JP2009122077A - Method for measuring chlorite ion - Google Patents

Method for measuring chlorite ion Download PDF

Info

Publication number
JP2009122077A
JP2009122077A JP2007299339A JP2007299339A JP2009122077A JP 2009122077 A JP2009122077 A JP 2009122077A JP 2007299339 A JP2007299339 A JP 2007299339A JP 2007299339 A JP2007299339 A JP 2007299339A JP 2009122077 A JP2009122077 A JP 2009122077A
Authority
JP
Japan
Prior art keywords
solution
test solution
value
concentration
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007299339A
Other languages
Japanese (ja)
Other versions
JP4944740B2 (en
Inventor
Shigeo Asada
茂雄 麻田
Koichi Nakahara
弘一 中原
Takashi Shibata
高 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiko Pharmaceutical Co Ltd
Original Assignee
Taiko Pharmaceutical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiko Pharmaceutical Co Ltd filed Critical Taiko Pharmaceutical Co Ltd
Priority to JP2007299339A priority Critical patent/JP4944740B2/en
Publication of JP2009122077A publication Critical patent/JP2009122077A/en
Application granted granted Critical
Publication of JP4944740B2 publication Critical patent/JP4944740B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for easily measuring the chlorite ion concentration in a liquid to be measured, in swimming pool facilities, hot spring facilities, or the like. <P>SOLUTION: The method includes the steps of coloring, by adding acid, starch, iodine compound to the liquid to be measured; coloring by adding diethyl-p-phenylenediamine; coloring by adding the diethyl-p-phenylenediamine after adding glycine solution, wherein the degree of color is measured in each coloring process; and measuring the chlorite ion by calculating the measured values. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、被検液中の亜塩素酸イオン濃度を測定する方法に関する。   The present invention relates to a method for measuring a chlorite ion concentration in a test solution.

遊泳用プール水等の消毒剤には、次亜塩素酸ナトリウム等の塩素剤が使用されているが、近年、塩素剤と合わせて二酸化塩素を使用する施設が見られるようになった。
二酸化塩素は、塩素剤に比較して酸化力が弱く、トリハロメタンの生成が少ないことや塩素臭がない等の優れた特徴がある一方、消毒副生成物としてメトヘモグロビン血症を引き起こすとされる亜塩素酸イオンが生成される。
そのため、プール水の水質基準には、二酸化塩素を使用するときの上限を0.4mg/Lとすることに加えて、亜塩素酸イオンについても1.2mg/L以下とするとの基準値が定められており、管理項目として、二酸化塩素及び亜塩素酸イオン濃度の測定を1日に3回以上行うことが義務付けられている。
二酸化塩素濃度を測定するための従来の分析方法としては、ジエチル−p−フェニレンジアミン(以下、DPDと略称する)吸光光度法等が挙げられ、亜塩素酸イオン濃度を測定するための従来の分析方法としては、イオンクロマトグラフ法が挙げられる。
尚、この様な従来技術に関しては、当業者の間で広く知られているが、この点について言及した適切な特許文献は見当らない。
Chlorine agents such as sodium hypochlorite are used for disinfectants such as swimming pool water. Recently, however, facilities that use chlorine dioxide together with chlorine agents have been seen.
Chlorine dioxide is weaker than chlorinating agents and has excellent characteristics such as less generation of trihalomethane and no odor of chlorine. On the other hand, chlorine dioxide is considered to cause methemoglobinemia as a disinfection by-product. Chlorate ions are generated.
Therefore, in addition to the upper limit when using chlorine dioxide is 0.4 mg / L, the standard value for the quality of pool water is 1.2 mg / L or less for chlorite ions. As a management item, it is obliged to measure chlorine dioxide and chlorite ion concentrations at least three times a day.
Conventional analysis methods for measuring chlorine dioxide concentration include diethyl-p-phenylenediamine (hereinafter abbreviated as DPD) absorptiometry and the like, and conventional analysis for measuring chlorite ion concentration. Examples of the method include ion chromatography.
In addition, although such a prior art is widely known among those skilled in the art, there is no appropriate patent document that mentions this point.

二酸化塩素や、亜塩素酸イオンは、試料採取後直ちに測定する必要があるため、施設管理者等が、プール水中の二酸化塩素や亜塩素酸イオンの水質管理を的確に遂行するためには、現場で簡便に測定できる分析方法が必要である。
これまで、二酸化塩素濃度を簡便に測定し得る方法については幾つか知られているが、亜塩素酸イオン濃度については、高価な分析機器や専門的知識、技術を必要とするイオンクロマトグラフ法以外知られておらず、遊泳用プール施設や温泉施設等の現場で簡便に測定することができなかった。
Chlorine dioxide and chlorite ions need to be measured immediately after sampling. Therefore, in order for facility managers to properly manage the quality of chlorine dioxide and chlorite ions in pool water, Analytical methods that can be measured easily and easily are necessary.
Up to now, several methods have been known that can easily measure the chlorine dioxide concentration, but the chlorite ion concentration is other than the ion chromatographic method that requires expensive analytical instruments, specialized knowledge, and techniques. It was not known and could not be measured easily on the spot such as swimming pool facilities and hot spring facilities.

本発明は、上記実情に鑑みてなされたものであって、その目的は、遊泳用プール施設や温泉施設等において被検液中の亜塩素酸イオン濃度を簡便に測定し得る方法を提供するものである。   The present invention has been made in view of the above circumstances, and an object thereof is to provide a method capable of easily measuring the concentration of chlorite ions in a test solution in a swimming pool facility, a hot spring facility, or the like. It is.

上記の目的を達成するため、本発明では、被検液中の亜塩素酸イオン濃度を測定する方法であって、
前記被検液に由来する第1被検液に対して、酸、デンプン、及びヨウ素化合物を添加して発色させて、その発色度を測定する第1工程;
前記被検液に由来する第2被検液に対して、ジエチル−p−フェニレンジアミンを添加して発色させて、その発色度を測定する第2工程;
前記被検液に由来する第3被検液に対して、グリシン溶液を添加した後、ジエチル−p−フェニレンジアミンを添加して発色させて、その発色度を測定する第3工程;
前記第2工程により得られた測定値から、前記第3工程により得られた測定値を差し引く第4工程;
前記第1工程により得られた測定値から、前記第3工程及び前記第4工程の測定値を基にして得られた値を差し引く第5工程;
を包含することを特徴とする。
In order to achieve the above object, the present invention is a method for measuring the concentration of chlorite ions in a test liquid,
A first step in which acid, starch, and iodine compound are added to the first test solution derived from the test solution to develop color, and the degree of color development is measured;
A second step of measuring the degree of color development by adding diethyl-p-phenylenediamine to the second test liquid derived from the test liquid to cause color development;
A third step of adding a glycine solution to the third test solution derived from the test solution, then adding diethyl-p-phenylenediamine to cause color development, and measuring the degree of color development;
A fourth step of subtracting the measurement value obtained in the third step from the measurement value obtained in the second step;
A fifth step of subtracting a value obtained based on the measurement values of the third step and the fourth step from the measurement value obtained by the first step;
It is characterized by including.

〔作用及び効果〕
本発明における第1工程は、以下の化学反応式;
[化1]
ClO2 -+4I-+4H+→2I2+2H2O+Cl-
に基づき、亜塩素酸イオン(ClO2 -)の存在下で遊離したヨウ素分子をヨウ素デンプン反応により発色させることによって、間接的に被検液中の亜塩素酸イオンを検出するものである。
[Action and effect]
The first step in the present invention includes the following chemical reaction formula:
[Chemical 1]
ClO 2 + 4I + 4H + → 2I 2 + 2H 2 O + Cl
In this method, iodine molecules released in the presence of chlorite ions (ClO 2 ) are colored by iodine starch reaction to indirectly detect chlorite ions in the test solution.

尚、被検液中には、亜塩素酸イオンだけでなく、二酸化塩素と、有効塩素(塩素、次亜塩素酸イオン)が共存する場合が多い。   In addition, not only chlorite ions but also chlorine dioxide and effective chlorine (chlorine, hypochlorite ions) often coexist in the test solution.

第1工程による亜塩素酸イオンの検出方法は、亜塩素酸イオンに対する特異性が低い。そのため、被検液中に二酸化塩素や有効塩素が含まれている場合には、亜塩素酸イオンだけでなく、二酸化塩素や有効塩素も同時に検出されることとなり、その測定値は誤差を含み得る。   The method for detecting chlorite ions in the first step has low specificity for chlorite ions. Therefore, when chlorine dioxide or effective chlorine is contained in the test liquid, not only chlorite ions but also chlorine dioxide and effective chlorine will be detected at the same time, and the measured value may contain errors. .

本発明における第2工程は、ジエチル−p−フェニレンジアミン(以下、DPDと略称する)によって、被検液中の二酸化塩素及び有効塩素を検出することができる。
また、本発明における第3工程は、DPDとグリシンによって、被検液中の二酸化塩素のみを特異的に検出することができる。
In the second step of the present invention, chlorine dioxide and available chlorine in the test liquid can be detected with diethyl-p-phenylenediamine (hereinafter abbreviated as DPD).
In the third step of the present invention, only chlorine dioxide in the test solution can be specifically detected by DPD and glycine.

従って、本発明における第4工程において、第2工程により得られた測定値から、第3工程により得られた測定値を差し引くことによって、被検液中の有効塩素に由来する測定値を得ることができる。   Therefore, in the fourth step of the present invention, a measurement value derived from the effective chlorine in the test liquid is obtained by subtracting the measurement value obtained in the third step from the measurement value obtained in the second step. Can do.

そして、本発明における第5工程において、第1工程により得られた測定値から、第3工程及び第4工程の測定値を基にして得られた値(即ち、第3工程及び第4工程において得られた各測定値に、それぞれ適当な補正処理を施して得られた2つの値)を差し引くことによって、第1工程において得られた測定値の誤差を修正して、被検液中の亜塩素酸イオンのみに由来する測定値(修正値)を得ることが可能であり、結果、当該修正値を用いて被検液中の亜塩素酸イオン濃度を算出することができる。   In the fifth step of the present invention, the value obtained from the measurement value obtained in the first step based on the measurement value in the third step and the fourth step (that is, in the third step and the fourth step). By subtracting two values obtained by applying appropriate correction processing to each measurement value obtained, the error in the measurement value obtained in the first step is corrected, and the sub-sample in the test solution is corrected. A measurement value (correction value) derived only from chlorate ions can be obtained, and as a result, the chlorite ion concentration in the test liquid can be calculated using the correction value.

従って、本発明によれば、例え、被検液中に亜塩素酸イオンだけでなく、二酸化塩素や有効塩素が共存する場合であっても、被検液中の亜塩素酸イオン濃度を正確に測定することができる。   Therefore, according to the present invention, for example, not only chlorite ions but also chlorine dioxide and effective chlorine coexist in the test solution, the chlorite ion concentration in the test solution is accurately determined. Can be measured.

さらに、第1工程〜第3工程における被検液の発色度を測定する操作については、持ち運びに便利で、且つ操作も容易な簡易比色計を用いて実施することが可能である。
従って、本発明は、遊泳用プール施設や温泉施設等の現場において簡便に実施し得るものであり、被検液中の亜塩素酸イオン濃度を簡便に測定することができる。
Furthermore, the operation for measuring the color development degree of the test solution in the first to third steps can be performed using a simple colorimeter that is convenient to carry and easy to carry.
Therefore, the present invention can be easily carried out at a site such as a swimming pool facility or a hot spring facility, and the chlorite ion concentration in the test solution can be easily measured.

本発明の実施の形態を説明する前に、特許請求の範囲及び明細書にて用いられる用語について以下に説明する。
(被検液)
本発明を適用し得る被検液とは、塩素化合物(塩素、次亜塩素酸イオン、二酸化塩素、亜塩素酸イオン等)を含有し得る水溶液を意味するものであり、例えば、遊泳用プール水、温泉水等が挙げられるが、これらに限定されるものではない。
Before describing embodiments of the present invention, terms used in the claims and specification will be described below.
(Test solution)
The test liquid to which the present invention can be applied means an aqueous solution that can contain a chlorine compound (chlorine, hypochlorite ion, chlorine dioxide, chlorite ion, etc.), for example, swimming pool water , Hot spring water and the like, but are not limited thereto.

(酸)
本発明に適用し得る酸とは、被検液のpHを酸性にするために使用されるものであり、例えば、塩酸や硫酸等が挙げられるが、これらに限定されるものではない。
(acid)
The acid that can be applied to the present invention is used to make the pH of the test solution acidic, and examples include, but are not limited to, hydrochloric acid and sulfuric acid.

(デンプン)
本発明に適用し得るデンプンとは、被検液に可溶なデンプンを意味するものであり、例えば、トウモロコシデンプンや馬鈴薯デンプン等が挙げられるが、これらに限定されるものではない。
尚、本発明においては、上記デンプンを含有する所定濃度の水溶液を調製して、被検液に添加するようにしても良い。このようなデンプン水溶液の濃度としては、特に限定されるものではないが、0.1%〜1%であることが好ましい。
(Starch)
The starch applicable to the present invention means a starch that is soluble in a test solution, and examples thereof include corn starch and potato starch, but are not limited thereto.
In the present invention, an aqueous solution having a predetermined concentration containing the starch may be prepared and added to the test solution. The concentration of such an aqueous starch solution is not particularly limited, but it is preferably 0.1% to 1%.

(ヨウ素化合物)
本発明に適用し得るヨウ素化合物としては、例えば、ヨウ化カリウム、ヨウ化ナトリウム等が挙げられる。
尚、本発明においては、上記ヨウ素化合物を含有する所定濃度の水溶液を調製して、被検液に添加するようにしても良い。このようなヨウ素化合物溶液の濃度としては、特に限定されるものではないが、1%〜30%であることが好ましい。
(Iodine compound)
Examples of iodine compounds that can be applied to the present invention include potassium iodide and sodium iodide.
In the present invention, an aqueous solution having a predetermined concentration containing the iodine compound may be prepared and added to the test solution. The concentration of the iodine compound solution is not particularly limited, but is preferably 1% to 30%.

次いで、以下に本発明の実施の形態を説明する。
〔実施形態〕
本発明は、以下の工程手順に沿って実施し得るものであるが、必ずしも以下の順序で実施する必要はなく、適宜、その手順を変更することも可能である(例えば、ヨウ素法(手順1及び2)、DPD法(手順3及び4)、DPD−グリシン法(手順5及び6)については、その順序を問わず実施し得るものであり、あるいは、先に手順7〜9を実施して基準値を得ておくなどしても良い)。
Next, embodiments of the present invention will be described below.
Embodiment
The present invention can be carried out according to the following process procedures, but is not necessarily carried out in the following order, and the procedures can be appropriately changed (for example, iodine method (procedure 1 And 2), the DPD method (procedures 3 and 4), and the DPD-glycine method (procedures 5 and 6) can be performed regardless of the order, or the procedures 7 to 9 are performed first. You may get a reference value).

手順1
被検液のサンプリングを行う(第1被検液の採取)。
Step 1
The test solution is sampled (collection of the first test solution).

手順2(ヨウ素法)
第1被検液に対して、酸、デンプン、及びヨウ素化合物を添加して発色させて、その発色度を測定して測定値1を得る(亜塩素酸イオン、二酸化塩素、及び有効塩素の検出)。
尚、手順2の工程は、以下の化学反応式;
[化2]
ClO2 -+4I-+4H+→2I2+2H2O+Cl-
に基づき、亜塩素酸イオン(ClO2 -)の存在下で遊離したヨウ素分子をヨウ素デンプン反応により発色させることによって、間接的に亜塩素酸イオンを検出する方法である(以下、ヨウ素法と称する)。しかしながら、このヨウ素法は、亜塩素酸イオンに対する特異性が低く、被検液中に二酸化塩素や有効塩素が含まれている場合には、亜塩素酸イオンだけでなく、二酸化塩素や有効塩素も同時に検出され得る。
Procedure 2 (Iodine method)
Acid, starch, and iodine compound are added to the first test solution to cause color development, and the color development degree is measured to obtain a measurement value 1 (detection of chlorite ions, chlorine dioxide, and effective chlorine) ).
In addition, the process of the procedure 2 has the following chemical reaction formula;
[Chemical 2]
ClO 2 + 4I + 4H + → 2I 2 + 2H 2 O + Cl
In this method, iodine molecules liberated in the presence of chlorite ions (ClO 2 ) are colored by iodine starch reaction to detect chlorite ions indirectly (hereinafter referred to as iodine method). ). However, this iodine method has low specificity to chlorite ions, and when the sample liquid contains chlorine dioxide and effective chlorine, not only chlorite ions but also chlorine dioxide and effective chlorine are contained. Can be detected simultaneously.

手順3
再び被検液のサンプリングを行う(第2被検液の採取)。
Step 3
The test liquid is sampled again (collection of the second test liquid).

手順4(DPD法)
第2被検液に対して、ジエチル−p−フェニレンジアミン(DPD)を添加して発色させて、その発色度を測定して測定値2を得る(二酸化塩素、及び有効塩素の検出)。
尚、手順4の工程は、DPDによって被検液中の有効塩素を検出する方法(以下、DPD法と称する)である。しかしながら、DPD法は、有効塩素に対する特異性が低く、被検液中に二酸化塩素が含まれている場合には、有効塩素だけでなく、二酸化塩素も同時に検出され得る。
尚、有効塩素とは、塩素、又は次亜塩素酸イオンを意味するが、アルカリ性条件下(天然アルカリ温泉水等)では、次亜塩素酸イオンとして存在する場合が多い。
Procedure 4 (DPD method)
Diethyl-p-phenylenediamine (DPD) is added to the second test solution to cause color development, and the degree of color development is measured to obtain measurement value 2 (detection of chlorine dioxide and effective chlorine).
Step 4 is a method for detecting effective chlorine in the test solution by DPD (hereinafter referred to as DPD method). However, the DPD method has low specificity for effective chlorine, and when chlorine dioxide is contained in the test solution, not only effective chlorine but also chlorine dioxide can be detected simultaneously.
In addition, although effective chlorine means chlorine or a hypochlorite ion, it exists in many cases as a hypochlorite ion under alkaline conditions (natural alkaline hot spring water etc.).

手順5
再び被検液のサンプリングを行う(第3被検液の採取)。
Step 5
The test liquid is sampled again (collection of the third test liquid).

手順6(DPD−グリシン法)
第3被検液に対して、グリシン溶液を添加して、次にジエチル−p−フェニレンジアミン(DPD)を添加して発色させて、その発色度を測定して測定値3を得る(二酸化塩素の検出)。
尚、手順6の工程は、DPD及びグリシンによって被検液中の二酸化塩素のみを特異的に検出し得る方法である(以下、DPD−グリシン法と称する)。
Procedure 6 (DPD-glycine method)
To the third test solution, a glycine solution is added, then diethyl-p-phenylenediamine (DPD) is added to cause color development, and the degree of color development is measured to obtain measurement value 3 (chlorine dioxide). Detection).
The step 6 is a method capable of specifically detecting only chlorine dioxide in the test solution with DPD and glycine (hereinafter referred to as DPD-glycine method).

手順7
所定の二酸化塩素濃度(例えば、1ppm程度)を有する基準液1を用意し、この基準液1に対して、上記手順2のヨウ素法、及び上記手順6のDPD−グリシン法を実施して、それぞれ基準値1、及び基準値2を得る。
Step 7
A reference solution 1 having a predetermined chlorine dioxide concentration (for example, about 1 ppm) is prepared, and the iodine method of the procedure 2 and the DPD-glycine method of the procedure 6 are performed on the reference solution 1, A reference value 1 and a reference value 2 are obtained.

手順8
所定の次亜塩素酸イオン濃度(例えば、1ppm程度)を有する基準液2を用意し、この基準液2に対して、上記手順2のヨウ素法、及び上記手順4のDPD法を実施して、それぞれ基準値3、及び基準値4を得る。
Step 8
A reference solution 2 having a predetermined hypochlorite ion concentration (for example, about 1 ppm) is prepared, and the iodine method of the procedure 2 and the DPD method of the procedure 4 are performed on the reference solution 2, Reference value 3 and reference value 4 are obtained, respectively.

手順9
所定の亜塩素酸イオン濃度(例えば、1ppm)を有する基準液3を用意し、この基準液3に対して、上記手順2のヨウ素法を実施して、基準値5を得る。
Step 9
A reference solution 3 having a predetermined chlorite ion concentration (for example, 1 ppm) is prepared, and the iodine method of the above procedure 2 is performed on the reference solution 3 to obtain a reference value 5.

手順10
上記手順4で得られた測定値2から、上記手順6で得られた測定値3を差し引いて測定値4を得る。
Step 10
A measurement value 4 is obtained by subtracting the measurement value 3 obtained in the procedure 6 from the measurement value 2 obtained in the procedure 4.

手順11
上記各手順にて得られた測定値1、測定値3、測定値4、基準値1〜4を以下の計算式;
「修正値1=測定値1−(測定値3×基準値1÷基準値2)−(測定値4×基準値3÷基準値4)」
に入力して、測定値1の誤差を修正して、修正値1を算出する。
即ち、本手順においては、測定値1から、測定値3に補正処理を施して得られた値と、測定値4に補正処理を施して得られた値とを差し引くことによって、測定値1の誤差を修正して、被検液中の亜塩素酸イオンのみに由来する測定値(修正値1)を得ることができる。
Step 11
Measurement value 1, measurement value 3, measurement value 4, and reference values 1 to 4 obtained by the above procedures are calculated as follows:
“Corrected value 1 = measured value 1− (measured value 3 × reference value 1 ÷ reference value 2) − (measured value 4 × reference value 3 ÷ reference value 4)”
To correct the error of the measured value 1 and calculate the corrected value 1.
That is, in this procedure, from the measured value 1, the value obtained by performing the correction process on the measured value 3 and the value obtained by performing the correction process on the measured value 4 are subtracted. By correcting the error, it is possible to obtain a measured value (corrected value 1) derived only from chlorite ions in the test liquid.

手順12
上記手順11にて得られた修正値1、上記手順9にて得られた基準値5、及び基準液3の亜塩素酸イオン濃度を以下の計算式;
「被検液中の亜塩素酸イオンの濃度=修正値1÷基準値5×(基準液3の亜塩素酸イオン濃度)」
に入力して、被検液中の亜塩素酸イオンの濃度を算出する。
Step 12
The corrected value 1 obtained in the procedure 11 above, the reference value 5 obtained in the procedure 9 above, and the chlorite ion concentration of the reference solution 3 are calculated as follows:
“Concentration of chlorite ion in test solution = corrected value 1 ÷ reference value 5 × (chlorite ion concentration in reference solution 3)”
To calculate the concentration of chlorite ions in the test solution.

〔その他の実施形態〕
前述の実施形態においては、被検液中の二酸化塩素及び次亜塩素酸イオンの濃度を同時に算出することも可能である。
[Other Embodiments]
In the above-described embodiment, the concentrations of chlorine dioxide and hypochlorite ions in the test solution can be calculated simultaneously.

即ち、被検液中の二酸化塩素濃度を求めるためには、上記手順6にて得られた測定値3、上記手順7にて得られた基準値2、及び基準液1の二酸化塩素濃度を以下の計算式;
「被検液中の二酸化塩素の濃度=測定値3÷基準値2×(基準液1の二酸化塩素濃度)」
に入力して、被検液中の二酸化塩素濃度を算出する。
That is, in order to obtain the chlorine dioxide concentration in the test solution, the measured value 3 obtained in the procedure 6 above, the reference value 2 obtained in the procedure 7 and the chlorine dioxide concentration in the reference solution 1 are as follows: Formula of
“Concentration of chlorine dioxide in the test solution = measured value 3 ÷ reference value 2 × (chlorine dioxide concentration in reference solution 1)”
To calculate the chlorine dioxide concentration in the test solution.

また、被検液中の次亜塩素酸イオン濃度を求めるためには、上記手順10にて得られた測定値4、上記手順8にて得られた基準値4、及び基準液2の次亜塩素酸イオン濃度を以下の計算式;
「被検液中の次亜塩素酸イオンの濃度=測定値4÷基準値4×(基準液2の次亜塩素酸イオン濃度)」
に入力して、被検液中の次亜塩素酸イオン濃度を算出する。
Further, in order to obtain the hypochlorite ion concentration in the test solution, the measured value 4 obtained in the above procedure 10, the reference value 4 obtained in the above procedure 8, and the hypochlorite of the reference solution 2 are used. Chlorate ion concentration is calculated as follows:
“Concentration of hypochlorite ion in test solution = measured value 4 ÷ reference value 4 × (concentration of hypochlorite ion in reference solution 2)”
To calculate the hypochlorite ion concentration in the test solution.

〔参考例〕ヨウ素法による亜塩素酸イオン濃度の測定
1.試薬及び基準液の調製
A試薬:1N硫酸(25mL)と1%デンプン水溶液(25mL)とを混合して調製した。
B試薬:20% ヨウ化カリウム溶液(50mL)
基準液3:25% 亜塩素酸ナトリウム(2g)を水(500mL)に溶解して原液を調製し(原液の亜塩素酸イオン濃度は745ppm)、その原液1.342gに900mLの水を加え、そのpHを12に合わせた後、さらに水を加えてその全量を1Lとしたものを基準液(亜塩素酸イオン濃度:1.000ppm)とした。尚、この基準液は10日過ぎれば原液から再調製する。
[Reference Example] Measurement of chlorite ion concentration by iodine method Preparation of Reagent and Reference Solution A Reagent: Prepared by mixing 1N sulfuric acid (25 mL) and 1% aqueous starch solution (25 mL).
Reagent B: 20% potassium iodide solution (50 mL)
Reference solution 3: 25% sodium chlorite (2 g) was dissolved in water (500 mL) to prepare a stock solution (the concentration of chlorite ions in the stock solution was 745 ppm), 900 mL of water was added to 1.342 g of the stock solution, The pH was adjusted to 12, and water was further added to make the total amount 1 L, which was used as a standard solution (chlorite ion concentration: 1.000 ppm). This reference solution is re-prepared from the stock solution after 10 days.

2.試料の調製
所定の濃度の亜塩素酸イオンを含有する試料1〜3(試料1:0.01ppm、試料2:0.20ppm、試料3:5.00ppm)を調製した。
2. Sample Preparation Samples 1 to 3 (sample 1: 0.01 ppm, sample 2: 0.20 ppm, sample 3: 5.00 ppm) containing a predetermined concentration of chlorite ion were prepared.

3.測定器
比色計としては、DIGITAL CL2 TESTER DCT−100(タクミナ社製)を使用したが、この他にポケット残留塩素計(ハック社製)、デジタルパックテスト型式DPM−CLO2(共立理化化学研究所製)等が使用可能である。
3. As a colorimeter, DIGITAL CL2 TESTER DCT-100 (manufactured by Takumina) was used, but in addition, a pocket residual chlorine meter (manufactured by Hack), a digital pack test model DPM-CLO2 (Kyoritsu Rika Chemical Laboratory) Etc.) can be used.

4.測定操作
(1)測定セルに7.5mLの純水を入れてブランクとした。
(2)測定セルに7.5mLの基準液3を入れて基準とした。
(3)測定セルに7.5mLの各試料を入れて試料とした。
(4)各セルにA試薬を入れて混合し、さらに各セルにB試薬を入れて振り混ぜた後、10分間暗所に静置する。
(5)ブランクセルで測定器をゼロに合わせた。
(6)各セルを測定器で測定した。
(7)測定結果は次の計算式で算出した。
各試料の亜塩素酸イオン濃度=各試料の測定値/基準液の測定値×1.000ppm
尚、上記試料1〜3については、公知のイオンクロマトグラフ法によっても亜塩素酸イオン濃度を測定した。
4). Measurement operation (1) 7.5 mL of pure water was put into a measurement cell to make a blank.
(2) 7.5 mL of the reference solution 3 was added to the measurement cell as a reference.
(3) 7.5 mL of each sample was put in a measurement cell to prepare a sample.
(4) A reagent is put in each cell and mixed, and further, B reagent is put in each cell and shaken and mixed, and then left in a dark place for 10 minutes.
(5) The measuring instrument was set to zero with a blank cell.
(6) Each cell was measured with a measuring instrument.
(7) The measurement result was calculated by the following formula.
Chlorite ion concentration of each sample = measured value of each sample / measured value of reference solution × 1.000 ppm
In addition, about the said samples 1-3, the chlorite ion density | concentration was measured also by the well-known ion chromatograph method.

5.測定結果
測定結果を以下の表1に示す。ヨウ素法による亜塩素酸イオン濃度の測定結果は、従来のイオンクロマトグラフ法による測定結果とほとんど変わらなかった。
5). Measurement results The measurement results are shown in Table 1 below. The measurement result of the chlorite ion concentration by the iodine method was almost the same as the measurement result by the conventional ion chromatography method.

Figure 2009122077
Figure 2009122077

〔実施例〕温泉水中の次亜塩素酸イオン、二酸化塩素、及び亜塩素酸イオンの濃度測定
被検液として、次亜塩素酸ナトリウムと二酸化塩素を併用して殺菌処理を実施している温泉地の実温泉を使用し、この温泉水中の次亜塩素酸イオン、二酸化塩素、及び亜塩素酸イオンの濃度を測定した。
[Example] Concentration measurement of hypochlorite ion, chlorine dioxide, and chlorite ion in hot spring water Hot spring area where sodium hypochlorite and chlorine dioxide are used in combination as a test solution to perform sterilization treatment The concentration of hypochlorite ion, chlorine dioxide, and chlorite ion in this hot spring water was measured.

1.試薬及び基準液の調製
(試薬)
ヨウ素法に使用した試薬(硫酸、デンプン水溶液、ヨウ化カリウム溶液)は、上記参考例と同じものを使用した。
DPD法に使用した試薬(DPD試薬等)、及びDPD−グリシン法に使用した試薬(DPD試薬、グリシン試薬)は、市販されている公知のものを使用した。
(基準液)
基準液1の調製:二酸化塩素水1000ppm〜3000ppmの原水を1000倍〜3000倍に希釈して基準液1(二酸化塩素濃度:1.000ppm)を調製した。
基準液2の調製:12%次亜塩素酸ナトリウム溶液(1.447g)を水で希釈して1Lとし、さらにこの希釈液1mLを水で1Lに希釈して基準液2(次亜塩素酸イオン濃度:1.000ppm)を調製した。
基準液3は、上記比較例の基準液(亜塩素酸イオン濃度:1.000ppm)と同じものを使用した。
1. Preparation of reagents and reference solutions (reagents)
The reagents used in the iodine method (sulfuric acid, starch aqueous solution, potassium iodide solution) were the same as those in the above Reference Example.
As the reagents used in the DPD method (DPD reagents and the like) and the reagents used in the DPD-glycine method (DPD reagent and glycine reagent), commercially available known ones were used.
(Reference solution)
Preparation of reference solution 1: A raw solution of 1000 ppm to 3000 ppm of chlorine dioxide water was diluted 1000 to 3000 times to prepare reference solution 1 (chlorine dioxide concentration: 1.000 ppm).
Preparation of Reference Solution 2: Dilute 12% sodium hypochlorite solution (1.447 g) with water to 1 L, and further dilute 1 mL of this diluted solution to 1 L with water to prepare Reference solution 2 (hypochlorite ion). Concentration: 1.000 ppm) was prepared.
The reference liquid 3 was the same as the reference liquid (chlorite ion concentration: 1.000 ppm) of the above comparative example.

2.測定器
比色計として、DIGITAL CL2 TESTER DCT−100(タクミナ社製)を使用した。
2. DIGITAL CL2 TESTER DCT-100 (manufactured by Takumina) was used as a colorimeter.

3.測定操作
上記温泉水に由来する6種類の試料(試料4〜9)を用意し、各試料について、上記実施形態の手順1〜6、及び手順10を実施して、測定値1〜4を得た。
また、上記基準液1〜3について、上記実施形態の手順7〜9を実施して基準値1〜5を得た。
各試料について得られた測定値1、測定値3、測定値4、基準値1〜5、及び基準液3の亜塩素酸イオン濃度(1.000ppm)を、上記実施形態の手順11及び手順12の計算式に入力して各試料4〜9の亜塩素酸イオンの濃度を算出した(尚、試料4〜9については、公知のイオンクロマトグラフ法によっても亜塩素酸イオン濃度を測定した)。
さらに、各試料4〜9における測定値3、測定値4、基準値2、基準値4、基準液1の二酸化塩素濃度(1.000ppm)、及び基準液2の次亜塩素酸イオン濃度(1.000ppm)を、上記その他の実施形態の各計算式に入力して、各試料4〜9の二酸化塩素及び次亜塩素酸イオンの濃度を算出した。
3. Measurement operation Six types of samples (samples 4 to 9) derived from the hot spring water are prepared, and the measurement values 1 to 4 are obtained by performing the steps 1 to 6 and the procedure 10 of the above embodiment for each sample. It was.
Moreover, about the said reference | standard liquids 1-3, the procedure values 7-9 of the said embodiment were implemented and the reference values 1-5 were obtained.
The measured value 1, measured value 3, measured value 4, reference values 1 to 5, and chlorite ion concentration (1.000 ppm) of the reference solution 3 obtained for each sample were used as the procedures 11 and 12 of the above embodiment. The chlorite ion concentration of each of the samples 4 to 9 was calculated (the chlorite ion concentration was also measured by a known ion chromatographic method for the samples 4 to 9).
Furthermore, the measured value 3, measured value 4, reference value 2, reference value 4, reference sample 1 chlorine dioxide concentration (1.000 ppm), and reference solution 2 hypochlorite ion concentration (1) in each sample 4-9 .000 ppm) was input to each calculation formula of the above-mentioned other embodiments, and the concentrations of chlorine dioxide and hypochlorite ions in each sample 4 to 9 were calculated.

4.測定結果
測定結果を以下の表2及び表3に示す。表3に示すように、本発明の測定方法による亜塩素酸イオン濃度の測定結果は、従来のイオンクロマトグラフ法による測定結果とほとんど変わらなかった。即ち、本発明の測定方法によれば、被検液中に二酸化塩素や次亜塩素酸イオンが共存している場合においても、被検液中の亜塩素酸イオン濃度を正確に測定し得ることが示された。
4). Measurement results The measurement results are shown in Tables 2 and 3 below. As shown in Table 3, the measurement result of the chlorite ion concentration by the measurement method of the present invention was almost the same as the measurement result by the conventional ion chromatography method. That is, according to the measurement method of the present invention, even when chlorine dioxide and hypochlorite ions coexist in the test solution, the chlorite ion concentration in the test solution can be accurately measured. It has been shown.

Figure 2009122077
Figure 2009122077

Figure 2009122077
Figure 2009122077

Claims (1)

被検液中の亜塩素酸イオン濃度を測定する方法であって、
前記被検液に由来する第1被検液に対して、酸、デンプン、及びヨウ素化合物を添加して発色させて、その発色度を測定する第1工程;
前記被検液に由来する第2被検液に対して、ジエチル−p−フェニレンジアミンを添加して発色させて、その発色度を測定する第2工程;
前記被検液に由来する第3被検液に対して、グリシン溶液を添加した後、ジエチル−p−フェニレンジアミンを添加して発色させて、その発色度を測定する第3工程;
前記第2工程により得られた測定値から、前記第3工程により得られた測定値を差し引く第4工程;
前記第1工程により得られた測定値から、前記第3工程及び前記第4工程の測定値を基にして得られた値を差し引く第5工程;
を包含する亜塩素酸イオンの測定方法。
A method for measuring the concentration of chlorite ions in a test solution,
A first step in which acid, starch, and iodine compound are added to the first test solution derived from the test solution to develop color, and the degree of color development is measured;
A second step of measuring the degree of color development by adding diethyl-p-phenylenediamine to the second test liquid derived from the test liquid to cause color development;
A third step of adding a glycine solution to the third test solution derived from the test solution, then adding diethyl-p-phenylenediamine to cause color development, and measuring the degree of color development;
A fourth step of subtracting the measurement value obtained in the third step from the measurement value obtained in the second step;
A fifth step of subtracting a value obtained based on the measurement values of the third step and the fourth step from the measurement value obtained by the first step;
A method for measuring chlorite ions including
JP2007299339A 2007-11-19 2007-11-19 Chlorite ion measurement method Active JP4944740B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007299339A JP4944740B2 (en) 2007-11-19 2007-11-19 Chlorite ion measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007299339A JP4944740B2 (en) 2007-11-19 2007-11-19 Chlorite ion measurement method

Publications (2)

Publication Number Publication Date
JP2009122077A true JP2009122077A (en) 2009-06-04
JP4944740B2 JP4944740B2 (en) 2012-06-06

Family

ID=40814373

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007299339A Active JP4944740B2 (en) 2007-11-19 2007-11-19 Chlorite ion measurement method

Country Status (1)

Country Link
JP (1) JP4944740B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013186111A (en) * 2012-03-12 2013-09-19 Chugoku Electric Power Co Inc:The Residual chlorine concentration analyser and method
WO2014122983A1 (en) * 2013-02-05 2014-08-14 大幸薬品株式会社 Method for trapping chlorine dioxide gas, method for measuring concentration of chlorine dioxide gas, and trapping agent for chlorine dioxide gas
US9128074B2 (en) 2011-08-30 2015-09-08 Korean Institute Of Machinery & Materials Detection method using colorimetric analysis
KR101862144B1 (en) 2010-11-22 2018-05-29 날코 컴파니 Apparatus for on-line continuous chlorine analysis in turbid water and process streams
JP2019069163A (en) * 2015-05-22 2019-05-09 株式会社東芝 Space sterilization method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105203521B (en) * 2015-10-22 2017-11-24 南华大学 A kind of o-phenylenediamine detection method based on nano-interface energy transfer

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06249830A (en) * 1993-02-26 1994-09-09 Toa Denpa Kogyo Kk Measurement of chlorous acid ion
JPH09279376A (en) * 1996-04-11 1997-10-28 Suido Kiko Kaisha Ltd Production of chlorine dioxide
JP2001194307A (en) * 2000-01-11 2001-07-19 Fuji Electric Co Ltd Method for measuring concentration of hypochlorous acid
JP2005274564A (en) * 2004-02-27 2005-10-06 Suido Kiko Kaisha Ltd Coloring reagent and concentration measuring method
JP2008083053A (en) * 2006-09-26 2008-04-10 Draeger Safety Ag & Co Kgaa Instrument and method for measuring chlorine dioxide

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06249830A (en) * 1993-02-26 1994-09-09 Toa Denpa Kogyo Kk Measurement of chlorous acid ion
JPH09279376A (en) * 1996-04-11 1997-10-28 Suido Kiko Kaisha Ltd Production of chlorine dioxide
JP2001194307A (en) * 2000-01-11 2001-07-19 Fuji Electric Co Ltd Method for measuring concentration of hypochlorous acid
JP2005274564A (en) * 2004-02-27 2005-10-06 Suido Kiko Kaisha Ltd Coloring reagent and concentration measuring method
JP2008083053A (en) * 2006-09-26 2008-04-10 Draeger Safety Ag & Co Kgaa Instrument and method for measuring chlorine dioxide

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101862144B1 (en) 2010-11-22 2018-05-29 날코 컴파니 Apparatus for on-line continuous chlorine analysis in turbid water and process streams
US9128074B2 (en) 2011-08-30 2015-09-08 Korean Institute Of Machinery & Materials Detection method using colorimetric analysis
JP2013186111A (en) * 2012-03-12 2013-09-19 Chugoku Electric Power Co Inc:The Residual chlorine concentration analyser and method
WO2014122983A1 (en) * 2013-02-05 2014-08-14 大幸薬品株式会社 Method for trapping chlorine dioxide gas, method for measuring concentration of chlorine dioxide gas, and trapping agent for chlorine dioxide gas
KR20150117276A (en) * 2013-02-05 2015-10-19 다이꼬 야꾸힝 가부시끼가이샤 Method for trapping chlorine dioxide gas, method for measuring concentration of chlorine dioxide gas, and trapping agent for chlorine dioxide gas
CN104995132A (en) * 2013-02-05 2015-10-21 大幸药品株式会社 Method for trapping chlorine dioxide gas, method for measuring concentration of chlorine dioxide gas, and trapping agent for chlorine dioxide gas
EP2955155A4 (en) * 2013-02-05 2016-11-02 Taiko Pharmaceutical Co Ltd Method for trapping chlorine dioxide gas, method for measuring concentration of chlorine dioxide gas, and trapping agent for chlorine dioxide gas
JPWO2014122983A1 (en) * 2013-02-05 2017-02-02 大幸薬品株式会社 Chlorine dioxide gas trapping method, concentration measuring method, and trapping agent
CN104995132B (en) * 2013-02-05 2017-03-15 大幸药品株式会社 The method for catching of chlorine dioxide, method for measurement of concentration and agent for capturing
US9677980B2 (en) 2013-02-05 2017-06-13 Taiko Pharmaceutical Co., Ltd. Method of entrapping chlorine dioxide gas, method of determining concentration of chlorine dioxide and entrapping agent for chlorine dioxide
KR102275969B1 (en) 2013-02-05 2021-07-13 다이꼬 파마슈티컬 컴퍼니 리미티드 Method for trapping chlorine dioxide gas, method for measuring concentration of chlorine dioxide gas, and trapping agent for chlorine dioxide gas
JP2019069163A (en) * 2015-05-22 2019-05-09 株式会社東芝 Space sterilization method

Also Published As

Publication number Publication date
JP4944740B2 (en) 2012-06-06

Similar Documents

Publication Publication Date Title
JP4944740B2 (en) Chlorite ion measurement method
CN106680228A (en) Method for quickly determining available chlorine in water by using ultraviolet-visible spectrophotometry
US20210270794A1 (en) Method of determining chemical oxygen demand (cod) for high chloride samples
US9746451B2 (en) Kinetic chlorine measurement
JP6547507B2 (en) Residual chlorine measurement system, residual chlorine measurement method, and program
Saputro et al. Oxidation of chromium (III) by free chlorine in tap water during the chlorination process studied by an improved solid-phase spectrometry
Tkáčová et al. Determination of chlorine dioxide and chlorite in water supply systems by verified methods
CN115436130A (en) Standard substance for simulating free residual chlorine and preparation method thereof
KR20180091180A (en) Method and Test Kit For Dectecting Concentration of Hydrogen Peroxide
CN103383356A (en) Method for rapidly determining chlorates in drinking water
JP6953521B2 (en) A method for measuring the concentration of a chemical species using a reagent baseline
EP3368894B1 (en) Storage stable standards for aqueous chlorine analysis
JP4299696B2 (en) Method for measuring persulfate concentration
Palin Analytical Note: A New DPD‐Steadifac Method for Specific Determination of Free Available Chlorine in the Presence of High Monochloramine
US20120214248A1 (en) Method of preparing, storing, transporting and testing chlorine dioxide solutions
KR101244614B1 (en) A method of measuring ammonium nitrogen in solution
RU2478203C1 (en) Method of determining content of alkali metal formates in deicing agents
JP2008264624A (en) Determination method of heavy metal fixation effect
WO2023129844A1 (en) Determination of oxidizing substances using peptide degradation
JP2006029875A (en) Detection reagent of residual chlorine and detection method using it
JP6341704B2 (en) Chloride ion quantitative method, chloride ion quantitative device, and chlorine quantitative method
CN115754206A (en) Detection reagent for active oxygen online monitoring instrument and preparation method and application thereof
CN113109458A (en) Method for testing generation potential of nitrogen-containing disinfection by-product by using chloramine disinfectant
CN117524339A (en) Method and system for measuring residual chlorine
Palin eliminating interferences in the DPD method for residual ozone

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101006

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120202

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120302

R150 Certificate of patent or registration of utility model

Ref document number: 4944740

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150309

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250