WO2024130884A1 - 一种玻璃基板制造搅拌系统的设计方法及系统 - Google Patents

一种玻璃基板制造搅拌系统的设计方法及系统 Download PDF

Info

Publication number
WO2024130884A1
WO2024130884A1 PCT/CN2023/084877 CN2023084877W WO2024130884A1 WO 2024130884 A1 WO2024130884 A1 WO 2024130884A1 CN 2023084877 W CN2023084877 W CN 2023084877W WO 2024130884 A1 WO2024130884 A1 WO 2024130884A1
Authority
WO
WIPO (PCT)
Prior art keywords
stirring
actual
agitator
blade
diameter
Prior art date
Application number
PCT/CN2023/084877
Other languages
English (en)
French (fr)
Inventor
李孟虎
Original Assignee
彩虹显示器件股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 彩虹显示器件股份有限公司 filed Critical 彩虹显示器件股份有限公司
Priority to US18/399,648 priority Critical patent/US20240211661A1/en
Publication of WO2024130884A1 publication Critical patent/WO2024130884A1/zh

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Definitions

  • the present invention relates to the field of glass substrate manufacturing, and in particular to a design method and system for a glass substrate manufacturing stirring system.
  • the glass substrates used in the manufacturing of general flat panel displays such as TFT-LCD (thin film transistor display) and PDP (plasma display panel) are manufactured by overflow down-drawing.
  • the glass melted by the glass melting furnace is supplied to the molten overflow down-draw molding device for manufacturing.
  • the chemical uniformity and thermal uniformity of the glass are the key factors to determine whether the operation of forming the glass is good.
  • the main factors affecting the efficiency and output of the enterprise are glass defects.
  • the main quality defects of the substrate glass include bubbles, stones, streaks, etc. Among them, bubbles are divided into bubbles caused by poor clarity, secondary bubbles, mixed bubbles, etc.
  • Stones are mainly platinum-rhodium stones, and streaks are mainly caused by uneven composition of molten glass liquid.
  • the stirring device in the channel is an effective way to improve the uniformity of the glass.
  • the blades play the role of mixing the molten glass.
  • the agitator and stirring chamber are usually made of high melting point metals.
  • the volatile oxides in the glass stirring device can be formed by any elements present in the glass and the stirring device.
  • the free surface of the glass refers to the surface of the molten glass that is exposed to the atmosphere in the stirring device. Since the atmosphere above the free surface of the glass (the atmosphere includes one or all of the above-mentioned volatiles) is hotter than the atmosphere outside the stirring device, it has a natural tendency to flow upward through any openings (such as the annular space between the stirrer shaft and the stirring container cover). As the distance between the stirrer shaft and the free surface of the molten glass increases, the stirrer shaft becomes colder.
  • the volatile oxides contained in the atmosphere of the stirring device can condense on the surface of the shaft.
  • the condensate reaches a critical size, it will fall off into the glass, forming inclusions or bubble defects in the glass product. It has been proven that heating the surface above the free surface of the glass The shaft is only partially effective in reducing particulate impurities in the glass melt, causing only condensation stratification. Improving the stirring process is a more effective way to reduce platinum group defects.
  • glass stirring systems are designed for the highest shear stress possible, consistent with a reasonable stirrer life. In fact, in normal design, such systems can generate high shear stress even when running at low speeds. Due to the high cost of high-melting-point metals (such as platinum group metals and their alloys) commonly used in the manufacture of stirring systems, it is desirable to obtain maximum stirring with the smallest stirring system. Generally speaking, shear stress can be increased by increasing blade speed, reducing the gap (coupling distance) between the stirrer blade and the stirring chamber wall, lowering the glass temperature, or combining these measures. In physical experiments, measuring the stirring effect is a difficult point.
  • the present invention provides a design method and system for a glass substrate manufacturing stirring system, which can meet the technical requirements of high efficiency and high homogenization stirring effect, thereby meeting the needs of higher generations and higher output.
  • a method for designing a stirring system for manufacturing a glass substrate comprises the following steps:
  • a standard stirring system is selected as a reference stirring system, and the parameters of the reference stirring system including the sweep height of the stirring blade, the lead-out amount, the inner diameter of the stirring tank, the diameter of the stirring blade, the stirring power, the stirring speed and the stirring torque are obtained respectively;
  • the shear stress equivalent relation and the stirring effect equivalent relation, the actual stirring tank inner diameter, the actual agitator blade diameter and the actual agitator blade sweep height of the actual stirring system are calculated to complete the design of the actual stirring system.
  • N is the actual agitator speed
  • D Y is the actual agitator blade diameter
  • D B is the actual stirring tank inner diameter
  • N 0 is the agitator speed
  • D Y0 is the agitator blade diameter
  • D B0 is the stirring tank inner diameter
  • shear stress ⁇ of the shear stress equivalent relationship satisfies the following relationship:
  • is the viscosity of the glass and C is the gap between the agitator blade and the inner wall of the stirring tank.
  • the gap C between the agitator blade and the inner wall of the agitator tank satisfies the following relationship:
  • T is the actual agitator torque
  • P is the actual agitator power
  • H is the actual agitator blade sweep height
  • Q is the actual extraction
  • T 0 is the agitator torque
  • P 0 is the agitator power
  • H 0 is the agitator blade sweep height
  • Q 0 is the extraction.
  • stirring effect E of the stirring effect equivalent relationship satisfies the following relationship:
  • a design system for a glass substrate manufacturing stirring system used to implement the steps of the above-mentioned design method for a glass substrate manufacturing stirring system, comprising:
  • An acquisition module is used to select a standard stirring system as a reference stirring system, and respectively acquire parameters of the reference stirring system, such as a stirring blade sweep height, a lead-out amount, a stirring tank inner diameter, a stirring blade diameter, a stirring power, a stirring speed, and a stirring torque;
  • Shear stress module used to establish the equivalent relationship of shear stress according to the inner diameter of the mixing tank, the diameter of the agitator blade and the agitator speed;
  • a stirring effect module for establishing a stirring effect equivalent relationship according to agitator blade sweep height, lead-out amount, agitator blade diameter, agitator power, agitator speed and agitator torque;
  • the design module is used to calculate the actual mixing tank inner diameter, actual agitator blade diameter and actual agitator blade sweep height of the actual mixing system according to the reference mixing system, shear stress equivalent relationship and mixing effect equivalent relationship, so as to complete the design of the actual mixing system.
  • the present invention has the following beneficial effects:
  • the present invention provides a design method for a stirring system for manufacturing a glass substrate.
  • the method obtains parameters such as a stirring blade sweep height, a lead-out amount, a stirring tank inner diameter, a stirring blade diameter, a stirring power, a stirring speed, and a stirring torque of a reference stirring system, respectively establishes a shear stress equivalent relationship and a stirring effect equivalent relationship, and calculates the actual stirring tank inner diameter, the stirring tank ...
  • the actual agitator blade diameter and the actual agitator blade sweep height are used to complete the design of the actual stirring system.
  • this method establishes the design benchmarks for the stirring blade sweep height, stirring blade diameter, and stirring tank inner diameter, while taking into account the stirring shaft creep and system cost optimization, which can meet the technical requirements of high efficiency and high homogenization stirring effect, thereby meeting the needs of higher generations and higher extraction volumes.
  • the present invention also provides a design system for a glass substrate manufacturing stirring system.
  • the system can implement the steps of the above-mentioned design method, thereby meeting the requirements of higher generations and higher lead-out amounts.
  • FIG1 is a schematic diagram of a geometric model structure of a stirring system provided in an embodiment of the present invention.
  • FIG2 is a schematic diagram of the cross-sectional design dimensions of a stirring system provided in an embodiment of the present invention.
  • FIG3 is a schematic diagram of a stirring simulation effect of a stirring system provided by an embodiment of the present invention.
  • FIG. 4 is a flow chart of a method for designing a stirring system for manufacturing a glass substrate provided by the present invention.
  • the present invention provides a design method for a stirring system for manufacturing a glass substrate, as shown in FIG4 , comprising the following steps:
  • a standard stirring system is selected as a reference stirring system, and the parameters of the reference stirring system including the sweep height of the stirring blade, the lead-out amount, the inner diameter of the stirring tank, the diameter of the stirring blade, the stirring power, the stirring speed and the stirring torque are obtained respectively;
  • shear stress equivalent relationship and stirring effect equivalent relationship the actual The actual inner diameter of the mixing tank, the actual diameter of the agitator blade and the actual sweep height of the agitator blade of the actual mixing system are used to complete the design of the actual mixing system.
  • N is the actual agitator speed
  • D Y is the actual agitator blade diameter
  • D B is the actual stirring tank inner diameter
  • N 0 is the agitator speed
  • D Y0 is the agitator blade diameter
  • D B0 is the stirring tank inner diameter
  • shear stress ⁇ of the shear stress equivalence relation satisfies the following relationship:
  • is the viscosity of the glass and C is the gap between the agitator blade and the inner wall of the stirring tank.
  • the gap C between the agitator blade and the inner wall of the agitator tank satisfies the following relationship:
  • T is the actual agitator torque
  • P is the actual agitator power
  • H is the actual agitator blade sweep height
  • Q is the actual extraction
  • T 0 is the agitator torque
  • P 0 is the agitator power
  • H 0 is the agitator blade sweep height
  • Q 0 is the extraction.
  • stirring effect E of the stirring effect equivalence relation satisfies the following relationship:
  • the present invention also provides a design system for a glass substrate manufacturing stirring system, comprising: an acquisition module, a determination module, a shear stress module, a stirring effect module, and a design module;
  • the acquisition module is used to select a standard stirring system as a reference stirring system, and respectively obtain the parameters of the reference stirring system such as the stirring blade sweep height, the lead-out amount, the stirring tank inner diameter, the stirring blade diameter, the stirring power, the stirring speed, and the stirring torque;
  • the shear stress module is used to establish a shear stress equivalent relationship according to the stirring tank inner diameter, the stirring blade diameter, and the stirring speed;
  • the stirring effect module is used to establish a stirring effect equivalent relationship according to the stirring blade sweep height, the lead-out amount, the stirring blade diameter, the stirring power, the stirring speed, and the stirring torque;
  • the design module is used to calculate the actual stirring tank inner diameter, the actual stirring blade diameter, and the actual stirring blade sweep height of the actual stirring system according to the reference stirring system, the shear stress equivalent relationship, and the stirring effect
  • the stirring system includes an inlet end 1, an outlet end 2, a stirring tank 3, a stirring shaft 5 and a plurality of stirring blades 4;
  • the stirring tank 3 is a cylindrical hollow body, the inlet end 1 is arranged at the upper part of the side wall of the stirring tank 3; the outlet end 2 is arranged at the bottom of the stirring tank 3, the stirring shaft 5 is inserted into the top of the stirring tank 3, and the plurality of stirring blades 4 are arranged in the stirring tank 3 along the shaft body of the stirring shaft 5.
  • the stirring function in the platinum channel is to make the molten glass liquid with uneven composition more uniform and reduce the streak defects in the finished glass substrate.
  • Glass homogenization includes chemical uniformity and thermal uniformity.
  • the stripes of different chemical phases in the glass melting furnace are caused by the dissolution of refractory materials, melt stratification, volatilization of the glass surface and temperature differences during the melting process. There are differences in color or refractive index.
  • Platinum-rhodium defects with a size less than 50 ⁇ m in glass manufacturing originate from the corrosion of the agitator and the stirring tank wall caused by the viscous shear stress of the agitator.
  • the homogenization mechanism (1) by applying shear stress to the glass melt, the non-uniform phase is stretched into thin stripes; (2) The stripes are cut into short fragments by the plane of the agitator blade perpendicular to the flow direction of the glass melt; (3) The blade shape pushes the glass melt perpendicular to the overall flow direction, causing the glass to produce radial flow to disperse the fragments.
  • H is the sweep height (also called sweep range) of the agitator blade of the actual stirring system
  • DB is the inner diameter of the stirring tank of the actual stirring system
  • D Y is the stirring diameter of the agitator blade of the actual stirring system.
  • the smallest stirring system is used to obtain the maximum stirring to reduce the cost of precious metals such as platinum and rhodium.
  • the shear stress is reduced to a level below the level of forming unacceptable platinum and rhodium defects, while maintaining the stirring efficiency and flow rate at a level that can only be achieved with high shear stress, thereby achieving the purpose of coordinating the contradictions between shear stress, flow rate, and stirring efficiency.
  • the calculation formula for the actual mixing tank inner diameter DB is:
  • N is the actual agitator speed
  • D Y is the actual agitator blade diameter
  • D B is the actual inner diameter of the stirring tank
  • N 0 is the agitator speed
  • D Y0 is the agitator blade diameter
  • D B0 is the inner diameter of the stirring tank
  • H 0 is the agitator blade sweep height of the reference stirring system
  • T is the actual agitator torque
  • P is the actual agitator power
  • H is the actual agitator blade sweep height
  • Q is the actual lead-out amount
  • T 0 is the agitator torque
  • P 0 is the agitator power
  • H 0 is the agitator blade sweep height
  • Q 0 is the lead-out amount.
  • the stirrer When the stirring system involved in this embodiment is working, the stirrer is driven by the transmission mechanism to rotate at a set speed, thereby stirring the molten glass liquid entering the stirring tank 3 through the inlet end 1.
  • the molten glass liquid itself has thermal conductivity, and the temperature of the molten glass liquid in the rear section of the stirring tank 3 may have reached the same temperature.
  • the actual stirring system designed by the method of this embodiment has the same stirring characteristics as the reference stirring system. It optimizes the mixing effect, takes into account the creep of the mixing shaft and the system cost optimization, and meets the technical requirements of high efficiency and high homogenization mixing effect for higher generations and higher output.

Landscapes

  • Mixers Of The Rotary Stirring Type (AREA)

Abstract

一种玻璃基板制造搅拌系统的设计方法及系统,属于玻璃基板制造领域,本方法通过获取参考搅拌系统的搅拌器叶片扫掠高度、引出量、搅拌槽内径、搅拌器叶片直径、搅拌器功率、搅拌器转速和搅拌器扭矩等参数,分别建立剪切应力等效关系以及搅拌效果等效关系,根据对应关系计算得出实际搅拌系统的实际搅拌槽内径、实际搅拌器叶片直径和实际搅拌器叶片扫掠高度,从而完成实际搅拌系统的设计;本方法基于参考搅拌系统及剪切应力与搅拌效果等效,建立了搅拌叶片扫掠高度、搅拌叶片直径、搅拌槽内径的设计基准,同时兼顾了搅拌轴蠕变和系统成本优化,能够满足高效率和高均化搅拌效果的技术要求,从而满足更高世代和更高引出量的需求。

Description

一种玻璃基板制造搅拌系统的设计方法及系统 技术领域
本发明涉及玻璃基板制造领域,尤其涉及一种玻璃基板制造搅拌系统的设计方法及系统。
背景技术
一般的TFT-LCD(薄膜晶体管显示器)、PDP(等离子体显示屏)等平板显示器制造领域所用的玻璃基板以溢流下拉的方式制造,在成型工序中将由玻璃熔化炉熔化了的玻璃液供给到熔融溢流下拉成型装置来制造。玻璃的化学均匀性和热均匀性是判断形成玻璃的操作是否良好的关键因素。在液晶基板玻璃生产中,影响企业效益和产量的主要因素是玻璃缺陷,基板玻璃主要品质缺陷有气泡、结石、条纹等。其中气泡分为澄淸不良产生的气泡、二次气泡、混入气泡等,结石主要是铂铑结石,条纹则主要是因为熔融玻璃液成分不均匀引起。在液晶基板玻璃生产中,为了均化熔融玻璃液的成分,通道中搅拌装置是提高玻璃均匀性的一种有效途径。熔融玻璃从搅拌室顶部流到底部的过程中,叶片起混合熔融玻璃的作用。为了耐高温和耐玻璃的化学腐蚀,搅拌器和搅拌室通常采用高熔点金属制造。
玻璃搅拌装置中的挥发性氧化物可由玻璃以及搅拌装置中存在的任何元素形成。玻璃自由表面是指暴露至搅拌装置内的大气的玻璃熔液表面。由于玻璃自由表面上方的大气(大气包括上述挥发物的一种或全部)比搅拌装置外部的大气更热,可穿过任何开口(如搅拌器轴和搅拌容器盖之间的环形空间)向上的自然流动趋势。随着搅拌器轴和玻璃熔液自由表面之间的距离增大搅拌器轴变得更冷,如果温度低于上述氧化物的露点,则搅拌装置大气内所包含的挥发性氧化物可冷凝在所述轴的表面上。当冷凝物达到临界尺寸时,将脱落进入玻璃中,形成玻璃产品中的夹杂物或气泡缺陷。己证明,加热玻璃自由表面上方 的轴在减少玻璃熔体中的颗粒杂质方面仅仅取得部分效果,仅造成冷凝的成层。改进搅拌工艺是减少铂族缺陷的更有效办法。
通常,玻璃搅拌系统是按照最高剪切应力来设计的,使之可能与合理的搅拌器寿命相一致。实际上,在正常设计中,这种系统即便在低速下运行也能够产生高剪切应力。由于制造搅拌系统时常用的高熔点金属(如铂族金属及其合金)成本高,所以希望用最小的搅拌系统获得最大程度的搅拌。一般而言,通过增大叶片速度,减小搅拌器叶片与搅拌室壁之间的间隙(耦合距离),降低玻璃温度,或者将这些措施组合起来,可增大剪切应力。在物理实验中,对搅拌效果的衡量是一个难点,研究人员多在试验中采用对模拟流体染色的方法来直观地展现搅拌效果,但是这种方法不能定量地对比实验数据;或者实验人员通过测量成品中局部密度的方法来衡量搅拌效果,但这种方法却不能对比搅拌前后的密度,存在一定的误差。近年来为了提高产线效率,玻璃基板尺寸越来越大,引出量越来越高。为了满足更高世代和更高引出量的需求,搅拌系统的设计是整个玻璃基板制造装备设计的核心之一。
由此可见,现有的搅拌系统设计方法,很难找到剪切应力与搅拌效果的平衡点,导致无法满足高效率和高均化搅拌效果的技术要求。
发明内容
为解决上述技术问题,本发明提供一种玻璃基板制造搅拌系统的设计方法及系统,能够满足高效率和高均化搅拌效果的技术要求,从而满足更高世代和更高引出量的需求。
为了达到上述目的,本发明采用技术方案如下:
一种玻璃基板制造搅拌系统的设计方法,包括步骤如下:
选取标准搅拌系统作为参考搅拌系统,分别获取参考搅拌系统的搅拌器叶片扫掠高度、引出量、搅拌槽内径、搅拌器叶片直径、搅拌器功率、搅拌器转速以和搅拌器扭矩以上参数;
根据搅拌槽内径、搅拌器叶片直径和搅拌器转速建立剪切应力等效关系;
根据搅拌器叶片扫掠高度、引出量、搅拌器叶片直径、搅拌器功率、搅拌器转速以和搅拌器扭矩建立搅拌效果等效关系;
根据参考搅拌系统、剪切应力等效关系及搅拌效果等效关系,计算得出实际搅拌系统的实际搅拌槽内径、实际搅拌器叶片直径和实际搅拌器叶片扫掠高度,完成实际搅拌系统的设计。
进一步地,所述剪切应力等效关系的具体公式为:
其中,N为实际搅拌器转速,DY为实际搅拌器叶片直径,DB为实际搅拌槽内径,N0为搅拌器转速,DY0为搅拌器叶片直径,DB0为搅拌槽内径。
进一步地,所述剪切应力等效关系的剪切应力τ满足以下关系:
其中,η为玻璃的粘度,C为搅拌器叶片与搅拌槽内壁的间隙。
进一步地,搅拌器叶片与搅拌槽内壁的间隙C满足以下关系:
进一步地,所述搅拌效果等效关系的具体公式为:

其中,T为实际搅拌器扭矩,P为实际搅拌器功率,H为实际搅拌器叶片扫掠高度,Q为实际引出量,T0为搅拌器扭矩,P0为搅拌器功率,H0为搅拌器叶片扫掠高度,Q0为引出量。
进一步地,所述搅拌效果等效关系的搅拌效果E满足以下关系:
进一步地,所述实际搅拌器叶片扫掠高度H的计算公式为:
进一步地,所述实际搅拌器叶片直径DY的计算公式为:
进一步地,所述实际搅拌槽内径DB的计算公式为:
一种玻璃基板制造搅拌系统的设计系统,用于实现上述一种玻璃基板制造搅拌系统的设计方法的步骤,包括:
获取模块,用于选取标准搅拌系统作为参考搅拌系统,分别获取参考搅拌系统的搅拌器叶片扫掠高度、引出量、搅拌槽内径、搅拌器叶片直径、搅拌器功率、搅拌器转速以和搅拌器扭矩以上参数;
剪切应力模块,用于根据搅拌槽内径、搅拌器叶片直径和搅拌器转速建立剪切应力等效关系;
搅拌效果模块,用于根据搅拌器叶片扫掠高度、引出量、搅拌器叶片直径、搅拌器功率、搅拌器转速以和搅拌器扭矩建立搅拌效果等效关系;
设计模块,用于根据参考搅拌系统、剪切应力等效关系及搅拌效果等效关系,计算得出实际搅拌系统的实际搅拌槽内径、实际搅拌器叶片直径和实际搅拌器叶片扫掠高度,完成实际搅拌系统的设计。
相比于现有技术,本发明具有有益效果如下:
本发明提供一种玻璃基板制造搅拌系统的设计方法,本方法通过获取参考搅拌系统的搅拌器叶片扫掠高度、引出量、搅拌槽内径、搅拌器叶片直径、搅拌器功率、搅拌器转速以和搅拌器扭矩等参数,分别建立剪切应力等效关系以及搅拌效果等效关系,根据对应关系计算得出实际搅拌系统的实际搅拌槽内径、 实际搅拌器叶片直径和实际搅拌器叶片扫掠高度,从而完成实际搅拌系统的设计;本方法基于参考搅拌系统及剪切应力与搅拌效果等效,建立了搅拌叶片扫掠高度、搅拌叶片直径、搅拌槽内径的设计基准,同时兼顾了搅拌轴蠕变和系统成本优化,能够满足高效率和高均化搅拌效果的技术要求,从而满足更高世代和更高引出量的需求。
本发明还提供一种玻璃基板制造搅拌系统的设计系统,通过本系统能够实现上述设计方法的步骤,满足了更高世代和更高引出量的需求。
附图说明
图1为本发明实施例提供的搅拌系统的几何模型结构示意图;
图2为本发明实施例提供的搅拌系统截面设计尺寸示意图;
图3为本发明实施例提供的搅拌系统的搅拌模拟效果示意图;
图4为本发明提供的一种玻璃基板制造搅拌系统的设计方法的流程图。
附图标记:
1-入口端;2-出口端;3-搅拌槽;4-搅拌叶片;5-搅拌轴。
具体实施方式
本发明提供一种玻璃基板制造搅拌系统的设计方法,如图4所示,包括步骤如下:
选取标准搅拌系统作为参考搅拌系统,分别获取参考搅拌系统的搅拌器叶片扫掠高度、引出量、搅拌槽内径、搅拌器叶片直径、搅拌器功率、搅拌器转速以和搅拌器扭矩以上参数;
根据搅拌槽内径、搅拌器叶片直径和搅拌器转速建立剪切应力等效关系;
根据搅拌器叶片扫掠高度、引出量、搅拌器叶片直径、搅拌器功率、搅拌器转速以和搅拌器扭矩建立搅拌效果等效关系;
根据参考搅拌系统、剪切应力等效关系及搅拌效果等效关系,计算得出实 际搅拌系统的实际搅拌槽内径、实际搅拌器叶片直径和实际搅拌器叶片扫掠高度,完成实际搅拌系统的设计。
具体的,剪切应力等效关系的具体公式为:
其中,N为实际搅拌器转速,DY为实际搅拌器叶片直径,DB为实际搅拌槽内径,N0为搅拌器转速,DY0为搅拌器叶片直径,DB0为搅拌槽内径。
特别的,剪切应力等效关系的剪切应力τ满足以下关系:
其中,η为玻璃的粘度,C为搅拌器叶片与搅拌槽内壁的间隙。
并且,搅拌器叶片与搅拌槽内壁的间隙C满足以下关系:
具体的,搅拌效果等效关系的具体公式为:

其中,T为实际搅拌器扭矩,P为实际搅拌器功率,H为实际搅拌器叶片扫掠高度,Q为实际引出量,T0为搅拌器扭矩,P0为搅拌器功率,H0为搅拌器叶片扫掠高度,Q0为引出量。
特别的,搅拌效果等效关系的搅拌效果E满足以下关系:
上述实际搅拌器叶片扫掠高度H的计算公式为:
上述实际搅拌器叶片直径DY的计算公式为:
上述实际搅拌槽内径DB的计算公式为:
本发明还提供一种玻璃基板制造搅拌系统的设计系统,包括:获取模块,确定模块,剪切应力模块,搅拌效果模块,设计模块;获取模块,用于选取标准搅拌系统作为参考搅拌系统,分别获取参考搅拌系统的搅拌器叶片扫掠高度、引出量、搅拌槽内径、搅拌器叶片直径、搅拌器功率、搅拌器转速以和搅拌器扭矩以上参数;剪切应力模块,用于根据搅拌槽内径、搅拌器叶片直径和搅拌器转速建立剪切应力等效关系;搅拌效果模块,用于根据搅拌器叶片扫掠高度、引出量、搅拌器叶片直径、搅拌器功率、搅拌器转速以和搅拌器扭矩建立搅拌效果等效关系;设计模块,用于根据参考搅拌系统、剪切应力等效关系及搅拌效果等效关系,计算得出实际搅拌系统的实际搅拌槽内径、实际搅拌器叶片直径和实际搅拌器叶片扫掠高度,完成实际搅拌系统的设计。
实施例
如图1所示,搅拌系统包括入口端1、出口端2、搅拌槽3、搅拌轴5和若干个搅拌叶片4;搅拌槽3为圆柱空腔体,入口端1在搅拌槽3侧壁的上部设置;出口端2在搅拌槽3的底部设置,搅拌轴5在搅拌槽3的顶部插入设置,若干个所述搅拌叶片4沿着搅拌轴5的轴体在搅拌槽3内设置。
在玻璃基板制造中,铂金通道中搅拌功能是将成分不均的熔融玻璃液变得更加均匀,减少玻璃基板成品中的条纹缺陷。玻璃均化包括化学均匀性和热均匀性。玻璃熔炉的不同化学相条纹是由熔融过程中耐火材料溶解、熔体分层、玻璃表面挥发和温差造成的。颜色或折射指数有差异。玻璃制造中尺寸小于50μm的铂铑缺陷起源于搅拌器粘性剪切应力造成的搅拌器和搅拌槽壁腐蚀。其中,均化机理:(1)通过向玻璃熔体施加剪切应力,将非均匀相拉伸为薄的条纹; (2)通过垂直于玻璃熔体流动方向的搅拌器叶片平面将条纹切割为短的碎片;(3)通过垂直于总体流动方向推动玻璃熔体的叶片形状,使玻璃产生径向流动来分散碎片。
根据图2所示,H为实际搅拌系统的搅拌器叶片扫掠高度(也可以叫扫掠范围);DB为实际搅拌系统的搅拌槽内直径;DY为实际搅拌系统的搅拌器叶片搅拌直径。采用最小的搅拌系统得到最大程度的搅拌,以减小铂铑等贵金属成本。通过协调搅拌器速度、搅拌器/搅拌槽形状、以及玻璃粘度之间的关系,使剪切应力减小到低于形成不可接受的铂铑缺陷水平,同时将搅拌效率和流量保持在只有高剪切应力才能实现的水平,达致协调剪切应力、流量和搅拌效率之间矛盾之目的。
其中,实际搅拌器叶片扫掠高度H的计算公式为:
实际搅拌器叶片直径DY的计算公式为:
实际搅拌槽内径DB的计算公式为:
N为实际搅拌器转速,DY为实际搅拌器叶片直径,DB为实际搅拌槽内径,N0为搅拌器转速,DY0为搅拌器叶片直径,DB0为搅拌槽内径,H0为参考搅拌系统的搅拌器叶片扫掠高度;T为实际搅拌器扭矩,P为实际搅拌器功率,H为实际搅拌器叶片扫掠高度,Q为实际引出量,T0为搅拌器扭矩,P0为搅拌器功率,H0为搅拌器叶片扫掠高度,Q0为引出量。
如图3所示,应用专业流体力学的数值分析软件(如Ansys-Fluent),对铂金通道搅系统进行热场与流动的耦合计算。通过研究搅拌桶内熔融玻璃液的流场和温度场,分析搅拌桶内玻璃液的流态和均化效果的规律,得到搅拌器的最佳转速。
适当(不宜过大)的剪切应力达致低的铂金缺陷率和高的搅拌(均化)效率。搅拌以给定的流量Q产生适度均化为目标,剪切应力的减小不应以搅拌效率为代价,最大程度减少腐蚀可延长搅拌系统的使用寿命。对于给定的流量Q,保持搅拌效率不变和减小剪切应力,通常需要增大搅拌器直径或搅拌体积,保持H为常数。实际上,这意味着增加滞留时间,即使在搅拌转速较慢时,也能保持对玻璃熔体进行充分均化。扭矩T要保持足够低,以免在搅拌温度下扭矩应力使搅拌器轴产生显著的蠕变。
具体实施过程如下:
本实施例涉及的搅拌系统在工作时,搅拌器在传动机构的带动下,按设定的转速匀速转动,从而对经过入口端1进入搅拌槽3内的熔融玻璃液进行搅拌。熔融玻璃液本身具有热传导性,可能在搅拌槽3后段熔融玻璃液的温度就己经达到同温。
参考搅拌系统:搅拌槽内径DB0=360mm,搅拌叶片直径DY0=300mm,搅拌器叶片扫掠高度H0=610mm,搅拌器转速N0=8rpm,引出量Q0=22T/Day。
设计实际搅拌系统:实际搅拌器转速N=8rpm,实际引出量Q=28T/Day。
假设与参考搅拌系统采用相同的电机和额定功率P,与参考搅拌系统采用相同的转速N,则:搅拌槽内径DB=460.1mm,搅拌叶片最大直径DY=383.41mm,搅拌器叶片扫掠高度H=732mm。
为了验证剪切应力的等效性,经计算:
为了验证搅拌效果的等效性,经计算:
通过本实施例的方法,设计的实际搅拌系统与参考搅拌系统具有相同的搅 拌效果,兼顾了搅拌轴蠕变和系统成本优化,针对更高世代和更高引出量的需求,满足高效率和高均化搅拌效果的技术要求。
上述实施例仅仅是能够实现本发明技术方案的实施方式之一,本发明所要求保护的范围并不仅仅受本实施例的限制,还包括在本发明所公开的技术范围内,任何熟悉本技术领域的技术人员所容易想到的变化、替换及其他实施方式。

Claims (10)

  1. 一种玻璃基板制造搅拌系统的设计方法,其特征在于,包括步骤如下:
    选取标准搅拌系统作为参考搅拌系统,分别获取参考搅拌系统的搅拌器叶片扫掠高度、引出量、搅拌槽内径、搅拌器叶片直径、搅拌器功率、搅拌器转速以和搅拌器扭矩以上参数;
    根据搅拌槽内径、搅拌器叶片直径和搅拌器转速建立剪切应力等效关系;
    根据搅拌器叶片扫掠高度、引出量、搅拌器叶片直径、搅拌器功率、搅拌器转速以和搅拌器扭矩建立搅拌效果等效关系;
    根据参考搅拌系统、剪切应力等效关系及搅拌效果等效关系,计算得出实际搅拌系统的实际搅拌槽内径、实际搅拌器叶片直径和实际搅拌器叶片扫掠高度,完成实际搅拌系统的设计。
  2. 根据权利要求1所述的一种玻璃基板制造搅拌系统的设计方法,其特征在于,所述剪切应力等效关系的具体公式为:
    其中,N为实际搅拌器转速,DY为实际搅拌器叶片直径,DB为实际搅拌槽内径,N0为搅拌器转速,DY0为搅拌器叶片直径,DB0为搅拌槽内径。
  3. 根据权利要求2所述的一种玻璃基板制造搅拌系统的设计方法,其特征在于,所述剪切应力等效关系的剪切应力τ满足以下关系:
    其中,η为玻璃的粘度,C为搅拌器叶片与搅拌槽内壁的间隙。
  4. 根据权利要求3所述的一种玻璃基板制造搅拌系统的设计方法,其特征在于,搅拌器叶片与搅拌槽内壁的间隙C满足以下关系:
  5. 根据权利要求4所述的一种玻璃基板制造搅拌系统的设计方法,其特征在于,所述搅拌效果等效关系的具体公式为:

    其中,T为实际搅拌器扭矩,P为实际搅拌器功率,H为实际搅拌器叶片扫掠高度,Q为实际引出量,T0为搅拌器扭矩,P0为搅拌器功率,H0为搅拌器叶片扫掠高度,Q0为引出量。
  6. 根据权利要求5所述的一种玻璃基板制造搅拌系统的设计方法,其特征在于,所述搅拌效果等效关系的搅拌效果E满足以下关系:
  7. 根据权利要求6所述的一种玻璃基板制造搅拌系统的设计方法,其特征在于,所述实际搅拌器叶片扫掠高度H的计算公式为:
  8. 根据权利要求7所述的一种玻璃基板制造搅拌系统的设计方法,其特征在于,所述实际搅拌器叶片直径DY的计算公式为:
  9. 根据权利要求8所述的一种玻璃基板制造搅拌系统的设计方法,其特征在于,所述实际搅拌槽内径DB的计算公式为:
  10. 一种玻璃基板制造搅拌系统的设计系统,用于实现权利要求1-9任一项所述的一种玻璃基板制造搅拌系统的设计方法的步骤,其特征在于,包括:
    获取模块,用于选取标准搅拌系统作为参考搅拌系统,分别获取参考搅拌系统的搅拌器叶片扫掠高度、引出量、搅拌槽内径、搅拌器叶片直径、搅拌器功率、搅拌器转速以和搅拌器扭矩以上参数;
    剪切应力模块,用于根据搅拌槽内径、搅拌器叶片直径和搅拌器转速建立剪切应力等效关系;
    搅拌效果模块,用于根据搅拌器叶片扫掠高度、引出量、搅拌器叶片直径、搅拌器功率、搅拌器转速以和搅拌器扭矩建立搅拌效果等效关系;
    设计模块,用于根据参考搅拌系统、剪切应力等效关系及搅拌效果等效关系,计算得出实际搅拌系统的实际搅拌槽内径、实际搅拌器叶片直径和实际搅拌器叶片扫掠高度,完成实际搅拌系统的设计。
PCT/CN2023/084877 2022-12-22 2023-03-29 一种玻璃基板制造搅拌系统的设计方法及系统 WO2024130884A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/399,648 US20240211661A1 (en) 2022-12-22 2023-12-28 Systems and methods for designing manufacturing and mixing systems of glass substrates

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211658948.7A CN115964819A (zh) 2022-12-22 2022-12-22 一种玻璃基板制造搅拌系统的设计方法及系统
CN202211658948.7 2022-12-22

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/399,648 Continuation-In-Part US20240211661A1 (en) 2022-12-22 2023-12-28 Systems and methods for designing manufacturing and mixing systems of glass substrates

Publications (1)

Publication Number Publication Date
WO2024130884A1 true WO2024130884A1 (zh) 2024-06-27

Family

ID=87360952

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/084877 WO2024130884A1 (zh) 2022-12-22 2023-03-29 一种玻璃基板制造搅拌系统的设计方法及系统

Country Status (2)

Country Link
CN (1) CN115964819A (zh)
WO (1) WO2024130884A1 (zh)

Also Published As

Publication number Publication date
CN115964819A (zh) 2023-04-14

Similar Documents

Publication Publication Date Title
JP5246568B1 (ja) ガラスの製造方法、および、攪拌装置
KR100878605B1 (ko) 교반에 의한 용융 유리 균질화 방법 및 장치
US7497094B2 (en) Glass melting furnace and method for producing glass
US9061931B2 (en) Methods for reducing zirconia defects in glass sheets
US7578144B2 (en) Method for minimizing refractory metal inclusions in a glass stirring operation
TWI624440B (zh) 純化熔融玻璃的方法及裝置
KR20100059709A (ko) 유리 용융물의 균질화 방법
TWI675805B (zh) 溢流槽端部流量壩
JP2015157756A (ja) ガラス基板の製造方法
CN108409107B (zh) 一种高均匀性高一致性光学玻璃的制造方法及装置
CN113336420B (zh) 一种实验室用熔融玻璃搅拌控制系统及方法
WO2024130884A1 (zh) 一种玻璃基板制造搅拌系统的设计方法及系统
JP2020523273A (ja) コンパクションを制御する方法
CN101279814B (zh) 一种平板液晶显示器玻璃基板的成型装置
CN112861397B (zh) 一种玻璃基板制造搅拌系统均化效果优化方法
TWI596067B (zh) Manufacturing method of a glass substrate, and manufacturing apparatus of a glass substrate
CN103030260B (zh) 一种制作梯度光学玻璃的装置及其制作方法
CN209740973U (zh) 一种玻璃基板制造过程中铂金通道的多功能排泡装置
CN102351419A (zh) 一种k9光学玻璃及其制备方法
JP6449606B2 (ja) ガラス基板の製造方法、および、ガラス基板の製造装置
CN107660197A (zh) 用于调整熔融玻璃的设备和方法
JP2007521218A (ja) ガラスパネルの製造方法
JP2012036063A (ja) 溶融ガラスの撹拌装置及び撹拌方法
CN117214075A (zh) 一种测量基板玻璃窑炉电熔高锆砖耐侵蚀装置及方法