WO2024135260A1 - Polyacetal copolymer production method - Google Patents

Polyacetal copolymer production method Download PDF

Info

Publication number
WO2024135260A1
WO2024135260A1 PCT/JP2023/042706 JP2023042706W WO2024135260A1 WO 2024135260 A1 WO2024135260 A1 WO 2024135260A1 JP 2023042706 W JP2023042706 W JP 2023042706W WO 2024135260 A1 WO2024135260 A1 WO 2024135260A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyacetal copolymer
kneading
melt
acid
polymerization
Prior art date
Application number
PCT/JP2023/042706
Other languages
French (fr)
Japanese (ja)
Inventor
悠平 細井
Original Assignee
ポリプラスチックス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ポリプラスチックス株式会社 filed Critical ポリプラスチックス株式会社
Publication of WO2024135260A1 publication Critical patent/WO2024135260A1/en

Links

Images

Definitions

  • the present invention relates to a method for producing a polyacetal copolymer.
  • a known method for producing polyacetal copolymers is to cationic polymerize a main monomer (trioxane) and a comonomer copolymerizable with the main monomer in the presence of a polymerization catalyst.
  • Lewis acids such as boron trifluoride, tin tetrachloride, titanium tetrachloride, phosphorus pentafluoride, phosphorus pentachloride, and antimony pentafluoride, as well as their complex compounds or salts, are commonly used as the cationic polymerization catalyst.
  • Patent Document 1 by using a heteropolyacid as a polymerization catalyst and melt-kneading it together with a deactivator, polymerization becomes possible with a small amount of catalyst, complicated processes can be eliminated, and a high-quality polyacetal copolymer can be obtained.
  • the present invention was made in consideration of these points, and aims to provide a method for producing a polyacetal copolymer that can produce molded products with high impact resistance.
  • a method for producing a polyacetal copolymer comprising the steps of: copolymerizing trioxane and a comonomer copolymerizable with the trioxane in a polymerization apparatus in the presence of a polymerization catalyst; and melt-kneading the crude polyacetal copolymer obtained in the above step in an extruder, wherein the polymerization catalyst is a protonic acid; and in the melt-kneading step, a solution of a basic compound is added between the start of melt-kneading and the end of melt-kneading.
  • the present invention provides a method for producing a polyacetal copolymer that can produce molded products with high impact resistance.
  • FIG. 1 is a flow chart showing an outline of a manufacturing method according to one embodiment of the present invention.
  • a method for producing a polyacetal copolymer according to one embodiment of the present invention includes a step of copolymerizing trioxane and a comonomer copolymerizable with trioxane in a polymerization apparatus in the presence of a polymerization catalyst (protonic acid), and a step of melt-kneading the crude polyacetal copolymer obtained in the step in an extruder.
  • the melt-kneading step includes a step of adding a solution of a basic compound as a deactivator into the extruder after the start of the melt-kneading and before the end of the melt-kneading.
  • Trioxane is a cyclic trimer of formaldehyde. Trioxane according to one embodiment of the present invention is used as a main monomer.
  • the main monomer refers to a monomer that is contained in the largest amount among all monomers.
  • Trioxane is generally obtained by reacting an aqueous solution of formaldehyde in the presence of an acid catalyst, and is used after being purified by a method such as distillation.
  • the comonomer according to one embodiment of the present invention is not particularly limited as long as it is copolymerizable with trioxane.
  • the comonomer is preferably selected from the group consisting of cyclic ethers and cyclic formals having at least one carbon-carbon bond.
  • Examples of comonomers include 1,3-dioxolane, diethylene glycol formal, 1,4-butanediol formal, 1,3-dioxane, ethylene oxide, propylene oxide, epichlorohydrin, etc.
  • 1,3-dioxolane and 1,4-butanediol formal are preferred from the viewpoint of polymerization stability.
  • compounds having two polymerizable cyclic ether groups or cyclic formal groups such as diglycidyl ether of alkylene glycols, such as butanediol diglycidyl ether, and diformal, and compounds having three or more polymerizable cyclic ether groups or cyclic formal groups, such as glycerin triglycidyl ether, trimethylolpropane triglycidyl ether, and pentaerythritol tetraglycidyl ether, can be used.
  • diglycidyl ether of alkylene glycols such as butanediol diglycidyl ether, and diformal
  • compounds having three or more polymerizable cyclic ether groups or cyclic formal groups such as glycerin triglycidyl ether, trimethylolpropane triglycidyl ether, and pentaerythritol tetraglycidyl ether
  • the content of the comonomer in one embodiment of the present invention is preferably 0.01 to 20 parts by mass, more preferably 0.5 to 10 parts by mass, and particularly preferably 1 to 8 parts by mass, per 100 parts by mass of trioxane. If the content of the comonomer is 0.01 to 20 parts by mass per 100 parts by mass of trioxane, polymerization can proceed stably and a decrease in the crystallization rate and degree of crystallization of the polymer chain can be suppressed.
  • the polymerization catalyst is a cationic polymerization catalyst.
  • Examples of the cationic polymerization catalyst include Lewis acids and protonic acids.
  • Lewis acid examples include boron trifluoride, tin tetrachloride, titanium tetrachloride, phosphorus pentafluoride, phosphorus pentachloride, antimony pentafluoride, and complex compounds or salts thereof.
  • protonic acids examples include perfluoroalkanesulfonic acids, heteropolyacids, isopolyacids, and the like.
  • perfluoroalkanesulfonic acids include trifluoromethanesulfonic acid, pentafluoroethanesulfonic acid, heptafluoropropanesulfonic acid, nonafluorobutanesulfonic acid, undecafluoropentanesulfonic acid, tridecafluorohexanesulfonic acid, pentadecafluoroheptanesulfonic acid, and heptadecafluorooctanesulfonic acid.
  • heteropolyacids include phosphotungstic acid, phosphomolybdic acid, phosphomolybdotungstic acid, phosphomolybdovanadic acid, phosphomolybdotungstovanadic acid, phosphotungstovanadic acid, silicotungstic acid, silicomolybdic acid, silicomolybdotungstic acid, and silicomolybdotungstenovanadic acid.
  • isopolyacids include paratungstic acid, metatungstic acid, paramolybdic acid, metamolybdic acid, metapolyvanadic acid, and isopolyvanadic acid.
  • the amount of polymerization catalyst added in one embodiment of the present invention is preferably 0.1 ppm or more relative to the total amount of all monomers.
  • the upper limit of the amount of polymerization catalyst added is not particularly limited, but is preferably 50 ppm or less, more preferably 30 ppm or less, and particularly preferably 10 ppm or less (hereinafter, the unit ppm is all based on mass).
  • the polymerization catalyst is preferably added as a solution in a solvent that does not adversely affect polymerization, such as methyl formate or cyclohexane.
  • the polymerization catalyst according to one embodiment of the present invention is preferably a protonic acid, and more preferably a heteropolyacid.
  • a heteropolyacid By using a heteropolyacid, the polymerization reaction can be sufficiently promoted with a smaller amount of the catalyst than before, and undesirable reactions such as decomposition of the polymer main chain and depolymerization caused by the catalyst can be suppressed.
  • the basic compound according to one embodiment of the present invention is preferably an alkali metal carbonate, hydrogen carbonate or carboxylate, or a hydrate thereof, or an aqueous solution of a nitrogen-containing organic compound having a pH of 10 or higher when 1 g/L of the aqueous solution.
  • the carbonate, hydrogencarbonate or carboxylate of an alkali metal or a hydrate thereof is preferably a carbonate, hydrogencarbonate or carboxylate containing sodium or potassium or a hydrate thereof.
  • sodium formate sodium acetate
  • sodium carbonate sodium bicarbonate
  • disodium succinate sodium laurate, sodium palmitate, sodium stearate, potassium carbonate, and potassium acetate.
  • sodium carbonate and potassium carbonate are preferred. These may be used alone or in combination of two or more.
  • alkali metal carbonates hydrogen carbonates, or carboxylates, or their hydrates, are preferably used as aqueous solutions.
  • the nitrogen-containing organic compound is an amine.
  • amines examples include dimethylamine, trimethylamine, triethylamine, tributylamine, triethanolamine, and tributanolamine.
  • dimethylamine, trimethylamine, triethylamine, and triethanolamine, which can be used as an aqueous solution, are preferred, and triethylamine is more preferred.
  • the amount of the basic compound added in one embodiment of the present invention is preferably 5 ppm or more relative to the resin, and more preferably 10 ppm or more.
  • the upper limit of the amount of the basic compound added is not particularly limited, but is preferably 50 ppm or less, and more preferably 20 ppm or less.
  • the method for producing the polyacetal copolymer according to one embodiment of the present invention can be carried out using a known method and polymerization apparatus, such as a batch method or a continuous method.
  • a commonly used reaction vessel equipped with an agitator can be used.
  • a co-kneader, a twin-screw continuous extrusion mixer, a twin-screw paddle screw extruder, a vented twin-screw extruder, etc. can be used.
  • the industrially preferred production method is the continuous method.
  • the production method includes a step of continuously supplying a mixed liquid containing trioxane, a comonomer, a polymerization catalyst (protonic acid), and any additives for polymerization reactions to a polymerization apparatus heated to a predetermined temperature and polymerizing for a predetermined time (hereinafter also referred to as the "polymerization step"), and a step of melt-kneading the crude polyacetal copolymer obtained in the polymerization step in an extruder (hereinafter also referred to as the "melt-kneading step").
  • the melt-kneading step includes a step of adding an aqueous solution of a basic compound as a deactivator to the extruder after the start of melt-kneading and before the end of melt-kneading (step shown by A in Figure 1).
  • melt-kneading process by adding an aqueous solution of a basic compound between the start and end of melt-kneading, a polyacetal copolymer with high impact resistance can be obtained.
  • the impact strength of the polyacetal copolymer can be measured using an impact tester in accordance with ISO 179/1eA.
  • other components such as other polymers, other fillers, nitrogen compounds, stabilizers such as ultraviolet absorbers, acid inhibitors such as metal salts, antistatic agents, flame retardants, colorants such as dyes and pigments, lubricants, release agents, crystallization accelerators, and crystal nucleating agents may also be added as appropriate depending on the required performance. These may be used alone or in combination of two or more types.
  • Polyacetal copolymers 1 to 13 [Polyacetal copolymer 1] (Polymerization Apparatus) A continuous twin-shaft paddle screw extruder was used as the polymerization device. The extruder was equipped with a jacket on the outside of the body for passing a heating or cooling medium. The body was divided into an upper and lower part, and the upper part was openable. Inside the extruder, two rotating shafts with many paddles for stirring and propulsion were installed in the longitudinal direction.
  • a mixed liquid containing 100 parts by mass of trioxane (TOX), 4.0 parts by mass of 1,3-dioxolane (DO), and a predetermined amount of methylal was continuously supplied per unit time to a polymerization apparatus in which a medium at 80° C. was passed through the jacket, and 5.0 ppm of tungstophosphoric acid (H 3 PW 12 O 40 ) was added as a methyl formate solution to carry out a polymerization reaction.
  • TOX trioxane
  • DO 1,3-dioxolane
  • methylal 1,3-dioxolane
  • IRGANOX 1010 manufactured by BASF Japan, "IRGANOX” is a registered trademark of BASF
  • IRGANOX 1010 manufactured by BASF Japan, "IRGANOX” is a registered trademark of BASF
  • the amount of methylal added was adjusted so that the melt flow rate (MFR) of the resulting copolymer was 9 g/10 min.
  • MFR melt flow rate
  • the MFR was measured in accordance with ISO 1133 using a Melt Indexer L220 (manufactured by Tateyama Kagaku High-Technologies Co., Ltd.) under conditions of a load of 2.16 kg, a temperature of 190°C, and a resin discharge time of 7 minutes.
  • Polyacetal copolymers 2 and 3 As shown in Table 1, pellets of polyacetal copolymers 2 and 3 were obtained by the same production method as for polyacetal copolymer 1, except that the content of 1,3-dioxolane (DO) was changed.
  • DO 1,3-dioxolane
  • Polyacetal copolymer 4 As shown in Table 1, pellets of polyacetal copolymer 4 were obtained by the same production method as for polyacetal copolymer 1, except that the type of comonomer was changed to 1,4-butanediol formal (BDF).
  • BDF 1,4-butanediol formal
  • Polyacetal copolymers 5 and 6 As shown in Table 1, pellets of polyacetal copolymers 5 and 6 were obtained by the same production method as for polyacetal copolymer 1, except that the type of polymerization catalyst was changed.
  • Polyacetal Copolymers 7-9 As shown in Table 1, pellets of polyacetal copolymers 7 to 9 were obtained by the same production method as for polyacetal copolymer 1, except that the type of the deactivator was changed.
  • Polyacetal copolymer 10 As shown in Table 1, pellets of polyacetal copolymer 10 were obtained by the same production method as for polyacetal copolymer 1, except that the amount of methylal added was changed so that the MFR of the resulting copolymer would be 27 g/10 min.
  • Polyacetal copolymer 11 A mixed liquid containing 100 parts by mass of trioxane (TOX), 4.0 parts by mass of 1,3-dioxolane (DO), and a predetermined amount of methylal was continuously supplied per unit time to a polymerization apparatus in which a medium at 80° C. was passed through the jacket, and 5.0 ppm of tungstophosphoric acid (H 3 PW 12 O 40 ) was added as a methyl formate solution to carry out a polymerization reaction.
  • TOX trioxane
  • DO 1,3-dioxolane
  • methylal 1,3-dioxolane
  • a 15 ppm aqueous sodium carbonate solution and 0.3 mass% IRGANOX 1010 were added to the crude polyacetal copolymer obtained from the discharge port of the polymerization apparatus in the range shown by B in Figure 1, and the mixture was melt-kneaded and extruded continuously using a vented twin-screw extruder at a cylinder temperature of 220°C and a vacuum level of 5 mmHg in the vent section, to obtain pellets of polyacetal copolymer 11.
  • Polyacetal copolymer 12 As shown in Table 1, pellets of polyacetal copolymer 12 were obtained by the same production method as for polyacetal copolymer 11, except that the amount of methylal added was changed so that the MFR of the resulting copolymer would be 27 g/10 min.
  • Polyacetal copolymer 13 As shown in Table 1, pellets of polyacetal copolymer 13 were obtained by the same production method as for polyacetal copolymer 11, except that the type of the deactivator was changed.
  • pellets of polyacetal copolymers 1 to 13 were used to mold notched Charpy test specimens.
  • the MFR which is an index of fluidity in melt state of the resulting crude polyacetal copolymers.
  • the measurement was performed under conditions conforming to ISO1133, such as a load of 2.16 kg, a temperature of 190° C., and a discharged resin acquisition time of 7 minutes.
  • the method of the present invention makes it possible to produce polyacetal copolymers that can be used to obtain molded products with high impact resistance, and is expected to contribute to the advancement and dissemination of technology in this field.

Abstract

This polyacetal copolymer production method comprises: a step in which a trioxane and a comonomer that can be copolymerized with the troxane in the presence of a polymerization catalyst are copolymerized by a polymerization device; and a step in which a crude polyacetal copolymer obtained in the abovementioned step is melted/kneaded by an extruder. The polymerization catalyst is a protonic acid. In the melting/kneading step, a basic compound solution is added after the initiation of melting/kneading and before the completion of melting/kneading.

Description

ポリアセタール共重合体の製造方法Method for producing polyacetal copolymer
 本発明は、ポリアセタール共重合体の製造方法に関する。 The present invention relates to a method for producing a polyacetal copolymer.
 ポリアセタール共重合体の製造方法としては、重合触媒存在下、主モノマー(トリオキサン)と、当該主モノマーと共重合可能なコモノマーと、をカチオン重合させる方法が知られている。当該カチオン重合触媒としては、三フッ化ホウ素、四塩化スズ、四塩化チタン、五フッ化リン、五塩化リン、五フッ化アンチモンなどのルイス酸およびそれらの錯化合物またはそれらの塩が広く一般に用いられている。 A known method for producing polyacetal copolymers is to cationic polymerize a main monomer (trioxane) and a comonomer copolymerizable with the main monomer in the presence of a polymerization catalyst. Lewis acids such as boron trifluoride, tin tetrachloride, titanium tetrachloride, phosphorus pentafluoride, phosphorus pentachloride, and antimony pentafluoride, as well as their complex compounds or salts, are commonly used as the cationic polymerization catalyst.
 これらの重合触媒を用いる場合には、重合の際に比較的多量(例えば、全モノマーに対し40ppmまたはそれ以上)の重合触媒を添加することが必要となるため、製造工程において、重合後にポリアセタール共重合体中に残存した触媒を十分に失活させることが難しいという問題があった。また、重合触媒を失活化できたとしても、触媒由来の物質が共重合体中に残存することにより、共重合体の分解が促進されるなどの不具合が生じることもあった。 When using these polymerization catalysts, it is necessary to add a relatively large amount of the polymerization catalyst (for example, 40 ppm or more relative to the total monomers) during polymerization, which poses the problem that it is difficult to fully deactivate the catalyst remaining in the polyacetal copolymer after polymerization in the manufacturing process. Even if the polymerization catalyst can be deactivated, there are cases where problems such as accelerated decomposition of the copolymer occur due to substances derived from the catalyst remaining in the copolymer.
 近年では、優れた熱安定性を有し、かつ、ホルムアルデヒド発生量が極めて少ない高品質のポリアセタール共重合体が求められている。そのため、効率的な触媒の失活化、および触媒失活後における粗ポリアセタール共重合体の不安定末端部の分解処理による安定化などの検討がされている。 In recent years, there has been a demand for high-quality polyacetal copolymers that have excellent thermal stability and emit very little formaldehyde. For this reason, there has been research into efficient catalyst deactivation and stabilization of the crude polyacetal copolymer by decomposition of the unstable terminals after catalyst deactivation.
特開2014-105278号公報JP 2014-105278 A
 特許文献1によると、重合触媒としてヘテロポリ酸を用い、失活剤と共に溶融混練処理することにより、少量の触媒量で重合が可能となり、煩雑な工程を削減でき、高品質なポリアセタール共重合体を得ることができるとされている。 According to Patent Document 1, by using a heteropolyacid as a polymerization catalyst and melt-kneading it together with a deactivator, polymerization becomes possible with a small amount of catalyst, complicated processes can be eliminated, and a high-quality polyacetal copolymer can be obtained.
 しかしながら、ポリアセタール共重合体を用いた成形品の物性(耐衝撃性)についてはさらに検討の余地がある。 However, there is room for further study regarding the physical properties (impact resistance) of molded products using polyacetal copolymers.
 本発明は、かかる点に鑑みてなされたものであり、高い耐衝撃性を有する成形品を得ることができる、ポリアセタール共重合体の製造方法を提供することを目的とする。 The present invention was made in consideration of these points, and aims to provide a method for producing a polyacetal copolymer that can produce molded products with high impact resistance.
 本発明者は、鋭意検討の結果、以下の(1)~(5)に係る発明を完成させた。 As a result of extensive research, the inventors have completed the inventions described below in (1) to (5).
 (1)重合触媒存在下で、トリオキサンと、前記トリオキサンと共重合可能なコモノマーとを重合装置で共重合させる工程と、前記工程で得られる粗ポリアセタール共重合体を、押出機で溶融混錬する工程と、を有し、前記重合触媒はプロトン酸であり、前記溶融混練する工程において、溶融混練開始後、溶融混練終了までの間に塩基性化合物の溶液を添加する、ポリアセタール共重合体の製造方法。 (1) A method for producing a polyacetal copolymer, comprising the steps of: copolymerizing trioxane and a comonomer copolymerizable with the trioxane in a polymerization apparatus in the presence of a polymerization catalyst; and melt-kneading the crude polyacetal copolymer obtained in the above step in an extruder, wherein the polymerization catalyst is a protonic acid; and in the melt-kneading step, a solution of a basic compound is added between the start of melt-kneading and the end of melt-kneading.
 (2)前記プロトン酸は、ヘテロポリ酸である、(1)に記載のポリアセタール共重合体の製造方法。 (2) The method for producing a polyacetal copolymer according to (1), wherein the protonic acid is a heteropolyacid.
 (3)前記塩基性化合物の溶液は、アルカリ金属の炭酸塩、炭酸水素塩もしくはカルボン酸塩またはその水和物、または1g/Lの水溶液のpHが10以上の窒素含有有機化合物の水溶液である、(1)に記載のポリアセタール共重合体の製造方法。 (3) The method for producing a polyacetal copolymer according to (1), wherein the solution of the basic compound is an aqueous solution of an alkali metal carbonate, hydrogen carbonate, or carboxylate, or a hydrate thereof, or an aqueous solution of a nitrogen-containing organic compound, the pH of which at 1 g/L is 10 or higher.
 (4)前記アルカリ金属は、ナトリウムまたはカリウムである、(3)に記載のポリアセタール共重合体の製造方法。 (4) The method for producing a polyacetal copolymer according to (3), wherein the alkali metal is sodium or potassium.
 (5)前記窒素含有有機化合物は、アミンである、(3)に記載のポリアセタール共重合体の製造方法。 (5) The method for producing a polyacetal copolymer according to (3), wherein the nitrogen-containing organic compound is an amine.
 本発明によれば、高い耐衝撃性を有する成形品を得ることができる、ポリアセタール共重合体の製造方法を提供することができる。 The present invention provides a method for producing a polyacetal copolymer that can produce molded products with high impact resistance.
図1は、本発明の一実施形態に係る製造方法の概略を示すフローチャートである。FIG. 1 is a flow chart showing an outline of a manufacturing method according to one embodiment of the present invention.
 以下に、本発明の具体的な実施形態について詳細に説明する。なお、本発明は以下の実施形態に限定されるものではなく、本発明の要旨を変更しない範囲で適宜変更が可能である。 Specific embodiments of the present invention are described in detail below. Note that the present invention is not limited to the following embodiments, and can be modified as appropriate without departing from the spirit of the present invention.
 [ポリアセタール共重合体の製造方法]
 本発明の一実施形態に係るポリアセタール共重合体の製造方法は、重合触媒(プロトン酸)存在下で、トリオキサンと、トリオキサンと共重合可能なコモノマーとを重合装置で共重合させる工程と、当該工程で得られる粗ポリアセタール共重合体を、押出機で溶融混錬する工程と、を有する。溶融混練する工程においては、溶融混練開始後、溶融混練終了までの間に、押出機内に失活剤として塩基性化合物の溶液を添加する工程を有する。
[Method for producing polyacetal copolymer]
A method for producing a polyacetal copolymer according to one embodiment of the present invention includes a step of copolymerizing trioxane and a comonomer copolymerizable with trioxane in a polymerization apparatus in the presence of a polymerization catalyst (protonic acid), and a step of melt-kneading the crude polyacetal copolymer obtained in the step in an extruder. The melt-kneading step includes a step of adding a solution of a basic compound as a deactivator into the extruder after the start of the melt-kneading and before the end of the melt-kneading.
 以下、各構成成分および各工程について説明する。 The components and steps are explained below.
 (トリオキサン)
 トリオキサンは、ホルムアルデヒドの環状三量体である。本発明の一実施形態に係るトリオキサンは主モノマーとして用いられる。ここで、主モノマーとは、全モノマー中、単独で最も多く含まれているモノマーのことをいう。なお、トリオキサンは、一般的には酸性触媒の存在下でホルムアルデヒド水溶液を反応させることによって得られ、これを蒸留等の方法で精製して用いられる。
(Trioxane)
Trioxane is a cyclic trimer of formaldehyde. Trioxane according to one embodiment of the present invention is used as a main monomer. Here, the main monomer refers to a monomer that is contained in the largest amount among all monomers. Trioxane is generally obtained by reacting an aqueous solution of formaldehyde in the presence of an acid catalyst, and is used after being purified by a method such as distillation.
 (コモノマー)
 本発明の一実施形態に係るコモノマーは、トリオキサンと共重合するものであれば特に限定されない。コモノマーとしては、少なくとも1つの炭素-炭素結合を有する環状エーテルおよび環状ホルマールからなる群から選択されることが好ましい。
(Comonomer)
The comonomer according to one embodiment of the present invention is not particularly limited as long as it is copolymerizable with trioxane. The comonomer is preferably selected from the group consisting of cyclic ethers and cyclic formals having at least one carbon-carbon bond.
 コモノマーの例には、1,3-ジオキソラン、ジエチレングリコールホルマール、1,4-ブタンジオールホルマール、1,3-ジオキサン、エチレンオキシド、プロピレンオキシド、エピクロルヒドリン等が含まれる。これらの中では、重合安定性の観点から、1,3-ジオキソラン、1,4-ブタンジオールホルマールが好ましい。 Examples of comonomers include 1,3-dioxolane, diethylene glycol formal, 1,4-butanediol formal, 1,3-dioxane, ethylene oxide, propylene oxide, epichlorohydrin, etc. Among these, 1,3-dioxolane and 1,4-butanediol formal are preferred from the viewpoint of polymerization stability.
 また、コモノマーとして、ブタンジオールジグリシジルエーテル等のアルキレングリコールのジグリシジルエーテルやジホルマールのような2個の重合性環状エーテル基または環状ホルマール基を有する化合物、グリセリントリグリシジルエーテル、トリメチロールプロパントリグリシジルエーテル、ペンタエリスリトールテトラグリシジルエーテル等の3個以上の重合性環状エーテル基または環状ホルマール基を有する化合物を用いることもできる。これらのコモノマーを用いることによって、分岐構造や架橋構造が形成されたポリアセタール共重合体を得ることができる。 Also, as comonomers, compounds having two polymerizable cyclic ether groups or cyclic formal groups, such as diglycidyl ether of alkylene glycols, such as butanediol diglycidyl ether, and diformal, and compounds having three or more polymerizable cyclic ether groups or cyclic formal groups, such as glycerin triglycidyl ether, trimethylolpropane triglycidyl ether, and pentaerythritol tetraglycidyl ether, can be used. By using these comonomers, it is possible to obtain polyacetal copolymers having a branched structure or a crosslinked structure.
 本発明の一実施形態に係るコモノマーの含有量は、トリオキサン100質量部に対して0.01~20質量部であることが好ましく、0.5~10質量部であることがより好ましく、1~8質量部であることが特に好ましい。コモノマーの含有量が、トリオキサン100質量部に対して0.01質量部以上20質量部以下であると、重合を安定的に進行させることができるとともに、ポリマー鎖の結晶化速度の低下や結晶化度の低下を抑制することもできる。 The content of the comonomer in one embodiment of the present invention is preferably 0.01 to 20 parts by mass, more preferably 0.5 to 10 parts by mass, and particularly preferably 1 to 8 parts by mass, per 100 parts by mass of trioxane. If the content of the comonomer is 0.01 to 20 parts by mass per 100 parts by mass of trioxane, polymerization can proceed stably and a decrease in the crystallization rate and degree of crystallization of the polymer chain can be suppressed.
 (重合触媒)
 重合触媒は、カチオン重合触媒である。カチオン重合触媒の例には、ルイス酸、プロトン酸が含まれる。
(Polymerization catalyst)
The polymerization catalyst is a cationic polymerization catalyst. Examples of the cationic polymerization catalyst include Lewis acids and protonic acids.
 <ルイス酸>
 ルイス酸の例には、三フッ化ホウ素、四塩化スズ、四塩化チタン、五フッ化リン、五塩化リン、五フッ化アンチモンおよびその錯化合物またはその塩が含まれる。
<Lewis Acid>
Examples of the Lewis acid include boron trifluoride, tin tetrachloride, titanium tetrachloride, phosphorus pentafluoride, phosphorus pentachloride, antimony pentafluoride, and complex compounds or salts thereof.
 <プロトン酸>
 プロトン酸の例には、パーフルオロアルカンスルホン酸、ヘテロポリ酸、イソポリ酸等が含まれる。
<Protonic Acid>
Examples of protonic acids include perfluoroalkanesulfonic acids, heteropolyacids, isopolyacids, and the like.
 パーフルオロアルカンスルホン酸の例には、トリフルオロメタンスルホン酸、ペンタフルオロエタンスルホン酸、ヘプタフルオロプロパンスルホン酸、ノナフルオロブタンスルホン酸、ウンデカフルオロペンタンスルホン酸、トリデカフルオロヘキサンスルホン酸、ペンタデカフルオロへプタンスルホン酸、ヘプタデカフルオロオクタンスルホン酸が含まれる。 Examples of perfluoroalkanesulfonic acids include trifluoromethanesulfonic acid, pentafluoroethanesulfonic acid, heptafluoropropanesulfonic acid, nonafluorobutanesulfonic acid, undecafluoropentanesulfonic acid, tridecafluorohexanesulfonic acid, pentadecafluoroheptanesulfonic acid, and heptadecafluorooctanesulfonic acid.
 ヘテロポリ酸の例には、リンタングステン酸、リンモリブデン酸、リンモリブドタングステン酸、リンモリブドバナジン酸、リンモリブドタングストバナジン酸、リンタングストバナジン酸、ケイタングステン酸、ケイモリブデン酸、ケイモリブドタングステン酸、ケイモリブドタングステントバナジン酸が含まれる。 Examples of heteropolyacids include phosphotungstic acid, phosphomolybdic acid, phosphomolybdotungstic acid, phosphomolybdovanadic acid, phosphomolybdotungstovanadic acid, phosphotungstovanadic acid, silicotungstic acid, silicomolybdic acid, silicomolybdotungstic acid, and silicomolybdotungstenovanadic acid.
 イソポリ酸の例には、パラタングステン酸、メタタングステン酸、パラモリブデン酸、メタモリブデン酸、メタポリバナジウム酸、イソポリバナジウム酸が含まれる。 Examples of isopolyacids include paratungstic acid, metatungstic acid, paramolybdic acid, metamolybdic acid, metapolyvanadic acid, and isopolyvanadic acid.
 本発明の一実施形態に係る重合触媒の添加量は、全モノマーの合計量に対して0.1ppm以上であることが好ましい。また、重合触媒の添加量の上限値は、特に限定されないが、50ppm以下であることが好ましく、30ppm以下であることがより好ましく、10ppm以下であることが特に好ましい(以下、単位のppmはすべて質量基準である)。なお、重合触媒は、ギ酸メチル、シクロヘキサンなどの重合に悪影響を及ぼさない溶媒の溶液として添加することが好ましい。 The amount of polymerization catalyst added in one embodiment of the present invention is preferably 0.1 ppm or more relative to the total amount of all monomers. The upper limit of the amount of polymerization catalyst added is not particularly limited, but is preferably 50 ppm or less, more preferably 30 ppm or less, and particularly preferably 10 ppm or less (hereinafter, the unit ppm is all based on mass). The polymerization catalyst is preferably added as a solution in a solvent that does not adversely affect polymerization, such as methyl formate or cyclohexane.
 また、本発明の一実施形態に係る重合触媒はプロトン酸であることが好ましく、ヘテロポリ酸であることがより好ましい。ヘテロポリ酸を用いることにより、従来よりも少ない添加量で重合反応を十分に進行させることができるので、触媒による重合体の主鎖分解、解重合等の所望しない反応を抑制することができる。 In addition, the polymerization catalyst according to one embodiment of the present invention is preferably a protonic acid, and more preferably a heteropolyacid. By using a heteropolyacid, the polymerization reaction can be sufficiently promoted with a smaller amount of the catalyst than before, and undesirable reactions such as decomposition of the polymer main chain and depolymerization caused by the catalyst can be suppressed.
 (塩基性化合物)
 本発明の一実施形態に係る塩基性化合物は、アルカリ金属の炭酸塩、炭酸水素塩もしくはカルボン酸塩またはその水和物、または1g/Lの水溶液のpHが10以上の窒素含有有機化合物の水溶液であることが好ましい。
(Basic Compound)
The basic compound according to one embodiment of the present invention is preferably an alkali metal carbonate, hydrogen carbonate or carboxylate, or a hydrate thereof, or an aqueous solution of a nitrogen-containing organic compound having a pH of 10 or higher when 1 g/L of the aqueous solution.
 <アルカリ金属の炭酸塩、炭酸水素塩もしくはカルボン酸塩またはその水和物>
 アルカリ金属の炭酸塩、炭酸水素塩もしくはカルボン酸塩またはその水和物としては、ナトリウムまたはカリウムを含む炭酸塩、炭酸水素塩もしくはカルボン酸塩またはその水和物であることが好ましい。
<Alkali metal carbonate, hydrogen carbonate or carboxylate, or hydrate thereof>
The carbonate, hydrogencarbonate or carboxylate of an alkali metal or a hydrate thereof is preferably a carbonate, hydrogencarbonate or carboxylate containing sodium or potassium or a hydrate thereof.
 これらの例には、ギ酸ナトリウム、酢酸ナトリウム、炭酸ナトリウム、炭酸水素ナトリウム、コハク酸二ナトリウム、ラウリン酸ナトリウム、パルミチン酸ナトリウム、ステアリン酸ナトリウム、炭酸カリウム、および酢酸カリウムが含まれる。これらの中では、炭酸ナトリウム、および炭酸カリウムであることが好ましい。なお、これらは1種類のみを単独で使用してもよく、2種類以上を併用してもよい。 Examples of these include sodium formate, sodium acetate, sodium carbonate, sodium bicarbonate, disodium succinate, sodium laurate, sodium palmitate, sodium stearate, potassium carbonate, and potassium acetate. Of these, sodium carbonate and potassium carbonate are preferred. These may be used alone or in combination of two or more.
 また、上述のアルカリ金属の炭酸塩、炭酸水素塩もしくはカルボン酸塩またはその水和物は、水溶液として用いることが好ましい。 In addition, the above-mentioned alkali metal carbonates, hydrogen carbonates, or carboxylates, or their hydrates, are preferably used as aqueous solutions.
 <窒素含有有機化合物>
 窒素含有有機化合物は、アミンであることが好ましい。
<Nitrogen-containing organic compounds>
Preferably, the nitrogen-containing organic compound is an amine.
 アミンの例には、ジメチルアミン、トリメチルアミン、トリエチルアミン、トリブチルアミン、トリエタノールアミン、トリブタノールアミンが含まれる。これらの中では、水溶液として用いることができるジメチルアミン、トリメチルアミン、トリエチルアミンおよびトリエタノールアミンであることが好ましく、トリエチルアミンであることがより好ましい。 Examples of amines include dimethylamine, trimethylamine, triethylamine, tributylamine, triethanolamine, and tributanolamine. Among these, dimethylamine, trimethylamine, triethylamine, and triethanolamine, which can be used as an aqueous solution, are preferred, and triethylamine is more preferred.
 また、本発明の一実施形態に係る塩基性化合物の添加量は、樹脂に対して5ppm以上であることが好ましく、10ppm以上であることがより好ましい。また、塩基性化合物の添加量の上限値は、特に限定されないが、50ppm以下であることが好ましく、20ppm以下であることがより好ましい。塩基性化合物の水溶液の濃度が10ppm以上20ppm以下であることにより、高い耐衝撃性を有する成形品を得ることができる。 In addition, the amount of the basic compound added in one embodiment of the present invention is preferably 5 ppm or more relative to the resin, and more preferably 10 ppm or more. In addition, the upper limit of the amount of the basic compound added is not particularly limited, but is preferably 50 ppm or less, and more preferably 20 ppm or less. By having the concentration of the aqueous solution of the basic compound be 10 ppm or more and 20 ppm or less, a molded product with high impact resistance can be obtained.
 (ポリアセタール共重合体の製造方法)
 本発明の一実施形態に係るポリアセタール共重合体の製造方法では、例えば、バッチ式、連続式などの公知の方法および重合装置を用いて行うことができる。
(Method for producing polyacetal copolymer)
The method for producing the polyacetal copolymer according to one embodiment of the present invention can be carried out using a known method and polymerization apparatus, such as a batch method or a continuous method.
 バッチ式の重合装置では、一般に用いられる撹拌機付きの反応槽などを使用することができる。また、連続式の重合装置では、コニーダー、二軸スクリュー式連続押出混合機、二軸パドルスクリュー押出機、ベント付き二軸押出機などを使用することができる。工業的に好ましい製造方法は連続式である。 In batch polymerization equipment, a commonly used reaction vessel equipped with an agitator can be used. In continuous polymerization equipment, a co-kneader, a twin-screw continuous extrusion mixer, a twin-screw paddle screw extruder, a vented twin-screw extruder, etc. can be used. The industrially preferred production method is the continuous method.
 具体的には、図1に示されるように本発明の一実施形態に係る製造方法は、所定の温度に加熱した重合装置に、トリオキサン、コモノマー、重合触媒(プロトン酸)、および任意の重合反応用の添加剤を含有する混合液を連続的に供給し、所定の時間重合させる工程(以下、「重合工程」ともいう)と、重合工程で得られた粗ポリアセタール共重合体を押出機で溶融混練する工程(以下、「溶融混練工程」ともいう)を有する。溶融混練工程では、溶融混練開始後、溶融混練終了までの間(図1のAで示す工程)に、押出機内に失活剤として塩基性化合物の水溶液を添加する工程を有する。 Specifically, as shown in Figure 1, the production method according to one embodiment of the present invention includes a step of continuously supplying a mixed liquid containing trioxane, a comonomer, a polymerization catalyst (protonic acid), and any additives for polymerization reactions to a polymerization apparatus heated to a predetermined temperature and polymerizing for a predetermined time (hereinafter also referred to as the "polymerization step"), and a step of melt-kneading the crude polyacetal copolymer obtained in the polymerization step in an extruder (hereinafter also referred to as the "melt-kneading step"). The melt-kneading step includes a step of adding an aqueous solution of a basic compound as a deactivator to the extruder after the start of melt-kneading and before the end of melt-kneading (step shown by A in Figure 1).
 溶融混練工程において、溶融混練開始後、溶融混練終了までの間に、塩基性化合物の水溶液を添加することにより、高い耐衝撃性を有するポリアセタール共重合体を得ることができる。なお、ポリアセタール共重合体の衝撃強度は、ISO 179/1eAに準じて、衝撃試験機で測定することができる。 In the melt-kneading process, by adding an aqueous solution of a basic compound between the start and end of melt-kneading, a polyacetal copolymer with high impact resistance can be obtained. The impact strength of the polyacetal copolymer can be measured using an impact tester in accordance with ISO 179/1eA.
 また、触媒の失活処理の際には、その他の重合体、その他の充填剤、窒素化合物、紫外線吸収剤等の安定剤、金属塩等の抗酸剤、帯電防止剤、難燃剤、染料や顔料等の着色剤、潤滑剤、離型剤、結晶化促進剤、結晶核剤等のその他の成分も要求性能に応じて適宜添加してもよい。これらは、1種類のみを単独で使用してもよく、2種類以上を併用してもよい。 In addition, during catalyst deactivation treatment, other components such as other polymers, other fillers, nitrogen compounds, stabilizers such as ultraviolet absorbers, acid inhibitors such as metal salts, antistatic agents, flame retardants, colorants such as dyes and pigments, lubricants, release agents, crystallization accelerators, and crystal nucleating agents may also be added as appropriate depending on the required performance. These may be used alone or in combination of two or more types.
 以下、実施例により本発明を具体的に説明するが、本発明はこれらに限定されるものではない。 The present invention will be explained in detail below with reference to examples, but the present invention is not limited to these.
 1.ポリアセタール共重合体1~13の製造
 [ポリアセタール共重合体1]
 (重合装置)
 重合装置としては、連続二軸パドルスクリュー押出機を用いた。当該押出機は胴体部の外側に加熱用または冷却用の媒体を通すためのジャケットを備える。また、当該胴体部は上下分割構造であり、上部開放が可能な構造となっている。当該押出機の内部には撹拌、推進用の多数のバドルを付した2本の回転軸が長手方向に設けられている。
1. Production of polyacetal copolymers 1 to 13 [Polyacetal copolymer 1]
(Polymerization Apparatus)
A continuous twin-shaft paddle screw extruder was used as the polymerization device. The extruder was equipped with a jacket on the outside of the body for passing a heating or cooling medium. The body was divided into an upper and lower part, and the upper part was openable. Inside the extruder, two rotating shafts with many paddles for stirring and propulsion were installed in the longitudinal direction.
 (製造方法)
 80℃の媒体をジャケットに通じ加熱した重合装置に、単位時間当たり、100質量部のトリオキサン(TOX)と、4.0質量部の1,3-ジオキソラン(DO)と、所定量のメチラールと、を含有する混合液を連続的に供給するとともに、5.0ppmのリンタングステン酸(HPW1240)をギ酸メチル溶液として添加し、重合反応を行った。
(Production method)
A mixed liquid containing 100 parts by mass of trioxane (TOX), 4.0 parts by mass of 1,3-dioxolane (DO), and a predetermined amount of methylal was continuously supplied per unit time to a polymerization apparatus in which a medium at 80° C. was passed through the jacket, and 5.0 ppm of tungstophosphoric acid (H 3 PW 12 O 40 ) was added as a methyl formate solution to carry out a polymerization reaction.
 次いで、重合装置の吐出口から得られた粗ポリアセタール共重合体に対して、0.3質量%のIRGANOX 1010(BASFジャパン製、「IRGANOX」はBASF社の登録商標)を加えて、図1のBで示す範囲でベント付き二軸押出機に投入した後、押出機のシリンダー温度220℃、ベント部の真空度が5mmHgの条件下で溶融混練を開始した後、押出機の吐出口から溶融樹脂を吐出し溶融混練が終了するまでの間(図1のAで示す工程)に、樹脂に対して15ppmの炭酸ナトリウムを2.0wt%の水溶液として添加し、溶融混練終了後に、押出機から押し出すことにより、ポリアセタール共重合体1のペレットを得た。 Next, 0.3% by mass of IRGANOX 1010 (manufactured by BASF Japan, "IRGANOX" is a registered trademark of BASF) was added to the crude polyacetal copolymer obtained from the discharge port of the polymerization apparatus, and the mixture was fed into a vented twin-screw extruder in the range shown by B in Figure 1. Melt-kneading was then started under conditions of an extruder cylinder temperature of 220°C and a vent vacuum of 5 mmHg. After the molten resin was discharged from the extruder discharge port and melt-kneading was completed (the process shown by A in Figure 1), 15 ppm of sodium carbonate was added to the resin as a 2.0 wt% aqueous solution, and after melt-kneading was completed, the mixture was extruded from the extruder to obtain pellets of polyacetal copolymer 1.
 なお、メチラールの添加量は、得られる共重合体のメルトフローレート(MFR)が9g/10分となるように調整された量である。MFRは、ISO1133に準拠し、メルトインデクサ L220型(株式会社立山科学ハイテクノロジーズ製)を用いて、荷重2.16kg、温度190℃、吐出樹脂取得時間7分の条件で測定した。 The amount of methylal added was adjusted so that the melt flow rate (MFR) of the resulting copolymer was 9 g/10 min. The MFR was measured in accordance with ISO 1133 using a Melt Indexer L220 (manufactured by Tateyama Kagaku High-Technologies Co., Ltd.) under conditions of a load of 2.16 kg, a temperature of 190°C, and a resin discharge time of 7 minutes.
 [ポリアセタール共重合体2、3]
 表1に示すとおりに、1,3-ジオキソラン(DO)の含有量を変更した以外は、ポリアセタール共重合体1と同様の製造方法により、ポリアセタール共重合体2、3のペレットを得た。
[Polyacetal copolymers 2 and 3]
As shown in Table 1, pellets of polyacetal copolymers 2 and 3 were obtained by the same production method as for polyacetal copolymer 1, except that the content of 1,3-dioxolane (DO) was changed.
 [ポリアセタール共重合体4]
 表1に示すとおりに、コモノマーの種類を1,4-ブタンジオールホルマール(BDF)に変更した以外は、ポリアセタール共重合体1と同様の製造方法により、ポリアセタール共重合体4のペレットを得た。
[Polyacetal copolymer 4]
As shown in Table 1, pellets of polyacetal copolymer 4 were obtained by the same production method as for polyacetal copolymer 1, except that the type of comonomer was changed to 1,4-butanediol formal (BDF).
 [ポリアセタール共重合体5、6]
 表1に示すとおりに、重合触媒の種類を変更した以外は、ポリアセタール共重合体1と同様の製造方法により、ポリアセタール共重合体5、6のペレットを得た。
[Polyacetal copolymers 5 and 6]
As shown in Table 1, pellets of polyacetal copolymers 5 and 6 were obtained by the same production method as for polyacetal copolymer 1, except that the type of polymerization catalyst was changed.
 [ポリアセタール共重合体7~9]
 表1に示すとおりに、失活剤の種類を変更した以外は、ポリアセタール共重合体1と同様の製造方法により、ポリアセタール共重合体7~9のペレットを得た。
[Polyacetal Copolymers 7-9]
As shown in Table 1, pellets of polyacetal copolymers 7 to 9 were obtained by the same production method as for polyacetal copolymer 1, except that the type of the deactivator was changed.
 [ポリアセタール共重合体10]
 表1に示すとおりに、得られる共重合体のMFRが27g/10分になるように、メチラールの添加量を変更した以外は、ポリアセタール共重合体1と同様の製造方法により、ポリアセタール共重合体10のペレットを得た。
[Polyacetal copolymer 10]
As shown in Table 1, pellets of polyacetal copolymer 10 were obtained by the same production method as for polyacetal copolymer 1, except that the amount of methylal added was changed so that the MFR of the resulting copolymer would be 27 g/10 min.
 [ポリアセタール共重合体11]
 80℃の媒体をジャケットに通じ加熱した重合装置に、単位時間当たり、100質量部のトリオキサン(TOX)と、4.0質量部の1,3-ジオキソラン(DO)と、所定量のメチラールと、を含有する混合液を連続的に供給するとともに、5.0ppmのリンタングステン酸(HPW1240)をギ酸メチル溶液として添加し、重合反応を行った。
[Polyacetal copolymer 11]
A mixed liquid containing 100 parts by mass of trioxane (TOX), 4.0 parts by mass of 1,3-dioxolane (DO), and a predetermined amount of methylal was continuously supplied per unit time to a polymerization apparatus in which a medium at 80° C. was passed through the jacket, and 5.0 ppm of tungstophosphoric acid (H 3 PW 12 O 40 ) was added as a methyl formate solution to carry out a polymerization reaction.
 重合装置の吐出口より得られた粗ポリアセタール共重合体に対して、図1のBで示す範囲で15ppmの炭酸ナトリウム水溶液および0.3質量%のIRGANOX 1010を添加し、連続的にベント付き二軸押出機を用いて、押出機のシリンダー温度220℃、ベント部の真空度が5mmHgの条件下で溶融混練して押し出し、ポリアセタール共重合体11のペレットを得た。 A 15 ppm aqueous sodium carbonate solution and 0.3 mass% IRGANOX 1010 were added to the crude polyacetal copolymer obtained from the discharge port of the polymerization apparatus in the range shown by B in Figure 1, and the mixture was melt-kneaded and extruded continuously using a vented twin-screw extruder at a cylinder temperature of 220°C and a vacuum level of 5 mmHg in the vent section, to obtain pellets of polyacetal copolymer 11.
 [ポリアセタール共重合体12]
 表1に示すとおりに、得られる共重合体のMFRが27g/10分になるように、メチラールの添加量を変更した以外は、ポリアセタール共重合体11と同様の製造方法により、ポリアセタール共重合体12のペレットを得た。
[Polyacetal copolymer 12]
As shown in Table 1, pellets of polyacetal copolymer 12 were obtained by the same production method as for polyacetal copolymer 11, except that the amount of methylal added was changed so that the MFR of the resulting copolymer would be 27 g/10 min.
 [ポリアセタール共重合体13]
 表1に示すとおりに、失活剤の種類を変更した以外は、ポリアセタール共重合体11と同様の製造方法により、ポリアセタール共重合体13のペレットを得た。
[Polyacetal copolymer 13]
As shown in Table 1, pellets of polyacetal copolymer 13 were obtained by the same production method as for polyacetal copolymer 11, except that the type of the deactivator was changed.
 2.評価
 上述の製造方法で得たポリアセタール共重合体1~13について、シャルピー衝撃強度の評価を行った。
2. Evaluation The polyacetal copolymers 1 to 13 obtained by the above-mentioned production method were evaluated for Charpy impact strength.
 (試験片の作製)
 ISO179/IeAに準拠して、ポリアセタール共重合体1~13のペレットを用い、ノッチ付きシャルピー試験片を成形した。
(Preparation of test specimens)
In accordance with ISO179/IeA, pellets of polyacetal copolymers 1 to 13 were used to mold notched Charpy test specimens.
 (評価方法)
 試験片を用いて、ISO179/IeAに準拠して、23℃でのシャルピー衝撃強度を測定した。
(Evaluation method)
The Charpy impact strength of the test pieces was measured at 23° C. in accordance with ISO 179/IeA.
 [MFRの測定]
 ポリアセタール共重合体1~13の製造において、得られる粗ポリアセタール共重合体の溶融時の流動性の指標であるMFRを以下のようにして求めた。
 (測定方法)
 株式会社立山科学ハイテクノロジーズ製のメルトインデクサ L220型を用いて、ISO1133に準拠した、荷重2.16kg、温度190℃、吐出樹脂取得時間7分の条件で測定した。
[Measurement of MFR]
In the production of polyacetal copolymers 1 to 13, the MFR, which is an index of fluidity in melt state of the resulting crude polyacetal copolymers, was determined as follows.
(Measuring method)
Using a Melt Indexer L220 manufactured by Tateyama Kagaku High-Technologies Corporation, the measurement was performed under conditions conforming to ISO1133, such as a load of 2.16 kg, a temperature of 190° C., and a discharged resin acquisition time of 7 minutes.
 ポリアセタール共重合体1~13の主たる構成成分および評価結果を表1に示す。また、表1中の略語は以下のとおりである。 The main components and evaluation results of polyacetal copolymers 1 to 13 are shown in Table 1. The abbreviations in Table 1 are as follows:
 (主モノマー)
 TOX:トリオキサン
 (コモノマー)
 DO :1,3-ジオキソラン
 BDF:1,4-ブタンジオールホルマール
(Main Monomer)
TOX: Trioxane (comonomer)
DO: 1,3-dioxolane BDF: 1,4-butanediol formal
 (重合触媒)
 HPW1240 :リンタングステン酸
 HPMo1240:リンモリブデン酸
(Polymerization catalyst)
H 3 PW 12 O 40 : Phosphotungstic acid H 3 PMo 12 O 40 : Phosphomolybdic acid
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示されるように、失活剤の添加位置を「A」にすることにより、添加位置が「B」としたときと比較して、同一のメルトフローレート(MFR)で製造されたポリアセタール共重合体からなる成形品同士を比較すると、失活剤の添加位置を「A」にすることにより、添加位置が「B」としたときよりも得られる成形品の耐衝撃性が高くなることを確認することができた。 As shown in Table 1, when comparing molded articles made of polyacetal copolymers produced at the same melt flow rate (MFR), it was confirmed that adding the deactivator at position "A" results in a molded article with higher impact resistance than adding the deactivator at position "B," when compared to adding the deactivator at position "A."
 本発明の方法を用いることにより、高い耐衝撃性を有する成形品を得ることができるポリアセタール共重合体を製造することができるので、同分野の技術の進展および普及に貢献することが期待される。 The method of the present invention makes it possible to produce polyacetal copolymers that can be used to obtain molded products with high impact resistance, and is expected to contribute to the advancement and dissemination of technology in this field.

Claims (5)

  1.  重合触媒存在下で、トリオキサンと、前記トリオキサンと共重合可能なコモノマーとを重合装置で共重合させる工程と、
     前記工程で得られる粗ポリアセタール共重合体を、押出機で溶融混錬する工程と、
     を有し、
     前記重合触媒はプロトン酸であり、
     前記溶融混練する工程において、溶融混練開始後、溶融混練終了までの間に塩基性化合物の溶液を添加する、
     ポリアセタール共重合体の製造方法。
    copolymerizing trioxane and a comonomer copolymerizable with said trioxane in a polymerization apparatus in the presence of a polymerization catalyst;
    A step of melt-kneading the crude polyacetal copolymer obtained in the above step in an extruder;
    having
    the polymerization catalyst is a protonic acid;
    In the melt-kneading step, a solution of a basic compound is added during the period from the start of melt-kneading to the end of melt-kneading.
    A method for producing a polyacetal copolymer.
  2.  前記プロトン酸は、ヘテロポリ酸である、請求項1に記載のポリアセタール共重合体の製造方法。 The method for producing a polyacetal copolymer according to claim 1, wherein the protonic acid is a heteropolyacid.
  3.  前記塩基性化合物の溶液は、アルカリ金属の炭酸塩、炭酸水素塩もしくはカルボン酸塩またはその水和物、または1g/Lの水溶液のpHが10以上の窒素含有有機化合物の水溶液である、請求項1に記載のポリアセタール共重合体の製造方法。 The method for producing a polyacetal copolymer according to claim 1, wherein the solution of the basic compound is an aqueous solution of an alkali metal carbonate, hydrogen carbonate, or carboxylate, or a hydrate thereof, or an aqueous solution of a nitrogen-containing organic compound having a pH of 10 or more at 1 g/L.
  4.  前記アルカリ金属は、ナトリウムまたはカリウムである、請求項3に記載のポリアセタール共重合体の製造方法。 The method for producing a polyacetal copolymer according to claim 3, wherein the alkali metal is sodium or potassium.
  5.  前記窒素含有有機化合物は、アミンである、請求項3に記載のポリアセタール共重合体の製造方法。 The method for producing a polyacetal copolymer according to claim 3, wherein the nitrogen-containing organic compound is an amine.
PCT/JP2023/042706 2022-12-23 2023-11-29 Polyacetal copolymer production method WO2024135260A1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022-206232 2022-12-23

Publications (1)

Publication Number Publication Date
WO2024135260A1 true WO2024135260A1 (en) 2024-06-27

Family

ID=

Similar Documents

Publication Publication Date Title
JP5567779B2 (en) Process for producing oxymethylene polymers, selected polymers, and uses thereof
CN111484585B (en) Preparation method of polyacetal resin
CN111770945B (en) Process for producing polyacetal copolymer
JP2013028804A (en) Process for producing oxymethylene polymers
WO2023171315A1 (en) Method for producing polyacetal copolymer
WO2024135260A1 (en) Polyacetal copolymer production method
JP5955424B1 (en) Method for producing polyacetal resin composition
WO2016125357A1 (en) Polyacetal resin composition
CN114044865A (en) Preparation method of polyacetal composition
JP4937436B2 (en) Polyacetal copolymer and process for producing the same
WO2024100991A1 (en) Polyacetal copolymer production method
JP3998806B2 (en) Method for producing polyacetal resin
WO2020137414A1 (en) Polyacetal resin composition and method for producing polyacetal resin composition
JP7365531B2 (en) Manufacturing method of modified polyacetal resin
CN112321786B (en) Preparation method of low-VOC polyacetal composition
JP7333485B2 (en) Method for producing polyacetal copolymer
JP2024045843A (en) Polyacetal resin composition
CN115232434B (en) Polyoxymethylene resin composition
WO2024101269A1 (en) Polyacetal copolymer production method
WO2024101270A1 (en) Method for producing polyacetal copolymer
JP4979856B2 (en) Polyacetal resin composition
JP3933925B2 (en) Modified polyacetal resin and method for producing the same
CN112752778A (en) Polyacetal copolymer and method for producing same