WO2024131216A1 - 显示装置的驱动电路和显示装置 - Google Patents

显示装置的驱动电路和显示装置 Download PDF

Info

Publication number
WO2024131216A1
WO2024131216A1 PCT/CN2023/123941 CN2023123941W WO2024131216A1 WO 2024131216 A1 WO2024131216 A1 WO 2024131216A1 CN 2023123941 W CN2023123941 W CN 2023123941W WO 2024131216 A1 WO2024131216 A1 WO 2024131216A1
Authority
WO
WIPO (PCT)
Prior art keywords
row
voltage
power supply
module
display device
Prior art date
Application number
PCT/CN2023/123941
Other languages
English (en)
French (fr)
Inventor
李漫铁
甘有明
龚高平
Original Assignee
深圳雷曼光电科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳雷曼光电科技股份有限公司 filed Critical 深圳雷曼光电科技股份有限公司
Publication of WO2024131216A1 publication Critical patent/WO2024131216A1/zh

Links

Definitions

  • the present application relates to the field of display technology, and in particular to a driving circuit of a display device and a display device.
  • LED display screens use light-emitting diodes (LEDs) as basic light-emitting elements (pixels). The lighting or brightness of each pixel is controlled by control circuits and drive circuits, so that the display screen with relevant pixels can display various information required by people.
  • LED display screens have the advantages of wide range of use, bright colors, high brightness and good stability. They are widely used in advertising, information release, sports competitions and other fields.
  • LED display screens usually include three colors of LEDs: red, green, and blue.
  • the three-primary color LEDs have different on-state voltage drops.
  • the on-state voltage drop of a red LED is usually lower than that of a green LED and a blue LED.
  • a 5V voltage is usually used to power the three-primary color LEDs. Since the on-state voltage drop of a red LED is lower than that of a blue or green LED, for the purpose of protecting the red LED and the corresponding column driver, a resistor is connected in series between the negative electrode of the red LED and the corresponding column driver to divide a portion of the voltage and heat. However, this will increase the loss of useless energy and generate a large amount of heat, thereby increasing the overall temperature of the LED display screen and accelerating the aging of the device.
  • the present application provides a driving circuit of a display device, wherein the display device comprises a plurality of pixel units arranged in rows and columns, each of the pixel units comprises a red display element, a green display element and a blue display element, and the negative electrodes of the display elements of the same color located in the same column are connected to each other, and the driving circuit of the display device comprises:
  • a first row driving module connected to the positive electrode of each of the red display elements, the first row driving module is used to receive a first working voltage and provide a first scanning signal to each row of the red display elements;
  • a second row driving module connected to the positive electrode of each of the green display elements and the positive electrode of each of the blue display elements, the second row driving module being used to receive a second operating voltage and provide a second scanning signal to each row of the green display elements and each row of the blue display elements;
  • a power supply module is connected to the first row driver module and the second row driver module respectively, and the power supply module is used to output the first operating voltage to the first row driver module and also to output the second operating voltage to the second row driver module.
  • the power module comprises:
  • a first switching power supply unit wherein an input end of the first switching power supply unit is used to receive external alternating current, and the first switching power supply unit is used to output a supply voltage according to the external alternating current;
  • a first voltage regulating unit wherein an input end of the first voltage regulating unit is connected to an output end of the first switching power supply unit, and the first voltage regulating unit is used to receive the power supply voltage and output the first operating voltage to the first row driving module according to the power supply voltage;
  • a second voltage regulating unit wherein the input end of the second voltage regulating unit is connected to the output end of the first switching power supply unit, and the second voltage regulating unit is used to receive the power supply voltage and output the second operating voltage to the second row driving module according to the power supply voltage.
  • the supply voltage is greater than the first operating voltage; the first operating voltage The operating voltage is less than or equal to the second operating voltage.
  • the first voltage regulating unit and the second voltage regulating unit both include a DC/DC circuit.
  • the power module comprises:
  • a second switching power supply unit wherein a first output terminal of the second switching power supply unit is connected to the second row driving module, an input terminal of the second switching power supply unit is used to receive external alternating current, and the second switching power supply unit is used to output the second working voltage according to the external alternating current;
  • a third voltage regulating unit wherein the input end of the third voltage regulating unit is connected to the second output end of the second switching power supply unit, and the third voltage regulating unit is used to receive the second operating voltage and output the first operating voltage to the first row driving module according to the second operating voltage.
  • the third voltage regulating unit includes a DC/DC circuit.
  • the first row driving module includes:
  • the positive electrode of each of the red display elements in each row of the pixel units is connected to the corresponding first row channel.
  • the second row driving module includes:
  • a plurality of second row channels corresponding one-to-one to the plurality of rows of pixel units
  • the positive electrode of each of the green display elements and the positive electrode of each of the blue display elements in each row of the pixel units are respectively connected to the corresponding second row channel.
  • the driving circuit of the display device further includes:
  • the column driving module is respectively connected to the negative electrodes of the display elements of the same color in each column and the power module, and is used for receiving the second working voltage and providing column driving signals to the display elements in each column.
  • the present application also provides a display device, comprising the driving circuit of the display device as described above.
  • the driving circuit of the above-mentioned display device controls the red display element separately through the first row driving module, and inputs the first working voltage to the first row driving module to realize power supply, controls the green and blue display elements through the second row driving module, and inputs the second working voltage to the second row driving module to realize power supply, and adopts the method of supplying power to the red display element separately, so that the voltage distributed to the three primary color display elements can be within a reasonable range, thereby reducing energy loss and the temperature of the display device.
  • FIG1 is a schematic diagram of a driving circuit of a display device provided in one embodiment
  • FIG2 is a second schematic diagram of the structure of a driving circuit of a display device provided in an embodiment
  • FIG3 is a third schematic diagram of the structure of a driving circuit of a display device provided in an embodiment
  • FIG4 is a fourth structural schematic diagram of a driving circuit of a display device provided in an embodiment
  • FIG. 5 is a fifth structural schematic diagram of a driving circuit of a display device provided in an embodiment.
  • First row driving module 100; second row driving module: 200; power supply module: 300; column driving module: 400; first switching power supply unit: 301; first voltage regulating unit: 302; second voltage regulating unit: 303; second switching power supply unit: 304; third voltage regulating unit: 305; third switching power supply unit: 306; fourth switching power supply unit: 307; fifth switching power supply unit: 308.
  • the present application provides a driving circuit for a display device, wherein the display device includes a plurality of pixel units arranged in rows and columns, each of the pixel units includes a red display element, a green display element and a blue display element, and the negative electrodes of the display elements of the same color located in the same column are connected to each other.
  • Each display element is a light-emitting diode (LED).
  • a light-emitting diode (LED) is a solid-state semiconductor device that can convert electrical energy into visible light.
  • the semiconductor chip inside it consists of two parts, one is a P-type semiconductor and the other is an N-type semiconductor. When the two semiconductors are connected, a PN junction can be formed. When current passes through a wire and acts on the chip, electrons are pushed to the P region, where electrons and holes recombine and emit energy in the form of photons, so that the light-emitting diode (LED) can be lit.
  • the red display element, the green display element, and the blue display element can constitute a pixel unit, which can be used as a display unit of the display device, thereby showing a variety of colors.
  • a plurality of pixel units are arranged in an array to form an LED display module, and the driving mode of the LED display module is mainly divided into static driving and scanning driving, wherein the static driving is to connect the positive electrodes of all display elements of each pixel unit to the voltage input terminal of the LED display module, and at the same time connect the negative electrodes of all display elements to the column driving integrated circuit (IC), and the static driving does not require a row driving IC; while the scanning driving is to connect the positive electrodes of all display elements of all pixel units in the same row in parallel and electrically connect them to the row driving IC, and at the same time connect the negative electrodes of all display elements of all pixel units in the same column in parallel and electrically connect them to the column driving IC.
  • the static driving is to connect the positive electrodes of all display elements of all pixel units
  • the input voltage applied to the row driving IC can be selected to be 4.5V to 5V to ensure that different areas of the LED display module will not cause color difference due to the voltage drop problem, but since the positive electrodes of all display elements in the same row are connected in parallel, the voltage received by each display element in the same row is the same.
  • the forward voltage drop of the red display element is generally 1.8V to 2.4V
  • the forward voltage drop of the green display element and the blue display element is generally 2.4V to 3.6V.
  • a part of the voltage and heat is usually divided between the red display element and the column driver IC in the form of a series resistor.
  • the above approach will increase useless energy loss.
  • the design area of the LED display module is large or the design brightness is high, the energy consumed by the LED display module will also increase.
  • it will aggravate the energy loss of the wire between the external power supply and the LED display module.
  • the driving circuit of the display device includes a first row driving module 100 , a second row driving module 200 and a power module 300 .
  • the first row driving module 100 is connected to the positive electrode of each red display element.
  • the driving module 100 is used to receive a first operating voltage and provide a first scanning signal to each row of red display elements
  • the second row driving module 200 is connected to the positive electrode of each of the green display elements and the positive electrode of each of the blue display elements, and the second row driving module 200 is used to receive a second operating voltage and provide a second scanning signal to each row of green display elements and each row of blue display elements
  • the power supply module 300 is respectively connected to the first row driving module 100 and the second row driving module 200, and the power supply module 300 is used to output a first operating voltage to the first row driving module 100, and is also used to output a second operating voltage to the second row driving module 200.
  • FIG. 1 shows the red display element as R, the green display element as G, and the blue display element as B. Since the forward voltage drop of the red display element is lower than that of the green display element and the blue display element, the first row driving module 100 is used alone to drive the red display elements in each row to work, and the second row driving module 200 is used to drive the green and blue display elements in each row to work, so that the voltage drop on each display element is within a reasonable range, so the resistor connected in series on the negative electrode of each column of the red display element can be deleted, thereby reducing energy loss and the temperature of the overall display device.
  • the voltage provided by the power module 300 to the first row driver module 100 is defined as the first operating voltage VCC1.
  • the first operating voltage VCC1 can be 2.8V to 3.0V, which is in accordance with the forward conduction voltage drop of the red display element when it is working normally.
  • the voltage provided by the power module 300 to the second row driver module 200 is defined as the second operating voltage VCC2.
  • the second operating voltage VCC2 can be 3.8V to 4.0V, which is also in accordance with the forward conduction voltage drop of the green display element and the blue display element when they are working normally.
  • the positive electrode of each display element receives a relatively reasonable voltage. Due to the reduction of energy loss and the temperature of the display device, the design brightness of each display element is about 10% higher than that of the existing single voltage input solution.
  • the row control signal is a periodic square wave signal, which drives the first row driving module 100 to output the first scan signal.
  • the periodic signal drives only one row of red display elements to turn on in each time period
  • the second scanning signal output by the second row driving module 200 is also a periodic signal, which also drives only one row of green and blue display elements to turn on in each time period; by scanning row by row and synchronously changing the control signal on each column, as long as the scanning frequency is fast enough, due to the retention characteristics of the human eye, what is seen on the LED display module is a complete picture.
  • the red display element is independently controlled by the first row driver module 100, and the first operating voltage is input to the first row driver module 100 to realize power supply, and the green and blue display elements are controlled by the second row driver module 200, and the second operating voltage is input to the second row driver module 200 to realize power supply.
  • the voltages distributed to the three primary color display elements can be within a reasonable range, thereby reducing energy loss and the temperature of the display device.
  • the first row driving module 100 includes a plurality of first row channels, and the plurality of first row channels correspond one-to-one to a plurality of rows of pixel units, wherein the positive electrode of each of the red display elements in each row of pixel units is connected to the corresponding first row channel.
  • the positive electrodes of all red display elements in the same row are connected in parallel and electrically connected to a first row channel, and the positive electrodes of red display elements in different rows need to be connected to different first row channels.
  • the second row driving module 200 includes a plurality of second row channels, and the plurality of second row channels correspond one-to-one to a plurality of rows of pixel units, wherein the positive electrodes of the green display elements and the positive electrodes of the blue display elements in each row of pixel units are respectively connected to the corresponding second row channels.
  • the positive electrodes of all the green and blue display elements in the same row are connected in parallel and electrically connected to one second row channel, and the positive electrodes of the green and blue display elements in different rows need to be connected to different second row channels.
  • the driving circuit of the display device further includes a column driving module 400 , and the column driving module 400 is respectively connected to the negative electrode of each column of the same color display element and the power module 300 .
  • the device is used for receiving a second operating voltage and providing a column driving signal to each column of display elements.
  • the column driving module 400 includes multiple column channels, and the multiple column channels correspond one-to-one to the multiple columns of pixel units.
  • the negative electrodes of the display elements of the same color in each column of pixel units are respectively connected to the corresponding column channels.
  • the column driving module 400 receives the column control signal and provides the column driving signal to the corresponding display element according to the column control signal to control the brightness of the corresponding display element. Exemplarily, in FIG.
  • the time periods during which the first row driver module 100 and the second row driver module 200 output channel high levels to the positive electrodes of the display elements in the first, second, third and fourth rows are: the first time period, the second time period, the third time period and the fourth time period. If it is desired to light up the red display element R of (the second row, the second column) and the blue display element B of (the fourth row, the fourth column), it is only necessary to control the column control signal so that the column driver module 400 sets the red column channel of the second column to a low level in the second time period, sets the blue column channel of the fourth column to a low level in the fourth time period, and sets the remaining column channels to a high level in the remaining time periods, thereby lighting up the target display elements. At the same time, the column driver module 400 can control the brightness of the target display elements by correspondingly controlling the size of the driving current and the duty cycle.
  • the power supply module includes a first switching power supply unit 301, a first voltage regulating unit 302, and a second voltage regulating unit 303.
  • the input end of the first switching power supply unit 301 is used to receive external alternating current power, and the first switching power supply unit 301 is used to output a power supply voltage according to the external alternating current power;
  • the input end of the first voltage regulating unit 302 is connected to the output end of the first switching power supply unit 301, the first voltage regulating unit 302 is used to receive the power supply voltage, and output a first operating voltage to the first row driving module 100 according to the power supply voltage;
  • the input end of the second voltage regulating unit 303 is connected to the output end of the first switching power supply unit 301, the second voltage regulating unit 303 is used to receive the power supply voltage, and output a second operating voltage to the second row driving module 200 according to the power supply voltage.
  • the first switching power supply unit 301 includes a first switching power supply, which converts the external AC After voltage reduction, rectification and filtering, a DC voltage is obtained and transmitted to the output end to output the power supply voltage VCC.
  • the output end will also provide feedback to the input end through the level of the output voltage to achieve the purpose of stabilizing the output power supply voltage.
  • the first switching power supply unit 301 includes two output ends, one output end is connected to the reference ground, and the other output end is connected to the first voltage regulating unit 302.
  • the first voltage regulating unit 302 converts the input power supply voltage VCC into a first working voltage VCC1 and supplies power to the first row driving module 100.
  • the other output end of the first switching power supply unit 301 is also connected to the second voltage regulating unit 303.
  • the second voltage regulating unit 303 converts the input power supply voltage VCC into a second working voltage VCC2 and supplies power to the second row driving module 200.
  • the supply voltage is greater than the first operating voltage, and the first operating voltage is less than or equal to the second operating voltage.
  • the power supply voltage VCC can be selected as 12V, 24V, 36V or 48V, etc.
  • the first working voltage VCC1 can be 2.8V to 3.0V
  • the second working voltage VCC2 can be 3.8V to 4.0V.
  • the power supply voltage VCC is input at a high voltage, so that the current becomes smaller, thereby making the power supply wire smaller, which is conducive to saving device costs, and the wire voltage drop will not affect the voltage drop of the display terminal.
  • the first working voltage VCC1 is less than or equal to the second working voltage VCC2 in order to make the forward voltages of the three primary color display elements respectively in an appropriate range, so that the voltage drop on each display element is more reasonable.
  • the first voltage regulating unit and the second voltage regulating unit both include a DC/DC circuit.
  • the DC/DC circuit can convert a fixed DC voltage into an adjustable DC voltage, and also has the characteristics of voltage stabilization, current stabilization, power control, and DC line protection. Based on this, the first voltage regulating unit can stably step down the power supply voltage VCC to the first working voltage VCC1 using the DC/DC circuit, and the second voltage regulating unit can also stably step down the power supply voltage VCC to the second working voltage VCC2 using the DC/DC circuit.
  • the power module includes a second switching power supply unit 304 and a third The voltage regulating unit 305, the first output end of the second switching power supply unit 304 is connected to the second row driving module 200, the input end of the second switching power supply unit 304 is used to receive external alternating current, and the second switching power supply unit 304 is used to output a second operating voltage according to the external alternating current; the input end of the third voltage regulating unit 305 is connected to the second output end of the second switching power supply unit 304, the third voltage regulating unit 305 is used to receive the second operating voltage, and output the first operating voltage to the first row driving module 100 according to the second operating voltage.
  • the second switching power supply unit 304 includes a second switching power supply, which converts the external AC power into a DC voltage output.
  • the second switching power supply unit 304 includes three output terminals.
  • the first output terminal is connected to the second row driving module 200 to use the output DC voltage as the second working voltage VCC2 to supply power to the second row driving module 200;
  • the second output terminal is connected to the third voltage regulating unit 305, and the third voltage regulating unit 305 converts the input second working voltage VCC2 into the first working voltage VCC1 and supplies power to the first row driving module 100;
  • the third output terminal is connected to the reference ground.
  • the second working voltage VCC2 is greater than or equal to the first working voltage VCC1.
  • the first working voltage VCC1 can be 2.8V to 3.0V
  • the second working voltage VCC2 can be 3.8V to 4.0V
  • the third voltage regulating unit includes a DC/DC circuit, and the third voltage regulating unit can stably reduce the second working voltage VCC2 to the first working voltage VCC1 by using the DC/DC circuit.
  • the sources of the first working voltage VCC1 and the second working voltage VCC2 are changed, but the forward voltage distributed on each display element can still meet the respective conduction voltage drop range, which can effectively reduce useless energy loss.
  • the temperature of the display device can be effectively reduced, and thinner power wires can be selected to reduce application costs, and the brightness of the overall device can be significantly improved.
  • the power module includes a third switching power supply unit 306 , which is connected to the first row driver module 100 and the second row driver module 200 , respectively.
  • a first output terminal of the third switching power supply unit 306 inputs a first operating voltage VCC1 to the first row driver module 100 .
  • a second output terminal of the third switch power supply unit 306 inputs the second operating voltage VCC2 to the second row driving module 200 , and a third output terminal of the third switch power supply unit 306 is connected to the reference ground.
  • the power supply module includes a fourth switching power supply unit 307 and a fifth switching power supply unit 308 , wherein the fourth switching power supply unit 307 is connected to the first row driver module 100 , a first output end of the fourth switching power supply unit 307 inputs a first operating voltage VCC1 to the first row driver module 100 , and a second output end of the fourth switching power supply unit 307 is connected to a reference ground ; the fifth switching power supply unit 308 is connected to the second row driver module 200 , a first output end of the fifth switching power supply unit 308 inputs a second operating voltage VCC2 to the second row driver module 200 , and a second output end of the fifth switching power supply unit 308 is connected to a reference ground .
  • the present application also provides a display device, including the driving circuit of the display device as described in the above embodiment. Based on the driving circuit of the display device, the display device can significantly improve the brightness of the whole device, effectively reduce useless energy loss, and reduce the temperature of the device.

Landscapes

  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Abstract

一种显示装置的驱动电路和显示装置,显示装置的驱动电路包括:第一行驱动模块(100),与各红色显示元件的正极连接,第一行驱动模块(100)用于接收第一工作电压,并向各行红色显示元件提供第一扫描信号;第二行驱动模块(200),与各绿色显示元件的正极、各蓝色显示元件的正极连接,第二行驱动模块(200)用于接收第二工作电压,并向各行绿色显示元件、各行蓝色显示元件提供第二扫描信号;电源模块(300),分别与第一行驱动模块(100)、第二行驱动模块连接(200),电源模块(300)用于向第一行驱动模块(100)输出第一工作电压,还用于向第二行驱动模块(200)输出第二工作电压。通过采用为红色显示元件单独供电的方式,分到三基色显示元件上的电压处于合理范围内,由此降低能量损耗和显示装置的温度。

Description

显示装置的驱动电路和显示装置 技术领域
本申请涉及显示技术领域,特别是涉及一种显示装置的驱动电路和显示装置。
背景技术
LED显示屏以发光二极管(Light-Emitting-Diode,LED)为基本发光元素(像素点),通过控制电路及驱动电路来控制每个像素点的亮与灭或其明暗程度,实现具有相关像素点的显示屏可以显示出人们要求的各种信息,LED显示屏具有使用范围广、色彩鲜艳、亮度高以及稳定性好等优点,被广泛应用于广告、信息发布和体育比赛等领域。
然而,LED显示屏通常包括红、绿、蓝三种颜色的LED,但三基色LED具有不同的导通电压降,红色LED的导通电压降通常比绿色LED和蓝色LED低,为兼顾三基色LED的工作特性,通常采用5V电压对三基色LED进行供电,由于红色LED的导通压降比蓝、绿色LED的导通压降低,出于对红色LED和对应列驱动保护的目的,会在红色LED的负极与对应列驱动之间串联电阻以分掉一部分电压和热量,但这样会增加无用能量的损耗,并产生大量热量,进而增加LED显示屏的整体温度,加速器件的老化。
实用新型内容
基于此,有必要针对现有技术中采用单电压对显示元件供电的方式会导致能量损耗、显示装置的温度升高的问题提供一种显示装置的驱动电路和显示装 置。
为了实现上述目的,本申请提供了一种显示装置的驱动电路,所述显示装置包括呈行和列排布的多个像素单元,各所述像素单元包括红色显示元件、绿色显示元件和蓝色显示元件,位于同一列的同种颜色显示元件的负极相互连接,所述显示装置的驱动电路包括:
第一行驱动模块,与各所述红色显示元件的正极连接,所述第一行驱动模块用于接收第一工作电压,并向各行所述红色显示元件提供第一扫描信号;
第二行驱动模块,与各所述绿色显示元件的正极、各所述蓝色显示元件的正极连接,所述第二行驱动模块用于接收第二工作电压,并向各行所述绿色显示元件、各行所述蓝色显示元件提供第二扫描信号;
电源模块,分别与所述第一行驱动模块、所述第二行驱动模块连接,所述电源模块用于向所述第一行驱动模块输出所述第一工作电压,还用于向所述第二行驱动模块输出所述第二工作电压。
在其中一个实施例中,所述电源模块包括:
第一开关电源单元,所述第一开关电源单元的输入端用于接收外部交流电,所述第一开关电源单元用于根据所述外部交流电输出供电电压;
第一调压单元,所述第一调压单元的输入端与所述第一开关电源单元的输出端连接,所述第一调压单元用于接收所述供电电压,并根据所述供电电压向所述第一行驱动模块输出所述第一工作电压;
第二调压单元,所述第二调压单元的输入端与所述第一开关电源单元的输出端连接,所述第二调压单元用于接收所述供电电压,并根据所述供电电压向所述第二行驱动模块输出所述第二工作电压。
在其中一个实施例中,所述供电电压大于所述第一工作电压;所述第一工 作电压小于或等于所述第二工作电压。
在其中一个实施例中,所述第一调压单元和所述第二调压单元均包括DC/DC电路。
在其中一个实施例中,所述电源模块包括:
第二开关电源单元,所述第二开关电源单元的第一输出端与所述第二行驱动模块连接,所述第二开关电源单元的输入端用于接收外部交流电,所述第二开关电源单元用于根据所述外部交流电输出所述第二工作电压;
第三调压单元,所述第三调压单元的输入端与所述第二开关电源单元的第二输出端连接,所述第三调压单元用于接收所述第二工作电压,并根据所述第二工作电压向所述第一行驱动模块输出所述第一工作电压。
在其中一个实施例中,所述第三调压单元包括DC/DC电路。
在其中一个实施例中,所述第一行驱动模块包括:
多个第一行通道,与多行所述像素单元一一对应;
其中,每行所述像素单元中的各所述红色显示元件的正极连接至对应的所述第一行通道。
在其中一个实施例中,所述第二行驱动模块包括:
多个第二行通道,与多行所述像素单元一一对应;
其中,每行所述像素单元中的各所述绿色显示元件的正极及各所述蓝色显示元件的正极分别连接至对应的所述第二行通道。
在其中一个实施例中,所述显示装置的驱动电路还包括:
列驱动模块,分别与各列同一颜色显示元件的负极、所述电源模块连接,用于接收所述第二工作电压,并向各列显示元件提供列驱动信号。
本申请还提供了一种显示装置,包括如上所述的显示装置的驱动电路。
上述显示装置的驱动电路,通过第一行驱动模块单独控制红色显示元件,并向第一行驱动模块输入第一工作电压以实现供电,通过第二行驱动模块控制绿色、蓝色显示元件,并向第二行驱动模块输入第二工作电压以实现供电,采用为红色显示元件单独供电的方式,可以使分到三基色显示元件上的电压处于合理范围内,由此可以降低能量损耗和显示装置的温度。
附图说明
为了更清楚地说明本申请实施例或传统技术中的技术方案,下面将对实施例或传统技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为一实施例中提供的显示装置的驱动电路的结构示意图之一;
图2为一实施例中提供的显示装置的驱动电路的结构示意图之二;
图3为一实施例中提供的显示装置的驱动电路的结构示意图之三;
图4为一实施例中提供的显示装置的驱动电路的结构示意图之四;
图5为一实施例中提供的显示装置的驱动电路的结构示意图之五。
附图标记说明:
第一行驱动模块:100;第二行驱动模块:200;电源模块:300;列驱动模
块:400;第一开关电源单元:301;第一调压单元:302;第二调压单元:303;第二开关电源单元:304;第三调压单元:305;第三开关电源单元:306;第四开关电源单元:307;第五开关电源单元:308。
具体实施方式
为了便于理解本申请,下面将参照相关附图对本申请进行更全面的描述。附图中给出了本申请的实施例。但是,本申请可以以许多不同的形式来实现,并不限于本文所描述的实施例。相反地,提供这些实施例的目的是使本申请的公开内容更加透彻全面。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。本文中在本申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请。
在此使用时,单数形式的“一”、“一个”和“所述/该”也可以包括复数形式,除非上下文清楚指出另外的方式。还应当理解的是,术语“包括/包含”或“具有”等指定所陈述的特征、整体、步骤、操作、组件、部分或它们的组合的存在,但是不排除存在或添加一个或更多个其他特征、整体、步骤、操作、组件、部分或它们的组合的可能性。同时,在本说明书中,术语“和/或”包括相关所列项目的任何及所有组合。
本申请提供一种显示装置的驱动电路,所述显示装置包括呈行和列排布的多个像素单元,各所述像素单元包括红色显示元件、绿色显示元件和蓝色显示元件,位于同一列的同种颜色显示元件的负极相互连接。
其中,各显示元件为发光二极管LED,发光二极管LED是一种能够将电能转化为可见光的固态半导体器件,其内部的半导体晶片由两部分组成,一部分是P型半导体,另一部分是N型半导体,当两种半导体连接起来时,可以形成一个PN结,当电流通过导线作用于所述晶片时,电子会被推向P区,在P区中电子与空穴复合,以光子的形式发出能量,至此发光二极管LED实现点亮。而 红色显示元件、绿色显示元件、蓝色显示元件可以构成一个像素单元,作为显示装置的显示单元,由此可以表现出多种多样的色彩。进一步地,多个像素单元呈阵列排布构成LED显示模组,驱动LED显示模组工作的方式主要分为静态驱动和扫描驱动,其中,静态驱动是将各像素单元的所有显示元件的正极连接至LED显示模组的电压输入端,同时将所有显示元件的负极连接至列驱动集成电路(integrated circuit,IC),静态驱动不需要行驱动IC;而扫描驱动是将同一行的所有像素单元的所有显示元件的正极并联,且电气连接至行驱动IC,同时将同一列的所有像素单元的所有显示元件的负极并联,且电气连接至列驱动IC,由于行驱动IC具有一定压降,所以施加到行驱动IC的输入电压可以选用4.5V~5V,以保证LED显示模组的不同区域不会因压降问题引起色差,但由于同一行所有显示元件的正极是并联在一起的,所以同一行的各显示元件接收到的电压相同。
然而,红色显示元件的正向压降一般为1.8V~2.4V,绿色显示元件和蓝色显示元件的正向压降一般为2.4V~3.6V,出于对显示元件和列驱动IC的保护,通常在红色显示元件与列驱动IC之间以串联电阻的方式,分掉一部分电压和热量,但上述做法会增加无用能量损耗,当LED显示模组的设计面积较大或者设计亮度比较高的时候,LED显示模组所损耗的能量也随之增大,一方面会加剧外部电源至LED显示模组之间的线材能量损耗,另一方面也需要选用材质更粗的电源线材,增加了器件的成本。因此,本申请采用将红色显示元件的正极与绿、蓝色显示元件的正极分开供电的方式,以克服上述单电压输入造成的缺陷。
进一步地,请参阅图1,所述显示装置的驱动电路包括第一行驱动模块100、第二行驱动模块200和电源模块300。
其中,第一行驱动模块100与各所述红色显示元件的正极连接,第一行驱 动模块100用于接收第一工作电压,并向各行红色显示元件提供第一扫描信号;第二行驱动模块200与各所述绿色显示元件的正极、各所述蓝色显示元件的正极连接,第二行驱动模块200用于接收第二工作电压,并向各行绿色显示元件、各行蓝色显示元件提供第二扫描信号;电源模块300分别与第一行驱动模块100、第二行驱动模块200连接,电源模块300用于向第一行驱动模块100输出第一工作电压,还用于向第二行驱动模块200输出第二工作电压。
可以理解,图1将红色显示元件示为R、绿色显示元件示为G、蓝色显示元件示为B,由于红色显示元件的正向压降比绿色显示元件、蓝色显示元件的正向压降低,故单独利用第一行驱动模块100驱动各行红色显示元件工作,利用第二行驱动模块200驱动各行绿色、蓝色显示元件工作,使得分在各个显示元件上的压降处在合理范围内,所以可以删除串联在每一列红色显示元件负极上的电阻,降低能量损耗和整体显示装置的温度。
具体地,电源模块300给第一行驱动模块100提供的电压定义为第一工作电压VCC1,可选地,第一工作电压VCC1可以为2.8V~3.0V,该范围符合红色显示元件正常工作时的正向导通压降。而电源模块300给第二行驱动模块200提供的电压定义为第二工作电压VCC2,可选地,第二工作电压VCC2可以为3.8V~4.0V,该范围同样符合绿色显示元件和蓝色显示元件正常工作时的正向导通压降,至此各个显示元件的正极均接收到较为合理的电压,由于能量损耗和显示装置温度的降低,各显示元件的设计亮度比现有的单电压输入的方案高约10%。
进一步地,由于扫描驱动是通过分时点亮不同行的显示元件实现的,当第一行驱动模块100和第二行驱动模块200接收到行控制信号时,所述行控制信号是一个周期的方波信号,其带动第一行驱动模块100输出的第一扫描信号是 周期信号,在各时段中只驱动其中一行红色显示元件开启,且带动第二行驱动模块200输出的第二扫描信号也是周期信号,在各时段中同样只驱动其中一行绿色、蓝色显示元件开启;通过逐行扫描,并同步变换每列上控制信号的方式,只要扫描的频率足够快,由于人眼的滞留特性,在LED显示模组上看到的就是一幅完整的画面。
在上述示例中,通过第一行驱动模块100单独控制红色显示元件,并向第一行驱动模块100输入第一工作电压以实现供电,通过第二行驱动模块200控制绿色、蓝色显示元件,并向第二行驱动模块200输入第二工作电压以实现供电,采用为红色显示元件单独供电的方式,可以使分到三基色显示元件上的电压处于合理范围内,由此可以降低能量损耗和显示装置的温度。
在一实施例中,继续参考图1,第一行驱动模块100包括多个第一行通道,多个第一行通道与多行像素单元一一对应,其中,每行像素单元中的各所述红色显示元件的正极连接至对应的第一行通道。
如图1所示的4行*4列的显示矩阵,同一行的所有红色显示元件的正极并联,且电气连接到一个第一行通道,不同行的红色显示元件的正极需要连接至不同的第一行通道。
在一实施例中,第二行驱动模块200包括多个第二行通道,多个第二行通道与多行像素单元一一对应,其中,每行像素单元中的各所述绿色显示元件的正极及各所述蓝色显示元件的正极分别连接至对应的第二行通道。
同一行的所有绿色、蓝色显示元件的正极并联,且电气连接到一个第二行通道,不同行的绿、蓝色显示元件的正极需要连接至不同的第二行通道。
在一实施例中,请继续参考图1,显示装置的驱动电路还包括列驱动模块400,列驱动模块400分别与各列同一颜色显示元件的负极、电源模块300连接, 用于接收第二工作电压,并向各列显示元件提供列驱动信号。
其中,列驱动模块400包括多个列通道,多个列通道与多列像素单元一一对应,每列像素单元中同种颜色的显示元件的负极分别连接至对应的列通道,在第一行驱动模块100和第二行驱动模块200接收行控制信号以分时驱动各行显示元件开启时,列驱动模块400接收列控制信号,并根据列控制信号向对应的显示元件提供列驱动信号,以控制对应的显示元件的亮度大小。示例性的,在图1中假设第一行驱动模块100和第二行驱动模块200输出通道高电平给第一、第二、第三、第四行显示元件正极的时段为:第一时段、第二时段、第三时段和第四时段,若希望点亮(第二行,第二列)的红色显示元件R和(第四行,第四列)的蓝色显示元件B,只需要控制列控制信号,使得列驱动模块400在第二时段时将第二列的红色列通道置为低电平、在第四时段时将第四列的蓝色列通道置为低电平,在其余时段时将其余列通道均置为高电平,即可实现目标显示元件的点亮,同时列驱动模块400对应控制驱动电流的大小和占空比还可以控制目标显示元件的亮度大小。
在一实施例中,如图2所示,电源模块包括第一开关电源单元301、第一调压单元302和第二调压单元303,第一开关电源单元301的输入端用于接收外部交流电,第一开关电源单元301用于根据外部交流电输出供电电压;第一调压单元302的输入端与第一开关电源单元301的输出端连接,第一调压单元302用于接收供电电压,并根据供电电压向第一行驱动模块100输出第一工作电压;第二调压单元303的输入端与第一开关电源单元301的输出端连接,第二调压单元303用于接收供电电压,并根据供电电压向第二行驱动模块200输出第二工作电压。
可以理解的是,第一开关电源单元301包括第一开关电源,其将外部交流 电降压、整流、滤波过后得到直流电压,并传递到输出端输出供电电压VCC,输出端还会通过输出电压的高低对输入端进行反馈,以达到稳定输出供电电压的目的。进一步地,第一开关电源单元301包括两个输出端,一个输出端与参考地连接,另一个输出端与第一调压单元302连接,第一调压单元302将输入的供电电压VCC转换为第一工作电压VCC1,并向第一行驱动模块100供电,且第一开关电源单元301的另一输出端还与第二调压单元303连接,第二调压单元303将输入的供电电压VCC转换为第二工作电压VCC2,并向第二行驱动模块200供电。
在一实施例中,供电电压大于第一工作电压,第一工作电压小于或等于第二工作电压。
可选地,供电电压VCC可以选择12V、24V、36V或48V等,第一工作电压VCC1可以为2.8V~3.0V,第二工作电压VCC2可以为3.8V~4.0V,通过设置供电电压VCC大于第一工作电压VCC1且供电电压VCC大于第二工作电压VCC2,供电电压VCC以高电压输入,使电流变小,进而使得电源线材变小,有利于节省器件成本,并且线材压降不会影响显示终端的压降。而第一工作电压VCC1小于或等于第二工作电压VCC2是为了让三基色显示元件的正向电压分别处于合适范围,使分在各个显示元件上的压降更为合理。
在一实施例中,第一调压单元和第二调压单元均包括DC/DC电路。其中,DC/DC电路可以将大小固定的直流电压变换为可调的直流电压,同时还具备稳压、稳流、控制功率和保护直流线路的特点。基于此,第一调压单元利用DC/DC电路可以将供电电压VCC稳定地降压为第一工作电压VCC1,且第二调压单元利用DC/DC电路也可将供电电压VCC稳定地降压为第二工作电压VCC2。
在一实施例中,如图3所示,电源模块包括第二开关电源单元304和第三 调压单元305,第二开关电源单元304的第一输出端与第二行驱动模块200连接,第二开关电源单元304的输入端用于接收外部交流电,第二开关电源单元304用于根据外部交流电输出第二工作电压;第三调压单元305的输入端与第二开关电源单元304的第二输出端连接,第三调压单元305用于接收第二工作电压,并根据第二工作电压向第一行驱动模块100输出第一工作电压。
可以理解,第二开关电源单元304包括第二开关电源,其将外部交流电转化为直流电压输出,第二开关电源单元304包括三个输出端,第一输出端与第二行驱动模块200连接,以将输出的直流电压作为第二工作电压VCC2,向第二行驱动模块200供电;第二输出端与第三调压单元305连接,第三调压单元305将输入的第二工作电压VCC2转换为第一工作电压VCC1,并向第一行驱动模块100供电;第三输出端与参考地连接。其中,第二工作电压VCC2大于或等于第一工作电压VCC1,可选地,第一工作电压VCC1可以为2.8V~3.0V,第二工作电压VCC2可以为3.8V~4.0V。在其他实施例中,第三调压单元包括DC/DC电路,第三调压单元利用DC/DC电路可以将第二工作电压VCC2稳定地降压为第一工作电压VCC1。
基于电源模块内部结构的改变,使第一工作电压VCC1和第二工作电压VCC2的来源发生变化,但仍可使分在各个显示元件上的正向电压满足各自的导通压降范围,可以有效降低无用能量损耗,在同等条件下可以有效降低显示装置的温度,并可选用较细的电源线材,降低应用成本,且可明显提升整体装置的亮度。
在一实施例中,如图4所示,电源模块包括第三开关电源单元306,第三开关电源单元306分别与第一行驱动模块100、第二行驱动模块200连接,第三开关电源单元306的第一输出端向第一行驱动模块100输入第一工作电压VCC1, 第三开关电源单元306的第二输出端向第二行驱动模块200输入第二工作电压VCC2,第三开关电源单元306的第三输出端与参考地连接。
在一实施例中,如图5所示,电源模块包括第四开关电源单元307和第五开关电源单元308,其中,第四开关电源单元307与第一行驱动模块100连接,第四开关电源单元307的第一输出端向第一行驱动模块100输入第一工作电压VCC1,第四开关电源单元307的第二输出端与参考地连接;第五开关电源单元308与第二行驱动模块200连接,第五开关电源单元308的第一输出端向第二行驱动模块200输入第二工作电压VCC2,第五开关电源单元308的第二输出端与参考地连接。
本申请还提供了一种显示装置,包括如上述实施例所述的显示装置的驱动电路。基于上述显示装置的驱动电路,所述显示装置可以明显提升整机亮度,有效降低无用能量损耗,并降低装置的温度。
在本说明书的描述中,参考术语“有些实施例”、“其他实施例”、“理想实施例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特征包含于本申请的至少一个实施例或示例中。在本说明书中,对上述术语的示意性描述不一定指的是相同的实施例或示例。
上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对申请专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改 进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

Claims (10)

  1. 一种显示装置的驱动电路,其特征在于,所述显示装置包括呈行和列排布的多个像素单元,各所述像素单元包括红色显示元件、绿色显示元件和蓝色显示元件,位于同一列的同种颜色显示元件的负极相互连接,所述显示装置的驱动电路包括:
    第一行驱动模块,与各所述红色显示元件的正极连接,所述第一行驱动模块用于接收第一工作电压,并向各行所述红色显示元件提供第一扫描信号;
    第二行驱动模块,与各所述绿色显示元件的正极、各所述蓝色显示元件的正极连接,所述第二行驱动模块用于接收第二工作电压,并向各行所述绿色显示元件、各行所述蓝色显示元件提供第二扫描信号;
    电源模块,分别与所述第一行驱动模块、所述第二行驱动模块连接,所述电源模块用于向所述第一行驱动模块输出所述第一工作电压,还用于向所述第二行驱动模块输出所述第二工作电压。
  2. 根据权利要求1所述的显示装置的驱动电路,其特征在于,所述电源模块包括:
    第一开关电源单元,所述第一开关电源单元的输入端用于接收外部交流电,所述第一开关电源单元用于根据所述外部交流电输出供电电压;
    第一调压单元,所述第一调压单元的输入端与所述第一开关电源单元的输出端连接,所述第一调压单元用于接收所述供电电压,并根据所述供电电压向所述第一行驱动模块输出所述第一工作电压;
    第二调压单元,所述第二调压单元的输入端与所述第一开关电源单元的输出端连接,所述第二调压单元用于接收所述供电电压,并根据所述供电电压向所述第二行驱动模块输出所述第二工作电压。
  3. 根据权利要求2所述的显示装置的驱动电路,其特征在于,所述供电电压 大于所述第一工作电压;所述第一工作电压小于或等于所述第二工作电压。
  4. 根据权利要求3所述的显示装置的驱动电路,其特征在于,所述第一调压单元和所述第二调压单元均包括DC/DC电路。
  5. 根据权利要求1所述的显示装置的驱动电路,其特征在于,所述电源模块包括:
    第二开关电源单元,所述第二开关电源单元的第一输出端与所述第二行驱动模块连接,所述第二开关电源单元的输入端用于接收外部交流电,所述第二开关电源单元用于根据所述外部交流电输出所述第二工作电压;
    第三调压单元,所述第三调压单元的输入端与所述第二开关电源单元的第二输出端连接,所述第三调压单元用于接收所述第二工作电压,并根据所述第二工作电压向所述第一行驱动模块输出所述第一工作电压。
  6. 根据权利要求5所述的显示装置的驱动电路,其特征在于,所述第三调压单元包括DC/DC电路。
  7. 根据权利要求1所述的显示装置的驱动电路,其特征在于,所述第一行驱动模块包括:
    多个第一行通道,与多行所述像素单元一一对应;
    其中,每行所述像素单元中的各所述红色显示元件的正极连接至对应的所述第一行通道。
  8. 根据权利要求1所述的显示装置的驱动电路,其特征在于,所述第二行驱动模块包括:
    多个第二行通道,与多行所述像素单元一一对应;
    其中,每行所述像素单元中的各所述绿色显示元件的正极及各所述蓝色显示元件的正极分别连接至对应的所述第二行通道。
  9. 根据权利要求1至8任一项所述的显示装置的驱动电路,其特征在于,所述显示装置的驱动电路还包括:
    列驱动模块,分别与各列同一颜色显示元件的负极、所述电源模块连接,用于接收所述第二工作电压,并向各列显示元件提供列驱动信号。
  10. 一种显示装置,其特征在于,包括如权利要求1至9任一项所述的显示装置的驱动电路。
PCT/CN2023/123941 2022-12-21 2023-10-11 显示装置的驱动电路和显示装置 WO2024131216A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202223439381.2U CN219066408U (zh) 2022-12-21 2022-12-21 显示装置的驱动电路和显示装置
CN202223439381.2 2022-12-21

Publications (1)

Publication Number Publication Date
WO2024131216A1 true WO2024131216A1 (zh) 2024-06-27

Family

ID=86371140

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/123941 WO2024131216A1 (zh) 2022-12-21 2023-10-11 显示装置的驱动电路和显示装置

Country Status (2)

Country Link
CN (1) CN219066408U (zh)
WO (1) WO2024131216A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN219066408U (zh) * 2022-12-21 2023-05-23 深圳雷曼光电科技股份有限公司 显示装置的驱动电路和显示装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070109345A (ko) * 2006-05-11 2007-11-15 엘지.필립스 엘시디 주식회사 액정표시장치 및 그의 구동방법
CN108109579A (zh) * 2017-12-13 2018-06-01 杭州视芯科技有限公司 Led显示装置及其驱动方法
CN110047424A (zh) * 2019-05-05 2019-07-23 吴达 一种扫描驱动led屏的节能方法和节能led显示屏
CN212906894U (zh) * 2020-09-18 2021-04-06 广州视源电子科技股份有限公司 Led显示屏及电子设备
CN219066408U (zh) * 2022-12-21 2023-05-23 深圳雷曼光电科技股份有限公司 显示装置的驱动电路和显示装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070109345A (ko) * 2006-05-11 2007-11-15 엘지.필립스 엘시디 주식회사 액정표시장치 및 그의 구동방법
CN108109579A (zh) * 2017-12-13 2018-06-01 杭州视芯科技有限公司 Led显示装置及其驱动方法
CN110047424A (zh) * 2019-05-05 2019-07-23 吴达 一种扫描驱动led屏的节能方法和节能led显示屏
CN212906894U (zh) * 2020-09-18 2021-04-06 广州视源电子科技股份有限公司 Led显示屏及电子设备
CN219066408U (zh) * 2022-12-21 2023-05-23 深圳雷曼光电科技股份有限公司 显示装置的驱动电路和显示装置

Also Published As

Publication number Publication date
CN219066408U (zh) 2023-05-23

Similar Documents

Publication Publication Date Title
US7714517B2 (en) LED driver with current sink control and applications of the same
WO2024131216A1 (zh) 显示装置的驱动电路和显示装置
TWI400986B (zh) 發光二極體的驅動電路
WO2019114334A1 (zh) Led显示装置及其驱动方法
US8159148B2 (en) Light emitting diode light source module
JP4644315B2 (ja) 発光素子駆動装置、面状照明装置および液晶表示装置
CN110088824A (zh) 光源装置、发光装置和显示装置
CN109360526B (zh) 一种led高效率恒流控制装置
CN105913796B (zh) Led显示屏的驱动电路、驱动方法及led驱动芯片
JP2016505879A (ja) Ledディスプレイ
CN101707031B (zh) Led电视机显示面板装置
WO2023169009A1 (zh) 基于占空比基准点设定的led背光调制方法
CN114420063B (zh) 基于低电势端开关控制的led背光驱动电路的驱动方法
CN216980093U (zh) 显示驱动芯片和led灯板
WO2014075326A1 (zh) 实现led灯条电流倍增的方法及其对应的驱动电路
CN101894504B (zh) Led显示面板及显示器
CN113259646B (zh) 三基色灯条调光控制系统及电视机
CN109377938B (zh) 一种led显示屏的恒流控制装置
CN201557284U (zh) 一种led恒流驱动电路设备
CN112967686A (zh) 发光结构、显示面板、背光模组及显示装置
CN216122707U (zh) 三基色灯条调光控制系统及电视机
CN207781154U (zh) Led显示装置
CN208111042U (zh) Led显示装置
CN213305808U (zh) 一种分体式拨码开关色温调节器及led灯具控制系统
CN115116382A (zh) Led显示屏