit containing pure water contained in a container, and an effective chlorine concentration meter for measuring an effective chlorine concentration in the pure water collected from the container apparatus.
[18] The available chlorine concentration meter measures the concentration of available chlorine by causing hypochlorous acid in the recovered pure water to develop color by reaction using iodine absorptiometry or DPD method, and based on the available chlorine concentration, The space deodorizing apparatus according to [17], which calculates the concentration of hypochlorous acid.
[19] The space deodorizing device according to any one of [12] to [18], wherein the hypochlorous acid concentration is 1 to 200 ppm.
[20] The space deodorizing apparatus according to any one of [12] to [18], wherein the pH in the hypochlorous acid water is 3 to 7.
[21] An intake device for taking in air in the processing space; and the intake device and the hypochlorous acid water supply unit connected to the intake device, the air introduced by the intake device is in the form of gas and / or mist The space deodorizing apparatus according to any one of [12] to [20], comprising a sterilizing unit that sterilizes using hypochlorous acid water.
[22] The relationship between the sterilization treatment time y (hour) and the unit area and the amount of hypochlorous acid dry mist supplied per unit time x (μg / (m 2 · min) is expressed by the following equation (1) The space deodorizing device according to any one of [12] to [21], which is satisfied.
y ≧ 16.217x− 1.384 (1)
While certain embodiments of the present invention have been described, these embodiments have been presented by way of example only, and are not intended to limit the scope of the invention. These novel embodiments can be implemented in various other forms, and various omissions, substitutions, and modifications can be made without departing from the scope of the invention. These embodiments and modifications thereof are included in the scope and the gist of the invention, and are included in the invention described in the claims and the equivalent scope thereof.

20…密閉空間、22,23,24…次亜塩素酸水採取部、25…空間殺菌装置   20 ... enclosed space, 22, 23, 24 ... hypochlorous acid water collecting part, 25 ... space sterilizer

Claims (11)

被処理空間にガス状及び/または霧状の次亜塩素酸水を供給し、殺菌を行う空間殺菌方法であって、
殺菌処理時間y(時間)と、単位面積、単位時間当たりに供給される前記ガス状及び/または霧状の次亜塩素酸水の供給量x(μg/(m・min)との関係において、下記式(1)を満足させる空間殺菌方法。
y≧16.217x−1.384…(1)
A space sterilization method for supplying gaseous and / or atomized hypochlorous acid water to a space to be treated and performing sterilization,
In relation to the sterilization treatment time y (hour) and the unit area, the supply amount of the gaseous and / or atomized hypochlorous acid water supplied per unit time x (μg / (m 2 · min) , Space sterilization method to satisfy the following formula (1).
y ≧ 16.217x− 1.384 (1)
前記被処理空間内の前記ガス状及び/または霧状の次亜塩素酸水を採取する容器を有する次亜塩素酸水採取部を含み、前記容器に採取された次亜塩素酸水の供給量から前記被処理空間中の次亜塩素酸濃度を計測する計測システムで、計測したときに、前記式(1)を満足させる請求項1に記載の空間殺菌方法。   The hypochlorous acid water collecting portion having a container for collecting the gaseous and / or atomized hypochlorous acid water in the processing space, the supplied amount of hypochlorous acid water collected in the container The space sterilization method according to claim 1, wherein the measurement system for measuring the concentration of hypochlorous acid in the to-be-treated space from the above satisfies the formula (1) when it is measured. 前記計測システムで次亜塩素酸濃度を計測したときに、前記被処理空間中の前記次亜塩素酸水濃度を400ppbないし500ppmとする請求項2に記載の空間殺菌方法。   The space sterilization method according to claim 2, wherein when the hypochlorous acid concentration is measured by the measuring system, the hypochlorous acid water concentration in the processing space is 400 ppb to 500 ppm. 前記計測システムは、発光強度計測部をさらに含み、前記容器内に次亜塩素酸と反応して発光する蛍光試薬を収容し、前記発光強度計測部にて発光強度を計測し、得られた発光強度から前記次亜塩素酸濃度を算出する請求項2または3に記載の空間殺菌方法。   The measurement system further includes a light emission intensity measurement unit, the fluorescent reagent that emits light in response to hypochlorous acid is contained in the container, and the light emission intensity is measured by the light emission intensity measurement unit, and the obtained light emission The space sterilization method according to claim 2 or 3 which computes said hypochlorous acid concentration from intensity. 前記蛍光試薬は、アミノフェニルフルオレセイン試薬である請求項4に記載の空間殺菌方法。   The space sterilization method according to claim 4, wherein the fluorescent reagent is an aminophenyl fluorescein reagent. 前記計測システムは、有効塩素濃度計をさらに含み、前記容器内に純水を収容し、前記容器から回収した純水中の有効塩素濃度を前記有効塩素濃度計で計測して被処理空間中の次亜塩素酸濃度を算出する請求項2または3に記載の空間殺菌方法。   The measurement system further includes an effective chlorine concentration meter, containing pure water in the container, measuring an effective chlorine concentration in pure water collected from the container with the effective chlorine concentration meter, The space sterilization method according to claim 2 or 3 which computes hypochlorous acid concentration. 前記有効塩素濃度計は、ヨウ素吸光光度法またはDPD法を用い、回収した純水中の次亜塩素酸を反応により発色させて有効塩素濃度を計測し、前記有効塩素濃度に基づいて次亜塩素酸濃度を算出する請求項6に記載の空間殺菌方法。   The available chlorine concentration meter measures the concentration of available chlorine by causing hypochlorous acid in the recovered pure water to develop color by reaction using iodine absorptiometry or DPD method, and based on the available chlorine concentration, hypochlorite The space sterilization method of Claim 6 which calculates acid concentration. 前記次亜塩素酸水の供給は、次亜塩素酸水をガス状にする気化装置、または霧状にする噴霧装置含む次亜塩素酸水供給部を用いて行われる請求項1ないし7のいずれか1項に記載の空間殺菌方法。   8. The hypochlorous acid water supply unit according to any one of claims 1 to 7, wherein the hypochlorous acid water supply is performed using a hypochlorous acid water supply unit including a vaporizer which gasifies hypochlorous acid water or a sprayer which atomizes it. The space sterilization method according to any one of the above. 前記被処理空間中の前記次亜塩素酸濃度は、500ppbないし200ppmである請求項1ないし8のいずれか1項に記載の空間殺菌方法。   The space sterilization method according to any one of claims 1 to 8, wherein the hypochlorous acid concentration in the space to be treated is 500 ppb to 200 ppm. 前記次亜塩素酸水中のpHは、7以下である請求項1ないし9のいずれか1項に記載の空間殺菌方法。   The space sterilization method according to any one of claims 1 to 9, wherein the pH in the hypochlorous acid water is 7 or less. 前記空間殺菌装置は、被処理空間内の空気を吸気する吸気装置、及び前記吸気装置と前記次亜塩素酸水供給部に接続され、前記吸気装置により導入された空気を前記ガス状及び/または霧状の次亜塩素酸水を用いて殺菌する殺菌部を具備する請求項1ないし10のいずれか1項に記載の空間殺菌方法。   The space sterilizer is connected to an air suction device for suctioning air in the processing space, the air suction device and the hypochlorous acid water supply unit, and the air introduced by the air suction device is in the form of gas and / or The space sterilization method according to any one of claims 1 to 10, further comprising a sterilizing unit that sterilizes using a mist of hypochlorous acid water.
JP2018225524A 2015-05-22 2018-11-30 Space sterilization method Active JP6696701B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015104600 2015-05-22
JP2015104600 2015-05-22

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2017520202A Division JP6448781B2 (en) 2015-05-22 2015-09-11 Spatial sterilization device and spatial deodorization device

Publications (2)

Publication Number Publication Date
JP2019069163A true JP2019069163A (en) 2019-05-09
JP6696701B2 JP6696701B2 (en) 2020-05-20

Family

ID=57392670

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2017520202A Active JP6448781B2 (en) 2015-05-22 2015-09-11 Spatial sterilization device and spatial deodorization device
JP2018225524A Active JP6696701B2 (en) 2015-05-22 2018-11-30 Space sterilization method

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2017520202A Active JP6448781B2 (en) 2015-05-22 2015-09-11 Spatial sterilization device and spatial deodorization device

Country Status (3)

Country Link
JP (2) JP6448781B2 (en)
CN (1) CN106659811B (en)
WO (1) WO2016189757A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023053928A (en) * 2021-10-01 2023-04-13 国立大学法人三重大学 Space sterilization device and method
WO2024135426A1 (en) * 2022-12-22 2024-06-27 パナソニックIpマネジメント株式会社 Space purification device

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101899898B1 (en) * 2017-01-09 2018-09-18 김재량 Sterilization and deodorization equipment using hypochlorous acid gas, sterilization and deodorization method thereof
JP2018183082A (en) * 2017-04-25 2018-11-22 株式会社東芝 Method for treating garden stuff using electrolytic water
WO2019021634A1 (en) * 2017-07-28 2019-01-31 パナソニックIpマネジメント株式会社 Electrolyzed water spraying device
JPWO2019142647A1 (en) * 2018-01-22 2020-11-26 パナソニックIpマネジメント株式会社 Spatial environment control system, spatial environment control device and spatial environment control method
WO2019142599A1 (en) * 2018-01-22 2019-07-25 パナソニックIpマネジメント株式会社 Space environment control system, space environment control device, and space environment control method
WO2021060138A1 (en) * 2019-09-27 2021-04-01 パナソニックIpマネジメント株式会社 Space purification device
CN111481723B (en) * 2020-04-17 2022-02-01 重庆有艾生物科技有限公司 Integrated technology and method for dynamically disinfecting air in gathering place by using weak-acid hypochlorous acid disinfectant
JP7504388B2 (en) * 2020-04-24 2024-06-24 ニプロ株式会社 Hypochlorous acid spray system
EP3954396A1 (en) * 2020-08-10 2022-02-16 Proteck Germany GmbH Method, apparatus and system for disinfecting air and/or surfaces
CN117295916A (en) * 2021-05-14 2023-12-26 松下知识产权经营株式会社 Space purifying device
EP4424332A1 (en) * 2023-03-01 2024-09-04 oji Europe GmbH Apparatus, sensor, system and method for adjusting a stable concentration of hypochlorous acid and/or associated free active chlorine in ambient air for disinfection

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004141429A (en) * 2002-10-24 2004-05-20 N & S:Kk Method of sterilization and sterile water
JP2005013714A (en) * 2004-05-07 2005-01-20 Tatsuo Okazaki Method and apparatus for indoor spatial sterilization
JP2009122077A (en) * 2007-11-19 2009-06-04 Taiko Pharmaceutical Co Ltd Method for measuring chlorite ion
WO2009139452A1 (en) * 2008-05-16 2009-11-19 国立大学法人東京大学 Reagent for measurement of active oxygen
JP2011050702A (en) * 2009-09-04 2011-03-17 Es Technology Kk Method and device for sterilization and deodorization
JP2011087905A (en) * 2009-09-28 2011-05-06 Sanyo Electric Co Ltd Air sterilization apparatus
JP2011152278A (en) * 2010-01-27 2011-08-11 Cgi:Kk Environment cleaning method and environment cleaning apparatus
KR20120082982A (en) * 2011-01-17 2012-07-25 한국돌기 주식회사 System of disinfecting air in indoor sapce where air flow exists and method using same

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07204653A (en) * 1994-01-21 1995-08-08 Sanden Corp Sterilizing water for spraying and sterilization using sterilizing water for spraying
JPH11169441A (en) * 1997-12-16 1999-06-29 Yoshiya Okazaki Indoor sterilization
CN2630259Y (en) * 2003-06-06 2004-08-04 中国兵器工业第二○八研究所 Sodium hypochlorite disinfecting solution generator
WO2007111345A1 (en) * 2006-03-29 2007-10-04 The University Of Tokyo Reactive oxygen determination reagent
JP2008195612A (en) * 2006-09-21 2008-08-28 Gouda:Kk Method for preventing and treating disease with hypochlorous acid
JP2013148327A (en) * 2011-12-20 2013-08-01 Life Network Co Ltd Air cleaning device using mist
CN102818802A (en) * 2012-05-29 2012-12-12 山西大学 Method for detecting hypochlorite

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004141429A (en) * 2002-10-24 2004-05-20 N & S:Kk Method of sterilization and sterile water
JP2005013714A (en) * 2004-05-07 2005-01-20 Tatsuo Okazaki Method and apparatus for indoor spatial sterilization
JP2009122077A (en) * 2007-11-19 2009-06-04 Taiko Pharmaceutical Co Ltd Method for measuring chlorite ion
WO2009139452A1 (en) * 2008-05-16 2009-11-19 国立大学法人東京大学 Reagent for measurement of active oxygen
JP2011050702A (en) * 2009-09-04 2011-03-17 Es Technology Kk Method and device for sterilization and deodorization
JP2011087905A (en) * 2009-09-28 2011-05-06 Sanyo Electric Co Ltd Air sterilization apparatus
JP2011152278A (en) * 2010-01-27 2011-08-11 Cgi:Kk Environment cleaning method and environment cleaning apparatus
KR20120082982A (en) * 2011-01-17 2012-07-25 한국돌기 주식회사 System of disinfecting air in indoor sapce where air flow exists and method using same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023053928A (en) * 2021-10-01 2023-04-13 国立大学法人三重大学 Space sterilization device and method
JP7491537B2 (en) 2021-10-01 2024-05-28 国立大学法人三重大学 Space sterilization device and space sterilization method
WO2024135426A1 (en) * 2022-12-22 2024-06-27 パナソニックIpマネジメント株式会社 Space purification device

Also Published As

Publication number Publication date
JP6448781B2 (en) 2019-01-09
CN106659811A (en) 2017-05-10
CN106659811B (en) 2019-11-19
JP6696701B2 (en) 2020-05-20
JPWO2016189757A1 (en) 2017-11-30
WO2016189757A1 (en) 2016-12-01

Similar Documents

Publication Publication Date Title
JP6696701B2 (en) Space sterilization method
JP4588104B1 (en) Disinfection / deodorization method and disinfection / deodorization equipment
CN107865974A (en) Dry process processing method
JP3224953U (en) Dry sterilizer and deodorizer
JP5305770B2 (en) Air sanitizer
JP2004148108A (en) Hypochlorous acid generating sprayer
US20180339080A1 (en) Cooling apparatus for killing fungi on dew condensation part by means of hydrogen generated by electrolyzing water condensed at dew condensation part of cooling apparatus
US20220042692A1 (en) Method, apparatus and system for disinfecting air and/or surfaces
KR20130114311A (en) Sterilized humidifier of supplying sterilized vapor
JP2003181338A (en) Hypochlorous acid forming sprayer
JP2008045856A (en) Air disinfecting device
JP2011201838A (en) Epidemic prevention method and epidemic prevention apparatus of vegetable
JP2005013714A (en) Method and apparatus for indoor spatial sterilization
JP6814927B2 (en) Vehicle air conditioning system
JP2005013714A5 (en)
JP2017132349A5 (en)
JP2013001702A (en) Hypochlorous acid aqueous solution
JP4657180B2 (en) Cooling tower sterilizer
JP2004141429A (en) Method of sterilization and sterile water
JP3802815B2 (en) Sterilization and deodorization method and storage with sterilization and deodorization function
JP2012052165A (en) Cartridge for sustained release of salt, electrolytic water generator equipped with the cartridge for sustained release of salt and sterilization device or air cleaner equipped with the electrolytic water generator
JP6794205B2 (en) Hypochlorous acid vaporizer
JP2015226598A (en) Sterilizable air cleaning machine
JPH07204653A (en) Sterilizing water for spraying and sterilization using sterilizing water for spraying
KR20130000065U (en) Moving and sterilizing humidifier

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191010

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191029

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200324

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200417

R150 Certificate of patent or registration of utility model

Ref document number: 6696701

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350