WO2024134777A1 - Observation device, observation method, and method for manufacturing semiconductor device - Google Patents

Observation device, observation method, and method for manufacturing semiconductor device Download PDF

Info

Publication number
WO2024134777A1
WO2024134777A1 PCT/JP2022/046920 JP2022046920W WO2024134777A1 WO 2024134777 A1 WO2024134777 A1 WO 2024134777A1 JP 2022046920 W JP2022046920 W JP 2022046920W WO 2024134777 A1 WO2024134777 A1 WO 2024134777A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
observation
unit
transport
suction
Prior art date
Application number
PCT/JP2022/046920
Other languages
French (fr)
Japanese (ja)
Inventor
芳広 山口
大介 伊藤
Original Assignee
Jswアクティナシステム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jswアクティナシステム株式会社 filed Critical Jswアクティナシステム株式会社
Priority to PCT/JP2022/046920 priority Critical patent/WO2024134777A1/en
Publication of WO2024134777A1 publication Critical patent/WO2024134777A1/en

Links

Images

Definitions

  • the present invention relates to an observation device, an observation method, and a manufacturing method for a semiconductor device.
  • Patent Document 1 discloses a laser annealing device that uses an excimer laser.
  • a levitation unit levitates a substrate, and a transport unit transports the substrate.
  • a line-shaped laser beam is then irradiated onto the substrate during transport.
  • this laser irradiation device has a line sensor provided on the substrate. The line sensor captures an image of the substrate during transport.
  • the observation device includes an observation unit including a mechanism for floating or supporting the substrate so that a space is formed directly below the substrate, a transport mechanism for transporting the substrate above the mechanism in a transport direction, a photodetector for detecting light from the substrate, and an optical system for directing the light from the substrate to the photodetector, and a movement mechanism for moving the observation unit in a direction inclined to the transport direction in a top view so as to change the observation position of the substrate.
  • an observation unit including a mechanism for floating or supporting the substrate so that a space is formed directly below the substrate, a transport mechanism for transporting the substrate above the mechanism in a transport direction, a photodetector for detecting light from the substrate, and an optical system for directing the light from the substrate to the photodetector, and a movement mechanism for moving the observation unit in a direction inclined to the transport direction in a top view so as to change the observation position of the substrate.
  • the observation method is an observation method in an observation device that includes an observation unit that includes a mechanism for floating or supporting the substrate so that a space is formed directly below the substrate, a photodetector for detecting light from the substrate, and an optical system for directing the light from the substrate to the photodetector, and includes the steps of (A1) a transport mechanism transporting the substrate in a transport direction, (A2) using the observation unit to observe the substrate transported by the transport mechanism, and (A3) moving the observation unit in a direction inclined from the transport direction in a top view to change the observation position of the substrate and observe the substrate.
  • a method for manufacturing a semiconductor device includes the steps of: (S1) using a mechanism to float or support the substrate so that a space is formed directly below the substrate; (S2) using a transport mechanism to transport the substrate on the mechanism in a transport direction; (S3) using an observation unit that includes a photodetector that detects light from the substrate and an optical system that directs the light from the substrate to the photodetector; and (S4) using a movement mechanism to move the observation unit in a direction inclined from the transport direction in a top view so as to change the observation position of the substrate.
  • FIG. 1 is an XY plan view illustrating a schematic diagram of an observation device according to a first embodiment
  • 1 is an XZ plan view illustrating a schematic view of an observation device according to a first embodiment
  • 1 is a YZ plan view illustrating a schematic view of an observation device according to a first embodiment
  • FIG. 2 is an enlarged view showing the configuration of an observation unit.
  • FIG. 11 is an XY plan view illustrating an observation device according to a second embodiment.
  • FIG. 11 is an XZ plan view illustrating an observation device according to a second embodiment.
  • FIG. 11 is an XY plan view illustrating an observation device according to a third embodiment.
  • FIG. 13 is an XZ plan view illustrating an observation device according to a third embodiment.
  • FIG. 13 is an XY plan view illustrating an observation device according to a fourth embodiment.
  • FIG. 13 is an XZ plan view illustrating an observation device according to a fourth embodiment.
  • FIG. 2 is an enlarged XY plan view showing the configuration of an observation unit and an adsorption portion.
  • 11 is an XZ plan view showing an enlarged configuration of the observation unit when the suction unit suctions the substrate.
  • FIG. 11 is an XZ plan view showing an enlarged configuration of the observation unit when the suction unit releases the suction fixation of the substrate.
  • FIG. FIG. 13 is an XZ plan view illustrating an observation device according to a fifth embodiment.
  • FIG. 2 is an XY plan view showing a schematic configuration of the precision levitation unit.
  • FIG. 23 is an XZ plan view illustrating a schematic configuration of the precision levitation unit.
  • FIG. 23 is an XY plan view illustrating an observation device according to a sixth embodiment.
  • FIG. 23 is an XZ plan view illustrating an observation device according to a sixth embodiment.
  • FIG. 23 is an XY plan view illustrating an observation device according to a seventh embodiment.
  • FIG. 23 is an XZ plan view illustrating an observation device according to a seventh embodiment.
  • FIG. 23 is an XY plan view illustrating an observation device according to an eighth embodiment.
  • FIG. 23 is an XZ plan view illustrating an observation device according to an eighth embodiment.
  • FIG. 23 is a YZ plan view illustrating an observation device according to an eighth embodiment.
  • FIG. 23 is a YZ plan view illustrating an observation device according to an eighth embodiment.
  • FIG. 23 is an XY plan view illustrating a schematic configuration of an observation device according to an eighth embodiment when the movement direction is changed.
  • FIG. 13 is an XY plan view illustrating an observation device according to a ninth embodiment.
  • FIG. 13 is an XZ plan view illustrating an observation device according to a ninth embodiment.
  • FIG. 23 is a YZ plan view illustrating an observation device according to a ninth embodiment.
  • FIG. 23 is an XY plan view illustrating an observation device according to a tenth embodiment.
  • FIG. 23 is an XZ plan view illustrating an observation device according to a tenth embodiment.
  • FIG. 2 is a schematic diagram showing a configuration of a laser irradiation device equipped with an observation device.
  • 1 is a cross-sectional view showing a simplified configuration of an organic EL display.
  • 1A to 1C are cross-sectional views showing steps of a manufacturing method of a semiconductor device according to an embodiment of the present invention.
  • 1A to 1C are cross-sectional views showing steps of a manufacturing method of a semiconductor device according to an embodiment of the present invention.
  • the observation device in this embodiment is an observation device for observing a substrate from the back side.
  • the substrate is a glass substrate for an organic EL display.
  • Various patterns such as a metal wiring layer, a transparent electrode layer, a semiconductor layer, a light-emitting layer, and a color filter layer are formed on the glass substrate. In other words, multiple patterns are formed on the glass substrate.
  • the Z direction is the vertical direction, and is perpendicular to the main surface of the substrate.
  • the XY plane is a plane parallel to the main surface of the substrate.
  • the XY directions are parallel to the edges of the rectangular substrate.
  • the X direction is the substrate transport direction.
  • the Y direction is perpendicular to the X and Z directions.
  • Fig. 1 is a top view (XY plan view) that shows a schematic configuration of the observation device 100.
  • Fig. 2 is a side view (XZ plan view) that shows a schematic configuration of the laser irradiation device 1.
  • Fig. 3 is a side view (YZ plan view) that shows a schematic configuration of the laser irradiation device 1.
  • the observation device 100 includes a levitation unit 10, a transport mechanism 11, and an observation unit 50.
  • the levitation unit 10 is configured to eject gas from the surface of the levitation unit 10.
  • the levitation unit 10 levitates the substrate 16 with its upper surface.
  • the gas ejected from the surface of the levitation unit 10 is sprayed onto the underside of the substrate 16, causing the substrate 16 to levitate.
  • the levitation unit 10 adjusts the amount of levitation so that the substrate 16 does not come into contact with other mechanisms (not shown) arranged above the substrate 16.
  • the levitation unit 10 ejects gas onto the substrate 16 so as not to come into contact with the substrate 16.
  • a space G is formed directly below the substrate 16.
  • the space G is a tiny air gap created by the gas from the levitation unit 10.
  • the space G is the gap from the upper surface of the levitation unit 10 to the lower surface of the substrate 16.
  • the gas ejected from the levitation unit 10 may be air, nitrogen, or a dry gas.
  • the levitation unit 10 is a mechanism for levitating the substrate 16 so that a space G is formed directly below the substrate 16.
  • the levitation unit 10 has a plurality of levitation unit cells 10a and levitation unit cells 10b.
  • the levitation unit cell 10b is disposed on the +X side of the levitation unit cell 10a.
  • the levitation unit cells 10a and 10b are disposed across a gap 17.
  • Each of the levitation unit cells 10a and 10b ejects gas.
  • An observation unit 50 is disposed between the levitation unit cells 10a and 10b. The observation unit 50 will be described later.
  • the levitation unit cell 10a and the levitation unit cell 10b may be formed of a porous body such as ceramic. Porous bodies that can be used include porous carbon, porous alumina ceramic, and porous SiC ceramic.
  • the levitation unit cell 10a and the levitation unit cell 10b may be formed of a metal material having multiple gas ejection holes.
  • a transport mechanism 11 is disposed on the +Y side of the levitation unit 10.
  • the transport mechanism 11 transports the levitated substrate 16 in the transport direction.
  • the transport mechanism 11 has a holding mechanism 12 that vacuum-sucks the end of the substrate 16.
  • the holding mechanism 12 suction-holds the end of the substrate 16 on the +Y side.
  • the holding mechanism 12 can be constructed using a vacuum suction mechanism.
  • the vacuum suction mechanism is made of a metal material such as an aluminum alloy.
  • the holding mechanism 12 may be made of a resin material such as PEEK (polyether ether ketone).
  • the upper surface of the holding mechanism 12 has suction grooves, suction holes, etc. formed thereon.
  • the holding mechanism 12 may also be made of a porous material.
  • the holding mechanism 12 is connected to the drive mechanism 13.
  • the drive mechanism 13 moves the holding mechanism 12 in the X direction.
  • the drive mechanism 13 is equipped with an actuator such as an air cylinder or a motor.
  • the drive mechanism 13 has a guide mechanism along the X direction.
  • the drive mechanism 13 slides the holding mechanism 12 along the X direction. This allows the transport mechanism 11 to transport the substrate 16 in the X direction.
  • the drive mechanism 13 may have a lifting mechanism for raising and lowering the holding mechanism 12 in the Z direction (up and down direction).
  • an observation unit 50 is disposed in the gap 17 between the levitation unit cell 10a and the levitation unit cell 10b.
  • the observation unit 50 includes a photodetector 52 and an optical system 51.
  • the photodetector 52 may be a CCD (Charge-Coupled Device) camera, a CMOS (Complementary metal-oxide-semiconductor) image sensor, or a photodiode array.
  • the photodetector 52 is a camera with pixels arranged in the X and Y directions.
  • the optical system 51 guides light from the substrate 16 to the photodetector 52. This allows the photodetector 52 to capture an image of the substrate 16.
  • the optical system 51 has an objective lens that magnifies and forms an image of the substrate 16.
  • the observation unit 50 can capture an image magnified 50 to 100 times.
  • the optical system 51 may also have other optical elements such as lenses, beam splitters, and filters.
  • a cable 53 is connected to the photodetector 52 for power supply and signal input/output.
  • the image data captured by the photodetector 52 is stored in a memory or the like. Alternatively, the image may be displayed on an external monitor.
  • observation unit 50 is connected to a moving mechanism 55.
  • the moving mechanism 55 moves the observation unit 50 in the Y direction.
  • the photodetector 52 moves together with the optical system 51.
  • the position of the observation unit 50 with respect to the substrate 16 changes.
  • the observation device 100 can change the observation position of the substrate 16.
  • the moving mechanism 55 changes the Y-direction position of the observation unit 50. Furthermore, the transport mechanism 11 transports the substrate 16 in the X-direction. This allows the observation unit 50 to image any position on the substrate 16.
  • the observation device 100 can image multiple observation positions on the substrate 16. Because the relative position of the observation unit 50 to the substrate 16 changes in the XY directions, the observation device 100 can make a desired position on the substrate 16 the observation position.
  • the moving direction of the moving mechanism 55 and the transport direction of the transport mechanism 11 are not limited to the directions shown in the figure. In a top view, the moving direction of the moving mechanism 55 and the transport direction of the transport mechanism 11 are not limited to being orthogonal, but may be inclined.
  • an illumination light source 59 is disposed above the substrate 16.
  • the illumination light source 59 generates illumination light for illuminating the substrate 16.
  • the observation unit 50 receives light from the area illuminated by the illumination light source 59.
  • a lens or the like may be provided to focus the illumination light from the illumination light source 59 onto the substrate 16.
  • the illumination light source 59 is not limited to being located on the substrate 16.
  • the illumination light source 59 may be arranged so as to illuminate coaxially with the optical axis of the optical system 51.
  • the illumination light source 59 may be a ring light arranged on the outside of the lens.
  • an indoor light may be used as the illumination light source 59.
  • the illumination light source 59 may generate linear illumination light with the Y direction as the longitudinal direction. Alternatively, as described below, it may move along the Y direction together with the observation unit 50.
  • FIG. 4 is an enlarged view of the configuration of the observation unit 50.
  • the lens barrel of the objective lens 51a is shown as the optical system 51.
  • the optical system 51 is fixed to the photodetector 52.
  • Light refracted by the optical system 51 is imaged on the image sensor 52a of the photodetector 52.
  • the image sensor 52a is a two-dimensional array photodetector having multiple pixels arranged in the X and Y directions. Note that, although only one lens is shown inside the lens barrel of the objective lens 51a in FIG. 4, multiple lenses may be provided.
  • the optical axis of the objective lens 51a is parallel to the Z direction. Therefore, the observation position of the substrate 16 is directly above the photodetector 52. If the height of the substrate 16 changes beyond the focal depth D of the objective lens 51a, the image of the substrate 16 will become blurred. In this embodiment, the levitation unit 10 is used, so the height of the substrate 16 can be controlled with high precision. By using the observation device 100 according to this embodiment, the substrate 16 can be properly observed.
  • the levitation units 10 are arranged on both sides of the substrate 16 in the X direction. That is, the levitation unit cell 10a is arranged on the -X side of the substrate 16, and the levitation unit cell 10b is arranged on the +X side of the substrate 16. In this way, fluctuations in the height of the substrate 16 can be suppressed, and therefore blurring of the image can be prevented. By using the observation device 100 according to this embodiment, the substrate 16 can be properly imaged.
  • a part of the optical system 51 is disposed above the floating surface of the floating unit 10.
  • the upper end of the objective lens 51a is disposed above the floating surface of the floating unit 10. This allows an objective lens 51a with a short working distance to be mounted on the optical system 51. Since an objective lens with a large numerical aperture can be used, the observation unit 50 can capture high-resolution images.
  • the observation unit 50 is disposed below the substrate 16.
  • the substrate 16 can be observed from the back side.
  • the pattern formed on the substrate 16 can be imaged through the transparent substrate. Even if an opaque metal layer or the like is formed on the top side of the substrate 16, the underlying pattern of the opaque layer of the substrate 16 can be properly imaged. This allows the substrate to be inspected with high precision.
  • Embodiment 2 The observation device 100 according to the second embodiment will be described with reference to Fig. 5 and Fig. 6.
  • Fig. 5 is an XY plan view showing the configuration of the observation device 100.
  • Fig. 6 is an XZ plan view showing the configuration of the observation device 100.
  • the configuration of the levitation unit 10 is different from that of the first embodiment.
  • the configuration other than the levitation unit 10 is the same as that of the first embodiment, so the description will be omitted.
  • the levitation unit 10 is not separated into two levitation unit cells 10a, 10b.
  • the levitation unit 10 is formed as a single unit.
  • the levitation unit 10 is provided with an opening 10c for placing the observation unit 50.
  • the opening 10c is provided along the Y direction.
  • the opening 10c is a rectangle with the Y direction as its longitudinal direction and the X direction as its transverse direction.
  • the observation unit 50 moves in the Y direction inside the opening 10c.
  • the substrate 16 can be properly observed.
  • the levitation units 10 are arranged on both sides of the substrate 16 in the X direction. In this way, fluctuations in the height of the substrate 16 can be suppressed.
  • the substrate 16 can be properly imaged.
  • the space for placing the observation unit 50 is not limited to the opening 10c, but may be a recess or the like.
  • a groove along the Y direction may be formed on the upper surface of the levitation unit 10. Then, the movement mechanism 55 may move the observation unit 50 along the groove.
  • Embodiment 3 An observation device 100 according to the third embodiment will be described with reference to Fig. 7 and Fig. 8.
  • Fig. 7 is an XY plan view showing the configuration of the observation device 100.
  • Fig. 8 is an XZ plan view showing the configuration of the observation device 100.
  • a support unit 30 is provided instead of the levitation unit 10 of the first and second embodiments. Note that the configuration other than the support unit 30 is similar to that of the first embodiment, and therefore description thereof will be omitted.
  • the support unit 30 includes a base stage 31 and a number of transport rollers 33.
  • the base stage 31 is disposed directly below the substrate 16.
  • the base stage 31 is provided with a number of transport rollers 33.
  • the multiple transport rollers 33 are arranged in an array.
  • the multiple transport rollers 33 are rotatably attached to the base stage 31.
  • the rotation axis 34 of the transport rollers 33 is parallel to the Y axis.
  • the transport rollers 33 are positioned above the base stage 31. Therefore, the transport rollers 33 come into contact with the bottom surface of the substrate 16. The heights of the multiple transport rollers 33 are the same. As the transport rollers 33 rotate, the substrate 16 is transported in the X direction.
  • the support unit 30 is a mechanism that supports the substrate 16 so that a space G is formed directly below the substrate 16.
  • the objective lens of the optical system 51 is disposed in the space G directly below the substrate 16. Therefore, similar to the first and second embodiments, the observation unit 50 can properly image the substrate 16. This allows the substrate 16 to be properly observed.
  • Fig. 9 is an XY plan view showing the configuration of the observation device 100.
  • Fig. 10 is an XZ plan view showing the configuration of the observation device 100.
  • a suction unit 60 is provided around the observation unit 50.
  • the configuration other than the suction unit 60 is the same as that of the first embodiment, and therefore description thereof will be omitted.
  • the suction unit 60 fixes the substrate 16 by vacuum suction.
  • the observation unit 50 is housed inside the suction unit 60.
  • the movement mechanism 55 moves the observation unit 50 together with the suction unit 60 in the Y direction.
  • Figure 11 is a top view showing the configuration of the suction unit 60.
  • Figure 12 is an XZ cross-sectional view showing the configuration of the suction unit 60.
  • the suction unit 60 has an suction portion 61, a storage portion 62, and a window portion 63.
  • the storage portion 62 is a case (housing) for storing the observation unit 50.
  • the photodetector 52 and the optical system 51 are fixed to the storage portion 62.
  • the cable 53 is taken out to the outside of the storage portion 62.
  • the movement mechanism 55 moves the storage portion 62 along the Y direction. This moves the observation unit 50, making it possible to change the observation position on the substrate 16 in the Y direction.
  • an adsorption part 61 is provided on the upper side of the storage part 62.
  • the adsorption part 61 is capable of adsorbing and holding the substrate 16 by sucking in gas from its upper surface.
  • the upper surface of the adsorption part 61 serves as an adsorption surface.
  • the upper end of the objective lens 51a is lower than the adsorption surface of the adsorption part 61.
  • the suction portion 61 is provided with a circular window portion 63. Light from the substrate 16 passes through the window portion 63 and enters the optical system 51.
  • the window portion 63 may be a space, or may have a transparent material such as glass disposed therein. This allows the suction unit 60 to suction and hold the entire circumference of the observation area of the substrate 16. The suction unit 60 can suction and hold the area surrounding the observation area of the substrate 16.
  • the suction unit 60 fixes the substrate 16 by vacuum suction. This makes it possible to further suppress fluctuations in the height of the substrate 16. In other words, the distance from the objective lens 51a to the bottom surface of the substrate 16 can be kept constant, allowing for more appropriate observation. This allows for stable observation.
  • the suction unit 60 suctions and holds the substrate 16 when the substrate 16 is observed.
  • the suction unit 60 releases the suction hold.
  • gas can be ejected from the suction section 61. This creates a space G between the substrate 16 and the suction section 61.
  • the transport mechanism 11 can transport the substrate 16 so that the substrate 16 floats in the air.
  • Fig. 14 is an XZ plan view showing the configuration of an observation device 100.
  • a precision levitation unit 80 is provided around an observation unit 50.
  • the suction unit of the fourth embodiment is replaced with the precision levitation unit 80.
  • the configuration other than the precision levitation unit 80 is the same as that of the first embodiment, and therefore description thereof will be omitted.
  • Figure 15 is a top view showing the configuration of the precision levitation unit 80.
  • Figure 16 is an XZ cross-sectional view showing the configuration of the precision levitation unit 80.
  • the precision levitation unit 80 comprises a storage section 82 and a suction/ejection section 81.
  • the storage section 82 is a case (housing) for storing the observation unit 50.
  • the photodetector 52 and the objective lens 51a are fixed to the storage section 82.
  • the cable 53 is taken out to the outside of the storage section 82.
  • the movement mechanism 55 moves the storage section 82 along the Y direction. This moves the observation unit 50, making it possible to change the observation position on the substrate 16 in the Y direction.
  • a suction/spray unit 81 is provided above the storage unit 82.
  • the suction/spray unit 81 sucks in gas from its upper surface and sprays the gas onto the substrate 16.
  • the gas from the suction/spray unit 81 is sprayed onto the underside of the substrate 16, causing the substrate 16 to float.
  • the suction/spray unit 81 sucks in gas that is present between the substrate 16 and the suction/spray unit 81.
  • the suction/ejection section 81 is a precision levitation unit cell made of a porous body such as ceramic.
  • Porous bodies that can be used include porous carbon, porous alumina ceramic, and porous SiC ceramic.
  • the suction/jetting part 81 ejects gas upward.
  • the suction/jetting part 81 is also provided with suction holes that suck in gas.
  • the porous body has suction holes machined into it at predetermined intervals that reach the top surface.
  • the suction holes are tiny holes that create a negative pressure between the substrate 16 and the suction/jetting part 81.
  • the porous body ejects gas from almost the entire surface except for the suction holes.
  • the ejection surface that creates a positive pressure is formed on almost the entire surface except for the suction holes.
  • the suction/jetting part 81 may be formed from a metal block having multiple suction holes and multiple ejection holes.
  • the suction/ejection part 81 ejects gas onto the underside of the substrate 16, a tiny space G is formed between the suction/ejection part 81 and the substrate 16.
  • the space G is an air gap created by the gas from the suction/ejection part 81.
  • the suction/ejection part 81 sucks in the gas in the space G. This generates a suction force that sucks the substrate 16 downward, achieving high floating accuracy.
  • the suction/ejection unit 81 is provided with a circular window 83. Light from the substrate 16 passes through the window 83 and enters the optical system 51.
  • the window 83 may be a space, or may be made of a transparent material such as glass. This allows the suction/ejection unit 81 to suck in gas from the entire periphery of the observation area of the substrate 16.
  • the suction/ejection unit 81 can levitate the area surrounding the observation area of the substrate 16 with high levitation accuracy. This can increase the levitation accuracy around the observation unit 50. This allows the observation unit 50 to properly image the substrate 16.
  • the substrate 16 is not fixed by suction. Therefore, the observation unit 50 can capture an image of the substrate 16 even while the substrate 16 is being transported. In other words, the observation unit 50 can capture an image of the substrate 16 while it is moving. This allows the substrate 16 to be captured efficiently. The substrate 16 can be observed and inspected with high productivity.
  • Fig. 17 is an XY plan view showing the configuration of the observation apparatus 100.
  • Fig. 18 is an XZ plan view showing the configuration of the observation apparatus 100.
  • the configuration of the levitation unit 10 differs from that of embodiment 1.
  • the levitation unit 10 includes levitation unit cells 10a and 10b and precision levitation unit cells 10d and 10e.
  • the configuration other than the precision levitation unit cells 10d and 10e is the same as in embodiment 1, so a description thereof will be omitted.
  • the precision levitation unit cells 10d, 10e like the suction/ejection unit 81 of embodiment 5, both suck in and eject gas. Because the precision levitation unit cells 10d, 10e eject gas onto the underside of the substrate 16, a minute space G is formed between the precision levitation unit cells 10d, 10e and the substrate 16. The space G is an air gap created by the gas from the precision levitation unit cells 10d, 10e. Furthermore, the precision levitation unit cells 10d, 10e suck in the gas in the space G. This creates a suction force that sucks the substrate 16 downward, achieving high levitation precision.
  • the precision levitation unit cells 10d and 10e are arranged on both sides of the observation unit 50. That is, the precision levitation unit cell 10d is arranged on the -X side of the observation unit 50, and the precision levitation unit cell 10e is arranged on the +X side of the observation unit 50. This makes it possible to increase the levitation accuracy around the observation unit 50 on both sides in the transport direction. This allows the observation unit 50 to properly image the substrate 16.
  • Fig. 19 is an XY plan view showing the configuration of the observation apparatus 100.
  • Fig. 20 is an XZ plan view showing the configuration of the observation apparatus 100.
  • an adsorption unit 18 is added to the configuration of embodiment 1. Specifically, the precision levitation unit cells 10d and 10e of embodiment 6 are replaced with the adsorption unit 18.
  • the upper surface of the suction unit 18 is higher than the upper surface of the levitation unit 10.
  • the suction units 18 are arranged on both sides of the observation unit 50.
  • the suction units 18 vacuum-suck the substrate 16, similar to the suction section 61. That is, the suction unit 18 sucks in the gas in the space G directly below the substrate 16. This causes the substrate 16 to be fixed by suction to the upper surface of the suction unit 18. Fluctuations in the height of the substrate 16 can be suppressed. That is, the observation unit 50 can capture an image of the substrate 16 at a constant height. This allows stable observation.
  • Embodiment 8 The observation device according to the eighth embodiment will be described with reference to Figs. 21, 22, and 23.
  • Fig. 21 is an XY plan view showing the configuration of the observation device 100.
  • Fig. 22 is an XZ plan view showing the configuration of the observation device 100.
  • Fig. 23 is a YZ plan view showing the configuration of the observation device 100. Note that the description of the contents common to the above-mentioned embodiments will be omitted as appropriate.
  • the configurations of the observation unit 50 and the moving mechanism 55 are the same as those of the first embodiment.
  • a transport robot 70 is provided instead of the levitation unit 10.
  • the transport robot 70 includes an arm mechanism 71 and a robot hand 72.
  • the robot hand 72 is a mechanism for supporting the substrate 16 so that a space G is formed directly below the substrate 16.
  • the robot hand 72 has a fork 72a.
  • the fork 72a extends along the X direction.
  • the substrate 16 is placed on the fork 72a. Between adjacent forks 72a, a space G is formed directly below the substrate 16.
  • the robot hand 72 may suction and hold the substrate 16 by vacuum suction or the like.
  • the arm mechanism 71 has an actuator such as a servo motor, and drives the robot hand 72.
  • the substrate 16 is transported in the X direction as shown in FIG. 22.
  • the movement mechanism 55 moves the observation unit 50 in the Y direction. This makes it possible to observe any position on the substrate 16.
  • the movement directions of the arm mechanism 71 and the moving mechanism 55 may be reversed.
  • the arm mechanism 71 may move the substrate 16 in the Y direction
  • the moving mechanism 55 may move the substrate 16 in the X direction.
  • the transport direction of the substrate 16 and the movement direction of the observation unit 50 are not particularly limited.
  • the moving mechanism 55 moves the observation unit 50 to change the observation position of the substrate, but the moving mechanism may move the substrate 16.
  • the moving mechanism may move the position of the observation unit relative to the substrate in a direction inclined to the substrate transport direction when viewed from above.
  • the moving mechanism moves the substrate 16 on the levitation unit 10 in the Y direction.
  • Fig. 25 is an XY plan view showing the configuration of the observation device 100.
  • Fig. 26 is an XZ plan view showing the configuration of the observation device 100.
  • Fig. 27 is a YZ plan view showing the configuration of the observation device 100.
  • a moving mechanism 91 is provided instead of the moving mechanism 55.
  • the moving mechanism 91 moves the substrate 16 in the Y direction. This causes the observation position of the substrate 16 by the observation unit 50 to change in the Y direction.
  • the position of the observation unit 50 is fixed. For example, the observation unit 50 is fixed inside the opening 10h provided in the cell b of the levitation unit 10. Therefore, the observation unit 50 does not move.
  • the levitation unit 10 includes levitation unit cells 10a, 10b, 10f, and 10g.
  • levitation unit cells 10f and 10g are added to the configuration of the levitation unit 10 in FIG. 1.
  • the levitation unit cells 10f and 10g eject gas upward, similar to the levitation unit cells 10a and 10b.
  • the levitation unit cell 10f is disposed on the +Y side of the levitation unit cell 10a.
  • the levitation unit cell 10g is disposed on the +Y side of the levitation unit cell 10b.
  • the transport mechanism 11 moves in the X direction in the space between the levitation unit cells 10a and 10f.
  • the transport mechanism 11 moves in the X direction in the space between the levitation unit cells 10b and 10g.
  • the movement mechanism 91 moves in the Y direction in the space between the levitation unit cells 10a and 10b.
  • the movement mechanism 91 moves in the Y direction in the space between the levitation unit cells 10f and 10g.
  • the moving mechanism 91 has a similar configuration to the transport mechanism 11, but its transport direction is different from that of the transport mechanism 11. Specifically, as shown in Figures 26 and 27, the moving mechanism 91 has a holding mechanism 92 and a driving mechanism 93.
  • the holding mechanism 92 like the holding mechanism 12, adsorbs and holds the substrate 16.
  • the driving mechanism 93 moves the holding mechanism 92 in the Y direction.
  • the moving mechanism 91 can move the substrate 16 in the Y direction.
  • An observation unit 50 is disposed directly below the substrate 16. This allows the observation position of the substrate 16 to be changed.
  • the transport mechanism 11 and the moving mechanism 91 can transfer the substrate 16.
  • the holding mechanism 92 holding the substrate 16
  • the holding mechanism 12 releases its hold on the substrate 16.
  • the substrate 16 is transferred from the transport mechanism 11 to the moving mechanism 91, allowing the substrate 16 to move in the Y direction.
  • the transport mechanism 11 may lower the holding mechanism 12 so as not to come into contact with the substrate 16.
  • the drive mechanism 93 drives the holding mechanism 92
  • the substrate 16 moves in the Y direction.
  • the movement mechanism 91 moves the relative position of the observation unit 50 with respect to the substrate 16 in the Y direction.
  • the holding mechanism 92 releases its hold on the substrate 16. This allows the substrate 16 to be transferred from the moving mechanism 91 to the transport mechanism 11, making the substrate 16 movable in the X direction. After transferring the substrate 16, the moving mechanism 91 may lower the holding mechanism 92 so as not to come into contact with the substrate 16.
  • the substrate 16 moves in the X direction. This causes the observation position of the observation unit 50 on the substrate 16 to move in the X direction. In other words, the transport mechanism 11 moves the relative position of the observation unit 50 with respect to the substrate 16 in the X direction.
  • the substrate 16 is moved in the Y direction, not the observation unit 50.
  • the observation position of the observation unit 50 can be changed in the XY direction. Therefore, because the substrate 16 is transported in the XY direction, the observation device 100 can observe any position of the substrate 16.
  • a moving mechanism 95 is disposed on the +X side of the levitation unit cell 10b.
  • the moving mechanism 95 has a configuration similar to that of the moving mechanism 91.
  • the moving mechanism 95 includes a holding mechanism 96 and a driving mechanism 97.
  • the holding mechanism 96 corresponds to the holding mechanism 92
  • the driving mechanism 97 corresponds to the driving mechanism 93.
  • the moving mechanism 95 moves the substrate 16 in the Y direction. For example, after the moving mechanism 91 moves the substrate 16 in the -Y direction, the moving mechanism 95 moves the substrate 16 in the +Y direction. This returns the substrate 16 to its original position in the Y direction.
  • the cells of the precision levitation unit 80 may be arranged around the observation unit 50.
  • the suction unit 60 may be arranged around the observation unit 50.
  • Embodiment 10 The configuration of an observation device 100 according to a tenth embodiment will be described with reference to Figs. 28 and 29.
  • a rotation mechanism 99 is added to the configuration of the ninth embodiment.
  • the configuration other than the rotation mechanism 99 is similar to that of the above-mentioned embodiments, and therefore description thereof will be omitted.
  • the rotation mechanism 99 rotates the substrate 16 levitated above the levitation unit 10 around the Z axis.
  • the rotation mechanism 99 is disposed in an opening provided in the levitation unit cell 10a.
  • the rotation mechanism 99 includes a holding mechanism 99a and a drive mechanism 99b.
  • the holding mechanism 99a adsorbs and holds the substrate 16 in the same manner as the holding mechanisms 12, 92, etc.
  • the drive mechanism 99b includes a motor and a rotating shaft that rotate the holding mechanism 99a.
  • the rotating shaft is parallel to the Z direction.
  • the holding mechanism 99a holds the substrate 16 while the levitation unit cells 10a, 10f, etc. are blowing gas onto the substrate 16.
  • the drive mechanism 99b rotates the holding mechanism 99a
  • the substrate 16 rotates around the Z axis.
  • the rotation mechanism 99 rotates the substrate 16 by 90° or 180° around the Z axis.
  • the observation position of the substrate 16 can be changed using the rotation mechanism 99.
  • the observation device 100 can move the substrate 16 with three degrees of freedom: the X axis, the Y axis, and the rotation axis. Therefore, the observation device 100 can observe the entire surface of the substrate 16.
  • the observation apparatus 100 includes an observation unit including a mechanism for floating or supporting the substrate so that a space is formed directly below the substrate, a photodetector for detecting light from the substrate, and an optical system for directing the light from the substrate to the photodetector.
  • the observation method in the observation apparatus includes the following steps (A1) to (A3).
  • (A1) A step in which a transport mechanism transports the substrate in a transport direction.
  • A3) A step of changing an observation position of the substrate by moving a relative position of the observation unit with respect to the substrate in a direction inclined to the transport direction when viewed from above, and observing the substrate.
  • the configurations of the first to tenth embodiments can be used in appropriate combination. Furthermore, the observation device 100 shown in the first to tenth embodiments can be applied to a semiconductor device manufacturing device. In the semiconductor device manufacturing process, the substrate can be properly observed. Therefore, semiconductor devices can be manufactured with high productivity.
  • the observation device 100 may be mounted on a part of the laser irradiation device.
  • FIG. 25 is an XZ cross-sectional view showing the configuration of the laser irradiation device 1 equipped with the observation device 100 according to the first embodiment.
  • the laser irradiation device 1 is, for example, an excimer laser annealing (ELA: Excimer laser Anneal) device that forms a low temperature polysilicon (LTPS: Low Temperature Poly-Silicon) film.
  • ELA excimer laser Annealing
  • LTPS Low Temperature Poly-Silicon
  • the substrate 16 is a glass substrate on which an amorphous silicon film is formed.
  • the laser irradiation device 1 includes an observation device 100 and a laser irradiation unit 14.
  • the laser irradiation unit 14 is added to the observation device 100 in FIG. 1.
  • the laser irradiation unit 14 is placed on a substrate 16 being transported in the X direction. In FIG. 25, it is placed on the levitation unit cell 10b.
  • the laser irradiation unit 14 has a laser light source that generates laser light 15 and an irradiation optical system that guides the laser light 15 to the substrate 16.
  • the laser irradiation unit 14 irradiates the substrate 16 with a line beam whose longitudinal direction is the Y direction. Since the substrate 16 is transported in the X direction, the laser light can be irradiated onto almost the entire surface of the substrate 16.
  • the laser irradiation unit 14 has an excimer laser light source that generates laser light. Furthermore, the laser irradiation unit 14 has an optical system that guides the laser light to the substrate 16. The laser irradiation unit 14 has a lens that focuses the laser light 15 on the substrate 16. For example, the laser irradiation unit 14 has a cylindrical lens for forming a line-shaped irradiation area.
  • the substrate 16 is irradiated with line-shaped laser light 15 (line beam), specifically, with a focal point extending in the y direction. The focal point of the laser light 15 is formed on the substrate 16.
  • the levitation unit 10 levitates the substrate 16 with high precision. This allows the laser irradiation section 14 to appropriately irradiate the laser light. Since the in-plane variation of the laser light can be suppressed, a uniform process is possible. The levitation height can be made uniform. This allows for a more stable process and allows a uniform polysilicon film to be formed. This improves productivity.
  • the substrate 16 can be observed after laser irradiation.
  • the laser irradiation unit 14 can irradiate the laser light on the -X side of the observation unit 50.
  • the laser irradiation unit 14 can be placed above the levitation unit cell 10a.
  • FIG. 30 illustrates an example in which the observation device 100 is applied to the laser irradiation device 1
  • the observation device 100 can be applied to devices other than laser irradiation devices.
  • the observation device 100 can be applied to manufacturing devices used in the manufacturing process of semiconductor devices.
  • the semiconductor device having the polysilicon film is suitable for a TFT (Thin Film Transistor) array substrate for an organic EL (ElectroLuminescence) display. That is, the polysilicon film is used as a semiconductor layer having a source region, a channel region, and a drain region of the TFT.
  • TFT Thin Film Transistor
  • organic EL ElectroLuminescence
  • FIG 31 is a cross-sectional view showing a simplified pixel circuit of an organic EL display.
  • the organic EL display 300 shown in Figure 31 is an active matrix type display device in which a TFT is arranged in each pixel PX.
  • the organic EL display 300 includes a substrate 310, a TFT layer 311, an organic layer 312, a color filter layer 313, and a sealing substrate 314.
  • FIG. 31 shows a top-emission organic EL display in which the sealing substrate 314 side is the viewing side. Note that the following description shows one configuration example of an organic EL display, and the present embodiment is not limited to the configuration described below.
  • the semiconductor device according to the present embodiment may be used in a bottom-emission organic EL display.
  • the substrate 310 is a glass substrate or a metal substrate.
  • a TFT layer 311 is provided on the substrate 310.
  • the TFT layer 311 has a TFT 311a arranged in each pixel PX. Furthermore, the TFT layer 311 has wiring (not shown) connected to the TFT 311a, etc.
  • the TFT 311a and the wiring etc. constitute a pixel circuit.
  • An organic layer 312 is provided on the TFT layer 311.
  • the organic layer 312 has an organic EL element 312a arranged for each pixel PX. Furthermore, the organic layer 312 is provided with partition walls 312b for separating the organic EL elements 312a between the pixels PX.
  • a color filter layer 313 is provided on the organic layer 312.
  • the color filter layer 313 is provided with a color filter 313a for color display. That is, in each pixel PX, a resin layer colored R (red), G (green), or B (blue) is provided as the color filter 313a.
  • a sealing substrate 314 is provided on the color filter layer 313.
  • the sealing substrate 314 is a transparent substrate such as a glass substrate, and is provided to prevent deterioration of the organic EL light-emitting element of the organic layer 312.
  • the current flowing through the organic EL element 312a of the organic layer 312 changes depending on the display signal supplied to the pixel circuit. Therefore, by supplying a display signal corresponding to the display image to each pixel PX, the amount of light emitted by each pixel PX can be controlled. This makes it possible to display the desired image.
  • one pixel PX is provided with one or more TFTs (e.g., a switching TFT or a driving TFT).
  • the TFT of each pixel PX is provided with a semiconductor layer having a source region, a channel region, and a drain region.
  • the polysilicon film of this embodiment is suitable for the semiconductor layer of a TFT. In other words, by using a polysilicon film manufactured by the above manufacturing method as the semiconductor layer of a TFT array substrate, it is possible to suppress in-plane variations in TFT characteristics. Therefore, a display device with excellent display characteristics can be manufactured with high productivity.
  • the manufacturing method of a semiconductor device using the laser irradiation device according to the present embodiment is suitable for manufacturing a TFT array substrate.
  • the manufacturing method of a semiconductor device having TFTs will be described with reference to Figs. 26 and 32.
  • Figs. 32 and 33 are cross-sectional views showing the manufacturing process of a semiconductor device. In the following description, a manufacturing method of a semiconductor device having an inverted staggered type TFT will be described.
  • Figs. 32 and 33 show the process of forming a polysilicon film in the semiconductor manufacturing method. It should be noted that the other manufacturing processes can be performed by known methods, and therefore the description will be omitted.
  • a gate electrode 402 is formed on a glass substrate 401.
  • a gate insulating film 403 is formed on the gate electrode 402.
  • An amorphous silicon film 404 is formed on the gate insulating film 403.
  • the amorphous silicon film 404 is disposed so as to overlap the gate electrode 402 with the gate insulating film 403 interposed therebetween.
  • the gate insulating film 403 and the amorphous silicon film 404 are successively formed by a CVD (Chemical Vapor Deposition) method.
  • the glass substrate 401 on which the amorphous silicon film 404 is formed is transported to the transport device 600.
  • the amorphous silicon film 404 is irradiated with laser light L1 to form a polysilicon film 405 as shown in FIG. 33. That is, the amorphous silicon film 404 is crystallized by the laser irradiation device 1 shown in FIG. 25 etc. As a result, a polysilicon film 405 made of crystallized silicon is formed on the gate insulating film 403.
  • the polysilicon film 405 corresponds to the polysilicon film described above. While the transport device 600 is transporting the glass substrate 401, the laser light L1 is irradiated. As a result, the amorphous silicon film 404 is annealed and converted into the polysilicon film 405.
  • the laser annealing apparatus has been described as irradiating an amorphous silicon film with laser light to form a polysilicon film, but it may also be irradiating an amorphous silicon film with laser light to form a microcrystalline silicon film.
  • the laser light used for annealing is not limited to an Nd:YAG laser.
  • the method according to the present embodiment can also be applied to a laser annealing apparatus that crystallizes a thin film other than a silicon film. In other words, the method according to the present embodiment can be applied to any laser annealing apparatus that irradiates an amorphous film with laser light to form a crystallized film.
  • the laser annealing apparatus according to the present embodiment can appropriately modify a substrate with a crystallized film.
  • the method for manufacturing a semiconductor device may include the following steps (S1) to (S4).
  • S1 A step of floating or supporting a substrate using a mechanism so that a space is formed directly below the substrate.
  • S2 Using a transport mechanism, transporting the substrate on the mechanism in a transport direction.
  • S3 A step of observing the substrate using an observation unit including a photodetector that detects light from the substrate and an optical system that guides the light from the substrate to the photodetector.
  • S4 A step of moving the position of the observation unit relative to the substrate in a direction inclined to the transport direction in a top view using a movement mechanism so as to change the observation position of the substrate.
  • the transport mechanism may transport the substrate so that the laser irradiation section can irradiate the substrate with laser light before or after observation by the observation unit.

Landscapes

  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

An observation device (100) according to the present embodiment comprises: a mechanism for levitating or supporting a substrate (16) such that a space is formed directly below the substrate; a conveyance mechanism for conveying the substrate on the mechanism in a conveyance direction; an observation unit (50) that comprises an optical detector (52) that detects light from the substrate (16) and an optical system (51) that guides the light from the substrate (16) to the optical detector (52); and a movement mechanism (55) that moves the observation unit (50) in a direction inclined to the conveyance direction in a top view.

Description

観察装置、観察方法、及び半導体装置の製造方法Observation device, observation method, and semiconductor device manufacturing method
 本発明は観察装置、観察方法、及び半導体装置の製造方法に関する。 The present invention relates to an observation device, an observation method, and a manufacturing method for a semiconductor device.
 特許文献1には、エキシマレーザを用いたレーザアニール装置が開示されている。特許文献1では、浮上ユニットが基板を浮上した状態で、搬送ユニットが基板を搬送している。そして、ライン状のレーザ光が、搬送中の基板に照射される。さらに、このレーザ照射装置は、基板上に設けられたラインセンサを有している。ラインセンサが搬送中の基板を撮像する。 Patent Document 1 discloses a laser annealing device that uses an excimer laser. In this patent document, a levitation unit levitates a substrate, and a transport unit transports the substrate. A line-shaped laser beam is then irradiated onto the substrate during transport. Furthermore, this laser irradiation device has a line sensor provided on the substrate. The line sensor captures an image of the substrate during transport.
特開2018-64048号JP 2018-64048 A
 このような装置では、基板を適切に観察することが望まれる。 In such devices, it is desirable to be able to properly observe the substrate.
 その他の課題と新規な特徴は、本明細書の記述および添付図面から明らかになるであろう。 Other objects and novel features will become apparent from the description of this specification and the accompanying drawings.
 一実施の形態によれば、観察装置は、基板の直下に空間が形成されるように、前記基板を浮上又は支持する機構と、前記機構の上にある前記基板を搬送方向に搬送する搬送機構と、前記基板からの光を検出する光検出器と、前記基板からの光を前記光検出器に導く光学系と、を備えた観察ユニットと、前記基板の観察位置を変えるように、上面視において、前記搬送方向と傾いた方向に前記観察ユニットを移動する移動機構と、を備えている。 According to one embodiment, the observation device includes an observation unit including a mechanism for floating or supporting the substrate so that a space is formed directly below the substrate, a transport mechanism for transporting the substrate above the mechanism in a transport direction, a photodetector for detecting light from the substrate, and an optical system for directing the light from the substrate to the photodetector, and a movement mechanism for moving the observation unit in a direction inclined to the transport direction in a top view so as to change the observation position of the substrate.
 一実施の形態によれば、観察方法は、基板の直下に空間が形成されるように、前記基板を浮上又は支持する機構と、前記基板からの光を検出する光検出器と、前記基板からの光を前記光検出器に導く光学系と、を備えた観察ユニットと、を備えた観察装置における観察方法であって、(A1)搬送機構が前記基板を搬送方向に搬送するステップと、(A2)前記搬送機構で搬送された基板を、前記観察ユニットを用いて観察するステップと、(A3)上面視において、前記観察ユニットを前記搬送方向と傾いた方向に移動することで、前記基板の観察位置を変え、前記基板を観察するステップと、を備えている。 According to one embodiment, the observation method is an observation method in an observation device that includes an observation unit that includes a mechanism for floating or supporting the substrate so that a space is formed directly below the substrate, a photodetector for detecting light from the substrate, and an optical system for directing the light from the substrate to the photodetector, and includes the steps of (A1) a transport mechanism transporting the substrate in a transport direction, (A2) using the observation unit to observe the substrate transported by the transport mechanism, and (A3) moving the observation unit in a direction inclined from the transport direction in a top view to change the observation position of the substrate and observe the substrate.
 一実施の形態によれば、半導体装置の製造方法は、(S1)基板の直下に空間が形成されるように、機構を用いて、前記基板を浮上又は支持するステップと、(S2)搬送機構を用いて、前記機構の上にある前記基板を搬送方向に搬送するステップと、(S3)前記基板からの光を検出する光検出器と、前記基板からの光を前記光検出器に導く光学系と、を備えた観察ユニットを用いて、前記基板を観察するステップと、(S4)前記基板の観察位置を変えるように、移動機構を用いて、上面視において、前記搬送方向と傾いた方向に前記観察ユニットを移動するステップと、を備えている。 According to one embodiment, a method for manufacturing a semiconductor device includes the steps of: (S1) using a mechanism to float or support the substrate so that a space is formed directly below the substrate; (S2) using a transport mechanism to transport the substrate on the mechanism in a transport direction; (S3) using an observation unit that includes a photodetector that detects light from the substrate and an optical system that directs the light from the substrate to the photodetector; and (S4) using a movement mechanism to move the observation unit in a direction inclined from the transport direction in a top view so as to change the observation position of the substrate.
 前記一実施の形態によれば、基板を適切に観察することができる観察装置、観察方法、及び半導体装置の製造方法を提供することができる。 According to the above embodiment, it is possible to provide an observation device, an observation method, and a method for manufacturing a semiconductor device that can properly observe a substrate.
実施の形態1にかかる観察装置を模式的に示すXY平面図である。1 is an XY plan view illustrating a schematic diagram of an observation device according to a first embodiment; 実施の形態1にかかる観察装置を模式的に示すXZ平面図である。1 is an XZ plan view illustrating a schematic view of an observation device according to a first embodiment; 実施の形態1にかかる観察装置を模式的に示すYZ平面図である。1 is a YZ plan view illustrating a schematic view of an observation device according to a first embodiment. 観察ユニットの構成を拡大して示す図である。FIG. 2 is an enlarged view showing the configuration of an observation unit. 実施の形態2にかかる観察装置を模式的に示すXY平面図である。FIG. 11 is an XY plan view illustrating an observation device according to a second embodiment. 実施の形態2にかかる観察装置を模式的に示すXZ平面図である。FIG. 11 is an XZ plan view illustrating an observation device according to a second embodiment. 実施の形態3にかかる観察装置を模式的に示すXY平面図である。FIG. 11 is an XY plan view illustrating an observation device according to a third embodiment. 実施の形態3にかかる観察装置を模式的に示すXZ平面図である。FIG. 13 is an XZ plan view illustrating an observation device according to a third embodiment. 実施の形態4にかかる観察装置を模式的に示すXY平面図である。FIG. 13 is an XY plan view illustrating an observation device according to a fourth embodiment. 実施の形態4にかかる観察装置を模式的に示すXZ平面図である。FIG. 13 is an XZ plan view illustrating an observation device according to a fourth embodiment. 観察ユニットと吸着部の構成を拡大して示すXY平面図である。FIG. 2 is an enlarged XY plan view showing the configuration of an observation unit and an adsorption portion. 吸着ユニットが基板を吸着したときの観察ユニットの構成を拡大して示すXZ平面図である。11 is an XZ plan view showing an enlarged configuration of the observation unit when the suction unit suctions the substrate. FIG. 吸着ユニットが基板の吸着固定を解放したときの観察ユニットの構成を拡大して示すXZ平面図である。11 is an XZ plan view showing an enlarged configuration of the observation unit when the suction unit releases the suction fixation of the substrate. FIG. 実施の形態5にかかる観察装置を模式的に示すXZ平面図である。FIG. 13 is an XZ plan view illustrating an observation device according to a fifth embodiment. 精密浮上ユニットの構成を模式的に示すXY平面図である。FIG. 2 is an XY plan view showing a schematic configuration of the precision levitation unit. 精密浮上ユニットの構成を模式的に示すXZ平面図である。FIG. 2 is an XZ plan view illustrating a schematic configuration of the precision levitation unit. 実施の形態6にかかる観察装置を模式的に示すXY平面図である。FIG. 23 is an XY plan view illustrating an observation device according to a sixth embodiment. 実施の形態6にかかる観察装置を模式的に示すXZ平面図である。FIG. 23 is an XZ plan view illustrating an observation device according to a sixth embodiment. 実施の形態7にかかる観察装置を模式的に示すXY平面図である。FIG. 23 is an XY plan view illustrating an observation device according to a seventh embodiment. 実施の形態7にかかる観察装置を模式的に示すXZ平面図である。FIG. 23 is an XZ plan view illustrating an observation device according to a seventh embodiment. 実施の形態8にかかる観察装置を模式的に示すXY平面図である。FIG. 23 is an XY plan view illustrating an observation device according to an eighth embodiment. 実施の形態8にかかる観察装置を模式的に示すXZ平面図である。FIG. 23 is an XZ plan view illustrating an observation device according to an eighth embodiment. 実施の形態8にかかる観察装置を模式的に示すYZ平面図である。FIG. 23 is a YZ plan view illustrating an observation device according to an eighth embodiment. 実施の形態8にかかる観察装置において、移動方向を変えた場合の構成を模式に示すXY平面図である。FIG. 23 is an XY plan view illustrating a schematic configuration of an observation device according to an eighth embodiment when the movement direction is changed. 実施の形態9にかかる観察装置を模式的に示すXY平面図である。FIG. 13 is an XY plan view illustrating an observation device according to a ninth embodiment. 実施の形態9にかかる観察装置を模式的に示すXZ平面図である。FIG. 13 is an XZ plan view illustrating an observation device according to a ninth embodiment. 実施の形態9にかかる観察装置を模式的に示すYZ平面図である。FIG. 23 is a YZ plan view illustrating an observation device according to a ninth embodiment. 実施の形態10にかかる観察装置を模式的に示すXY平面図である。FIG. 23 is an XY plan view illustrating an observation device according to a tenth embodiment. 実施の形態10にかかる観察装置を模式的に示すXZ平面図である。FIG. 23 is an XZ plan view illustrating an observation device according to a tenth embodiment. 観察装置を備えたレーザ照射装置の構成を示す模式図である。FIG. 2 is a schematic diagram showing a configuration of a laser irradiation device equipped with an observation device. 有機ELディスプレイの構成を簡略化して示す断面図である。1 is a cross-sectional view showing a simplified configuration of an organic EL display. 本実施の形態にかかる半導体装置の製造方法を示す工程断面図である。1A to 1C are cross-sectional views showing steps of a manufacturing method of a semiconductor device according to an embodiment of the present invention. 本実施の形態にかかる半導体装置の製造方法を示す工程断面図である。1A to 1C are cross-sectional views showing steps of a manufacturing method of a semiconductor device according to an embodiment of the present invention.
 本実施の形態にかかる観察装置は、基板を裏面側から観察するための観察装置である。例えば、基板は、有機ELディスプレイ用のガラス基板とする。ガラス基板上にはメタル配線層、透明電極層、半導体層、発光層、カラーフィルタ層等の各種パターンが形成されている。つまり、ガラス基板上には多層のパターンが形成されている。 The observation device in this embodiment is an observation device for observing a substrate from the back side. For example, the substrate is a glass substrate for an organic EL display. Various patterns such as a metal wiring layer, a transparent electrode layer, a semiconductor layer, a light-emitting layer, and a color filter layer are formed on the glass substrate. In other words, multiple patterns are formed on the glass substrate.
 なお、以下に示す図では、説明の簡略化のため、適宜、XYZ3次元直交座標系を示している。Z方向は鉛直上下方向であり、基板の主面と直交する方向である。XY平面は、基板の主面と平行な平面である。XY方向は矩形状の基板の端辺と平行な方向である。また、X方向は基板の搬送方向となっている。Y方向は、X方向及びZ方向と直交する方向である。 In the figures below, for ease of explanation, an XYZ three-dimensional Cartesian coordinate system is shown where appropriate. The Z direction is the vertical direction, and is perpendicular to the main surface of the substrate. The XY plane is a plane parallel to the main surface of the substrate. The XY directions are parallel to the edges of the rectangular substrate. The X direction is the substrate transport direction. The Y direction is perpendicular to the X and Z directions.
実施の形態1
 図1~図3を用いて、本実施の形態1にかかる観察装置の構成について説明する。図1は、観察装置100の構成を模式的に示す上面図(XY平面図)である。図2は、レーザ照射装置1の構成を模式的に示す側面図(XZ平面図)である。図3は、レーザ照射装置1の構成を模式的に示す側面図(YZ平面図)である。
First embodiment
The configuration of the observation device according to the first embodiment will be described with reference to Fig. 1 to Fig. 3. Fig. 1 is a top view (XY plan view) that shows a schematic configuration of the observation device 100. Fig. 2 is a side view (XZ plan view) that shows a schematic configuration of the laser irradiation device 1. Fig. 3 is a side view (YZ plan view) that shows a schematic configuration of the laser irradiation device 1.
 観察装置100は、浮上ユニット10と、搬送機構11と、観察ユニット50と、を備えている。図2に示すように、浮上ユニット10は、浮上ユニット10の表面からガスを噴出するように構成されている。浮上ユニット10は、その上面で基板16を浮上させる。浮上ユニット10の表面から噴出されたガスが基板16の下面に吹き付けられることで、基板16が浮上する。例えば、基板16が搬送される際、浮上ユニット10は基板16の上側に配置されている他の機構(不図示)に基板16が接触しないように浮上量を調整している。 The observation device 100 includes a levitation unit 10, a transport mechanism 11, and an observation unit 50. As shown in FIG. 2, the levitation unit 10 is configured to eject gas from the surface of the levitation unit 10. The levitation unit 10 levitates the substrate 16 with its upper surface. The gas ejected from the surface of the levitation unit 10 is sprayed onto the underside of the substrate 16, causing the substrate 16 to levitate. For example, when the substrate 16 is transported, the levitation unit 10 adjusts the amount of levitation so that the substrate 16 does not come into contact with other mechanisms (not shown) arranged above the substrate 16.
 浮上ユニット10は、基板16と接触しないように、基板16にガスを噴出する。よって、基板16の直下に空間Gが形成されている。空間Gは、浮上ユニット10からのガスによって生じる微小なエアギャップである。つまり、空間Gは浮上ユニット10の上面から基板16の下面までの隙間となる。なお、浮上ユニット10から噴出されるガスは、空気や窒素などであり、乾燥ガスであってもよい。 The levitation unit 10 ejects gas onto the substrate 16 so as not to come into contact with the substrate 16. Thus, a space G is formed directly below the substrate 16. The space G is a tiny air gap created by the gas from the levitation unit 10. In other words, the space G is the gap from the upper surface of the levitation unit 10 to the lower surface of the substrate 16. The gas ejected from the levitation unit 10 may be air, nitrogen, or a dry gas.
 浮上ユニット10は、基板16の直下に空間Gが形成されるように、基板16を浮上する機構となる。浮上ユニット10は、複数の浮上ユニットセル10a、浮上ユニットセル10bを有している。浮上ユニットセル10bは、浮上ユニットセル10aの+X側に配置されている。浮上ユニットセル10aと浮上ユニットセル10bは隙間17を隔てて配置されている。浮上ユニットセル10a、浮上ユニットセル10bのそれぞれが気体を噴出する。浮上ユニットセル10aと浮上ユニットセル10bとの間には、観察ユニット50が配置されている。観察ユニット50については後述する。 The levitation unit 10 is a mechanism for levitating the substrate 16 so that a space G is formed directly below the substrate 16. The levitation unit 10 has a plurality of levitation unit cells 10a and levitation unit cells 10b. The levitation unit cell 10b is disposed on the +X side of the levitation unit cell 10a. The levitation unit cells 10a and 10b are disposed across a gap 17. Each of the levitation unit cells 10a and 10b ejects gas. An observation unit 50 is disposed between the levitation unit cells 10a and 10b. The observation unit 50 will be described later.
 浮上ユニットセル10a、浮上ユニットセル10bはセラミックなどの多孔質体で形成されていてもよい。多孔質体としては、ポーラスカーボン、ポーラスアルミナセラミックやポーラスSiCセラミックなどを用いることができる。浮上ユニットセル10a、浮上ユニットセル10bは複数のガス噴出穴を有する金属材料で形成されていても良い。 The levitation unit cell 10a and the levitation unit cell 10b may be formed of a porous body such as ceramic. Porous bodies that can be used include porous carbon, porous alumina ceramic, and porous SiC ceramic. The levitation unit cell 10a and the levitation unit cell 10b may be formed of a metal material having multiple gas ejection holes.
 浮上ユニット10の+Y側には、搬送機構11が配置されている。搬送機構11は、浮上している基板16を搬送方向に搬送する。図3に示すように、搬送機構11は、基板16の端部を真空吸着する保持機構12を有している。保持機構12は、+Y側の基板16の端部を吸着保持する。 A transport mechanism 11 is disposed on the +Y side of the levitation unit 10. The transport mechanism 11 transports the levitated substrate 16 in the transport direction. As shown in FIG. 3, the transport mechanism 11 has a holding mechanism 12 that vacuum-sucks the end of the substrate 16. The holding mechanism 12 suction-holds the end of the substrate 16 on the +Y side.
 例えば、保持機構12は、真空吸着機構を用いて構成することができる。真空吸着機構はアルミニウム合金などの金属材料により形成されている。あるいは、保持機構12は、PEEK(ポリエーテルエーテルケトン)材などの樹脂系材料で形成されていてもよい。保持機構12の上面には、吸着溝や吸着穴等が形成されている。保持機構12は多孔質材料で形成されていても良い。 For example, the holding mechanism 12 can be constructed using a vacuum suction mechanism. The vacuum suction mechanism is made of a metal material such as an aluminum alloy. Alternatively, the holding mechanism 12 may be made of a resin material such as PEEK (polyether ether ketone). The upper surface of the holding mechanism 12 has suction grooves, suction holes, etc. formed thereon. The holding mechanism 12 may also be made of a porous material.
 保持機構12は、駆動機構13に連結されている。駆動機構13は保持機構12をX方向に移動させる。駆動機構13は、エアシリンダやモータなどのアクチュエータ等を備えている。例えば、駆動機構13は、X方向に沿ったガイド機構を有している。そして、駆動機構13はX方向に沿って保持機構12をスライド移動させる。これにより、搬送機構11が基板16をX方向に搬送することができる。さらに、駆動機構13は、保持機構12をZ方向(上下方向)に昇降させるための昇降機構を有していてもよい。 The holding mechanism 12 is connected to the drive mechanism 13. The drive mechanism 13 moves the holding mechanism 12 in the X direction. The drive mechanism 13 is equipped with an actuator such as an air cylinder or a motor. For example, the drive mechanism 13 has a guide mechanism along the X direction. The drive mechanism 13 slides the holding mechanism 12 along the X direction. This allows the transport mechanism 11 to transport the substrate 16 in the X direction. Furthermore, the drive mechanism 13 may have a lifting mechanism for raising and lowering the holding mechanism 12 in the Z direction (up and down direction).
 X方向において、浮上ユニットセル10aと浮上ユニットセル10bの間の隙間17には、観察ユニット50が配置されている。観察ユニット50は、光検出器52と光学系51とを備えている。光検出器52は、CCD(Charge-Coupled Device)カメラ、CMOS(Complementary metal-oxide-semiconductor)イメージセンサ、又はフォトダイオードアレイを用いることができる。光検出器52は、画素がX方向及びY方向に配列されたカメラとなる。 In the X direction, an observation unit 50 is disposed in the gap 17 between the levitation unit cell 10a and the levitation unit cell 10b. The observation unit 50 includes a photodetector 52 and an optical system 51. The photodetector 52 may be a CCD (Charge-Coupled Device) camera, a CMOS (Complementary metal-oxide-semiconductor) image sensor, or a photodiode array. The photodetector 52 is a camera with pixels arranged in the X and Y directions.
 光学系51は、基板16からの光を光検出器52に導く。これにより、光検出器52が基板16を撮像することができる。例えば、光学系51は、基板16を拡大して結像する対物レンズ等を有している。例えば、観察ユニット50は、50倍~100倍の拡大像を撮像することができる。光学系51はその他のレンズ、ビームスプリッタ、フィルタなどの光学素子を備えていてもよい。 The optical system 51 guides light from the substrate 16 to the photodetector 52. This allows the photodetector 52 to capture an image of the substrate 16. For example, the optical system 51 has an objective lens that magnifies and forms an image of the substrate 16. For example, the observation unit 50 can capture an image magnified 50 to 100 times. The optical system 51 may also have other optical elements such as lenses, beam splitters, and filters.
 光検出器52には、電源供給や信号の入出力を行うためのケーブル53が接続されている。光検出器52で撮像された画像のデータは、メモリ等に格納される。あるいは、外部のモニタが画像を表示してもよい。 A cable 53 is connected to the photodetector 52 for power supply and signal input/output. The image data captured by the photodetector 52 is stored in a memory or the like. Alternatively, the image may be displayed on an external monitor.
 さらに、観察ユニット50は、移動機構55に連結されている。移動機構55は観察ユニット50をY方向に移動する。ここでは、光検出器52が、光学系51とともに移動する。XY平面視において、基板16に対する観察ユニット50の位置が変化する。観察装置100は、基板16の観察位置を変えることができる。 Furthermore, the observation unit 50 is connected to a moving mechanism 55. The moving mechanism 55 moves the observation unit 50 in the Y direction. Here, the photodetector 52 moves together with the optical system 51. In the XY plan view, the position of the observation unit 50 with respect to the substrate 16 changes. The observation device 100 can change the observation position of the substrate 16.
 移動機構55が観察ユニット50のY方向位置を変える。さらに、搬送機構11が基板16をX方向に搬送している。これにより、観察ユニット50が、基板16の任意の位置を撮像することができる。観察装置100は、基板16の複数の観察位置を撮像することができる。基板16に対する観察ユニット50の相対位置がXY方向に変化するため、観察装置100は、基板16の所望の位置を観察位置にすることができる。なお、上面視において、移動機構55の移動方向と、搬送機構11の搬送方向は図に示す方向に限られるものではない。上面視において、移動機構55の移動方向と、搬送機構11の搬送方向は直交する方向に限らず、傾いた方向となっていればよい。 The moving mechanism 55 changes the Y-direction position of the observation unit 50. Furthermore, the transport mechanism 11 transports the substrate 16 in the X-direction. This allows the observation unit 50 to image any position on the substrate 16. The observation device 100 can image multiple observation positions on the substrate 16. Because the relative position of the observation unit 50 to the substrate 16 changes in the XY directions, the observation device 100 can make a desired position on the substrate 16 the observation position. Note that, in a top view, the moving direction of the moving mechanism 55 and the transport direction of the transport mechanism 11 are not limited to the directions shown in the figure. In a top view, the moving direction of the moving mechanism 55 and the transport direction of the transport mechanism 11 are not limited to being orthogonal, but may be inclined.
 なお、図2、及び図3では、基板16の上側に照明光源59が配置されている。照明光源59は、基板16を照明するための照明光を発生する。観察ユニット50は、照明光源59で照明された領域からの光を受光する。なお、照明光源59からの照明光を基板16に集光するレンズ等が設けられていてもよい。 2 and 3, an illumination light source 59 is disposed above the substrate 16. The illumination light source 59 generates illumination light for illuminating the substrate 16. The observation unit 50 receives light from the area illuminated by the illumination light source 59. A lens or the like may be provided to focus the illumination light from the illumination light source 59 onto the substrate 16.
 なお、照明光源59は、基板16の上に限られるものでない。例えば、光学系51の光軸と同軸で照明するように、照明光源59を配置しても良い。さらに、照明光源59は、レンズの外側に配置されたリング照明であってもよい。あるいは、室内灯を照明光源59として用いることも可能である。照明光源59は、Y方向を長手方向とするライン状の照明光を発生してもよい。あるいは、後述するように,観察ユニット50とともにY方向に沿って移動してもよい。 The illumination light source 59 is not limited to being located on the substrate 16. For example, the illumination light source 59 may be arranged so as to illuminate coaxially with the optical axis of the optical system 51. Furthermore, the illumination light source 59 may be a ring light arranged on the outside of the lens. Alternatively, an indoor light may be used as the illumination light source 59. The illumination light source 59 may generate linear illumination light with the Y direction as the longitudinal direction. Alternatively, as described below, it may move along the Y direction together with the observation unit 50.
 図4は、観察ユニット50の構成を拡大して示す図である。図4では、光学系51として、対物レンズ51aの鏡筒が示されている。光学系51は、光検出器52に固定されている。光学系51で屈折された光は、光検出器52に撮像素子52aに結像される。撮像素子52aは、X方向及びY方向に配列された複数の画素を有する2次元アレイ光検出器である。なお、図4では、対物レンズ51aの鏡筒内において、1枚のレンズのみが示されているが、複数のレンズが設けられていてもよい。 FIG. 4 is an enlarged view of the configuration of the observation unit 50. In FIG. 4, the lens barrel of the objective lens 51a is shown as the optical system 51. The optical system 51 is fixed to the photodetector 52. Light refracted by the optical system 51 is imaged on the image sensor 52a of the photodetector 52. The image sensor 52a is a two-dimensional array photodetector having multiple pixels arranged in the X and Y directions. Note that, although only one lens is shown inside the lens barrel of the objective lens 51a in FIG. 4, multiple lenses may be provided.
 例えば、対物レンズ51aの光軸は、Z方向と平行になっている。したがって、光検出器52の真上が、基板16の観察位置となる。ここで、対物レンズ51aの焦点深度D以上に基板16の高さが変化すると、基板16の像がぼけてしまう。本実施の形態では、浮上ユニット10を用いているため、基板16の高さを高い精度で制御することができる。本実施形態にかかる観察装置100を用いることで、基板16を適切に観察することができる。 For example, the optical axis of the objective lens 51a is parallel to the Z direction. Therefore, the observation position of the substrate 16 is directly above the photodetector 52. If the height of the substrate 16 changes beyond the focal depth D of the objective lens 51a, the image of the substrate 16 will become blurred. In this embodiment, the levitation unit 10 is used, so the height of the substrate 16 can be controlled with high precision. By using the observation device 100 according to this embodiment, the substrate 16 can be properly observed.
 特に、X方向において、基板16の両側に浮上ユニット10が配置されている。つまり、基板16の-X側には、浮上ユニットセル10aが配置され、基板16の+X側には、浮上ユニットセル10bが配置されている。このようにすることで、基板16の高さの変動を抑制することができるため、画像のぼけを防止することができる。本実施形態にかかる観察装置100を用いることで、基板16を適切に撮像することができる。 In particular, the levitation units 10 are arranged on both sides of the substrate 16 in the X direction. That is, the levitation unit cell 10a is arranged on the -X side of the substrate 16, and the levitation unit cell 10b is arranged on the +X side of the substrate 16. In this way, fluctuations in the height of the substrate 16 can be suppressed, and therefore blurring of the image can be prevented. By using the observation device 100 according to this embodiment, the substrate 16 can be properly imaged.
 また、図2,図3に示すように、光学系51の一部は浮上ユニット10の浮上面よりも上側に配置されている。具体的iは、対物レンズ51aの上端は、浮上ユニット10の浮上面よりも上に配置されている。これにより、作動距離の短い対物レンズ51aを光学系51に搭載することができる。開口数の大きい対物レンズを用いることができるため、観察ユニット50が解像度の高い画像を撮像することができる。 Also, as shown in Figures 2 and 3, a part of the optical system 51 is disposed above the floating surface of the floating unit 10. Specifically, the upper end of the objective lens 51a is disposed above the floating surface of the floating unit 10. This allows an objective lens 51a with a short working distance to be mounted on the optical system 51. Since an objective lens with a large numerical aperture can be used, the observation unit 50 can capture high-resolution images.
 観察ユニット50は、基板16の下側に配置されている。基板16を裏面側から観察することができる。つまり、透明基板越しに、基板16に形成されたパターンを撮像することができる。基板16の上面側に不透明なメタル層等が形成されている場合であっても、適切に基板16の不透明な層の下層パターンを撮像することができる。これにより、高い精度で基板を検査することができる。 The observation unit 50 is disposed below the substrate 16. The substrate 16 can be observed from the back side. In other words, the pattern formed on the substrate 16 can be imaged through the transparent substrate. Even if an opaque metal layer or the like is formed on the top side of the substrate 16, the underlying pattern of the opaque layer of the substrate 16 can be properly imaged. This allows the substrate to be inspected with high precision.
実施の形態2
 実施の形態2にかかる観察装置100について、図5、図6を用いて説明する。図5は、観察装置100の構成を示すXY平面図である。図6は、観察装置100の構成を示すXZ平面図である。実施の形態2では実施の形態1に比べて、浮上ユニット10の構成が異なっている。浮上ユニット10以外の構成については、実施の形態1と同様であるため、説明を省略する。
Embodiment 2
The observation device 100 according to the second embodiment will be described with reference to Fig. 5 and Fig. 6. Fig. 5 is an XY plan view showing the configuration of the observation device 100. Fig. 6 is an XZ plan view showing the configuration of the observation device 100. In the second embodiment, the configuration of the levitation unit 10 is different from that of the first embodiment. The configuration other than the levitation unit 10 is the same as that of the first embodiment, so the description will be omitted.
 ここでは、浮上ユニット10が2つの浮上ユニットセル10a、10bに分離されていない。つまり、浮上ユニット10が一体的に形成されている。そして、浮上ユニット10には、観察ユニット50を配置するための開口部10cが設けられている。開口部10cは、Y方向に沿って設けられている。つまり、開口部10cはY方向を長手方向として、X方向を短手方向とする長方形となっている。観察ユニット50は、開口部10cの内側をY方向に移動する。 Here, the levitation unit 10 is not separated into two levitation unit cells 10a, 10b. In other words, the levitation unit 10 is formed as a single unit. The levitation unit 10 is provided with an opening 10c for placing the observation unit 50. The opening 10c is provided along the Y direction. In other words, the opening 10c is a rectangle with the Y direction as its longitudinal direction and the X direction as its transverse direction. The observation unit 50 moves in the Y direction inside the opening 10c.
 このような構成においても、適切に基板16を観察することができる。X方向において、基板16の両側に浮上ユニット10が配置される。このようにすることで、基板16の高さの変動を抑制することができる。本実施形態にかかる観察装置100を用いることで、基板16を適切に撮像することができる。 Even with this configuration, the substrate 16 can be properly observed. The levitation units 10 are arranged on both sides of the substrate 16 in the X direction. In this way, fluctuations in the height of the substrate 16 can be suppressed. By using the observation device 100 according to this embodiment, the substrate 16 can be properly imaged.
 なお、観察ユニット50を配置するためのスペースは、開口部10cに限らず、凹部などであってもよい。つまり、浮上ユニット10の上面にY方向に沿った溝を形成すればよい。そして、移動機構55が、観察ユニット50を溝に沿って移動させればよい。 The space for placing the observation unit 50 is not limited to the opening 10c, but may be a recess or the like. In other words, a groove along the Y direction may be formed on the upper surface of the levitation unit 10. Then, the movement mechanism 55 may move the observation unit 50 along the groove.
実施の形態3
 実施の形態3にかかる観察装置100について、図7、図8を用いて説明する。図7は、観察装置100の構成を示すXY平面図である。図8は、観察装置100の構成を示すXZ平面図である。実施の形態3では、実施の形態1、2の浮上ユニット10の代わりに、支持ユニット30が設けられている。なお、支持ユニット30以外の構成については、実施の形態1と同様であるため説明を省略する。
Embodiment 3
An observation device 100 according to the third embodiment will be described with reference to Fig. 7 and Fig. 8. Fig. 7 is an XY plan view showing the configuration of the observation device 100. Fig. 8 is an XZ plan view showing the configuration of the observation device 100. In the third embodiment, a support unit 30 is provided instead of the levitation unit 10 of the first and second embodiments. Note that the configuration other than the support unit 30 is similar to that of the first embodiment, and therefore description thereof will be omitted.
 支持ユニット30は、ベースステージ31と、複数の搬送ローラ33とを備えている。ベースステージ31は、基板16の直下に配置されている。ベースステージ31には複数の搬送ローラ33が設けられている。XY平面視において、複数の搬送ローラ33がアレイ状に配置されている。複数の搬送ローラ33は、ベースステージ31に回転可能に取り付けられている。搬送ローラ33の回転軸34はY軸と平行になっている。 The support unit 30 includes a base stage 31 and a number of transport rollers 33. The base stage 31 is disposed directly below the substrate 16. The base stage 31 is provided with a number of transport rollers 33. In the XY plane view, the multiple transport rollers 33 are arranged in an array. The multiple transport rollers 33 are rotatably attached to the base stage 31. The rotation axis 34 of the transport rollers 33 is parallel to the Y axis.
 搬送ローラ33は、ベースステージ31よりも上側に配置されている。よって、搬送ローラ33は基板16の下面と接触する。複数の搬送ローラ33の高さは一致している。搬送ローラ33が回転することで、基板16がX方向に搬送される。 The transport rollers 33 are positioned above the base stage 31. Therefore, the transport rollers 33 come into contact with the bottom surface of the substrate 16. The heights of the multiple transport rollers 33 are the same. As the transport rollers 33 rotate, the substrate 16 is transported in the X direction.
 このような構成により、基板16の直下に空間Gが形成される。支持ユニット30は、基板16の直下に空間Gが形成されるように、基板16を支持する機構である。基板16の直下の空間Gに光学系51の対物レンズが配置される。よって、実施の形態1、2と同様に、観察ユニット50が適切に基板16を撮像するこことができる。これにより、適切に基板16を観察することができる。 With this configuration, a space G is formed directly below the substrate 16. The support unit 30 is a mechanism that supports the substrate 16 so that a space G is formed directly below the substrate 16. The objective lens of the optical system 51 is disposed in the space G directly below the substrate 16. Therefore, similar to the first and second embodiments, the observation unit 50 can properly image the substrate 16. This allows the substrate 16 to be properly observed.
実施の形態4
 実施の形態4にかかる観察装置について、図9、図10を用いて説明する。図9は、観察装置100の構成を示すXY平面図である。図10は、観察装置100の構成を示すXZ平面図である。本実施の形態では、観察ユニット50の周囲に吸着ユニット60が設けられている。吸着ユニット60以外の構成については、実施の形態1と同様であるため説明を省略する。
Fourth embodiment
An observation device according to the fourth embodiment will be described with reference to Fig. 9 and Fig. 10. Fig. 9 is an XY plan view showing the configuration of the observation device 100. Fig. 10 is an XZ plan view showing the configuration of the observation device 100. In this embodiment, a suction unit 60 is provided around the observation unit 50. The configuration other than the suction unit 60 is the same as that of the first embodiment, and therefore description thereof will be omitted.
 吸着ユニット60は、基板16を真空吸着して固定する。吸着ユニット60の内部に観察ユニット50が収容されている。移動機構55は、吸着ユニット60ともに観察ユニット50をY方向に移動させる。 The suction unit 60 fixes the substrate 16 by vacuum suction. The observation unit 50 is housed inside the suction unit 60. The movement mechanism 55 moves the observation unit 50 together with the suction unit 60 in the Y direction.
 吸着ユニット60の構成について、図11、図12を用いて説明する。図11は、吸着ユニット60の構成を示す上面図である。図12は、吸着ユニット60の構成を示すXZ断面図である。 The configuration of the suction unit 60 will be described with reference to Figures 11 and 12. Figure 11 is a top view showing the configuration of the suction unit 60. Figure 12 is an XZ cross-sectional view showing the configuration of the suction unit 60.
 吸着ユニット60は、吸着部61と、収容部62と、窓部63とを備えている。収容部62は、観察ユニット50を収容するためのケース(筐体)となっている。光検出器52、及び光学系51は、収容部62に固定されている。ケーブル53は収容部62の外側に取り出されている。移動機構55が収容部62をY方向に沿って移動する。これにより、観察ユニット50が移動するため、基板16における観察位置をY方向に変えることができる。 The suction unit 60 has an suction portion 61, a storage portion 62, and a window portion 63. The storage portion 62 is a case (housing) for storing the observation unit 50. The photodetector 52 and the optical system 51 are fixed to the storage portion 62. The cable 53 is taken out to the outside of the storage portion 62. The movement mechanism 55 moves the storage portion 62 along the Y direction. This moves the observation unit 50, making it possible to change the observation position on the substrate 16 in the Y direction.
 さらに収容部62の上側には、吸着部61が設けられている。吸着部61は、その上面から気体を吸引することで、基板16を吸着保持することができる。吸着部61の上面が吸着面となっている。対物レンズ51aの上端は、吸着部61の吸着面よりも低くなっている。 Furthermore, an adsorption part 61 is provided on the upper side of the storage part 62. The adsorption part 61 is capable of adsorbing and holding the substrate 16 by sucking in gas from its upper surface. The upper surface of the adsorption part 61 serves as an adsorption surface. The upper end of the objective lens 51a is lower than the adsorption surface of the adsorption part 61.
 吸着部61には、円形の窓部63が設けられている。基板16からの光は、窓部63を通って、光学系51に入射する。窓部63は、空間であってもよく、ガラスなどの透明部材が配置されていてもよい。これにより、吸着ユニット60は、基板16の観察領域の全周を吸着保持することができる。吸着ユニット60は、基板16の観察領域を囲む領域を吸着保持することができる。 The suction portion 61 is provided with a circular window portion 63. Light from the substrate 16 passes through the window portion 63 and enters the optical system 51. The window portion 63 may be a space, or may have a transparent material such as glass disposed therein. This allows the suction unit 60 to suction and hold the entire circumference of the observation area of the substrate 16. The suction unit 60 can suction and hold the area surrounding the observation area of the substrate 16.
 吸着ユニット60が基板16を真空吸着により、固定する。これにより、基板16の高さの変動をより抑制することができる。つまり、対物レンズ51aから基板16の下面までの距離を一定にすることができるため、より適切に観察することができる。よって、安定して観察を行うことができる。 The suction unit 60 fixes the substrate 16 by vacuum suction. This makes it possible to further suppress fluctuations in the height of the substrate 16. In other words, the distance from the objective lens 51a to the bottom surface of the substrate 16 can be kept constant, allowing for more appropriate observation. This allows for stable observation.
 吸着ユニット60は、基板16を観察するときに、基板16を吸着保持する。また、基板16を搬送する際は、吸着ユニット60が吸着保持を開放する。例えば、図13に示すように、吸着部61から気体を噴出すればよい。これにより、基板16と吸着部61との間に空間Gが形成される。つまり、基板16がエア浮上するための、搬送機構11が基板16を搬送することができる。 The suction unit 60 suctions and holds the substrate 16 when the substrate 16 is observed. When the substrate 16 is transported, the suction unit 60 releases the suction hold. For example, as shown in FIG. 13, gas can be ejected from the suction section 61. This creates a space G between the substrate 16 and the suction section 61. In other words, the transport mechanism 11 can transport the substrate 16 so that the substrate 16 floats in the air.
実施の形態5
 実施の形態5にかかる観察装置について、図14を用いて説明する。図14は、観察装置100の構成を示すXZ平面図である。本実施の形態では、観察ユニット50の周囲に精密浮上ユニット80が設けられている。換言すると、実施の形態4の吸着ユニットが精密浮上ユニット80に置き換わっている。精密浮上ユニット80以外の構成については、実施の形態1と同様であるため説明を省略する。
Fifth embodiment
An observation device according to the fifth embodiment will be described with reference to Fig. 14. Fig. 14 is an XZ plan view showing the configuration of an observation device 100. In this embodiment, a precision levitation unit 80 is provided around an observation unit 50. In other words, the suction unit of the fourth embodiment is replaced with the precision levitation unit 80. The configuration other than the precision levitation unit 80 is the same as that of the first embodiment, and therefore description thereof will be omitted.
 精密浮上ユニット80の構成について、図15、図16を用いて説明する。図15は、精密浮上ユニット80の構成を示す上面図である。図16は、精密浮上ユニット80の構成を示すXZ断面図である。 The configuration of the precision levitation unit 80 will be described with reference to Figures 15 and 16. Figure 15 is a top view showing the configuration of the precision levitation unit 80. Figure 16 is an XZ cross-sectional view showing the configuration of the precision levitation unit 80.
 精密浮上ユニット80は収容部82と、吸引・噴出部81とを備えている。収容部82は、観察ユニット50を収容するためのケース(筐体)となっている。光検出器52、及び対物レンズ51aは、収容部82に固定されている。ケーブル53は収容部82の外側に取り出されている。移動機構55が収容部82をY方向に沿って移動する。これにより、観察ユニット50が移動するため、基板16における観察位置をY方向に変えることができる。 The precision levitation unit 80 comprises a storage section 82 and a suction/ejection section 81. The storage section 82 is a case (housing) for storing the observation unit 50. The photodetector 52 and the objective lens 51a are fixed to the storage section 82. The cable 53 is taken out to the outside of the storage section 82. The movement mechanism 55 moves the storage section 82 along the Y direction. This moves the observation unit 50, making it possible to change the observation position on the substrate 16 in the Y direction.
 収容部82の上側には、吸引・噴出部81が設けられている。吸引・噴出部81は、その上面から気体を吸引するともに、基板16に対して気体を噴出する。吸引・噴出部81からのガスが基板16の下面に吹き付けられることで、基板16が浮上する。吸引・噴出部81は、基板16と吸引・噴出部81との間に存在するガスを吸引している。 A suction/spray unit 81 is provided above the storage unit 82. The suction/spray unit 81 sucks in gas from its upper surface and sprays the gas onto the substrate 16. The gas from the suction/spray unit 81 is sprayed onto the underside of the substrate 16, causing the substrate 16 to float. The suction/spray unit 81 sucks in gas that is present between the substrate 16 and the suction/spray unit 81.
 吸引・噴出部81は、セラミックなどの多孔質体で形成された精密浮上ユニットセルとなる。多孔質体としては、ポーラスカーボン、ポーラスアルミナセラミックやポーラスSiCセラミックなどを用いることができる。 The suction/ejection section 81 is a precision levitation unit cell made of a porous body such as ceramic. Porous bodies that can be used include porous carbon, porous alumina ceramic, and porous SiC ceramic.
 吸引・噴出部81は、上方に気体を噴出する。また、吸引・噴出部81には、気体を吸引する吸引孔が設けられている。多孔質体には所定の間隔で上面に到達する吸引孔が加工されている。吸引孔は微細な孔であり、基板16と吸引・噴出部81との間に負圧を形成する。そして、多孔質体は吸引孔を除くほぼ全面から気体を噴出する。正圧を形成する噴出面は吸引孔を除くほぼ全面に形成される。あるいは、吸引・噴出部81は複数の吸引穴と複数の噴出穴を有する金属ブロックなどで形成されていてもよい。 The suction/jetting part 81 ejects gas upward. The suction/jetting part 81 is also provided with suction holes that suck in gas. The porous body has suction holes machined into it at predetermined intervals that reach the top surface. The suction holes are tiny holes that create a negative pressure between the substrate 16 and the suction/jetting part 81. The porous body ejects gas from almost the entire surface except for the suction holes. The ejection surface that creates a positive pressure is formed on almost the entire surface except for the suction holes. Alternatively, the suction/jetting part 81 may be formed from a metal block having multiple suction holes and multiple ejection holes.
 吸引・噴出部81が基板16の下面に気体を噴出しているため、吸引・噴出部81と基板16との間には、微小な空間Gが形成される。空間Gは、吸引・噴出部81からのガスで生じるエアギャップである。さらに、吸引・噴出部81は空間Gにある気体を吸引している。これにより、基板16に対して下方に吸引する吸引力が生じるため、高い浮上精度を実現することができる。 Because the suction/ejection part 81 ejects gas onto the underside of the substrate 16, a tiny space G is formed between the suction/ejection part 81 and the substrate 16. The space G is an air gap created by the gas from the suction/ejection part 81. Furthermore, the suction/ejection part 81 sucks in the gas in the space G. This generates a suction force that sucks the substrate 16 downward, achieving high floating accuracy.
 吸引・噴出部81には、円形の窓部83が設けられている。基板16からの光は、窓部83を通って、光学系51に入射する。窓部83は、空間であってもよく、ガラスなどの透明部材が配置されていてもよい。これにより、吸引・噴出部81は、基板16の観察領域の全周において、気体を吸引することができる。吸引・噴出部81は、基板16の観察領域を囲む領域を高い浮上精度で浮上させることができる。観察ユニット50の周辺の浮上精度を高くすることができる。よって、観察ユニット50が基板16を適切に撮像することができる。 The suction/ejection unit 81 is provided with a circular window 83. Light from the substrate 16 passes through the window 83 and enters the optical system 51. The window 83 may be a space, or may be made of a transparent material such as glass. This allows the suction/ejection unit 81 to suck in gas from the entire periphery of the observation area of the substrate 16. The suction/ejection unit 81 can levitate the area surrounding the observation area of the substrate 16 with high levitation accuracy. This can increase the levitation accuracy around the observation unit 50. This allows the observation unit 50 to properly image the substrate 16.
 さらに、本実施の形態では基板16を吸着固定しない構成となる。よって、基板16を搬送しながらであっても、観察ユニット50が、基板16を撮像することができる。つまり、観察ユニット50が移動中の基板16を撮像することができる。これにより、効率良く基板16を撮像することができる。高い生産性で、基板16を観察、検査することができる。 Furthermore, in this embodiment, the substrate 16 is not fixed by suction. Therefore, the observation unit 50 can capture an image of the substrate 16 even while the substrate 16 is being transported. In other words, the observation unit 50 can capture an image of the substrate 16 while it is moving. This allows the substrate 16 to be captured efficiently. The substrate 16 can be observed and inspected with high productivity.
実施の形態6
 実施の形態6にかかる観察装置について、図17、及び図18を用いて説明する。図17は、観察装置100の構成を示すXY平面図である。図18は、観察装置100の構成を示すXZ平面図である。
Sixth embodiment
An observation apparatus according to the sixth embodiment will be described with reference to Fig. 17 and Fig. 18. Fig. 17 is an XY plan view showing the configuration of the observation apparatus 100. Fig. 18 is an XZ plan view showing the configuration of the observation apparatus 100.
 本実施の形態では、浮上ユニット10の構成が実施の形態1と異なっている。具体的には、浮上ユニット10が浮上ユニットセル10a、10bと精密浮上ユニットセル10d、10eとを備えている。精密浮上ユニットセル10d、10e以外の構成は実施の形態1と同様であるため説明を省略する。 In this embodiment, the configuration of the levitation unit 10 differs from that of embodiment 1. Specifically, the levitation unit 10 includes levitation unit cells 10a and 10b and precision levitation unit cells 10d and 10e. The configuration other than the precision levitation unit cells 10d and 10e is the same as in embodiment 1, so a description thereof will be omitted.
 精密浮上ユニットセル10d、10eは実施の形態5の吸引・噴出部81と同様に、気体を吸引するともに、気体を噴出する。精密浮上ユニットセル10d、10eが基板16の下面に気体を噴出しているため、精密浮上ユニットセル10d、10eと基板16との間には、微小な空間Gが形成される。空間Gは、精密浮上ユニットセル10d、10eからのガスで生じるエアギャップである。さらに、精密浮上ユニットセル10d、10eは空間Gにある気体を吸引している。これにより、基板16に対して下方に吸引する吸引力が生じるため、高い浮上精度を実現することができる。 The precision levitation unit cells 10d, 10e, like the suction/ejection unit 81 of embodiment 5, both suck in and eject gas. Because the precision levitation unit cells 10d, 10e eject gas onto the underside of the substrate 16, a minute space G is formed between the precision levitation unit cells 10d, 10e and the substrate 16. The space G is an air gap created by the gas from the precision levitation unit cells 10d, 10e. Furthermore, the precision levitation unit cells 10d, 10e suck in the gas in the space G. This creates a suction force that sucks the substrate 16 downward, achieving high levitation precision.
 X方向において、精密浮上ユニットセル10d、10eは、観察ユニット50の両側に配置されている。つまり、観察ユニット50の-X側には精密浮上ユニットセル10dが配置され、観察ユニット50の+X側には精密浮上ユニットセル10eが配置されている。搬送方向の両側において、観察ユニット50の周辺の浮上精度を高くすることができる。よって、観察ユニット50が基板16を適切に撮像することができる。 In the X direction, the precision levitation unit cells 10d and 10e are arranged on both sides of the observation unit 50. That is, the precision levitation unit cell 10d is arranged on the -X side of the observation unit 50, and the precision levitation unit cell 10e is arranged on the +X side of the observation unit 50. This makes it possible to increase the levitation accuracy around the observation unit 50 on both sides in the transport direction. This allows the observation unit 50 to properly image the substrate 16.
実施の形態7
 実施の形態7にかかる観察装置について、図19、及び図20を用いて説明する。図19は、観察装置100の構成を示すXY平面図である。図20は、観察装置100の構成を示すXZ平面図である。
Seventh embodiment
An observation apparatus according to the seventh embodiment will be described with reference to Fig. 19 and Fig. 20. Fig. 19 is an XY plan view showing the configuration of the observation apparatus 100. Fig. 20 is an XZ plan view showing the configuration of the observation apparatus 100.
 本実施の形態では、実施の形態1の構成に吸着ユニット18が追加されている。具体的には、実施の形態6の精密浮上ユニットセル10d、10eが吸着ユニット18に置き換わっている。 In this embodiment, an adsorption unit 18 is added to the configuration of embodiment 1. Specifically, the precision levitation unit cells 10d and 10e of embodiment 6 are replaced with the adsorption unit 18.
 吸着ユニット18の上面は、浮上ユニット10の上面よりも高くなっている。搬送方向において、吸着ユニット18は観察ユニット50の両側に配置されている。吸着ユニット18は、吸着部61と同様に、基板16を真空吸着する。つまり、吸着ユニット18は、基板16の直下の空間Gにある気体を吸引する。これにより、基板16が吸着ユニット18の上面に吸着固定される。基板16の高さの変動を抑制することができる。つまり、一定の高さの基板16を観察ユニット50が撮像することができる。よって、安定して観察を行うことができる。 The upper surface of the suction unit 18 is higher than the upper surface of the levitation unit 10. In the transport direction, the suction units 18 are arranged on both sides of the observation unit 50. The suction units 18 vacuum-suck the substrate 16, similar to the suction section 61. That is, the suction unit 18 sucks in the gas in the space G directly below the substrate 16. This causes the substrate 16 to be fixed by suction to the upper surface of the suction unit 18. Fluctuations in the height of the substrate 16 can be suppressed. That is, the observation unit 50 can capture an image of the substrate 16 at a constant height. This allows stable observation.
実施の形態8
 実施の形態8にかかる観察装置について、図21、図22、及び図23を用いて説明する。図21は、観察装置100の構成を示すXY平面図である。図22は、観察装置100の構成を示すXZ平面図である。図23は、観察装置100の構成を示すYZ平面図である。なお、上記の実施の形態と共通の内容については、適宜説明を省略する。例えば、観察ユニット50、及び移動機構55の構成については実施の形態1と同様になっている。
Embodiment 8
The observation device according to the eighth embodiment will be described with reference to Figs. 21, 22, and 23. Fig. 21 is an XY plan view showing the configuration of the observation device 100. Fig. 22 is an XZ plan view showing the configuration of the observation device 100. Fig. 23 is a YZ plan view showing the configuration of the observation device 100. Note that the description of the contents common to the above-mentioned embodiments will be omitted as appropriate. For example, the configurations of the observation unit 50 and the moving mechanism 55 are the same as those of the first embodiment.
 本実施の形態では、浮上ユニット10の代わりに、搬送ロボット70が設けられている。搬送ロボット70はアーム機構71と、ロボットハンド72とを備えている。 In this embodiment, a transport robot 70 is provided instead of the levitation unit 10. The transport robot 70 includes an arm mechanism 71 and a robot hand 72.
 ロボットハンド72は、基板16の直下に空間Gが形成されるように、基板16を支持する機構となる。具体的には、ロボットハンド72はフォーク72aを有している。フォーク72aはX方向に沿って延びている。フォーク72aの上に基板16が載せられている。隣接するフォーク72aの間において、基板16の直下に空間Gが形成される。なお、ロボットハンド72は、真空吸着などにより、基板16を吸着保持してもよい。 The robot hand 72 is a mechanism for supporting the substrate 16 so that a space G is formed directly below the substrate 16. Specifically, the robot hand 72 has a fork 72a. The fork 72a extends along the X direction. The substrate 16 is placed on the fork 72a. Between adjacent forks 72a, a space G is formed directly below the substrate 16. The robot hand 72 may suction and hold the substrate 16 by vacuum suction or the like.
 アーム機構71は、サーボモータなどのアクチュエータを有しており、ロボットハンド72を駆動する。これにより、図22に示すように、基板16がX方向に搬送される。さらに、移動機構55が観察ユニット50をY方向に移動する。これにより、基板16の任意の位置を観察することができる。 The arm mechanism 71 has an actuator such as a servo motor, and drives the robot hand 72. As a result, the substrate 16 is transported in the X direction as shown in FIG. 22. Furthermore, the movement mechanism 55 moves the observation unit 50 in the Y direction. This makes it possible to observe any position on the substrate 16.
 図24に示すように、アーム機構71と移動機構55の移動方向を反対にしてもよい。図24では、アーム機構71が基板16をY方向に移動し、移動機構55が基板16をX方向に移動してもよい。このように、基板16の搬送方向と、観察ユニット50の移動方向は、特に限定されるものではない。 As shown in FIG. 24, the movement directions of the arm mechanism 71 and the moving mechanism 55 may be reversed. In FIG. 24, the arm mechanism 71 may move the substrate 16 in the Y direction, and the moving mechanism 55 may move the substrate 16 in the X direction. In this way, the transport direction of the substrate 16 and the movement direction of the observation unit 50 are not particularly limited.
実施の形態9
 なお、実施の形態1~8では基板の観察位置を変えるために、移動機構55が観察ユニット50を移動させたが、移動機構が基板16を移動させてもよい。移動機構は、上面視において、基板の搬送方向と傾いた方向に、基板に対する前記観察ユニットの相対的な位置を移動するものであればよい。本実施の形態では、移動機構が、浮上ユニット10上の基板16をY方向に移動している。
Embodiment 9
In the first to eighth embodiments, the moving mechanism 55 moves the observation unit 50 to change the observation position of the substrate, but the moving mechanism may move the substrate 16. The moving mechanism may move the position of the observation unit relative to the substrate in a direction inclined to the substrate transport direction when viewed from above. In the present embodiment, the moving mechanism moves the substrate 16 on the levitation unit 10 in the Y direction.
 本実施の形態にかかる観察装置100の構成について図25~図27を用いて説明する。図25は観察装置100の構成を示すXY平面図である。図26は、観察装置100の構成を示すXZ平面図である。図27は観察装置100の構成を示すYZ平面図である。 The configuration of the observation device 100 according to this embodiment will be described with reference to Figs. 25 to 27. Fig. 25 is an XY plan view showing the configuration of the observation device 100. Fig. 26 is an XZ plan view showing the configuration of the observation device 100. Fig. 27 is a YZ plan view showing the configuration of the observation device 100.
 本実施の形態では、移動機構55に代えて、移動機構91が設けられている。移動機構91は、基板16をY方向に移動する。これにより、観察ユニット50による基板16の観察位置がY方向に変化する。観察ユニット50の位置は固定されている。例えば、観察ユニット50は、浮上ユニット10セルbに設けられた開口部10hの内側に固定されている。よって、観察ユニット50が移動しない。 In this embodiment, a moving mechanism 91 is provided instead of the moving mechanism 55. The moving mechanism 91 moves the substrate 16 in the Y direction. This causes the observation position of the substrate 16 by the observation unit 50 to change in the Y direction. The position of the observation unit 50 is fixed. For example, the observation unit 50 is fixed inside the opening 10h provided in the cell b of the levitation unit 10. Therefore, the observation unit 50 does not move.
 より具体的には、図25に示すように、浮上ユニット10が浮上ユニットセル10a、10b、10f、10gを備えている。例えば、図1の浮上ユニット10の構成に、浮上ユニットセル10f、10gが追加されている。浮上ユニットセル10f、10gは、浮上ユニットセル10a、10bと同様に気体を上方に噴出している。浮上ユニットセル10fは、浮上ユニットセル10aの+Y側に配置されている。浮上ユニットセル10gは、浮上ユニットセル10bの+Y側に配置されている。 More specifically, as shown in FIG. 25, the levitation unit 10 includes levitation unit cells 10a, 10b, 10f, and 10g. For example, levitation unit cells 10f and 10g are added to the configuration of the levitation unit 10 in FIG. 1. The levitation unit cells 10f and 10g eject gas upward, similar to the levitation unit cells 10a and 10b. The levitation unit cell 10f is disposed on the +Y side of the levitation unit cell 10a. The levitation unit cell 10g is disposed on the +Y side of the levitation unit cell 10b.
 搬送機構11は、浮上ユニットセル10aと10fの間の空間をX方向に移動する。搬送機構11は、浮上ユニットセル10bと10gの間の空間をX方向に移動する。移動機構91は、浮上ユニットセル10aと浮上ユニットセル10bとの間の空間をY方向に移動する。移動機構91は、浮上ユニットセル10fと浮上ユニットセル10gとの間の空間をY方向に移動する。 The transport mechanism 11 moves in the X direction in the space between the levitation unit cells 10a and 10f. The transport mechanism 11 moves in the X direction in the space between the levitation unit cells 10b and 10g. The movement mechanism 91 moves in the Y direction in the space between the levitation unit cells 10a and 10b. The movement mechanism 91 moves in the Y direction in the space between the levitation unit cells 10f and 10g.
 移動機構91は、搬送機構11と同様の構成を備えており、搬送方向が搬送機構11と異なっている。具体的には、図26,図27に示すように、移動機構91は、保持機構92と駆動機構93とを備えている。保持機構92は、保持機構12と同様に、基板16を吸着保持する。駆動機構93は、Y方向に保持機構92を移動させる。よって、移動機構91が基板16をY方向に移動させることができる。基板16の直下には、観察ユニット50が配置されている。これにより、基板16の観察位置を変えることができる。 The moving mechanism 91 has a similar configuration to the transport mechanism 11, but its transport direction is different from that of the transport mechanism 11. Specifically, as shown in Figures 26 and 27, the moving mechanism 91 has a holding mechanism 92 and a driving mechanism 93. The holding mechanism 92, like the holding mechanism 12, adsorbs and holds the substrate 16. The driving mechanism 93 moves the holding mechanism 92 in the Y direction. Thus, the moving mechanism 91 can move the substrate 16 in the Y direction. An observation unit 50 is disposed directly below the substrate 16. This allows the observation position of the substrate 16 to be changed.
 例えば、基板16の直下に、搬送機構11、移動機構91が配置されているとする。この状態では、搬送機構11と移動機構91が基板16を受け渡すことができる。保持機構92が基板16を保持した状態で、保持機構12が基板16の保持を解除する。これにより、基板16が搬送機構11から移動機構91に受け渡されるため、基板16がY方向に移動可能となる。基板16の受け渡し後、搬送機構11は、基板16と接触しないように、保持機構12を下降してもよい。 For example, suppose that the transport mechanism 11 and the moving mechanism 91 are disposed directly below the substrate 16. In this state, the transport mechanism 11 and the moving mechanism 91 can transfer the substrate 16. With the holding mechanism 92 holding the substrate 16, the holding mechanism 12 releases its hold on the substrate 16. As a result, the substrate 16 is transferred from the transport mechanism 11 to the moving mechanism 91, allowing the substrate 16 to move in the Y direction. After transferring the substrate 16, the transport mechanism 11 may lower the holding mechanism 12 so as not to come into contact with the substrate 16.
 そして、駆動機構93が保持機構92を駆動すると、基板16がY方向に移動する。これにより、基板16における観察ユニットの50観察位置がY方向に移動する。つまり、移動機構91は、基板16に対する観察ユニット50の相対位置をY方向に移動する。 When the drive mechanism 93 drives the holding mechanism 92, the substrate 16 moves in the Y direction. This causes the observation position of the observation unit 50 on the substrate 16 to move in the Y direction. In other words, the movement mechanism 91 moves the relative position of the observation unit 50 with respect to the substrate 16 in the Y direction.
 保持機構12が基板16を保持した状態で、保持機構92が基板16の保持を解除する。これにより、基板16が移動機構91から搬送機構11に受け渡されるため、基板16がX方向に移動可能となる。基板16の受け渡し後、移動機構91は、基板16と接触しないように、保持機構92を下降してもよい。 With the holding mechanism 12 holding the substrate 16, the holding mechanism 92 releases its hold on the substrate 16. This allows the substrate 16 to be transferred from the moving mechanism 91 to the transport mechanism 11, making the substrate 16 movable in the X direction. After transferring the substrate 16, the moving mechanism 91 may lower the holding mechanism 92 so as not to come into contact with the substrate 16.
 そして、駆動機構13が保持機構12を駆動すると、基板16がX方向に移動する。これにより、基板16における観察ユニットの50観察位置がX方向に移動する。つまり、搬送機構11は、基板16に対する観察ユニット50の相対位置をX方向に移動する。 When the drive mechanism 13 drives the holding mechanism 12, the substrate 16 moves in the X direction. This causes the observation position of the observation unit 50 on the substrate 16 to move in the X direction. In other words, the transport mechanism 11 moves the relative position of the observation unit 50 with respect to the substrate 16 in the X direction.
 本実施の形態では、観察ユニット50ではなく、基板16をY方向に移動している。搬送機構11によるX方向への基板搬送と、移動機構91によるY方向への基板搬送を組み合わせることで、観察ユニット50の観察位置をXY方向に変えることができる。よって、基板16がXY方向に搬送されるため、観察装置100が、基板16の任意の位置を観察することができる。 In this embodiment, the substrate 16 is moved in the Y direction, not the observation unit 50. By combining substrate transport in the X direction by the transport mechanism 11 and substrate transport in the Y direction by the movement mechanism 91, the observation position of the observation unit 50 can be changed in the XY direction. Therefore, because the substrate 16 is transported in the XY direction, the observation device 100 can observe any position of the substrate 16.
 また、図25、図26に示すように、浮上ユニットセル10bの+X側に移動機構95が配置されている。移動機構95は、移動機構91と同様の構成を有している。具体的には、移動機構95は、保持機構96と駆動機構97とを備えている。保持機構96は、保持機構92に対応し、駆動機構97は駆動機構93に対応している。移動機構95は、Y方向に基板16を移動させる。例えば、移動機構91が基板16を-Y方向に移動した後に、移動機構95が基板16を+Y方向に移動する。これにより、Y方向において、基板16が元の位置に戻る。 Also, as shown in Figures 25 and 26, a moving mechanism 95 is disposed on the +X side of the levitation unit cell 10b. The moving mechanism 95 has a configuration similar to that of the moving mechanism 91. Specifically, the moving mechanism 95 includes a holding mechanism 96 and a driving mechanism 97. The holding mechanism 96 corresponds to the holding mechanism 92, and the driving mechanism 97 corresponds to the driving mechanism 93. The moving mechanism 95 moves the substrate 16 in the Y direction. For example, after the moving mechanism 91 moves the substrate 16 in the -Y direction, the moving mechanism 95 moves the substrate 16 in the +Y direction. This returns the substrate 16 to its original position in the Y direction.
 また、本実施の形態においても、観察ユニット50の周辺に精密浮上ユニット80のセルを配置してもよい。あるいは、観察ユニット50の周辺に吸着ユニット60を配置してもよい。 Also in this embodiment, the cells of the precision levitation unit 80 may be arranged around the observation unit 50. Alternatively, the suction unit 60 may be arranged around the observation unit 50.
実施の形態10
 実施の形態10にかかる観察装置100の構成について、図28、図29を用いて説明する。本実施の形態では、実施の形態9の構成に対して、回転機構99が追加されている。回転機構99以外の構成については、上記の実施の形態と同様であるため、説明を省略する。
Embodiment 10
The configuration of an observation device 100 according to a tenth embodiment will be described with reference to Figs. 28 and 29. In this embodiment, a rotation mechanism 99 is added to the configuration of the ninth embodiment. The configuration other than the rotation mechanism 99 is similar to that of the above-mentioned embodiments, and therefore description thereof will be omitted.
 回転機構99は浮上ユニット10の上に浮上している基板16をZ軸周りに回転する。回転機構99は浮上ユニットセル10aに設けられた開口部に配置されている。回転機構99は、保持機構99aと、駆動機構99bとを備えている。保持機構99aは保持機構12、92等と同様に基板16を吸着保持する。駆動機構99bは、保持機構99aを回転させるモータや回転軸などを備えている。回転軸はZ方向と平行になっている。 The rotation mechanism 99 rotates the substrate 16 levitated above the levitation unit 10 around the Z axis. The rotation mechanism 99 is disposed in an opening provided in the levitation unit cell 10a. The rotation mechanism 99 includes a holding mechanism 99a and a drive mechanism 99b. The holding mechanism 99a adsorbs and holds the substrate 16 in the same manner as the holding mechanisms 12, 92, etc. The drive mechanism 99b includes a motor and a rotating shaft that rotate the holding mechanism 99a. The rotating shaft is parallel to the Z direction.
 浮上ユニットセル10a、10f等が基板16に気体を噴出している状態で、保持機構99aが基板16を保持する。そして、駆動機構99bが保持機構99aを回転させると、基板16がZ軸周りに回転する。例えば、回転機構99は、基板16をZ軸周りに90°又は180°回転する。回転機構99を用いて、基板16の観察位置を変えることができる。このように、本実施の形態では、観察装置100が基板16をX軸、Y軸、回転軸の3自由度で動かすことができる。よって、観察装置100が基板16の全面を観察することができる。 The holding mechanism 99a holds the substrate 16 while the levitation unit cells 10a, 10f, etc. are blowing gas onto the substrate 16. When the drive mechanism 99b rotates the holding mechanism 99a, the substrate 16 rotates around the Z axis. For example, the rotation mechanism 99 rotates the substrate 16 by 90° or 180° around the Z axis. The observation position of the substrate 16 can be changed using the rotation mechanism 99. Thus, in this embodiment, the observation device 100 can move the substrate 16 with three degrees of freedom: the X axis, the Y axis, and the rotation axis. Therefore, the observation device 100 can observe the entire surface of the substrate 16.
 このように、観察装置100は、基板の直下に空間が形成されるように、前記基板を浮上又は支持する機構と、前記基板からの光を検出する光検出器と、前記基板からの光を前記光検出器に導く光学系と、を備えた観察ユニットと、を備えている。そして、観察装置における観察方法は、以下のステップ(A1)~(A3)を備えている。
 (A1)搬送機構が前記基板を搬送方向に搬送するステップ。
 (A2)前記搬送機構で搬送された基板を、前記観察ユニットを用いて観察するステップ。
 (A3)上面視において、前記基板に対して、前記観察ユニットの相対的な位置を前記搬送方向と傾いた方向に移動することで、前記基板の観察位置を変え、前記基板を観察するステップ。
Thus, the observation apparatus 100 includes an observation unit including a mechanism for floating or supporting the substrate so that a space is formed directly below the substrate, a photodetector for detecting light from the substrate, and an optical system for directing the light from the substrate to the photodetector. The observation method in the observation apparatus includes the following steps (A1) to (A3).
(A1) A step in which a transport mechanism transports the substrate in a transport direction.
(A2) observing the substrate transported by the transport mechanism using the observation unit.
(A3) A step of changing an observation position of the substrate by moving a relative position of the observation unit with respect to the substrate in a direction inclined to the transport direction when viewed from above, and observing the substrate.
 実施の形態1~10の構成は適宜組み合わせて使用しようすることができる。また、実施の形態1~10に示した観察装置100は、半導体装置の製造装置に適用することができる。半導体装置の製造プロセスにおいて、適切に基板を観察することができる。よって、高い生産性で半導体装置を製造することができる。 The configurations of the first to tenth embodiments can be used in appropriate combination. Furthermore, the observation device 100 shown in the first to tenth embodiments can be applied to a semiconductor device manufacturing device. In the semiconductor device manufacturing process, the substrate can be properly observed. Therefore, semiconductor devices can be manufactured with high productivity.
 例えば、レーザ照射装置の一部に、観察装置100を搭載してもよい。図25は、実施の形態1にかかる観察装置100を備えたレーザ照射装置1の構成を示すXZ断面図である。レーザ照射装置1は例えば、例えば、低温ポリシリコン(LTPS:Low Temperature Poly-Silicon)膜を形成するエキシマレーザアニール(ELA:Excimer laser Anneal)装置である。この場合、基板16は、アモルファスシリコン膜が形成されたガラス基板となっている。 For example, the observation device 100 may be mounted on a part of the laser irradiation device. FIG. 25 is an XZ cross-sectional view showing the configuration of the laser irradiation device 1 equipped with the observation device 100 according to the first embodiment. The laser irradiation device 1 is, for example, an excimer laser annealing (ELA: Excimer laser Anneal) device that forms a low temperature polysilicon (LTPS: Low Temperature Poly-Silicon) film. In this case, the substrate 16 is a glass substrate on which an amorphous silicon film is formed.
 レーザ照射装置1は、観察装置100とレーザ照射部14を備えている。ここでは、図1の観察装置100にレーザ照射部14が追加された構成となっている。レーザ照射部14は、X方向に搬送中の基板16の上に配置されている。図25では、浮上ユニットセル10bの上に配置されている。 The laser irradiation device 1 includes an observation device 100 and a laser irradiation unit 14. Here, the laser irradiation unit 14 is added to the observation device 100 in FIG. 1. The laser irradiation unit 14 is placed on a substrate 16 being transported in the X direction. In FIG. 25, it is placed on the levitation unit cell 10b.
 レーザ照射部14は、レーザ光15を発生するレーザ光源と、レーザ光15を基板16に導く照射光学系を有している。レーザ照射部14は、Y方向を長手方向とするラインビームを基板16に照射する。基板16はX方向に搬送されているため、基板16のほぼ全面にレーザ光を照射することができる。 The laser irradiation unit 14 has a laser light source that generates laser light 15 and an irradiation optical system that guides the laser light 15 to the substrate 16. The laser irradiation unit 14 irradiates the substrate 16 with a line beam whose longitudinal direction is the Y direction. Since the substrate 16 is transported in the X direction, the laser light can be irradiated onto almost the entire surface of the substrate 16.
 例えば、レーザ照射部14はレーザ光を発生するエキシマレーザ光源等を有する。さらに、レーザ照射部14はレーザ光を基板16に導く光学系を有している。レーザ照射部14は、レーザ光15を基板16に集光するレンズを有している。例えば、レーザ照射部14は、ライン状の照射領域を形成するためのシリンドリカルレンズを有している。基板16にはライン状、具体的には焦点がy方向に伸びるレーザ光15(ラインビーム)が照射される。基板16上にレーザ光15の焦点が形成される。 For example, the laser irradiation unit 14 has an excimer laser light source that generates laser light. Furthermore, the laser irradiation unit 14 has an optical system that guides the laser light to the substrate 16. The laser irradiation unit 14 has a lens that focuses the laser light 15 on the substrate 16. For example, the laser irradiation unit 14 has a cylindrical lens for forming a line-shaped irradiation area. The substrate 16 is irradiated with line-shaped laser light 15 (line beam), specifically, with a focal point extending in the y direction. The focal point of the laser light 15 is formed on the substrate 16.
 浮上ユニット10は高い精度で基板16を浮上している。よって、レーザ照射部14が適切にレーザ光を照射することができる。レーザ光の面内ばらつきを抑制することができるため、均一なプロセスが可能となる。浮上高さを均一にすることができる。よって、より安定したプロセスが可能となり、均一なポリシリコン膜を形成することができる。よって、生産性を向上することができる。 The levitation unit 10 levitates the substrate 16 with high precision. This allows the laser irradiation section 14 to appropriately irradiate the laser light. Since the in-plane variation of the laser light can be suppressed, a uniform process is possible. The levitation height can be made uniform. This allows for a more stable process and allows a uniform polysilicon film to be formed. This improves productivity.
 図30では、レーザ照射後の基板16を観察することができる。もちろん、レーザ照射前の基板16を観察するようにしてもようい。この場合、観察ユニット50よりも-X側において、レーザ照射部14が、レーザ光を照射すればよい。例えば、浮上ユニットセル10aの上にレーザ照射部14を配置すればよい。 In Figure 30, the substrate 16 can be observed after laser irradiation. Of course, it is also possible to observe the substrate 16 before laser irradiation. In this case, the laser irradiation unit 14 can irradiate the laser light on the -X side of the observation unit 50. For example, the laser irradiation unit 14 can be placed above the levitation unit cell 10a.
 なお、図30では、観察装置100がレーザ照射装置1に適用される例について説明したが、観察装置100は、レーザ照射装置以外の装置に適用することが可能である。つまり、観察装置100は、半導体装置の製造工程に用いられる製造装置に適用することが可能である。 Note that, although FIG. 30 illustrates an example in which the observation device 100 is applied to the laser irradiation device 1, the observation device 100 can be applied to devices other than laser irradiation devices. In other words, the observation device 100 can be applied to manufacturing devices used in the manufacturing process of semiconductor devices.
(有機ELディスプレイ)
 上記のポリシリコン膜を有する半導体装置は、有機EL(ElectroLuminescence)ディスプレイ用のTFT(Thin Film transistor)アレイ基板に好適である。すなわち、ポリシリコン膜は、TFTのソース領域、チャネル領域、ドレイン領域を有する半導体層として用いられる。
(Organic EL display)
The semiconductor device having the polysilicon film is suitable for a TFT (Thin Film Transistor) array substrate for an organic EL (ElectroLuminescence) display. That is, the polysilicon film is used as a semiconductor layer having a source region, a channel region, and a drain region of the TFT.
 以下、本実施の形態にかかる半導体装置を有機ELディスプレイディスプレイに適用した構成について説明する。図31は、有機ELディスプレイの画素回路を簡略化して示す断面図である。図31に示す有機ELディスプレイ300は、各画素PXにTFTが配置されたアクティブマトリクス型の表示装置である。 Below, a configuration in which the semiconductor device according to this embodiment is applied to an organic EL display will be described. Figure 31 is a cross-sectional view showing a simplified pixel circuit of an organic EL display. The organic EL display 300 shown in Figure 31 is an active matrix type display device in which a TFT is arranged in each pixel PX.
 有機ELディスプレイ300は、基板310、TFT層311、有機層312、カラーフィルタ層313、及び封止基板314を備えている。図31では、封止基板314側が視認側となるトップエミッション方式の有機ELディスプレイを示している。なお、以下の説明は、有機ELディスプレイの一構成例を示すものであり、本実施の形態は、以下に説明される構成に限られるものではない。例えば、本実施の形態にかかる半導体装置は、ボトムエミッション方式の有機ELディスプレイに用いられていてもよい。 The organic EL display 300 includes a substrate 310, a TFT layer 311, an organic layer 312, a color filter layer 313, and a sealing substrate 314. FIG. 31 shows a top-emission organic EL display in which the sealing substrate 314 side is the viewing side. Note that the following description shows one configuration example of an organic EL display, and the present embodiment is not limited to the configuration described below. For example, the semiconductor device according to the present embodiment may be used in a bottom-emission organic EL display.
 基板310は、ガラス基板又は金属基板である。基板310の上には、TFT層311が設けられている。TFT層311は、各画素PXに配置されたTFT311aを有している。さらに、TFT層311は、TFT311aに接続される配線(図示を省略)等を有している。TFT311a、及び配線等が画素回路を構成する。 The substrate 310 is a glass substrate or a metal substrate. A TFT layer 311 is provided on the substrate 310. The TFT layer 311 has a TFT 311a arranged in each pixel PX. Furthermore, the TFT layer 311 has wiring (not shown) connected to the TFT 311a, etc. The TFT 311a and the wiring etc. constitute a pixel circuit.
 TFT層311の上には、有機層312が設けられている。有機層312は、画素PXごとに配置された有機EL発光素子312aを有している。さらに、有機層312には、画素PX間において、有機EL発光素子312aを分離するための隔壁312bが設けられている。 An organic layer 312 is provided on the TFT layer 311. The organic layer 312 has an organic EL element 312a arranged for each pixel PX. Furthermore, the organic layer 312 is provided with partition walls 312b for separating the organic EL elements 312a between the pixels PX.
 有機層312の上には、カラーフィルタ層313が設けられている。カラーフィルタ層313は、カラー表示を行うためのカラーフィルタ313aが設けられている。すなわち、各画素PXには、R(赤色)、G(緑色)、又はB(青色)に着色された樹脂層がカラーフィルタ313aとして設けられている。 A color filter layer 313 is provided on the organic layer 312. The color filter layer 313 is provided with a color filter 313a for color display. That is, in each pixel PX, a resin layer colored R (red), G (green), or B (blue) is provided as the color filter 313a.
 カラーフィルタ層313の上には、封止基板314が設けられている。封止基板314は、ガラス基板などの透明基板であり、有機層312の有機EL発光素子の劣化を防ぐために設けられている。 A sealing substrate 314 is provided on the color filter layer 313. The sealing substrate 314 is a transparent substrate such as a glass substrate, and is provided to prevent deterioration of the organic EL light-emitting element of the organic layer 312.
 有機層312の有機EL発光素子312aに流れる電流は、画素回路に供給される表示信号によって変化する。よって、表示画像に応じた表示信号を各画素PXに供給することで、各画素PXでの発光量を制御することができる。これにより、所望の画像を表示することができる。 The current flowing through the organic EL element 312a of the organic layer 312 changes depending on the display signal supplied to the pixel circuit. Therefore, by supplying a display signal corresponding to the display image to each pixel PX, the amount of light emitted by each pixel PX can be controlled. This makes it possible to display the desired image.
 有機ELディスプレイ等のアクティブマトリクス型表示装置では、1つの画素PXに、1つ以上のTFT(例えば、スイッチング用TFT、又は駆動用TFT)が設けられている。そして、各画素PXのTFTには、ソース領域、チャネル領域、及びドレイン領域を有する半導体層が設けられている。本実施の形態にかかるポリシリコン膜は、TFTの半導体層に好適である。すなわち、上記の製造方法により製造したポリシリコン膜をTFTアレイ基板の半導体層に用いることで、TFT特性の面内ばらつきを抑制することができる。よって、表示特性の優れた表示装置を高い生産性で製造することができる。 In an active matrix display device such as an organic EL display, one pixel PX is provided with one or more TFTs (e.g., a switching TFT or a driving TFT). The TFT of each pixel PX is provided with a semiconductor layer having a source region, a channel region, and a drain region. The polysilicon film of this embodiment is suitable for the semiconductor layer of a TFT. In other words, by using a polysilicon film manufactured by the above manufacturing method as the semiconductor layer of a TFT array substrate, it is possible to suppress in-plane variations in TFT characteristics. Therefore, a display device with excellent display characteristics can be manufactured with high productivity.
(半導体装置の製造方法)
 本実施の形態にかかるレーザ照射装置を用いた半導体装置の製造方法は、TFTアレイ基板の製造に好適である。TFTを有する半導体装置の製造方法について、図26、図32を用いて説明する。図32、図33は半導体装置の製造工程を示す工程断面図である。以下の説明では、逆スタガード(inverted staggered)型のTFTを有する半導体装置の製造方法について説明する。図32,図33では、半導体製造方法におけるポリシリコン膜の形成工程を示している。なお、その他の製造工程については、公知の手法を用いることができるため、説明を省略する。
(Method of manufacturing a semiconductor device)
The manufacturing method of a semiconductor device using the laser irradiation device according to the present embodiment is suitable for manufacturing a TFT array substrate. The manufacturing method of a semiconductor device having TFTs will be described with reference to Figs. 26 and 32. Figs. 32 and 33 are cross-sectional views showing the manufacturing process of a semiconductor device. In the following description, a manufacturing method of a semiconductor device having an inverted staggered type TFT will be described. Figs. 32 and 33 show the process of forming a polysilicon film in the semiconductor manufacturing method. It should be noted that the other manufacturing processes can be performed by known methods, and therefore the description will be omitted.
 図32に示すように、ガラス基板401上に、ゲート電極402が形成されている。ゲート電極402の上に、ゲート絶縁膜403が形成されている。ゲート絶縁膜403の上に、アモルファスシリコン膜404を形成する。アモルファスシリコン膜404は、ゲート絶縁膜403を介して、ゲート電極402と重複するように配置されている。例えば、CVD(Chemical Vapor Deposition)法により、ゲート絶縁膜403とアモルファスシリコン膜404とを連続成膜する。 As shown in FIG. 32, a gate electrode 402 is formed on a glass substrate 401. A gate insulating film 403 is formed on the gate electrode 402. An amorphous silicon film 404 is formed on the gate insulating film 403. The amorphous silicon film 404 is disposed so as to overlap the gate electrode 402 with the gate insulating film 403 interposed therebetween. For example, the gate insulating film 403 and the amorphous silicon film 404 are successively formed by a CVD (Chemical Vapor Deposition) method.
 そして、アモルファスシリコン膜404が形成されたガラス基板401を上記の搬送装置600に搬送する。アモルファスシリコン膜404にレーザ光L1を照射することで、図33に示すように、ポリシリコン膜405が形成される。すなわち、図25等で示したレーザ照射装置1によって、アモルファスシリコン膜404を結晶化する。これにより、シリコンが結晶化したポリシリコン膜405がゲート絶縁膜403上に形成される。ポリシリコン膜405は、上記したポリシリコン膜に相当する。搬送装置600がガラス基板401を搬送している間に、レーザ光L1が照射される。これにより、アモルファスシリコン膜404がアニールされ、ポリシリコン膜405に変換する。 Then, the glass substrate 401 on which the amorphous silicon film 404 is formed is transported to the transport device 600. The amorphous silicon film 404 is irradiated with laser light L1 to form a polysilicon film 405 as shown in FIG. 33. That is, the amorphous silicon film 404 is crystallized by the laser irradiation device 1 shown in FIG. 25 etc. As a result, a polysilicon film 405 made of crystallized silicon is formed on the gate insulating film 403. The polysilicon film 405 corresponds to the polysilicon film described above. While the transport device 600 is transporting the glass substrate 401, the laser light L1 is irradiated. As a result, the amorphous silicon film 404 is annealed and converted into the polysilicon film 405.
 さらに、上記の説明では、本実施の形態にかかるレーザアニール装置が、アモルファスシリコン膜にレーザ光を照射してポリシリコン膜を形成するものとして説明したが、アモルファスシリコン膜にレーザ光を照射してマイクロクリスタルシリコン膜を形成するものであってもよい。さらには、アニールを行うレーザ光はNd:YAGレーザに限定されるものではない。また、本実施の形態にかかる方法は、シリコン膜以外の薄膜を結晶化するレーザアニール装置に適用することも可能である。すなわち、非晶質膜にレーザ光を照射して、結晶化膜を形成するレーザアニール装置であれば、本実施の形態にかかる方法は適用可能である。本実施の形態にかかるレーザアニール装置によれば、結晶化膜付き基板を適切に改質することができる。 Furthermore, in the above description, the laser annealing apparatus according to the present embodiment has been described as irradiating an amorphous silicon film with laser light to form a polysilicon film, but it may also be irradiating an amorphous silicon film with laser light to form a microcrystalline silicon film. Furthermore, the laser light used for annealing is not limited to an Nd:YAG laser. The method according to the present embodiment can also be applied to a laser annealing apparatus that crystallizes a thin film other than a silicon film. In other words, the method according to the present embodiment can be applied to any laser annealing apparatus that irradiates an amorphous film with laser light to form a crystallized film. The laser annealing apparatus according to the present embodiment can appropriately modify a substrate with a crystallized film.
 本実施の形態に係る半導体装置の製造方法は、以下のステップ(S1)~(S4)を有していてもよい。
 (S1)基板の直下に空間が形成されるように、機構を用いて、前記基板を浮上又は支持するステップ。
 (S2)搬送機構を用いて、前記機構の上にある前記基板を搬送方向に搬送するステップ。
 (S3)前記基板からの光を検出する光検出器と、前記基板からの光を前記光検出器に導く光学系と、を備えた観察ユニットを用いて、前記基板を観察するステップ。
 (S4)前記基板の観察位置を変えるように、移動機構を用いて、上面視において、前記搬送方向と傾いた方向に前記基板に対する前記観察ユニットの相対的な位置を移動するステップ。
The method for manufacturing a semiconductor device according to the present embodiment may include the following steps (S1) to (S4).
(S1) A step of floating or supporting a substrate using a mechanism so that a space is formed directly below the substrate.
(S2) Using a transport mechanism, transporting the substrate on the mechanism in a transport direction.
(S3) A step of observing the substrate using an observation unit including a photodetector that detects light from the substrate and an optical system that guides the light from the substrate to the photodetector.
(S4) A step of moving the position of the observation unit relative to the substrate in a direction inclined to the transport direction in a top view using a movement mechanism so as to change the observation position of the substrate.
 さらに、観察ユニットによる観察前、又は観察後に、レーザ照射部がレーザ光を照射するために搬送機構が基板を搬送するようにしてもよい。 Furthermore, the transport mechanism may transport the substrate so that the laser irradiation section can irradiate the substrate with laser light before or after observation by the observation unit.
 なお、本発明は上記実施の形態に限られたものではなく、趣旨を逸脱しない範囲で適宜変更することが可能である。 The present invention is not limited to the above embodiment, and can be modified as appropriate without departing from the spirit of the invention.
 10 浮上ユニット
 11 搬送機構
 12 保持機構
 13 駆動機構
 16 基板
 30 支持ユニット
 31 ベースステージ
 33 搬送ローラ
 50 観察ユニット
 51 光学系
 51a 対物レンズ
 52 光検出器
 53 ケーブル
 55 移動機構
 59 照明光源
 60 吸着ユニット
 61 吸着部
 62 収容部
 63 窓部
 70 搬送ロボット
 71 アーム機構
 72 ロボットハンド
 72a フォーク
 80 精密浮上ユニット
 81 吸引・噴出部
 82 収容部
 83 窓部
 100 観察装置
REFERENCE SIGNS LIST 10 Floating unit 11 Transport mechanism 12 Holding mechanism 13 Driving mechanism 16 Substrate 30 Support unit 31 Base stage 33 Transport roller 50 Observation unit 51 Optical system 51a Objective lens 52 Photodetector 53 Cable 55 Moving mechanism 59 Illumination light source 60 Suction unit 61 Suction section 62 Storage section 63 Window section 70 Transport robot 71 Arm mechanism 72 Robot hand 72a Fork 80 Precision floating unit 81 Suction/ejection section 82 Storage section 83 Window section 100 Observation device

Claims (24)

  1.  基板の直下に空間が形成されるように、前記基板を浮上又は支持する機構と、
     前記機構の上にある前記基板を搬送方向に搬送する搬送機構と、
     前記基板からの光を検出する光検出器と、前記基板からの光を前記光検出器に導く光学系と、を備えた観察ユニットと、
     前記基板の観察位置を変えるように、上面視において、前記搬送方向と傾いた方向に前記基板に対する前記観察ユニットの相対的な位置を移動する移動機構と、を備えた観察装置。
    a mechanism for floating or supporting the substrate so that a space is formed directly below the substrate;
    a transport mechanism that transports the substrate on the mechanism in a transport direction;
    an observation unit including a photodetector that detects light from the substrate and an optical system that guides the light from the substrate to the photodetector;
    a moving mechanism that moves a relative position of the observation unit with respect to the substrate in a direction inclined to the transport direction when viewed from above so as to change an observation position of the substrate.
  2.  前記機構が、前記基板に気体を噴出する浮上ユニットを備え、
     前記搬送方向において、前記浮上ユニットは、前記観察ユニットの両側に配置されている請求項1に記載の観察装置。
    the mechanism includes a levitation unit that ejects gas onto the substrate,
    The observation device according to claim 1 , wherein the floating units are disposed on both sides of the observation unit in the transport direction.
  3.  前記移動機構は、前記観察ユニットを移動させる請求項2に記載の観察装置。 The observation device according to claim 2, wherein the movement mechanism moves the observation unit.
  4.  前記移動機構は、前記基板を移動させる請求項2に記載の観察装置。 The observation device according to claim 2, wherein the movement mechanism moves the substrate.
  5.  前記観察ユニットの周辺において、前記基板を真空吸着する吸着ユニットをさらに備え、
     前記吸着ユニットが前記基板を吸着固定した状態で、前記観察ユニットが前記基板を観察する請求項2、又は3に記載の観察装置。
    a suction unit that suctions the substrate by vacuum around the observation unit;
    4. The observation apparatus according to claim 2, wherein the observation unit observes the substrate while the suction unit suction-fixes the substrate.
  6.  前記観察ユニットの周辺において、前記基板の下面に気体を噴出するとともに、前記基板の下側の気体を吸引した状態で、前記基板を観察する請求項2、又は3に記載の観察装置。 The observation device according to claim 2 or 3, which observes the substrate while blowing gas onto the underside of the substrate around the observation unit and sucking in the gas underneath the substrate.
  7.  前記機構が、前記基板を支持する複数の搬送ローラを備え、
     前記基板が前記搬送方向に搬送されるように、前記複数の搬送ローラが回転する請求項1に記載の観察装置。
    the mechanism includes a plurality of transport rollers that support the substrate;
    The observation apparatus according to claim 1 , wherein the plurality of transport rollers rotate so as to transport the substrate in the transport direction.
  8.  前記機構が、前記基板を支持するロボットハンドを備え、
     前記搬送機構が、前記ロボットハンドを駆動するアーム機構を備えている請求項1に記載の観察装置。
    the mechanism includes a robot hand that supports the substrate;
    2. The observation device according to claim 1, wherein the transport mechanism includes an arm mechanism that drives the robot hand.
  9.  基板の直下に空間が形成されるように、前記基板を浮上又は支持する機構と、
     前記基板からの光を検出する光検出器と、前記基板からの光を前記光検出器に導く光学系と、を備えた観察ユニットと、を備えた観察装置における観察方法であって、
     (A1)搬送機構が前記基板を搬送方向に搬送するステップと、
     (A2)前記搬送機構で搬送された基板を、前記観察ユニットを用いて観察するステップと、
     (A3)上面視において、前記基板に対する前記観察ユニットの相対的な位置を前記搬送方向と傾いた方向に移動することで、前記基板の観察位置を変え、前記基板を観察するステップと、
     を備えた観察方法。
    a mechanism for floating or supporting the substrate so that a space is formed directly below the substrate;
    An observation method in an observation apparatus including an observation unit including a photodetector that detects light from the substrate and an optical system that guides the light from the substrate to the photodetector,
    (A1) a transport mechanism transporting the substrate in a transport direction;
    (A2) observing the substrate transported by the transport mechanism using the observation unit;
    (A3) moving a relative position of the observation unit with respect to the substrate in a direction inclined with respect to the transport direction in a top view to change an observation position of the substrate, and observing the substrate;
    An observation method comprising:
  10.  前記機構が、前記基板に気体を噴出する浮上ユニットを備え、
     前記搬送方向において、前記浮上ユニットは、前記観察ユニットの両側に配置されている請求項9に記載の観察方法。
    the mechanism includes a levitation unit that ejects gas onto the substrate;
    The observation method according to claim 9 , wherein the floating units are disposed on both sides of the observation unit in the transport direction.
  11.  (A3)のステップでは、前記観察ユニットを移動する請求項10に記載の観察方法。 The observation method according to claim 10, wherein in step (A3), the observation unit is moved.
  12.  (A3)のステップでは、前記基板を移動する請求項10に記載の観察方法。 The observation method according to claim 10, wherein in step (A3), the substrate is moved.
  13.  前記観察ユニットの周辺において、前記基板を真空吸着する吸着ユニットをさらに備え、
     前記吸着ユニットが前記基板を吸着固定した状態で、前記観察ユニットが前記基板を観察する請求項10、又は11に記載の観察方法。
    a suction unit that suctions the substrate by vacuum around the observation unit;
    The observation method according to claim 10 or 11, wherein the observation unit observes the substrate while the suction unit suction-fixes the substrate.
  14.  前記観察ユニットの周辺において、前記基板の下面に気体を噴出するとともに、前記基板の下側の気体を吸引した状態で、前記基板を観察する請求項10、又は11に記載の観察方法。 The observation method according to claim 10 or 11, in which the substrate is observed while gas is ejected onto the underside of the substrate around the observation unit and the gas underneath the substrate is sucked in.
  15.  前記機構が、前記基板を支持する複数の搬送ローラを備え、
     前記基板が前記搬送方向に搬送されるように、前記複数の搬送ローラが回転する請求項9に記載の観察方法。
    the mechanism includes a plurality of transport rollers that support the substrate;
    The observation method according to claim 9 , wherein the plurality of transport rollers rotate so as to transport the substrate in the transport direction.
  16.  前記機構が、前記基板を支持するロボットハンドを備え、
     前記搬送機構が、前記ロボットハンドを駆動するアーム機構を備えている請求項9に記載の観察方法。
    the mechanism includes a robot hand that supports the substrate;
    The observation method according to claim 9 , wherein the transport mechanism includes an arm mechanism that drives the robot hand.
  17.  (S1)基板の直下に空間が形成されるように、機構を用いて、前記基板を浮上又は支持するステップと、
     (S2)搬送機構を用いて、前記機構の上にある前記基板を搬送方向に搬送するステップと、
     (S3)前記基板からの光を検出する光検出器と、前記基板からの光を前記光検出器に導く光学系と、を備えた観察ユニットを用いて、前記基板を観察するステップと、
     (S4)前記基板の観察位置を変えるように、移動機構を用いて、上面視において、前記搬送方向と傾いた方向に前記基板に対する前記観察ユニットの相対的な位置を移動するステップと、
     を備えた半導体装置の製造方法。
    (S1) using a mechanism to float or support a substrate so that a space is formed directly below the substrate;
    (S2) using a transport mechanism to transport the substrate on the mechanism in a transport direction;
    (S3) observing the substrate using an observation unit including a photodetector that detects light from the substrate and an optical system that guides the light from the substrate to the photodetector;
    (S4) moving a position of the observation unit relative to the substrate in a direction inclined to the transport direction in a top view by using a moving mechanism so as to change an observation position of the substrate;
    A method for manufacturing a semiconductor device comprising the steps of:
  18.  前記機構が、前記基板に気体を噴出する浮上ユニットを備え、
     前記搬送方向において、前記浮上ユニットは、前記観察ユニットの両側に配置されている請求項17に記載の半導体装置の製造方法。
    the mechanism includes a levitation unit that ejects gas onto the substrate;
    18. The method for manufacturing a semiconductor device according to claim 17, wherein the floating units are disposed on both sides of the observation unit in the transport direction.
  19.  (S4)のステップでは、前記移動機構が、前記観察ユニットを移動する請求項18に記載の半導体装置の製造方法。 The method for manufacturing a semiconductor device according to claim 18, wherein in step (S4), the moving mechanism moves the observation unit.
  20.  (S4)のステップでは、前記移動機構が、前記基板を移動する請求項18に記載の半導体装置の製造方法。 The method for manufacturing a semiconductor device according to claim 18, wherein in step (S4), the moving mechanism moves the substrate.
  21.  前記観察ユニットの周辺において、前記基板を真空吸着する吸着ユニットをさらに備え、
     前記吸着ユニットが前記基板を吸着固定した状態で、前記観察ユニットが前記基板を観察する請求項18、又は19に記載の半導体装置の製造方法。
    a suction unit that suctions the substrate by vacuum around the observation unit;
    20. The method for manufacturing a semiconductor device according to claim 18, wherein the observation unit observes the substrate while the suction unit suction-fixes the substrate.
  22.  前記観察ユニットの周辺において、前記基板の下面に気体を噴出するとともに、前記基板の下側の気体を吸引した状態で、前記基板を観察する請求項18、又は19に記載の半導体装置の製造方法。 The method for manufacturing a semiconductor device according to claim 18 or 19, in which gas is ejected onto the underside of the substrate around the observation unit, and the substrate is observed while the gas underneath the substrate is sucked in.
  23.  前記機構が、前記基板を支持する複数の搬送ローラを備え、
     前記基板が前記搬送方向に搬送されるように、前記複数の搬送ローラが回転する請求項17に記載の半導体装置の製造方法。
    the mechanism includes a plurality of transport rollers that support the substrate;
    The method for manufacturing a semiconductor device according to claim 17 , wherein the plurality of transport rollers rotate so as to transport the substrate in the transport direction.
  24.  前記機構が、前記基板を支持するロボットハンドを備え、
     前記搬送機構が、前記ロボットハンドを駆動するアーム機構を備えている請求項17に記載の半導体装置の製造方法。
    the mechanism includes a robot hand that supports the substrate;
    18. The method for manufacturing a semiconductor device according to claim 17, wherein the transport mechanism includes an arm mechanism for driving the robot hand.
PCT/JP2022/046920 2022-12-20 2022-12-20 Observation device, observation method, and method for manufacturing semiconductor device WO2024134777A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/046920 WO2024134777A1 (en) 2022-12-20 2022-12-20 Observation device, observation method, and method for manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/046920 WO2024134777A1 (en) 2022-12-20 2022-12-20 Observation device, observation method, and method for manufacturing semiconductor device

Publications (1)

Publication Number Publication Date
WO2024134777A1 true WO2024134777A1 (en) 2024-06-27

Family

ID=91588163

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/046920 WO2024134777A1 (en) 2022-12-20 2022-12-20 Observation device, observation method, and method for manufacturing semiconductor device

Country Status (1)

Country Link
WO (1) WO2024134777A1 (en)

Similar Documents

Publication Publication Date Title
JP6968243B2 (en) Laser irradiation device, laser irradiation method, and manufacturing method of semiconductor device
JP6754266B2 (en) Laser irradiation device, laser irradiation method, and manufacturing method of semiconductor device
US11676831B2 (en) Laser irradiation apparatus, laser irradiation method, and method for manufacturing semiconductor device
JP6983578B2 (en) Laser irradiation device, laser irradiation method, and manufacturing method of semiconductor device
JP6764305B2 (en) Laser irradiation device, semiconductor device manufacturing method, and laser irradiation device operation method
KR20140118551A (en) Deposition apparatus, method for manufacturing organic light emitting display apparatus and organic light emitting display apparatus
KR101436895B1 (en) Glass deposition apparatus
WO2024134777A1 (en) Observation device, observation method, and method for manufacturing semiconductor device
CN109690739B (en) Laser irradiation apparatus, laser irradiation method, and semiconductor device manufacturing method
JP2020111821A (en) Film deposition apparatus, apparatus for manufacturing electronic device, film deposition method, and method for manufacturing electronic device
JP7095166B2 (en) Laser irradiation device, laser irradiation method, and manufacturing method of semiconductor device
WO2024009470A1 (en) Conveyance device, conveyance method, and method for producing semiconductor device
JP5325406B2 (en) Board inspection equipment
WO2023199487A1 (en) Conveyance device, conveyance method, and method for manufacturing semiconductor device
JP6775449B2 (en) Laser irradiation device, laser irradiation method, and manufacturing method of semiconductor device
JP7159363B2 (en) Laser irradiation device
WO2023199485A1 (en) Conveyance device, transfer method, conveyance method, and method for manufacturing semiconductor device
WO2022163783A1 (en) Conveyance device, conveyance method, and method for manufacturing semiconductor device
KR101441477B1 (en) Glass deposition apparatus
JP2023021724A (en) Carrier support device, alignment device, film deposition device, mask mounting method, film deposition method, and method of manufacturing electronic device
JP2012061504A (en) Laser machining device