WO2020137414A1 - Polyacetal resin composition and method for producing polyacetal resin composition - Google Patents

Polyacetal resin composition and method for producing polyacetal resin composition Download PDF

Info

Publication number
WO2020137414A1
WO2020137414A1 PCT/JP2019/047575 JP2019047575W WO2020137414A1 WO 2020137414 A1 WO2020137414 A1 WO 2020137414A1 JP 2019047575 W JP2019047575 W JP 2019047575W WO 2020137414 A1 WO2020137414 A1 WO 2020137414A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
polyacetal resin
polyacetal
resin composition
formula
Prior art date
Application number
PCT/JP2019/047575
Other languages
French (fr)
Japanese (ja)
Inventor
直裕 喜来
栄次 増田
Original Assignee
ポリプラスチックス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ポリプラスチックス株式会社 filed Critical ポリプラスチックス株式会社
Priority to CN201980062586.5A priority Critical patent/CN112752779B/en
Publication of WO2020137414A1 publication Critical patent/WO2020137414A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2/00Addition polymers of aldehydes or cyclic oligomers thereof or of ketones; Addition copolymers thereof with less than 50 molar percent of other substances
    • C08G2/18Copolymerisation of aldehydes or ketones
    • C08G2/22Copolymerisation of aldehydes or ketones with epoxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L59/00Compositions of polyacetals; Compositions of derivatives of polyacetals
    • C08L59/02Polyacetals containing polyoxymethylene sequences only
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L59/00Compositions of polyacetals; Compositions of derivatives of polyacetals
    • C08L59/04Copolyoxymethylenes

Definitions

  • the present invention relates to a polyacetal resin composition having excellent mechanical properties and a method for producing the polyacetal resin composition.
  • Polyacetal resin has excellent properties in mechanical properties, thermal properties, electrical properties, slidability, moldability, etc., and is mainly used as electrical materials, automobile parts, precision machinery as structural materials and mechanical parts. Widely used for parts. However, with the expansion of fields in which polyacetal resins are used, the required properties tend to become more sophisticated, complex, and specialized. As such required properties, further improvement is required for improving rigidity and suppressing generation of formaldehyde while maintaining the excellent slidability, appearance, etc. originally possessed by the polyacetal resin.
  • Patent Document 1 Attempts have also been made to improve the rigidity by blending a polyacetal copolymer having a branched structure introduced therein (Patent Document 1), but at the time of polymerization of the polyacetal copolymer having a branched structure introduced, a cationic polymerization catalyst, depending on the type of comonomer, In particular, when a protonic acid is used as a polymerization catalyst, the initiation of polymerization may be delayed and the polymerization may suddenly and explosively occur, which is a problem from the viewpoint of production stability.
  • Patent Document 2 a copolymer obtained by copolymerizing trioxane and a compound having two or more glycidyl ether groups in one molecule has been proposed (Patent Document 2).
  • Patent Document 2 a compound having a plurality of epoxy groups represented by glycidyl ether groups and a plurality of ether oxygens as functional groups for polymerization.
  • a protic acid is used as a polymerization catalyst, polymerization does not occur at a low catalyst amount, and increasing the catalyst amount causes a phenomenon in which a sudden violent polymerization reaction occurs after an irregular induction period, making polymerization control difficult. ing.
  • An object of the present invention is to provide a polyacetal resin composition having an improved level of mechanical properties and a method for producing the polyacetal resin composition.
  • the present inventor as a result of diligent studies to achieve the above-mentioned object, based on a polyacetal resin as a base, by blending a polyacetal copolymer obtained by copolymerizing a trioxane and a specific siloxane compound, it has not been previously predicted.
  • the inventors have found that it is possible to improve mechanical properties to some extent and have reached the present invention described below.
  • the above-mentioned copolymer (B) is a polyacetal copolymer (B) obtained by copolymerizing a cyclic acetal compound (c) having an oxyalkylene group having 2 or more carbon atoms in the ring as a comonomer.
  • Me represents a methyl group. 5.
  • Polyacetal resin obtained by mixing 0.1 to 100 parts by mass of a polyacetal copolymer (B) obtained by copolymerizing at least a trioxane (a) and a siloxane compound (b) represented by the formula (1) A method for producing a composition.
  • R 1 is a monovalent aliphatic hydrocarbon group having 1 to 6 carbon atoms or an aromatic hydrocarbon group having 6 to 10 carbon atoms
  • X is R 1 or an organic group having an epoxy group, respectively.
  • two or more of plural X's are organic groups having an epoxy group, and plural R 1's and X's may be the same or different.
  • the polyacetal resin composition of the present invention comprises a polyacetal resin (A), a trioxane (a) and a siloxane compound (b) represented by the formula (1).
  • R 1 is a monovalent aliphatic hydrocarbon group having 1 to 6 carbon atoms or an aromatic hydrocarbon group having 6 to 10 carbon atoms
  • X is R 1 or an organic group having an epoxy group, respectively.
  • two or more of plural X's are organic groups having an epoxy group, and plural R 1's and X's may be the same or different.
  • a polyacetal copolymer (B) obtained by copolymerizing a cyclic acetal compound (c) having an oxyalkylene group having 2 or more carbon atoms in the ring, and a polyacetal resin composition containing the polyacetal copolymer (B).
  • the compounding amount of the polyacetal copolymer (B) is 0.1 to 100 parts by mass, preferably 0.3 to 100 parts by mass, relative to 100 parts by mass of the polyacetal resin (A). It is a department.
  • the polyacetal resin (A) which is the substrate of the resin composition of the present invention, is a polymer compound having an oxymethylene unit (—CH 2 O—) as a main constituent unit, and an acetal homopolymer (for example, manufactured by DuPont, USA). (Trade name “Delrin” and the like), and acetal copolymers containing other comonomer units in addition to the oxymethylene group (for example, product name “Duracon” manufactured by Polyplastics Co., Ltd.) are included.
  • an acetal copolymer is particularly preferable in terms of its thermal stability and the like.
  • the comonomer unit has an oxyalkylene unit having about 2 to 6 carbon atoms (preferably about 2 to 4 carbon atoms) (eg, oxyethylene group (—CH 2 CH 2 O—), oxypropylene group, oxy). Butylene groups, etc.) are included.
  • the content of the comonomer unit is an amount that does not significantly impair the crystallinity of the resin, for example, as a proportion of the constitutional unit of the polyacetal polymer, generally 0.01 to 20 mol%, preferably, It can be selected from the range of 0.03 to 10 mol %, and more preferably 0.1 to 7 mol %.
  • the acetal copolymer may be a copolymer composed of two components, a terpolymer composed of three components, or the like.
  • the acetal copolymer may be a random copolymer, a block copolymer, a graft copolymer, or the like.
  • the degree of polymerization, branching degree and crosslinking degree of the polyacetal resin (A) are not particularly limited as long as they can be melt-molded.
  • the polyacetal copolymer (B) of the present invention comprises a trioxane (a) and a siloxane compound (b) represented by the formula (1).
  • R 1 is a monovalent aliphatic hydrocarbon group having 1 to 6 carbon atoms or an aromatic hydrocarbon group having 6 to 10 carbon atoms
  • X is R 1 or an organic group having an epoxy group, respectively.
  • two or more of plural X's are organic groups having an epoxy group, and plural R 1's and X's may be the same or different.
  • a polyacetal copolymer (B) obtained by copolymerizing a cyclic acetal compound (c) having an oxyalkylene group having 2 or more carbon atoms in the ring, as the case may be.
  • the trioxane used in the present invention is a cyclic trimer of formaldehyde, which is generally obtained by reacting an aqueous formaldehyde solution in the presence of an acidic catalyst, and is used after being purified by a method such as distillation. ..
  • the component (b) used in the present invention is a siloxane compound represented by the formula (1).
  • R 1 is a monovalent aliphatic hydrocarbon group having 1 to 6 carbon atoms or an aromatic hydrocarbon group having 6 to 10 carbon atoms
  • X is R 1 or an organic group having an epoxy group, respectively.
  • two or more of plural X's are organic groups having an epoxy group, and plural R 1's and X's may be the same or different.
  • R 1 is a monovalent aliphatic hydrocarbon group having 1 to 6 carbon atoms or an aromatic hydrocarbon group having 6 to 10 carbon atoms, and specific examples include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, Saturated monovalent aliphatic hydrocarbon groups such as alkyl groups such as n-butyl group, t-butyl group and heptyl group, unsaturated monovalent fatty acids such as alkenyl groups such as vinyl group, allyl group, isopropenyl group and butenyl group.
  • Group hydrocarbon group preferably methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, t-butyl group, and more preferably methyl group. ..
  • the organic group in X represents a compound composed of C, H, N and O atoms
  • specific examples of the epoxy group-containing organic group include 2-(3,4-cyclohexyl)ethyl group and 3-glycidoxy group.
  • examples thereof include a propyl group, and a 2-(3,4-cyclohexyl)ethyl group is preferable from the viewpoint of stability of the polymerization reaction.
  • the number of carbon atoms in the organic group is preferably 1 to 20, and more preferably 3 to 15.
  • a 2-(3,4-cyclohexyl)ethyl group with an alkylene group having 1 to 5 carbons interposed is preferable from the viewpoint of polymerization stability and mechanical strength.
  • the siloxane compound of the formula (1) can be produced by a method described in a known document, for example, JP 2010-229324 A or JP 2016-204288 A. When these production methods are applied, a 6-membered ring, 10-membered ring or 12-membered cyclic siloxane having 3, 5 or 6 units of siloxane units bonded may be produced as a by-product, but their presence is There is little influence on the production of the polyacetal copolymer of the present invention, and it is sufficient that the 8-membered cyclic siloxane of the present invention is contained in an amount of 80% by mass or more.
  • the reason why the control of the polymerization is facilitated is that the siloxane ring structure of the formula (1) causes the epoxy group, which is a copolymerization reaction point, to have a relatively high molecular weight. It is speculated that this is because the reaction probability is improved because it is fixedly arranged outside.
  • a particularly preferred siloxane compound is the following compound (b-1).
  • Me represents a methyl group.
  • the component (b) is preferably used in an amount of 0.01 to 5 parts by mass, more preferably 0.03 to 1 part by mass, based on 100 parts by mass of trioxane. ..
  • cyclic acetal compound (c) having an oxyalkylene group having 2 or more carbon atoms in the ring can be further used as a comonomer.
  • the cyclic acetal compound having an oxyalkylene group having 2 or more carbon atoms in the ring of the present invention is a compound generally used as a comonomer in the production of a polyacetal copolymer. Specific examples include 1,3-dioxolane, 1,3,6-trioxocane and 1,4-butanediol formal.
  • the component (c) is preferably used in an amount of 0.01 to 20 parts by mass, more preferably 0.05 to 5 parts by mass, based on 100 parts by mass of trioxane. ..
  • the method for producing the polyacetal copolymer (B) of the present invention comprises a trioxane (a), a specific cyclic siloxane compound (b) having two or more epoxy groups in the molecule represented by the formula (1), and a cation. It is characterized in that it is copolymerized in the presence of a polymerization catalyst.
  • ⁇ Cationic polymerization catalyst As the cationic polymerization catalyst, a known polymerization catalyst in cationic copolymerization containing trioxane as a main monomer can be used. Typically, a protic acid and a Lewis acid are given.
  • protic acid examples include perfluoroalkane sulfonic acid, heteropoly acid and isopoly acid.
  • perfluoroalkanesulfonic acid examples include trifluoromethanesulfonic acid, pentafluoroethanesulfonic acid, heptafluoropropanesulfonic acid, nonafluorobutanesulfonic acid, undecafluoropentanesulfonic acid, tridecafluorohexanesulfonic acid, pentadecafluoro.
  • examples thereof include heptane sulfonic acid and heptadecafluorooctane sulfonic acid.
  • Heteropolyacid refers to a polyacid produced by dehydration condensation of different oxygen acids, which has a specific different element in the center and is a mononuclear or multinuclear compound formed by condensation of condensed acid groups sharing an oxygen atom. It has complex ions.
  • Isopoly acid is also referred to as iso-polyacid, homonuclear polycondensation acid or homopolyacid, and refers to a high molecular weight inorganic oxygen acid composed of a condensate of an inorganic oxygen acid having a single V- or VI-valent metal. ..
  • the heteropoly acid examples include phosphomolybdic acid, phosphotungstic acid, phosphomolybdotungstic acid, phosphomolybdovanadic acid, phosphomolybdotungstovanadic acid, phosphotungstovanadic acid, silicotungstic acid, silicomolybdic acid, silicomolybd.
  • the heteropolyacid is preferably selected from silicomolybdic acid, silicotungstic acid, phosphomolybdic acid, and phosphotungstic acid.
  • isopoly acid examples include paratungstic acid, isopolytungstic acid exemplified by metatungstic acid, paramolybdic acid, isopolymolybdic acid exemplified by metamolybdic acid, metapolyvanadate, isopolyvanadate. Etc. Among them, isopolytungstic acid is preferable from the viewpoint of polymerization activity.
  • Lewis acid examples include halides of boron, tin, titanium, phosphorus, arsenic and antimony, and specifically, boron trifluoride (and its ether complex), tin tetrachloride, titanium tetrachloride, pentafluoride. Examples thereof include phosphorus oxide, phosphorus pentachloride, antimony pentafluoride, and complex compounds or salts thereof.
  • the amount of the polymerization catalyst is not particularly limited, but it is preferably 0.1 ppm or more and 50 ppm or less, more preferably 0.1 ppm or more and 30 ppm or less, based on the total of all monomers.
  • the amount of terminal groups can be adjusted by using a component for adjusting the molecular weight in addition to the above components.
  • the component for adjusting the molecular weight include chain transfer agents that do not form unstable terminals, that is, compounds having an alkoxy group such as methylal, monomethoxymethylal, and dimethoxymethylal.
  • the method for producing the polyacetal copolymer (B) of the present invention is not particularly limited.
  • the polymerization apparatus is not particularly limited, and a known apparatus is used, and any method such as batch type or continuous type is possible.
  • the polymerization temperature is preferably maintained at 65°C or higher and 135°C or lower.
  • Cation polymerization catalyst is preferably diluted with an inert solvent that does not adversely affect the polymerization.
  • Deactivation of the polymerization catalyst after the polymerization can be performed by a conventionally known method. For example, after the polymerization reaction, a basic compound or an aqueous solution thereof can be added to the reaction product discharged from the polymerization machine or the reaction product in the polymerization machine.
  • the basic compound for neutralizing and deactivating the polymerization catalyst is not particularly limited. After polymerization and deactivation, washing, separation and recovery of unreacted monomers, drying and the like are further performed by a conventionally known method, if necessary.
  • the polyacetal copolymer obtained as described above preferably has a weight average molecular weight corresponding to polymethylmethacrylate determined by size exclusion chromatography of 10,000 to 500,000, and particularly preferably 20,000 to 150,000.
  • the amount of hemiformal terminal group detected by 1H-NMR is preferably 0 to 4 mmol/kg, particularly preferably 0 to 2 mmol. /Kg.
  • the amount of impurities, especially water, in the total amount of monomers and comonomers to be used for polymerization is 20 ppm or less, and particularly preferably 10 ppm or less.
  • the resin composition of the present invention preferably contains various known stabilizers selected as necessary. Examples of the stabilizer used herein include any one or more of hindered phenol compounds, nitrogen-containing compounds, alkali or alkaline earth metal hydroxides, inorganic salts, carboxylates, and the like. it can.
  • thermoplastic resin for example, weathering (light) stabilizer, colorants such as dyes and pigments, lubricants, nucleating agents, release agents, charging An inhibitor, a surfactant, or an organic polymer material, an inorganic or organic fibrous, powdery, or plate-like filler can be added alone or in combination of two or more.
  • weathering (light) stabilizer for example, weathering (light) stabilizer, colorants such as dyes and pigments, lubricants, nucleating agents, release agents, charging
  • An inhibitor, a surfactant, or an organic polymer material, an inorganic or organic fibrous, powdery, or plate-like filler can be added alone or in combination of two or more.
  • a melt-kneading apparatus is used for producing the polyacetal resin composition of the present invention.
  • the melt-kneading device is not particularly limited, but has a function of kneading the melted polyacetal resin and polyacetal copolymer, and preferably has a vent function, for example, a uniaxial or at least one vent hole or A multi-screw continuous extrusion kneader, a co-kneader, etc. may be mentioned.
  • the melt-kneading treatment is preferably performed within a temperature range from the melting point of the polyacetal resin and the polyacetal copolymer to 260°C. If the temperature is higher than 260°C, the polymer is decomposed and deteriorated, which is not preferable.
  • the polyacetal resin (A) and the polyacetal copolymer (B) used in the examples and comparative examples are as follows.
  • the polyacetal resin (A) was prepared as follows. A twin-screw paddle type continuous polymerizer was continuously fed with a mixture of 96.7% by mass of trioxane (TOX), 3.3% by mass of 1,3-dioxolane (DO), and 800 ppm of methylal, and three catalysts were used as catalysts. Polymerization was performed by adding 20 ppm (as boron trifluoride) of boron dibutyl etherate (dibutyl ether solution). The polymer discharged from the discharge port of the polymerization machine was immediately added with an aqueous solution containing 1000 ppm of triethylamine, pulverized and stirred to deactivate the catalyst. Then, the polymer was recovered by centrifugation and dried to obtain a polyacetal resin (A).
  • the polyacetal copolymer (B) was prepared as follows. 300 g of trioxane was placed in a closed autoclave having a jacket through which a heat medium can pass and a stirring blade, and further, the compounds shown in Table 1 as the component (b) and optionally 1,3-dioxolane (DO) as the component (c). ) Or butanediol formal (BDF) was added so that the proportions of the parts by mass shown in Table 1 were respectively obtained. After stirring the contents and passing hot water of 80° C.
  • the catalyst solution (phosphotungstic acid (PWA) is a solution of methyl formate, boron trifluoride dibutyl etherate (BF 3 OBu).
  • PWA phosphotungstic acid
  • boron trifluoride dibutyl etherate boron trifluoride dibutyl etherate
  • a dibutyl ether solution was added so that the catalyst concentration (relative to all monomers) shown in Table 1 was added to initiate polymerization.
  • the catalyst concentration was the concentration of boron trifluoride.
  • the component (b) used in the examples is the following (b-1).
  • Me represents a methyl group.
  • Examples and Comparative Examples> The various components shown in Table 1 were added and mixed in the proportions shown in Table 1, and melt-kneaded with a vented twin-screw extruder to prepare pelletized compositions.
  • ethylene bis(oxyethylene)bis[3-(5-tert-butyl-4-) was added to 100 parts by weight of the total amount of the components (A) and (B).
  • Hydroxy-m-tolyl)propionate] IRGANOX245 manufactured by BASF Japan Ltd.
  • 0.08 parts by weight of melamine were added.
  • ⁇ Evaluation> The characteristic evaluation items and evaluation methods in the examples are as follows. ⁇ Tensile strength> The tensile strength of the ISO Type 1A test piece was measured according to ISO527-1, 2. The measurement chamber maintained an atmosphere of 23° C. and 50% RH. ⁇ Bending strength and flexural modulus> The flexural modulus was measured according to ISO178. The measurement chamber maintained an atmosphere of 23° C. and 50% RH.
  • composition of the present invention is excellent in mechanical properties (tensile strength, flexural modulus).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

The purpose of the present invention is to provide a polyacetal resin composition having an improved level of mechanical properties. The purpose of the present invention is achieved by a polyacetal resin composition that can be obtained by mixing 0.1-100 parts by mass of a polyacetal copolymer (B) which can be obtained by copolymerizing at least trioxane (a) and a siloxane compound (b) represented by formula (1) with respect to 100 parts by mass of a polyacetal resin (A). (In formula (1), R1 represents a monovalent aliphatic hydrocarbon group having 1-6 carbon atoms or an aromatic hydrocarbon group having 6-10 carbon atoms, and X represents an organic group having R1 or an epoxy group. However, two or more of a plurality of X's are an organic group having an epoxy group, and a plurality of R1's and a plurality of X's may be respectively the same or different.)

Description

ポリアセタール樹脂組成物およびポリアセタール樹脂組成物の製造方法Polyacetal resin composition and method for producing polyacetal resin composition
 本発明は、機械物性に優れたポリアセタール樹脂組成物およびそのポリアセタール樹脂組成物の製造方法に関する。 The present invention relates to a polyacetal resin composition having excellent mechanical properties and a method for producing the polyacetal resin composition.
 ポリアセタール樹脂は、機械的特性、熱的特性、電気的特性、摺動性、成形性等において、優れた特性を持っており、主に構造材料や機構部品等として電気機器、自動車部品、精密機械部品等に広く使用されている。しかし、ポリアセタール樹脂が利用される分野の拡大に伴い、要求特性は益々高度化、複合化、特殊化する傾向にある。そのような要求特性として、ポリアセタール樹脂が本来有する優れた摺動性、外観等を維持したまま、剛性改良、ホルムアルデヒドの発生抑制に対し一層の向上が要求される。 Polyacetal resin has excellent properties in mechanical properties, thermal properties, electrical properties, slidability, moldability, etc., and is mainly used as electrical materials, automobile parts, precision machinery as structural materials and mechanical parts. Widely used for parts. However, with the expansion of fields in which polyacetal resins are used, the required properties tend to become more sophisticated, complex, and specialized. As such required properties, further improvement is required for improving rigidity and suppressing generation of formaldehyde while maintaining the excellent slidability, appearance, etc. originally possessed by the polyacetal resin.
 これに対し、単に剛性を向上させるだけの目的であれば、ポリアセタール樹脂に繊維状フィラー等を充填する方法が一般的であるが、この方法では、繊維状フィラー等の充填による成形品の外観不良や摺動特性の低下等の問題、更には靱性低下の問題がある。 On the other hand, for the purpose of merely improving the rigidity, a method of filling the polyacetal resin with a fibrous filler or the like is generally used, but in this method, the appearance of the molded product is poor due to the filling of the fibrous filler or the like. There are problems such as deterioration of sliding properties and sliding properties, and further deterioration of toughness.
 また、ポリアセタール共重合体では、コモノマー量を減少させることにより、摺動性や外観を実質的に損なうことなく剛性を向上させることが知られているが、コモノマー減量の手法においては、靱性が低下するのみならずポリマーの熱安定性も低下する等の問題が生じ、必ずしも要求に応え得るものではなかった。 In addition, in a polyacetal copolymer, it is known that by reducing the comonomer amount, the rigidity is improved without substantially impairing the slidability and the appearance, but in the method of reducing the comonomer, the toughness is decreased. In addition to the above, problems such as a decrease in thermal stability of the polymer occur, and it is not always possible to meet the demand.
 分岐構造導入したポリアセタール共重合体を配合した剛性向上も試みられているが(特許文献1)、分岐構造を導入したポリアセタール共重合体の重合の際に、コモノマーの種類によっては、カチオン重合触媒、特にプロトン酸を重合触媒とする場合に、重合開始が遅れ、突然爆発的に重合が起こってしまうことがあり、生産安定性の面からも課題があった。 Attempts have also been made to improve the rigidity by blending a polyacetal copolymer having a branched structure introduced therein (Patent Document 1), but at the time of polymerization of the polyacetal copolymer having a branched structure introduced, a cationic polymerization catalyst, depending on the type of comonomer, In particular, when a protonic acid is used as a polymerization catalyst, the initiation of polymerization may be delayed and the polymerization may suddenly and explosively occur, which is a problem from the viewpoint of production stability.
 例えば、ポリアセタール共重合体に関して、トリオキサンと、1分子中にグリシジルエーテル基を2個以上有する化合物とを共重合させた共重合体が提案されている(特許文献2)。しかし、グリシジルエーテル基に代表されるエポキシ基とエーテル酸素を官能基として複数個有する化合物を重合に使用する場合、重合安定性に課題が残っている。特にプロトン酸を重合触媒に使用した場合、低触媒量では重合が起こらず、触媒量を上げると、不定期な誘導期ののち、突然激しい重合反応が起こる現象が発生し、重合制御を難しくしている。 For example, regarding a polyacetal copolymer, a copolymer obtained by copolymerizing trioxane and a compound having two or more glycidyl ether groups in one molecule has been proposed (Patent Document 2). However, when using a compound having a plurality of epoxy groups represented by glycidyl ether groups and a plurality of ether oxygens as functional groups for polymerization, there remains a problem in polymerization stability. In particular, when a protic acid is used as a polymerization catalyst, polymerization does not occur at a low catalyst amount, and increasing the catalyst amount causes a phenomenon in which a sudden violent polymerization reaction occurs after an irregular induction period, making polymerization control difficult. ing.
特公昭55-019942号公報JP-B-55-019942 特開2001-163944号公報JP 2001-163944 A
 本発明の目的は、機械物性のレベルを向上させたポリアセタール樹脂組成物およびそのポリアセタール樹脂組成物の製造方法を提供することにある。 An object of the present invention is to provide a polyacetal resin composition having an improved level of mechanical properties and a method for producing the polyacetal resin composition.
本発明者は、前記目的を達成するために鋭意検討した結果、ポリアセタール樹脂を基体とし、これにトリオキサンと特定のシロキサン化合物とを共重合したポリアセタール共重合体を配合することにより、従来予知されなかったほどの機械物性の向上が可能であることを見出し、以下の本発明に達した。 The present inventor, as a result of diligent studies to achieve the above-mentioned object, based on a polyacetal resin as a base, by blending a polyacetal copolymer obtained by copolymerizing a trioxane and a specific siloxane compound, it has not been previously predicted. The inventors have found that it is possible to improve mechanical properties to some extent and have reached the present invention described below.
1.ポリアセタール樹脂(A)100質量部に対して、
少なくともトリオキサン(a)および式(1)で表されるシロキサン化合物(b)とを共重合して得られるポリアセタール共重合体(B)を0.1~100質量部を混合して得られるポリアセタール樹脂組成物。
Figure JPOXMLDOC01-appb-C000004
(式(1)中、Rは炭素数1~6の一価脂肪族炭化水素基または炭素数6~10の芳香族炭化水素基、Xは、Rまたはエポキシ基を有する有機基をそれぞれ表す。ただし複数存在するXのうち2以上はエポキシ基を有する有機基であり、複数存在するR、Xはそれぞれ同一であっても異なっても構わない。)
2.前記共重合体(B)が、コモノマーとしてさらに炭素数2以上のオキシアルキレン基を環内に有する環状アセタール化合物(c)を共重合して得られたポリアセタール共重合体(B)である前記1記載のポリアセタール樹脂組成物。
3.前記式(1)で表されるシロキサン化合物(b)において、エポキシ基を有する有機基が2-(3,4―シクロヘキシル)エチル基である前記1または2記載のポリアセタール樹脂組成物。
4.前記式(1)で表されるシロキサン化合物(b)が下記化合物(b-1)である前記1~3いずれかに記載のポリアセタール樹脂組成物。式(b-1)中、Meはメチル基を表す。
Figure JPOXMLDOC01-appb-C000005
5.ポリアセタール樹脂(A)がアセタールコポリマーである前記1~4いずれかに記載のポリアセタール樹脂組成物。
6.ポリアセタール樹脂(A)100質量部に対して、
少なくともトリオキサン(a)および式(1)で表されるシロキサン化合物(b)とを共重合して得られるポリアセタール共重合体(B)を0.1~100質量部を混合して得られるポリアセタール樹脂組成物の製造方法。
Figure JPOXMLDOC01-appb-C000006
(式(1)中、Rは炭素数1~6の一価脂肪族炭化水素基または炭素数6~10の芳香族炭化水素基、Xは、Rまたはエポキシ基を有する有機基をそれぞれ表す。ただし複数存在するXのうち2以上はエポキシ基を有する有機基であり、複数存在するR、Xはそれぞれ同一であっても異なっても構わない。)
1. With respect to 100 parts by mass of the polyacetal resin (A),
Polyacetal resin obtained by mixing 0.1 to 100 parts by mass of a polyacetal copolymer (B) obtained by copolymerizing at least a trioxane (a) and a siloxane compound (b) represented by the formula (1) Composition.
Figure JPOXMLDOC01-appb-C000004
(In the formula (1), R 1 is a monovalent aliphatic hydrocarbon group having 1 to 6 carbon atoms or an aromatic hydrocarbon group having 6 to 10 carbon atoms, and X is R 1 or an organic group having an epoxy group, respectively. However, two or more of plural X's are organic groups having an epoxy group, and plural R 1's and X's may be the same or different.)
2. The above-mentioned copolymer (B) is a polyacetal copolymer (B) obtained by copolymerizing a cyclic acetal compound (c) having an oxyalkylene group having 2 or more carbon atoms in the ring as a comonomer. The polyacetal resin composition described.
3. 3. The polyacetal resin composition according to 1 or 2 above, wherein in the siloxane compound (b) represented by the formula (1), the organic group having an epoxy group is a 2-(3,4-cyclohexyl)ethyl group.
4. 4. The polyacetal resin composition according to any one of 1 to 3 above, wherein the siloxane compound (b) represented by the formula (1) is the following compound (b-1). In formula (b-1), Me represents a methyl group.
Figure JPOXMLDOC01-appb-C000005
5. 5. The polyacetal resin composition according to any one of 1 to 4 above, wherein the polyacetal resin (A) is an acetal copolymer.
6. With respect to 100 parts by mass of the polyacetal resin (A),
Polyacetal resin obtained by mixing 0.1 to 100 parts by mass of a polyacetal copolymer (B) obtained by copolymerizing at least a trioxane (a) and a siloxane compound (b) represented by the formula (1) A method for producing a composition.
Figure JPOXMLDOC01-appb-C000006
(In the formula (1), R 1 is a monovalent aliphatic hydrocarbon group having 1 to 6 carbon atoms or an aromatic hydrocarbon group having 6 to 10 carbon atoms, and X is R 1 or an organic group having an epoxy group, respectively. However, two or more of plural X's are organic groups having an epoxy group, and plural R 1's and X's may be the same or different.)
 本発明によれば、機械物性のレベルを向上させたポリアセタール樹脂組成物およびそのポリアセタール樹脂組成物の製造方法を提供することができる。 According to the present invention, it is possible to provide a polyacetal resin composition having an improved level of mechanical properties and a method for producing the polyacetal resin composition.
 以下、本発明の具体的な実施形態について、詳細に説明するが、本発明は、以下の実施形態に何ら限定されるものではなく、本発明の目的の範囲内において、適宜変更を加えて実施することができる。 Hereinafter, specific embodiments of the present invention will be described in detail, but the present invention is not limited to the following embodiments, and is implemented with appropriate modifications within the scope of the object of the present invention. can do.
<ポリアセタール樹脂組成物>
 本発明のポリアセタール樹脂組成物はポリアセタール樹脂(A)とトリオキサン(a)および式(1)で表されるシロキサン化合物(b)
Figure JPOXMLDOC01-appb-C000007
(式(1)中、Rは炭素数1~6の一価脂肪族炭化水素基または炭素数6~10の芳香族炭化水素基、Xは、Rまたはエポキシ基を有する有機基をそれぞれ表す。ただし複数存在するXのうち2以上はエポキシ基を有する有機基であり、複数存在するR、Xはそれぞれ同一であっても異なっても構わない。)
および場合により炭素数2以上のオキシアルキレン基を環内に有する環状アセタール化合物(c)を共重合して得られるポリアセタール共重合体(B)、とを含有するポリアセタール樹脂組成物であることを特徴とするものである。
<Polyacetal resin composition>
The polyacetal resin composition of the present invention comprises a polyacetal resin (A), a trioxane (a) and a siloxane compound (b) represented by the formula (1).
Figure JPOXMLDOC01-appb-C000007
(In the formula (1), R 1 is a monovalent aliphatic hydrocarbon group having 1 to 6 carbon atoms or an aromatic hydrocarbon group having 6 to 10 carbon atoms, and X is R 1 or an organic group having an epoxy group, respectively. However, two or more of plural X's are organic groups having an epoxy group, and plural R 1's and X's may be the same or different.)
And a polyacetal copolymer (B) obtained by copolymerizing a cyclic acetal compound (c) having an oxyalkylene group having 2 or more carbon atoms in the ring, and a polyacetal resin composition containing the polyacetal copolymer (B). It is what
 本発明の樹脂組成物において、かかるポリアセタール共重合体(B)の配合量は、ポリアセタール樹脂(A)100質量部に対し、0.1~100質量部であり、好ましくは0.3~100質量部である。 In the resin composition of the present invention, the compounding amount of the polyacetal copolymer (B) is 0.1 to 100 parts by mass, preferably 0.3 to 100 parts by mass, relative to 100 parts by mass of the polyacetal resin (A). It is a department.
<ポリアセタール樹脂(A)>
 以下、本発明のポリアセタール樹脂組成物の構成について詳細に説明する。
 本発明の樹脂組成物の基体であるポリアセタール樹脂(A)とは、オキシメチレン単位(-CHO-)を主たる構成単位とする高分子化合物であり、アセタールホモポリマー(例えば米国デュポン社製、商品名「デルリン」等)、オキシメチレン基以外に他のコモノマー単位を含有するアセタールコポリマー(例えば、ポリプラスチックス(株)社製、商品名「ジュラコン」等)が含まれる。
 本発明において配合するポリアセタール樹脂(A)としては、その熱安定性等の点で特にアセタールコポリマーが好ましい。
<Polyacetal resin (A)>
Hereinafter, the constitution of the polyacetal resin composition of the present invention will be described in detail.
The polyacetal resin (A), which is the substrate of the resin composition of the present invention, is a polymer compound having an oxymethylene unit (—CH 2 O—) as a main constituent unit, and an acetal homopolymer (for example, manufactured by DuPont, USA). (Trade name “Delrin” and the like), and acetal copolymers containing other comonomer units in addition to the oxymethylene group (for example, product name “Duracon” manufactured by Polyplastics Co., Ltd.) are included.
As the polyacetal resin (A) blended in the present invention, an acetal copolymer is particularly preferable in terms of its thermal stability and the like.
 アセタールコポリマーにおいて、コモノマー単位には炭素数2~6程度(好ましくは、炭素数2~4程度)のオキシアルキレン単位(例えば、オキシエチレン基(-CHCHO-)、オキシプロピレン基、オキシブチレン基等)が含まれる。 In the acetal copolymer, the comonomer unit has an oxyalkylene unit having about 2 to 6 carbon atoms (preferably about 2 to 4 carbon atoms) (eg, oxyethylene group (—CH 2 CH 2 O—), oxypropylene group, oxy). Butylene groups, etc.) are included.
 また、コモノマー単位の含有量は、樹脂の結晶性を大幅に損なわない程度の量、例えば、ポリアセタール重合体の構成単位に占める割合として、一般的には0.01~20モル%、好ましくは、0.03~10モル%、更に好ましくは、0.1~7モル%の範囲から選択できる。 Further, the content of the comonomer unit is an amount that does not significantly impair the crystallinity of the resin, for example, as a proportion of the constitutional unit of the polyacetal polymer, generally 0.01 to 20 mol%, preferably, It can be selected from the range of 0.03 to 10 mol %, and more preferably 0.1 to 7 mol %.
 アセタールコポリマーは、二成分で構成されたコポリマー、三成分で構成されたターポリマー等であってよい。アセタールコポリマーは、ランダムコポリマーの他、ブロックコポリマー、グラフトコポリマー等であってよい。 The acetal copolymer may be a copolymer composed of two components, a terpolymer composed of three components, or the like. The acetal copolymer may be a random copolymer, a block copolymer, a graft copolymer, or the like.
 また、このようなポリアセタール樹脂(A)の重合度、分岐度や架橋度も特に制限はなく溶融成形可能であればよい。 The degree of polymerization, branching degree and crosslinking degree of the polyacetal resin (A) are not particularly limited as long as they can be melt-molded.
<ポリアセタール共重合体(B)>
 本発明のポリアセタール共重合体(B)は、トリオキサン(a)および式(1)で表されるシロキサン化合物(b)
Figure JPOXMLDOC01-appb-C000008
(式(1)中、Rは炭素数1~6の一価脂肪族炭化水素基または炭素数6~10の芳香族炭化水素基、Xは、Rまたはエポキシ基を有する有機基をそれぞれ表す。ただし複数存在するXのうち2以上はエポキシ基を有する有機基であり、複数存在するR、Xはそれぞれ同一であっても異なっても構わない。)
および場合により、炭素数2以上のオキシアルキレン基を環内に有する環状アセタール化合物(c)、とを共重合したポリアセタール共重合体(B)である。
<Polyacetal copolymer (B)>
The polyacetal copolymer (B) of the present invention comprises a trioxane (a) and a siloxane compound (b) represented by the formula (1).
Figure JPOXMLDOC01-appb-C000008
(In the formula (1), R 1 is a monovalent aliphatic hydrocarbon group having 1 to 6 carbon atoms or an aromatic hydrocarbon group having 6 to 10 carbon atoms, and X is R 1 or an organic group having an epoxy group, respectively. However, two or more of plural X's are organic groups having an epoxy group, and plural R 1's and X's may be the same or different.)
And a polyacetal copolymer (B) obtained by copolymerizing a cyclic acetal compound (c) having an oxyalkylene group having 2 or more carbon atoms in the ring, as the case may be.
 ≪トリオキサン(a)≫
 本発明において用いられるトリオキサンとは、ホルムアルデヒドの環状三量体であり、一般的には酸性触媒の存在下でホルムアルデヒド水溶液を反応させることによって得られ、これを蒸留等の方法で精製して用いられる。
≪Trioxane (a)≫
The trioxane used in the present invention is a cyclic trimer of formaldehyde, which is generally obtained by reacting an aqueous formaldehyde solution in the presence of an acidic catalyst, and is used after being purified by a method such as distillation. ..
≪式(1)で表されるシロキサン化合物(b)≫
 本発明で使用する(b)成分は、式(1)で表されるシロキサン化合物であることを特徴とする。
Figure JPOXMLDOC01-appb-C000009
(式(1)中、Rは炭素数1~6の一価脂肪族炭化水素基または炭素数6~10の芳香族炭化水素基、Xは、Rまたはエポキシ基を有する有機基をそれぞれ表す。ただし複数存在するXのうち2以上はエポキシ基を有する有機基であり、複数存在するR、Xはそれぞれ同一であっても異なっても構わない。)
<<Siloxane Compound (b) Represented by Formula (1)>>
The component (b) used in the present invention is a siloxane compound represented by the formula (1).
Figure JPOXMLDOC01-appb-C000009
(In the formula (1), R 1 is a monovalent aliphatic hydrocarbon group having 1 to 6 carbon atoms or an aromatic hydrocarbon group having 6 to 10 carbon atoms, and X is R 1 or an organic group having an epoxy group, respectively. However, two or more of plural X's are organic groups having an epoxy group, and plural R 1's and X's may be the same or different.)
 Rは炭素数1~6の一価脂肪族炭化水素基または炭素数6~10の芳香族炭化水素基であり、具体例としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、t-ブチル基、ヘプチル基等のアルキル基などの飽和一価脂肪族炭化水素基、ビニル基、アリル基、イソプロペニル基、ブテニル基等のアルケニル基などの不飽和一価脂肪族炭化水素基、フェニル基、ナフチル基などが挙げられ、好ましくはメチル基、エチル基、n-プロピル基 、イソプロピル基、n-ブチル基、t-ブチル基であり、更に好ましくはメチル基である。 R 1 is a monovalent aliphatic hydrocarbon group having 1 to 6 carbon atoms or an aromatic hydrocarbon group having 6 to 10 carbon atoms, and specific examples include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, Saturated monovalent aliphatic hydrocarbon groups such as alkyl groups such as n-butyl group, t-butyl group and heptyl group, unsaturated monovalent fatty acids such as alkenyl groups such as vinyl group, allyl group, isopropenyl group and butenyl group. Group hydrocarbon group, phenyl group, naphthyl group, and the like, preferably methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, t-butyl group, and more preferably methyl group. ..
 Xにおいて有機基とは、C、H、N、O原子からなる化合物を表し、エポキシ基含有の有機基の具体例としては、2-(3,4―シクロヘキシル)エチル基、3―グリシドキシプロピル基が挙げられ、重合反応の安定性の観点から2-(3,4―シクロヘキシル)エチル基が好ましい。ここで、有機基における炭素数は1~20であることが好ましく、3~15であることがより好ましい。また、炭素数1~5のアルキレン基を介在して2-(3,4―シクロヘキシル)エチル基であることが、重合の安定性、機械強度の観点から好ましい。 The organic group in X represents a compound composed of C, H, N and O atoms, and specific examples of the epoxy group-containing organic group include 2-(3,4-cyclohexyl)ethyl group and 3-glycidoxy group. Examples thereof include a propyl group, and a 2-(3,4-cyclohexyl)ethyl group is preferable from the viewpoint of stability of the polymerization reaction. Here, the number of carbon atoms in the organic group is preferably 1 to 20, and more preferably 3 to 15. Further, a 2-(3,4-cyclohexyl)ethyl group with an alkylene group having 1 to 5 carbons interposed is preferable from the viewpoint of polymerization stability and mechanical strength.
 式(1)のシロキサン化合物は、公知の文献、例えば特開2010-229324号公報、特開2016-204288号公報等に記載の方法によって製造することができる。これらの製造方法を適用した場合、副生成物としてシロキサン単位が3、5または6単位結合した6員環、10員環または12員環の環状シロキサンが生成することがあるが、それらの存在は本発明のポリアセタール共重合体の製造に対しての影響は少なく、本発明の8員環の環状シロキサンが80質量%以上含有されていればよい。 The siloxane compound of the formula (1) can be produced by a method described in a known document, for example, JP 2010-229324 A or JP 2016-204288 A. When these production methods are applied, a 6-membered ring, 10-membered ring or 12-membered cyclic siloxane having 3, 5 or 6 units of siloxane units bonded may be produced as a by-product, but their presence is There is little influence on the production of the polyacetal copolymer of the present invention, and it is sufficient that the 8-membered cyclic siloxane of the present invention is contained in an amount of 80% by mass or more.
 本発明において式(1)のシロキサン化合物を共重合させた場合に重合の制御が容易となる理由について、式(1)の有するシロキサン環構造により共重合反応点であるエポキシ基が分子の比較的外側に固定配置されるため、反応確率が向上するためであると推測している。 In the present invention, when the siloxane compound of the formula (1) is copolymerized, the reason why the control of the polymerization is facilitated is that the siloxane ring structure of the formula (1) causes the epoxy group, which is a copolymerization reaction point, to have a relatively high molecular weight. It is speculated that this is because the reaction probability is improved because it is fixedly arranged outside.
 特に好ましいシロキサン化合物は下記化合物(b-1)である。式(b-1)中、Meはメチル基を表す。
Figure JPOXMLDOC01-appb-C000010
A particularly preferred siloxane compound is the following compound (b-1). In formula (b-1), Me represents a methyl group.
Figure JPOXMLDOC01-appb-C000010
 本発明において、(b)成分は、トリオキサン100質量部に対して0.01~5質量部の範囲となるように使用するのが好ましく、さらに好ましくは0.03~1質量部の範囲である。 In the present invention, the component (b) is preferably used in an amount of 0.01 to 5 parts by mass, more preferably 0.03 to 1 part by mass, based on 100 parts by mass of trioxane. ..
 ≪炭素数2以上のオキシアルキレン基を環内に有する環状アセタール化合物(c)≫
 本発明のポリアセタール共重合体(B)おいて、炭素数2以上のオキシアルキレン基を環内に有する環状アセタール化合物(c)をさらにコモノマーとして用いることも可能である。
 本発明の炭素数2以上のオキシアルキレン基を環内に有する環状アセタール化合物とは、ポリアセタール共重合体の製造においてコモノマーとして一般に使用される化合物である。具体的には、1,3-ジオキソラン、1,3,6-トリオキソカン、1,4-ブタンジオールホルマール等が挙げられる。
<<Cyclic acetal compound (c) having an oxyalkylene group having 2 or more carbon atoms in the ring>>
In the polyacetal copolymer (B) of the present invention, the cyclic acetal compound (c) having an oxyalkylene group having 2 or more carbon atoms in the ring can be further used as a comonomer.
The cyclic acetal compound having an oxyalkylene group having 2 or more carbon atoms in the ring of the present invention is a compound generally used as a comonomer in the production of a polyacetal copolymer. Specific examples include 1,3-dioxolane, 1,3,6-trioxocane and 1,4-butanediol formal.
 本発明において、(c)成分は、トリオキサン100質量部に対して0.01~20質量部の範囲となるように使用するのが好ましく、さらに好ましくは0.05~5質量部の範囲である。 In the present invention, the component (c) is preferably used in an amount of 0.01 to 20 parts by mass, more preferably 0.05 to 5 parts by mass, based on 100 parts by mass of trioxane. ..
<ポリアセタール共重合体(B)の製造方法>
 本発明のポリアセタール共重合体(B)の製造方法は、トリオキサン(a)、式(1)で表される分子内に2以上のエポキシ基を有する特定の環状シロキサン化合物(b)とを、カチオン重合触媒の存在下、共重合させることを特徴とする。
<Method for producing polyacetal copolymer (B)>
The method for producing the polyacetal copolymer (B) of the present invention comprises a trioxane (a), a specific cyclic siloxane compound (b) having two or more epoxy groups in the molecule represented by the formula (1), and a cation. It is characterized in that it is copolymerized in the presence of a polymerization catalyst.
<カチオン重合触媒>
カチオン重合触媒としては、トリオキサンを主モノマーとするカチオン共重合において公知の重合触媒が使用できる。代表的には、プロトン酸、ルイス酸、が挙げられる。
<Cationic polymerization catalyst>
As the cationic polymerization catalyst, a known polymerization catalyst in cationic copolymerization containing trioxane as a main monomer can be used. Typically, a protic acid and a Lewis acid are given.
 ≪プロトン酸≫
プロトン酸としては、パーフルオロアルカンスルホン酸、ヘテロポリ酸、イソポリ酸等が挙げられる。
 パーフルオロアルカンスルホン酸の具体例として、トリフルオロメタンスルホン酸、ペンタフルオロエタンスルホン酸、ヘプタフルオロプロパンスルホン酸、ノナフルオロブタンスルホン酸、ウンデカフルオロペンタンスルホン酸、トリデカフルオロヘキサンスルホン酸、ペンタデカフルオロへプタンスルホン酸、ヘプタデカフルオロオクタンスルホン酸が挙げられる。
≪Protonic acid≫
Examples of the protic acid include perfluoroalkane sulfonic acid, heteropoly acid and isopoly acid.
Specific examples of the perfluoroalkanesulfonic acid include trifluoromethanesulfonic acid, pentafluoroethanesulfonic acid, heptafluoropropanesulfonic acid, nonafluorobutanesulfonic acid, undecafluoropentanesulfonic acid, tridecafluorohexanesulfonic acid, pentadecafluoro. Examples thereof include heptane sulfonic acid and heptadecafluorooctane sulfonic acid.
 ヘテロポリ酸とは、異種の酸素酸が脱水縮合して生成するポリ酸をいい、中心に特定の異種元素が存在し、酸素原子を共有して縮合酸基が縮合してできる単核又は複核の錯イオンを有する。イソポリ酸とは、イソ多重酸、同核縮合酸、同種多重酸とも称され、V価又はVI価の単一種類の金属を有する無機酸素酸の縮合体から成る高分子量の無機酸素酸をいう。 Heteropolyacid refers to a polyacid produced by dehydration condensation of different oxygen acids, which has a specific different element in the center and is a mononuclear or multinuclear compound formed by condensation of condensed acid groups sharing an oxygen atom. It has complex ions. Isopoly acid is also referred to as iso-polyacid, homonuclear polycondensation acid or homopolyacid, and refers to a high molecular weight inorganic oxygen acid composed of a condensate of an inorganic oxygen acid having a single V- or VI-valent metal. ..
 ヘテロポリ酸の具体例として、リンモリブデン酸、リンタングステン酸、リンモリブドタングステン酸、リンモリブドバナジン酸、リンモリブドタングストバナジン酸、リンタングストバナジン酸、ケイタングステン酸、ケイモリブデン酸、ケイモリブドタングステン酸、ケイモリブドタングステントバナジン酸等が挙げられる。特に、重合活性の観点から、ヘテロポリ酸は、ケイモリブデン酸、ケイタングステン酸、リンモリブデン酸、リンタングステン酸から選択されることが好ましい。 Specific examples of the heteropoly acid include phosphomolybdic acid, phosphotungstic acid, phosphomolybdotungstic acid, phosphomolybdovanadic acid, phosphomolybdotungstovanadic acid, phosphotungstovanadic acid, silicotungstic acid, silicomolybdic acid, silicomolybd. Examples thereof include tungstic acid and silico molybdenum tovanadic acid. In particular, from the viewpoint of polymerization activity, the heteropolyacid is preferably selected from silicomolybdic acid, silicotungstic acid, phosphomolybdic acid, and phosphotungstic acid.
 イソポリ酸の具体例として、パラタングステン酸、メタタングステン酸等に例示されるイソポリタングステン酸、パラモリブデン酸、メタモリブデン酸等に例示されるイソポリモリブデン酸、メタポリバナジウム酸、イソポリバナジウム酸等が挙げられる。中でも、重合活性の観点から、イソポリタングステン酸であることが好ましい。 Specific examples of the isopoly acid include paratungstic acid, isopolytungstic acid exemplified by metatungstic acid, paramolybdic acid, isopolymolybdic acid exemplified by metamolybdic acid, metapolyvanadate, isopolyvanadate. Etc. Among them, isopolytungstic acid is preferable from the viewpoint of polymerization activity.
 ≪ルイス酸≫
ルイス酸としては、例えば、ホウ素、スズ、チタン、リン、ヒ素及びアンチモンのハロゲン化物が挙げられ、具体的には三フッ化ホウ素(およびそのエーテル錯体)、四塩化スズ、四塩化チタン、五フッ化リン、五塩化リン、五フッ化アンチモン及びその錯化合物又は塩が挙げられる。
<<Lewis acid>>
Examples of the Lewis acid include halides of boron, tin, titanium, phosphorus, arsenic and antimony, and specifically, boron trifluoride (and its ether complex), tin tetrachloride, titanium tetrachloride, pentafluoride. Examples thereof include phosphorus oxide, phosphorus pentachloride, antimony pentafluoride, and complex compounds or salts thereof.
 重合触媒の量は特に限定されるものでないが、全モノマーの合計に対して0.1ppm以上50ppm以下であることが好ましく、0.1ppm以上30ppm以下であることがより好ましい。 The amount of the polymerization catalyst is not particularly limited, but it is preferably 0.1 ppm or more and 50 ppm or less, more preferably 0.1 ppm or more and 30 ppm or less, based on the total of all monomers.
 本発明のポリアセタール共重合体(B)の製造においては、上記成分の他に分子量を調整する成分を併用し、末端基量を調整することができる。分子量を調整する成分としては、不安定末端を形成することのない連鎖移動剤、即ち、メチラール、モノメトキシメチラール、ジメトキシメチラール等のアルコキシ基を有する化合物が例示される。 In the production of the polyacetal copolymer (B) of the present invention, the amount of terminal groups can be adjusted by using a component for adjusting the molecular weight in addition to the above components. Examples of the component for adjusting the molecular weight include chain transfer agents that do not form unstable terminals, that is, compounds having an alkoxy group such as methylal, monomethoxymethylal, and dimethoxymethylal.
 本発明のポリアセタール共重合体(B)の製造方法は、特に限定されるものではない。製造するにあたり、重合装置も特に限定されるものではなく、公知の装置が使用され、バッチ式、連続式等、いずれの方法も可能である。また、重合温度は65℃以上135℃以下に保つことが好ましい。 The method for producing the polyacetal copolymer (B) of the present invention is not particularly limited. In the production, the polymerization apparatus is not particularly limited, and a known apparatus is used, and any method such as batch type or continuous type is possible. The polymerization temperature is preferably maintained at 65°C or higher and 135°C or lower.
 カチオン重合触媒は、重合に悪影響のない不活性な溶剤で希釈して使用することが好ましい。重合後の重合触媒の失活は従来公知の方法で行うことができる。例えば、重合反応後、重合機より排出される生成反応物、重合機中の反応生成物に塩基性化合物又はその水溶液等を加えて行うこともできる。 Cation polymerization catalyst is preferably diluted with an inert solvent that does not adversely affect the polymerization. Deactivation of the polymerization catalyst after the polymerization can be performed by a conventionally known method. For example, after the polymerization reaction, a basic compound or an aqueous solution thereof can be added to the reaction product discharged from the polymerization machine or the reaction product in the polymerization machine.
 重合触媒を中和し失活するための塩基性化合物は、特に限定されるものでない。重合及び失活の後、必要に応じて更に、洗浄、未反応モノマーの分離回収、乾燥等を従来公知の方法にて行う。 The basic compound for neutralizing and deactivating the polymerization catalyst is not particularly limited. After polymerization and deactivation, washing, separation and recovery of unreacted monomers, drying and the like are further performed by a conventionally known method, if necessary.
 上記のようにして得られるポリアセタール共重合体は、サイズ排除クロマトグラフィーにて決定されたポリメタクリル酸メチル相当の重量平均分子量が10000~500000であることが好ましく、特に好ましくは20000~150000である。また、末端基については、1H-NMRにより検出されるヘミホルマール末端基量(例えば、特開2001-11143公報記載の方法による)が0~4mmol/kgであることが好ましく、特に好ましくは0~2mmol/kgである。 The polyacetal copolymer obtained as described above preferably has a weight average molecular weight corresponding to polymethylmethacrylate determined by size exclusion chromatography of 10,000 to 500,000, and particularly preferably 20,000 to 150,000. Regarding the terminal group, the amount of hemiformal terminal group detected by 1H-NMR (for example, according to the method described in JP 2001-11143 A) is preferably 0 to 4 mmol/kg, particularly preferably 0 to 2 mmol. /Kg.
 ヘミホルマール末端基量を上記範囲に制御するためには、重合に供するモノマー、コモノマー総量中の不純物、特に水分を20ppm以下にするのが好ましく、特に好ましくは10ppm以下である。
<その他成分>
 本発明の樹脂組成物には、必要に応じて選択される公知の各種安定剤を配合するのが好ましい。ここで用いられる安定剤としては、ヒンダードフェノール系化合物、窒素含有化合物、アルカリ或いはアルカリ土類金属の水酸化物、無機塩、カルボン酸塩等のいずれか1種または2種以上を挙げることができる。
In order to control the amount of hemiformal terminal groups within the above range, it is preferable that the amount of impurities, especially water, in the total amount of monomers and comonomers to be used for polymerization is 20 ppm or less, and particularly preferably 10 ppm or less.
<Other ingredients>
The resin composition of the present invention preferably contains various known stabilizers selected as necessary. Examples of the stabilizer used herein include any one or more of hindered phenol compounds, nitrogen-containing compounds, alkali or alkaline earth metal hydroxides, inorganic salts, carboxylates, and the like. it can.
 更に、本発明を阻害しない限り、必要に応じて、熱可塑性樹脂に対する一般的な添加剤、例えば耐候(光)安定剤、染料、顔料等の着色剤、滑剤、核剤、離型剤、帯電防止剤、界面活性剤、或いは、有機高分子材料、無機または有機の繊維状、粉体状、板状の充填剤等を1種または2種以上添加することができる。 Further, as long as it does not impair the present invention, if necessary, general additives to the thermoplastic resin, for example, weathering (light) stabilizer, colorants such as dyes and pigments, lubricants, nucleating agents, release agents, charging An inhibitor, a surfactant, or an organic polymer material, an inorganic or organic fibrous, powdery, or plate-like filler can be added alone or in combination of two or more.
<ポリアセタール樹脂組成物の製造法>
 本発明のポリアセタール樹脂組成物の製造には、溶融混練処理装置が使用される。溶融混練処理装置については特に限定されないが、溶融したポリアセタール樹脂およびポリアセタール共重合体を混練する機能を有し、好ましくはベント機能を有するものであり、例えば、少なくとも1つのベント孔を有する単軸又は多軸の連続押出し混練機、コニーダー等が挙げられる。溶融混練処理は、ポリアセタール樹脂およびポリアセタール共重合体の融点以上260℃までの温度範囲が好ましい。260℃より高いと重合体の分解劣化が生じ好ましくない。
<Method for producing polyacetal resin composition>
A melt-kneading apparatus is used for producing the polyacetal resin composition of the present invention. The melt-kneading device is not particularly limited, but has a function of kneading the melted polyacetal resin and polyacetal copolymer, and preferably has a vent function, for example, a uniaxial or at least one vent hole or A multi-screw continuous extrusion kneader, a co-kneader, etc. may be mentioned. The melt-kneading treatment is preferably performed within a temperature range from the melting point of the polyacetal resin and the polyacetal copolymer to 260°C. If the temperature is higher than 260°C, the polymer is decomposed and deteriorated, which is not preferable.
 以下、実施例により本発明を具体的に説明するが、本発明がこれらに限定されるものではない。
 実施例および比較例で使用したポリアセタール樹脂(A)およびポリアセタール共重合体(B)は以下の通りである。
Hereinafter, the present invention will be described in detail with reference to Examples, but the present invention is not limited thereto.
The polyacetal resin (A) and the polyacetal copolymer (B) used in the examples and comparative examples are as follows.
<ポリアセタール樹脂(A)>
 ポリアセタール樹脂(A)は、次のようにして調製した。
 二軸パドルタイプの連続式重合機にトリオキサン(TOX)96.7質量%と1,3-ジオキソラン(DO)3.3質量%と800ppmのメチラールの混合物を連続的に供給し、触媒として三フッ化ホウ素ジブチルエーテラート(ジブチルエーテル溶液)を20ppm(三フッ化ホウ素として)添加し重合を行った。
 重合機吐出口より排出された重合体は、直ちにトリエチルアミン1000ppm含有水溶液を加えて粉砕、攪拌処理を行うことにより触媒の失活を行った。次いで、遠心分離により重合体を回収し、乾燥を行うことによりポリアセタール樹脂(A)を得た。
<Polyacetal resin (A)>
The polyacetal resin (A) was prepared as follows.
A twin-screw paddle type continuous polymerizer was continuously fed with a mixture of 96.7% by mass of trioxane (TOX), 3.3% by mass of 1,3-dioxolane (DO), and 800 ppm of methylal, and three catalysts were used as catalysts. Polymerization was performed by adding 20 ppm (as boron trifluoride) of boron dibutyl etherate (dibutyl ether solution).
The polymer discharged from the discharge port of the polymerization machine was immediately added with an aqueous solution containing 1000 ppm of triethylamine, pulverized and stirred to deactivate the catalyst. Then, the polymer was recovered by centrifugation and dried to obtain a polyacetal resin (A).
<ポリアセタール共重合体(B)>
 ポリアセタール共重合体(B)は、次のようにして調製した。
 熱媒を通すことのできるジャケットと撹拌羽根を有する密閉オートクレーブ中に300gのトリオキサンを入れ、さらに(b)成分として表1に記載の化合物、場合により(c)成分として1,3-ジオキソラン(DO)またはブタンジオールホルマール(BDF)を、それぞれ表1に示した質量部の割合になるように添加した。これら内容物を撹拌し、ジャケットに80℃の温水を通して内部温度を80℃に保った後、触媒溶液(リンタングステン酸(PWA)はギ酸メチルの溶液、三フッ化ホウ素ジブチルエーテラート(BFOBu)はジブチルエーテル溶液)を表1に示す触媒濃度(対全モノマー)になる様に加えて重合を開始した。なお、三フッ化ホウ素ジブチルエーテラート使用の場合、その触媒濃度は、三フッ化ホウ素としての濃度を示した。
 実施例で用いた(b)成分は下記(b-1)である。式(b-1)中、Meはメチル基を表す。
Figure JPOXMLDOC01-appb-C000011
<Polyacetal copolymer (B)>
The polyacetal copolymer (B) was prepared as follows.
300 g of trioxane was placed in a closed autoclave having a jacket through which a heat medium can pass and a stirring blade, and further, the compounds shown in Table 1 as the component (b) and optionally 1,3-dioxolane (DO) as the component (c). ) Or butanediol formal (BDF) was added so that the proportions of the parts by mass shown in Table 1 were respectively obtained. After stirring the contents and passing hot water of 80° C. through the jacket to keep the internal temperature at 80° C., the catalyst solution (phosphotungstic acid (PWA) is a solution of methyl formate, boron trifluoride dibutyl etherate (BF 3 OBu). In 2 ), a dibutyl ether solution) was added so that the catalyst concentration (relative to all monomers) shown in Table 1 was added to initiate polymerization. When boron trifluoride dibutyl etherate was used, the catalyst concentration was the concentration of boron trifluoride.
The component (b) used in the examples is the following (b-1). In formula (b-1), Me represents a methyl group.
Figure JPOXMLDOC01-appb-C000011
 5分後にこのオートクレーブへトリエチルアミン0.1%を含む水300gを加えて反応を停止し、内容物を取り出して200メッシュ以下に粉砕し、アセトン洗浄及び乾燥後、ポリアセタール共重合体を得た。 After 5 minutes, 300 g of water containing 0.1% of triethylamine was added to the autoclave to stop the reaction, and the contents were taken out and pulverized to 200 mesh or less, washed with acetone and dried to obtain a polyacetal copolymer.
 比較として下記ジグリシジル化合物(X-1およびX-2)を本発明の(b-1)成分に替えて重合に用い、比較のポリアセタール共重合体を得た。 For comparison, the following diglycidyl compounds (X-1 and X-2) were used for the polymerization in place of the component (b-1) of the present invention to obtain a comparative polyacetal copolymer.
X-1: ブタンジオールジグリシジルエーテル
Figure JPOXMLDOC01-appb-C000012
X-2:トリメチロールプロパントリグリシジルエーテル
Figure JPOXMLDOC01-appb-C000013
X-1: Butanediol diglycidyl ether
Figure JPOXMLDOC01-appb-C000012
X-2: trimethylolpropane triglycidyl ether
Figure JPOXMLDOC01-appb-C000013
<実施例および比較例>
 表1に示す各種成分を表1に示す割合で添加混合し、ベント付き二軸の押出機で溶融混練してペレット状の組成物を調製した。
 なお、全ての試料において、溶融混錬の際に(A)成分と(B)成分の合計量100質量部に対してエチレンビス(オキシエチレン)ビス[3-(5-tert―ブチル-4-ヒドロキシ-m-トリル)プロピオネート](BASFジャパン社製 IRGANOX245)0.35質量部とメラミン 0.08質量部を添加した。
<Examples and Comparative Examples>
The various components shown in Table 1 were added and mixed in the proportions shown in Table 1, and melt-kneaded with a vented twin-screw extruder to prepare pelletized compositions.
In all the samples, when melt-kneading, ethylene bis(oxyethylene)bis[3-(5-tert-butyl-4-) was added to 100 parts by weight of the total amount of the components (A) and (B). Hydroxy-m-tolyl)propionate] (IRGANOX245 manufactured by BASF Japan Ltd.) and 0.08 parts by weight of melamine were added.
 なお、X-1またはX-2を用いた比較例4および5では、ポリアセタール共重合体(B)に関し、表1記載の条件では、他の重合条件は実施例と同一にしても、重合反応は観測されなかったため、組成物の評価を行わなかった。 In Comparative Examples 4 and 5 using X-1 or X-2, regarding the polyacetal copolymer (B), the polymerization reaction was performed under the conditions shown in Table 1 even if the other polymerization conditions were the same as those in the examples. Was not observed, the composition was not evaluated.
<評価>
 実施例における特性評価項目及び評価方法は以下の通りである。
<引張強度>
 ISO527-1、2に準拠し、ISO Type1A試験片の引張強度の測定を行った。測定室は、23℃50%RHの雰囲気を保持した。
<曲げ強度および曲げ弾性率>
 ISO178に準拠し、曲げ弾性率の測定を行った。測定室は、23℃50%RHの雰囲気を保持した。
Figure JPOXMLDOC01-appb-T000014
<Evaluation>
The characteristic evaluation items and evaluation methods in the examples are as follows.
<Tensile strength>
The tensile strength of the ISO Type 1A test piece was measured according to ISO527-1, 2. The measurement chamber maintained an atmosphere of 23° C. and 50% RH.
<Bending strength and flexural modulus>
The flexural modulus was measured according to ISO178. The measurement chamber maintained an atmosphere of 23° C. and 50% RH.
Figure JPOXMLDOC01-appb-T000014
 表1から、本発明の組成物において、機械物性(引張強度、曲げ弾性率)に優れていることがわかる。

 
From Table 1, it can be seen that the composition of the present invention is excellent in mechanical properties (tensile strength, flexural modulus).

Claims (6)

  1.  ポリアセタール樹脂(A)100質量部に対して、
    少なくともトリオキサン(a)および式(1)で表されるシロキサン化合物(b)とを共重合して得られるポリアセタール共重合体(B)を、0.1~100質量部を混合して得られるポリアセタール樹脂組成物。
    Figure JPOXMLDOC01-appb-C000001
    (式(1)中、Rは炭素数1~6の一価脂肪族炭化水素基または炭素数6~10の芳香族炭化水素基、Xは、Rまたはエポキシ基を有する有機基をそれぞれ表す。ただし複数存在するXのうち2以上はエポキシ基を有する有機基であり、複数存在するR、Xはそれぞれ同一であっても異なっても構わない。)
    With respect to 100 parts by mass of the polyacetal resin (A),
    Polyacetal obtained by mixing 0.1 to 100 parts by mass of the polyacetal copolymer (B) obtained by copolymerizing at least the trioxane (a) and the siloxane compound (b) represented by the formula (1). Resin composition.
    Figure JPOXMLDOC01-appb-C000001
    (In the formula (1), R 1 is a monovalent aliphatic hydrocarbon group having 1 to 6 carbon atoms or an aromatic hydrocarbon group having 6 to 10 carbon atoms, and X is R 1 or an organic group having an epoxy group, respectively. However, two or more of plural X's are organic groups having an epoxy group, and plural R 1's and X's may be the same or different.)
  2.  前記共重合体(B)が、コモノマーとしてさらに炭素数2以上のオキシアルキレン基を環内に有する環状アセタール化合物(c)を共重合して得られたポリアセタール共重合体(B)である請求項1記載のポリアセタール樹脂組成物。 The copolymer (B) is a polyacetal copolymer (B) obtained by copolymerizing a cyclic acetal compound (c) having an oxyalkylene group having 2 or more carbon atoms in the ring as a comonomer. The polyacetal resin composition according to 1.
  3.  前記式(1)で表されるシロキサン化合物(b)において、エポキシ基を有する有機基が2-(3,4―シクロヘキシル)エチル基である請求項1または2記載のポリアセタール樹脂組成物。 The polyacetal resin composition according to claim 1 or 2, wherein the organic group having an epoxy group in the siloxane compound (b) represented by the formula (1) is a 2-(3,4-cyclohexyl)ethyl group.
  4.  前記式(1)で表されるシロキサン化合物(b)が下記化合物(b-1)である請求項1~3いずれかに記載のポリアセタール樹脂組成物。式(b-1)中、Meはメチル基を表す。
    Figure JPOXMLDOC01-appb-C000002
    The polyacetal resin composition according to any one of claims 1 to 3, wherein the siloxane compound (b) represented by the formula (1) is the following compound (b-1). In formula (b-1), Me represents a methyl group.
    Figure JPOXMLDOC01-appb-C000002
  5.  ポリアセタール樹脂(A)がアセタールコポリマーである請求項1~4いずれかに記載のポリアセタール樹脂組成物。 The polyacetal resin composition according to any one of claims 1 to 4, wherein the polyacetal resin (A) is an acetal copolymer.
  6.  ポリアセタール樹脂(A)100質量部に対して、
    少なくともトリオキサン(a)および式(1)で表されるシロキサン化合物(b)とを共重合して得られるポリアセタール共重合体(B)を0.1~100質量部を混合して得られるポリアセタール樹脂組成物の製造方法。
    Figure JPOXMLDOC01-appb-C000003
    (式(1)中、Rは炭素数1~6の一価脂肪族炭化水素基または炭素数6~10の芳香族炭化水素基、Xは、Rまたはエポキシ基を有する有機基をそれぞれ表す。ただし複数存在するXのうち2以上はエポキシ基を有する有機基であり、複数存在するR、Xはそれぞれ同一であっても異なっても構わない。)

     
    With respect to 100 parts by mass of the polyacetal resin (A),
    Polyacetal resin obtained by mixing 0.1 to 100 parts by mass of a polyacetal copolymer (B) obtained by copolymerizing at least a trioxane (a) and a siloxane compound (b) represented by the formula (1) A method for producing a composition.
    Figure JPOXMLDOC01-appb-C000003
    (In the formula (1), R 1 is a monovalent aliphatic hydrocarbon group having 1 to 6 carbon atoms or an aromatic hydrocarbon group having 6 to 10 carbon atoms, and X is R 1 or an organic group having an epoxy group, respectively. However, two or more of plural X's are organic groups having an epoxy group, and plural R 1's and X's may be the same or different.)

PCT/JP2019/047575 2018-12-26 2019-12-05 Polyacetal resin composition and method for producing polyacetal resin composition WO2020137414A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201980062586.5A CN112752779B (en) 2018-12-26 2019-12-05 Polyacetal resin composition and method for producing polyacetal resin composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018242399A JP7141330B2 (en) 2018-12-26 2018-12-26 Polyacetal resin composition and method for producing polyacetal resin composition
JP2018-242399 2018-12-26

Publications (1)

Publication Number Publication Date
WO2020137414A1 true WO2020137414A1 (en) 2020-07-02

Family

ID=71127950

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/047575 WO2020137414A1 (en) 2018-12-26 2019-12-05 Polyacetal resin composition and method for producing polyacetal resin composition

Country Status (3)

Country Link
JP (1) JP7141330B2 (en)
CN (1) CN112752779B (en)
WO (1) WO2020137414A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021039003A1 (en) * 2019-08-30 2021-03-04 ポリプラスチックス株式会社 Polyacetal resin composition and production method therefor

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01146958A (en) * 1987-12-04 1989-06-08 Polyplastics Co Thermoplastic resin composition
JP2002234923A (en) * 2001-02-09 2002-08-23 Polyplastics Co Polyacetal copolymer and resin composition
JP2005232404A (en) * 2004-02-23 2005-09-02 Mitsubishi Gas Chem Co Inc Polyacetal resin composition
JP2010059356A (en) * 2008-09-05 2010-03-18 Mitsubishi Gas Chemical Co Inc Branched-crosslinked polyacetal copolymer
JP2010150306A (en) * 2008-12-24 2010-07-08 Polyplastics Co Polyacetal resin composition
JP2011084702A (en) * 2009-10-19 2011-04-28 Mitsubishi Gas Chemical Co Inc Polyacetal copolymer
WO2012049926A1 (en) * 2010-10-15 2012-04-19 ポリプラスチックス株式会社 Polyacetal resin composition and method for producing same
JP2016204288A (en) * 2015-04-20 2016-12-08 信越化学工業株式会社 Cyclic organosiloxane containing epoxy groups

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0737505B2 (en) * 1987-07-02 1995-04-26 ポリプラスチックス株式会社 Method for producing silicon-containing polyacetal copolymer
JP2002234924A (en) * 2001-02-09 2002-08-23 Polyplastics Co Polyacetal copolymer and its composition

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01146958A (en) * 1987-12-04 1989-06-08 Polyplastics Co Thermoplastic resin composition
JP2002234923A (en) * 2001-02-09 2002-08-23 Polyplastics Co Polyacetal copolymer and resin composition
JP2005232404A (en) * 2004-02-23 2005-09-02 Mitsubishi Gas Chem Co Inc Polyacetal resin composition
JP2010059356A (en) * 2008-09-05 2010-03-18 Mitsubishi Gas Chemical Co Inc Branched-crosslinked polyacetal copolymer
JP2010150306A (en) * 2008-12-24 2010-07-08 Polyplastics Co Polyacetal resin composition
JP2011084702A (en) * 2009-10-19 2011-04-28 Mitsubishi Gas Chemical Co Inc Polyacetal copolymer
WO2012049926A1 (en) * 2010-10-15 2012-04-19 ポリプラスチックス株式会社 Polyacetal resin composition and method for producing same
JP2016204288A (en) * 2015-04-20 2016-12-08 信越化学工業株式会社 Cyclic organosiloxane containing epoxy groups

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021039003A1 (en) * 2019-08-30 2021-03-04 ポリプラスチックス株式会社 Polyacetal resin composition and production method therefor

Also Published As

Publication number Publication date
CN112752779B (en) 2023-08-29
JP7141330B2 (en) 2022-09-22
CN112752779A (en) 2021-05-04
JP2020105252A (en) 2020-07-09

Similar Documents

Publication Publication Date Title
US6642321B1 (en) Polyacetal resin composition
WO2020137414A1 (en) Polyacetal resin composition and method for producing polyacetal resin composition
JP5955424B1 (en) Method for producing polyacetal resin composition
JP7222678B2 (en) Polyacetal resin composition and method for producing polyacetal resin composition
WO2016125357A1 (en) Polyacetal resin composition
CN113677726B (en) Polyacetal resin composition and method for producing polyacetal resin composition
JP7210194B2 (en) Polyacetal resin composition
JP7141329B2 (en) Polyacetal copolymer and method for producing the same
CN113677725B (en) Polyacetal copolymer and process for producing the same
JP7129284B2 (en) Polyacetal copolymer and method for producing the same
CN111630079B (en) Polyacetal copolymer and method for polymerizing the same
JP4979856B2 (en) Polyacetal resin composition
JP2001002886A (en) Branched polyacetal resin composition
JP3933925B2 (en) Modified polyacetal resin and method for producing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19906253

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19906253

Country of ref document: EP

Kind code of ref document: A1