WO2024131739A2 - 便携式风扇、便携式风扇的驱动电路和手持风扇 - Google Patents

便携式风扇、便携式风扇的驱动电路和手持风扇 Download PDF

Info

Publication number
WO2024131739A2
WO2024131739A2 PCT/CN2023/139669 CN2023139669W WO2024131739A2 WO 2024131739 A2 WO2024131739 A2 WO 2024131739A2 CN 2023139669 W CN2023139669 W CN 2023139669W WO 2024131739 A2 WO2024131739 A2 WO 2024131739A2
Authority
WO
WIPO (PCT)
Prior art keywords
transistor
circuit
fan
detection
main control
Prior art date
Application number
PCT/CN2023/139669
Other languages
English (en)
French (fr)
Inventor
郑观正
李享福
高海峻
谢佳航
阳应该
Original Assignee
深圳市几素科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市几素科技有限公司 filed Critical 深圳市几素科技有限公司
Publication of WO2024131739A2 publication Critical patent/WO2024131739A2/zh

Links

Definitions

  • the present application relates to the technical field of fans, and in particular to a portable fan, a driving circuit of the portable fan and a handheld fan.
  • the main purpose of the present application is to provide a portable fan, comprising: an air duct part, a blowing part and a hand-held part, wherein the air duct part comprises a main body, an air guide cavity is arranged inside the main body, an air outlet and an air inlet are arranged at two opposite ends of the air duct part, the air outlet and the air inlet are both connected with the air guide cavity, and a positioning boss is arranged in the main body; the blowing part comprises a rotating fan blade and a driving part connected to the rotating fan blade, the rotating fan blade is rotatably installed in the air guide cavity and is arranged toward the air outlet; the driving part comprises a stator and a rotor sleeved outside the stator, the rotor is fixedly installed on the rotating fan blade and is coaxially arranged with the rotating fan blade, and the stator is fixedly sleeved on the positioning boss.
  • FIG1-1 is a schematic diagram of the structure of a fan provided in an embodiment of the present application.
  • 1-2 is a schematic diagram of the structure of a fan with some parts removed provided in an embodiment of the present application.
  • 1-3 are schematic diagrams of the structure of a fan from another perspective provided in an embodiment of the present application.
  • 1-4 are cross-sectional views of the fan provided in the embodiments of the present application.
  • FIG 1-5 are cross-sectional views of the fan from another perspective provided in an embodiment of the present application.
  • 1-6 are cross-sectional views of the fan provided in an embodiment of the present application.
  • FIG 1-7 are cross-sectional views of the fan from another perspective provided in an embodiment of the present application.
  • FIG2-1 is a schematic diagram of a charging and power supply circuit of a portable fan provided in an embodiment of the present application.
  • FIG2-2 is a schematic diagram of a fan driving circuit of a portable fan provided in an embodiment of the present application.
  • 2-3 are schematic diagrams of the main control circuit of the portable fan provided in an embodiment of the present application.
  • FIG3-1 is a circuit diagram of a main control chip of a main control circuit of a portable fan driving circuit provided in an embodiment of the present application.
  • FIG3-2 is a schematic diagram of the structure of a three-phase drive circuit and a current detection circuit of a portable fan drive circuit provided in an embodiment of the present application.
  • FIG3-3 is a schematic diagram of the structure of a reverse electromotive force detection circuit of a portable fan driving circuit provided in an embodiment of the present application.
  • 3-4 are schematic diagrams of the structure of the interface circuit and the charging management circuit of the portable fan driving circuit provided in the embodiments of the present application.
  • 3-5 are schematic diagrams of the structure of an auxiliary chip of the main control circuit of the portable fan driving circuit provided in an embodiment of the present application.
  • FIG. 3-6 are schematic diagrams of the circuit structure of indicator light branches and buttons of the portable fan driving circuit provided in an embodiment of the present application.
  • 3-7 are schematic diagrams of the structure of a first speed control device of a portable fan driving circuit provided in an embodiment of the present application.
  • 3-8 are schematic diagrams of the structure of a second speed control device of a portable fan driving circuit provided in an embodiment of the present application.
  • 3-9 are schematic diagrams of the structure of the main control circuit of the portable fan driving circuit provided in an embodiment of the present application.
  • 3-10 are schematic diagrams of the structures of the three-phase drive circuit and the current detection circuit of the portable fan drive circuit provided in the embodiments of the present application.
  • 3-11 is a schematic diagram of the structure of the reverse electromotive force detection circuit of the portable fan driving circuit provided in an embodiment of the present application.
  • 3-12 is a schematic diagram of a transistor temperature detection circuit of a portable fan driving circuit provided in an embodiment of the present application.
  • 3-13 is a schematic diagram of a battery voltage detection circuit of a portable fan driving circuit provided in an embodiment of the present application.
  • 3-14 is a schematic diagram of a burning interface of a portable fan driving circuit provided in an embodiment of the present application.
  • 3-15 is a schematic diagram of the structure of the main control chip of the main control circuit of the portable fan driving circuit provided in an embodiment of the present application.
  • 3-16 is a schematic diagram of the structure of a three-phase drive circuit and a battery voltage and current detection circuit of a portable fan drive circuit provided in an embodiment of the present application.
  • 3-17 is a schematic diagram of the structure of three three-phase control chips of the main control circuit of the portable fan driving circuit provided in an embodiment of the present application.
  • 3-18 is a schematic diagram of the structure of the signal amplification circuit of the portable fan driving circuit provided in an embodiment of the present application.
  • 3-19 is a schematic diagram of the structure of a transistor temperature detection circuit of a portable fan driving circuit provided in an embodiment of the present application.
  • FIG3-20 is a schematic diagram of the structure of the lighting control circuit of the portable fan driving circuit provided in an embodiment of the present application.
  • FIG3-21 is a schematic diagram of the structure of the Hall detection circuit of the portable fan driving circuit provided in an embodiment of the present application.
  • FIG3-22 is a schematic diagram of the structure of the switch control circuit of the portable fan driving circuit provided in an embodiment of the present application.
  • FIG3-23 is a schematic diagram of the structure of the DC conversion circuit of the portable fan driving circuit provided in an embodiment of the present application.
  • FIG3-24 is a schematic diagram of the block structure of a portable fan provided in an embodiment of the present application.
  • FIG4-1 is a schematic diagram of the structure of a handheld fan provided in an embodiment of the present application.
  • FIG4-2 is a schematic diagram of the structure of a mounting frame in a handheld fan provided in an embodiment of the present application.
  • FIG4-3 is a schematic diagram of the structure of a handheld portion of a handheld fan provided in an embodiment of the present application.
  • FIG4-4 is a schematic diagram of the structure of a wiring opening in a handheld fan provided in an embodiment of the present application.
  • FIG4-5 is a first structural diagram of a wire duct in a handheld fan provided in an embodiment of the present application.
  • 4-6 is a second structural schematic diagram of a wire duct in a handheld fan provided in an embodiment of the present application.
  • FIGS. 4-7 are schematic diagrams of the structures of a mid-range knob assembly and a protection switch button assembly of a handheld fan provided in an embodiment of the present application.
  • 4-8 are schematic diagrams of the structure of an inner shell and an outer shell in a handheld fan provided in an embodiment of the present application.
  • FIGS. 4-9 are schematic diagrams of the structure of an air inlet and an air outlet in a handheld fan provided in an embodiment of the present application.
  • Figure 4-10 is a schematic diagram of the locally enlarged structure of point A in Figure 4-9.
  • FIGS. 4-11 are schematic diagrams of the structure of a fan assembly in a handheld fan provided in an embodiment of the present application.
  • FIG5-1 is a three-dimensional view of a portable fan provided in an embodiment of the present application.
  • FIG5-2 is a cross-sectional view of a portable fan provided in an embodiment of the present application.
  • Figure 5-3 is an enlarged view of part A in Figure 1-2.
  • FIG5-4 is a cross-sectional view of the portable fan provided in an embodiment of the present application from another direction.
  • Figure 5-5 is a cross-sectional view of the portable fan provided in an embodiment of the present application.
  • 5-6 are cross-sectional views of the portable fan provided in the embodiments of the present application.
  • an embodiment of the present application provides a portable fan, which includes: an air duct portion 10, the air duct portion 10 includes a main body, an air guide cavity 13 is arranged inside the main body, an air outlet 121 and an air inlet 111 are arranged at opposite ends of the air duct portion 10, the air outlet 121 and the air inlet 111 are both connected to the air guide cavity 13, and a positioning boss 122 is arranged in the main body; a blowing portion 20, the blowing portion 20 includes a rotating fan blade 21 and a driving connection with the rotating fan blade 21
  • the driving part 22, the rotating fan blade 21 is rotatably installed in the wind guide cavity 13 and is arranged toward the air outlet 121;
  • the driving part 22 includes a stator 221 and a rotor 222 sleeved outside the stator 221, the rotor 222 is fixedly installed on the rotating fan blade 21 and is coaxially arranged with the rotating fan
  • the portable fan provided in this embodiment has a driving part 22 that is connected to the rotating fan blades 21, which is set as a stator 221 and a rotor 222 mounted outside the stator 221, and the rotor 222 is fixedly mounted on the rotating fan blades 21 and coaxially arranged with the rotating fan blades 21.
  • the stator 221 is fixedly mounted on the positioning boss 122, so that the power generated by the driving part 22 provided in this embodiment can be directly transmitted to the rotating fan blades 21 through the rotor 222, without setting a transmission device between the driving part 22 and the rotating fan blades 21, thereby effectively improving the transmission efficiency of the portable fan provided in this embodiment.
  • the power supply component 31 provided in this embodiment is a battery.
  • the main body in this embodiment includes a first shell 11 and a second shell 12, the first shell 11 is connected to the second shell 12, and an air guide cavity 13 is formed between the first shell 11 and the second shell 12, an air inlet 111 is provided on the first shell 11, an air outlet 121 is provided on the second shell 12, and a positioning boss 122 is provided on the second shell 12, and the positioning boss 122 extends along the extension direction of the air guide cavity 13.
  • a fixing hole is provided on the rotating fan blade 21 in this embodiment, and the axis of the fixing hole is collinear with the axis of the rotating fan blade 21.
  • the blowing part 20 also includes a rotating shaft 23, and the first end of the rotating shaft 23 is fixedly inserted into the fixing hole; a positioning hole 1221 is provided inside the positioning boss 122, and the axis of the positioning hole 1221 is collinear with the axis of the rotating shaft 23, and the second end of the rotating shaft 23 is rotatably inserted into the positioning hole 1221.
  • the blowing part 20 in this embodiment further includes a bearing part 24, the outer ring of the bearing part 24 is fixed in the positioning hole 1221, and the inner ring of the bearing part 24 is sleeved on the second end of the rotating shaft 23.
  • the bearing portion 24 in this embodiment includes a rolling bearing
  • the blowing portion 20 further includes a stopper 25, the stopper 25 is mounted on the second end of the rotating shaft 23, and the bearing portion 24 is located between the stopper 25 and the first end of the rotating shaft 23.
  • the rolling bearing provided in this embodiment there are multiple bearing parts 24 in this embodiment, and an inner flange 12211 is provided on the inner side wall of the positioning hole 1221.
  • the inner flange 12211 is provided between two adjacent bearing parts 24, so that the two adjacent bearing parts 24 are arranged at intervals.
  • the inner ring of the rolling bearing provided in this embodiment can be effectively limited by the limiting member 25 provided on the second end of the rotating shaft 23 provided in this embodiment, and the outer ring of the bearing can be effectively limited by the inner flange 12211 provided on the inner side wall of the positioning hole 1221, so that the rolling bearing provided in this embodiment can be effectively installed.
  • the bearing portion 24 provided in this embodiment is a ball bearing, and lubricating oil is provided in the ball bearing provided in this embodiment.
  • the bearing portion 24 provided in this embodiment is a ceramic bearing, and lubricating oil is provided in the ceramic bearing provided in this embodiment.
  • the bearing portion 24 provided in this embodiment is a magnetic bearing.
  • the blowing part 20 provided in this embodiment also includes an elastic member, and the elastic member provided in this embodiment is sleeved on the rotating shaft 23.
  • the two ends of the elastic member provided in this embodiment are respectively abutted against the inner ring of the rolling bearing and the rotating fan blade 21.
  • the elastic member provided in this embodiment can apply an elastic force to the inner ring of the rolling bearing away from the air inlet 111.
  • the rolling bearing can be pre-tightened, thereby effectively improving the service life of the rolling bearing.
  • the bearing portion 24 in the present embodiment includes a sliding bearing
  • the blowing portion 20 also includes two sealing rings 26, both of which are sleeved on the rotating shaft 23 and are respectively located on both sides of the sliding bearing.
  • the friction between the rotating shaft 23 and the positioning hole 1221 can be converted into the friction between the inner ring and the outer ring of the sliding bearing, thereby avoiding the friction between the rotating shaft 23 and the positioning hole 1221, thereby effectively improving the service life of the portable fan provided by the present embodiment.
  • the hand-held portion 30 in this embodiment includes a third shell 32 and a fourth shell 33 , the third shell 32 is connected to the fourth shell 33 , and a mounting cavity 34 is formed between the third shell 32 and the fourth shell 33 .
  • the first shell 11 in this embodiment includes a main body 112 and an air duct lining 113, the air duct lining 113 is installed on the main body 112, an air duct 1131 is arranged inside the air duct lining 113, and an air guide cavity 13 is formed between the air duct lining 113 and the second shell 12.
  • single-phase motors are cheap, most handheld small portable fans on the market are driven by single-phase motors. However, due to the low speed of single-phase motors, they cannot provide strong wind force, resulting in poor user experience. If you want to make a handheld small portable fan provide stronger wind force, you need to use a high-speed motor to drive it. However, high-speed motors occupy a large volume and are prone to wear and tear on the portable fan.
  • the driving part 22 in this embodiment is a three-phase motor; by setting the driving part 22 as a three-phase motor, the rotation speed of the rotating blades 21 can be effectively increased, so that the portable fan provided by this embodiment can provide stronger wind force, effectively improving the user experience.
  • the portable fan provided by this embodiment is provided with a bearing part between the positioning hole provided in this embodiment and the rotating shaft. By providing the bearing part, the friction between the positioning hole and the rotating shaft can be converted from sliding friction to rolling friction inside the bearing part, thereby avoiding wear between the positioning hole and the rotating shaft, and effectively improving the service life of the portable fan provided by this embodiment.
  • a charging port 35 is provided on the handheld part 30 provided in this embodiment, and the charging port 35 is electrically connected to the power supply component 31; by providing the charging port 35 on the handheld part 30 provided in this embodiment, and electrically connecting the charging port 35 to the power supply component 31, the power supply component 31 provided in this embodiment can be electrically connected to an external power source through the charging port 35, thereby ensuring the battery life of the portable fan provided in this embodiment.
  • a discharge port is provided on the handheld portion provided in this embodiment, and the discharge port provided in this embodiment is electrically connected to the power supply component.
  • the discharge port provided in this embodiment can be electrically connected to an external electronic device, and the power supply component can be transmitted to the external electronic device through the discharge port provided in this embodiment.
  • a grille assembly is provided on the air inlet provided in the present embodiment, and the grille assembly provided in the present embodiment includes a first grille member and a second grille member.
  • the first grille member provided in the present embodiment is fixedly connected to the first shell body, and the second grille member provided in the present embodiment is pivotally connected to the first grille member.
  • the first grille member provided in the present embodiment is provided with a plurality of first openings, and the second grille member provided in the present embodiment is provided with a plurality of second openings.
  • the plurality of first openings provided in the present embodiment can correspond one-to-one with the plurality of second openings.
  • the second grille member provided in the present embodiment has a shielding state in which the first opening is completely shielded and an open state in which the first opening overlaps with the second opening.
  • the second grille member can be switched between the shielding state and the open state by rotating the second grille member.
  • the grille assembly provided in the present embodiment can effectively adjust the air intake of the air inlet, thereby effectively improving the user experience.
  • the air duct portion 10 and the hand-held portion 30 provided in this embodiment are fixedly connected; of course, in other embodiments, the air duct portion 10 and the hand-held portion 30 provided in this embodiment may also be pivotally connected so as to be relatively rotatable.
  • the third shell 32 provided in this embodiment is integrally formed by injection molding with the first shell 11
  • the fourth shell 33 is integrally formed by injection molding with the second shell 12 .
  • the third shell 32 provided in this embodiment is pivotally connected to the first shell 11
  • the fourth shell 33 is pivotally connected to the second shell 12
  • the pivot axis between the third shell 32 and the first shell 11 is coaxial with the pivot axis between the fourth shell 33 and the second shell 12.
  • the portable fan provided by the present embodiment has at least the following beneficial technical effects: the portable fan provided by the present embodiment is configured such that the driving part 22 connected to the rotating fan blade 21 is configured as a stator 221 and a rotor 222 sleeved outside the stator 221, and the rotor 222 is fixedly mounted on the rotating fan blade 21 and coaxially arranged with the rotating fan blade 21, and the stator 221 is fixedly sleeved on the positioning boss 122, so that the power generated by the driving part 22 provided by the present embodiment can be directly transmitted to the rotating fan blade 21 through the rotor 222, and there is no need to set a transmission device between the driving part 22 and the rotating fan blade 21, thereby effectively improving the transmission efficiency of the portable fan provided by the present embodiment.
  • the control circuit of the portable fan includes a charging and supplying circuit 20 , a fan driving circuit 30 , a control switch Q2 and a main control circuit 50 .
  • the charging and power supply circuit 20 is used to electrically connect the external power supply and the battery 14, so as to receive the external voltage VCC to charge the battery 14 and output the power supply voltage V0.
  • the fan driving circuit 30 is electrically connected to the charging and power supply circuit 20 and the fan assembly 12, so as to drive the fan assembly 12 to rotate.
  • the control end of the control switch Q2 is used to receive the external voltage VCC and is grounded, the first conduction end of the control switch Q2 is used to electrically connect the battery 14 to receive the output voltage of the battery 14, the second conduction end of the control switch Q2 is used to electrically connect to the fan driving circuit 30, and the control switch Q2 is closed when the external voltage VCC is received, and is turned on when the external voltage VCC is not received.
  • the main control circuit 50 is electrically connected to the charging and power supply circuit 20 , the fan driving circuit 30 and the control switch Q2 .
  • the charging and power supply circuit 20 includes a charging port 21 and a charging management chip 22.
  • the power supply terminal 211 of the charging port 21 receives the external voltage VCC and is electrically connected to the charging input pin VIN of the charging management chip 22.
  • the power supply terminal 211 of the charging port 21 is also electrically connected to the negative electrode of the voltage regulator D1, and the positive electrode of the voltage regulator D1 is grounded.
  • the switch pin SW of the charging management chip 22 is used to electrically connect the positive electrode BAT+ of the battery 14 via the first inductor L1.
  • the boost output pin VOUT of the charging management chip 22 is used to output the supply voltage V0.
  • the boost input pin of the charging management chip 22 is connected to the node between the battery 14 and the first inductor L1 via the first connection resistor 201 on the one hand, and is grounded via the first grounding capacitor 202 on the other hand.
  • the voltage regulator D1 and the first inductor L1 the charging and discharging of the charging port and the battery can be effectively managed, and the supply voltage required by other circuits can be output.
  • the structure is simple, easy to implement and has high safety.
  • the key input terminal KEY of the charging management chip 22 is electrically connected to the main control circuit 50; the first LED driving pin LED1 of the charging management chip 22 is grounded via the first grounding resistor 203 and the second grounding resistor 204 in sequence, and the second LED driving pin LED2 of the charging management chip 22 is connected to the positive electrode of the battery 14 via the second connection resistor 205; the first indicator pin LED1 of the main control circuit 50 is grounded via the first indicator branch 51, and the second LED driving pin LED2 of the charging management chip 22 is also grounded via the second indicator branch 23, and the first indicator branch 51 and the second indicator branch 23 both include a current limiting resistor R and an indicator LED connected in series.
  • the key input terminal SW of the charging management chip 22 is electrically connected to the main control circuit 50, so that the main control circuit 50 can control the charging management chip 22 to ensure the reliability of the control circuit; the charging and power supply status of the charging and power supply circuit 20 can be indicated through the first indicator branch 51 and the second indicator branch 23 to improve user experience.
  • the main control circuit 50 can be an MCU.
  • control end of the control switch Q2 is used to receive the external voltage VCC and is grounded, the first conduction end of the control switch Q2 is used to electrically connect to the battery 14 to receive the output voltage of the battery 14, and the second conduction end of the control switch Q2 is used to electrically connect to the fan drive circuit 30.
  • the control switch Q2 is closed when the external voltage VCC is received, and is turned on when the external voltage VCC is not received. At this time, the fan drive circuit 30 is powered by the battery 14.
  • the external voltage VCC when the external voltage VCC is connected, the external voltage VCC can directly power the fan drive circuit 30, avoiding the fan drive circuit 30 from using the output voltage of the battery 14, which not only makes the battery 14 charge faster, but also avoids the problem of affecting the service life caused by the battery 14 being charged and discharged at the same time.
  • control end of the control switch Q2 can be grounded via the third grounding resistor 206, and the second conducting end of the control switch Q2 and the fan driving circuit 30 can be electrically connected via the first diode D2.
  • the second control switch is a PMOS (P-Metal-Oxide-Semiconductor) field effect transistor. It can be understood that the stability and safety of the control circuit can be improved by the third grounding resistor 206 and the first diode D2.
  • the control switch Q2 is a PMOS field effect transistor, which also has the technical effects of low cost, simple structure and control.
  • the fan driving circuit 30 includes a second inductor L2, a third control switch Q3, a second diode D3 and a boost feedback branch 31, one end of the second inductor L2 is used to electrically connect to the charging and power supply circuit 20 to receive the external voltage VCC or the output voltage MVCC of the battery 14, the other end of the second inductor L2 is connected to the fan assembly 12 via the second diode D3, the first conduction end of the third control switch Q3 is connected to the node between the second inductor L2 and the second diode D3, the second conduction end of the third control switch Q3 is grounded, and the control end of the third control switch Q3 is electrically connected to the second
  • the pulse width signal output terminal FPWM is used to receive the second pulse width control signal output by the main control circuit 50.
  • the boost feedback branch 31 includes a first voltage-dividing resistor 311 and a second voltage-dividing resistor 312 connected in series.
  • the node between the first voltage-dividing resistor 311 and the second voltage-dividing resistor 312 is connected to the boost feedback terminal FAAD of the main control circuit 50 via a third voltage-dividing resistor 313.
  • the node between the third voltage-dividing resistor 313 and the main control circuit 50 is also grounded via a second grounding capacitor 314.
  • the fan drive circuit 30 with the above structure can charge and discharge the second inductor L2 by controlling the switch of the third control switch Q3, so that the voltage on the right side of the second inductor L2 can be increased to supply power to the fan assembly 12.
  • the boost feedback branch 31 also samples the boosted voltage and feeds it back to the main control circuit 50, so that the main control circuit 50 can adjust the second pulse width control signal provided to the third control switch Q3, so that the voltage obtained by the fan assembly 12 is basically constant.
  • the second pulse width control signal provided to the third control switch Q3 the voltage provided to the fan assembly 12 can be increased or decreased, thereby controlling the fan assembly 12 to reach different speeds.
  • the fan drive circuit 30 may also include a fourth control switch Q4, a third diode D4, a first feedback resistor 315, and a second feedback resistor 316, wherein the cathode of the third diode D4 is connected to the anode of the fan assembly 12, the cathode of the fan assembly 12 is connected to the anode of the third diode D4 and the first conduction end of the fourth control switch Q4, the control end of the fourth control switch Q4 is electrically connected to the fan enable end FAEN of the main control circuit 50, the second conduction end of the fourth control switch Q4 is grounded via the first feedback resistor 315, the node between the second conduction end of the fourth control switch Q4 and the first feedback resistor 315 is also electrically connected to the load feedback end LOAD AD of the main control circuit 50 via the second feedback resistor 316, and the node between the second feedback resistor 316 and the main control circuit 50 is also grounded via the third grounding capacitor 317.
  • a fourth control switch Q4 a third di
  • the fourth control switch Q4 Through the fourth control switch Q4, the voltage boosted by the second inductor L2 and the third control switch Q3 can be connected to the ground via the fan assembly 12 to form a loop, thereby driving the fan assembly 12 to rotate.
  • the signal of the node between the second conduction end of the fourth control switch Q4 and the first feedback resistor 315 is sampled through the first feedback resistor 315 and fed back to the main control circuit 50, so that the main control circuit 50 can detect whether the fan assembly 12 is blocked or short-circuited.
  • the first embodiment of the present application provides a driving circuit of a portable fan.
  • the driving circuit of the portable fan can be used for various types of fans.
  • the driving circuit of the portable fan includes: a main control circuit 11, a three-phase driving circuit 12 and a reverse electromotive force detection circuit 14.
  • the three-phase drive circuit 12 includes at least three signal input terminals 121 and three drive signal output terminals 122.
  • the at least three signal input terminals 121 are respectively electrically connected to the main control circuit 11 to receive control signals respectively.
  • the three drive signal output terminals 122 are used to electrically connect to three signal terminals (U, V, W) of the DC brushless fan motor to respectively output three-phase drive signals to drive the DC brushless fan motor to rotate.
  • the reverse electromotive force detection circuit 14 includes three detection branches 141, each detection branch 141 includes a detection terminal 1411 and a detection terminal electrically connected to the detection terminal.
  • the three detection output terminals 1411 of the three detection branches 141 are electrically connected to the three drive signal output terminals 122, and the three detection output terminals 1412 of the three detection branches 141 are electrically connected to the main control circuit 11, so as to output the first detection signal, the second detection signal and the third detection signal to the main control circuit, respectively, so that the main control circuit 11 obtains the phase of the three-phase drive signal according to the first detection signal, the second detection signal and the third detection signal to adjust the control signal.
  • the detection branch 141 includes a first detection resistor R1, a second detection resistor R2 and a third detection resistor R3, the first detection resistor R1 and the second detection resistor R2 are connected in series, and the end of the first detection resistor R1 away from the second detection resistor R2 is the detection end 1411, the end of the second detection resistor R2 away from the first detection resistor R1 is grounded, and the node between the first detection resistor R1 and the second detection resistor R2 is the detection output end 1412.
  • the main control circuit 11 can easily know the phase of the DC brushless fan motor, so that it can send a corresponding control signal to the three-phase drive circuit 12, effectively control the drive of the DC brushless fan motor, and improve the reliability and stability of the drive.
  • the three-phase drive circuit 12 includes first to ninth transistors Q1, Q2, Q3, Q4, Q5, Q6, Q7, Q8, Q9, the first conduction terminals 1211 of the first to third transistors Q1, Q2, Q3 are all connected to the power supply terminal 1212, the first conduction terminal 1211 of the fourth transistor Q4 is connected to the power supply terminal 1212, the first conduction terminal 1211 of the fifth transistor Q5 is connected to the power supply terminal 1212, and the first conduction terminal 1211 of the sixth transistor Q6 is connected to the power supply terminal 1212.
  • the control terminals of the fourth to sixth transistors Q4, Q5, and Q6 are respectively electrically connected to the main control circuit 11, and the control terminals of the seventh to ninth transistors Q7, Q8, and Q9 are respectively electrically connected to the control terminals of the fourth to sixth transistors Q4, Q5, and Q6 for receiving the control signal, the second conduction terminals 1213 of the fourth to sixth transistors Q4, Q5, and Q6 are all grounded, and the first conduction terminal 1211 of the seventh transistor Q7 is connected to the The second conduction end 1213 of the seventh transistor Q7 is grounded, the first conduction end 1211 of the eighth transistor Q8 is connected to the second conduction end 1213 of the second transistor Q2, the second conduction end 1213 of the eighth transistor Q8 is grounded, the first conduction end 1211 of the ninth transistor Q9 is connected to the second conduction end 1213 of the third transistor Q3, the second conduction end 1213 of the ninth transistor Q9 is grounded, the node between the first conduction end 1211 of the seventh transistor
  • the driving circuit of the portable fan further includes a current detection circuit 15, and the second conduction ends 1213 of the seventh to ninth transistors Q7, Q8, and Q9 are all grounded via the current detection circuit 15, and the current detection circuit 15 is also electrically connected to the main control circuit 11;
  • the current detection circuit 15 includes a sensing resistor 151 and a sensing capacitor 152, and the second conduction ends 1213 of the seventh to ninth transistors Q7, Q8, and Q9 are grounded via the sensing resistor 151 and the sensing capacitor 152 in sequence, and the node between the sensing resistor 151 and the sensing capacitor 152 is electrically connected to the main control circuit 11.
  • the main control circuit 11 can control the driving circuit of the portable fan to stop working or work at a lower power, so as to perform overcurrent protection on the driving circuit of the portable fan and improve the reliability and service life of the driving circuit of the portable fan.
  • the driving circuit of the portable fan also includes an interface circuit 16 and a charging management circuit 17.
  • the interface circuit 16 is used to electrically connect to an external power supply to receive an external voltage.
  • the charging management circuit 17 is electrically connected between the interface circuit 16 and the battery VBAT, and is used to receive the external voltage and charge the battery VBAT or output a supply voltage;
  • the driving circuit of the portable fan also includes a button 31, one end of the button 31 is connected to the main control circuit 11, and the other end is grounded;
  • the driving circuit of the portable fan also includes an indicator light branch 19, and the indicator light branch 19 includes a light-emitting diode and a resistor connected in series, the positive electrode of the light-emitting diode is used to electrically connect to the main control circuit 11, and the negative electrode of the light-emitting diode is grounded.
  • the driving circuit of the portable fan can be used for neck-hanging fans and handheld fans, but is not limited to neck-hanging fans and handheld fans, and can also be applied to other portable fans such as desktop fans, floor fans, clip fans, folding fans, etc.
  • the two DC brushless fan motors are used to be respectively arranged on the left and right sides of the neck-hanging fan, and are used to drive the fan blades on the left and right sides of the neck-hanging fan to rotate.
  • the main control circuit 11 may include a main control chip 111 and an auxiliary chip 113.
  • the main control circuit 11 includes the main control chip 111 and the auxiliary chip 113.
  • the number of the three-phase drive circuit 12, the reverse electromotive force detection circuit 14 and the DC brushless fan motor are two and one-to-one corresponding.
  • the main control chip 111 is electrically connected to one of the three-phase drive circuits 12 to output the control signal to one of the three-phase drive circuits 12 to drive the corresponding one of the DC brushless fan motors.
  • the reverse electromotive force detection circuit 14 is electrically connected to the corresponding three-phase drive circuit 12 and outputs the corresponding first detection signal, the second detection signal and the third detection signal to the main control chip 111, so that the main control chip 111 can know the three-phase of the three-phase drive circuit 12.
  • the phase of the driving signal is used to adjust the control signal output to one of the three-phase driving circuits 12; the auxiliary chip 113 is electrically connected to another of the three-phase driving circuits 12 to output the control signal to another of the three-phase driving circuits 12 to drive another corresponding DC brushless fan motor; another of the reverse electromotive force detection circuits 14 is electrically connected to the corresponding three-phase driving circuits 12 and outputs the corresponding first detection signal, the second detection signal and the third detection signal to the auxiliary chip 113, so that the auxiliary chip 113 obtains the phase of the three-phase driving signal of another of the three-phase driving circuits 12 to adjust the control signal output to another of the three-phase driving circuits 12.
  • the main control chip 111, the corresponding three-phase drive circuit 12, and the corresponding reverse electromotive force detection circuit 14 are arranged on one module (such as a first circuit board), and can be arranged on the same side of the neck-hanging fan with the corresponding DC brushless fan motor, and the auxiliary chip 113, the corresponding three-phase drive circuit 12, and the corresponding reverse electromotive force detection circuit 14 are arranged on another module (such as another second circuit board independent of the first circuit board), and can be arranged on the other side of the neck-hanging fan with the corresponding DC brushless fan motor.
  • the above design has good rationality and compactness, and can also improve the reliability of connection and drive.
  • the layout of the three-phase drive circuit 12, the reverse electromotive force detection circuit 14, the main control chip 111, and the auxiliary chip 113 can be varied.
  • the three-phase drive circuit 12, the reverse electromotive force detection circuit 14, the main control chip 111, and the auxiliary chip 113 are all arranged on the same circuit board, or the three-phase drive circuit 12 and the reverse electromotive force detection circuit 14 are arranged on one circuit board, and the main control chip 111 and the auxiliary chip 113 are arranged on another circuit board.
  • the specific selection can be made according to actual needs and will not be repeated here.
  • the driving circuit of the portable fan also includes a first connector 261 and a speed control interface circuit 26 having a second connector 262.
  • the first pin and the second pin of the first connector 261 are electrically connected to the main control chip 111 respectively.
  • the third pin of the first connector 261 is grounded.
  • the first pin of the second connector 262 is connected to the battery VBAT via the first connection resistor on the one hand, and is connected to the auxiliary chip 113 via the second connection resistor on the other hand.
  • the second pin of the second connector 262 is connected to the auxiliary chip 113 via the third connection resistor, and the third pin of the second connector 262 is grounded.
  • the pins of the first connector 261 and the second connector 262 can also be electrically connected one by one, so that the speeds of the two DC brushless fan motors can be adjusted synchronously.
  • a driving circuit of a portable fan provided in the second embodiment of the present application, the same parts of the driving circuit of the portable fan as those of the first embodiment are not described in detail, and the following mainly focuses on the differences between the driving circuit of the portable fan of this embodiment and the first embodiment.
  • the main control circuit 11 of this embodiment is different from the main control circuit 11 of the first embodiment, and the main control circuit 11 of this embodiment can mainly include a main control chip 111.
  • the three-phase drive circuit 12 includes first to sixth transistors Q1, Q2, Q3, Q4, Q5, and Q6.
  • the first conduction ends 1211 of the first to third transistors Q1, Q2, and Q3 are all connected to the power supply end 1212.
  • the first conduction end 1211 of the fourth transistor Q4 is connected to the second conduction end 1213 of the first transistor Q1.
  • the first conduction end 1211 of the fifth transistor Q5 is connected to the second conduction end 1213 of the second transistor Q2.
  • the first conduction end 1211 of the sixth transistor Q6 is connected to the second conduction end 1213 of the third transistor Q3.
  • a node between the first conduction end 1211 of the body transistor Q4 and the second conduction end 1213 of the first transistor Q1, a node between the first conduction end 1211 of the fifth transistor Q5 and the second conduction end 1213 of the second transistor Q2, and a node between the first conduction end 1211 of the sixth transistor Q6 and the second conduction end 1213 of the third transistor Q3 serve as three drive signal output ends 122 respectively, and control ends of the first to sixth transistors Q1, Q2, Q3, Q4, Q5, and Q6 are respectively used to electrically connect to the main control circuit 11 to receive the control signal; the control signal includes six PWM signals.
  • the second conduction end 1213 of the sixth transistor Q6 is grounded via the current detection circuit 15, and the current detection circuit 15 is also electrically connected to the main control circuit 11;
  • the current detection circuit 15 includes a sensing resistor 151 and a sensing capacitor 152, the second conduction end 1213 of the sixth transistor Q6 is grounded via the sensing resistor 151, the sensing capacitor 152 is connected in parallel with the sensing resistor 151, and the node between the sensing resistor 151 and the second conduction end 1213 of the sixth transistor Q6 is electrically connected to the main control circuit 11;
  • the current detection circuit 15 also includes a first series resistor 153, a second series resistor 154, and a parallel resistor 155, the parallel resistor 155 is connected in parallel with the sensing resistor 151, the first series resistor 153 is connected between one end of the sensing capacitor 152 and one end of the sensing resistor 151, and the second series resistor 154 is connected between the other end of the sensing capacitor 152 and
  • the main control circuit 11 can control the driving circuit of the portable fan to stop working or operate at a lower power, so as to perform overcurrent protection on the driving circuit of the portable fan and improve the reliability and service life of the driving circuit of the portable fan.
  • the reverse electromotive force detection circuit 14 of the second embodiment is substantially the same as the reverse electromotive force detection circuit 14 of the first embodiment, and will not be described in detail here.
  • the driving circuit of the portable fan also includes a transistor temperature detection circuit 24, which can be arranged adjacent to each transistor of the three-phase driving circuit 12, and includes a first voltage-dividing resistor 241 and a thermistor 242 connected in series, the thermistor 242 being used to sense the temperature of each transistor of the three-phase driving circuit 12, and a node between the first voltage-dividing resistor 241 and the thermistor 242 being electrically connected to the main control circuit 11 and being used to output a temperature signal, so that the main control circuit 11 controls whether the driving circuit of the portable fan enters a temperature protection state according to the temperature signal; the thermistor 242 is connected between the first voltage-dividing resistor 241 and ground, and the transistor temperature detection circuit 24 also includes a voltage-stabilizing capacitor 243 connected in parallel with the thermistor 242.
  • the main control circuit 11 can know whether the temperature of each transistor of the three-phase drive circuit 12 is abnormal, and when an abnormality occurs, the drive circuit of the portable fan can be controlled to stop working or operate at a lower power, so as to protect the drive circuit of the portable fan from over-temperature and improve the reliability and service life of the drive circuit of the portable fan.
  • the driving circuit of the portable fan further includes a battery voltage detection circuit 25 electrically connected between the positive electrode of the battery VBAT and the ground, and the output end of the battery voltage detection circuit 25 is electrically connected to the main control circuit 11. 25.
  • the main control circuit 11 can know whether the battery voltage is normal, and when the battery voltage is abnormal, it can control the driving circuit of the portable fan to stop working or work at a lower power, thereby improving the reliability and service life of the driving circuit of the portable fan.
  • the battery voltage detection circuit 25 includes a second voltage-dividing resistor 251 and a third voltage-dividing resistor 252 connected in series, and a node between the second voltage-dividing resistor 251 and the third voltage-dividing resistor 252 is electrically connected to the main control circuit 11. It can be understood that the battery voltage detection circuit 25 has a simple structure, high reliability and low cost.
  • the driving circuit of the portable fan of the second embodiment of the present application further has a burning interface 28 for burning the control program to the main control circuit 11 .
  • the burning interface 28 may be a SWD burning interface, but is not limited thereto.
  • the third embodiment of the present application provides a driving circuit for a portable fan.
  • the parts of the driving circuit of the portable fan that are the same as those of the driving circuit of the portable fan of the second embodiment are not described in detail.
  • the following mainly focuses on the differences between the driving circuit of the portable fan of the third embodiment and the driving circuit of the portable fan of the second embodiment.
  • the three-phase drive circuit 12 of the third embodiment is basically the same as the three-phase drive circuit 12 of the second embodiment, and the main control circuit 11 of the third embodiment is different from the main control circuit 11 of the second embodiment.
  • the main control circuit 11 includes a main control chip 111 and three three-phase control chips 112, and each of the three-phase control chips 112 is electrically connected to the main control chip 111 and the three-phase drive circuit 12.
  • the driving circuit of the portable fan further includes a filter capacitor 253 and a sampling resistor 254 connected in series, the sampling resistor 254 is connected between the filter capacitor 253 and the ground, and the node between the filter capacitor 253 and the sampling resistor 254 is electrically connected to the main control circuit 11.
  • the driving circuit of the portable fan further includes a signal amplification circuit 29, the input end of the signal amplification circuit 29 is connected to the node between the filter capacitor 253 and the sampling resistor 254, the signal amplification circuit 29 is used to amplify the signal sampled by the sampling resistor 254 (i.e., the signal at the node between the filter capacitor 253 and the sampling resistor 254), and provide the amplified signal to the main control circuit 11, so that the main control circuit 11 of the driving circuit of the portable fan can keenly detect the abnormal voltage or current signal when the driving circuit of the entire portable fan is abnormal, and then the main control circuit 11 can perform abnormal protection work, such as stopping work or reducing the fan speed, etc., thereby improving the use safety of the driving circuit of the portable fan.
  • abnormal protection work such as stopping work or reducing the fan speed, etc.
  • the transistor temperature detection circuit 24 of the third embodiment is substantially the same as that of the second embodiment, and will not be described in detail here.
  • FIG. 3-20 is a schematic diagram of the structure of the light control circuit 30 of the driving circuit of the portable fan provided in the third embodiment of the present application.
  • the light control circuit 30 includes a light emitting element 301 and a control switch 302, wherein the positive electrode of the light emitting element 301 receives the driving voltage, the negative electrode of the light emitting element 301 is grounded via a resistor and two conducting ends of the control switch 302, and the control end of the control switch 302 is electrically connected to the main control circuit 11, so that the main control circuit 11 outputs a light control signal to the control end of the control switch 302 to control the light emission of the light emitting element 301.
  • the driving circuit of the portable fan also includes a Hall detection circuit 23, and the Hall detection circuit 23 is electrically connected to the main control circuit 11, and is used for detecting the magnetic field generated by the DC brushless fan motor and outputting a Hall detection signal to the main control circuit 11, so that the main control circuit 11 can obtain the position of the rotor of the DC brushless fan motor according to the Hall detection signal, and then can provide a corresponding control signal to control the operation of the three-phase drive circuit 12.
  • the start-up time of the fan using the driving circuit of the portable fan is shorter, and there will be no jitter during startup, and the user experience is higher.
  • the Hall detection circuit 23 also includes a motor temperature detection element 232, which is connected between the Hall element 231 of the Hall detection circuit 23 and the main control circuit 11.
  • the motor temperature detection element 232 can be a sampling resistor.
  • the main control circuit 11 can know whether the temperature of the DC brushless fan motor is abnormal, and when an abnormality occurs, the drive circuit of the portable fan can be controlled to stop working or work at a lower power, so as to perform over-temperature protection on the drive circuit of the portable fan and improve the reliability and service life of the drive circuit of the portable fan.
  • the driving circuit of the portable fan also includes a voltage conversion circuit 20, which is used to receive a battery voltage (VB+) and convert the battery voltage into a driving voltage (such as 15V), and provide the driving voltage to the power supply end of the three three-phase control chips 112.
  • the main control chip 111 is used to output a main control signal to the three three-phase control chips 112, so that the three three-phase control chips 112 respectively output the control signal to the three-phase drive circuit 12.
  • the driving circuit of the portable fan further includes a switch control circuit 21, which is electrically connected to the battery VBAT, the voltage conversion circuit 20 and the main control circuit 11, and is used to control the operation of the voltage conversion circuit 20.
  • the switch control circuit 21 includes a button 211, a first switch tube 212, a second switch tube 213, and a third switch tube 214.
  • the two conducting ends of the first switch tube 212 are respectively connected to the positive electrode of the battery VBAT and the input end of the voltage conversion circuit 20, the control end of the first switch tube 212 is grounded via the two conducting ends of the third switch tube 214, the positive electrode of the battery VBAT is also connected to the control end of the third switch tube 214 via the two conducting ends of the first switch tube 212 and the unidirectional diode 215, the control end of the second switch tube 213 is grounded via the button 211, the control end of the third switch tube 214 is electrically connected to the main control circuit 11, and the node between the second switch tube 213 and the unidirectional diode 215 is also electrically connected to the switch signal end of the main control circuit 11.
  • the button 211 When the button 211 is pressed and turned on, the second switch tube 213 is turned on, the third switch tube 214 is turned on, and the node between the second switch tube 213 and the unidirectional diode 215 outputs a first switch signal (ON) to the switch signal end of the main control circuit 11, and the first switch tube 212 is turned on, so that the battery voltage of the battery VBAT is provided to the voltage conversion circuit 20.
  • the button 211 stops being pressed, the second switch tube 213 is turned off, and the main control circuit 11 outputs a power supply start signal to the control end of the third switch tube 214 according to the first switch signal to maintain the conduction of the third switch tube 214, and the battery voltage of the battery VBAT is provided to the voltage conversion circuit 20.
  • the node between the second switch tube 213 and the unidirectional diode 215 outputs a second switch signal (OFF) to the switch signal end of the main control circuit 11, and the main control circuit 11 outputs a power supply shutdown signal to the control end of the third switch tube 214 according to the second switch signal to control the third switch tube 214 to turn off, and then the first switch tube 212 is turned off, and the battery voltage of the battery VBAT cannot be provided to the voltage conversion circuit 20 until the button 211 is pressed and turned on again.
  • the button 211 , the first switch tube 212 , the second switch tube 213 and the third switch tube 214 cooperate with the main control circuit 11 to control whether the battery voltage of the battery VBAT is provided to the voltage conversion circuit 20 .
  • This not only has simple control logic but also has the advantage of high reliability.
  • the driving circuit of the portable fan also includes a DC conversion circuit 22, which is used to receive the driving voltage (such as a DC voltage of 15V) and convert it into other DC working voltages, such as DC working voltages of 3.3V and 5V.
  • a DC conversion circuit 22 is used to receive the driving voltage (such as a DC voltage of 15V) and convert it into other DC working voltages, such as DC working voltages of 3.3V and 5V.
  • An embodiment of the present application also provides a portable fan 2, which includes a portable fan driving circuit 3, a DC brushless fan motor 4, and fan blades 5 driven by the DC brushless fan motor.
  • the portable fan driving circuit 3 adopts the portable fan driving circuit described in any of the above embodiments.
  • the portable fan driving circuit and the portable fan 2 of the above-mentioned embodiment by using the main control circuit 11, the three-phase driving circuit 12, the reverse electromotive force detection circuit 14 and the DC brushless fan motor, not only the energy-saving performance and control performance of the fan motor can be improved to improve the reliability of the portable fan driving circuit and the fan 2, but also the service life of the portable fan driving circuit and the fan 2 can be extended.
  • the use of the DC brushless fan motor makes the fan 2 simpler in structure and smaller in size, which can improve the market competitiveness of the product.
  • the present application discloses a handheld fan, wherein an air passage 11 is formed through an inner shell 1, and both sides of the air passage 11 are respectively connected to an air inlet 23 and an air outlet 24, at least a portion of a fan assembly 3 is disposed in the air passage 11, and an outer shell 2 is disposed outside the inner shell 1, and one side of a wiring opening 12 of the inner shell 1 is directly opposite to the electrical connection portion of the fan assembly 3, and the other side of the wiring opening 12 is used to directly opposite to the electrical connection portion of a handheld portion 5 of the handheld fan, and the electrical connection portion of the fan assembly 3 is electrically connected to the electrical connection portion of the handheld portion 5 through a wire passing through the wiring opening 12.
  • the wiring opening 12 of the inner shell 1 can be used for the wire connected to the electrical connection portion of the fan assembly 3 to enter and exit, and the wire connected to the electrical connection portion of the fan assembly 3 passes through the wiring opening 12 from a position directly opposite to the electrical connection portion of the handheld portion 5 of the handheld fan, and then the wire is connected to the electrical connection portion of the handheld portion 5 of the handheld fan, which is conducive to reducing the length of the wire, enhancing durability, and improving the aesthetics of the wiring.
  • Figure 4-1 is a structural schematic diagram of a handheld fan provided in an embodiment of the present application
  • Figure 4-2 is a structural schematic diagram of a mounting frame 6 in a handheld fan provided in an embodiment of the present application
  • Figure 4-3 is a structural schematic diagram of a handheld portion 5 in a handheld fan provided in an embodiment of the present application
  • Figure 4-4 is a structural schematic diagram of a wiring opening 12 in a handheld fan provided in an embodiment of the present application
  • Figure 4-5 is a structural schematic diagram of a wire groove 21 in a handheld fan provided in an embodiment of the present application
  • Figure 4-6 is a handheld fan provided in an embodiment of the present application.
  • FIG. 1 Schematic diagram of the structure of the middle capacity wire slot 21,
  • Figure 4-7 is a schematic diagram of the structure of the gear knob assembly 71 and the protection switch button assembly 72 of a handheld fan provided in an embodiment of the present application
  • Figure 4-8 is a schematic diagram of the structure of the inner shell 1 and the outer shell 2 of a handheld fan provided in an embodiment of the present application
  • Figure 4-9 is a schematic diagram of the structure of the air inlet 23 and the air outlet 24 of a handheld fan provided in an embodiment of the present application
  • Figure 4-10 is a partial enlarged structural diagram of A in Figure 4-9
  • Figure 4-11 is a schematic diagram of the structure of the fan assembly 3 of a handheld fan provided in an embodiment of the present application.
  • a handheld fan provided in embodiment 1 of the present application includes an inner shell 1, an outer shell 2 and a fan assembly 3. The inner shell 1, the outer shell 2 and the fan assembly 3 are described in detail respectively:
  • the inner shell 1 is formed with an air passage 11, an air inlet 23 connected to one side of the air passage 11, and an air outlet 24 connected to the other side of the air passage 11, and at least a portion of the fan assembly 3 is disposed in the air passage 11.
  • the inner shell 1 has a wiring opening 12, one side of the wiring opening 12 is opposite to the electrical connection portion of the fan assembly 3, and the other side of the wiring opening 12 is used to face the electrical connection portion of the handheld portion 5 of the handheld fan, and the electrical connection portion of the fan assembly 3 is electrically connected to the electrical connection portion of the handheld portion 5 through a wire passing through the wiring opening 12.
  • the handheld portion 5 has a mounting opening 4, and the handheld portion 5 is connected to the outer shell 2, and the mounting opening 4 faces the other side of the wiring opening 12.
  • the handheld fan provided in the first embodiment of the present application may also include a mounting frame 6, a second circuit board 73, and a gear knob assembly 71 disposed on the handheld portion 5, and at least a portion of the mounting frame 6 is disposed in the mounting opening 4.
  • the mounting frame 6 is connected to the inner shell 1, and the mounting frame 6 has a receiving space 61 for the wire to pass through.
  • the electrical connection part of the handheld part 5 includes a first circuit board 7, which is arranged on the mounting frame 6 and plugged into the electrical connection part of the fan assembly 3 through a wire.
  • the second circuit board 73 is arranged on the mounting frame 6 and plugged into the first circuit board 7 through a wire; the gear knob assembly 71 is arranged on the mounting frame 6 and connected to the second circuit board 73.
  • the second circuit board 73 and the first circuit board 7 are arranged opposite to each other.
  • the outer shell 2 is used to cover the outside of the inner shell 1.
  • a baffle 22 is arranged on the inner shell 1, and the baffle 22 and the inner shell 1 are enclosed to form a wire groove 21. At least part of the first circuit board 7 is arranged in the wire groove 21.
  • the air passage 11 formed inside the inner shell 1 is used for the circulation of gas, and the gas enters the air passage 11 from the air inlet 23, and the gas entering the air passage 11 is discharged from the air outlet 24.
  • the outer shell 2 is covered on the outside of the inner shell 1.
  • a wiring opening 12 for passing the wire is provided on the inner shell 1, and the two sides of the wiring opening 12 are respectively opposite to the electrical connection part of the fan assembly 3 and the electrical connection part of the handheld part 5 of the handheld fan.
  • the electrical connection part of the fan assembly 3 can refer to a circuit board connected to the fan motor, and the wire connected to the circuit board passes through the wiring opening 12 and is connected to the first circuit board 7 of the electrical connection part of the handheld part 5.
  • the mounting opening 4 of the handheld portion 5 is directly opposite to the wiring opening 12, the accommodating space 61 of the mounting frame 6 is interconnected with the mounting opening 4 of the handheld portion 5, the first circuit board 7 and the second circuit board 73 are arranged on the mounting frame 6 opposite to each other, and the wire passing through the wiring opening 12 can be plugged with the first circuit board 7 arranged on the mounting frame 6 after passing through the mounting opening 4 of the handheld portion 5, such as one end of the wire passing through the wiring opening 12 is plugged with the first circuit board 7 through a plug connector, which facilitates the mutual connection or separation of the wire and the first circuit board 7.
  • the second circuit board 73 is plugged with the first circuit board 7 through a wire, such as the second circuit board 73 is connected to the plug connector connected to the first circuit board 7 through a wire, so as to realize the plugging of the second circuit board 73 and the first circuit board 7, which facilitates the mutual connection or separation of the second circuit board 73 and the first circuit board 7.
  • the gear knob assembly 71 connected to the second circuit board 73 can be used to adjust the speed of the fan blades in the fan assembly 3 to control the wind speed. For example, when the knob in the gear knob assembly 71 is rotated, the gear of the fan can be adjusted; when the knob in the gear knob assembly 71 is pressed, the power of the battery 8 can be checked.
  • a baffle 22 is provided near the handheld portion 5 in the inner shell 1.
  • the diameter of the inner shell 1 can be gradually increased in the direction from the air inlet 23 to the air outlet 24, so that an inwardly concave space is formed at one end of the inner shell 1 near the air inlet 23.
  • the baffle 22 can be arranged in the inwardly recessed space, and the inner shell 1 and the baffle 22 can enclose a wire accommodating groove 21.
  • a portion of the first circuit board 7 can extend into the interior of the wire accommodating groove 21, and the interior of the wire accommodating groove 21 has a space capable of accommodating the wires connected to the first circuit board 7; or the entire first circuit board 7 is located outside the wire accommodating groove 21, a portion of the wires connected to the first circuit board 7 is located inside the wire accommodating groove 21, and the other portion of the wires extends to the outside of the wire accommodating groove 21 and is connected to the first circuit board 7, so that the utilization rate of the space can be improved.
  • the handheld fan provided in the first embodiment of the present application may further include a protection switch button assembly 72 and a battery 8.
  • the protection switch button assembly 72 is disposed on the mounting frame 6, and the protection switch button assembly 72 is electrically connected to the first circuit board 7.
  • the battery 8 is disposed on the handheld portion 5, and the battery 8 is plugged into the first circuit board 7 through a wire.
  • the battery 8 can be installed in the handheld part 5, and the battery 8 is plugged into the first circuit board 7 through a wire, so that the fan assembly 3 can be powered by the battery 8.
  • the protection switch button assembly 72 electrically connected to the first circuit board 7 can control the circuit powered by the battery 8 to be open or open.
  • the protection switch button assembly 72 adopts a sliding switch, and when the button in the sliding protection switch button assembly 72 is moved to one end, the circuit is open, and the motor in the fan assembly 3 drives the fan blades to rotate.
  • the present application provides a handheld fan, wherein an air passage 11 is formed through an inner shell 1, and both sides of the air passage 11 are respectively connected to an air inlet 23 and an air outlet 24, at least a portion of a fan assembly 3 is disposed in the air passage 11, and an outer shell 2 is disposed outside the inner shell 1, and one side of a wiring opening 12 of the inner shell 1 is directly opposite to an electrical connection portion of the fan assembly 3, and the other side of the wiring opening 12 is used to directly opposite to an electrical connection portion of a handheld portion 5 of the handheld fan, and the electrical connection portion of the fan assembly 3 is electrically connected to the electrical connection portion of the handheld portion 5 through a wire passing through the wiring opening 12.
  • the wiring opening 12 of the inner shell 1 can allow wires connected to the electrical connection portion of the fan assembly 3 to enter and exit, and the wires connected to the electrical connection portion of the fan assembly 3 pass through the wiring opening 12 from a position directly opposite to the electrical connection portion of the handheld portion 5 of the handheld fan, and then the wires are connected to the electrical connection portion of the handheld portion 5 of the handheld fan, which is conducive to reducing the length of the wires, enhancing durability, and improving the aesthetics of the wiring.
  • the above-mentioned embodiment 1 explains in detail a handheld fan. Based on the same application concept, the present application also provides a handheld fan, see embodiment 2 for details.
  • Embodiment 2 of the present application provides a handheld fan.
  • the present application provides a handheld fan, in which an air passage 11 is formed through an inner shell 1, and the two sides of the air passage 11 are respectively connected to an air inlet 23 and an air outlet 24, at least a part of a fan assembly 3 is arranged in the air passage 11, and an outer shell 2 is covered on the outside of the inner shell 1, and one side of a wiring opening 12 of the inner shell 1 faces the electrical connection part of the fan assembly 3, and the other side of the wiring opening 12 faces the electrical connection part of the handheld part 5 of the handheld fan, and the electrical connection part of the fan assembly 3 is electrically connected to the electrical connection part of the handheld part 5 through a wire passing through the wiring opening 12.
  • the wiring opening 12 of the inner shell 1 can allow wires connected to the electrical connection part of the fan assembly 3 to enter and exit, and the wires connected to the electrical connection part of the fan assembly 3 pass through the wiring opening 12 from a position facing the electrical connection part of the handheld part 5 of the handheld fan, and then the wires are connected to the handheld fan 5.
  • the electrical connection part of the handheld part 5 of the fan is connected, which is conducive to reducing the length of the wire, enhancing durability, and improving the aesthetics of the wiring. Thereby achieving the technical effect of improving the stability of the wiring, improving the aesthetics of the wiring, and enhancing durability.
  • the portable fan comprises a housing 1, a fan assembly 2, a motor 3 and a driving circuit board 4.
  • the housing 1 is provided with an air inlet 161, a receiving cavity 162 and an air outlet 163 which are connected to each other.
  • the fan assembly 2, the motor 3 and the driving circuit board 4 are received in the housing 1.
  • the driving circuit board 4 is electrically connected to the motor 3 to drive the fan assembly 2 to rotate, and blow the wind from the air inlet 161 through the receiving cavity 162 and then out of the air outlet 163.
  • the housing 1 includes a front housing 11 and a rear housing 12, the front housing 11 includes a first wind housing 111 and a first hand-held housing 112, the rear housing 12 includes a second wind housing 121 and a second hand-held housing 122, the first wind housing 111 and the second wind housing 121 form an air outlet 16, and the first hand-held housing 112 and the second hand-held housing 122 form a hand-held portion 17.
  • the first wind housing 111 and the second wind housing 121 can be matched front and back or left and right; the first hand-held housing 112 and the second hand-held housing 122 can be matched front and back or left and right.
  • the hand-held portion 17 is provided with a switch 5, an interface 6 and a battery 7.
  • the switch 5 is a stepless speed regulating switch 5.
  • the first hand-held housing 112 and the second hand-held housing 122 may not be provided, or may be provided in other common forms such as a desktop fan, a neck hanging fan, a clip fan, and a bracket fan.
  • the first wind shell 111 includes a first outer shell and a first inner shell that fit together inside and outside, the first inner shell and the first outer shell are arranged in close contact, and the first inner shell and the first outer shell both extend horizontally forward.
  • the second wind shell 121 includes a second outer shell and a second inner shell that fit together inside and outside, the rear ends of the second inner shell and the second outer shell are separated and connected by a connecting piece, the second outer shell extends horizontally forward, the second inner shell extends horizontally forward from the back to the front, and then expands radially outward, the front end of the second inner shell is connected to the front end of the second outer shell, and the front end of the second inner shell abuts against the rear end of the first inner shell.
  • the first outer shell and the second outer shell are integrally formed, and of course in other embodiments, the first outer shell and the second outer shell can also be separately formed.
  • Both the first wind shell 111 and the second wind shell 121 have double-layer shell 1 structures, which are more stable, and the shape change of the second inner shell is conducive to pressurizing the wind, making the wind stronger and the wind outlet distance farther.
  • the first wind shell 111 and/or the second wind shell 121 can also be a single-layer shell 1 structure.
  • the housing 1 further includes a pressurizing member 13 disposed in the first air housing 111, a plurality of connecting blades 14 connecting the pressurizing member 13 and the front housing 11, a base 131 and a sleeve 132 are formed in the pressurizing member 13, the base 131 is located between the front end and the rear end of the pressurizing member 13, and a clearance space 1321 is formed backward in the pressurizing member 13, and a receiving portion 1322 is formed forward in the pressurizing member 13 by the base 131.
  • the sleeve 132 protrudes from the base 131 toward the accommodating cavity 162, that is, the sleeve 132 protrudes backward from the base 131, and the sleeve 132 is hollow.
  • the air inlet 161 is located in the radial inner area of the second inner shell, and the air outlet 163 is located in the radial area between the pressure member 13 and the first inner shell.
  • the fan assembly 2 includes a hub 21, and a plurality of blades 22 spaced apart on the outer surface of the hub 21, the hub 21 includes a wind guide surface 212 that increases radially from back to front, the pressure member 13 includes a pressure surface 133 that increases radially from back to front, and the wind guide surface 212 and the pressure surface 133 are spaced apart closely to allow the wind to blow smoothly forward. From the air inlet 161 to the air outlet 163, a radially outward wind duct is formed, so that the wind is pressurized in the shell 1 and a larger wind outlet surface is formed.
  • the fan assembly 2 includes the hub 21, and a plurality of blades 22 arranged at intervals on the outer surface of the hub 21, and a rotating shaft 23 is fixed at the center of the inner side of the hub 21.
  • the motor 3 includes a stator 31 and a rotor 32, and both the stator 31 and the rotor 32 are accommodated in the hub 21.
  • the hub 21 includes a circle of annular extension wall 211, and both the stator 31 and the rotor 32 are accommodated in the extension wall 211.
  • the stator 31 is sleeved outside the sleeve 132, and the stator 31 includes a coil 311.
  • the rotor 32 is radially arranged between the stator 31 and the hub 21, and the rotating shaft 23 is inserted in the sleeve 132, and the extension wall 211, the stator 31 and the rotor 32 extend forward into the clearance space 1321.
  • the extension wall 211 extends forward beyond the wind guide surface 212, and the wind guide surface 212 and the pressurizing surface 133 are arranged closely spaced, so the gap between the wind guide surface 212 and the pressurizing surface 133 is misaligned with the front end of the extension wall 211, so that dust is not easy to enter the extension wall 211.
  • the stator 31 and the rotor 32 do not extend forward beyond the extension wall 211, and the extension wall 211, the stator 31 and the rotor 32 extend forward into the clearance space 1321, so that the extension wall 211, the stator 31 and the rotor 32 are partially accommodated in the clearance space 1321.
  • the driving circuit board 4 is not arranged between the base 131 and the stator 31, the battery 7 is electrically connected to the driving circuit board 4, and the driving circuit board 4 is electrically connected to the lead wire of the coil 311 to drive the fan assembly 2 to rotate, so that the wind is blown out from the air inlet 161 through the accommodating cavity 162 and then from the air outlet 163.
  • the driving circuit board 4 is accommodated in the accommodating portion 1322 formed forwardly of the base 131, and the front end of the pressurizing member 13 also includes a front cover 15, the front cover 15 is covered at the front end of the accommodating portion 1322, and the front cover 15 is recessed backward to form a negative pressure area 151.
  • the accommodating portion 1322 is covered to shield and protect the driving circuit board 4; on the other hand, the negative pressure area 151 formed by the recessed front cover 15 can compensate air to the air outlet 163 to increase the air volume of the air outlet 163.
  • the motor 3 is a three-phase motor, and the coil 311 includes twelve windings.
  • the number of windings is large, so the internal space of the motor 3 is limited.
  • the electrical connection between the lead of the coil 311 and the driving circuit board 4 is simpler and more convenient, and the space between the base 131 and the stator 31 can be further reduced, so that the internal space distribution of the portable fan is more reasonable, thereby realizing the miniaturization of the portable fan.
  • FIG5-5 it is a schematic diagram of an embodiment of the portable fan of the present application.
  • the driving circuit board 4 is accommodated in the handheld portion 17 and is located between the switch 5 and the interface 6, and the switch 5 is connected to the driving circuit board 4, or the interface 6 is connected to the driving circuit board 4.
  • Other structures and performances are basically the same as those of the first embodiment, and will not be repeated here.
  • FIG. 5-6 it is a schematic diagram of the portable fan embodiment of the present application.
  • the main difference from the previous embodiment is that the driving circuit board 4 is accommodated in the handheld part 17 and is located below the battery 7.
  • Other structures and performances are basically the same as those of the first embodiment and will not be repeated here.

Abstract

本申请提供一种便携式风扇,包括:风道部、吹风部及手持部,其中风道部包括主体,主体内部设置有导风腔,风道部相对的两端设置有出风口及进风口,出风口和进风口均与导风腔连通,主体内设置有定位凸柱;吹风部包括转动风叶及与转动风叶驱动连接的驱动部,转动风叶可转动的安装在导风腔内,并朝向出风口设置;驱动部包括定子及套设在定子外的转子,转子固定安装在转动风叶上,并与转动风叶同轴设置,定子固定套设在定位凸柱上。

Description

便携式风扇、便携式风扇的驱动电路和手持风扇 技术领域
本申请涉及风扇技术领域,特别是涉及一种便携式风扇、便携式风扇的驱动电路和手持风扇。
背景技术
风扇作为人们日常生活中十分常用的家电产品,它带动空气流动起到为人们散热的目的。目前的便携式风扇由于其重量轻、携带方便而受到人们的欢迎,便携式风扇要求产品整体尽可能的高度矮小,体积小巧。然而现有的便携式风扇使用的电机定子骨架上设有越来越多线圈,便携式风扇内部空间紧张。
发明内容
本申请主要的目的是提供一种便携式风扇,包括:风道部、吹风部及手持部,其中风道部包括主体,主体内部设置有导风腔,风道部相对的两端设置有出风口及进风口,出风口和进风口均与导风腔连通,主体内设置有定位凸柱;吹风部包括转动风叶及与转动风叶驱动连接的驱动部,转动风叶可转动的安装在导风腔内,并朝向出风口设置;驱动部包括定子及套设在定子外的转子,转子固定安装在转动风叶上,并与转动风叶同轴设置,定子固定套设在定位凸柱上。
附图说明
本申请将结合附图对实施方式进行说明。本申请的附图仅用于描述实施例,以展示为目的。在不偏离本申请原理的条件下,本领域技术人员能够轻松地通过以下描述根据所述步骤做出其他实施例。
图1-1是本申请实施例提供的风扇的结构示意图。
图1-2是本申请实施例提供的拆去部分零件的风扇的结构示意图。
图1-3是本申请实施例提供的另一视角下的风扇的结构示意图。
图1-4是本申请实施例提供的风扇的剖视图。
图1-5是本申请实施例提供的另一视角下的风扇的剖视图。
图1-6是本申请实施例提供的风扇的剖视图。
图1-7是本申请实施例提供的另一视角下的风扇的剖视图。
图2-1是本申请实施例提供的便携式风扇的充供电电路的示意图。
图2-2是本申请实施例提供的便携式风扇的风扇驱动电路的示意图。
图2-3是本申请实施例提供的便携式风扇的主控电路的示意图。
图3-1是本申请实施例提供的便携式风扇驱动电路的主控电路的主控芯片的电路示意图。
图3-2是本申请实施例提供的便携式风扇驱动电路的三相驱动电路和电流检测电路的结构示意图。
图3-3是本申请实施例提供的便携式风扇驱动电路的反相电动势检测电路的结构示意图。
图3-4是本申请实施例提供的便携式风扇驱动电路的接口电路和充电管理电路的结构示意图。
图3-5是本申请实施例提供的便携式风扇驱动电路的主控电路的辅助芯片的结构示意图。
图3-6是本申请实施例提供的便携式风扇驱动电路的指示灯支路和按键的电路结构示意图。
图3-7是本申请实施例提供的便携式风扇驱动电路的第一调速控制器件的结构示意图。
图3-8是本申请实施例提供的便携式风扇驱动电路的第二调速控制器件的结构示意图。
图3-9是本申请实施例提供的便携式风扇驱动电路的主控电路的结构示意图。
图3-10是本申请实施例提供的便携式风扇驱动电路的三相驱动电路和电流检测电路的结构示意图。
图3-11是本申请实施例提供的便携式风扇驱动电路的反相电动势检测电路的结构示意图。
图3-12是本申请实施例提供的便携式风扇驱动电路的晶体管温度检测电路的示意图。
图3-13是本申请实施例提供的便携式风扇驱动电路的电池电压检测电路的示意图。
图3-14是本申请实施例提供的便携式风扇驱动电路的烧录接口的示意图。
图3-15是本申请实施例提供的便携式风扇驱动电路的主控电路的主控芯片的结构示意图。
图3-16是本申请实施例提供的便携式风扇驱动电路的三相驱动电路和电池电压电流检测电路的结构示意图。
图3-17是本申请实施例提供的便携式风扇驱动电路的主控电路的三个三相控制芯片的结构示意图。
图3-18是本申请实施例提供的便携式风扇驱动电路的信号放大电路的结构示意图。
图3-19是本申请实施例提供的便携式风扇驱动电路的晶体管温度检测电路的结构示意图。
图3-20是本申请实施例提供的便携式风扇驱动电路的灯光控制电路的结构示意图。
图3-21是本申请实施例提供的便携式风扇驱动电路的霍尔检测电路的结构示意图。
图3-22是本申请实施例提供的便携式风扇驱动电路的开关控制电路的结构示意图。
图3-23是本申请实施例提供的便携式风扇驱动电路的直流转换电路的结构示意图。
图3-24是本申请实施例提供的便携式风扇的方框结构示意图。
图4-1是本申请实施例提供的一种手持风扇的结构示意图。
图4-2是本申请实施例提供的一种手持风扇中安装架的结构示意图。
图4-3是本申请实施例提供的一种手持风扇中手持部的结构示意图。
图4-4是本申请实施例提供的一种手持风扇中走线开口的结构示意图。
图4-5是本申请实施例提供的一种手持风扇中容线槽的结构示意图一。
图4-6是本申请实施例提供的一种手持风扇中容线槽的结构示意图二。
图4-7是本申请实施例提供的一种手持风扇中档位旋钮组件和保护开关按钮组件的结构示意图。
图4-8是本申请实施例提供的一种手持风扇中内壳和外壳的结构示意图。
图4-9是本申请实施例提供的一种手持风扇中入风口和出风口的结构示意图。
图4-10是图4-9中A处的局部放大结构示意图。
图4-11是本申请实施例提供的一种手持风扇中风扇组件的结构示意图。
图5-1是本申请实施例提供的便携式风扇的立体图。
图5-2是本申请实施例提供的便携式风扇的剖视图。
图5-3是图1-2中A部分的放大图。
图5-4是本申请实施例提供的便携式风扇另一方向的剖视图。
图5-5是本申请实施例提供的便携式风扇的剖视图。
图5-6是本申请实施例提供的便携式风扇的剖视图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。可以理解的是,此处所描述的具体实施例仅用于解释本申请,而非对本申请的限定。另外还需要说明的是,为了便于描述,附图中仅示出了与本申请相关的部分而非全部结构。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请中的术语“第一”、“第二”等是用于区别不同对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、系统、产品或设备没有限定于已列出的步骤或单元,而是可选地还包括没有列出的步骤或单元,或可选地还包括对于这些过程、方法、产品或设备固有的其它步骤或单元。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
方案1,参见图1-1至图1-7所示。
参见图1-1至图1-7所示,为了解决上述问题,根据本申请的一个方面,本申请的实施例提供了一种便携式风扇,便携式风扇包括:风道部10,风道部10包括主体,主体内部设置有导风腔13,风道部10相对的两端设置有出风口121及进风口111,出风口121和进风口111均与导风腔13连通,主体内设置有定位凸柱122;吹风部20,吹风部20包括转动风叶21及与转动风叶21驱动连接的驱动部22,转动风叶21可转动的安装在导风腔13内,并朝向出风口121设置;驱动部22包括定子221及套设在定子221外的转子222,转子222固定安装在转动风叶21上,并与转动风叶21同轴设置,定子221固定套设在定位凸柱122上;手持部30,手持部30与风道部10连接,手持部30内设置有安装腔34,安装腔34内安装有供电组件31,供电组件31与驱动部22电连接。本实施例所提供的便携式风扇将与转动风叶21驱动连接的驱动部22,设置为定子221及套设在定子221外的转子222,并使转子222固定安装在转动风叶21上,并与转动风叶21同轴设置,同时使定子221固定套设在定位凸柱122上,从而使本实施例所提供的驱动部22所产生的动力能够通过转子222直接传输至转动风叶21上,无需在驱动部22与转动风叶21之间设置传动装置,有效的提高了本实施例所提供的便携式风扇的传动效率。
在一种优选的实施例中,本实施例所提供的供电组件31为蓄电池。
参见图1和图5所示,在一种具体的实施例中,本实施例中的主体包括第一壳体11及第二壳体12,第一壳体11与第二壳体12连接,第一壳体11和第二壳体12之间形成导风腔13,第一壳体11上设置有进风口111,第二壳体12上设置有出风口121,第二壳体12上设置有定位凸柱122,定位凸柱122沿导风腔13的延伸方向延伸。
参见图4至图7所示,在一种具体的实施例中,本实施例中的转动风叶21上设置有固定孔,固定孔的轴线与转动风叶21的轴线共线,吹风部20还包括转轴23,转轴23的第一端固定穿设在固定孔内;定位凸柱122内部设置有定位孔1221,定位孔1221的轴线与转轴23的轴线共线,转轴23的第二端可转动地穿设在定位孔1221内。
参见图4至图7所示,为了提高本实施例所提供的便携式风扇的使用寿命,本实施例中的吹风部20还包括轴承部24,轴承部24的外圈固定在定位孔1221内,轴承部24的内圈套设于转轴23的第二端。通过将本实施例所提供的轴承部24设置在定位孔1221与转轴23之间,并使本实施例所提供的轴承部24的外圈固定在定位孔1221内,内圈套设在转轴23的第二端上,能够避免定位孔1221与转轴23之间直接发生摩擦,从而有效的提高了本实施例所提供的便携式风扇的使用寿命。
参见图4和图5所示,在一种具体的实施例中,本实施例中的轴承部24包括滚动轴承,吹风部20还包括限位件25,限位件25安装在转轴23的第二端,轴承部24位于限位件25与转轴23的第一端之间。通过在转轴23的第二端上设置限位件25,能够有效的对滚动轴承的径向移动进行限位。
参见图4和图5所示,在一种具体的实施例中,为了便于本实施例所提供的滚动轴承的安装,本实施例中的轴承部24为多个,定位孔1221的内侧壁上设置有内凸缘12211,内凸缘12211设置在相邻两个轴承部24之间,以使相邻两个轴承部24间隔设置。通过本实施例所提供转轴23部的第二端上设置的限位件25,能够有效的对本实施例所提供的滚动轴承的内圈进行限位,通过定位孔1221的内侧壁上设置的内凸缘12211,能够有效的对轴承的外圈进行限位,从而使本实施例所提供的滚动轴承得到有效的安装。
在一种优选的实施例中,本实施例所提供的轴承部24为滚珠轴承,本实施例所提供的滚珠轴承内设置有润滑油。
在一种优选的实施例中,本实施例所提供的轴承部24为陶瓷轴承,本实施例所提供的陶瓷轴承内设置有润滑油。
在一种优选的实施例中,本实施例所提供的轴承部24为磁悬浮轴承。
在一种优选的实施例中,本实施例所提供的吹风部20还包括弹性件,本实施例所提供的弹性件套设在转轴23上,本实施例所提供的弹性件的两端分别与滚动轴承的内圈及转动风叶21抵接,本实施例所提供的弹性件能够对滚动轴承的内圈施加远离进风口111方向的弹力,通过本实施例所提供的弹性件,能够对滚动轴承进行预紧,从而有效的提高滚动轴承的使用寿命。
参见图6和图7所示,在一种可选的实施例中,为了提高本实施例所提供的便携式风扇的使用寿命,本实施例中的轴承部24包括滑动轴承,吹风部20还包括两个密封圈26,两个密封圈26均套设在转轴23上,并分别位于滑动轴承的两侧。通过将本实施例所提供的滑动轴承设置在转轴23与定位孔1221之间,并使滑动轴承的内圈与转轴23的第二端固定连接,外圈与固定孔固定连接,便可使转轴23与定位孔1221之间的摩擦转换为滑动轴承的内圈与外圈之间的摩擦,避免了转轴23与定位孔1221之间发生摩擦,从而有效的提高了本实施例所提供的便携式风扇的使用寿命。
参见图4至图7所示,在一种具体的实施例中,本实施例中的手持部30包括第三壳体32及第四壳体33,第三壳体32与第四壳体33连接,第三壳体32和第四壳体33之间形成安装腔34。
参见图4至图7所示,在一种具体的实施例中,本实施例中的第一壳体11包括本体112及风道内衬113,风道内衬113安装在本体112上,风道内衬113内部设置有风道1131,导风腔13形成在风道内衬113与第二壳体12之间。
由于单相电机的价格低廉,因此目前市场上的手持小便携式风扇大多采用单相电机进行驱动,但是由于单相电机的转速较低,无法提供较强的风力,用户体验感较差。如果想要使手持小便携式风扇能够提供更大的风力,则需使用高速电机进行驱动,但是高速电机所占用体积较大,且容易使便携式风扇出现磨损。
为了解决上述问题,本实施例中的驱动部22为三相电机;通过将驱动部22设置为三相电机,能够有效的提高转动风叶21的转速,使本实施例所提供的便携式风扇能够提供较强的风力,有效的提高了用户的使用体验。与此同时,由于三相电机的转速较高,为了避免转轴与定位孔之间因高速转动而产生急剧磨损,保证本实施例所提供的便携式风扇的使用寿命,本实施例所提供的便携式风扇在本实施例所提供的定位孔与转轴之间设置了轴承部,通过设置轴承部能够使定位孔与转轴之间的摩擦由滑动摩擦转换为轴承部内部的滚动摩擦,从而避免定位孔与转轴发生磨损,有效的提高了本实施例所提供的便携式风扇的使用寿命。
参见图1至图7所示,在一种具体的实施例中,本实施例所提供的手持部30上设置有充电口35,充电口35与供电组件31电连接;通过在本实施例所提供的手持部30上设置充电口35,并使充电口35与供电组件31电连接,使本实施例所提供的供电组件31能够通过充电口35与外部电源电连接,从而保证本实施例所提供的便携式风扇的续航。
在一种优选的实施例中,本实施例所提供的手持部上设置有放电口,本实施例所提供的放电口与供电组件电连接,本实施例所提供的放电口能够与外部电子设备电连接,通过本实施例所提供的放电口,能够将供电组件的电能传输至外部的电子设备上,
在一种优选的实施例中,本实施例所提供的进风口上设置有格栅组件,本实施例所提供的格栅组件包括第一格栅件及第二格栅件,本实施例所提供的第一格栅件与第一壳体固定连接,本实施例所提供的第二格栅件枢接在第一格栅件上,本实施例所提供的第一格栅件上设置有多个第一开口,本实施例所提供的第二格栅件上设置有多个第二开口,本实施例所提供的多个第一开口能够与多个第二开口一一对应,本实施例所提供的第二格栅件具有完全遮蔽第一开口的遮蔽状态及第一开口与第二开口重叠的打开状态,通过转动第二格栅件能够使第二格栅件在遮蔽状态与打开状态之间切换,通过本实施例所提供的格栅组件能够有效的对进风口的进风量进行调节,从而有效的提高用户的使用体验。
在一种优选的实施例中,本实施例所提供的风道部10和手持部30固定连接;当然在其他实施例中,本实施例所提供的风道部10与手持部30也可以为可相对转动的枢接。
在一种具体的实施例中,本实施例所提供的第三壳体32与第一壳体11一体注塑成型,第四壳体33与第二壳体12一体注塑成型。
在另一实施例中,本实施例所提供的第三壳体32与第一壳体11枢接在一起,第四壳体33与第二壳体12枢接在一起,第三壳体32和第一壳体11的枢接轴与第四壳体33和第二壳体12的枢接轴同轴。
综上,实施本实施例提供的便携式风扇,至少具有以下有益技术效果:本实施例所提供的便携式风扇通过将与转动风叶21驱动连接的驱动部22,设置为定子221及套设在定子221外的转子222,并使转子222固定安装在转动风叶21上,并与转动风叶21同轴设置,同时使定子221固定套设在定位凸柱122上,从而使本实施例所提供的驱动部22所产生的动力能够通过转子222直接传输至转动风叶21上,无需在驱动部22与转动风叶21之间设置传动装置,有效的提高了本实施例所提供的便携式风扇的传动效率。
方案2,参见图2-1至图2-3所示。
如图2-1至图2-3所示,所述便携式风扇的控制电路包括充供电电路20、风扇驱动电路30、控制开关Q2和主控电路50。
所述充供电电路20用于电连接外部电源和电池14,以接收外部电压VCC向所述电池14充电和输出供电电压V0。所述风扇驱动电路30电连接所述充供电电路20和所述风扇组件12,用于驱动所述风扇组件12转动。所述控制开关Q2的控制端用于接收所述外部电压VCC且接地,所述控制开关Q2的第一导通端用于电连接所述电池14以接收所述电池14的输出电压,所述控制开关Q2的第二导通端用于电连接至所述风扇驱动电路30,所述控制开关Q2在接收到所述外部电压VCC时关闭,在未接收到所述外部电压VCC时导通。
所述主控电路50电连接所述充供电电路20、所述风扇驱动电路30及所述控制开关Q2。
本实施例中,如图2-1所示,所述充供电电路20包括充电端口21、充电管理芯片22,所述充电端口21的电源端211接收所述外部电压VCC且电连接所述充电管理芯片22的充电输入引脚VIN,所述充电端口21的电源端211还电连接稳压管D1的负极,所述稳压管D1的正极接地,所述充电管理芯片22的开关引脚SW用于经由第一电感L1电连接所述电池14的正极BAT+,所述充电管理芯片22的升压输出引脚VOUT用于输出所述供电电压V0,所述充电管理芯片22的升压输入引脚一方面经由第一连接电阻201连接所述电池14和所述第一电感L1之间的节点,另一方面经由第一接地电容202接地。通过所述充电管理芯片22、所述稳压管D1和所述第一电感L1,可以有效对充电端口、电池的充放电进行管理,且可输出其他电路需要的所述供电电压,结构简单、易于实现且安全性较高。
所述充电管理芯片22的按键输入端KEY电连接所述主控电路50;所述充电管理芯片22的第一LED驱动引脚LED1依次经由第一接地电阻203和第二接地电阻204接地,所述充电管理芯片22的第二LED驱动引脚LED2经由第二连接电阻205连接所述电池14的正极;所述主控电路50的第一指示灯引脚LED1经由第一指示灯支路51接地,所述充电管理芯片22的第二LED驱动引脚LED2还经由第二指示灯支路23接地,所述第一指示灯支路51和所述第二指示灯支路23均包括串联的限流电阻R和指示灯LED。可以理解,所述充电管理芯片22的按键输入端SW电连接所述主控电路50,使得所述主控电路50可以对所述充电管理芯片22进行控制,保证控制电路的可靠性;通过所述第一指示灯支路51和所述第二指示灯支路23可以对所述充供电电路20的充供电的状态进行指示,提高用户体验性。所述主控电路50可以为MCU。
如图2-2所示,所述控制开关Q2的控制端用于接收所述外部电压VCC且接地,所述控制开关Q2的第一导通端用于电连接所述电池14以接收所述电池14的输出电压,所述控制开关Q2的第二导通端用于电连接至所述风扇驱动电路30,所述控制开关Q2在接收到所述外部电压VCC时关闭,在未接收到所述外部电压VCC时导通,此时所述风扇驱动电路30由所述电池14供电。通过所述控制开关Q2,在有所述外部电压VCC接入的时候,所述外部电压VCC可以向所述风扇驱动电路30直接供电,避免所述风扇驱动电路30使用所述电池14的输出电压,不仅使得所述电池14充电较快,也可避免所述电池14边充边放导致的影响使用寿命的问题。
如图2-2所示,所述控制开关Q2的控制端可以经由第三接地电阻206接地,以及经由第一二极管D2电连接所述控制开关Q2的第二导通端及所述风扇驱动电路30,所述第二控制开关为PMOS(P-Metal-Oxide-Semiconductor)场效应晶体管。可以理解,通过所述第三接地电阻206和所述第一二极管D2可以提升所述控制电路的稳定性和安全性,所述控制开关Q2为PMOS场效应晶体管,也具有成本低、结构和控制简单的技术效果。
如图2-2所示,所述风扇驱动电路30包括第二电感L2、第三控制开关Q3、第二二极管D3和升压反馈支路31,所述第二电感L2的一端用于电连接所述充供电电路20以接收所述外部电压VCC或所述电池14的输出电压MVCC,所述第二电感L2的另一端经由所述第二二极管D3连接所述风扇组件12,所述第三控制开关Q3的第一导通端连接所述第二电感L2和所述第二二极管D3之间的节点,所述第三控制开关Q3的第二导通端接地,所述第三控制开关Q3的控制端电连接所述主控电路50的第二脉冲宽度信号输出端FPWM以接收所述主控电路50输出的第二脉冲宽度控制信号,所述升压反馈支路31的一端连接所述第二二极管D3与所述风扇组件12之间的节点,所述升压反馈支路31的另一端接地,所述升压反馈支路31包括串联的第一分压电阻311和第二分压电阻312,所述第一分压电阻311和所述第二分压电阻312之间的节点经由第三分压电阻313连接至所述主控电路50的升压反馈端FAAD,所述第三分压电阻313和所述主控电路50之间的节点还经由第二接地电容314接地。可以理解,通过上述结构的所述风扇驱动电路30,通过对所述第三控制开关Q3的开关控制,可以对所述第二电感L2进行充放电,从而可以让所述第二电感L2右侧的电压升高从而向所述风扇组件12供电。所述升压反馈支路31还采样升压后的电压并反馈至所述主控电路50,使得所述主控电路50可以调整提供至所述第三控制开关Q3的第二脉冲宽度控制信号,从而使得所述风扇组件12获得的电压基本是恒定的。此外,通过调整提供至所述第三控制开关Q3的第二脉冲宽度控制信号,还可以使得提供至所述风扇组件12的电压可以升高或降低,进而控制所述风扇组件12达到不同的转速。
进一步地,所述风扇驱动电路30还可以包括第四控制开关Q4、第三二极管D4、第一反馈电阻315、第二反馈电阻316,所述第三二极管D4的负极连接所述风扇组件12的正极,所述风扇组件12的负极连接所述第三二极管D4的正极和所述第四控制开关Q4的第一导通端,所述第四控制开关Q4的控制端电连接所述主控电路50的风扇使能端FAEN,所述第四控制开关Q4的第二导通端经由所述第一反馈电阻315接地,所述第四控制开关Q4的第二导通端和所述第一反馈电阻315之间的节点还经由所述第二反馈电阻316电连接所述主控电路50的负载反馈端LOAD AD,所述第二反馈电阻316和所述主控电路50之间的节点还经由第三接地电容317接地。通过所述第四控开关Q4,可以使得经由所述第二电感L2和所述第三控制开关Q3升压后的电压经由所述风扇组件12接地形成回路,进而驱动所述风扇组件12转动,经过所述第一反馈电阻315采样所述第四控制开关Q4的第二导通端和所述第一反馈电阻315之间的节点的信号并反馈至所述主控电路50,使得所述主控电路50可以检测所述风扇组件12是否堵转或短路。
方案3,参见图3-1至图3-24所示。
请参阅图3-1至图3-3,本申请第一实施例提供一种便携式风扇的驱动电路,所述便携式风扇的驱动电路可以用于多种类型的风扇,具体地,所述便携式风扇的驱动电路包括:主控电路11、三相驱动电路12以及反相电动势检测电路14。
所述三相驱动电路12包括至少三个信号输入端121和三个驱动信号输出端122,所述至少三个信号输入端121分别电连接所述主控电路11以分别接收控制信号,所述三个驱动信号输出端122用于电连接直流无刷风扇电机的三个信号端(U、V、W)以分别输出三相驱动信号驱动所述直流无刷风扇电机转动;所述反相电动势检测电路14包括三个检测支路141,每个检测支路141包括检测端1411和与所述检测端电连接的检测输出端1412,所述三个检测支路141的所述三个检测端1411分别电连接至所述三个驱动信号输出端122,所述三个检测支路141的所述三个检测输出端1412分别电连接至所述主控电路11,以用于分别输出第一检测信号、第二检测信号及第三检测信号至所述主控电路,使得所述主控电路11依据所述第一检测信号、所述第二检测信号及所述第三检测信号获知所述三相驱动信号的相位以调整所述控制信号。
请参阅图3-3,所述检测支路141包括第一检测电阻R1、第二检测电阻R2和第三检测电阻R3,所述第一检测电阻R1和所述第二检测电阻R2串联,且所述第一检测电阻R1远离所述第二检测电阻R2的一端为检测端1411,所述第二检测电阻R2远离所述第一检测电阻R1的一端接地,所述第一检测电阻R1和所述第二检测电阻R2之间的节点为所述检测输出端1412。
通过所述三相驱动电路12,可以提高风扇电机的节能性能、控制性能,且可以延长所述便携式风扇的驱动电路和所述风扇的使用寿命,通过上述反相电动势检测电路14,还使得所述主控电路11可以轻松获知所述直流无刷风扇电机的相位,从而可以发出相应的控制信号至所述三相驱动电路12,对所述直流无刷风扇电机的驱动进行有效的控制,提高驱动的可靠性和稳定性。
请参阅图3-2,所述三相驱动电路12包括第一至第九晶体管Q1、Q2、Q3、Q4、Q5、Q6、Q7、Q8、Q9,所述第一至第三晶体管Q1、Q2、Q3的第一导通端1211均连接至供电端1212,所述第四晶体管Q4的第一导通端1211连接至所述供电端1212,所述第五晶体管Q5的第一导通端1211连接至所述供电端1212,所述第六晶体管Q6的第一导通端1211连接至所述供电端1212,所述第四至第六晶体管Q4、Q5、Q6的控制端分别电连接至所述主控电路11,所述第七至第九晶体管Q7、Q8、Q9的控制端分别电连接至所述第四至第六晶体管Q4、Q5、Q6的控制端,以用于接收所述控制信号,所述第四至第六晶体管Q4、Q5、Q6的第二导通端1213均接地,所述第七晶体管Q7的第一导通端1211连接至所述第一晶体管Q1的第二导通端1213,所述第七晶体管Q7的第二导通端1213接地,所述第八晶体管Q8的第一导通端1211连接至所述第二晶体管Q2的第二导通端1213,所述第八晶体管Q8的第二导通端1213接地,所述第九晶体管Q9的第一导通端1211连接至所述第三晶体管Q3的第二导通端1213,所述第九晶体管Q9的第二导通端1213接地,所述第七晶体管Q7的第一导通端1211与所述第一晶体管Q1的第二导通端1213之间的节点、所述第八晶体管Q8的第一导通端1211与所述第二晶体管Q2的第二导通端1213之间的节点、及所述第九晶体管Q9的第一导通端1211与所述第三晶体管Q3的第二导通端1213之间的节点分别作为三个所述驱动信号输出端122;所述至少三个信号输入端121为三个PWM信号输入端,所述控制信号包括三个PWM信号。
如图3-2所示,所述便携式风扇的驱动电路还包括电流检测电路15,所述第七至第九晶体管Q7、Q8、Q9的第二导通端1213均经由所述电流检测电路15接地,所述电流检测电路15还电连接至所述主控电路11;所述电流检测电路15包括感测电阻151和感测电容152,所述第七至第九晶体管Q7、Q8、Q9的第二导通端1213依次经由所述感测电阻151和所述感测电容152接地,所述感测电阻151和所述感测电容152之间的节点电连接所述主控电路11。通过所述电流检测电路15,使得在出现电流异常时,所述主控电路11可以控制所述便携式风扇的驱动电路停止工作或者以较低的功率进行工作,以对所述便携式风扇的驱动电路进行过流保护,提高所述便携式风扇的驱动电路的可靠性及使用寿命。
请参阅图3-4及图3-6,所述便携式风扇的驱动电路还包括接口电路16和充电管理电路17,所述接口电路16用于电连接外部电源以接收外部电压,所述充电管理电路17电连接于所述接口电路16和电池VBAT之间,用于接收所述外部电压并向所述电池VBAT充电或输出供电电压;所述便携式风扇的驱动电路还包括按键31,所述按键31的一端连接所述主控电路11,另一端接地;所述便携式风扇的驱动电路还包括指示灯支路19,所述指示灯支路19包括串联的发光二极管和电阻,所述发光二极管的正极用于电连接所述主控电路11,所述发光二极管的负极接地。
具体地,本实施例中,所述便携式风扇的驱动电路可以用于挂脖式风扇和手持风扇,但并不限于挂脖式风扇和手持风扇,也可以应用于桌面台扇、落地扇、夹子风扇、折叠风扇等其他便携式风扇。两个所述直流无刷风扇电机用于分别设置所述挂脖式风扇的左右两侧,且用于驱动所述挂脖式风扇的左右两侧的扇叶转动。
如图3-1、图3-2及图3-5所示,所述主控电路11可以包括主控芯片111和辅助芯片113。所述主控电路11包括主控芯片111和辅助芯片113,所述三相驱动电路12、所述反相电动势检测电路14和所述直流无刷风扇电机的数量均为两个且一一对应,所述主控芯片111电连接一个所述三相驱动电路12以输出所述控制信号至一个所述三相驱动电路12,以驱动对应的一个所述直流无刷风扇电机,所述反相电动势检测电路14电连接对应的所述三相驱动电路12并输出对应的所述第一检测信号、所述第二检测信号及所述第三检测信号至所述主控芯片111,使得所述主控芯片111获知一个所述三相驱动电路12的所述三相驱动信号的相位以调整输出至一个所述三相驱动电路12的所述控制信号;所述辅助芯片113电连接另一个所述三相驱动电路12以输出所述控制信号至另一个所述三相驱动电路12,以驱动对应的另一个所述直流无刷风扇电机,另一个所述反相电动势检测电路14电连接对应的所述三相驱动电路12并输出对应的所述第一检测信号、所述第二检测信号及所述第三检测信号至所述辅助芯片113,使得所述辅助芯片113获知另一个所述三相驱动电路12的所述三相驱动信号的相位,以调整输出至另一个所述三相驱动电路12的所述控制信号。
本实施例中,所述主控芯片111、以及对应的所述三相驱动电路12、对应的所述反相电动势检测电路14设置在一个模块上(如第一电路板上),且可与对应的所述直流无刷风扇电机设置在所述挂脖式风扇的同一侧,所述辅助芯片113、以及对应的所述三相驱动电路12、对应的所述反相电动势检测电路14设置在另一个模块上(如与第一电路板独立的另一块第二电路板上),且可与对应的所述直流无刷风扇电机设置在所述挂脖式风扇的另一侧。可以理解,上述设计具有较好的合理性和紧凑性,也可以提高连接及驱动的可靠性。然而,关于所述三相驱动电路12、所述反相电动势检测电路14、所述主控芯片111、所述辅助芯片113的布局设置是可以多种多样,比如,将上述所述三相驱动电路12、所述反相电动势检测电路14、所述主控芯片111、所述辅助芯片113均设置在同一块电路板上,或者所述三相驱动电路12、所述反相电动势检测电路14设置在一个电路板上,所述主控芯片111、所述辅助芯片113设置在另一块电路板上,具体可以依据实际需要选择的,此处就不再赘述。
请参阅图3-7及图3-8,所述便携式风扇的驱动电路还包括第一连接器261和具有第二连接器262的调速接口电路26,所述第一连接器261的第一引脚、第二引脚分别电连接所述主控芯片111,所述第一连接器261的第三引脚接地,所述第二连接器262的第一引脚一方面经由第一连接电阻连接电池VBAT,另一方面经由第二连接电阻连接所述辅助芯片113,所述第二连接器262的第二引脚经由第三连接电阻连接至所述辅助芯片113,所述第二连接器262的第三引脚接地。此外,所述第一连接器261和所述第二连接器262的各个引脚还可以一一电连接,使得两个所述直流无刷风扇电机的转速可以实现同步调节。
请参阅图3-9至图3-14,本申请第二实施例提供的一种便携式风扇的驱动电路,所述便携式风扇的驱动电路与第一实施例的便携式风扇的驱动电路相同的部分不进行赘述,以下主要对本实施例与第一实施例的便携式风扇的驱动电路的区别部分进行重点介绍。首先,本实施例的所述主控电路11与第一实施例的所述主控电路11有所不同,且本实施例的所述主控电路11可以主要包括主控芯片111。
如图3-10所示,本实施例中,所述三相驱动电路12包括第一至第六晶体管Q1、Q2、Q3、Q4、Q5、Q6,所述第一至第三晶体管Q1、Q2、Q3的第一导通端1211均连接至供电端1212,所述第四晶体管Q4的第一导通端1211连接所述第一晶体管Q1的第二导通端1213,所述第五晶体管Q5的第一导通端1211连接所述第二晶体管Q2的第二导通端1213,所述第六晶体管Q6的第一导通端1211连接所述第三晶体管Q3的第二导通端1213,所述第四晶体管Q4的第一导通端1211与所述第一晶体管Q1的第二导通端1213之间的节点、所述第五晶体管Q5的第一导通端1211与所述第二晶体管Q2的第二导通端1213之间的节点、及所述第六晶体管Q6的第一导通端1211与所述第三晶体管Q3的第二导通端1213之间的节点分别作为三个所述驱动信号输出端122,所述第一至第六晶体管Q1、Q2、Q3、Q4、Q5、Q6的控制端分别用于电连接所述主控电路11以接收所述控制信号;所述控制信号包括六个PWM信号。
如图3-10所示,与第一实施例基本相同的是,所述第六晶体管Q6的第二导通端1213经由所述电流检测电路15接地,所述电流检测电路15还电连接至所述主控电路11;所述电流检测电路15包括感测电阻151和感测电容152,所述第六晶体管Q6的第二导通端1213经由所述感测电阻151接地,所述感测电容152与所述感测电阻151并联,所述感测电阻151和所述第六晶体管Q6的第二导通端1213之间的节点电连接所述主控电路11;所述电流检测电路15还包括第一串联电阻153、第二串联电阻154、并联电阻155,所述并联电阻155与所述感测电阻151并联,所述第一串联电阻153连接于所述感测电容152的一端和所述感测电阻151的一端之间,所述第二串联电阻154连接于所述感测电容152的另一端和所述感测电阻151的另一端之间。通过所述电流检测电路15,使得在出现电流异常时,所述主控电路11可以控制所述便携式风扇的驱动电路停止工作或者以较低的功率进行工作,以对所述便携式风扇的驱动电路进行过流保护,提高所述便携式风扇的驱动电路的可靠性及使用寿命。
如图3-11所示,所述第二实施例的反相电动势检测电路14与第一实施例中的反相电动势检测电路14基本相同,此处就不再进行赘述。
如图3-12所示,所述便携式风扇的驱动电路还包括晶体管温度检测电路24,所述晶体管温度检测电路24可以邻近所述三相驱动电路12的各晶体管设置,包括串联的第一分压电阻241和热敏电阻242,所述热敏电阻242用于感测所述三相驱动电路12的各晶体管的温度,所述第一分压电阻241和所述热敏电阻242之间的节点电连接至所述主控电路11且用于输出温度信号,使得所述主控电路11依据所述温度信号控制所述便携式风扇的驱动电路是否进入温度保护状态;所述热敏电阻242连接于所述第一分压电阻241和地之间,所述晶体管温度检测电路24还包括与所述热敏电阻242并联的稳压电容243。通过所述晶体管温度检测电路24,所述主控电路11可以获知所述三相驱动电路12的各晶体管的温度是否出现异常,并在出现异常时可以控制所述便携式风扇的驱动电路停止工作或者以较低的功率进行工作,以对所述便携式风扇的驱动电路进行过温保护,提高所述便携式风扇的驱动电路的可靠性及使用寿命。
如图3-13所示,所述便携式风扇的驱动电路还包括电连接所述电池VBAT的正极和地之间的电池电压检测电路25,所述电池电压检测电路25的输出端电连接所述主控电路11。通过所述电池电压检测电路 25,所述主控电路11可以获知电池电压是否正常,并在电池电压异常时可以控制所述便携式风扇的驱动电路停止工作或者以较低的功率进行工作,提高所述便携式风扇的驱动电路的可靠性及使用寿命。
具体地,所述电池电压检测电路25包括串联的第二分压电阻251和第三分压电阻252,所述第二分压电阻251和所述第三分压电阻252之间的节点电连接至所述主控电路11。可以理解,上述电池电压检测电路25的结构简单、可靠性较高、成本较低。
如图3-14所示,本申请第二实施例的便携式风扇的驱动电路还具有烧录接口28,用于向所述主控电路11烧录控制程序,所述烧录接口28可以为SWD烧录接口,但并不以上述为限。
请参阅图15至图16,本申请第三实施例提供一种便携式风扇的驱动电路,所述便携式风扇的驱动电路与第二实施例的便携式风扇的驱动电路相同的部分不进行赘述,以下主要对第三实施例的便携式风扇的驱动电路与第二实施例的便携式风扇的驱动电路的区别部分进行重点介绍。
如图3-15-图3-17所示,所述第三实施例的三相驱动电路12与第二实施例的三相驱动电路12基本相同,所述第三实施例的主控电路11与第二实施例中的主控电路11有所不同,所述主控电路11包括主控芯片111和三个三相控制芯片112,每个所述三相控制芯片112电连接所述主控芯片111和所述三相驱动电路12。
如图3-16及图3-18所示,所述便携式风扇的驱动电路还包括串联的滤波电容253和采样电阻254,所述采样254连接于所述滤波电容253和地之间,所述滤波电容253和所述采样电阻254之间的节点电连接至所述主控电路11。进一步地,所述便携式风扇的驱动电路还包括信号放大电路29,所述信号放大电路29的输入端连接于所述滤波电容253和所述采样电阻254之间的节点,所述信号放大电路29用于对所述采样电阻254采样的信号(即所述滤波电容253和所述采样电阻254之间的节点的信号)进行放大,并将放大后的信号提供至所述主控电路11,使得所述便携式风扇的驱动电路的主控电路11可以在整个便携式风扇的驱动电路出现异常时,敏锐地侦测到异常的电压或电流信号,进而所述主控电路11可以执行异常保护工作,如停止工作或降低风扇转速等,从而提高所述便携式风扇的驱动电路的使用安全性。
如图3-19所示,所述第三实施例的晶体管温度检测电路24与第二实施例中基本相同,此处就不再赘述。
请参阅图3-20,图3-20是本申请第三实施例提供的便携式风扇的驱动电路的灯光控制电路30的结构示意图。所述灯光控制电路30包括发光元件301和控制开关302,所述发光元件301的正极接收驱动电压,所述发光元件301的负极经由电阻和所述控制开关302的两个导通端接地,所述控制开关302的控制端电连接至所述主控电路11,使得所述主控电路11输出灯光控制信号至所述控制开关302的控制端以控制所述发光元件301的发光。
如图3-21所示,所述便携式风扇的驱动电路还包括霍尔检测电路23,所述霍尔检测电路23电连接所述主控电路11,用于通过检测所述直流无刷风扇电机产生的磁场并输出霍尔检测信号至所述主控电路11,使得所述主控电路11依据所述霍尔检测信号获知所述直流无刷风扇电机的转子的位置,进而可以提供对应的控制信号控制所述三相驱动电路12的工作,此时,使用所述便携式风扇的驱动电路的风扇的启动时间较短,不会出现启动时抖动的现象,用户体验较高。
如图3-21所示,所述霍尔检测电路23还包括电机温度检测元件232,连接在所述霍尔检测电路23的霍尔元件231和所述主控电路11之间,所述电机温度检测元件232可以为一采样电阻,通过所述电机温度检测元件232,所述主控电路11可以获知所述直流无刷风扇电机的温度是否出现异常,并在出现异常时可以控制所述便携式风扇的驱动电路停止工作或者以较低的功率进行工作,以对所述便携式风扇的驱动电路进行过温保护,提高所述便携式风扇的驱动电路的可靠性及使用寿命。
如图3-17及图3-22所示,所述便携式风扇的驱动电路还包括电压转换电路20,所述电压转换电路20用于接收电池电压(VB+)并将所述电池电压转换为驱动电压(如15V),以及将所述驱动电压提供至三个所述三相控制芯片112的电源端,所述主控芯片111用于输出主控信号至三个所述三相控制芯片112,使得三个所述三相控制芯片112分别输出所述控制信号至所述三相驱动电路12。
所述便携式风扇的驱动电路还包括开关控制电路21,所述开关控制电路21电连接所述电池VBAT、所述电压转换电路20及所述主控电路11,用于控制所述电压转换电路20的工作。所述开关控制电路21包括按键211、第一开关管212、第二开关管213、第三开关管214,所述第一开关管212的两个导通端分别连接所述电池VBAT的正极和所述电压转换电路20的输入端,所述第一开关管212的控制端经由所述第三开关管214的两个导通端接地,所述电池VBAT的正极还经由所述第一开关管212的两个导通端、单向二极管215连接至所述第三开关管214的控制端,所述第二开关管213的控制端经由所述按键211接地,所述第三开关管214的控制端电连接至所述主控电路11,所述第二开关管213和所述单向二极管215之间的节点还电连接至所述主控电路11的开关信号端。
所述按键211被按压导通时,所述第二开关管213导通,所述第三开关管214导通,所述第二开关管213和所述单向二极管215之间的节点输出第一开关信号(ON)至所述主控电路11的开关信号端,所述第一开关管212导通,使得所述电池VBAT的电池电压被提供至所述电压转换电路20,当停止按压所述按键211时,所述第二开关管213关闭,所述主控电路11依据所述第一开关信号输出供电打开信号至所述第三开关管214的控制端维持所述第三开关管214的导通,所述电池VBAT的电池电压被提供至所述电压转换电路20。
进一步地,在所述电池VBAT的电池电压被提供至所述电压转换电路20的状态下,所述按键211再次被按压导通时,所述第二开关管213和所述单向二极管215之间的节点输出第二开关信号(OFF)至所述主控电路11的开关信号端,所述主控电路11据所述第二开关信号输出供电关闭信号至所述第三开关管214的控制端控制所述第三开关管214关闭,进而所述第一开关管212关闭,所述电池VBAT的电池电压无法被提供至所述电压转换电路20直到所述按键211又一次被按压导通时。
通过所述按键211、第一开关管212、第二开关管213及第三开关管214配合所述主控电路11控制所述电池VBAT的电池电压是否被提供至所述电压转换电路20,不仅控制逻辑简单,还具有可靠性较高的优点。
如图3-23所示,所述便携式风扇的驱动电路还包括直流转换电路22,所述直流转换电路22用于接收所述驱动电压(如15V的直流电压)并转换为其他直流工作电压,如3.3V和5V的直流工作电压。
请参阅图3-24,本申请实施例还提供一种便携式风扇2,所述便携式风扇2包括便携式风扇的驱动电路3、直流无刷风扇电机4、和直流无刷风扇电机驱动的扇叶5,所述便携式风扇的驱动电路3采用上述任意一实施例所述的便携式风扇的驱动电路。
相较于现有技术,上述实施例的便携式风扇的驱动电路和所述便携式风扇2中,通过使用主控电路11、三相驱动电路12、所述反相电动势检测电路14和所述直流无刷风扇电机,不仅可以提高风扇电机的节能性能、控制性能而提高所述便携式风扇的驱动电路和所述风扇2的可靠性,还可以延长所述便携式风扇的驱动电路和所述风扇2的使用寿命,并且使用所述直流无刷风扇电机使得所述风扇2构造变得更简单、体积更小,可提高产品的市场竞争力。
方案4,参见图4-1至图4-11所示。
本申请公开了一种手持风扇,通过内壳1形成有风路通道11,风路通道11的两侧分别与入风口23和出风口24连通,风扇组件3的至少部分设置于风路通道11中,外壳2罩设在内壳1的外部,内壳1的走线开口12的一侧正对风扇组件3的电连接部分,走线开口12的另一侧用于正对手持风扇的手持部5的电连接部分,风扇组件3的电连接部分通过穿过走线开口12的导线与手持部5的电连接部分电连接。这样内壳1的走线开口12可供来自与风扇组件3的电连接部分连接的导线的进出,与风扇组件3的电连接部分连接的导线从与手持风扇的手持部5的电连接部分正对的位置在走线开口12中穿过后,导线再与手持风扇的手持部5的电连接部分连接,有利于减小导线长度,增强耐用性,提高走线的美观性。从而达到了提升走线的稳定性,提高走线的美观性,增强耐用性的技术效果。
请参见图4-1至图4-11,图4-1是本申请实施例提供的一种手持风扇的结构示意图,图4-2是本申请实施例提供的一种手持风扇中安装架6的结构示意图,图4-3是本申请实施例提供的一种手持风扇中手持部5的结构示意图,图4-4是本申请实施例提供的一种手持风扇中走线开口12的结构示意图,图4-5是本申请实施例提供的一种手持风扇中容线槽21的结构示意图一,图4-6是本申请实施例提供的一种手持风扇中容线槽21的结构示意图二,图4-7是本申请实施例提供的一种手持风扇中档位旋钮组件71和保护开关按钮组件72的结构示意图,图4-8是本申请实施例提供的一种手持风扇中内壳1和外壳2的结构示意图,图4-9是本申请实施例提供的一种手持风扇中入风口23和出风口24的结构示意图,图4-10是图4-9中A处的局部放大结构示意图,图4-11是本申请实施例提供的一种手持风扇中风扇组件3的结构示意图。本申请实施例一提供的一种手持风扇,包括内壳1、外壳2及风扇组件3,现分别对内壳1、外壳2及风扇组件3进行详细说明:
对于内壳1、风扇组件3和外壳2而言:
内壳1形成有风路通道11、与所述风路通道11一侧连通的入风口23和与所述风路通道11另一侧连通的出风口24,所述风扇组件3的至少部分设置于所述风路通道11中。所述内壳1具有走线开口12,所述走线开口12的一侧正对所述风扇组件3的电连接部分,所述走线开口12的另一侧用于正对所述手持风扇的手持部5的电连接部分,所述风扇组件3的电连接部分通过穿过所述走线开口12的导线与所述手持部5的电连接部分电连接。所述手持部5具有安装开口4,所述手持部5与所述外壳2连接,所述安装开口4正对所述走线开口12的另一侧。本申请实施例一提供的手持风扇还可以包括设置于所述手持部5的安装架6、第二电路板73和档位旋钮组件71,所述安装架6的至少部分设置于所述安装开口4中,所述 安装架6与所述内壳1连接,所述安装架6具有用于导线穿过的容纳空间61。所述手持部5的电连接部分包括第一电路板7,所述第一电路板7设置于所述安装架6,所述第一电路板7通过导线与所述风扇组件3的电连接部分插接。所述第二电路板73设置于所述安装架6,所述第二电路板73通过导线与所述第一电路板7插接;所述档位旋钮组件71设置于所述安装架6,所述档位旋钮组件71与所述第二电路板73连接。所述第二电路板73和所述第一电路板7对立分布。所述外壳2用于罩设在所述内壳1的外部。在所述内壳1上设置有挡板22,挡板22和所述内壳1围合形成有容线槽21。所述第一电路板7的至少部分设置于所述容线槽21中。
具体而言,内壳1的内部形成的风路通道11用于气体的流通,气体从入风口23进入风路通道11,进入风路通道11的气体再从出风口24排出。外壳2罩设在内壳1的外部。在内壳1上设置有用于贯穿导线的走线开口12,走线开口12的两侧分别正对风扇组件3的电连接部分和手持风扇的手持部5的电连接部分,风扇组件3的电连接部分可以是指与风扇电机连接的电路板,连接该电路板的导线贯穿走线开口12后与手持部5的电连接部分的第一电路板7连接。手持部5的安装开口4正对走线开口12,安装架6的容纳空间61与手持部5的安装开口4相互连通,第一电路板7和第二电路板73相互对立分布在安装架6上,贯穿走线开口12的导线经过手持部5的安装开口4后可以与设置在安装架6上的第一电路板7插接,如贯穿走线开口12的导线的一端通过插接器与第一电路板7插接,便于导线与第一电路板7的相互连接或分离。第二电路板73通过导线与第一电路板7插接,如第二电路板73通过导线与连接第一电路板7的插接器连接,实现第二电路板73和第一电路板7的插接,便于第二电路板73和第一电路板7的相互连接或分离。与第二电路板73连接的档位旋钮组件71可以用于调节风扇组件3中风扇叶片的转速,实现对风速大小的控制,如当旋转档位旋钮组件71中的旋钮时,则可以实现调节风扇的档位;当按压档位旋钮组件71中的旋钮时,则可以查看电池8的电量。内壳1中靠近手持部5的位置设置有挡板22,在从入风口23沿着出风口24的方向上内壳1的直径可以逐渐增大,这样在内壳1靠近入风口23的一端会形成向内凹陷的空间。挡板22可以设置在该向内凹陷的空间处,内壳1和挡板22围合会形成容线槽21,第一电路板7的一部分可以伸入该容线槽21的内部,同时容线槽21的内部具有能够容纳与第一电路板7连接的导线的空间;或者第一电路板7的整体位于容线槽21的外部,与第一电路板7连接的导线的一部分位于容线槽21的内部,导线的另一部分伸出至容线槽21的外部后与第一电路板7连接,这样能够提高空间的利用率。
本申请实施例一提供的一种手持风扇还可以包括保护开关按钮组件72和电池8,所述保护开关按钮组件72设置于所述安装架6,所述保护开关按钮组件72与所述第一电路板7电连接。所述电池8设置于所述手持部5,所述电池8通过导线与所述第一电路板7插接。
具体而言,电池8可以安装在手持部5,电池8通过导线与第一电路板7相互插接,通过电池8可以为风扇组件3进行供电。与第一电路板7电连接的保护开关按钮组件72能够控制通过电池8进行供电的电路为通路或者断路,如保护开关按钮组件72采用滑动开关,当滑动保护开关按钮组件72中按钮至一端时电路为通路,此时风扇组件3中电机工作驱动风扇叶片旋转。当滑动保护开关按钮组件72中按钮至另一端时电路为断路,此时风扇组件3中电机不工作,风扇叶片不旋转,能够实现防止操作人员误触档位旋钮组件71后意外开启风扇。
本申请提供一种手持风扇,通过内壳1形成有风路通道11,风路通道11的两侧分别与入风口23和出风口24连通,风扇组件3的至少部分设置于风路通道11中,外壳2罩设在内壳1的外部,内壳1的走线开口12的一侧正对风扇组件3的电连接部分,走线开口12的另一侧用于正对手持风扇的手持部5的电连接部分,风扇组件3的电连接部分通过穿过走线开口12的导线与手持部5的电连接部分电连接。这样内壳1的走线开口12可供来自与风扇组件3的电连接部分连接的导线的进出,与风扇组件3的电连接部分连接的导线从与手持风扇的手持部5的电连接部分正对的位置在走线开口12中穿过后,导线再与手持风扇的手持部5的电连接部分连接,有利于减小导线长度,增强耐用性,提高走线的美观性。从而达到了提升走线的稳定性,提高走线的美观性,增强耐用性的技术效果。
为了对本申请提供的一种手持风扇做详细说明,上述实施例一对一种手持风扇做了详细说明,基于同一申请构思,本申请还提供了一种手持风扇,详见实施例二。
本申请实施例二提供一种手持风扇。
本申请提供一种手持风扇,通过内壳1形成有风路通道11,风路通道11的两侧分别与入风口23和出风口24连通,风扇组件3的至少部分设置于风路通道11中,外壳2罩设在内壳1的外部,内壳1的走线开口12的一侧正对风扇组件3的电连接部分,走线开口12的另一侧用于正对手持风扇的手持部5的电连接部分,风扇组件3的电连接部分通过穿过走线开口12的导线与手持部5的电连接部分电连接。这样内壳1的走线开口12可供来自与风扇组件3的电连接部分连接的导线的进出,与风扇组件3的电连接部分连接的导线从与手持风扇的手持部5的电连接部分正对的位置在走线开口12中穿过后,导线再与手持风 扇的手持部5的电连接部分连接,有利于减小导线长度,增强耐用性,提高走线的美观性。从而达到了提升走线的稳定性,提高走线的美观性,增强耐用性的技术效果。
方案5,参见图5-1至图5-6所示。
如图5-1和图5-2所示,所述便携式风扇包括壳体1、风扇组件2、电机3和驱动电路板4。所述壳体1设有相连通的进风口161、容纳腔162和出风口163,所述风扇组件2、所述电机3和所述驱动电路板4收容于所述壳体1内,所述驱动电路板4电连接所述电机3,以驱动所述风扇组件2转动,将风从所述进风口161经由所述容纳腔162,后自所述出风口163吹出。
如图5-1和图5-2所示,所述壳体1包括前壳11和后壳12,所述前壳11包括第一风壳111和第一手持壳112,所述后壳12包括第二风壳121和第二手持壳122,所述第一风壳111和所述第二风壳121形成出风部16,所述第一手持壳112和所述第二手持壳122形成手持部17。应当理解,所述第一风壳111和所述第二风壳121可以是前后配合,也可以是左右配合;所述第一手持壳112和所述第二手持壳122可以是前后配合,也可以是左右配合。所述手持部17设有开关5、接口6和电池7,在本实施例中,所述开关5为无极调速开关5。当然,在其他实施例中,也可以不设置所述第一手持壳112和所述第二手持壳122,或者也可以设置为桌面风扇、挂脖风扇、夹子风扇、支架风扇等其他常见形态。
如图5-2至图5-4所示,所述第一风壳111包括内外配合的第一外壳和第一内壳,所述第一内壳和所述第一外壳贴合设置,且所述第一内壳和所述第一外壳均水平朝前延伸。所述第二风壳121包括内外配合的第二外壳和第二内壳,所述第二内壳和所述第二外壳的后端间隔开且通过连接件连接,所述第二外壳水平朝前延伸,所述第二内壳自后向前先水平向前延伸,再径向向外扩张延伸,所述第二内壳的前端与所述第二外壳的前端连接,且第二内壳的前端与所述第一内壳的后端抵接。在本实施例中,所述第一外壳和所述第二外壳一体成型,当然在其他实施例中,所述第一外壳和所述第二外壳也可以是分体成型。所述第一风壳111和所述第二风壳121均为双层壳体1结构,结构更加稳固,并且所述第二内壳的形状变化有利于对风加压处理,使风力更加强劲,出风距离更加远。当然,在其他实施例中,所述第一风壳111和/或所述第二风壳121也可以是单层壳体1结构。
如图5-1和图5-2所示,所述壳体1还包括设于所述第一风壳111内的加压件13,多个连接叶14连接所述加压件13和所述前壳11,所述加压件13内形成有基座131和套筒132,所述基座131位于所述加压件13的前端和后端之间,并于所述加压件13内向后形成让位空间1321,所述基座131于所述加压件13内向前形成收容部1322。所述套筒132自所述基座131向所述容纳腔162凸伸,即所述套筒132自所述基座131向后凸伸,且所述套筒132为中空的。
如图5-1和图5-2所示,所述进风口161位于所述第二内壳的径向内侧区域,所述出风口163位于所述加压件13和所述第一内壳的径向之间的区域。所述风扇组件2包括轮毂21,以及间隔设置于所述轮毂21外表面的多个扇叶22,所述轮毂21包括自后向前径向增大的导风面212,所述加压件13包括自后向前径向增大的加压面133,所述导风面212和所述加压面133紧邻间隔设置,使风顺畅地朝前吹去。自所述进风口161至所述出风口163,形成径向向外的风道,使得风在所述壳体1内加压,且形成较大的出风面。
如图5-1至图5-4所示,所述风扇组件2包括所述轮毂21,以及间隔设置于所述轮毂21外表面的多个扇叶22,所述轮毂21内侧中央固定有转轴23。所述电机3包括定子31和转子32,所述定子31和所述转子32均收容于所述轮毂21内。进一步地,所述轮毂21内包括一圈环形延伸壁211,所述定子31和所述转子32均收容于所述延伸壁211内。所述定子31套设于所述套筒132外,所述定子31包括线圈311,所述转子32在径向上设于所述定子31和所述轮毂21之间,所述转轴23插设于所述套筒132内,且所述延伸壁211、所述定子31和所述转子32向前伸入所述让位空间1321。
如图5-1和图5-2所示,所述延伸壁211向前超出所述导风面212,所述导风面212和所述加压面133紧邻间隔设置,因此所述导风面212和所述加压面133之间的间隙,与所述延伸壁211的前端错位,则所述延伸壁211内不易进尘落灰。所述定子31和所述转子32均未向前超出所述延伸壁211,且所述延伸壁211、所述定子31和所述转子32向前伸入所述让位空间1321,使得所述延伸壁211、所述定子31和所述转子32的局部收容于所述让位空间1321内。
如图5-1和图5-2所示,所述驱动电路板4未设于所述基座131和所述定子31之间,所述电池7电连接所述驱动电路板4,所述驱动电路板4电连接所述线圈311的引线,以驱动所述风扇组件2转动,将风从所述进风口161经由所述容纳腔162,后自所述出风口163吹出。在本实施例中,所述驱动电路板4收容于所述基座131朝前形成的所述收容部1322,所述加压件13的前端还包括前盖15,所述前盖15盖设于所述收容部1322的前端,所述前盖15向后凹陷形成负压区151。通过设置所述前盖15,一方面盖设所述收容部1322,遮蔽保护所述驱动电路板4;另一方面,所述前盖15向后凹陷形成的所述负压区151,可以向所述出风口163处补偿空气,以增加所述出风口163的风量。
如图5-1至图5-4所示,在本实施例中,所述电机3为三相电机,所述线圈311包括十二个绕组,所述绕组的数量较多,因此所述电机3内部空间有限。通过将所述驱动电路板4不设于所述基座131和所述定子31之间,使得所述线圈311的所述引线与所述驱动电路板4之间的电性连接更加简单方便,同时所述基座131和所述定子31之间的空间可进一步缩小,使得所述便携式风扇内部空间分布更加合理,从而实现所述便携式风扇的小型化。
如图5-5所示,为本申请便携式风扇实施例的示意图。与上一实施例的主要区别在于:所述驱动电路板4收容于所述手持部17,且位于所述开关5和所述接口6之间,所述开关5连接所述驱动电路板4,或所述接口6连接所述驱动电路板4。其他结构和性能与第一实施例的基本一致,在此不再赘述。
如图5-6所示,为本申请便携式风扇实施例的示意图。与上一实施例的主要区别在于:所述驱动电路板4收容于所述手持部17,且位于所述电池7的下方。其他结构和性能与第一实施例的基本一致,在此不再赘述。
以上仅为本申请的较佳实施方式,并非因此限制本申请的专利范围,凡是利用本申请说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本申请的专利保护范围内。

Claims (20)

  1. 一种便携式风扇,其中,包括:
    风道部,所述风道部包括主体,所述主体内部设置有导风腔,所述风道部相对的两端设置有出风口及进风口,所述出风口和所述进风口均与所述导风腔连通,所述主体内设置有定位凸柱;
    吹风部,所述吹风部包括转动风叶及与所述转动风叶驱动连接的驱动部,所述转动风叶可转动的安装在所述导风腔内,并朝向所述出风口设置;所述驱动部包括定子及套设在所述定子外的转子,所述转子固定安装在所述转动风叶上,并与所述转动风叶同轴设置,所述定子固定套设在所述定位凸柱上;
    手持部,所述手持部与所述风道部连接,所述手持部内设置有安装腔,所述安装腔内安装有供电组件,所述供电组件与所述驱动部电连接。
  2. 根据权利要求1所述的便携式风扇,其中,
    所述主体包括第一壳体及第二壳体,所述第一壳体与所述第二壳体连接,所述第一壳体和所述第二壳体之间形成所述导风腔,所述第一壳体上设置有所述进风口,所述第二壳体上设置有所述出风口,所述第二壳体上设置有所述定位凸柱,所述定位凸柱沿所述导风腔的延伸方向延伸。
  3. 根据权利要求1所述的便携式风扇,其中,
    所述转动风叶上设置有固定孔,所述固定孔的轴线与所述转动风叶的轴线共线,所述吹风部还包括转轴,所述转轴的第一端固定穿设在所述固定孔内;所述定位凸柱内部设置有定位孔,所述定位孔的轴线与所述转轴的轴线共线,所述转轴的第二端可转动地穿设在所述定位孔内;
    所述吹风部还包括轴承部,所述轴承部的外圈固定在所述定位孔内,所述轴承部的内圈套设于所述转轴的第二端;所述轴承部包括滚动轴承,所述吹风部还包括限位件,所述限位件安装在所述转轴的第二端,所述轴承部位于所述限位件与所述转轴的第一端之间;所述轴承部为多个,所述定位孔的内侧壁上设置有内凸缘,所述内凸缘设置在相邻两个所述轴承部之间,以使相邻两个所述轴承部间隔设置;所述轴承部包括滑动轴承,所述吹风部还包括两个密封圈,两个所述密封圈均套设在所述转轴上,并分别位于所述滑动轴承的两侧。
  4. 根据权利要求2所述的便携式风扇,其中,
    所述手持部包括第三壳体及第四壳体,所述第三壳体与所述第四壳体连接,所述第三壳体和所述第四壳体之间形成所述安装腔;所述第一壳体包括本体及风道内衬,所述风道内衬安装在所述本体上,所述风道内衬内部设置有风道,所述导风腔形成在所述风道内衬与所述第二壳体之间。
  5. 根据权利要求2所述的便携式风扇,其中,
    所述驱动部为三相电机;所述手持部上设置有充电口,所述充电口与所述供电组件电连接;和/或,所述风道部和所述手持部固定连接或者可相对转动的枢接。
  6. 根据权利要求1所述的便携式风扇,其中,
    所述便携式风扇的控制电路包括:
    充供电电路,用于电连接外部电源和供电组件,以接收外部电压向所述供电组件充电和输出供电电压;
    风扇驱动电路,电连接所述充供电电路和转动风叶,用于驱动所述转动风叶转动;
    控制开关,所述控制开关的控制端用于接收所述外部电压且接地,所述控制开关的第一导通端用于电连接所述供电组件以接收所述供电组件的输出电压,所述控制开关的第二导通端用于电连接至所述风扇驱动电路,所述控制开关在接收到所述外部电压时关闭,在未接收到所述外部电压时导通;以及
    主控电路,电连接所述充供电电路、所述风扇驱动电路和所述控制开关。
  7. 根据权利要求6所述的便携式风扇,其中,
    所述充供电电路包括充电端口、充电管理芯片,所述充电端口的电源端接收所述外部电压且电连接所述充电管理芯片的充电输入引脚,所述充电端口的电源端还电连接稳压管的负极,所述稳压管的正极接地,所述充电管理芯片的开关引脚用于经由第一电感电连接所述供电组件的正极,所述充电管理芯片的升压输出引脚用于输出所述供电电压,所述充电管理芯片的升压输入引脚一方面经由第一连接电阻连接所述供电组件和所述第一电感之间的节点,另一方面经由第一接地电容接地。
  8. 一种便携式风扇的驱动电路,其中,包括:
    主控电路;
    三相驱动电路,包括至少三个信号输入端和三个驱动信号输出端,所述至少三个信号输入端分别电连接所述主控电路以分别接收控制信号,所述三个驱动信号输出端用于电连接直流无刷风扇电机的三个信号端以分别输出三相驱动信号驱动所述直流无刷风扇电机转动;以及
    反相电动势检测电路,包括三个检测支路,每个检测支路包括检测端和与所述检测端电连接的检测输出端,所述三个检测支路的所述三个检测端分别电连接至所述三个驱动信号输出端,所述三个检测支路的所述三个检测输出端分别电连接至所述主控电路,以用于分别输出第一检测信号、第二检测信号及第三检 测信号至所述主控电路,使得所述主控电路依据所述第一检测信号、所述第二检测信号及所述第三检测信号获知所述三相驱动信号的相位以调整所述控制信号。
  9. 根据权利要求8所述的便携式风扇的驱动电路,其中,
    所述检测支路包括第一检测电阻、第二检测电阻和第三检测电阻,所述第一检测电阻和所述第二检测电阻串联,且所述第一检测电阻远离所述第二检测电阻的一端为检测端,所述第二检测电阻远离所述第一检测电阻的一端接地,所述第一检测电阻和所述第二检测电阻之间的节点为所述检测输出端。
  10. 根据权利要求8所述的便携式风扇的驱动电路,其中,
    所述三相驱动电路包括第一晶体管、第二晶体管、第三晶体管、第四晶体管、第五晶体管、第六晶体管、第七晶体管、第八晶体管和第九晶体管,所述第一晶体管、所述第二晶体管、所述第三晶体管的第一导通端均连接至供电端,所述第四晶体管的第一导通端连接至所述供电端,所述第五晶体管的第一导通端连接至所述供电端,所述第六晶体管的第一导通端连接至所述供电端,所述第四晶体管、所述第五晶体管、所述第六晶体管的控制端分别电连接至所述主控电路,所述第七晶体管、所述第八晶体管、所述第九晶体管的控制端分别电连接至所述第四晶体管、所述第五晶体管、所述第六晶体管的控制端,以用于接收所述控制信号,所述第四晶体管、所述第五晶体管、所述第六晶体管的第二导通端均接地,所述第七晶体管的第一导通端连接至所述第一晶体管的第二导通端,所述第七晶体管的第二导通端接地,所述第八晶体管的第一导通端连接至所述第二晶体管的第二导通端,所述第八晶体管的第二导通端接地,所述第九晶体管的第一导通端连接至所述第三晶体管的第二导通端,所述第九晶体管的第二导通端接地,所述第七晶体管的第一导通端与所述第一晶体管的第二导通端之间的节点、所述第八晶体管的第一导通端与所述第二晶体管的第二导通端之间的节点、及所述第九晶体管的第一导通端与所述第三晶体管的第二导通端之间的节点分别作为三个所述驱动信号输出端;所述至少三个信号输入端为三个PWM信号输入端,所述控制信号包括三个PWM信号;所述风扇驱动电路还包括电流检测电路,所述第七晶体管、所述第八晶体管、所述第九晶体管的第二导通端均经由所述电流检测电路接地,所述电流检测电路还电连接至所述主控电路;所述电流检测电路包括感测电阻和感测电容,所述第七晶体管、所述第八晶体管、所述第九晶体管的第二导通端依次经由所述感测电阻和所述感测电容接地,所述感测电阻和所述感测电容之间的节点电连接所述主控电路。
  11. 根据权利要求8所述的便携式风扇的驱动电路,其中,
    所述三相驱动电路包括第一晶体管、第二晶体管、第三晶体管、第四晶体管、第五晶体管、第六晶体管,所述第一晶体管、所述第二晶体管、所述第三晶体管的第一导通端均连接至供电端,所述第四晶体管的第一导通端连接所述第一晶体管的第二导通端,所述第五晶体管的第一导通端连接所述第二晶体管的第二导通端,所述第六晶体管的第一导通端连接所述第三晶体管的第二导通端,所述第四晶体管的第一导通端与所述第一晶体管的第二导通端之间的节点、所述第五晶体管的第一导通端与所述第二晶体管的第二导通端之间的节点、及所述第六晶体管的第一导通端与所述第三晶体管的第二导通端之间的节点分别作为三个所述驱动信号输出端,所述第一晶体管、所述第二晶体管、所述第三晶体管、所述第四晶体管、所述第五晶体管、所述第六晶体管的控制端分别用于电连接所述主控电路以接收所述控制信号;所述控制信号包括六个PWM信号。
  12. 根据权利要求11所述的便携式风扇的驱动电路,其中,
    所述风扇驱动电路还包括电流检测电路,所述第六晶体管的第二导通端经由所述电流检测电路接地,所述电流检测电路还电连接至所述主控电路;所述电流检测电路包括感测电阻和感测电容,所述第六晶体管的第二导通端经由所述感测电阻接地,所述感测电容与所述感测电阻并联,所述感测电阻和所述第六晶体管的第二导通端之间的节点电连接所述主控电路;所述电流检测电路还包括第一串联电阻、第二串联电阻、并联电阻,所述并联电阻与所述感测电阻并联,所述第一串联电阻连接于所述感测电容的一端和所述感测电阻的一端之间,所述第二串联电阻连接于所述感测电容的另一端和所述感测电阻的另一端之间;
  13. 根据权利要求12所述的便携式风扇的驱动电路,其中,
    所述主控电路包括主控芯片和三个三相控制芯片,每个所述三相控制芯片电连接所述主控芯片和所述三相驱动电路,所述风扇驱动电路还包括电压转换电路,所述电压转换电路用于接收电池电压并将所述电池电压转换为驱动电压以及将所述驱动电压提供至三个所述三相控制芯片的电源端,所述主控芯片用于输出主控信号至三个所述三相控制芯片,使得三个所述三相控制芯片分别输出所述控制信号至所述三相驱动电路;所述风扇驱动电路还包括开关控制电路,所述开关控制电路电连接所述电池、所述电压转换电路及所述主控电路,用于控制所述电压转换电路的工作,所述开关控制电路包括按键、第一开关管、第二开关管及第三开关管,所述第一开关管的两个导通端分别连接所述电池的正极和所述电压转换电路的输入端,所述第一开关管的控制端经由所述第三开关管的两个导通端接地,所述电池的正极还经由所述第二开关管的两个导通端、单向二极管连接至所述第三开关管的控制端,所述第二开关管的控制端经由所述按键接地,所述第三开关管的控制端电连接至所述主控电路,所述第二开关管和所述单向二极管之间的节点还电连接 至所述主控电路;所述风扇驱动电路还包括直流转换电路,所述直流转换电路用于接收所述驱动电压并转换为其他直流工作电压。
  14. 根据权利要求8所述的便携式风扇的驱动电路,其中,
    所述风扇驱动电路包括电池电压检测电路,所述电池电压检测电路包括串联的第二分压电阻和第三分压电阻,所述第二分压电阻和所述第三分压电阻之间的节点电连接至所述主控电路;或所述电池电压检测电路包括串联的滤波电容和采样电阻,所述采样电阻连接于所述滤波电容和地之间,所述滤波电容和所述采样电阻之间的节点电连接至所述主控电路,所述风扇驱动电路还包括信号放大电路,所述滤波电容和所述采样电阻之间的节点经由所述信号放大电路连接所述主控电路,所述信号放大电路用于对所述节点的信号进行放大,并将放大后的信号提供至所述主控电路;
    所述风扇驱动电路还包括霍尔检测电路,所述霍尔检测电路电连接所述主控电路,用于通过检测所述直流无刷风扇电机产生的磁场并输出霍尔检测信号至所述主控电路,使得所述主控电路依据所述霍尔检测信号获知所述直流无刷风扇电机的转子的位置;所述霍尔检测电路还包括电机温度检测元件,连接在所述霍尔检测电路的霍尔元件和所述主控电路之间;所述风扇驱动电路还包括晶体管温度检测电路,所述晶体管温度检测电路包括串联的第一分压电阻和热敏电阻,所述热敏电阻用于感测所述三相驱动电路的各晶体管的温度,所述第一分压电阻和所述热敏电阻之间的节点电连接至所述主控电路且用于输出温度信号,使得所述主控电路依据所述温度信号控制所述风扇驱动电路是否进入温度保护状态;所述热敏电阻连接于所述第一分压电阻和地之间,所述晶体管温度检测电路还包括与所述热敏电阻并联的稳压电容;
  15. 根据权利要求8所述的便携式风扇的驱动电路,其中,
    所述风扇驱动电路还包括主控电路包括主控芯片和辅助芯片,所述三相驱动电路、所述反相电动势检测电路和所述直流无刷风扇电机的数量均为两个且一一对应,所述主控芯片电连接一个所述三相驱动电路以输出所述控制信号至一个所述三相驱动电路,以驱动对应的一个所述直流无刷风扇电机,所述反相电动势检测电路电连接对应的所述三相驱动电路并输出对应的所述第一检测信号、所述第二检测信号及所述第三检测信号至所述主控芯片,使得所述主控芯片获知一个所述三相驱动电路的所述三相驱动信号的相位以调整输出至一个所述三相驱动电路的所述控制信号;所述辅助芯片电连接另一个所述三相驱动电路以输出所述控制信号至另一个所述三相驱动电路,以驱动对应的另一个所述直流无刷风扇电机,另一个所述反相电动势检测电路电连接对应的所述三相驱动电路并输出对应的所述第一检测信号、所述第二检测信号及所述第三检测信号至所述辅助芯片,使得所述辅助芯片获知另一个所述三相驱动电路的所述三相驱动信号的相位,以调整输出至另一个所述三相驱动电路的所述控制信号。
  16. 一种手持风扇,其中,包括:
    内壳、外壳及风扇组件,所述内壳形成有风路通道、与所述风路通道一侧连通的入风口和与所述风路通道另一侧连通的出风口,所述风扇组件的至少部分设置于所述风路通道中,所述外壳用于罩设在所述内壳外,所述内壳具有走线开口,所述走线开口的一侧正对所述风扇组件的电连接部分,所述走线开口的另一侧用于正对所述手持风扇的手持部的电连接部分,所述风扇组件的电连接部分通过穿过所述走线开口的导线与所述手持部的电连接部分电连接。
  17. 根据权利要求16所述的手持风扇,其中,
    所述手持部具有安装开口,所述手持部与所述外壳连接,所述安装开口正对所述走线开口的另一侧;
    所述手持风扇还包括设置于所述手持部的安装架,所述安装架的至少部分设置于所述安装开口中,所述安装架与所述内壳连接,所述安装架具有用于所述导线穿过的容纳空间;
    所述手持部的电连接部分包括:第一电路板,所述第一电路板设置于所述安装架,所述第一电路板通过所述导线与所述风扇组件的电连接部分插接。
  18. 根据权利要求17所述的手持风扇,其中,
    还包括第二电路板和档位旋钮组件,所述第二电路板设置于所述安装架,所述第二电路板通过导线与所述第一电路板插接;所述档位旋钮组件设置于所述安装架,所述档位旋钮组件与所述第二电路板连接;所述第二电路板和所述第一电路板对立分布;
    还包括保护开关按钮组件,所述保护开关按钮组件设置于所述安装架,所述保护开关按钮组件与所述第一电路板电连接。
  19. 根据权利要求17所述的手持风扇,其中,
    还包括电池,所述电池设置于所述手持部,所述电池通过所述导线与所述第一电路板插接。
  20. 根据权利要求17所述的手持风扇,其中,
    于所述内壳设置有挡板,所述挡板和所述内壳围合形成有容线槽;
    所述第一电路板的至少部分设置于所述容线槽中。
PCT/CN2023/139669 2022-12-19 2023-12-19 便携式风扇、便携式风扇的驱动电路和手持风扇 WO2024131739A2 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202223413732.2 2022-12-19
CN202223488670.1 2022-12-23
CN202320027723.5 2023-01-04
CN202321579734.0 2023-06-19

Publications (1)

Publication Number Publication Date
WO2024131739A2 true WO2024131739A2 (zh) 2024-06-27

Family

ID=

Similar Documents

Publication Publication Date Title
US11938611B2 (en) Portable power tool having an electromotive direct drive
US11090784B2 (en) Screw-tightening power tool
US4734017A (en) Air blower
US9590475B2 (en) Electric power tool
US20160197531A1 (en) Ceiling Fan Motor
US11388973B2 (en) Wireless blow dryer system and wireless blow dryer
WO2021218170A1 (zh) 充电箱及充电系统
WO2017003134A1 (ko) 청소기
WO2010121407A1 (zh) 洗碗机专用电机及使用该电机的水泵总成
WO2024131739A2 (zh) 便携式风扇、便携式风扇的驱动电路和手持风扇
WO2018205810A1 (zh) 一种大功率动力系统及割草机
CN219176615U (zh) 挂脖式风扇的控制电路及挂脖式风扇
CN111449397A (zh) 直流交流两用吹风机
CN105215951A (zh) 抛光机
TWM538674U (zh) 微電能電動風扇風力發電系統
WO2021217316A1 (zh) 充电控制电路、充电箱及充电系统
CN111120384B (zh) 一种自适应控制电路及风扇
CN203272074U (zh) 一种带有复合充电模式的无叶风扇
WO2024131243A1 (zh) 便携式风扇
CN110149043B (zh) 一种泵升电压检测及泄放电路
JP2003093298A (ja) 電気掃除機
CN207895220U (zh) 一种便携投影机充电宝壳体
US20200108494A1 (en) Power mechanism and handheld tool using the same
WO2001002139A1 (fr) Dispositif portable d'alimentation d'un moteur
CN220539912U (zh) 风扇驱动电路及便携式风扇